]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
Merge branch 'for-chris' of git://git.jan-o-sch.net/btrfs-unstable into integration
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 BUG_ON(!list_empty(&transaction->list));
39 WARN_ON(transaction->delayed_refs.root.rb_node);
40 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41 memset(transaction, 0, sizeof(*transaction));
42 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 }
44 }
45
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48 free_extent_buffer(root->commit_root);
49 root->commit_root = btrfs_root_node(root);
50 }
51
52 /*
53 * either allocate a new transaction or hop into the existing one
54 */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57 struct btrfs_transaction *cur_trans;
58
59 spin_lock(&root->fs_info->trans_lock);
60 loop:
61 if (root->fs_info->trans_no_join) {
62 if (!nofail) {
63 spin_unlock(&root->fs_info->trans_lock);
64 return -EBUSY;
65 }
66 }
67
68 cur_trans = root->fs_info->running_transaction;
69 if (cur_trans) {
70 atomic_inc(&cur_trans->use_count);
71 atomic_inc(&cur_trans->num_writers);
72 cur_trans->num_joined++;
73 spin_unlock(&root->fs_info->trans_lock);
74 return 0;
75 }
76 spin_unlock(&root->fs_info->trans_lock);
77
78 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
79 if (!cur_trans)
80 return -ENOMEM;
81
82 spin_lock(&root->fs_info->trans_lock);
83 if (root->fs_info->running_transaction) {
84 /*
85 * someone started a transaction after we unlocked. Make sure
86 * to redo the trans_no_join checks above
87 */
88 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
89 cur_trans = root->fs_info->running_transaction;
90 goto loop;
91 }
92
93 atomic_set(&cur_trans->num_writers, 1);
94 cur_trans->num_joined = 0;
95 init_waitqueue_head(&cur_trans->writer_wait);
96 init_waitqueue_head(&cur_trans->commit_wait);
97 cur_trans->in_commit = 0;
98 cur_trans->blocked = 0;
99 /*
100 * One for this trans handle, one so it will live on until we
101 * commit the transaction.
102 */
103 atomic_set(&cur_trans->use_count, 2);
104 cur_trans->commit_done = 0;
105 cur_trans->start_time = get_seconds();
106
107 cur_trans->delayed_refs.root = RB_ROOT;
108 cur_trans->delayed_refs.num_entries = 0;
109 cur_trans->delayed_refs.num_heads_ready = 0;
110 cur_trans->delayed_refs.num_heads = 0;
111 cur_trans->delayed_refs.flushing = 0;
112 cur_trans->delayed_refs.run_delayed_start = 0;
113 cur_trans->delayed_refs.seq = 1;
114 init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
115 spin_lock_init(&cur_trans->commit_lock);
116 spin_lock_init(&cur_trans->delayed_refs.lock);
117 INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
118
119 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
120 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
121 extent_io_tree_init(&cur_trans->dirty_pages,
122 root->fs_info->btree_inode->i_mapping);
123 root->fs_info->generation++;
124 cur_trans->transid = root->fs_info->generation;
125 root->fs_info->running_transaction = cur_trans;
126 spin_unlock(&root->fs_info->trans_lock);
127
128 return 0;
129 }
130
131 /*
132 * this does all the record keeping required to make sure that a reference
133 * counted root is properly recorded in a given transaction. This is required
134 * to make sure the old root from before we joined the transaction is deleted
135 * when the transaction commits
136 */
137 static int record_root_in_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
139 {
140 if (root->ref_cows && root->last_trans < trans->transid) {
141 WARN_ON(root == root->fs_info->extent_root);
142 WARN_ON(root->commit_root != root->node);
143
144 /*
145 * see below for in_trans_setup usage rules
146 * we have the reloc mutex held now, so there
147 * is only one writer in this function
148 */
149 root->in_trans_setup = 1;
150
151 /* make sure readers find in_trans_setup before
152 * they find our root->last_trans update
153 */
154 smp_wmb();
155
156 spin_lock(&root->fs_info->fs_roots_radix_lock);
157 if (root->last_trans == trans->transid) {
158 spin_unlock(&root->fs_info->fs_roots_radix_lock);
159 return 0;
160 }
161 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
162 (unsigned long)root->root_key.objectid,
163 BTRFS_ROOT_TRANS_TAG);
164 spin_unlock(&root->fs_info->fs_roots_radix_lock);
165 root->last_trans = trans->transid;
166
167 /* this is pretty tricky. We don't want to
168 * take the relocation lock in btrfs_record_root_in_trans
169 * unless we're really doing the first setup for this root in
170 * this transaction.
171 *
172 * Normally we'd use root->last_trans as a flag to decide
173 * if we want to take the expensive mutex.
174 *
175 * But, we have to set root->last_trans before we
176 * init the relocation root, otherwise, we trip over warnings
177 * in ctree.c. The solution used here is to flag ourselves
178 * with root->in_trans_setup. When this is 1, we're still
179 * fixing up the reloc trees and everyone must wait.
180 *
181 * When this is zero, they can trust root->last_trans and fly
182 * through btrfs_record_root_in_trans without having to take the
183 * lock. smp_wmb() makes sure that all the writes above are
184 * done before we pop in the zero below
185 */
186 btrfs_init_reloc_root(trans, root);
187 smp_wmb();
188 root->in_trans_setup = 0;
189 }
190 return 0;
191 }
192
193
194 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
195 struct btrfs_root *root)
196 {
197 if (!root->ref_cows)
198 return 0;
199
200 /*
201 * see record_root_in_trans for comments about in_trans_setup usage
202 * and barriers
203 */
204 smp_rmb();
205 if (root->last_trans == trans->transid &&
206 !root->in_trans_setup)
207 return 0;
208
209 mutex_lock(&root->fs_info->reloc_mutex);
210 record_root_in_trans(trans, root);
211 mutex_unlock(&root->fs_info->reloc_mutex);
212
213 return 0;
214 }
215
216 /* wait for commit against the current transaction to become unblocked
217 * when this is done, it is safe to start a new transaction, but the current
218 * transaction might not be fully on disk.
219 */
220 static void wait_current_trans(struct btrfs_root *root)
221 {
222 struct btrfs_transaction *cur_trans;
223
224 spin_lock(&root->fs_info->trans_lock);
225 cur_trans = root->fs_info->running_transaction;
226 if (cur_trans && cur_trans->blocked) {
227 atomic_inc(&cur_trans->use_count);
228 spin_unlock(&root->fs_info->trans_lock);
229
230 wait_event(root->fs_info->transaction_wait,
231 !cur_trans->blocked);
232 put_transaction(cur_trans);
233 } else {
234 spin_unlock(&root->fs_info->trans_lock);
235 }
236 }
237
238 enum btrfs_trans_type {
239 TRANS_START,
240 TRANS_JOIN,
241 TRANS_USERSPACE,
242 TRANS_JOIN_NOLOCK,
243 };
244
245 static int may_wait_transaction(struct btrfs_root *root, int type)
246 {
247 if (root->fs_info->log_root_recovering)
248 return 0;
249
250 if (type == TRANS_USERSPACE)
251 return 1;
252
253 if (type == TRANS_START &&
254 !atomic_read(&root->fs_info->open_ioctl_trans))
255 return 1;
256
257 return 0;
258 }
259
260 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
261 u64 num_items, int type)
262 {
263 struct btrfs_trans_handle *h;
264 struct btrfs_transaction *cur_trans;
265 u64 num_bytes = 0;
266 int ret;
267
268 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
269 return ERR_PTR(-EROFS);
270
271 if (current->journal_info) {
272 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
273 h = current->journal_info;
274 h->use_count++;
275 h->orig_rsv = h->block_rsv;
276 h->block_rsv = NULL;
277 goto got_it;
278 }
279
280 /*
281 * Do the reservation before we join the transaction so we can do all
282 * the appropriate flushing if need be.
283 */
284 if (num_items > 0 && root != root->fs_info->chunk_root) {
285 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
286 ret = btrfs_block_rsv_add(root,
287 &root->fs_info->trans_block_rsv,
288 num_bytes);
289 if (ret)
290 return ERR_PTR(ret);
291 }
292 again:
293 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
294 if (!h)
295 return ERR_PTR(-ENOMEM);
296
297 if (may_wait_transaction(root, type))
298 wait_current_trans(root);
299
300 do {
301 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
302 if (ret == -EBUSY)
303 wait_current_trans(root);
304 } while (ret == -EBUSY);
305
306 if (ret < 0) {
307 kmem_cache_free(btrfs_trans_handle_cachep, h);
308 return ERR_PTR(ret);
309 }
310
311 cur_trans = root->fs_info->running_transaction;
312
313 h->transid = cur_trans->transid;
314 h->transaction = cur_trans;
315 h->blocks_used = 0;
316 h->bytes_reserved = 0;
317 h->delayed_ref_updates = 0;
318 h->use_count = 1;
319 h->block_rsv = NULL;
320 h->orig_rsv = NULL;
321
322 smp_mb();
323 if (cur_trans->blocked && may_wait_transaction(root, type)) {
324 btrfs_commit_transaction(h, root);
325 goto again;
326 }
327
328 if (num_bytes) {
329 h->block_rsv = &root->fs_info->trans_block_rsv;
330 h->bytes_reserved = num_bytes;
331 }
332
333 got_it:
334 btrfs_record_root_in_trans(h, root);
335
336 if (!current->journal_info && type != TRANS_USERSPACE)
337 current->journal_info = h;
338 return h;
339 }
340
341 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
342 int num_items)
343 {
344 return start_transaction(root, num_items, TRANS_START);
345 }
346 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
347 {
348 return start_transaction(root, 0, TRANS_JOIN);
349 }
350
351 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
352 {
353 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
354 }
355
356 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
357 {
358 return start_transaction(root, 0, TRANS_USERSPACE);
359 }
360
361 /* wait for a transaction commit to be fully complete */
362 static noinline void wait_for_commit(struct btrfs_root *root,
363 struct btrfs_transaction *commit)
364 {
365 wait_event(commit->commit_wait, commit->commit_done);
366 }
367
368 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
369 {
370 struct btrfs_transaction *cur_trans = NULL, *t;
371 int ret;
372
373 ret = 0;
374 if (transid) {
375 if (transid <= root->fs_info->last_trans_committed)
376 goto out;
377
378 /* find specified transaction */
379 spin_lock(&root->fs_info->trans_lock);
380 list_for_each_entry(t, &root->fs_info->trans_list, list) {
381 if (t->transid == transid) {
382 cur_trans = t;
383 atomic_inc(&cur_trans->use_count);
384 break;
385 }
386 if (t->transid > transid)
387 break;
388 }
389 spin_unlock(&root->fs_info->trans_lock);
390 ret = -EINVAL;
391 if (!cur_trans)
392 goto out; /* bad transid */
393 } else {
394 /* find newest transaction that is committing | committed */
395 spin_lock(&root->fs_info->trans_lock);
396 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
397 list) {
398 if (t->in_commit) {
399 if (t->commit_done)
400 break;
401 cur_trans = t;
402 atomic_inc(&cur_trans->use_count);
403 break;
404 }
405 }
406 spin_unlock(&root->fs_info->trans_lock);
407 if (!cur_trans)
408 goto out; /* nothing committing|committed */
409 }
410
411 wait_for_commit(root, cur_trans);
412
413 put_transaction(cur_trans);
414 ret = 0;
415 out:
416 return ret;
417 }
418
419 void btrfs_throttle(struct btrfs_root *root)
420 {
421 if (!atomic_read(&root->fs_info->open_ioctl_trans))
422 wait_current_trans(root);
423 }
424
425 static int should_end_transaction(struct btrfs_trans_handle *trans,
426 struct btrfs_root *root)
427 {
428 int ret;
429
430 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
431 return ret ? 1 : 0;
432 }
433
434 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
435 struct btrfs_root *root)
436 {
437 struct btrfs_transaction *cur_trans = trans->transaction;
438 struct btrfs_block_rsv *rsv = trans->block_rsv;
439 int updates;
440
441 smp_mb();
442 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
443 return 1;
444
445 /*
446 * We need to do this in case we're deleting csums so the global block
447 * rsv get's used instead of the csum block rsv.
448 */
449 trans->block_rsv = NULL;
450
451 updates = trans->delayed_ref_updates;
452 trans->delayed_ref_updates = 0;
453 if (updates)
454 btrfs_run_delayed_refs(trans, root, updates);
455
456 trans->block_rsv = rsv;
457
458 return should_end_transaction(trans, root);
459 }
460
461 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
462 struct btrfs_root *root, int throttle, int lock)
463 {
464 struct btrfs_transaction *cur_trans = trans->transaction;
465 struct btrfs_fs_info *info = root->fs_info;
466 int count = 0;
467
468 if (--trans->use_count) {
469 trans->block_rsv = trans->orig_rsv;
470 return 0;
471 }
472
473 btrfs_trans_release_metadata(trans, root);
474 trans->block_rsv = NULL;
475 while (count < 2) {
476 unsigned long cur = trans->delayed_ref_updates;
477 trans->delayed_ref_updates = 0;
478 if (cur &&
479 trans->transaction->delayed_refs.num_heads_ready > 64) {
480 trans->delayed_ref_updates = 0;
481 btrfs_run_delayed_refs(trans, root, cur);
482 } else {
483 break;
484 }
485 count++;
486 }
487
488 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
489 should_end_transaction(trans, root)) {
490 trans->transaction->blocked = 1;
491 smp_wmb();
492 }
493
494 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
495 if (throttle) {
496 /*
497 * We may race with somebody else here so end up having
498 * to call end_transaction on ourselves again, so inc
499 * our use_count.
500 */
501 trans->use_count++;
502 return btrfs_commit_transaction(trans, root);
503 } else {
504 wake_up_process(info->transaction_kthread);
505 }
506 }
507
508 WARN_ON(cur_trans != info->running_transaction);
509 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
510 atomic_dec(&cur_trans->num_writers);
511
512 smp_mb();
513 if (waitqueue_active(&cur_trans->writer_wait))
514 wake_up(&cur_trans->writer_wait);
515 put_transaction(cur_trans);
516
517 if (current->journal_info == trans)
518 current->journal_info = NULL;
519 memset(trans, 0, sizeof(*trans));
520 kmem_cache_free(btrfs_trans_handle_cachep, trans);
521
522 if (throttle)
523 btrfs_run_delayed_iputs(root);
524
525 return 0;
526 }
527
528 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
529 struct btrfs_root *root)
530 {
531 int ret;
532
533 ret = __btrfs_end_transaction(trans, root, 0, 1);
534 if (ret)
535 return ret;
536 return 0;
537 }
538
539 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
540 struct btrfs_root *root)
541 {
542 int ret;
543
544 ret = __btrfs_end_transaction(trans, root, 1, 1);
545 if (ret)
546 return ret;
547 return 0;
548 }
549
550 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
551 struct btrfs_root *root)
552 {
553 int ret;
554
555 ret = __btrfs_end_transaction(trans, root, 0, 0);
556 if (ret)
557 return ret;
558 return 0;
559 }
560
561 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
562 struct btrfs_root *root)
563 {
564 return __btrfs_end_transaction(trans, root, 1, 1);
565 }
566
567 /*
568 * when btree blocks are allocated, they have some corresponding bits set for
569 * them in one of two extent_io trees. This is used to make sure all of
570 * those extents are sent to disk but does not wait on them
571 */
572 int btrfs_write_marked_extents(struct btrfs_root *root,
573 struct extent_io_tree *dirty_pages, int mark)
574 {
575 int err = 0;
576 int werr = 0;
577 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
578 u64 start = 0;
579 u64 end;
580
581 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
582 mark)) {
583 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
584 GFP_NOFS);
585 err = filemap_fdatawrite_range(mapping, start, end);
586 if (err)
587 werr = err;
588 cond_resched();
589 start = end + 1;
590 }
591 if (err)
592 werr = err;
593 return werr;
594 }
595
596 /*
597 * when btree blocks are allocated, they have some corresponding bits set for
598 * them in one of two extent_io trees. This is used to make sure all of
599 * those extents are on disk for transaction or log commit. We wait
600 * on all the pages and clear them from the dirty pages state tree
601 */
602 int btrfs_wait_marked_extents(struct btrfs_root *root,
603 struct extent_io_tree *dirty_pages, int mark)
604 {
605 int err = 0;
606 int werr = 0;
607 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
608 u64 start = 0;
609 u64 end;
610
611 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
612 EXTENT_NEED_WAIT)) {
613 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
614 err = filemap_fdatawait_range(mapping, start, end);
615 if (err)
616 werr = err;
617 cond_resched();
618 start = end + 1;
619 }
620 if (err)
621 werr = err;
622 return werr;
623 }
624
625 /*
626 * when btree blocks are allocated, they have some corresponding bits set for
627 * them in one of two extent_io trees. This is used to make sure all of
628 * those extents are on disk for transaction or log commit
629 */
630 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
631 struct extent_io_tree *dirty_pages, int mark)
632 {
633 int ret;
634 int ret2;
635
636 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
637 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
638
639 if (ret)
640 return ret;
641 if (ret2)
642 return ret2;
643 return 0;
644 }
645
646 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
647 struct btrfs_root *root)
648 {
649 if (!trans || !trans->transaction) {
650 struct inode *btree_inode;
651 btree_inode = root->fs_info->btree_inode;
652 return filemap_write_and_wait(btree_inode->i_mapping);
653 }
654 return btrfs_write_and_wait_marked_extents(root,
655 &trans->transaction->dirty_pages,
656 EXTENT_DIRTY);
657 }
658
659 /*
660 * this is used to update the root pointer in the tree of tree roots.
661 *
662 * But, in the case of the extent allocation tree, updating the root
663 * pointer may allocate blocks which may change the root of the extent
664 * allocation tree.
665 *
666 * So, this loops and repeats and makes sure the cowonly root didn't
667 * change while the root pointer was being updated in the metadata.
668 */
669 static int update_cowonly_root(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root)
671 {
672 int ret;
673 u64 old_root_bytenr;
674 u64 old_root_used;
675 struct btrfs_root *tree_root = root->fs_info->tree_root;
676
677 old_root_used = btrfs_root_used(&root->root_item);
678 btrfs_write_dirty_block_groups(trans, root);
679
680 while (1) {
681 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
682 if (old_root_bytenr == root->node->start &&
683 old_root_used == btrfs_root_used(&root->root_item))
684 break;
685
686 btrfs_set_root_node(&root->root_item, root->node);
687 ret = btrfs_update_root(trans, tree_root,
688 &root->root_key,
689 &root->root_item);
690 BUG_ON(ret);
691
692 old_root_used = btrfs_root_used(&root->root_item);
693 ret = btrfs_write_dirty_block_groups(trans, root);
694 BUG_ON(ret);
695 }
696
697 if (root != root->fs_info->extent_root)
698 switch_commit_root(root);
699
700 return 0;
701 }
702
703 /*
704 * update all the cowonly tree roots on disk
705 */
706 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
707 struct btrfs_root *root)
708 {
709 struct btrfs_fs_info *fs_info = root->fs_info;
710 struct list_head *next;
711 struct extent_buffer *eb;
712 int ret;
713
714 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
715 BUG_ON(ret);
716
717 eb = btrfs_lock_root_node(fs_info->tree_root);
718 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
719 btrfs_tree_unlock(eb);
720 free_extent_buffer(eb);
721
722 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
723 BUG_ON(ret);
724
725 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
726 next = fs_info->dirty_cowonly_roots.next;
727 list_del_init(next);
728 root = list_entry(next, struct btrfs_root, dirty_list);
729
730 update_cowonly_root(trans, root);
731 }
732
733 down_write(&fs_info->extent_commit_sem);
734 switch_commit_root(fs_info->extent_root);
735 up_write(&fs_info->extent_commit_sem);
736
737 return 0;
738 }
739
740 /*
741 * dead roots are old snapshots that need to be deleted. This allocates
742 * a dirty root struct and adds it into the list of dead roots that need to
743 * be deleted
744 */
745 int btrfs_add_dead_root(struct btrfs_root *root)
746 {
747 spin_lock(&root->fs_info->trans_lock);
748 list_add(&root->root_list, &root->fs_info->dead_roots);
749 spin_unlock(&root->fs_info->trans_lock);
750 return 0;
751 }
752
753 /*
754 * update all the cowonly tree roots on disk
755 */
756 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
757 struct btrfs_root *root)
758 {
759 struct btrfs_root *gang[8];
760 struct btrfs_fs_info *fs_info = root->fs_info;
761 int i;
762 int ret;
763 int err = 0;
764
765 spin_lock(&fs_info->fs_roots_radix_lock);
766 while (1) {
767 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
768 (void **)gang, 0,
769 ARRAY_SIZE(gang),
770 BTRFS_ROOT_TRANS_TAG);
771 if (ret == 0)
772 break;
773 for (i = 0; i < ret; i++) {
774 root = gang[i];
775 radix_tree_tag_clear(&fs_info->fs_roots_radix,
776 (unsigned long)root->root_key.objectid,
777 BTRFS_ROOT_TRANS_TAG);
778 spin_unlock(&fs_info->fs_roots_radix_lock);
779
780 btrfs_free_log(trans, root);
781 btrfs_update_reloc_root(trans, root);
782 btrfs_orphan_commit_root(trans, root);
783
784 btrfs_save_ino_cache(root, trans);
785
786 /* see comments in should_cow_block() */
787 root->force_cow = 0;
788 smp_wmb();
789
790 if (root->commit_root != root->node) {
791 mutex_lock(&root->fs_commit_mutex);
792 switch_commit_root(root);
793 btrfs_unpin_free_ino(root);
794 mutex_unlock(&root->fs_commit_mutex);
795
796 btrfs_set_root_node(&root->root_item,
797 root->node);
798 }
799
800 err = btrfs_update_root(trans, fs_info->tree_root,
801 &root->root_key,
802 &root->root_item);
803 spin_lock(&fs_info->fs_roots_radix_lock);
804 if (err)
805 break;
806 }
807 }
808 spin_unlock(&fs_info->fs_roots_radix_lock);
809 return err;
810 }
811
812 /*
813 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
814 * otherwise every leaf in the btree is read and defragged.
815 */
816 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
817 {
818 struct btrfs_fs_info *info = root->fs_info;
819 struct btrfs_trans_handle *trans;
820 int ret;
821 unsigned long nr;
822
823 if (xchg(&root->defrag_running, 1))
824 return 0;
825
826 while (1) {
827 trans = btrfs_start_transaction(root, 0);
828 if (IS_ERR(trans))
829 return PTR_ERR(trans);
830
831 ret = btrfs_defrag_leaves(trans, root, cacheonly);
832
833 nr = trans->blocks_used;
834 btrfs_end_transaction(trans, root);
835 btrfs_btree_balance_dirty(info->tree_root, nr);
836 cond_resched();
837
838 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
839 break;
840 }
841 root->defrag_running = 0;
842 return ret;
843 }
844
845 /*
846 * new snapshots need to be created at a very specific time in the
847 * transaction commit. This does the actual creation
848 */
849 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
850 struct btrfs_fs_info *fs_info,
851 struct btrfs_pending_snapshot *pending)
852 {
853 struct btrfs_key key;
854 struct btrfs_root_item *new_root_item;
855 struct btrfs_root *tree_root = fs_info->tree_root;
856 struct btrfs_root *root = pending->root;
857 struct btrfs_root *parent_root;
858 struct btrfs_block_rsv *rsv;
859 struct inode *parent_inode;
860 struct dentry *parent;
861 struct dentry *dentry;
862 struct extent_buffer *tmp;
863 struct extent_buffer *old;
864 int ret;
865 u64 to_reserve = 0;
866 u64 index = 0;
867 u64 objectid;
868 u64 root_flags;
869
870 rsv = trans->block_rsv;
871
872 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
873 if (!new_root_item) {
874 pending->error = -ENOMEM;
875 goto fail;
876 }
877
878 ret = btrfs_find_free_objectid(tree_root, &objectid);
879 if (ret) {
880 pending->error = ret;
881 goto fail;
882 }
883
884 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
885
886 if (to_reserve > 0) {
887 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
888 to_reserve);
889 if (ret) {
890 pending->error = ret;
891 goto fail;
892 }
893 }
894
895 key.objectid = objectid;
896 key.offset = (u64)-1;
897 key.type = BTRFS_ROOT_ITEM_KEY;
898
899 trans->block_rsv = &pending->block_rsv;
900
901 dentry = pending->dentry;
902 parent = dget_parent(dentry);
903 parent_inode = parent->d_inode;
904 parent_root = BTRFS_I(parent_inode)->root;
905 record_root_in_trans(trans, parent_root);
906
907 /*
908 * insert the directory item
909 */
910 ret = btrfs_set_inode_index(parent_inode, &index);
911 BUG_ON(ret);
912 ret = btrfs_insert_dir_item(trans, parent_root,
913 dentry->d_name.name, dentry->d_name.len,
914 parent_inode, &key,
915 BTRFS_FT_DIR, index);
916 BUG_ON(ret);
917
918 btrfs_i_size_write(parent_inode, parent_inode->i_size +
919 dentry->d_name.len * 2);
920 ret = btrfs_update_inode(trans, parent_root, parent_inode);
921 BUG_ON(ret);
922
923 /*
924 * pull in the delayed directory update
925 * and the delayed inode item
926 * otherwise we corrupt the FS during
927 * snapshot
928 */
929 ret = btrfs_run_delayed_items(trans, root);
930 BUG_ON(ret);
931
932 record_root_in_trans(trans, root);
933 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
934 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
935 btrfs_check_and_init_root_item(new_root_item);
936
937 root_flags = btrfs_root_flags(new_root_item);
938 if (pending->readonly)
939 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
940 else
941 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
942 btrfs_set_root_flags(new_root_item, root_flags);
943
944 old = btrfs_lock_root_node(root);
945 btrfs_cow_block(trans, root, old, NULL, 0, &old);
946 btrfs_set_lock_blocking(old);
947
948 btrfs_copy_root(trans, root, old, &tmp, objectid);
949 btrfs_tree_unlock(old);
950 free_extent_buffer(old);
951
952 /* see comments in should_cow_block() */
953 root->force_cow = 1;
954 smp_wmb();
955
956 btrfs_set_root_node(new_root_item, tmp);
957 /* record when the snapshot was created in key.offset */
958 key.offset = trans->transid;
959 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
960 btrfs_tree_unlock(tmp);
961 free_extent_buffer(tmp);
962 BUG_ON(ret);
963
964 /*
965 * insert root back/forward references
966 */
967 ret = btrfs_add_root_ref(trans, tree_root, objectid,
968 parent_root->root_key.objectid,
969 btrfs_ino(parent_inode), index,
970 dentry->d_name.name, dentry->d_name.len);
971 BUG_ON(ret);
972 dput(parent);
973
974 key.offset = (u64)-1;
975 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
976 BUG_ON(IS_ERR(pending->snap));
977
978 btrfs_reloc_post_snapshot(trans, pending);
979 fail:
980 kfree(new_root_item);
981 trans->block_rsv = rsv;
982 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
983 return 0;
984 }
985
986 /*
987 * create all the snapshots we've scheduled for creation
988 */
989 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
990 struct btrfs_fs_info *fs_info)
991 {
992 struct btrfs_pending_snapshot *pending;
993 struct list_head *head = &trans->transaction->pending_snapshots;
994 int ret;
995
996 list_for_each_entry(pending, head, list) {
997 ret = create_pending_snapshot(trans, fs_info, pending);
998 BUG_ON(ret);
999 }
1000 return 0;
1001 }
1002
1003 static void update_super_roots(struct btrfs_root *root)
1004 {
1005 struct btrfs_root_item *root_item;
1006 struct btrfs_super_block *super;
1007
1008 super = root->fs_info->super_copy;
1009
1010 root_item = &root->fs_info->chunk_root->root_item;
1011 super->chunk_root = root_item->bytenr;
1012 super->chunk_root_generation = root_item->generation;
1013 super->chunk_root_level = root_item->level;
1014
1015 root_item = &root->fs_info->tree_root->root_item;
1016 super->root = root_item->bytenr;
1017 super->generation = root_item->generation;
1018 super->root_level = root_item->level;
1019 if (btrfs_test_opt(root, SPACE_CACHE))
1020 super->cache_generation = root_item->generation;
1021 }
1022
1023 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1024 {
1025 int ret = 0;
1026 spin_lock(&info->trans_lock);
1027 if (info->running_transaction)
1028 ret = info->running_transaction->in_commit;
1029 spin_unlock(&info->trans_lock);
1030 return ret;
1031 }
1032
1033 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1034 {
1035 int ret = 0;
1036 spin_lock(&info->trans_lock);
1037 if (info->running_transaction)
1038 ret = info->running_transaction->blocked;
1039 spin_unlock(&info->trans_lock);
1040 return ret;
1041 }
1042
1043 /*
1044 * wait for the current transaction commit to start and block subsequent
1045 * transaction joins
1046 */
1047 static void wait_current_trans_commit_start(struct btrfs_root *root,
1048 struct btrfs_transaction *trans)
1049 {
1050 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1051 }
1052
1053 /*
1054 * wait for the current transaction to start and then become unblocked.
1055 * caller holds ref.
1056 */
1057 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1058 struct btrfs_transaction *trans)
1059 {
1060 wait_event(root->fs_info->transaction_wait,
1061 trans->commit_done || (trans->in_commit && !trans->blocked));
1062 }
1063
1064 /*
1065 * commit transactions asynchronously. once btrfs_commit_transaction_async
1066 * returns, any subsequent transaction will not be allowed to join.
1067 */
1068 struct btrfs_async_commit {
1069 struct btrfs_trans_handle *newtrans;
1070 struct btrfs_root *root;
1071 struct delayed_work work;
1072 };
1073
1074 static void do_async_commit(struct work_struct *work)
1075 {
1076 struct btrfs_async_commit *ac =
1077 container_of(work, struct btrfs_async_commit, work.work);
1078
1079 btrfs_commit_transaction(ac->newtrans, ac->root);
1080 kfree(ac);
1081 }
1082
1083 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1084 struct btrfs_root *root,
1085 int wait_for_unblock)
1086 {
1087 struct btrfs_async_commit *ac;
1088 struct btrfs_transaction *cur_trans;
1089
1090 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1091 if (!ac)
1092 return -ENOMEM;
1093
1094 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1095 ac->root = root;
1096 ac->newtrans = btrfs_join_transaction(root);
1097 if (IS_ERR(ac->newtrans)) {
1098 int err = PTR_ERR(ac->newtrans);
1099 kfree(ac);
1100 return err;
1101 }
1102
1103 /* take transaction reference */
1104 cur_trans = trans->transaction;
1105 atomic_inc(&cur_trans->use_count);
1106
1107 btrfs_end_transaction(trans, root);
1108 schedule_delayed_work(&ac->work, 0);
1109
1110 /* wait for transaction to start and unblock */
1111 if (wait_for_unblock)
1112 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1113 else
1114 wait_current_trans_commit_start(root, cur_trans);
1115
1116 if (current->journal_info == trans)
1117 current->journal_info = NULL;
1118
1119 put_transaction(cur_trans);
1120 return 0;
1121 }
1122
1123 /*
1124 * btrfs_transaction state sequence:
1125 * in_commit = 0, blocked = 0 (initial)
1126 * in_commit = 1, blocked = 1
1127 * blocked = 0
1128 * commit_done = 1
1129 */
1130 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root)
1132 {
1133 unsigned long joined = 0;
1134 struct btrfs_transaction *cur_trans;
1135 struct btrfs_transaction *prev_trans = NULL;
1136 DEFINE_WAIT(wait);
1137 int ret;
1138 int should_grow = 0;
1139 unsigned long now = get_seconds();
1140 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1141
1142 btrfs_run_ordered_operations(root, 0);
1143
1144 btrfs_trans_release_metadata(trans, root);
1145 trans->block_rsv = NULL;
1146
1147 /* make a pass through all the delayed refs we have so far
1148 * any runnings procs may add more while we are here
1149 */
1150 ret = btrfs_run_delayed_refs(trans, root, 0);
1151 BUG_ON(ret);
1152
1153 cur_trans = trans->transaction;
1154 /*
1155 * set the flushing flag so procs in this transaction have to
1156 * start sending their work down.
1157 */
1158 cur_trans->delayed_refs.flushing = 1;
1159
1160 ret = btrfs_run_delayed_refs(trans, root, 0);
1161 BUG_ON(ret);
1162
1163 spin_lock(&cur_trans->commit_lock);
1164 if (cur_trans->in_commit) {
1165 spin_unlock(&cur_trans->commit_lock);
1166 atomic_inc(&cur_trans->use_count);
1167 btrfs_end_transaction(trans, root);
1168
1169 wait_for_commit(root, cur_trans);
1170
1171 put_transaction(cur_trans);
1172
1173 return 0;
1174 }
1175
1176 trans->transaction->in_commit = 1;
1177 trans->transaction->blocked = 1;
1178 spin_unlock(&cur_trans->commit_lock);
1179 wake_up(&root->fs_info->transaction_blocked_wait);
1180
1181 spin_lock(&root->fs_info->trans_lock);
1182 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1183 prev_trans = list_entry(cur_trans->list.prev,
1184 struct btrfs_transaction, list);
1185 if (!prev_trans->commit_done) {
1186 atomic_inc(&prev_trans->use_count);
1187 spin_unlock(&root->fs_info->trans_lock);
1188
1189 wait_for_commit(root, prev_trans);
1190
1191 put_transaction(prev_trans);
1192 } else {
1193 spin_unlock(&root->fs_info->trans_lock);
1194 }
1195 } else {
1196 spin_unlock(&root->fs_info->trans_lock);
1197 }
1198
1199 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1200 should_grow = 1;
1201
1202 do {
1203 int snap_pending = 0;
1204
1205 joined = cur_trans->num_joined;
1206 if (!list_empty(&trans->transaction->pending_snapshots))
1207 snap_pending = 1;
1208
1209 WARN_ON(cur_trans != trans->transaction);
1210
1211 if (flush_on_commit || snap_pending) {
1212 btrfs_start_delalloc_inodes(root, 1);
1213 ret = btrfs_wait_ordered_extents(root, 0, 1);
1214 BUG_ON(ret);
1215 }
1216
1217 ret = btrfs_run_delayed_items(trans, root);
1218 BUG_ON(ret);
1219
1220 /*
1221 * rename don't use btrfs_join_transaction, so, once we
1222 * set the transaction to blocked above, we aren't going
1223 * to get any new ordered operations. We can safely run
1224 * it here and no for sure that nothing new will be added
1225 * to the list
1226 */
1227 btrfs_run_ordered_operations(root, 1);
1228
1229 prepare_to_wait(&cur_trans->writer_wait, &wait,
1230 TASK_UNINTERRUPTIBLE);
1231
1232 if (atomic_read(&cur_trans->num_writers) > 1)
1233 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1234 else if (should_grow)
1235 schedule_timeout(1);
1236
1237 finish_wait(&cur_trans->writer_wait, &wait);
1238 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1239 (should_grow && cur_trans->num_joined != joined));
1240
1241 /*
1242 * Ok now we need to make sure to block out any other joins while we
1243 * commit the transaction. We could have started a join before setting
1244 * no_join so make sure to wait for num_writers to == 1 again.
1245 */
1246 spin_lock(&root->fs_info->trans_lock);
1247 root->fs_info->trans_no_join = 1;
1248 spin_unlock(&root->fs_info->trans_lock);
1249 wait_event(cur_trans->writer_wait,
1250 atomic_read(&cur_trans->num_writers) == 1);
1251
1252 /*
1253 * the reloc mutex makes sure that we stop
1254 * the balancing code from coming in and moving
1255 * extents around in the middle of the commit
1256 */
1257 mutex_lock(&root->fs_info->reloc_mutex);
1258
1259 ret = btrfs_run_delayed_items(trans, root);
1260 BUG_ON(ret);
1261
1262 ret = create_pending_snapshots(trans, root->fs_info);
1263 BUG_ON(ret);
1264
1265 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1266 BUG_ON(ret);
1267
1268 /*
1269 * make sure none of the code above managed to slip in a
1270 * delayed item
1271 */
1272 btrfs_assert_delayed_root_empty(root);
1273
1274 WARN_ON(cur_trans != trans->transaction);
1275
1276 btrfs_scrub_pause(root);
1277 /* btrfs_commit_tree_roots is responsible for getting the
1278 * various roots consistent with each other. Every pointer
1279 * in the tree of tree roots has to point to the most up to date
1280 * root for every subvolume and other tree. So, we have to keep
1281 * the tree logging code from jumping in and changing any
1282 * of the trees.
1283 *
1284 * At this point in the commit, there can't be any tree-log
1285 * writers, but a little lower down we drop the trans mutex
1286 * and let new people in. By holding the tree_log_mutex
1287 * from now until after the super is written, we avoid races
1288 * with the tree-log code.
1289 */
1290 mutex_lock(&root->fs_info->tree_log_mutex);
1291
1292 ret = commit_fs_roots(trans, root);
1293 BUG_ON(ret);
1294
1295 /* commit_fs_roots gets rid of all the tree log roots, it is now
1296 * safe to free the root of tree log roots
1297 */
1298 btrfs_free_log_root_tree(trans, root->fs_info);
1299
1300 ret = commit_cowonly_roots(trans, root);
1301 BUG_ON(ret);
1302
1303 btrfs_prepare_extent_commit(trans, root);
1304
1305 cur_trans = root->fs_info->running_transaction;
1306
1307 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1308 root->fs_info->tree_root->node);
1309 switch_commit_root(root->fs_info->tree_root);
1310
1311 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1312 root->fs_info->chunk_root->node);
1313 switch_commit_root(root->fs_info->chunk_root);
1314
1315 update_super_roots(root);
1316
1317 if (!root->fs_info->log_root_recovering) {
1318 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1319 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1320 }
1321
1322 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1323 sizeof(*root->fs_info->super_copy));
1324
1325 trans->transaction->blocked = 0;
1326 spin_lock(&root->fs_info->trans_lock);
1327 root->fs_info->running_transaction = NULL;
1328 root->fs_info->trans_no_join = 0;
1329 spin_unlock(&root->fs_info->trans_lock);
1330 mutex_unlock(&root->fs_info->reloc_mutex);
1331
1332 wake_up(&root->fs_info->transaction_wait);
1333
1334 ret = btrfs_write_and_wait_transaction(trans, root);
1335 BUG_ON(ret);
1336 write_ctree_super(trans, root, 0);
1337
1338 /*
1339 * the super is written, we can safely allow the tree-loggers
1340 * to go about their business
1341 */
1342 mutex_unlock(&root->fs_info->tree_log_mutex);
1343
1344 btrfs_finish_extent_commit(trans, root);
1345
1346 cur_trans->commit_done = 1;
1347
1348 root->fs_info->last_trans_committed = cur_trans->transid;
1349
1350 wake_up(&cur_trans->commit_wait);
1351
1352 spin_lock(&root->fs_info->trans_lock);
1353 list_del_init(&cur_trans->list);
1354 spin_unlock(&root->fs_info->trans_lock);
1355
1356 put_transaction(cur_trans);
1357 put_transaction(cur_trans);
1358
1359 trace_btrfs_transaction_commit(root);
1360
1361 btrfs_scrub_continue(root);
1362
1363 if (current->journal_info == trans)
1364 current->journal_info = NULL;
1365
1366 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1367
1368 if (current != root->fs_info->transaction_kthread)
1369 btrfs_run_delayed_iputs(root);
1370
1371 return ret;
1372 }
1373
1374 /*
1375 * interface function to delete all the snapshots we have scheduled for deletion
1376 */
1377 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1378 {
1379 LIST_HEAD(list);
1380 struct btrfs_fs_info *fs_info = root->fs_info;
1381
1382 spin_lock(&fs_info->trans_lock);
1383 list_splice_init(&fs_info->dead_roots, &list);
1384 spin_unlock(&fs_info->trans_lock);
1385
1386 while (!list_empty(&list)) {
1387 root = list_entry(list.next, struct btrfs_root, root_list);
1388 list_del(&root->root_list);
1389
1390 btrfs_kill_all_delayed_nodes(root);
1391
1392 if (btrfs_header_backref_rev(root->node) <
1393 BTRFS_MIXED_BACKREF_REV)
1394 btrfs_drop_snapshot(root, NULL, 0, 0);
1395 else
1396 btrfs_drop_snapshot(root, NULL, 1, 0);
1397 }
1398 return 0;
1399 }