]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/transaction.c
Merge tag 'fixes-v5.9a' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 [TRANS_STATE_RUNNING] = 0U,
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
103 __TRANS_ATTACH |
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
111 [TRANS_STATE_COMPLETED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
116 };
117
118 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 {
120 WARN_ON(refcount_read(&transaction->use_count) == 0);
121 if (refcount_dec_and_test(&transaction->use_count)) {
122 BUG_ON(!list_empty(&transaction->list));
123 WARN_ON(!RB_EMPTY_ROOT(
124 &transaction->delayed_refs.href_root.rb_root));
125 WARN_ON(!RB_EMPTY_ROOT(
126 &transaction->delayed_refs.dirty_extent_root));
127 if (transaction->delayed_refs.pending_csums)
128 btrfs_err(transaction->fs_info,
129 "pending csums is %llu",
130 transaction->delayed_refs.pending_csums);
131 /*
132 * If any block groups are found in ->deleted_bgs then it's
133 * because the transaction was aborted and a commit did not
134 * happen (things failed before writing the new superblock
135 * and calling btrfs_finish_extent_commit()), so we can not
136 * discard the physical locations of the block groups.
137 */
138 while (!list_empty(&transaction->deleted_bgs)) {
139 struct btrfs_block_group *cache;
140
141 cache = list_first_entry(&transaction->deleted_bgs,
142 struct btrfs_block_group,
143 bg_list);
144 list_del_init(&cache->bg_list);
145 btrfs_unfreeze_block_group(cache);
146 btrfs_put_block_group(cache);
147 }
148 WARN_ON(!list_empty(&transaction->dev_update_list));
149 kfree(transaction);
150 }
151 }
152
153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 {
155 struct btrfs_transaction *cur_trans = trans->transaction;
156 struct btrfs_fs_info *fs_info = trans->fs_info;
157 struct btrfs_root *root, *tmp;
158
159 down_write(&fs_info->commit_root_sem);
160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161 dirty_list) {
162 list_del_init(&root->dirty_list);
163 free_extent_buffer(root->commit_root);
164 root->commit_root = btrfs_root_node(root);
165 if (is_fstree(root->root_key.objectid))
166 btrfs_unpin_free_ino(root);
167 extent_io_tree_release(&root->dirty_log_pages);
168 btrfs_qgroup_clean_swapped_blocks(root);
169 }
170
171 /* We can free old roots now. */
172 spin_lock(&cur_trans->dropped_roots_lock);
173 while (!list_empty(&cur_trans->dropped_roots)) {
174 root = list_first_entry(&cur_trans->dropped_roots,
175 struct btrfs_root, root_list);
176 list_del_init(&root->root_list);
177 spin_unlock(&cur_trans->dropped_roots_lock);
178 btrfs_free_log(trans, root);
179 btrfs_drop_and_free_fs_root(fs_info, root);
180 spin_lock(&cur_trans->dropped_roots_lock);
181 }
182 spin_unlock(&cur_trans->dropped_roots_lock);
183 up_write(&fs_info->commit_root_sem);
184 }
185
186 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187 unsigned int type)
188 {
189 if (type & TRANS_EXTWRITERS)
190 atomic_inc(&trans->num_extwriters);
191 }
192
193 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194 unsigned int type)
195 {
196 if (type & TRANS_EXTWRITERS)
197 atomic_dec(&trans->num_extwriters);
198 }
199
200 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201 unsigned int type)
202 {
203 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204 }
205
206 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207 {
208 return atomic_read(&trans->num_extwriters);
209 }
210
211 /*
212 * To be called after all the new block groups attached to the transaction
213 * handle have been created (btrfs_create_pending_block_groups()).
214 */
215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216 {
217 struct btrfs_fs_info *fs_info = trans->fs_info;
218
219 if (!trans->chunk_bytes_reserved)
220 return;
221
222 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223
224 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
225 trans->chunk_bytes_reserved, NULL);
226 trans->chunk_bytes_reserved = 0;
227 }
228
229 /*
230 * either allocate a new transaction or hop into the existing one
231 */
232 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233 unsigned int type)
234 {
235 struct btrfs_transaction *cur_trans;
236
237 spin_lock(&fs_info->trans_lock);
238 loop:
239 /* The file system has been taken offline. No new transactions. */
240 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
241 spin_unlock(&fs_info->trans_lock);
242 return -EROFS;
243 }
244
245 cur_trans = fs_info->running_transaction;
246 if (cur_trans) {
247 if (TRANS_ABORTED(cur_trans)) {
248 spin_unlock(&fs_info->trans_lock);
249 return cur_trans->aborted;
250 }
251 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
252 spin_unlock(&fs_info->trans_lock);
253 return -EBUSY;
254 }
255 refcount_inc(&cur_trans->use_count);
256 atomic_inc(&cur_trans->num_writers);
257 extwriter_counter_inc(cur_trans, type);
258 spin_unlock(&fs_info->trans_lock);
259 return 0;
260 }
261 spin_unlock(&fs_info->trans_lock);
262
263 /*
264 * If we are ATTACH, we just want to catch the current transaction,
265 * and commit it. If there is no transaction, just return ENOENT.
266 */
267 if (type == TRANS_ATTACH)
268 return -ENOENT;
269
270 /*
271 * JOIN_NOLOCK only happens during the transaction commit, so
272 * it is impossible that ->running_transaction is NULL
273 */
274 BUG_ON(type == TRANS_JOIN_NOLOCK);
275
276 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
277 if (!cur_trans)
278 return -ENOMEM;
279
280 spin_lock(&fs_info->trans_lock);
281 if (fs_info->running_transaction) {
282 /*
283 * someone started a transaction after we unlocked. Make sure
284 * to redo the checks above
285 */
286 kfree(cur_trans);
287 goto loop;
288 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 spin_unlock(&fs_info->trans_lock);
290 kfree(cur_trans);
291 return -EROFS;
292 }
293
294 cur_trans->fs_info = fs_info;
295 atomic_set(&cur_trans->num_writers, 1);
296 extwriter_counter_init(cur_trans, type);
297 init_waitqueue_head(&cur_trans->writer_wait);
298 init_waitqueue_head(&cur_trans->commit_wait);
299 cur_trans->state = TRANS_STATE_RUNNING;
300 /*
301 * One for this trans handle, one so it will live on until we
302 * commit the transaction.
303 */
304 refcount_set(&cur_trans->use_count, 2);
305 cur_trans->flags = 0;
306 cur_trans->start_time = ktime_get_seconds();
307
308 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309
310 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
311 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
312 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
313
314 /*
315 * although the tree mod log is per file system and not per transaction,
316 * the log must never go across transaction boundaries.
317 */
318 smp_mb();
319 if (!list_empty(&fs_info->tree_mod_seq_list))
320 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
321 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
322 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
323 atomic64_set(&fs_info->tree_mod_seq, 0);
324
325 spin_lock_init(&cur_trans->delayed_refs.lock);
326
327 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
328 INIT_LIST_HEAD(&cur_trans->dev_update_list);
329 INIT_LIST_HEAD(&cur_trans->switch_commits);
330 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
331 INIT_LIST_HEAD(&cur_trans->io_bgs);
332 INIT_LIST_HEAD(&cur_trans->dropped_roots);
333 mutex_init(&cur_trans->cache_write_mutex);
334 spin_lock_init(&cur_trans->dirty_bgs_lock);
335 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
336 spin_lock_init(&cur_trans->dropped_roots_lock);
337 list_add_tail(&cur_trans->list, &fs_info->trans_list);
338 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
339 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
340 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
341 IO_TREE_FS_PINNED_EXTENTS, NULL);
342 fs_info->generation++;
343 cur_trans->transid = fs_info->generation;
344 fs_info->running_transaction = cur_trans;
345 cur_trans->aborted = 0;
346 spin_unlock(&fs_info->trans_lock);
347
348 return 0;
349 }
350
351 /*
352 * This does all the record keeping required to make sure that a shareable root
353 * is properly recorded in a given transaction. This is required to make sure
354 * the old root from before we joined the transaction is deleted when the
355 * transaction commits.
356 */
357 static int record_root_in_trans(struct btrfs_trans_handle *trans,
358 struct btrfs_root *root,
359 int force)
360 {
361 struct btrfs_fs_info *fs_info = root->fs_info;
362
363 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
364 root->last_trans < trans->transid) || force) {
365 WARN_ON(root == fs_info->extent_root);
366 WARN_ON(!force && root->commit_root != root->node);
367
368 /*
369 * see below for IN_TRANS_SETUP usage rules
370 * we have the reloc mutex held now, so there
371 * is only one writer in this function
372 */
373 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374
375 /* make sure readers find IN_TRANS_SETUP before
376 * they find our root->last_trans update
377 */
378 smp_wmb();
379
380 spin_lock(&fs_info->fs_roots_radix_lock);
381 if (root->last_trans == trans->transid && !force) {
382 spin_unlock(&fs_info->fs_roots_radix_lock);
383 return 0;
384 }
385 radix_tree_tag_set(&fs_info->fs_roots_radix,
386 (unsigned long)root->root_key.objectid,
387 BTRFS_ROOT_TRANS_TAG);
388 spin_unlock(&fs_info->fs_roots_radix_lock);
389 root->last_trans = trans->transid;
390
391 /* this is pretty tricky. We don't want to
392 * take the relocation lock in btrfs_record_root_in_trans
393 * unless we're really doing the first setup for this root in
394 * this transaction.
395 *
396 * Normally we'd use root->last_trans as a flag to decide
397 * if we want to take the expensive mutex.
398 *
399 * But, we have to set root->last_trans before we
400 * init the relocation root, otherwise, we trip over warnings
401 * in ctree.c. The solution used here is to flag ourselves
402 * with root IN_TRANS_SETUP. When this is 1, we're still
403 * fixing up the reloc trees and everyone must wait.
404 *
405 * When this is zero, they can trust root->last_trans and fly
406 * through btrfs_record_root_in_trans without having to take the
407 * lock. smp_wmb() makes sure that all the writes above are
408 * done before we pop in the zero below
409 */
410 btrfs_init_reloc_root(trans, root);
411 smp_mb__before_atomic();
412 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
413 }
414 return 0;
415 }
416
417
418 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
419 struct btrfs_root *root)
420 {
421 struct btrfs_fs_info *fs_info = root->fs_info;
422 struct btrfs_transaction *cur_trans = trans->transaction;
423
424 /* Add ourselves to the transaction dropped list */
425 spin_lock(&cur_trans->dropped_roots_lock);
426 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
427 spin_unlock(&cur_trans->dropped_roots_lock);
428
429 /* Make sure we don't try to update the root at commit time */
430 spin_lock(&fs_info->fs_roots_radix_lock);
431 radix_tree_tag_clear(&fs_info->fs_roots_radix,
432 (unsigned long)root->root_key.objectid,
433 BTRFS_ROOT_TRANS_TAG);
434 spin_unlock(&fs_info->fs_roots_radix_lock);
435 }
436
437 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
438 struct btrfs_root *root)
439 {
440 struct btrfs_fs_info *fs_info = root->fs_info;
441
442 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
443 return 0;
444
445 /*
446 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
447 * and barriers
448 */
449 smp_rmb();
450 if (root->last_trans == trans->transid &&
451 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
452 return 0;
453
454 mutex_lock(&fs_info->reloc_mutex);
455 record_root_in_trans(trans, root, 0);
456 mutex_unlock(&fs_info->reloc_mutex);
457
458 return 0;
459 }
460
461 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462 {
463 return (trans->state >= TRANS_STATE_COMMIT_START &&
464 trans->state < TRANS_STATE_UNBLOCKED &&
465 !TRANS_ABORTED(trans));
466 }
467
468 /* wait for commit against the current transaction to become unblocked
469 * when this is done, it is safe to start a new transaction, but the current
470 * transaction might not be fully on disk.
471 */
472 static void wait_current_trans(struct btrfs_fs_info *fs_info)
473 {
474 struct btrfs_transaction *cur_trans;
475
476 spin_lock(&fs_info->trans_lock);
477 cur_trans = fs_info->running_transaction;
478 if (cur_trans && is_transaction_blocked(cur_trans)) {
479 refcount_inc(&cur_trans->use_count);
480 spin_unlock(&fs_info->trans_lock);
481
482 wait_event(fs_info->transaction_wait,
483 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
484 TRANS_ABORTED(cur_trans));
485 btrfs_put_transaction(cur_trans);
486 } else {
487 spin_unlock(&fs_info->trans_lock);
488 }
489 }
490
491 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
492 {
493 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
494 return 0;
495
496 if (type == TRANS_START)
497 return 1;
498
499 return 0;
500 }
501
502 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503 {
504 struct btrfs_fs_info *fs_info = root->fs_info;
505
506 if (!fs_info->reloc_ctl ||
507 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
508 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
509 root->reloc_root)
510 return false;
511
512 return true;
513 }
514
515 static struct btrfs_trans_handle *
516 start_transaction(struct btrfs_root *root, unsigned int num_items,
517 unsigned int type, enum btrfs_reserve_flush_enum flush,
518 bool enforce_qgroups)
519 {
520 struct btrfs_fs_info *fs_info = root->fs_info;
521 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
522 struct btrfs_trans_handle *h;
523 struct btrfs_transaction *cur_trans;
524 u64 num_bytes = 0;
525 u64 qgroup_reserved = 0;
526 bool reloc_reserved = false;
527 bool do_chunk_alloc = false;
528 int ret;
529
530 /* Send isn't supposed to start transactions. */
531 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
532
533 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
534 return ERR_PTR(-EROFS);
535
536 if (current->journal_info) {
537 WARN_ON(type & TRANS_EXTWRITERS);
538 h = current->journal_info;
539 refcount_inc(&h->use_count);
540 WARN_ON(refcount_read(&h->use_count) > 2);
541 h->orig_rsv = h->block_rsv;
542 h->block_rsv = NULL;
543 goto got_it;
544 }
545
546 /*
547 * Do the reservation before we join the transaction so we can do all
548 * the appropriate flushing if need be.
549 */
550 if (num_items && root != fs_info->chunk_root) {
551 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
552 u64 delayed_refs_bytes = 0;
553
554 qgroup_reserved = num_items * fs_info->nodesize;
555 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
556 enforce_qgroups);
557 if (ret)
558 return ERR_PTR(ret);
559
560 /*
561 * We want to reserve all the bytes we may need all at once, so
562 * we only do 1 enospc flushing cycle per transaction start. We
563 * accomplish this by simply assuming we'll do 2 x num_items
564 * worth of delayed refs updates in this trans handle, and
565 * refill that amount for whatever is missing in the reserve.
566 */
567 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
568 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
569 delayed_refs_rsv->full == 0) {
570 delayed_refs_bytes = num_bytes;
571 num_bytes <<= 1;
572 }
573
574 /*
575 * Do the reservation for the relocation root creation
576 */
577 if (need_reserve_reloc_root(root)) {
578 num_bytes += fs_info->nodesize;
579 reloc_reserved = true;
580 }
581
582 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
583 if (ret)
584 goto reserve_fail;
585 if (delayed_refs_bytes) {
586 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
587 delayed_refs_bytes);
588 num_bytes -= delayed_refs_bytes;
589 }
590
591 if (rsv->space_info->force_alloc)
592 do_chunk_alloc = true;
593 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
594 !delayed_refs_rsv->full) {
595 /*
596 * Some people call with btrfs_start_transaction(root, 0)
597 * because they can be throttled, but have some other mechanism
598 * for reserving space. We still want these guys to refill the
599 * delayed block_rsv so just add 1 items worth of reservation
600 * here.
601 */
602 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
603 if (ret)
604 goto reserve_fail;
605 }
606 again:
607 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
608 if (!h) {
609 ret = -ENOMEM;
610 goto alloc_fail;
611 }
612
613 /*
614 * If we are JOIN_NOLOCK we're already committing a transaction and
615 * waiting on this guy, so we don't need to do the sb_start_intwrite
616 * because we're already holding a ref. We need this because we could
617 * have raced in and did an fsync() on a file which can kick a commit
618 * and then we deadlock with somebody doing a freeze.
619 *
620 * If we are ATTACH, it means we just want to catch the current
621 * transaction and commit it, so we needn't do sb_start_intwrite().
622 */
623 if (type & __TRANS_FREEZABLE)
624 sb_start_intwrite(fs_info->sb);
625
626 if (may_wait_transaction(fs_info, type))
627 wait_current_trans(fs_info);
628
629 do {
630 ret = join_transaction(fs_info, type);
631 if (ret == -EBUSY) {
632 wait_current_trans(fs_info);
633 if (unlikely(type == TRANS_ATTACH ||
634 type == TRANS_JOIN_NOSTART))
635 ret = -ENOENT;
636 }
637 } while (ret == -EBUSY);
638
639 if (ret < 0)
640 goto join_fail;
641
642 cur_trans = fs_info->running_transaction;
643
644 h->transid = cur_trans->transid;
645 h->transaction = cur_trans;
646 h->root = root;
647 refcount_set(&h->use_count, 1);
648 h->fs_info = root->fs_info;
649
650 h->type = type;
651 h->can_flush_pending_bgs = true;
652 INIT_LIST_HEAD(&h->new_bgs);
653
654 smp_mb();
655 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
656 may_wait_transaction(fs_info, type)) {
657 current->journal_info = h;
658 btrfs_commit_transaction(h);
659 goto again;
660 }
661
662 if (num_bytes) {
663 trace_btrfs_space_reservation(fs_info, "transaction",
664 h->transid, num_bytes, 1);
665 h->block_rsv = &fs_info->trans_block_rsv;
666 h->bytes_reserved = num_bytes;
667 h->reloc_reserved = reloc_reserved;
668 }
669
670 got_it:
671 if (!current->journal_info)
672 current->journal_info = h;
673
674 /*
675 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676 * ALLOC_FORCE the first run through, and then we won't allocate for
677 * anybody else who races in later. We don't care about the return
678 * value here.
679 */
680 if (do_chunk_alloc && num_bytes) {
681 u64 flags = h->block_rsv->space_info->flags;
682
683 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
684 CHUNK_ALLOC_NO_FORCE);
685 }
686
687 /*
688 * btrfs_record_root_in_trans() needs to alloc new extents, and may
689 * call btrfs_join_transaction() while we're also starting a
690 * transaction.
691 *
692 * Thus it need to be called after current->journal_info initialized,
693 * or we can deadlock.
694 */
695 btrfs_record_root_in_trans(h, root);
696
697 return h;
698
699 join_fail:
700 if (type & __TRANS_FREEZABLE)
701 sb_end_intwrite(fs_info->sb);
702 kmem_cache_free(btrfs_trans_handle_cachep, h);
703 alloc_fail:
704 if (num_bytes)
705 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
706 num_bytes, NULL);
707 reserve_fail:
708 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
709 return ERR_PTR(ret);
710 }
711
712 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
713 unsigned int num_items)
714 {
715 return start_transaction(root, num_items, TRANS_START,
716 BTRFS_RESERVE_FLUSH_ALL, true);
717 }
718
719 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
720 struct btrfs_root *root,
721 unsigned int num_items)
722 {
723 return start_transaction(root, num_items, TRANS_START,
724 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
725 }
726
727 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
728 {
729 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
730 true);
731 }
732
733 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
734 {
735 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
736 BTRFS_RESERVE_NO_FLUSH, true);
737 }
738
739 /*
740 * Similar to regular join but it never starts a transaction when none is
741 * running or after waiting for the current one to finish.
742 */
743 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
744 {
745 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
746 BTRFS_RESERVE_NO_FLUSH, true);
747 }
748
749 /*
750 * btrfs_attach_transaction() - catch the running transaction
751 *
752 * It is used when we want to commit the current the transaction, but
753 * don't want to start a new one.
754 *
755 * Note: If this function return -ENOENT, it just means there is no
756 * running transaction. But it is possible that the inactive transaction
757 * is still in the memory, not fully on disk. If you hope there is no
758 * inactive transaction in the fs when -ENOENT is returned, you should
759 * invoke
760 * btrfs_attach_transaction_barrier()
761 */
762 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
763 {
764 return start_transaction(root, 0, TRANS_ATTACH,
765 BTRFS_RESERVE_NO_FLUSH, true);
766 }
767
768 /*
769 * btrfs_attach_transaction_barrier() - catch the running transaction
770 *
771 * It is similar to the above function, the difference is this one
772 * will wait for all the inactive transactions until they fully
773 * complete.
774 */
775 struct btrfs_trans_handle *
776 btrfs_attach_transaction_barrier(struct btrfs_root *root)
777 {
778 struct btrfs_trans_handle *trans;
779
780 trans = start_transaction(root, 0, TRANS_ATTACH,
781 BTRFS_RESERVE_NO_FLUSH, true);
782 if (trans == ERR_PTR(-ENOENT))
783 btrfs_wait_for_commit(root->fs_info, 0);
784
785 return trans;
786 }
787
788 /* wait for a transaction commit to be fully complete */
789 static noinline void wait_for_commit(struct btrfs_transaction *commit)
790 {
791 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
792 }
793
794 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
795 {
796 struct btrfs_transaction *cur_trans = NULL, *t;
797 int ret = 0;
798
799 if (transid) {
800 if (transid <= fs_info->last_trans_committed)
801 goto out;
802
803 /* find specified transaction */
804 spin_lock(&fs_info->trans_lock);
805 list_for_each_entry(t, &fs_info->trans_list, list) {
806 if (t->transid == transid) {
807 cur_trans = t;
808 refcount_inc(&cur_trans->use_count);
809 ret = 0;
810 break;
811 }
812 if (t->transid > transid) {
813 ret = 0;
814 break;
815 }
816 }
817 spin_unlock(&fs_info->trans_lock);
818
819 /*
820 * The specified transaction doesn't exist, or we
821 * raced with btrfs_commit_transaction
822 */
823 if (!cur_trans) {
824 if (transid > fs_info->last_trans_committed)
825 ret = -EINVAL;
826 goto out;
827 }
828 } else {
829 /* find newest transaction that is committing | committed */
830 spin_lock(&fs_info->trans_lock);
831 list_for_each_entry_reverse(t, &fs_info->trans_list,
832 list) {
833 if (t->state >= TRANS_STATE_COMMIT_START) {
834 if (t->state == TRANS_STATE_COMPLETED)
835 break;
836 cur_trans = t;
837 refcount_inc(&cur_trans->use_count);
838 break;
839 }
840 }
841 spin_unlock(&fs_info->trans_lock);
842 if (!cur_trans)
843 goto out; /* nothing committing|committed */
844 }
845
846 wait_for_commit(cur_trans);
847 btrfs_put_transaction(cur_trans);
848 out:
849 return ret;
850 }
851
852 void btrfs_throttle(struct btrfs_fs_info *fs_info)
853 {
854 wait_current_trans(fs_info);
855 }
856
857 static int should_end_transaction(struct btrfs_trans_handle *trans)
858 {
859 struct btrfs_fs_info *fs_info = trans->fs_info;
860
861 if (btrfs_check_space_for_delayed_refs(fs_info))
862 return 1;
863
864 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
865 }
866
867 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
868 {
869 struct btrfs_transaction *cur_trans = trans->transaction;
870
871 smp_mb();
872 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
873 cur_trans->delayed_refs.flushing)
874 return 1;
875
876 return should_end_transaction(trans);
877 }
878
879 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
880
881 {
882 struct btrfs_fs_info *fs_info = trans->fs_info;
883
884 if (!trans->block_rsv) {
885 ASSERT(!trans->bytes_reserved);
886 return;
887 }
888
889 if (!trans->bytes_reserved)
890 return;
891
892 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
893 trace_btrfs_space_reservation(fs_info, "transaction",
894 trans->transid, trans->bytes_reserved, 0);
895 btrfs_block_rsv_release(fs_info, trans->block_rsv,
896 trans->bytes_reserved, NULL);
897 trans->bytes_reserved = 0;
898 }
899
900 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
901 int throttle)
902 {
903 struct btrfs_fs_info *info = trans->fs_info;
904 struct btrfs_transaction *cur_trans = trans->transaction;
905 int err = 0;
906
907 if (refcount_read(&trans->use_count) > 1) {
908 refcount_dec(&trans->use_count);
909 trans->block_rsv = trans->orig_rsv;
910 return 0;
911 }
912
913 btrfs_trans_release_metadata(trans);
914 trans->block_rsv = NULL;
915
916 btrfs_create_pending_block_groups(trans);
917
918 btrfs_trans_release_chunk_metadata(trans);
919
920 if (trans->type & __TRANS_FREEZABLE)
921 sb_end_intwrite(info->sb);
922
923 WARN_ON(cur_trans != info->running_transaction);
924 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
925 atomic_dec(&cur_trans->num_writers);
926 extwriter_counter_dec(cur_trans, trans->type);
927
928 cond_wake_up(&cur_trans->writer_wait);
929 btrfs_put_transaction(cur_trans);
930
931 if (current->journal_info == trans)
932 current->journal_info = NULL;
933
934 if (throttle)
935 btrfs_run_delayed_iputs(info);
936
937 if (TRANS_ABORTED(trans) ||
938 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
939 wake_up_process(info->transaction_kthread);
940 if (TRANS_ABORTED(trans))
941 err = trans->aborted;
942 else
943 err = -EROFS;
944 }
945
946 kmem_cache_free(btrfs_trans_handle_cachep, trans);
947 return err;
948 }
949
950 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
951 {
952 return __btrfs_end_transaction(trans, 0);
953 }
954
955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
956 {
957 return __btrfs_end_transaction(trans, 1);
958 }
959
960 /*
961 * when btree blocks are allocated, they have some corresponding bits set for
962 * them in one of two extent_io trees. This is used to make sure all of
963 * those extents are sent to disk but does not wait on them
964 */
965 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
966 struct extent_io_tree *dirty_pages, int mark)
967 {
968 int err = 0;
969 int werr = 0;
970 struct address_space *mapping = fs_info->btree_inode->i_mapping;
971 struct extent_state *cached_state = NULL;
972 u64 start = 0;
973 u64 end;
974
975 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
976 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 mark, &cached_state)) {
978 bool wait_writeback = false;
979
980 err = convert_extent_bit(dirty_pages, start, end,
981 EXTENT_NEED_WAIT,
982 mark, &cached_state);
983 /*
984 * convert_extent_bit can return -ENOMEM, which is most of the
985 * time a temporary error. So when it happens, ignore the error
986 * and wait for writeback of this range to finish - because we
987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988 * to __btrfs_wait_marked_extents() would not know that
989 * writeback for this range started and therefore wouldn't
990 * wait for it to finish - we don't want to commit a
991 * superblock that points to btree nodes/leafs for which
992 * writeback hasn't finished yet (and without errors).
993 * We cleanup any entries left in the io tree when committing
994 * the transaction (through extent_io_tree_release()).
995 */
996 if (err == -ENOMEM) {
997 err = 0;
998 wait_writeback = true;
999 }
1000 if (!err)
1001 err = filemap_fdatawrite_range(mapping, start, end);
1002 if (err)
1003 werr = err;
1004 else if (wait_writeback)
1005 werr = filemap_fdatawait_range(mapping, start, end);
1006 free_extent_state(cached_state);
1007 cached_state = NULL;
1008 cond_resched();
1009 start = end + 1;
1010 }
1011 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012 return werr;
1013 }
1014
1015 /*
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees. This is used to make sure all of
1018 * those extents are on disk for transaction or log commit. We wait
1019 * on all the pages and clear them from the dirty pages state tree
1020 */
1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022 struct extent_io_tree *dirty_pages)
1023 {
1024 int err = 0;
1025 int werr = 0;
1026 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027 struct extent_state *cached_state = NULL;
1028 u64 start = 0;
1029 u64 end;
1030
1031 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032 EXTENT_NEED_WAIT, &cached_state)) {
1033 /*
1034 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 * When committing the transaction, we'll remove any entries
1036 * left in the io tree. For a log commit, we don't remove them
1037 * after committing the log because the tree can be accessed
1038 * concurrently - we do it only at transaction commit time when
1039 * it's safe to do it (through extent_io_tree_release()).
1040 */
1041 err = clear_extent_bit(dirty_pages, start, end,
1042 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043 if (err == -ENOMEM)
1044 err = 0;
1045 if (!err)
1046 err = filemap_fdatawait_range(mapping, start, end);
1047 if (err)
1048 werr = err;
1049 free_extent_state(cached_state);
1050 cached_state = NULL;
1051 cond_resched();
1052 start = end + 1;
1053 }
1054 if (err)
1055 werr = err;
1056 return werr;
1057 }
1058
1059 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060 struct extent_io_tree *dirty_pages)
1061 {
1062 bool errors = false;
1063 int err;
1064
1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067 errors = true;
1068
1069 if (errors && !err)
1070 err = -EIO;
1071 return err;
1072 }
1073
1074 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075 {
1076 struct btrfs_fs_info *fs_info = log_root->fs_info;
1077 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078 bool errors = false;
1079 int err;
1080
1081 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084 if ((mark & EXTENT_DIRTY) &&
1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086 errors = true;
1087
1088 if ((mark & EXTENT_NEW) &&
1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090 errors = true;
1091
1092 if (errors && !err)
1093 err = -EIO;
1094 return err;
1095 }
1096
1097 /*
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1101 *
1102 * @trans: transaction whose dirty pages we'd like to write
1103 */
1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105 {
1106 int ret;
1107 int ret2;
1108 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109 struct btrfs_fs_info *fs_info = trans->fs_info;
1110 struct blk_plug plug;
1111
1112 blk_start_plug(&plug);
1113 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114 blk_finish_plug(&plug);
1115 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116
1117 extent_io_tree_release(&trans->transaction->dirty_pages);
1118
1119 if (ret)
1120 return ret;
1121 else if (ret2)
1122 return ret2;
1123 else
1124 return 0;
1125 }
1126
1127 /*
1128 * this is used to update the root pointer in the tree of tree roots.
1129 *
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1133 *
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1136 */
1137 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138 struct btrfs_root *root)
1139 {
1140 int ret;
1141 u64 old_root_bytenr;
1142 u64 old_root_used;
1143 struct btrfs_fs_info *fs_info = root->fs_info;
1144 struct btrfs_root *tree_root = fs_info->tree_root;
1145
1146 old_root_used = btrfs_root_used(&root->root_item);
1147
1148 while (1) {
1149 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150 if (old_root_bytenr == root->node->start &&
1151 old_root_used == btrfs_root_used(&root->root_item))
1152 break;
1153
1154 btrfs_set_root_node(&root->root_item, root->node);
1155 ret = btrfs_update_root(trans, tree_root,
1156 &root->root_key,
1157 &root->root_item);
1158 if (ret)
1159 return ret;
1160
1161 old_root_used = btrfs_root_used(&root->root_item);
1162 }
1163
1164 return 0;
1165 }
1166
1167 /*
1168 * update all the cowonly tree roots on disk
1169 *
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1173 */
1174 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175 {
1176 struct btrfs_fs_info *fs_info = trans->fs_info;
1177 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178 struct list_head *io_bgs = &trans->transaction->io_bgs;
1179 struct list_head *next;
1180 struct extent_buffer *eb;
1181 int ret;
1182
1183 eb = btrfs_lock_root_node(fs_info->tree_root);
1184 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185 0, &eb);
1186 btrfs_tree_unlock(eb);
1187 free_extent_buffer(eb);
1188
1189 if (ret)
1190 return ret;
1191
1192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193 if (ret)
1194 return ret;
1195
1196 ret = btrfs_run_dev_stats(trans);
1197 if (ret)
1198 return ret;
1199 ret = btrfs_run_dev_replace(trans);
1200 if (ret)
1201 return ret;
1202 ret = btrfs_run_qgroups(trans);
1203 if (ret)
1204 return ret;
1205
1206 ret = btrfs_setup_space_cache(trans);
1207 if (ret)
1208 return ret;
1209
1210 /* run_qgroups might have added some more refs */
1211 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212 if (ret)
1213 return ret;
1214 again:
1215 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216 struct btrfs_root *root;
1217 next = fs_info->dirty_cowonly_roots.next;
1218 list_del_init(next);
1219 root = list_entry(next, struct btrfs_root, dirty_list);
1220 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221
1222 if (root != fs_info->extent_root)
1223 list_add_tail(&root->dirty_list,
1224 &trans->transaction->switch_commits);
1225 ret = update_cowonly_root(trans, root);
1226 if (ret)
1227 return ret;
1228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229 if (ret)
1230 return ret;
1231 }
1232
1233 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234 ret = btrfs_write_dirty_block_groups(trans);
1235 if (ret)
1236 return ret;
1237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238 if (ret)
1239 return ret;
1240 }
1241
1242 if (!list_empty(&fs_info->dirty_cowonly_roots))
1243 goto again;
1244
1245 list_add_tail(&fs_info->extent_root->dirty_list,
1246 &trans->transaction->switch_commits);
1247
1248 /* Update dev-replace pointer once everything is committed */
1249 fs_info->dev_replace.committed_cursor_left =
1250 fs_info->dev_replace.cursor_left_last_write_of_item;
1251
1252 return 0;
1253 }
1254
1255 /*
1256 * dead roots are old snapshots that need to be deleted. This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1259 */
1260 void btrfs_add_dead_root(struct btrfs_root *root)
1261 {
1262 struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264 spin_lock(&fs_info->trans_lock);
1265 if (list_empty(&root->root_list)) {
1266 btrfs_grab_root(root);
1267 list_add_tail(&root->root_list, &fs_info->dead_roots);
1268 }
1269 spin_unlock(&fs_info->trans_lock);
1270 }
1271
1272 /*
1273 * update all the cowonly tree roots on disk
1274 */
1275 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276 {
1277 struct btrfs_fs_info *fs_info = trans->fs_info;
1278 struct btrfs_root *gang[8];
1279 int i;
1280 int ret;
1281 int err = 0;
1282
1283 spin_lock(&fs_info->fs_roots_radix_lock);
1284 while (1) {
1285 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286 (void **)gang, 0,
1287 ARRAY_SIZE(gang),
1288 BTRFS_ROOT_TRANS_TAG);
1289 if (ret == 0)
1290 break;
1291 for (i = 0; i < ret; i++) {
1292 struct btrfs_root *root = gang[i];
1293 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294 (unsigned long)root->root_key.objectid,
1295 BTRFS_ROOT_TRANS_TAG);
1296 spin_unlock(&fs_info->fs_roots_radix_lock);
1297
1298 btrfs_free_log(trans, root);
1299 btrfs_update_reloc_root(trans, root);
1300
1301 btrfs_save_ino_cache(root, trans);
1302
1303 /* see comments in should_cow_block() */
1304 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305 smp_mb__after_atomic();
1306
1307 if (root->commit_root != root->node) {
1308 list_add_tail(&root->dirty_list,
1309 &trans->transaction->switch_commits);
1310 btrfs_set_root_node(&root->root_item,
1311 root->node);
1312 }
1313
1314 err = btrfs_update_root(trans, fs_info->tree_root,
1315 &root->root_key,
1316 &root->root_item);
1317 spin_lock(&fs_info->fs_roots_radix_lock);
1318 if (err)
1319 break;
1320 btrfs_qgroup_free_meta_all_pertrans(root);
1321 }
1322 }
1323 spin_unlock(&fs_info->fs_roots_radix_lock);
1324 return err;
1325 }
1326
1327 /*
1328 * defrag a given btree.
1329 * Every leaf in the btree is read and defragged.
1330 */
1331 int btrfs_defrag_root(struct btrfs_root *root)
1332 {
1333 struct btrfs_fs_info *info = root->fs_info;
1334 struct btrfs_trans_handle *trans;
1335 int ret;
1336
1337 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338 return 0;
1339
1340 while (1) {
1341 trans = btrfs_start_transaction(root, 0);
1342 if (IS_ERR(trans))
1343 return PTR_ERR(trans);
1344
1345 ret = btrfs_defrag_leaves(trans, root);
1346
1347 btrfs_end_transaction(trans);
1348 btrfs_btree_balance_dirty(info);
1349 cond_resched();
1350
1351 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352 break;
1353
1354 if (btrfs_defrag_cancelled(info)) {
1355 btrfs_debug(info, "defrag_root cancelled");
1356 ret = -EAGAIN;
1357 break;
1358 }
1359 }
1360 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361 return ret;
1362 }
1363
1364 /*
1365 * Do all special snapshot related qgroup dirty hack.
1366 *
1367 * Will do all needed qgroup inherit and dirty hack like switch commit
1368 * roots inside one transaction and write all btree into disk, to make
1369 * qgroup works.
1370 */
1371 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *src,
1373 struct btrfs_root *parent,
1374 struct btrfs_qgroup_inherit *inherit,
1375 u64 dst_objectid)
1376 {
1377 struct btrfs_fs_info *fs_info = src->fs_info;
1378 int ret;
1379
1380 /*
1381 * Save some performance in the case that qgroups are not
1382 * enabled. If this check races with the ioctl, rescan will
1383 * kick in anyway.
1384 */
1385 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386 return 0;
1387
1388 /*
1389 * Ensure dirty @src will be committed. Or, after coming
1390 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391 * recorded root will never be updated again, causing an outdated root
1392 * item.
1393 */
1394 record_root_in_trans(trans, src, 1);
1395
1396 /*
1397 * We are going to commit transaction, see btrfs_commit_transaction()
1398 * comment for reason locking tree_log_mutex
1399 */
1400 mutex_lock(&fs_info->tree_log_mutex);
1401
1402 ret = commit_fs_roots(trans);
1403 if (ret)
1404 goto out;
1405 ret = btrfs_qgroup_account_extents(trans);
1406 if (ret < 0)
1407 goto out;
1408
1409 /* Now qgroup are all updated, we can inherit it to new qgroups */
1410 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411 inherit);
1412 if (ret < 0)
1413 goto out;
1414
1415 /*
1416 * Now we do a simplified commit transaction, which will:
1417 * 1) commit all subvolume and extent tree
1418 * To ensure all subvolume and extent tree have a valid
1419 * commit_root to accounting later insert_dir_item()
1420 * 2) write all btree blocks onto disk
1421 * This is to make sure later btree modification will be cowed
1422 * Or commit_root can be populated and cause wrong qgroup numbers
1423 * In this simplified commit, we don't really care about other trees
1424 * like chunk and root tree, as they won't affect qgroup.
1425 * And we don't write super to avoid half committed status.
1426 */
1427 ret = commit_cowonly_roots(trans);
1428 if (ret)
1429 goto out;
1430 switch_commit_roots(trans);
1431 ret = btrfs_write_and_wait_transaction(trans);
1432 if (ret)
1433 btrfs_handle_fs_error(fs_info, ret,
1434 "Error while writing out transaction for qgroup");
1435
1436 out:
1437 mutex_unlock(&fs_info->tree_log_mutex);
1438
1439 /*
1440 * Force parent root to be updated, as we recorded it before so its
1441 * last_trans == cur_transid.
1442 * Or it won't be committed again onto disk after later
1443 * insert_dir_item()
1444 */
1445 if (!ret)
1446 record_root_in_trans(trans, parent, 1);
1447 return ret;
1448 }
1449
1450 /*
1451 * new snapshots need to be created at a very specific time in the
1452 * transaction commit. This does the actual creation.
1453 *
1454 * Note:
1455 * If the error which may affect the commitment of the current transaction
1456 * happens, we should return the error number. If the error which just affect
1457 * the creation of the pending snapshots, just return 0.
1458 */
1459 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460 struct btrfs_pending_snapshot *pending)
1461 {
1462
1463 struct btrfs_fs_info *fs_info = trans->fs_info;
1464 struct btrfs_key key;
1465 struct btrfs_root_item *new_root_item;
1466 struct btrfs_root *tree_root = fs_info->tree_root;
1467 struct btrfs_root *root = pending->root;
1468 struct btrfs_root *parent_root;
1469 struct btrfs_block_rsv *rsv;
1470 struct inode *parent_inode;
1471 struct btrfs_path *path;
1472 struct btrfs_dir_item *dir_item;
1473 struct dentry *dentry;
1474 struct extent_buffer *tmp;
1475 struct extent_buffer *old;
1476 struct timespec64 cur_time;
1477 int ret = 0;
1478 u64 to_reserve = 0;
1479 u64 index = 0;
1480 u64 objectid;
1481 u64 root_flags;
1482
1483 ASSERT(pending->path);
1484 path = pending->path;
1485
1486 ASSERT(pending->root_item);
1487 new_root_item = pending->root_item;
1488
1489 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1490 if (pending->error)
1491 goto no_free_objectid;
1492
1493 /*
1494 * Make qgroup to skip current new snapshot's qgroupid, as it is
1495 * accounted by later btrfs_qgroup_inherit().
1496 */
1497 btrfs_set_skip_qgroup(trans, objectid);
1498
1499 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500
1501 if (to_reserve > 0) {
1502 pending->error = btrfs_block_rsv_add(root,
1503 &pending->block_rsv,
1504 to_reserve,
1505 BTRFS_RESERVE_NO_FLUSH);
1506 if (pending->error)
1507 goto clear_skip_qgroup;
1508 }
1509
1510 key.objectid = objectid;
1511 key.offset = (u64)-1;
1512 key.type = BTRFS_ROOT_ITEM_KEY;
1513
1514 rsv = trans->block_rsv;
1515 trans->block_rsv = &pending->block_rsv;
1516 trans->bytes_reserved = trans->block_rsv->reserved;
1517 trace_btrfs_space_reservation(fs_info, "transaction",
1518 trans->transid,
1519 trans->bytes_reserved, 1);
1520 dentry = pending->dentry;
1521 parent_inode = pending->dir;
1522 parent_root = BTRFS_I(parent_inode)->root;
1523 record_root_in_trans(trans, parent_root, 0);
1524
1525 cur_time = current_time(parent_inode);
1526
1527 /*
1528 * insert the directory item
1529 */
1530 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531 BUG_ON(ret); /* -ENOMEM */
1532
1533 /* check if there is a file/dir which has the same name. */
1534 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535 btrfs_ino(BTRFS_I(parent_inode)),
1536 dentry->d_name.name,
1537 dentry->d_name.len, 0);
1538 if (dir_item != NULL && !IS_ERR(dir_item)) {
1539 pending->error = -EEXIST;
1540 goto dir_item_existed;
1541 } else if (IS_ERR(dir_item)) {
1542 ret = PTR_ERR(dir_item);
1543 btrfs_abort_transaction(trans, ret);
1544 goto fail;
1545 }
1546 btrfs_release_path(path);
1547
1548 /*
1549 * pull in the delayed directory update
1550 * and the delayed inode item
1551 * otherwise we corrupt the FS during
1552 * snapshot
1553 */
1554 ret = btrfs_run_delayed_items(trans);
1555 if (ret) { /* Transaction aborted */
1556 btrfs_abort_transaction(trans, ret);
1557 goto fail;
1558 }
1559
1560 record_root_in_trans(trans, root, 0);
1561 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563 btrfs_check_and_init_root_item(new_root_item);
1564
1565 root_flags = btrfs_root_flags(new_root_item);
1566 if (pending->readonly)
1567 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568 else
1569 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570 btrfs_set_root_flags(new_root_item, root_flags);
1571
1572 btrfs_set_root_generation_v2(new_root_item,
1573 trans->transid);
1574 generate_random_guid(new_root_item->uuid);
1575 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576 BTRFS_UUID_SIZE);
1577 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578 memset(new_root_item->received_uuid, 0,
1579 sizeof(new_root_item->received_uuid));
1580 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582 btrfs_set_root_stransid(new_root_item, 0);
1583 btrfs_set_root_rtransid(new_root_item, 0);
1584 }
1585 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587 btrfs_set_root_otransid(new_root_item, trans->transid);
1588
1589 old = btrfs_lock_root_node(root);
1590 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1591 if (ret) {
1592 btrfs_tree_unlock(old);
1593 free_extent_buffer(old);
1594 btrfs_abort_transaction(trans, ret);
1595 goto fail;
1596 }
1597
1598 btrfs_set_lock_blocking_write(old);
1599
1600 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601 /* clean up in any case */
1602 btrfs_tree_unlock(old);
1603 free_extent_buffer(old);
1604 if (ret) {
1605 btrfs_abort_transaction(trans, ret);
1606 goto fail;
1607 }
1608 /* see comments in should_cow_block() */
1609 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610 smp_wmb();
1611
1612 btrfs_set_root_node(new_root_item, tmp);
1613 /* record when the snapshot was created in key.offset */
1614 key.offset = trans->transid;
1615 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616 btrfs_tree_unlock(tmp);
1617 free_extent_buffer(tmp);
1618 if (ret) {
1619 btrfs_abort_transaction(trans, ret);
1620 goto fail;
1621 }
1622
1623 /*
1624 * insert root back/forward references
1625 */
1626 ret = btrfs_add_root_ref(trans, objectid,
1627 parent_root->root_key.objectid,
1628 btrfs_ino(BTRFS_I(parent_inode)), index,
1629 dentry->d_name.name, dentry->d_name.len);
1630 if (ret) {
1631 btrfs_abort_transaction(trans, ret);
1632 goto fail;
1633 }
1634
1635 key.offset = (u64)-1;
1636 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637 if (IS_ERR(pending->snap)) {
1638 ret = PTR_ERR(pending->snap);
1639 pending->snap = NULL;
1640 btrfs_abort_transaction(trans, ret);
1641 goto fail;
1642 }
1643
1644 ret = btrfs_reloc_post_snapshot(trans, pending);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649
1650 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1651 if (ret) {
1652 btrfs_abort_transaction(trans, ret);
1653 goto fail;
1654 }
1655
1656 /*
1657 * Do special qgroup accounting for snapshot, as we do some qgroup
1658 * snapshot hack to do fast snapshot.
1659 * To co-operate with that hack, we do hack again.
1660 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661 */
1662 ret = qgroup_account_snapshot(trans, root, parent_root,
1663 pending->inherit, objectid);
1664 if (ret < 0)
1665 goto fail;
1666
1667 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1668 dentry->d_name.len, BTRFS_I(parent_inode),
1669 &key, BTRFS_FT_DIR, index);
1670 /* We have check then name at the beginning, so it is impossible. */
1671 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1672 if (ret) {
1673 btrfs_abort_transaction(trans, ret);
1674 goto fail;
1675 }
1676
1677 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1678 dentry->d_name.len * 2);
1679 parent_inode->i_mtime = parent_inode->i_ctime =
1680 current_time(parent_inode);
1681 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1682 if (ret) {
1683 btrfs_abort_transaction(trans, ret);
1684 goto fail;
1685 }
1686 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1687 BTRFS_UUID_KEY_SUBVOL,
1688 objectid);
1689 if (ret) {
1690 btrfs_abort_transaction(trans, ret);
1691 goto fail;
1692 }
1693 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1694 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1695 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1696 objectid);
1697 if (ret && ret != -EEXIST) {
1698 btrfs_abort_transaction(trans, ret);
1699 goto fail;
1700 }
1701 }
1702
1703 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1704 if (ret) {
1705 btrfs_abort_transaction(trans, ret);
1706 goto fail;
1707 }
1708
1709 fail:
1710 pending->error = ret;
1711 dir_item_existed:
1712 trans->block_rsv = rsv;
1713 trans->bytes_reserved = 0;
1714 clear_skip_qgroup:
1715 btrfs_clear_skip_qgroup(trans);
1716 no_free_objectid:
1717 kfree(new_root_item);
1718 pending->root_item = NULL;
1719 btrfs_free_path(path);
1720 pending->path = NULL;
1721
1722 return ret;
1723 }
1724
1725 /*
1726 * create all the snapshots we've scheduled for creation
1727 */
1728 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1729 {
1730 struct btrfs_pending_snapshot *pending, *next;
1731 struct list_head *head = &trans->transaction->pending_snapshots;
1732 int ret = 0;
1733
1734 list_for_each_entry_safe(pending, next, head, list) {
1735 list_del(&pending->list);
1736 ret = create_pending_snapshot(trans, pending);
1737 if (ret)
1738 break;
1739 }
1740 return ret;
1741 }
1742
1743 static void update_super_roots(struct btrfs_fs_info *fs_info)
1744 {
1745 struct btrfs_root_item *root_item;
1746 struct btrfs_super_block *super;
1747
1748 super = fs_info->super_copy;
1749
1750 root_item = &fs_info->chunk_root->root_item;
1751 super->chunk_root = root_item->bytenr;
1752 super->chunk_root_generation = root_item->generation;
1753 super->chunk_root_level = root_item->level;
1754
1755 root_item = &fs_info->tree_root->root_item;
1756 super->root = root_item->bytenr;
1757 super->generation = root_item->generation;
1758 super->root_level = root_item->level;
1759 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1760 super->cache_generation = root_item->generation;
1761 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1762 super->uuid_tree_generation = root_item->generation;
1763 }
1764
1765 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1766 {
1767 struct btrfs_transaction *trans;
1768 int ret = 0;
1769
1770 spin_lock(&info->trans_lock);
1771 trans = info->running_transaction;
1772 if (trans)
1773 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1774 spin_unlock(&info->trans_lock);
1775 return ret;
1776 }
1777
1778 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1779 {
1780 struct btrfs_transaction *trans;
1781 int ret = 0;
1782
1783 spin_lock(&info->trans_lock);
1784 trans = info->running_transaction;
1785 if (trans)
1786 ret = is_transaction_blocked(trans);
1787 spin_unlock(&info->trans_lock);
1788 return ret;
1789 }
1790
1791 /*
1792 * wait for the current transaction commit to start and block subsequent
1793 * transaction joins
1794 */
1795 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1796 struct btrfs_transaction *trans)
1797 {
1798 wait_event(fs_info->transaction_blocked_wait,
1799 trans->state >= TRANS_STATE_COMMIT_START ||
1800 TRANS_ABORTED(trans));
1801 }
1802
1803 /*
1804 * wait for the current transaction to start and then become unblocked.
1805 * caller holds ref.
1806 */
1807 static void wait_current_trans_commit_start_and_unblock(
1808 struct btrfs_fs_info *fs_info,
1809 struct btrfs_transaction *trans)
1810 {
1811 wait_event(fs_info->transaction_wait,
1812 trans->state >= TRANS_STATE_UNBLOCKED ||
1813 TRANS_ABORTED(trans));
1814 }
1815
1816 /*
1817 * commit transactions asynchronously. once btrfs_commit_transaction_async
1818 * returns, any subsequent transaction will not be allowed to join.
1819 */
1820 struct btrfs_async_commit {
1821 struct btrfs_trans_handle *newtrans;
1822 struct work_struct work;
1823 };
1824
1825 static void do_async_commit(struct work_struct *work)
1826 {
1827 struct btrfs_async_commit *ac =
1828 container_of(work, struct btrfs_async_commit, work);
1829
1830 /*
1831 * We've got freeze protection passed with the transaction.
1832 * Tell lockdep about it.
1833 */
1834 if (ac->newtrans->type & __TRANS_FREEZABLE)
1835 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1836
1837 current->journal_info = ac->newtrans;
1838
1839 btrfs_commit_transaction(ac->newtrans);
1840 kfree(ac);
1841 }
1842
1843 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1844 int wait_for_unblock)
1845 {
1846 struct btrfs_fs_info *fs_info = trans->fs_info;
1847 struct btrfs_async_commit *ac;
1848 struct btrfs_transaction *cur_trans;
1849
1850 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1851 if (!ac)
1852 return -ENOMEM;
1853
1854 INIT_WORK(&ac->work, do_async_commit);
1855 ac->newtrans = btrfs_join_transaction(trans->root);
1856 if (IS_ERR(ac->newtrans)) {
1857 int err = PTR_ERR(ac->newtrans);
1858 kfree(ac);
1859 return err;
1860 }
1861
1862 /* take transaction reference */
1863 cur_trans = trans->transaction;
1864 refcount_inc(&cur_trans->use_count);
1865
1866 btrfs_end_transaction(trans);
1867
1868 /*
1869 * Tell lockdep we've released the freeze rwsem, since the
1870 * async commit thread will be the one to unlock it.
1871 */
1872 if (ac->newtrans->type & __TRANS_FREEZABLE)
1873 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1874
1875 schedule_work(&ac->work);
1876
1877 /* wait for transaction to start and unblock */
1878 if (wait_for_unblock)
1879 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1880 else
1881 wait_current_trans_commit_start(fs_info, cur_trans);
1882
1883 if (current->journal_info == trans)
1884 current->journal_info = NULL;
1885
1886 btrfs_put_transaction(cur_trans);
1887 return 0;
1888 }
1889
1890
1891 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1892 {
1893 struct btrfs_fs_info *fs_info = trans->fs_info;
1894 struct btrfs_transaction *cur_trans = trans->transaction;
1895
1896 WARN_ON(refcount_read(&trans->use_count) > 1);
1897
1898 btrfs_abort_transaction(trans, err);
1899
1900 spin_lock(&fs_info->trans_lock);
1901
1902 /*
1903 * If the transaction is removed from the list, it means this
1904 * transaction has been committed successfully, so it is impossible
1905 * to call the cleanup function.
1906 */
1907 BUG_ON(list_empty(&cur_trans->list));
1908
1909 list_del_init(&cur_trans->list);
1910 if (cur_trans == fs_info->running_transaction) {
1911 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1912 spin_unlock(&fs_info->trans_lock);
1913 wait_event(cur_trans->writer_wait,
1914 atomic_read(&cur_trans->num_writers) == 1);
1915
1916 spin_lock(&fs_info->trans_lock);
1917 }
1918 spin_unlock(&fs_info->trans_lock);
1919
1920 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1921
1922 spin_lock(&fs_info->trans_lock);
1923 if (cur_trans == fs_info->running_transaction)
1924 fs_info->running_transaction = NULL;
1925 spin_unlock(&fs_info->trans_lock);
1926
1927 if (trans->type & __TRANS_FREEZABLE)
1928 sb_end_intwrite(fs_info->sb);
1929 btrfs_put_transaction(cur_trans);
1930 btrfs_put_transaction(cur_trans);
1931
1932 trace_btrfs_transaction_commit(trans->root);
1933
1934 if (current->journal_info == trans)
1935 current->journal_info = NULL;
1936 btrfs_scrub_cancel(fs_info);
1937
1938 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1939 }
1940
1941 /*
1942 * Release reserved delayed ref space of all pending block groups of the
1943 * transaction and remove them from the list
1944 */
1945 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1946 {
1947 struct btrfs_fs_info *fs_info = trans->fs_info;
1948 struct btrfs_block_group *block_group, *tmp;
1949
1950 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1951 btrfs_delayed_refs_rsv_release(fs_info, 1);
1952 list_del_init(&block_group->bg_list);
1953 }
1954 }
1955
1956 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1957 {
1958 struct btrfs_fs_info *fs_info = trans->fs_info;
1959
1960 /*
1961 * We use writeback_inodes_sb here because if we used
1962 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1963 * Currently are holding the fs freeze lock, if we do an async flush
1964 * we'll do btrfs_join_transaction() and deadlock because we need to
1965 * wait for the fs freeze lock. Using the direct flushing we benefit
1966 * from already being in a transaction and our join_transaction doesn't
1967 * have to re-take the fs freeze lock.
1968 */
1969 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1970 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1971 } else {
1972 struct btrfs_pending_snapshot *pending;
1973 struct list_head *head = &trans->transaction->pending_snapshots;
1974
1975 /*
1976 * Flush dellaloc for any root that is going to be snapshotted.
1977 * This is done to avoid a corrupted version of files, in the
1978 * snapshots, that had both buffered and direct IO writes (even
1979 * if they were done sequentially) due to an unordered update of
1980 * the inode's size on disk.
1981 */
1982 list_for_each_entry(pending, head, list) {
1983 int ret;
1984
1985 ret = btrfs_start_delalloc_snapshot(pending->root);
1986 if (ret)
1987 return ret;
1988 }
1989 }
1990 return 0;
1991 }
1992
1993 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1994 {
1995 struct btrfs_fs_info *fs_info = trans->fs_info;
1996
1997 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1998 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1999 } else {
2000 struct btrfs_pending_snapshot *pending;
2001 struct list_head *head = &trans->transaction->pending_snapshots;
2002
2003 /*
2004 * Wait for any dellaloc that we started previously for the roots
2005 * that are going to be snapshotted. This is to avoid a corrupted
2006 * version of files in the snapshots that had both buffered and
2007 * direct IO writes (even if they were done sequentially).
2008 */
2009 list_for_each_entry(pending, head, list)
2010 btrfs_wait_ordered_extents(pending->root,
2011 U64_MAX, 0, U64_MAX);
2012 }
2013 }
2014
2015 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2016 {
2017 struct btrfs_fs_info *fs_info = trans->fs_info;
2018 struct btrfs_transaction *cur_trans = trans->transaction;
2019 struct btrfs_transaction *prev_trans = NULL;
2020 int ret;
2021
2022 ASSERT(refcount_read(&trans->use_count) == 1);
2023
2024 /*
2025 * Some places just start a transaction to commit it. We need to make
2026 * sure that if this commit fails that the abort code actually marks the
2027 * transaction as failed, so set trans->dirty to make the abort code do
2028 * the right thing.
2029 */
2030 trans->dirty = true;
2031
2032 /* Stop the commit early if ->aborted is set */
2033 if (TRANS_ABORTED(cur_trans)) {
2034 ret = cur_trans->aborted;
2035 btrfs_end_transaction(trans);
2036 return ret;
2037 }
2038
2039 btrfs_trans_release_metadata(trans);
2040 trans->block_rsv = NULL;
2041
2042 /* make a pass through all the delayed refs we have so far
2043 * any runnings procs may add more while we are here
2044 */
2045 ret = btrfs_run_delayed_refs(trans, 0);
2046 if (ret) {
2047 btrfs_end_transaction(trans);
2048 return ret;
2049 }
2050
2051 cur_trans = trans->transaction;
2052
2053 /*
2054 * set the flushing flag so procs in this transaction have to
2055 * start sending their work down.
2056 */
2057 cur_trans->delayed_refs.flushing = 1;
2058 smp_wmb();
2059
2060 btrfs_create_pending_block_groups(trans);
2061
2062 ret = btrfs_run_delayed_refs(trans, 0);
2063 if (ret) {
2064 btrfs_end_transaction(trans);
2065 return ret;
2066 }
2067
2068 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2069 int run_it = 0;
2070
2071 /* this mutex is also taken before trying to set
2072 * block groups readonly. We need to make sure
2073 * that nobody has set a block group readonly
2074 * after a extents from that block group have been
2075 * allocated for cache files. btrfs_set_block_group_ro
2076 * will wait for the transaction to commit if it
2077 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2078 *
2079 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2080 * only one process starts all the block group IO. It wouldn't
2081 * hurt to have more than one go through, but there's no
2082 * real advantage to it either.
2083 */
2084 mutex_lock(&fs_info->ro_block_group_mutex);
2085 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2086 &cur_trans->flags))
2087 run_it = 1;
2088 mutex_unlock(&fs_info->ro_block_group_mutex);
2089
2090 if (run_it) {
2091 ret = btrfs_start_dirty_block_groups(trans);
2092 if (ret) {
2093 btrfs_end_transaction(trans);
2094 return ret;
2095 }
2096 }
2097 }
2098
2099 spin_lock(&fs_info->trans_lock);
2100 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2101 spin_unlock(&fs_info->trans_lock);
2102 refcount_inc(&cur_trans->use_count);
2103 ret = btrfs_end_transaction(trans);
2104
2105 wait_for_commit(cur_trans);
2106
2107 if (TRANS_ABORTED(cur_trans))
2108 ret = cur_trans->aborted;
2109
2110 btrfs_put_transaction(cur_trans);
2111
2112 return ret;
2113 }
2114
2115 cur_trans->state = TRANS_STATE_COMMIT_START;
2116 wake_up(&fs_info->transaction_blocked_wait);
2117
2118 if (cur_trans->list.prev != &fs_info->trans_list) {
2119 prev_trans = list_entry(cur_trans->list.prev,
2120 struct btrfs_transaction, list);
2121 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2122 refcount_inc(&prev_trans->use_count);
2123 spin_unlock(&fs_info->trans_lock);
2124
2125 wait_for_commit(prev_trans);
2126 ret = READ_ONCE(prev_trans->aborted);
2127
2128 btrfs_put_transaction(prev_trans);
2129 if (ret)
2130 goto cleanup_transaction;
2131 } else {
2132 spin_unlock(&fs_info->trans_lock);
2133 }
2134 } else {
2135 spin_unlock(&fs_info->trans_lock);
2136 /*
2137 * The previous transaction was aborted and was already removed
2138 * from the list of transactions at fs_info->trans_list. So we
2139 * abort to prevent writing a new superblock that reflects a
2140 * corrupt state (pointing to trees with unwritten nodes/leafs).
2141 */
2142 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2143 ret = -EROFS;
2144 goto cleanup_transaction;
2145 }
2146 }
2147
2148 extwriter_counter_dec(cur_trans, trans->type);
2149
2150 ret = btrfs_start_delalloc_flush(trans);
2151 if (ret)
2152 goto cleanup_transaction;
2153
2154 ret = btrfs_run_delayed_items(trans);
2155 if (ret)
2156 goto cleanup_transaction;
2157
2158 wait_event(cur_trans->writer_wait,
2159 extwriter_counter_read(cur_trans) == 0);
2160
2161 /* some pending stuffs might be added after the previous flush. */
2162 ret = btrfs_run_delayed_items(trans);
2163 if (ret)
2164 goto cleanup_transaction;
2165
2166 btrfs_wait_delalloc_flush(trans);
2167
2168 btrfs_scrub_pause(fs_info);
2169 /*
2170 * Ok now we need to make sure to block out any other joins while we
2171 * commit the transaction. We could have started a join before setting
2172 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2173 */
2174 spin_lock(&fs_info->trans_lock);
2175 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2176 spin_unlock(&fs_info->trans_lock);
2177 wait_event(cur_trans->writer_wait,
2178 atomic_read(&cur_trans->num_writers) == 1);
2179
2180 if (TRANS_ABORTED(cur_trans)) {
2181 ret = cur_trans->aborted;
2182 goto scrub_continue;
2183 }
2184 /*
2185 * the reloc mutex makes sure that we stop
2186 * the balancing code from coming in and moving
2187 * extents around in the middle of the commit
2188 */
2189 mutex_lock(&fs_info->reloc_mutex);
2190
2191 /*
2192 * We needn't worry about the delayed items because we will
2193 * deal with them in create_pending_snapshot(), which is the
2194 * core function of the snapshot creation.
2195 */
2196 ret = create_pending_snapshots(trans);
2197 if (ret)
2198 goto unlock_reloc;
2199
2200 /*
2201 * We insert the dir indexes of the snapshots and update the inode
2202 * of the snapshots' parents after the snapshot creation, so there
2203 * are some delayed items which are not dealt with. Now deal with
2204 * them.
2205 *
2206 * We needn't worry that this operation will corrupt the snapshots,
2207 * because all the tree which are snapshoted will be forced to COW
2208 * the nodes and leaves.
2209 */
2210 ret = btrfs_run_delayed_items(trans);
2211 if (ret)
2212 goto unlock_reloc;
2213
2214 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2215 if (ret)
2216 goto unlock_reloc;
2217
2218 /*
2219 * make sure none of the code above managed to slip in a
2220 * delayed item
2221 */
2222 btrfs_assert_delayed_root_empty(fs_info);
2223
2224 WARN_ON(cur_trans != trans->transaction);
2225
2226 /* btrfs_commit_tree_roots is responsible for getting the
2227 * various roots consistent with each other. Every pointer
2228 * in the tree of tree roots has to point to the most up to date
2229 * root for every subvolume and other tree. So, we have to keep
2230 * the tree logging code from jumping in and changing any
2231 * of the trees.
2232 *
2233 * At this point in the commit, there can't be any tree-log
2234 * writers, but a little lower down we drop the trans mutex
2235 * and let new people in. By holding the tree_log_mutex
2236 * from now until after the super is written, we avoid races
2237 * with the tree-log code.
2238 */
2239 mutex_lock(&fs_info->tree_log_mutex);
2240
2241 ret = commit_fs_roots(trans);
2242 if (ret)
2243 goto unlock_tree_log;
2244
2245 /*
2246 * Since the transaction is done, we can apply the pending changes
2247 * before the next transaction.
2248 */
2249 btrfs_apply_pending_changes(fs_info);
2250
2251 /* commit_fs_roots gets rid of all the tree log roots, it is now
2252 * safe to free the root of tree log roots
2253 */
2254 btrfs_free_log_root_tree(trans, fs_info);
2255
2256 /*
2257 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2258 * new delayed refs. Must handle them or qgroup can be wrong.
2259 */
2260 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2261 if (ret)
2262 goto unlock_tree_log;
2263
2264 /*
2265 * Since fs roots are all committed, we can get a quite accurate
2266 * new_roots. So let's do quota accounting.
2267 */
2268 ret = btrfs_qgroup_account_extents(trans);
2269 if (ret < 0)
2270 goto unlock_tree_log;
2271
2272 ret = commit_cowonly_roots(trans);
2273 if (ret)
2274 goto unlock_tree_log;
2275
2276 /*
2277 * The tasks which save the space cache and inode cache may also
2278 * update ->aborted, check it.
2279 */
2280 if (TRANS_ABORTED(cur_trans)) {
2281 ret = cur_trans->aborted;
2282 goto unlock_tree_log;
2283 }
2284
2285 btrfs_prepare_extent_commit(fs_info);
2286
2287 cur_trans = fs_info->running_transaction;
2288
2289 btrfs_set_root_node(&fs_info->tree_root->root_item,
2290 fs_info->tree_root->node);
2291 list_add_tail(&fs_info->tree_root->dirty_list,
2292 &cur_trans->switch_commits);
2293
2294 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2295 fs_info->chunk_root->node);
2296 list_add_tail(&fs_info->chunk_root->dirty_list,
2297 &cur_trans->switch_commits);
2298
2299 switch_commit_roots(trans);
2300
2301 ASSERT(list_empty(&cur_trans->dirty_bgs));
2302 ASSERT(list_empty(&cur_trans->io_bgs));
2303 update_super_roots(fs_info);
2304
2305 btrfs_set_super_log_root(fs_info->super_copy, 0);
2306 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2307 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2308 sizeof(*fs_info->super_copy));
2309
2310 btrfs_commit_device_sizes(cur_trans);
2311
2312 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2313 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2314
2315 btrfs_trans_release_chunk_metadata(trans);
2316
2317 spin_lock(&fs_info->trans_lock);
2318 cur_trans->state = TRANS_STATE_UNBLOCKED;
2319 fs_info->running_transaction = NULL;
2320 spin_unlock(&fs_info->trans_lock);
2321 mutex_unlock(&fs_info->reloc_mutex);
2322
2323 wake_up(&fs_info->transaction_wait);
2324
2325 ret = btrfs_write_and_wait_transaction(trans);
2326 if (ret) {
2327 btrfs_handle_fs_error(fs_info, ret,
2328 "Error while writing out transaction");
2329 /*
2330 * reloc_mutex has been unlocked, tree_log_mutex is still held
2331 * but we can't jump to unlock_tree_log causing double unlock
2332 */
2333 mutex_unlock(&fs_info->tree_log_mutex);
2334 goto scrub_continue;
2335 }
2336
2337 ret = write_all_supers(fs_info, 0);
2338 /*
2339 * the super is written, we can safely allow the tree-loggers
2340 * to go about their business
2341 */
2342 mutex_unlock(&fs_info->tree_log_mutex);
2343 if (ret)
2344 goto scrub_continue;
2345
2346 btrfs_finish_extent_commit(trans);
2347
2348 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2349 btrfs_clear_space_info_full(fs_info);
2350
2351 fs_info->last_trans_committed = cur_trans->transid;
2352 /*
2353 * We needn't acquire the lock here because there is no other task
2354 * which can change it.
2355 */
2356 cur_trans->state = TRANS_STATE_COMPLETED;
2357 wake_up(&cur_trans->commit_wait);
2358
2359 spin_lock(&fs_info->trans_lock);
2360 list_del_init(&cur_trans->list);
2361 spin_unlock(&fs_info->trans_lock);
2362
2363 btrfs_put_transaction(cur_trans);
2364 btrfs_put_transaction(cur_trans);
2365
2366 if (trans->type & __TRANS_FREEZABLE)
2367 sb_end_intwrite(fs_info->sb);
2368
2369 trace_btrfs_transaction_commit(trans->root);
2370
2371 btrfs_scrub_continue(fs_info);
2372
2373 if (current->journal_info == trans)
2374 current->journal_info = NULL;
2375
2376 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2377
2378 return ret;
2379
2380 unlock_tree_log:
2381 mutex_unlock(&fs_info->tree_log_mutex);
2382 unlock_reloc:
2383 mutex_unlock(&fs_info->reloc_mutex);
2384 scrub_continue:
2385 btrfs_scrub_continue(fs_info);
2386 cleanup_transaction:
2387 btrfs_trans_release_metadata(trans);
2388 btrfs_cleanup_pending_block_groups(trans);
2389 btrfs_trans_release_chunk_metadata(trans);
2390 trans->block_rsv = NULL;
2391 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2392 if (current->journal_info == trans)
2393 current->journal_info = NULL;
2394 cleanup_transaction(trans, ret);
2395
2396 return ret;
2397 }
2398
2399 /*
2400 * return < 0 if error
2401 * 0 if there are no more dead_roots at the time of call
2402 * 1 there are more to be processed, call me again
2403 *
2404 * The return value indicates there are certainly more snapshots to delete, but
2405 * if there comes a new one during processing, it may return 0. We don't mind,
2406 * because btrfs_commit_super will poke cleaner thread and it will process it a
2407 * few seconds later.
2408 */
2409 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2410 {
2411 int ret;
2412 struct btrfs_fs_info *fs_info = root->fs_info;
2413
2414 spin_lock(&fs_info->trans_lock);
2415 if (list_empty(&fs_info->dead_roots)) {
2416 spin_unlock(&fs_info->trans_lock);
2417 return 0;
2418 }
2419 root = list_first_entry(&fs_info->dead_roots,
2420 struct btrfs_root, root_list);
2421 list_del_init(&root->root_list);
2422 spin_unlock(&fs_info->trans_lock);
2423
2424 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2425
2426 btrfs_kill_all_delayed_nodes(root);
2427 if (root->ino_cache_inode) {
2428 iput(root->ino_cache_inode);
2429 root->ino_cache_inode = NULL;
2430 }
2431
2432 if (btrfs_header_backref_rev(root->node) <
2433 BTRFS_MIXED_BACKREF_REV)
2434 ret = btrfs_drop_snapshot(root, 0, 0);
2435 else
2436 ret = btrfs_drop_snapshot(root, 1, 0);
2437
2438 btrfs_put_root(root);
2439 return (ret < 0) ? 0 : 1;
2440 }
2441
2442 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2443 {
2444 unsigned long prev;
2445 unsigned long bit;
2446
2447 prev = xchg(&fs_info->pending_changes, 0);
2448 if (!prev)
2449 return;
2450
2451 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2452 if (prev & bit)
2453 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2454 prev &= ~bit;
2455
2456 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2457 if (prev & bit)
2458 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459 prev &= ~bit;
2460
2461 bit = 1 << BTRFS_PENDING_COMMIT;
2462 if (prev & bit)
2463 btrfs_debug(fs_info, "pending commit done");
2464 prev &= ~bit;
2465
2466 if (prev)
2467 btrfs_warn(fs_info,
2468 "unknown pending changes left 0x%lx, ignoring", prev);
2469 }