]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
Merge branch 'qgroup' of git://git.jan-o-sch.net/btrfs-unstable into for-linus
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37 WARN_ON(atomic_read(&transaction->use_count) == 0);
38 if (atomic_dec_and_test(&transaction->use_count)) {
39 BUG_ON(!list_empty(&transaction->list));
40 WARN_ON(transaction->delayed_refs.root.rb_node);
41 memset(transaction, 0, sizeof(*transaction));
42 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 }
44 }
45
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48 free_extent_buffer(root->commit_root);
49 root->commit_root = btrfs_root_node(root);
50 }
51
52 /*
53 * either allocate a new transaction or hop into the existing one
54 */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57 struct btrfs_transaction *cur_trans;
58 struct btrfs_fs_info *fs_info = root->fs_info;
59
60 spin_lock(&fs_info->trans_lock);
61 loop:
62 /* The file system has been taken offline. No new transactions. */
63 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
64 spin_unlock(&fs_info->trans_lock);
65 return -EROFS;
66 }
67
68 if (fs_info->trans_no_join) {
69 if (!nofail) {
70 spin_unlock(&fs_info->trans_lock);
71 return -EBUSY;
72 }
73 }
74
75 cur_trans = fs_info->running_transaction;
76 if (cur_trans) {
77 if (cur_trans->aborted) {
78 spin_unlock(&fs_info->trans_lock);
79 return cur_trans->aborted;
80 }
81 atomic_inc(&cur_trans->use_count);
82 atomic_inc(&cur_trans->num_writers);
83 cur_trans->num_joined++;
84 spin_unlock(&fs_info->trans_lock);
85 return 0;
86 }
87 spin_unlock(&fs_info->trans_lock);
88
89 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
90 if (!cur_trans)
91 return -ENOMEM;
92
93 spin_lock(&fs_info->trans_lock);
94 if (fs_info->running_transaction) {
95 /*
96 * someone started a transaction after we unlocked. Make sure
97 * to redo the trans_no_join checks above
98 */
99 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
100 cur_trans = fs_info->running_transaction;
101 goto loop;
102 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
103 spin_unlock(&fs_info->trans_lock);
104 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
105 return -EROFS;
106 }
107
108 atomic_set(&cur_trans->num_writers, 1);
109 cur_trans->num_joined = 0;
110 init_waitqueue_head(&cur_trans->writer_wait);
111 init_waitqueue_head(&cur_trans->commit_wait);
112 cur_trans->in_commit = 0;
113 cur_trans->blocked = 0;
114 /*
115 * One for this trans handle, one so it will live on until we
116 * commit the transaction.
117 */
118 atomic_set(&cur_trans->use_count, 2);
119 cur_trans->commit_done = 0;
120 cur_trans->start_time = get_seconds();
121
122 cur_trans->delayed_refs.root = RB_ROOT;
123 cur_trans->delayed_refs.num_entries = 0;
124 cur_trans->delayed_refs.num_heads_ready = 0;
125 cur_trans->delayed_refs.num_heads = 0;
126 cur_trans->delayed_refs.flushing = 0;
127 cur_trans->delayed_refs.run_delayed_start = 0;
128
129 /*
130 * although the tree mod log is per file system and not per transaction,
131 * the log must never go across transaction boundaries.
132 */
133 smp_mb();
134 if (!list_empty(&fs_info->tree_mod_seq_list)) {
135 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
136 "creating a fresh transaction\n");
137 WARN_ON(1);
138 }
139 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
140 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
141 "creating a fresh transaction\n");
142 WARN_ON(1);
143 }
144 atomic_set(&fs_info->tree_mod_seq, 0);
145
146 spin_lock_init(&cur_trans->commit_lock);
147 spin_lock_init(&cur_trans->delayed_refs.lock);
148
149 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
150 list_add_tail(&cur_trans->list, &fs_info->trans_list);
151 extent_io_tree_init(&cur_trans->dirty_pages,
152 fs_info->btree_inode->i_mapping);
153 fs_info->generation++;
154 cur_trans->transid = fs_info->generation;
155 fs_info->running_transaction = cur_trans;
156 cur_trans->aborted = 0;
157 spin_unlock(&fs_info->trans_lock);
158
159 return 0;
160 }
161
162 /*
163 * this does all the record keeping required to make sure that a reference
164 * counted root is properly recorded in a given transaction. This is required
165 * to make sure the old root from before we joined the transaction is deleted
166 * when the transaction commits
167 */
168 static int record_root_in_trans(struct btrfs_trans_handle *trans,
169 struct btrfs_root *root)
170 {
171 if (root->ref_cows && root->last_trans < trans->transid) {
172 WARN_ON(root == root->fs_info->extent_root);
173 WARN_ON(root->commit_root != root->node);
174
175 /*
176 * see below for in_trans_setup usage rules
177 * we have the reloc mutex held now, so there
178 * is only one writer in this function
179 */
180 root->in_trans_setup = 1;
181
182 /* make sure readers find in_trans_setup before
183 * they find our root->last_trans update
184 */
185 smp_wmb();
186
187 spin_lock(&root->fs_info->fs_roots_radix_lock);
188 if (root->last_trans == trans->transid) {
189 spin_unlock(&root->fs_info->fs_roots_radix_lock);
190 return 0;
191 }
192 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
193 (unsigned long)root->root_key.objectid,
194 BTRFS_ROOT_TRANS_TAG);
195 spin_unlock(&root->fs_info->fs_roots_radix_lock);
196 root->last_trans = trans->transid;
197
198 /* this is pretty tricky. We don't want to
199 * take the relocation lock in btrfs_record_root_in_trans
200 * unless we're really doing the first setup for this root in
201 * this transaction.
202 *
203 * Normally we'd use root->last_trans as a flag to decide
204 * if we want to take the expensive mutex.
205 *
206 * But, we have to set root->last_trans before we
207 * init the relocation root, otherwise, we trip over warnings
208 * in ctree.c. The solution used here is to flag ourselves
209 * with root->in_trans_setup. When this is 1, we're still
210 * fixing up the reloc trees and everyone must wait.
211 *
212 * When this is zero, they can trust root->last_trans and fly
213 * through btrfs_record_root_in_trans without having to take the
214 * lock. smp_wmb() makes sure that all the writes above are
215 * done before we pop in the zero below
216 */
217 btrfs_init_reloc_root(trans, root);
218 smp_wmb();
219 root->in_trans_setup = 0;
220 }
221 return 0;
222 }
223
224
225 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root)
227 {
228 if (!root->ref_cows)
229 return 0;
230
231 /*
232 * see record_root_in_trans for comments about in_trans_setup usage
233 * and barriers
234 */
235 smp_rmb();
236 if (root->last_trans == trans->transid &&
237 !root->in_trans_setup)
238 return 0;
239
240 mutex_lock(&root->fs_info->reloc_mutex);
241 record_root_in_trans(trans, root);
242 mutex_unlock(&root->fs_info->reloc_mutex);
243
244 return 0;
245 }
246
247 /* wait for commit against the current transaction to become unblocked
248 * when this is done, it is safe to start a new transaction, but the current
249 * transaction might not be fully on disk.
250 */
251 static void wait_current_trans(struct btrfs_root *root)
252 {
253 struct btrfs_transaction *cur_trans;
254
255 spin_lock(&root->fs_info->trans_lock);
256 cur_trans = root->fs_info->running_transaction;
257 if (cur_trans && cur_trans->blocked) {
258 atomic_inc(&cur_trans->use_count);
259 spin_unlock(&root->fs_info->trans_lock);
260
261 wait_event(root->fs_info->transaction_wait,
262 !cur_trans->blocked);
263 put_transaction(cur_trans);
264 } else {
265 spin_unlock(&root->fs_info->trans_lock);
266 }
267 }
268
269 enum btrfs_trans_type {
270 TRANS_START,
271 TRANS_JOIN,
272 TRANS_USERSPACE,
273 TRANS_JOIN_NOLOCK,
274 };
275
276 static int may_wait_transaction(struct btrfs_root *root, int type)
277 {
278 if (root->fs_info->log_root_recovering)
279 return 0;
280
281 if (type == TRANS_USERSPACE)
282 return 1;
283
284 if (type == TRANS_START &&
285 !atomic_read(&root->fs_info->open_ioctl_trans))
286 return 1;
287
288 return 0;
289 }
290
291 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
292 u64 num_items, int type)
293 {
294 struct btrfs_trans_handle *h;
295 struct btrfs_transaction *cur_trans;
296 u64 num_bytes = 0;
297 int ret;
298 u64 qgroup_reserved = 0;
299
300 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
301 return ERR_PTR(-EROFS);
302
303 if (current->journal_info) {
304 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
305 h = current->journal_info;
306 h->use_count++;
307 h->orig_rsv = h->block_rsv;
308 h->block_rsv = NULL;
309 goto got_it;
310 }
311
312 /*
313 * Do the reservation before we join the transaction so we can do all
314 * the appropriate flushing if need be.
315 */
316 if (num_items > 0 && root != root->fs_info->chunk_root) {
317 if (root->fs_info->quota_enabled &&
318 is_fstree(root->root_key.objectid)) {
319 qgroup_reserved = num_items * root->leafsize;
320 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
321 if (ret)
322 return ERR_PTR(ret);
323 }
324
325 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
326 ret = btrfs_block_rsv_add(root,
327 &root->fs_info->trans_block_rsv,
328 num_bytes);
329 if (ret)
330 return ERR_PTR(ret);
331 }
332 again:
333 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
334 if (!h)
335 return ERR_PTR(-ENOMEM);
336
337 if (may_wait_transaction(root, type))
338 wait_current_trans(root);
339
340 do {
341 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
342 if (ret == -EBUSY)
343 wait_current_trans(root);
344 } while (ret == -EBUSY);
345
346 if (ret < 0) {
347 kmem_cache_free(btrfs_trans_handle_cachep, h);
348 return ERR_PTR(ret);
349 }
350
351 cur_trans = root->fs_info->running_transaction;
352
353 h->transid = cur_trans->transid;
354 h->transaction = cur_trans;
355 h->blocks_used = 0;
356 h->bytes_reserved = 0;
357 h->root = root;
358 h->delayed_ref_updates = 0;
359 h->use_count = 1;
360 h->adding_csums = 0;
361 h->block_rsv = NULL;
362 h->orig_rsv = NULL;
363 h->aborted = 0;
364 h->qgroup_reserved = qgroup_reserved;
365 h->delayed_ref_elem.seq = 0;
366 INIT_LIST_HEAD(&h->qgroup_ref_list);
367
368 smp_mb();
369 if (cur_trans->blocked && may_wait_transaction(root, type)) {
370 btrfs_commit_transaction(h, root);
371 goto again;
372 }
373
374 if (num_bytes) {
375 trace_btrfs_space_reservation(root->fs_info, "transaction",
376 h->transid, num_bytes, 1);
377 h->block_rsv = &root->fs_info->trans_block_rsv;
378 h->bytes_reserved = num_bytes;
379 }
380
381 got_it:
382 btrfs_record_root_in_trans(h, root);
383
384 if (!current->journal_info && type != TRANS_USERSPACE)
385 current->journal_info = h;
386 return h;
387 }
388
389 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
390 int num_items)
391 {
392 return start_transaction(root, num_items, TRANS_START);
393 }
394 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
395 {
396 return start_transaction(root, 0, TRANS_JOIN);
397 }
398
399 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
400 {
401 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
402 }
403
404 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
405 {
406 return start_transaction(root, 0, TRANS_USERSPACE);
407 }
408
409 /* wait for a transaction commit to be fully complete */
410 static noinline void wait_for_commit(struct btrfs_root *root,
411 struct btrfs_transaction *commit)
412 {
413 wait_event(commit->commit_wait, commit->commit_done);
414 }
415
416 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
417 {
418 struct btrfs_transaction *cur_trans = NULL, *t;
419 int ret;
420
421 ret = 0;
422 if (transid) {
423 if (transid <= root->fs_info->last_trans_committed)
424 goto out;
425
426 /* find specified transaction */
427 spin_lock(&root->fs_info->trans_lock);
428 list_for_each_entry(t, &root->fs_info->trans_list, list) {
429 if (t->transid == transid) {
430 cur_trans = t;
431 atomic_inc(&cur_trans->use_count);
432 break;
433 }
434 if (t->transid > transid)
435 break;
436 }
437 spin_unlock(&root->fs_info->trans_lock);
438 ret = -EINVAL;
439 if (!cur_trans)
440 goto out; /* bad transid */
441 } else {
442 /* find newest transaction that is committing | committed */
443 spin_lock(&root->fs_info->trans_lock);
444 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
445 list) {
446 if (t->in_commit) {
447 if (t->commit_done)
448 break;
449 cur_trans = t;
450 atomic_inc(&cur_trans->use_count);
451 break;
452 }
453 }
454 spin_unlock(&root->fs_info->trans_lock);
455 if (!cur_trans)
456 goto out; /* nothing committing|committed */
457 }
458
459 wait_for_commit(root, cur_trans);
460
461 put_transaction(cur_trans);
462 ret = 0;
463 out:
464 return ret;
465 }
466
467 void btrfs_throttle(struct btrfs_root *root)
468 {
469 if (!atomic_read(&root->fs_info->open_ioctl_trans))
470 wait_current_trans(root);
471 }
472
473 static int should_end_transaction(struct btrfs_trans_handle *trans,
474 struct btrfs_root *root)
475 {
476 int ret;
477
478 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
479 return ret ? 1 : 0;
480 }
481
482 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484 {
485 struct btrfs_transaction *cur_trans = trans->transaction;
486 int updates;
487 int err;
488
489 smp_mb();
490 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
491 return 1;
492
493 updates = trans->delayed_ref_updates;
494 trans->delayed_ref_updates = 0;
495 if (updates) {
496 err = btrfs_run_delayed_refs(trans, root, updates);
497 if (err) /* Error code will also eval true */
498 return err;
499 }
500
501 return should_end_transaction(trans, root);
502 }
503
504 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
505 struct btrfs_root *root, int throttle, int lock)
506 {
507 struct btrfs_transaction *cur_trans = trans->transaction;
508 struct btrfs_fs_info *info = root->fs_info;
509 int count = 0;
510 int err = 0;
511
512 if (--trans->use_count) {
513 trans->block_rsv = trans->orig_rsv;
514 return 0;
515 }
516
517 /*
518 * do the qgroup accounting as early as possible
519 */
520 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
521
522 btrfs_trans_release_metadata(trans, root);
523 trans->block_rsv = NULL;
524 /*
525 * the same root has to be passed to start_transaction and
526 * end_transaction. Subvolume quota depends on this.
527 */
528 WARN_ON(trans->root != root);
529
530 if (trans->qgroup_reserved) {
531 btrfs_qgroup_free(root, trans->qgroup_reserved);
532 trans->qgroup_reserved = 0;
533 }
534
535 while (count < 2) {
536 unsigned long cur = trans->delayed_ref_updates;
537 trans->delayed_ref_updates = 0;
538 if (cur &&
539 trans->transaction->delayed_refs.num_heads_ready > 64) {
540 trans->delayed_ref_updates = 0;
541 btrfs_run_delayed_refs(trans, root, cur);
542 } else {
543 break;
544 }
545 count++;
546 }
547 btrfs_trans_release_metadata(trans, root);
548 trans->block_rsv = NULL;
549
550 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
551 should_end_transaction(trans, root)) {
552 trans->transaction->blocked = 1;
553 smp_wmb();
554 }
555
556 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
557 if (throttle) {
558 /*
559 * We may race with somebody else here so end up having
560 * to call end_transaction on ourselves again, so inc
561 * our use_count.
562 */
563 trans->use_count++;
564 return btrfs_commit_transaction(trans, root);
565 } else {
566 wake_up_process(info->transaction_kthread);
567 }
568 }
569
570 WARN_ON(cur_trans != info->running_transaction);
571 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
572 atomic_dec(&cur_trans->num_writers);
573
574 smp_mb();
575 if (waitqueue_active(&cur_trans->writer_wait))
576 wake_up(&cur_trans->writer_wait);
577 put_transaction(cur_trans);
578
579 if (current->journal_info == trans)
580 current->journal_info = NULL;
581
582 if (throttle)
583 btrfs_run_delayed_iputs(root);
584
585 if (trans->aborted ||
586 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
587 err = -EIO;
588 }
589 assert_qgroups_uptodate(trans);
590
591 memset(trans, 0, sizeof(*trans));
592 kmem_cache_free(btrfs_trans_handle_cachep, trans);
593 return err;
594 }
595
596 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
597 struct btrfs_root *root)
598 {
599 int ret;
600
601 ret = __btrfs_end_transaction(trans, root, 0, 1);
602 if (ret)
603 return ret;
604 return 0;
605 }
606
607 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
608 struct btrfs_root *root)
609 {
610 int ret;
611
612 ret = __btrfs_end_transaction(trans, root, 1, 1);
613 if (ret)
614 return ret;
615 return 0;
616 }
617
618 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
619 struct btrfs_root *root)
620 {
621 int ret;
622
623 ret = __btrfs_end_transaction(trans, root, 0, 0);
624 if (ret)
625 return ret;
626 return 0;
627 }
628
629 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
630 struct btrfs_root *root)
631 {
632 return __btrfs_end_transaction(trans, root, 1, 1);
633 }
634
635 /*
636 * when btree blocks are allocated, they have some corresponding bits set for
637 * them in one of two extent_io trees. This is used to make sure all of
638 * those extents are sent to disk but does not wait on them
639 */
640 int btrfs_write_marked_extents(struct btrfs_root *root,
641 struct extent_io_tree *dirty_pages, int mark)
642 {
643 int err = 0;
644 int werr = 0;
645 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
646 u64 start = 0;
647 u64 end;
648
649 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
650 mark)) {
651 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
652 GFP_NOFS);
653 err = filemap_fdatawrite_range(mapping, start, end);
654 if (err)
655 werr = err;
656 cond_resched();
657 start = end + 1;
658 }
659 if (err)
660 werr = err;
661 return werr;
662 }
663
664 /*
665 * when btree blocks are allocated, they have some corresponding bits set for
666 * them in one of two extent_io trees. This is used to make sure all of
667 * those extents are on disk for transaction or log commit. We wait
668 * on all the pages and clear them from the dirty pages state tree
669 */
670 int btrfs_wait_marked_extents(struct btrfs_root *root,
671 struct extent_io_tree *dirty_pages, int mark)
672 {
673 int err = 0;
674 int werr = 0;
675 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
676 u64 start = 0;
677 u64 end;
678
679 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
680 EXTENT_NEED_WAIT)) {
681 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
682 err = filemap_fdatawait_range(mapping, start, end);
683 if (err)
684 werr = err;
685 cond_resched();
686 start = end + 1;
687 }
688 if (err)
689 werr = err;
690 return werr;
691 }
692
693 /*
694 * when btree blocks are allocated, they have some corresponding bits set for
695 * them in one of two extent_io trees. This is used to make sure all of
696 * those extents are on disk for transaction or log commit
697 */
698 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
699 struct extent_io_tree *dirty_pages, int mark)
700 {
701 int ret;
702 int ret2;
703
704 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
705 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
706
707 if (ret)
708 return ret;
709 if (ret2)
710 return ret2;
711 return 0;
712 }
713
714 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
715 struct btrfs_root *root)
716 {
717 if (!trans || !trans->transaction) {
718 struct inode *btree_inode;
719 btree_inode = root->fs_info->btree_inode;
720 return filemap_write_and_wait(btree_inode->i_mapping);
721 }
722 return btrfs_write_and_wait_marked_extents(root,
723 &trans->transaction->dirty_pages,
724 EXTENT_DIRTY);
725 }
726
727 /*
728 * this is used to update the root pointer in the tree of tree roots.
729 *
730 * But, in the case of the extent allocation tree, updating the root
731 * pointer may allocate blocks which may change the root of the extent
732 * allocation tree.
733 *
734 * So, this loops and repeats and makes sure the cowonly root didn't
735 * change while the root pointer was being updated in the metadata.
736 */
737 static int update_cowonly_root(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root)
739 {
740 int ret;
741 u64 old_root_bytenr;
742 u64 old_root_used;
743 struct btrfs_root *tree_root = root->fs_info->tree_root;
744
745 old_root_used = btrfs_root_used(&root->root_item);
746 btrfs_write_dirty_block_groups(trans, root);
747
748 while (1) {
749 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
750 if (old_root_bytenr == root->node->start &&
751 old_root_used == btrfs_root_used(&root->root_item))
752 break;
753
754 btrfs_set_root_node(&root->root_item, root->node);
755 ret = btrfs_update_root(trans, tree_root,
756 &root->root_key,
757 &root->root_item);
758 if (ret)
759 return ret;
760
761 old_root_used = btrfs_root_used(&root->root_item);
762 ret = btrfs_write_dirty_block_groups(trans, root);
763 if (ret)
764 return ret;
765 }
766
767 if (root != root->fs_info->extent_root)
768 switch_commit_root(root);
769
770 return 0;
771 }
772
773 /*
774 * update all the cowonly tree roots on disk
775 *
776 * The error handling in this function may not be obvious. Any of the
777 * failures will cause the file system to go offline. We still need
778 * to clean up the delayed refs.
779 */
780 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
781 struct btrfs_root *root)
782 {
783 struct btrfs_fs_info *fs_info = root->fs_info;
784 struct list_head *next;
785 struct extent_buffer *eb;
786 int ret;
787
788 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
789 if (ret)
790 return ret;
791
792 eb = btrfs_lock_root_node(fs_info->tree_root);
793 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
794 0, &eb);
795 btrfs_tree_unlock(eb);
796 free_extent_buffer(eb);
797
798 if (ret)
799 return ret;
800
801 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
802 if (ret)
803 return ret;
804
805 ret = btrfs_run_dev_stats(trans, root->fs_info);
806 BUG_ON(ret);
807
808 ret = btrfs_run_qgroups(trans, root->fs_info);
809 BUG_ON(ret);
810
811 /* run_qgroups might have added some more refs */
812 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
813 BUG_ON(ret);
814
815 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
816 next = fs_info->dirty_cowonly_roots.next;
817 list_del_init(next);
818 root = list_entry(next, struct btrfs_root, dirty_list);
819
820 ret = update_cowonly_root(trans, root);
821 if (ret)
822 return ret;
823 }
824
825 down_write(&fs_info->extent_commit_sem);
826 switch_commit_root(fs_info->extent_root);
827 up_write(&fs_info->extent_commit_sem);
828
829 return 0;
830 }
831
832 /*
833 * dead roots are old snapshots that need to be deleted. This allocates
834 * a dirty root struct and adds it into the list of dead roots that need to
835 * be deleted
836 */
837 int btrfs_add_dead_root(struct btrfs_root *root)
838 {
839 spin_lock(&root->fs_info->trans_lock);
840 list_add(&root->root_list, &root->fs_info->dead_roots);
841 spin_unlock(&root->fs_info->trans_lock);
842 return 0;
843 }
844
845 /*
846 * update all the cowonly tree roots on disk
847 */
848 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root)
850 {
851 struct btrfs_root *gang[8];
852 struct btrfs_fs_info *fs_info = root->fs_info;
853 int i;
854 int ret;
855 int err = 0;
856
857 spin_lock(&fs_info->fs_roots_radix_lock);
858 while (1) {
859 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
860 (void **)gang, 0,
861 ARRAY_SIZE(gang),
862 BTRFS_ROOT_TRANS_TAG);
863 if (ret == 0)
864 break;
865 for (i = 0; i < ret; i++) {
866 root = gang[i];
867 radix_tree_tag_clear(&fs_info->fs_roots_radix,
868 (unsigned long)root->root_key.objectid,
869 BTRFS_ROOT_TRANS_TAG);
870 spin_unlock(&fs_info->fs_roots_radix_lock);
871
872 btrfs_free_log(trans, root);
873 btrfs_update_reloc_root(trans, root);
874 btrfs_orphan_commit_root(trans, root);
875
876 btrfs_save_ino_cache(root, trans);
877
878 /* see comments in should_cow_block() */
879 root->force_cow = 0;
880 smp_wmb();
881
882 if (root->commit_root != root->node) {
883 mutex_lock(&root->fs_commit_mutex);
884 switch_commit_root(root);
885 btrfs_unpin_free_ino(root);
886 mutex_unlock(&root->fs_commit_mutex);
887
888 btrfs_set_root_node(&root->root_item,
889 root->node);
890 }
891
892 err = btrfs_update_root(trans, fs_info->tree_root,
893 &root->root_key,
894 &root->root_item);
895 spin_lock(&fs_info->fs_roots_radix_lock);
896 if (err)
897 break;
898 }
899 }
900 spin_unlock(&fs_info->fs_roots_radix_lock);
901 return err;
902 }
903
904 /*
905 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
906 * otherwise every leaf in the btree is read and defragged.
907 */
908 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
909 {
910 struct btrfs_fs_info *info = root->fs_info;
911 struct btrfs_trans_handle *trans;
912 int ret;
913 unsigned long nr;
914
915 if (xchg(&root->defrag_running, 1))
916 return 0;
917
918 while (1) {
919 trans = btrfs_start_transaction(root, 0);
920 if (IS_ERR(trans))
921 return PTR_ERR(trans);
922
923 ret = btrfs_defrag_leaves(trans, root, cacheonly);
924
925 nr = trans->blocks_used;
926 btrfs_end_transaction(trans, root);
927 btrfs_btree_balance_dirty(info->tree_root, nr);
928 cond_resched();
929
930 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
931 break;
932 }
933 root->defrag_running = 0;
934 return ret;
935 }
936
937 /*
938 * new snapshots need to be created at a very specific time in the
939 * transaction commit. This does the actual creation
940 */
941 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
942 struct btrfs_fs_info *fs_info,
943 struct btrfs_pending_snapshot *pending)
944 {
945 struct btrfs_key key;
946 struct btrfs_root_item *new_root_item;
947 struct btrfs_root *tree_root = fs_info->tree_root;
948 struct btrfs_root *root = pending->root;
949 struct btrfs_root *parent_root;
950 struct btrfs_block_rsv *rsv;
951 struct inode *parent_inode;
952 struct dentry *parent;
953 struct dentry *dentry;
954 struct extent_buffer *tmp;
955 struct extent_buffer *old;
956 int ret;
957 u64 to_reserve = 0;
958 u64 index = 0;
959 u64 objectid;
960 u64 root_flags;
961
962 rsv = trans->block_rsv;
963
964 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
965 if (!new_root_item) {
966 ret = pending->error = -ENOMEM;
967 goto fail;
968 }
969
970 ret = btrfs_find_free_objectid(tree_root, &objectid);
971 if (ret) {
972 pending->error = ret;
973 goto fail;
974 }
975
976 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
977
978 if (to_reserve > 0) {
979 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
980 to_reserve);
981 if (ret) {
982 pending->error = ret;
983 goto fail;
984 }
985 }
986
987 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
988 objectid, pending->inherit);
989 kfree(pending->inherit);
990 if (ret) {
991 pending->error = ret;
992 goto fail;
993 }
994
995 key.objectid = objectid;
996 key.offset = (u64)-1;
997 key.type = BTRFS_ROOT_ITEM_KEY;
998
999 trans->block_rsv = &pending->block_rsv;
1000
1001 dentry = pending->dentry;
1002 parent = dget_parent(dentry);
1003 parent_inode = parent->d_inode;
1004 parent_root = BTRFS_I(parent_inode)->root;
1005 record_root_in_trans(trans, parent_root);
1006
1007 /*
1008 * insert the directory item
1009 */
1010 ret = btrfs_set_inode_index(parent_inode, &index);
1011 BUG_ON(ret); /* -ENOMEM */
1012 ret = btrfs_insert_dir_item(trans, parent_root,
1013 dentry->d_name.name, dentry->d_name.len,
1014 parent_inode, &key,
1015 BTRFS_FT_DIR, index);
1016 if (ret == -EEXIST) {
1017 pending->error = -EEXIST;
1018 dput(parent);
1019 goto fail;
1020 } else if (ret) {
1021 goto abort_trans_dput;
1022 }
1023
1024 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1025 dentry->d_name.len * 2);
1026 ret = btrfs_update_inode(trans, parent_root, parent_inode);
1027 if (ret)
1028 goto abort_trans_dput;
1029
1030 /*
1031 * pull in the delayed directory update
1032 * and the delayed inode item
1033 * otherwise we corrupt the FS during
1034 * snapshot
1035 */
1036 ret = btrfs_run_delayed_items(trans, root);
1037 if (ret) { /* Transaction aborted */
1038 dput(parent);
1039 goto fail;
1040 }
1041
1042 record_root_in_trans(trans, root);
1043 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1044 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1045 btrfs_check_and_init_root_item(new_root_item);
1046
1047 root_flags = btrfs_root_flags(new_root_item);
1048 if (pending->readonly)
1049 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1050 else
1051 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1052 btrfs_set_root_flags(new_root_item, root_flags);
1053
1054 old = btrfs_lock_root_node(root);
1055 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1056 if (ret) {
1057 btrfs_tree_unlock(old);
1058 free_extent_buffer(old);
1059 goto abort_trans_dput;
1060 }
1061
1062 btrfs_set_lock_blocking(old);
1063
1064 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1065 /* clean up in any case */
1066 btrfs_tree_unlock(old);
1067 free_extent_buffer(old);
1068 if (ret)
1069 goto abort_trans_dput;
1070
1071 /* see comments in should_cow_block() */
1072 root->force_cow = 1;
1073 smp_wmb();
1074
1075 btrfs_set_root_node(new_root_item, tmp);
1076 /* record when the snapshot was created in key.offset */
1077 key.offset = trans->transid;
1078 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1079 btrfs_tree_unlock(tmp);
1080 free_extent_buffer(tmp);
1081 if (ret)
1082 goto abort_trans_dput;
1083
1084 /*
1085 * insert root back/forward references
1086 */
1087 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1088 parent_root->root_key.objectid,
1089 btrfs_ino(parent_inode), index,
1090 dentry->d_name.name, dentry->d_name.len);
1091 dput(parent);
1092 if (ret)
1093 goto fail;
1094
1095 key.offset = (u64)-1;
1096 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1097 if (IS_ERR(pending->snap)) {
1098 ret = PTR_ERR(pending->snap);
1099 goto abort_trans;
1100 }
1101
1102 ret = btrfs_reloc_post_snapshot(trans, pending);
1103 if (ret)
1104 goto abort_trans;
1105 ret = 0;
1106 fail:
1107 kfree(new_root_item);
1108 trans->block_rsv = rsv;
1109 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1110 return ret;
1111
1112 abort_trans_dput:
1113 dput(parent);
1114 abort_trans:
1115 btrfs_abort_transaction(trans, root, ret);
1116 goto fail;
1117 }
1118
1119 /*
1120 * create all the snapshots we've scheduled for creation
1121 */
1122 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1123 struct btrfs_fs_info *fs_info)
1124 {
1125 struct btrfs_pending_snapshot *pending;
1126 struct list_head *head = &trans->transaction->pending_snapshots;
1127
1128 list_for_each_entry(pending, head, list)
1129 create_pending_snapshot(trans, fs_info, pending);
1130 return 0;
1131 }
1132
1133 static void update_super_roots(struct btrfs_root *root)
1134 {
1135 struct btrfs_root_item *root_item;
1136 struct btrfs_super_block *super;
1137
1138 super = root->fs_info->super_copy;
1139
1140 root_item = &root->fs_info->chunk_root->root_item;
1141 super->chunk_root = root_item->bytenr;
1142 super->chunk_root_generation = root_item->generation;
1143 super->chunk_root_level = root_item->level;
1144
1145 root_item = &root->fs_info->tree_root->root_item;
1146 super->root = root_item->bytenr;
1147 super->generation = root_item->generation;
1148 super->root_level = root_item->level;
1149 if (btrfs_test_opt(root, SPACE_CACHE))
1150 super->cache_generation = root_item->generation;
1151 }
1152
1153 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1154 {
1155 int ret = 0;
1156 spin_lock(&info->trans_lock);
1157 if (info->running_transaction)
1158 ret = info->running_transaction->in_commit;
1159 spin_unlock(&info->trans_lock);
1160 return ret;
1161 }
1162
1163 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1164 {
1165 int ret = 0;
1166 spin_lock(&info->trans_lock);
1167 if (info->running_transaction)
1168 ret = info->running_transaction->blocked;
1169 spin_unlock(&info->trans_lock);
1170 return ret;
1171 }
1172
1173 /*
1174 * wait for the current transaction commit to start and block subsequent
1175 * transaction joins
1176 */
1177 static void wait_current_trans_commit_start(struct btrfs_root *root,
1178 struct btrfs_transaction *trans)
1179 {
1180 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1181 }
1182
1183 /*
1184 * wait for the current transaction to start and then become unblocked.
1185 * caller holds ref.
1186 */
1187 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1188 struct btrfs_transaction *trans)
1189 {
1190 wait_event(root->fs_info->transaction_wait,
1191 trans->commit_done || (trans->in_commit && !trans->blocked));
1192 }
1193
1194 /*
1195 * commit transactions asynchronously. once btrfs_commit_transaction_async
1196 * returns, any subsequent transaction will not be allowed to join.
1197 */
1198 struct btrfs_async_commit {
1199 struct btrfs_trans_handle *newtrans;
1200 struct btrfs_root *root;
1201 struct delayed_work work;
1202 };
1203
1204 static void do_async_commit(struct work_struct *work)
1205 {
1206 struct btrfs_async_commit *ac =
1207 container_of(work, struct btrfs_async_commit, work.work);
1208
1209 btrfs_commit_transaction(ac->newtrans, ac->root);
1210 kfree(ac);
1211 }
1212
1213 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 int wait_for_unblock)
1216 {
1217 struct btrfs_async_commit *ac;
1218 struct btrfs_transaction *cur_trans;
1219
1220 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1221 if (!ac)
1222 return -ENOMEM;
1223
1224 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1225 ac->root = root;
1226 ac->newtrans = btrfs_join_transaction(root);
1227 if (IS_ERR(ac->newtrans)) {
1228 int err = PTR_ERR(ac->newtrans);
1229 kfree(ac);
1230 return err;
1231 }
1232
1233 /* take transaction reference */
1234 cur_trans = trans->transaction;
1235 atomic_inc(&cur_trans->use_count);
1236
1237 btrfs_end_transaction(trans, root);
1238 schedule_delayed_work(&ac->work, 0);
1239
1240 /* wait for transaction to start and unblock */
1241 if (wait_for_unblock)
1242 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1243 else
1244 wait_current_trans_commit_start(root, cur_trans);
1245
1246 if (current->journal_info == trans)
1247 current->journal_info = NULL;
1248
1249 put_transaction(cur_trans);
1250 return 0;
1251 }
1252
1253
1254 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root, int err)
1256 {
1257 struct btrfs_transaction *cur_trans = trans->transaction;
1258
1259 WARN_ON(trans->use_count > 1);
1260
1261 btrfs_abort_transaction(trans, root, err);
1262
1263 spin_lock(&root->fs_info->trans_lock);
1264 list_del_init(&cur_trans->list);
1265 if (cur_trans == root->fs_info->running_transaction) {
1266 root->fs_info->running_transaction = NULL;
1267 root->fs_info->trans_no_join = 0;
1268 }
1269 spin_unlock(&root->fs_info->trans_lock);
1270
1271 btrfs_cleanup_one_transaction(trans->transaction, root);
1272
1273 put_transaction(cur_trans);
1274 put_transaction(cur_trans);
1275
1276 trace_btrfs_transaction_commit(root);
1277
1278 btrfs_scrub_continue(root);
1279
1280 if (current->journal_info == trans)
1281 current->journal_info = NULL;
1282
1283 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1284 }
1285
1286 /*
1287 * btrfs_transaction state sequence:
1288 * in_commit = 0, blocked = 0 (initial)
1289 * in_commit = 1, blocked = 1
1290 * blocked = 0
1291 * commit_done = 1
1292 */
1293 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1294 struct btrfs_root *root)
1295 {
1296 unsigned long joined = 0;
1297 struct btrfs_transaction *cur_trans = trans->transaction;
1298 struct btrfs_transaction *prev_trans = NULL;
1299 DEFINE_WAIT(wait);
1300 int ret = -EIO;
1301 int should_grow = 0;
1302 unsigned long now = get_seconds();
1303 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1304
1305 btrfs_run_ordered_operations(root, 0);
1306
1307 if (cur_trans->aborted)
1308 goto cleanup_transaction;
1309
1310 /* make a pass through all the delayed refs we have so far
1311 * any runnings procs may add more while we are here
1312 */
1313 ret = btrfs_run_delayed_refs(trans, root, 0);
1314 if (ret)
1315 goto cleanup_transaction;
1316
1317 btrfs_trans_release_metadata(trans, root);
1318 trans->block_rsv = NULL;
1319
1320 cur_trans = trans->transaction;
1321
1322 /*
1323 * set the flushing flag so procs in this transaction have to
1324 * start sending their work down.
1325 */
1326 cur_trans->delayed_refs.flushing = 1;
1327
1328 ret = btrfs_run_delayed_refs(trans, root, 0);
1329 if (ret)
1330 goto cleanup_transaction;
1331
1332 spin_lock(&cur_trans->commit_lock);
1333 if (cur_trans->in_commit) {
1334 spin_unlock(&cur_trans->commit_lock);
1335 atomic_inc(&cur_trans->use_count);
1336 ret = btrfs_end_transaction(trans, root);
1337
1338 wait_for_commit(root, cur_trans);
1339
1340 put_transaction(cur_trans);
1341
1342 return ret;
1343 }
1344
1345 trans->transaction->in_commit = 1;
1346 trans->transaction->blocked = 1;
1347 spin_unlock(&cur_trans->commit_lock);
1348 wake_up(&root->fs_info->transaction_blocked_wait);
1349
1350 spin_lock(&root->fs_info->trans_lock);
1351 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1352 prev_trans = list_entry(cur_trans->list.prev,
1353 struct btrfs_transaction, list);
1354 if (!prev_trans->commit_done) {
1355 atomic_inc(&prev_trans->use_count);
1356 spin_unlock(&root->fs_info->trans_lock);
1357
1358 wait_for_commit(root, prev_trans);
1359
1360 put_transaction(prev_trans);
1361 } else {
1362 spin_unlock(&root->fs_info->trans_lock);
1363 }
1364 } else {
1365 spin_unlock(&root->fs_info->trans_lock);
1366 }
1367
1368 if (!btrfs_test_opt(root, SSD) &&
1369 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1370 should_grow = 1;
1371
1372 do {
1373 int snap_pending = 0;
1374
1375 joined = cur_trans->num_joined;
1376 if (!list_empty(&trans->transaction->pending_snapshots))
1377 snap_pending = 1;
1378
1379 WARN_ON(cur_trans != trans->transaction);
1380
1381 if (flush_on_commit || snap_pending) {
1382 btrfs_start_delalloc_inodes(root, 1);
1383 btrfs_wait_ordered_extents(root, 0, 1);
1384 }
1385
1386 ret = btrfs_run_delayed_items(trans, root);
1387 if (ret)
1388 goto cleanup_transaction;
1389
1390 /*
1391 * running the delayed items may have added new refs. account
1392 * them now so that they hinder processing of more delayed refs
1393 * as little as possible.
1394 */
1395 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1396
1397 /*
1398 * rename don't use btrfs_join_transaction, so, once we
1399 * set the transaction to blocked above, we aren't going
1400 * to get any new ordered operations. We can safely run
1401 * it here and no for sure that nothing new will be added
1402 * to the list
1403 */
1404 btrfs_run_ordered_operations(root, 1);
1405
1406 prepare_to_wait(&cur_trans->writer_wait, &wait,
1407 TASK_UNINTERRUPTIBLE);
1408
1409 if (atomic_read(&cur_trans->num_writers) > 1)
1410 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1411 else if (should_grow)
1412 schedule_timeout(1);
1413
1414 finish_wait(&cur_trans->writer_wait, &wait);
1415 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1416 (should_grow && cur_trans->num_joined != joined));
1417
1418 /*
1419 * Ok now we need to make sure to block out any other joins while we
1420 * commit the transaction. We could have started a join before setting
1421 * no_join so make sure to wait for num_writers to == 1 again.
1422 */
1423 spin_lock(&root->fs_info->trans_lock);
1424 root->fs_info->trans_no_join = 1;
1425 spin_unlock(&root->fs_info->trans_lock);
1426 wait_event(cur_trans->writer_wait,
1427 atomic_read(&cur_trans->num_writers) == 1);
1428
1429 /*
1430 * the reloc mutex makes sure that we stop
1431 * the balancing code from coming in and moving
1432 * extents around in the middle of the commit
1433 */
1434 mutex_lock(&root->fs_info->reloc_mutex);
1435
1436 ret = btrfs_run_delayed_items(trans, root);
1437 if (ret) {
1438 mutex_unlock(&root->fs_info->reloc_mutex);
1439 goto cleanup_transaction;
1440 }
1441
1442 ret = create_pending_snapshots(trans, root->fs_info);
1443 if (ret) {
1444 mutex_unlock(&root->fs_info->reloc_mutex);
1445 goto cleanup_transaction;
1446 }
1447
1448 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1449 if (ret) {
1450 mutex_unlock(&root->fs_info->reloc_mutex);
1451 goto cleanup_transaction;
1452 }
1453
1454 /*
1455 * make sure none of the code above managed to slip in a
1456 * delayed item
1457 */
1458 btrfs_assert_delayed_root_empty(root);
1459
1460 WARN_ON(cur_trans != trans->transaction);
1461
1462 btrfs_scrub_pause(root);
1463 /* btrfs_commit_tree_roots is responsible for getting the
1464 * various roots consistent with each other. Every pointer
1465 * in the tree of tree roots has to point to the most up to date
1466 * root for every subvolume and other tree. So, we have to keep
1467 * the tree logging code from jumping in and changing any
1468 * of the trees.
1469 *
1470 * At this point in the commit, there can't be any tree-log
1471 * writers, but a little lower down we drop the trans mutex
1472 * and let new people in. By holding the tree_log_mutex
1473 * from now until after the super is written, we avoid races
1474 * with the tree-log code.
1475 */
1476 mutex_lock(&root->fs_info->tree_log_mutex);
1477
1478 ret = commit_fs_roots(trans, root);
1479 if (ret) {
1480 mutex_unlock(&root->fs_info->tree_log_mutex);
1481 mutex_unlock(&root->fs_info->reloc_mutex);
1482 goto cleanup_transaction;
1483 }
1484
1485 /* commit_fs_roots gets rid of all the tree log roots, it is now
1486 * safe to free the root of tree log roots
1487 */
1488 btrfs_free_log_root_tree(trans, root->fs_info);
1489
1490 ret = commit_cowonly_roots(trans, root);
1491 if (ret) {
1492 mutex_unlock(&root->fs_info->tree_log_mutex);
1493 mutex_unlock(&root->fs_info->reloc_mutex);
1494 goto cleanup_transaction;
1495 }
1496
1497 btrfs_prepare_extent_commit(trans, root);
1498
1499 cur_trans = root->fs_info->running_transaction;
1500
1501 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1502 root->fs_info->tree_root->node);
1503 switch_commit_root(root->fs_info->tree_root);
1504
1505 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1506 root->fs_info->chunk_root->node);
1507 switch_commit_root(root->fs_info->chunk_root);
1508
1509 assert_qgroups_uptodate(trans);
1510 update_super_roots(root);
1511
1512 if (!root->fs_info->log_root_recovering) {
1513 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1514 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1515 }
1516
1517 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1518 sizeof(*root->fs_info->super_copy));
1519
1520 trans->transaction->blocked = 0;
1521 spin_lock(&root->fs_info->trans_lock);
1522 root->fs_info->running_transaction = NULL;
1523 root->fs_info->trans_no_join = 0;
1524 spin_unlock(&root->fs_info->trans_lock);
1525 mutex_unlock(&root->fs_info->reloc_mutex);
1526
1527 wake_up(&root->fs_info->transaction_wait);
1528
1529 ret = btrfs_write_and_wait_transaction(trans, root);
1530 if (ret) {
1531 btrfs_error(root->fs_info, ret,
1532 "Error while writing out transaction.");
1533 mutex_unlock(&root->fs_info->tree_log_mutex);
1534 goto cleanup_transaction;
1535 }
1536
1537 ret = write_ctree_super(trans, root, 0);
1538 if (ret) {
1539 mutex_unlock(&root->fs_info->tree_log_mutex);
1540 goto cleanup_transaction;
1541 }
1542
1543 /*
1544 * the super is written, we can safely allow the tree-loggers
1545 * to go about their business
1546 */
1547 mutex_unlock(&root->fs_info->tree_log_mutex);
1548
1549 btrfs_finish_extent_commit(trans, root);
1550
1551 cur_trans->commit_done = 1;
1552
1553 root->fs_info->last_trans_committed = cur_trans->transid;
1554
1555 wake_up(&cur_trans->commit_wait);
1556
1557 spin_lock(&root->fs_info->trans_lock);
1558 list_del_init(&cur_trans->list);
1559 spin_unlock(&root->fs_info->trans_lock);
1560
1561 put_transaction(cur_trans);
1562 put_transaction(cur_trans);
1563
1564 trace_btrfs_transaction_commit(root);
1565
1566 btrfs_scrub_continue(root);
1567
1568 if (current->journal_info == trans)
1569 current->journal_info = NULL;
1570
1571 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1572
1573 if (current != root->fs_info->transaction_kthread)
1574 btrfs_run_delayed_iputs(root);
1575
1576 return ret;
1577
1578 cleanup_transaction:
1579 btrfs_trans_release_metadata(trans, root);
1580 trans->block_rsv = NULL;
1581 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1582 // WARN_ON(1);
1583 if (current->journal_info == trans)
1584 current->journal_info = NULL;
1585 cleanup_transaction(trans, root, ret);
1586
1587 return ret;
1588 }
1589
1590 /*
1591 * interface function to delete all the snapshots we have scheduled for deletion
1592 */
1593 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1594 {
1595 LIST_HEAD(list);
1596 struct btrfs_fs_info *fs_info = root->fs_info;
1597
1598 spin_lock(&fs_info->trans_lock);
1599 list_splice_init(&fs_info->dead_roots, &list);
1600 spin_unlock(&fs_info->trans_lock);
1601
1602 while (!list_empty(&list)) {
1603 int ret;
1604
1605 root = list_entry(list.next, struct btrfs_root, root_list);
1606 list_del(&root->root_list);
1607
1608 btrfs_kill_all_delayed_nodes(root);
1609
1610 if (btrfs_header_backref_rev(root->node) <
1611 BTRFS_MIXED_BACKREF_REV)
1612 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1613 else
1614 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1615 BUG_ON(ret < 0);
1616 }
1617 return 0;
1618 }