]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
fs/btrfs: use WARN
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38 WARN_ON(atomic_read(&transaction->use_count) == 0);
39 if (atomic_dec_and_test(&transaction->use_count)) {
40 BUG_ON(!list_empty(&transaction->list));
41 WARN_ON(transaction->delayed_refs.root.rb_node);
42 memset(transaction, 0, sizeof(*transaction));
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54 * either allocate a new transaction or hop into the existing one
55 */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58 struct btrfs_transaction *cur_trans;
59 struct btrfs_fs_info *fs_info = root->fs_info;
60
61 spin_lock(&fs_info->trans_lock);
62 loop:
63 /* The file system has been taken offline. No new transactions. */
64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 spin_unlock(&fs_info->trans_lock);
66 return -EROFS;
67 }
68
69 if (fs_info->trans_no_join) {
70 /*
71 * If we are JOIN_NOLOCK we're already committing a current
72 * transaction, we just need a handle to deal with something
73 * when committing the transaction, such as inode cache and
74 * space cache. It is a special case.
75 */
76 if (type != TRANS_JOIN_NOLOCK) {
77 spin_unlock(&fs_info->trans_lock);
78 return -EBUSY;
79 }
80 }
81
82 cur_trans = fs_info->running_transaction;
83 if (cur_trans) {
84 if (cur_trans->aborted) {
85 spin_unlock(&fs_info->trans_lock);
86 return cur_trans->aborted;
87 }
88 atomic_inc(&cur_trans->use_count);
89 atomic_inc(&cur_trans->num_writers);
90 cur_trans->num_joined++;
91 spin_unlock(&fs_info->trans_lock);
92 return 0;
93 }
94 spin_unlock(&fs_info->trans_lock);
95
96 /*
97 * If we are ATTACH, we just want to catch the current transaction,
98 * and commit it. If there is no transaction, just return ENOENT.
99 */
100 if (type == TRANS_ATTACH)
101 return -ENOENT;
102
103 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104 if (!cur_trans)
105 return -ENOMEM;
106
107 spin_lock(&fs_info->trans_lock);
108 if (fs_info->running_transaction) {
109 /*
110 * someone started a transaction after we unlocked. Make sure
111 * to redo the trans_no_join checks above
112 */
113 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114 cur_trans = fs_info->running_transaction;
115 goto loop;
116 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 spin_unlock(&fs_info->trans_lock);
118 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119 return -EROFS;
120 }
121
122 atomic_set(&cur_trans->num_writers, 1);
123 cur_trans->num_joined = 0;
124 init_waitqueue_head(&cur_trans->writer_wait);
125 init_waitqueue_head(&cur_trans->commit_wait);
126 cur_trans->in_commit = 0;
127 cur_trans->blocked = 0;
128 /*
129 * One for this trans handle, one so it will live on until we
130 * commit the transaction.
131 */
132 atomic_set(&cur_trans->use_count, 2);
133 cur_trans->commit_done = 0;
134 cur_trans->start_time = get_seconds();
135
136 cur_trans->delayed_refs.root = RB_ROOT;
137 cur_trans->delayed_refs.num_entries = 0;
138 cur_trans->delayed_refs.num_heads_ready = 0;
139 cur_trans->delayed_refs.num_heads = 0;
140 cur_trans->delayed_refs.flushing = 0;
141 cur_trans->delayed_refs.run_delayed_start = 0;
142
143 /*
144 * although the tree mod log is per file system and not per transaction,
145 * the log must never go across transaction boundaries.
146 */
147 smp_mb();
148 if (!list_empty(&fs_info->tree_mod_seq_list))
149 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150 "creating a fresh transaction\n");
151 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
152 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
153 "creating a fresh transaction\n");
154 atomic_set(&fs_info->tree_mod_seq, 0);
155
156 spin_lock_init(&cur_trans->commit_lock);
157 spin_lock_init(&cur_trans->delayed_refs.lock);
158
159 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
160 list_add_tail(&cur_trans->list, &fs_info->trans_list);
161 extent_io_tree_init(&cur_trans->dirty_pages,
162 fs_info->btree_inode->i_mapping);
163 fs_info->generation++;
164 cur_trans->transid = fs_info->generation;
165 fs_info->running_transaction = cur_trans;
166 cur_trans->aborted = 0;
167 spin_unlock(&fs_info->trans_lock);
168
169 return 0;
170 }
171
172 /*
173 * this does all the record keeping required to make sure that a reference
174 * counted root is properly recorded in a given transaction. This is required
175 * to make sure the old root from before we joined the transaction is deleted
176 * when the transaction commits
177 */
178 static int record_root_in_trans(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root)
180 {
181 if (root->ref_cows && root->last_trans < trans->transid) {
182 WARN_ON(root == root->fs_info->extent_root);
183 WARN_ON(root->commit_root != root->node);
184
185 /*
186 * see below for in_trans_setup usage rules
187 * we have the reloc mutex held now, so there
188 * is only one writer in this function
189 */
190 root->in_trans_setup = 1;
191
192 /* make sure readers find in_trans_setup before
193 * they find our root->last_trans update
194 */
195 smp_wmb();
196
197 spin_lock(&root->fs_info->fs_roots_radix_lock);
198 if (root->last_trans == trans->transid) {
199 spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 return 0;
201 }
202 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
203 (unsigned long)root->root_key.objectid,
204 BTRFS_ROOT_TRANS_TAG);
205 spin_unlock(&root->fs_info->fs_roots_radix_lock);
206 root->last_trans = trans->transid;
207
208 /* this is pretty tricky. We don't want to
209 * take the relocation lock in btrfs_record_root_in_trans
210 * unless we're really doing the first setup for this root in
211 * this transaction.
212 *
213 * Normally we'd use root->last_trans as a flag to decide
214 * if we want to take the expensive mutex.
215 *
216 * But, we have to set root->last_trans before we
217 * init the relocation root, otherwise, we trip over warnings
218 * in ctree.c. The solution used here is to flag ourselves
219 * with root->in_trans_setup. When this is 1, we're still
220 * fixing up the reloc trees and everyone must wait.
221 *
222 * When this is zero, they can trust root->last_trans and fly
223 * through btrfs_record_root_in_trans without having to take the
224 * lock. smp_wmb() makes sure that all the writes above are
225 * done before we pop in the zero below
226 */
227 btrfs_init_reloc_root(trans, root);
228 smp_wmb();
229 root->in_trans_setup = 0;
230 }
231 return 0;
232 }
233
234
235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
236 struct btrfs_root *root)
237 {
238 if (!root->ref_cows)
239 return 0;
240
241 /*
242 * see record_root_in_trans for comments about in_trans_setup usage
243 * and barriers
244 */
245 smp_rmb();
246 if (root->last_trans == trans->transid &&
247 !root->in_trans_setup)
248 return 0;
249
250 mutex_lock(&root->fs_info->reloc_mutex);
251 record_root_in_trans(trans, root);
252 mutex_unlock(&root->fs_info->reloc_mutex);
253
254 return 0;
255 }
256
257 /* wait for commit against the current transaction to become unblocked
258 * when this is done, it is safe to start a new transaction, but the current
259 * transaction might not be fully on disk.
260 */
261 static void wait_current_trans(struct btrfs_root *root)
262 {
263 struct btrfs_transaction *cur_trans;
264
265 spin_lock(&root->fs_info->trans_lock);
266 cur_trans = root->fs_info->running_transaction;
267 if (cur_trans && cur_trans->blocked) {
268 atomic_inc(&cur_trans->use_count);
269 spin_unlock(&root->fs_info->trans_lock);
270
271 wait_event(root->fs_info->transaction_wait,
272 !cur_trans->blocked);
273 put_transaction(cur_trans);
274 } else {
275 spin_unlock(&root->fs_info->trans_lock);
276 }
277 }
278
279 static int may_wait_transaction(struct btrfs_root *root, int type)
280 {
281 if (root->fs_info->log_root_recovering)
282 return 0;
283
284 if (type == TRANS_USERSPACE)
285 return 1;
286
287 if (type == TRANS_START &&
288 !atomic_read(&root->fs_info->open_ioctl_trans))
289 return 1;
290
291 return 0;
292 }
293
294 static struct btrfs_trans_handle *
295 start_transaction(struct btrfs_root *root, u64 num_items, int type,
296 enum btrfs_reserve_flush_enum flush)
297 {
298 struct btrfs_trans_handle *h;
299 struct btrfs_transaction *cur_trans;
300 u64 num_bytes = 0;
301 int ret;
302 u64 qgroup_reserved = 0;
303
304 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
305 return ERR_PTR(-EROFS);
306
307 if (current->journal_info) {
308 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
309 h = current->journal_info;
310 h->use_count++;
311 WARN_ON(h->use_count > 2);
312 h->orig_rsv = h->block_rsv;
313 h->block_rsv = NULL;
314 goto got_it;
315 }
316
317 /*
318 * Do the reservation before we join the transaction so we can do all
319 * the appropriate flushing if need be.
320 */
321 if (num_items > 0 && root != root->fs_info->chunk_root) {
322 if (root->fs_info->quota_enabled &&
323 is_fstree(root->root_key.objectid)) {
324 qgroup_reserved = num_items * root->leafsize;
325 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
326 if (ret)
327 return ERR_PTR(ret);
328 }
329
330 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
331 ret = btrfs_block_rsv_add(root,
332 &root->fs_info->trans_block_rsv,
333 num_bytes, flush);
334 if (ret)
335 return ERR_PTR(ret);
336 }
337 again:
338 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
339 if (!h)
340 return ERR_PTR(-ENOMEM);
341
342 /*
343 * If we are JOIN_NOLOCK we're already committing a transaction and
344 * waiting on this guy, so we don't need to do the sb_start_intwrite
345 * because we're already holding a ref. We need this because we could
346 * have raced in and did an fsync() on a file which can kick a commit
347 * and then we deadlock with somebody doing a freeze.
348 *
349 * If we are ATTACH, it means we just want to catch the current
350 * transaction and commit it, so we needn't do sb_start_intwrite().
351 */
352 if (type < TRANS_JOIN_NOLOCK)
353 sb_start_intwrite(root->fs_info->sb);
354
355 if (may_wait_transaction(root, type))
356 wait_current_trans(root);
357
358 do {
359 ret = join_transaction(root, type);
360 if (ret == -EBUSY)
361 wait_current_trans(root);
362 } while (ret == -EBUSY);
363
364 if (ret < 0) {
365 /* We must get the transaction if we are JOIN_NOLOCK. */
366 BUG_ON(type == TRANS_JOIN_NOLOCK);
367
368 if (type < TRANS_JOIN_NOLOCK)
369 sb_end_intwrite(root->fs_info->sb);
370 kmem_cache_free(btrfs_trans_handle_cachep, h);
371 return ERR_PTR(ret);
372 }
373
374 cur_trans = root->fs_info->running_transaction;
375
376 h->transid = cur_trans->transid;
377 h->transaction = cur_trans;
378 h->blocks_used = 0;
379 h->bytes_reserved = 0;
380 h->root = root;
381 h->delayed_ref_updates = 0;
382 h->use_count = 1;
383 h->adding_csums = 0;
384 h->block_rsv = NULL;
385 h->orig_rsv = NULL;
386 h->aborted = 0;
387 h->qgroup_reserved = qgroup_reserved;
388 h->delayed_ref_elem.seq = 0;
389 h->type = type;
390 INIT_LIST_HEAD(&h->qgroup_ref_list);
391 INIT_LIST_HEAD(&h->new_bgs);
392
393 smp_mb();
394 if (cur_trans->blocked && may_wait_transaction(root, type)) {
395 btrfs_commit_transaction(h, root);
396 goto again;
397 }
398
399 if (num_bytes) {
400 trace_btrfs_space_reservation(root->fs_info, "transaction",
401 h->transid, num_bytes, 1);
402 h->block_rsv = &root->fs_info->trans_block_rsv;
403 h->bytes_reserved = num_bytes;
404 }
405
406 got_it:
407 btrfs_record_root_in_trans(h, root);
408
409 if (!current->journal_info && type != TRANS_USERSPACE)
410 current->journal_info = h;
411 return h;
412 }
413
414 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
415 int num_items)
416 {
417 return start_transaction(root, num_items, TRANS_START,
418 BTRFS_RESERVE_FLUSH_ALL);
419 }
420
421 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
422 struct btrfs_root *root, int num_items)
423 {
424 return start_transaction(root, num_items, TRANS_START,
425 BTRFS_RESERVE_FLUSH_LIMIT);
426 }
427
428 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
429 {
430 return start_transaction(root, 0, TRANS_JOIN, 0);
431 }
432
433 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
434 {
435 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
436 }
437
438 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
439 {
440 return start_transaction(root, 0, TRANS_USERSPACE, 0);
441 }
442
443 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
444 {
445 return start_transaction(root, 0, TRANS_ATTACH, 0);
446 }
447
448 /* wait for a transaction commit to be fully complete */
449 static noinline void wait_for_commit(struct btrfs_root *root,
450 struct btrfs_transaction *commit)
451 {
452 wait_event(commit->commit_wait, commit->commit_done);
453 }
454
455 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
456 {
457 struct btrfs_transaction *cur_trans = NULL, *t;
458 int ret;
459
460 ret = 0;
461 if (transid) {
462 if (transid <= root->fs_info->last_trans_committed)
463 goto out;
464
465 /* find specified transaction */
466 spin_lock(&root->fs_info->trans_lock);
467 list_for_each_entry(t, &root->fs_info->trans_list, list) {
468 if (t->transid == transid) {
469 cur_trans = t;
470 atomic_inc(&cur_trans->use_count);
471 break;
472 }
473 if (t->transid > transid)
474 break;
475 }
476 spin_unlock(&root->fs_info->trans_lock);
477 ret = -EINVAL;
478 if (!cur_trans)
479 goto out; /* bad transid */
480 } else {
481 /* find newest transaction that is committing | committed */
482 spin_lock(&root->fs_info->trans_lock);
483 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
484 list) {
485 if (t->in_commit) {
486 if (t->commit_done)
487 break;
488 cur_trans = t;
489 atomic_inc(&cur_trans->use_count);
490 break;
491 }
492 }
493 spin_unlock(&root->fs_info->trans_lock);
494 if (!cur_trans)
495 goto out; /* nothing committing|committed */
496 }
497
498 wait_for_commit(root, cur_trans);
499
500 put_transaction(cur_trans);
501 ret = 0;
502 out:
503 return ret;
504 }
505
506 void btrfs_throttle(struct btrfs_root *root)
507 {
508 if (!atomic_read(&root->fs_info->open_ioctl_trans))
509 wait_current_trans(root);
510 }
511
512 static int should_end_transaction(struct btrfs_trans_handle *trans,
513 struct btrfs_root *root)
514 {
515 int ret;
516
517 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
518 return ret ? 1 : 0;
519 }
520
521 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
522 struct btrfs_root *root)
523 {
524 struct btrfs_transaction *cur_trans = trans->transaction;
525 int updates;
526 int err;
527
528 smp_mb();
529 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
530 return 1;
531
532 updates = trans->delayed_ref_updates;
533 trans->delayed_ref_updates = 0;
534 if (updates) {
535 err = btrfs_run_delayed_refs(trans, root, updates);
536 if (err) /* Error code will also eval true */
537 return err;
538 }
539
540 return should_end_transaction(trans, root);
541 }
542
543 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root, int throttle)
545 {
546 struct btrfs_transaction *cur_trans = trans->transaction;
547 struct btrfs_fs_info *info = root->fs_info;
548 int count = 0;
549 int lock = (trans->type != TRANS_JOIN_NOLOCK);
550 int err = 0;
551
552 if (--trans->use_count) {
553 trans->block_rsv = trans->orig_rsv;
554 return 0;
555 }
556
557 /*
558 * do the qgroup accounting as early as possible
559 */
560 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
561
562 btrfs_trans_release_metadata(trans, root);
563 trans->block_rsv = NULL;
564 /*
565 * the same root has to be passed to start_transaction and
566 * end_transaction. Subvolume quota depends on this.
567 */
568 WARN_ON(trans->root != root);
569
570 if (trans->qgroup_reserved) {
571 btrfs_qgroup_free(root, trans->qgroup_reserved);
572 trans->qgroup_reserved = 0;
573 }
574
575 if (!list_empty(&trans->new_bgs))
576 btrfs_create_pending_block_groups(trans, root);
577
578 while (count < 2) {
579 unsigned long cur = trans->delayed_ref_updates;
580 trans->delayed_ref_updates = 0;
581 if (cur &&
582 trans->transaction->delayed_refs.num_heads_ready > 64) {
583 trans->delayed_ref_updates = 0;
584 btrfs_run_delayed_refs(trans, root, cur);
585 } else {
586 break;
587 }
588 count++;
589 }
590 btrfs_trans_release_metadata(trans, root);
591 trans->block_rsv = NULL;
592
593 if (!list_empty(&trans->new_bgs))
594 btrfs_create_pending_block_groups(trans, root);
595
596 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
597 should_end_transaction(trans, root)) {
598 trans->transaction->blocked = 1;
599 smp_wmb();
600 }
601
602 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
603 if (throttle) {
604 /*
605 * We may race with somebody else here so end up having
606 * to call end_transaction on ourselves again, so inc
607 * our use_count.
608 */
609 trans->use_count++;
610 return btrfs_commit_transaction(trans, root);
611 } else {
612 wake_up_process(info->transaction_kthread);
613 }
614 }
615
616 if (trans->type < TRANS_JOIN_NOLOCK)
617 sb_end_intwrite(root->fs_info->sb);
618
619 WARN_ON(cur_trans != info->running_transaction);
620 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
621 atomic_dec(&cur_trans->num_writers);
622
623 smp_mb();
624 if (waitqueue_active(&cur_trans->writer_wait))
625 wake_up(&cur_trans->writer_wait);
626 put_transaction(cur_trans);
627
628 if (current->journal_info == trans)
629 current->journal_info = NULL;
630
631 if (throttle)
632 btrfs_run_delayed_iputs(root);
633
634 if (trans->aborted ||
635 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
636 err = -EIO;
637 }
638 assert_qgroups_uptodate(trans);
639
640 memset(trans, 0, sizeof(*trans));
641 kmem_cache_free(btrfs_trans_handle_cachep, trans);
642 return err;
643 }
644
645 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
646 struct btrfs_root *root)
647 {
648 int ret;
649
650 ret = __btrfs_end_transaction(trans, root, 0);
651 if (ret)
652 return ret;
653 return 0;
654 }
655
656 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root)
658 {
659 int ret;
660
661 ret = __btrfs_end_transaction(trans, root, 1);
662 if (ret)
663 return ret;
664 return 0;
665 }
666
667 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
668 struct btrfs_root *root)
669 {
670 return __btrfs_end_transaction(trans, root, 1);
671 }
672
673 /*
674 * when btree blocks are allocated, they have some corresponding bits set for
675 * them in one of two extent_io trees. This is used to make sure all of
676 * those extents are sent to disk but does not wait on them
677 */
678 int btrfs_write_marked_extents(struct btrfs_root *root,
679 struct extent_io_tree *dirty_pages, int mark)
680 {
681 int err = 0;
682 int werr = 0;
683 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
684 struct extent_state *cached_state = NULL;
685 u64 start = 0;
686 u64 end;
687
688 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
689 mark, &cached_state)) {
690 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
691 mark, &cached_state, GFP_NOFS);
692 cached_state = NULL;
693 err = filemap_fdatawrite_range(mapping, start, end);
694 if (err)
695 werr = err;
696 cond_resched();
697 start = end + 1;
698 }
699 if (err)
700 werr = err;
701 return werr;
702 }
703
704 /*
705 * when btree blocks are allocated, they have some corresponding bits set for
706 * them in one of two extent_io trees. This is used to make sure all of
707 * those extents are on disk for transaction or log commit. We wait
708 * on all the pages and clear them from the dirty pages state tree
709 */
710 int btrfs_wait_marked_extents(struct btrfs_root *root,
711 struct extent_io_tree *dirty_pages, int mark)
712 {
713 int err = 0;
714 int werr = 0;
715 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
716 struct extent_state *cached_state = NULL;
717 u64 start = 0;
718 u64 end;
719
720 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
721 EXTENT_NEED_WAIT, &cached_state)) {
722 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
723 0, 0, &cached_state, GFP_NOFS);
724 err = filemap_fdatawait_range(mapping, start, end);
725 if (err)
726 werr = err;
727 cond_resched();
728 start = end + 1;
729 }
730 if (err)
731 werr = err;
732 return werr;
733 }
734
735 /*
736 * when btree blocks are allocated, they have some corresponding bits set for
737 * them in one of two extent_io trees. This is used to make sure all of
738 * those extents are on disk for transaction or log commit
739 */
740 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
741 struct extent_io_tree *dirty_pages, int mark)
742 {
743 int ret;
744 int ret2;
745
746 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
747 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
748
749 if (ret)
750 return ret;
751 if (ret2)
752 return ret2;
753 return 0;
754 }
755
756 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
757 struct btrfs_root *root)
758 {
759 if (!trans || !trans->transaction) {
760 struct inode *btree_inode;
761 btree_inode = root->fs_info->btree_inode;
762 return filemap_write_and_wait(btree_inode->i_mapping);
763 }
764 return btrfs_write_and_wait_marked_extents(root,
765 &trans->transaction->dirty_pages,
766 EXTENT_DIRTY);
767 }
768
769 /*
770 * this is used to update the root pointer in the tree of tree roots.
771 *
772 * But, in the case of the extent allocation tree, updating the root
773 * pointer may allocate blocks which may change the root of the extent
774 * allocation tree.
775 *
776 * So, this loops and repeats and makes sure the cowonly root didn't
777 * change while the root pointer was being updated in the metadata.
778 */
779 static int update_cowonly_root(struct btrfs_trans_handle *trans,
780 struct btrfs_root *root)
781 {
782 int ret;
783 u64 old_root_bytenr;
784 u64 old_root_used;
785 struct btrfs_root *tree_root = root->fs_info->tree_root;
786
787 old_root_used = btrfs_root_used(&root->root_item);
788 btrfs_write_dirty_block_groups(trans, root);
789
790 while (1) {
791 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
792 if (old_root_bytenr == root->node->start &&
793 old_root_used == btrfs_root_used(&root->root_item))
794 break;
795
796 btrfs_set_root_node(&root->root_item, root->node);
797 ret = btrfs_update_root(trans, tree_root,
798 &root->root_key,
799 &root->root_item);
800 if (ret)
801 return ret;
802
803 old_root_used = btrfs_root_used(&root->root_item);
804 ret = btrfs_write_dirty_block_groups(trans, root);
805 if (ret)
806 return ret;
807 }
808
809 if (root != root->fs_info->extent_root)
810 switch_commit_root(root);
811
812 return 0;
813 }
814
815 /*
816 * update all the cowonly tree roots on disk
817 *
818 * The error handling in this function may not be obvious. Any of the
819 * failures will cause the file system to go offline. We still need
820 * to clean up the delayed refs.
821 */
822 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
823 struct btrfs_root *root)
824 {
825 struct btrfs_fs_info *fs_info = root->fs_info;
826 struct list_head *next;
827 struct extent_buffer *eb;
828 int ret;
829
830 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
831 if (ret)
832 return ret;
833
834 eb = btrfs_lock_root_node(fs_info->tree_root);
835 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
836 0, &eb);
837 btrfs_tree_unlock(eb);
838 free_extent_buffer(eb);
839
840 if (ret)
841 return ret;
842
843 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
844 if (ret)
845 return ret;
846
847 ret = btrfs_run_dev_stats(trans, root->fs_info);
848 BUG_ON(ret);
849
850 ret = btrfs_run_qgroups(trans, root->fs_info);
851 BUG_ON(ret);
852
853 /* run_qgroups might have added some more refs */
854 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
855 BUG_ON(ret);
856
857 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
858 next = fs_info->dirty_cowonly_roots.next;
859 list_del_init(next);
860 root = list_entry(next, struct btrfs_root, dirty_list);
861
862 ret = update_cowonly_root(trans, root);
863 if (ret)
864 return ret;
865 }
866
867 down_write(&fs_info->extent_commit_sem);
868 switch_commit_root(fs_info->extent_root);
869 up_write(&fs_info->extent_commit_sem);
870
871 return 0;
872 }
873
874 /*
875 * dead roots are old snapshots that need to be deleted. This allocates
876 * a dirty root struct and adds it into the list of dead roots that need to
877 * be deleted
878 */
879 int btrfs_add_dead_root(struct btrfs_root *root)
880 {
881 spin_lock(&root->fs_info->trans_lock);
882 list_add(&root->root_list, &root->fs_info->dead_roots);
883 spin_unlock(&root->fs_info->trans_lock);
884 return 0;
885 }
886
887 /*
888 * update all the cowonly tree roots on disk
889 */
890 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
891 struct btrfs_root *root)
892 {
893 struct btrfs_root *gang[8];
894 struct btrfs_fs_info *fs_info = root->fs_info;
895 int i;
896 int ret;
897 int err = 0;
898
899 spin_lock(&fs_info->fs_roots_radix_lock);
900 while (1) {
901 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
902 (void **)gang, 0,
903 ARRAY_SIZE(gang),
904 BTRFS_ROOT_TRANS_TAG);
905 if (ret == 0)
906 break;
907 for (i = 0; i < ret; i++) {
908 root = gang[i];
909 radix_tree_tag_clear(&fs_info->fs_roots_radix,
910 (unsigned long)root->root_key.objectid,
911 BTRFS_ROOT_TRANS_TAG);
912 spin_unlock(&fs_info->fs_roots_radix_lock);
913
914 btrfs_free_log(trans, root);
915 btrfs_update_reloc_root(trans, root);
916 btrfs_orphan_commit_root(trans, root);
917
918 btrfs_save_ino_cache(root, trans);
919
920 /* see comments in should_cow_block() */
921 root->force_cow = 0;
922 smp_wmb();
923
924 if (root->commit_root != root->node) {
925 mutex_lock(&root->fs_commit_mutex);
926 switch_commit_root(root);
927 btrfs_unpin_free_ino(root);
928 mutex_unlock(&root->fs_commit_mutex);
929
930 btrfs_set_root_node(&root->root_item,
931 root->node);
932 }
933
934 err = btrfs_update_root(trans, fs_info->tree_root,
935 &root->root_key,
936 &root->root_item);
937 spin_lock(&fs_info->fs_roots_radix_lock);
938 if (err)
939 break;
940 }
941 }
942 spin_unlock(&fs_info->fs_roots_radix_lock);
943 return err;
944 }
945
946 /*
947 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
948 * otherwise every leaf in the btree is read and defragged.
949 */
950 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
951 {
952 struct btrfs_fs_info *info = root->fs_info;
953 struct btrfs_trans_handle *trans;
954 int ret;
955 unsigned long nr;
956
957 if (xchg(&root->defrag_running, 1))
958 return 0;
959
960 while (1) {
961 trans = btrfs_start_transaction(root, 0);
962 if (IS_ERR(trans))
963 return PTR_ERR(trans);
964
965 ret = btrfs_defrag_leaves(trans, root, cacheonly);
966
967 nr = trans->blocks_used;
968 btrfs_end_transaction(trans, root);
969 btrfs_btree_balance_dirty(info->tree_root, nr);
970 cond_resched();
971
972 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
973 break;
974 }
975 root->defrag_running = 0;
976 return ret;
977 }
978
979 /*
980 * new snapshots need to be created at a very specific time in the
981 * transaction commit. This does the actual creation
982 */
983 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
984 struct btrfs_fs_info *fs_info,
985 struct btrfs_pending_snapshot *pending)
986 {
987 struct btrfs_key key;
988 struct btrfs_root_item *new_root_item;
989 struct btrfs_root *tree_root = fs_info->tree_root;
990 struct btrfs_root *root = pending->root;
991 struct btrfs_root *parent_root;
992 struct btrfs_block_rsv *rsv;
993 struct inode *parent_inode;
994 struct btrfs_path *path;
995 struct btrfs_dir_item *dir_item;
996 struct dentry *parent;
997 struct dentry *dentry;
998 struct extent_buffer *tmp;
999 struct extent_buffer *old;
1000 struct timespec cur_time = CURRENT_TIME;
1001 int ret;
1002 u64 to_reserve = 0;
1003 u64 index = 0;
1004 u64 objectid;
1005 u64 root_flags;
1006 uuid_le new_uuid;
1007
1008 path = btrfs_alloc_path();
1009 if (!path) {
1010 ret = pending->error = -ENOMEM;
1011 goto path_alloc_fail;
1012 }
1013
1014 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1015 if (!new_root_item) {
1016 ret = pending->error = -ENOMEM;
1017 goto root_item_alloc_fail;
1018 }
1019
1020 ret = btrfs_find_free_objectid(tree_root, &objectid);
1021 if (ret) {
1022 pending->error = ret;
1023 goto no_free_objectid;
1024 }
1025
1026 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1027
1028 if (to_reserve > 0) {
1029 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1030 to_reserve,
1031 BTRFS_RESERVE_NO_FLUSH);
1032 if (ret) {
1033 pending->error = ret;
1034 goto no_free_objectid;
1035 }
1036 }
1037
1038 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1039 objectid, pending->inherit);
1040 if (ret) {
1041 pending->error = ret;
1042 goto no_free_objectid;
1043 }
1044
1045 key.objectid = objectid;
1046 key.offset = (u64)-1;
1047 key.type = BTRFS_ROOT_ITEM_KEY;
1048
1049 rsv = trans->block_rsv;
1050 trans->block_rsv = &pending->block_rsv;
1051
1052 dentry = pending->dentry;
1053 parent = dget_parent(dentry);
1054 parent_inode = parent->d_inode;
1055 parent_root = BTRFS_I(parent_inode)->root;
1056 record_root_in_trans(trans, parent_root);
1057
1058 /*
1059 * insert the directory item
1060 */
1061 ret = btrfs_set_inode_index(parent_inode, &index);
1062 BUG_ON(ret); /* -ENOMEM */
1063
1064 /* check if there is a file/dir which has the same name. */
1065 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1066 btrfs_ino(parent_inode),
1067 dentry->d_name.name,
1068 dentry->d_name.len, 0);
1069 if (dir_item != NULL && !IS_ERR(dir_item)) {
1070 pending->error = -EEXIST;
1071 goto fail;
1072 } else if (IS_ERR(dir_item)) {
1073 ret = PTR_ERR(dir_item);
1074 btrfs_abort_transaction(trans, root, ret);
1075 goto fail;
1076 }
1077 btrfs_release_path(path);
1078
1079 /*
1080 * pull in the delayed directory update
1081 * and the delayed inode item
1082 * otherwise we corrupt the FS during
1083 * snapshot
1084 */
1085 ret = btrfs_run_delayed_items(trans, root);
1086 if (ret) { /* Transaction aborted */
1087 btrfs_abort_transaction(trans, root, ret);
1088 goto fail;
1089 }
1090
1091 record_root_in_trans(trans, root);
1092 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1093 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1094 btrfs_check_and_init_root_item(new_root_item);
1095
1096 root_flags = btrfs_root_flags(new_root_item);
1097 if (pending->readonly)
1098 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1099 else
1100 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1101 btrfs_set_root_flags(new_root_item, root_flags);
1102
1103 btrfs_set_root_generation_v2(new_root_item,
1104 trans->transid);
1105 uuid_le_gen(&new_uuid);
1106 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1107 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1108 BTRFS_UUID_SIZE);
1109 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1110 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1111 btrfs_set_root_otransid(new_root_item, trans->transid);
1112 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1113 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1114 btrfs_set_root_stransid(new_root_item, 0);
1115 btrfs_set_root_rtransid(new_root_item, 0);
1116
1117 old = btrfs_lock_root_node(root);
1118 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1119 if (ret) {
1120 btrfs_tree_unlock(old);
1121 free_extent_buffer(old);
1122 btrfs_abort_transaction(trans, root, ret);
1123 goto fail;
1124 }
1125
1126 btrfs_set_lock_blocking(old);
1127
1128 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1129 /* clean up in any case */
1130 btrfs_tree_unlock(old);
1131 free_extent_buffer(old);
1132 if (ret) {
1133 btrfs_abort_transaction(trans, root, ret);
1134 goto fail;
1135 }
1136
1137 /* see comments in should_cow_block() */
1138 root->force_cow = 1;
1139 smp_wmb();
1140
1141 btrfs_set_root_node(new_root_item, tmp);
1142 /* record when the snapshot was created in key.offset */
1143 key.offset = trans->transid;
1144 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1145 btrfs_tree_unlock(tmp);
1146 free_extent_buffer(tmp);
1147 if (ret) {
1148 btrfs_abort_transaction(trans, root, ret);
1149 goto fail;
1150 }
1151
1152 /*
1153 * insert root back/forward references
1154 */
1155 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1156 parent_root->root_key.objectid,
1157 btrfs_ino(parent_inode), index,
1158 dentry->d_name.name, dentry->d_name.len);
1159 if (ret) {
1160 btrfs_abort_transaction(trans, root, ret);
1161 goto fail;
1162 }
1163
1164 key.offset = (u64)-1;
1165 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1166 if (IS_ERR(pending->snap)) {
1167 ret = PTR_ERR(pending->snap);
1168 btrfs_abort_transaction(trans, root, ret);
1169 goto fail;
1170 }
1171
1172 ret = btrfs_reloc_post_snapshot(trans, pending);
1173 if (ret) {
1174 btrfs_abort_transaction(trans, root, ret);
1175 goto fail;
1176 }
1177
1178 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1179 if (ret) {
1180 btrfs_abort_transaction(trans, root, ret);
1181 goto fail;
1182 }
1183
1184 ret = btrfs_insert_dir_item(trans, parent_root,
1185 dentry->d_name.name, dentry->d_name.len,
1186 parent_inode, &key,
1187 BTRFS_FT_DIR, index);
1188 /* We have check then name at the beginning, so it is impossible. */
1189 BUG_ON(ret == -EEXIST);
1190 if (ret) {
1191 btrfs_abort_transaction(trans, root, ret);
1192 goto fail;
1193 }
1194
1195 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1196 dentry->d_name.len * 2);
1197 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1198 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1199 if (ret)
1200 btrfs_abort_transaction(trans, root, ret);
1201 fail:
1202 dput(parent);
1203 trans->block_rsv = rsv;
1204 no_free_objectid:
1205 kfree(new_root_item);
1206 root_item_alloc_fail:
1207 btrfs_free_path(path);
1208 path_alloc_fail:
1209 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1210 return ret;
1211 }
1212
1213 /*
1214 * create all the snapshots we've scheduled for creation
1215 */
1216 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1217 struct btrfs_fs_info *fs_info)
1218 {
1219 struct btrfs_pending_snapshot *pending;
1220 struct list_head *head = &trans->transaction->pending_snapshots;
1221
1222 list_for_each_entry(pending, head, list)
1223 create_pending_snapshot(trans, fs_info, pending);
1224 return 0;
1225 }
1226
1227 static void update_super_roots(struct btrfs_root *root)
1228 {
1229 struct btrfs_root_item *root_item;
1230 struct btrfs_super_block *super;
1231
1232 super = root->fs_info->super_copy;
1233
1234 root_item = &root->fs_info->chunk_root->root_item;
1235 super->chunk_root = root_item->bytenr;
1236 super->chunk_root_generation = root_item->generation;
1237 super->chunk_root_level = root_item->level;
1238
1239 root_item = &root->fs_info->tree_root->root_item;
1240 super->root = root_item->bytenr;
1241 super->generation = root_item->generation;
1242 super->root_level = root_item->level;
1243 if (btrfs_test_opt(root, SPACE_CACHE))
1244 super->cache_generation = root_item->generation;
1245 }
1246
1247 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1248 {
1249 int ret = 0;
1250 spin_lock(&info->trans_lock);
1251 if (info->running_transaction)
1252 ret = info->running_transaction->in_commit;
1253 spin_unlock(&info->trans_lock);
1254 return ret;
1255 }
1256
1257 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1258 {
1259 int ret = 0;
1260 spin_lock(&info->trans_lock);
1261 if (info->running_transaction)
1262 ret = info->running_transaction->blocked;
1263 spin_unlock(&info->trans_lock);
1264 return ret;
1265 }
1266
1267 /*
1268 * wait for the current transaction commit to start and block subsequent
1269 * transaction joins
1270 */
1271 static void wait_current_trans_commit_start(struct btrfs_root *root,
1272 struct btrfs_transaction *trans)
1273 {
1274 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1275 }
1276
1277 /*
1278 * wait for the current transaction to start and then become unblocked.
1279 * caller holds ref.
1280 */
1281 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1282 struct btrfs_transaction *trans)
1283 {
1284 wait_event(root->fs_info->transaction_wait,
1285 trans->commit_done || (trans->in_commit && !trans->blocked));
1286 }
1287
1288 /*
1289 * commit transactions asynchronously. once btrfs_commit_transaction_async
1290 * returns, any subsequent transaction will not be allowed to join.
1291 */
1292 struct btrfs_async_commit {
1293 struct btrfs_trans_handle *newtrans;
1294 struct btrfs_root *root;
1295 struct delayed_work work;
1296 };
1297
1298 static void do_async_commit(struct work_struct *work)
1299 {
1300 struct btrfs_async_commit *ac =
1301 container_of(work, struct btrfs_async_commit, work.work);
1302
1303 /*
1304 * We've got freeze protection passed with the transaction.
1305 * Tell lockdep about it.
1306 */
1307 rwsem_acquire_read(
1308 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1309 0, 1, _THIS_IP_);
1310
1311 current->journal_info = ac->newtrans;
1312
1313 btrfs_commit_transaction(ac->newtrans, ac->root);
1314 kfree(ac);
1315 }
1316
1317 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1318 struct btrfs_root *root,
1319 int wait_for_unblock)
1320 {
1321 struct btrfs_async_commit *ac;
1322 struct btrfs_transaction *cur_trans;
1323
1324 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1325 if (!ac)
1326 return -ENOMEM;
1327
1328 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1329 ac->root = root;
1330 ac->newtrans = btrfs_join_transaction(root);
1331 if (IS_ERR(ac->newtrans)) {
1332 int err = PTR_ERR(ac->newtrans);
1333 kfree(ac);
1334 return err;
1335 }
1336
1337 /* take transaction reference */
1338 cur_trans = trans->transaction;
1339 atomic_inc(&cur_trans->use_count);
1340
1341 btrfs_end_transaction(trans, root);
1342
1343 /*
1344 * Tell lockdep we've released the freeze rwsem, since the
1345 * async commit thread will be the one to unlock it.
1346 */
1347 rwsem_release(&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1348 1, _THIS_IP_);
1349
1350 schedule_delayed_work(&ac->work, 0);
1351
1352 /* wait for transaction to start and unblock */
1353 if (wait_for_unblock)
1354 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1355 else
1356 wait_current_trans_commit_start(root, cur_trans);
1357
1358 if (current->journal_info == trans)
1359 current->journal_info = NULL;
1360
1361 put_transaction(cur_trans);
1362 return 0;
1363 }
1364
1365
1366 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root, int err)
1368 {
1369 struct btrfs_transaction *cur_trans = trans->transaction;
1370
1371 WARN_ON(trans->use_count > 1);
1372
1373 btrfs_abort_transaction(trans, root, err);
1374
1375 spin_lock(&root->fs_info->trans_lock);
1376 list_del_init(&cur_trans->list);
1377 if (cur_trans == root->fs_info->running_transaction) {
1378 root->fs_info->running_transaction = NULL;
1379 root->fs_info->trans_no_join = 0;
1380 }
1381 spin_unlock(&root->fs_info->trans_lock);
1382
1383 btrfs_cleanup_one_transaction(trans->transaction, root);
1384
1385 put_transaction(cur_trans);
1386 put_transaction(cur_trans);
1387
1388 trace_btrfs_transaction_commit(root);
1389
1390 btrfs_scrub_continue(root);
1391
1392 if (current->journal_info == trans)
1393 current->journal_info = NULL;
1394
1395 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1396 }
1397
1398 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1399 struct btrfs_root *root)
1400 {
1401 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1402 int snap_pending = 0;
1403 int ret;
1404
1405 if (!flush_on_commit) {
1406 spin_lock(&root->fs_info->trans_lock);
1407 if (!list_empty(&trans->transaction->pending_snapshots))
1408 snap_pending = 1;
1409 spin_unlock(&root->fs_info->trans_lock);
1410 }
1411
1412 if (flush_on_commit || snap_pending) {
1413 btrfs_start_delalloc_inodes(root, 1);
1414 btrfs_wait_ordered_extents(root, 1);
1415 }
1416
1417 ret = btrfs_run_delayed_items(trans, root);
1418 if (ret)
1419 return ret;
1420
1421 /*
1422 * running the delayed items may have added new refs. account
1423 * them now so that they hinder processing of more delayed refs
1424 * as little as possible.
1425 */
1426 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1427
1428 /*
1429 * rename don't use btrfs_join_transaction, so, once we
1430 * set the transaction to blocked above, we aren't going
1431 * to get any new ordered operations. We can safely run
1432 * it here and no for sure that nothing new will be added
1433 * to the list
1434 */
1435 btrfs_run_ordered_operations(root, 1);
1436
1437 return 0;
1438 }
1439
1440 /*
1441 * btrfs_transaction state sequence:
1442 * in_commit = 0, blocked = 0 (initial)
1443 * in_commit = 1, blocked = 1
1444 * blocked = 0
1445 * commit_done = 1
1446 */
1447 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1448 struct btrfs_root *root)
1449 {
1450 unsigned long joined = 0;
1451 struct btrfs_transaction *cur_trans = trans->transaction;
1452 struct btrfs_transaction *prev_trans = NULL;
1453 DEFINE_WAIT(wait);
1454 int ret;
1455 int should_grow = 0;
1456 unsigned long now = get_seconds();
1457
1458 ret = btrfs_run_ordered_operations(root, 0);
1459 if (ret) {
1460 btrfs_abort_transaction(trans, root, ret);
1461 goto cleanup_transaction;
1462 }
1463
1464 if (cur_trans->aborted) {
1465 ret = cur_trans->aborted;
1466 goto cleanup_transaction;
1467 }
1468
1469 /* make a pass through all the delayed refs we have so far
1470 * any runnings procs may add more while we are here
1471 */
1472 ret = btrfs_run_delayed_refs(trans, root, 0);
1473 if (ret)
1474 goto cleanup_transaction;
1475
1476 btrfs_trans_release_metadata(trans, root);
1477 trans->block_rsv = NULL;
1478
1479 cur_trans = trans->transaction;
1480
1481 /*
1482 * set the flushing flag so procs in this transaction have to
1483 * start sending their work down.
1484 */
1485 cur_trans->delayed_refs.flushing = 1;
1486
1487 if (!list_empty(&trans->new_bgs))
1488 btrfs_create_pending_block_groups(trans, root);
1489
1490 ret = btrfs_run_delayed_refs(trans, root, 0);
1491 if (ret)
1492 goto cleanup_transaction;
1493
1494 spin_lock(&cur_trans->commit_lock);
1495 if (cur_trans->in_commit) {
1496 spin_unlock(&cur_trans->commit_lock);
1497 atomic_inc(&cur_trans->use_count);
1498 ret = btrfs_end_transaction(trans, root);
1499
1500 wait_for_commit(root, cur_trans);
1501
1502 put_transaction(cur_trans);
1503
1504 return ret;
1505 }
1506
1507 trans->transaction->in_commit = 1;
1508 trans->transaction->blocked = 1;
1509 spin_unlock(&cur_trans->commit_lock);
1510 wake_up(&root->fs_info->transaction_blocked_wait);
1511
1512 spin_lock(&root->fs_info->trans_lock);
1513 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1514 prev_trans = list_entry(cur_trans->list.prev,
1515 struct btrfs_transaction, list);
1516 if (!prev_trans->commit_done) {
1517 atomic_inc(&prev_trans->use_count);
1518 spin_unlock(&root->fs_info->trans_lock);
1519
1520 wait_for_commit(root, prev_trans);
1521
1522 put_transaction(prev_trans);
1523 } else {
1524 spin_unlock(&root->fs_info->trans_lock);
1525 }
1526 } else {
1527 spin_unlock(&root->fs_info->trans_lock);
1528 }
1529
1530 if (!btrfs_test_opt(root, SSD) &&
1531 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1532 should_grow = 1;
1533
1534 do {
1535 joined = cur_trans->num_joined;
1536
1537 WARN_ON(cur_trans != trans->transaction);
1538
1539 ret = btrfs_flush_all_pending_stuffs(trans, root);
1540 if (ret)
1541 goto cleanup_transaction;
1542
1543 prepare_to_wait(&cur_trans->writer_wait, &wait,
1544 TASK_UNINTERRUPTIBLE);
1545
1546 if (atomic_read(&cur_trans->num_writers) > 1)
1547 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1548 else if (should_grow)
1549 schedule_timeout(1);
1550
1551 finish_wait(&cur_trans->writer_wait, &wait);
1552 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1553 (should_grow && cur_trans->num_joined != joined));
1554
1555 ret = btrfs_flush_all_pending_stuffs(trans, root);
1556 if (ret)
1557 goto cleanup_transaction;
1558
1559 /*
1560 * Ok now we need to make sure to block out any other joins while we
1561 * commit the transaction. We could have started a join before setting
1562 * no_join so make sure to wait for num_writers to == 1 again.
1563 */
1564 spin_lock(&root->fs_info->trans_lock);
1565 root->fs_info->trans_no_join = 1;
1566 spin_unlock(&root->fs_info->trans_lock);
1567 wait_event(cur_trans->writer_wait,
1568 atomic_read(&cur_trans->num_writers) == 1);
1569
1570 /*
1571 * the reloc mutex makes sure that we stop
1572 * the balancing code from coming in and moving
1573 * extents around in the middle of the commit
1574 */
1575 mutex_lock(&root->fs_info->reloc_mutex);
1576
1577 /*
1578 * We needn't worry about the delayed items because we will
1579 * deal with them in create_pending_snapshot(), which is the
1580 * core function of the snapshot creation.
1581 */
1582 ret = create_pending_snapshots(trans, root->fs_info);
1583 if (ret) {
1584 mutex_unlock(&root->fs_info->reloc_mutex);
1585 goto cleanup_transaction;
1586 }
1587
1588 /*
1589 * We insert the dir indexes of the snapshots and update the inode
1590 * of the snapshots' parents after the snapshot creation, so there
1591 * are some delayed items which are not dealt with. Now deal with
1592 * them.
1593 *
1594 * We needn't worry that this operation will corrupt the snapshots,
1595 * because all the tree which are snapshoted will be forced to COW
1596 * the nodes and leaves.
1597 */
1598 ret = btrfs_run_delayed_items(trans, root);
1599 if (ret) {
1600 mutex_unlock(&root->fs_info->reloc_mutex);
1601 goto cleanup_transaction;
1602 }
1603
1604 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1605 if (ret) {
1606 mutex_unlock(&root->fs_info->reloc_mutex);
1607 goto cleanup_transaction;
1608 }
1609
1610 /*
1611 * make sure none of the code above managed to slip in a
1612 * delayed item
1613 */
1614 btrfs_assert_delayed_root_empty(root);
1615
1616 WARN_ON(cur_trans != trans->transaction);
1617
1618 btrfs_scrub_pause(root);
1619 /* btrfs_commit_tree_roots is responsible for getting the
1620 * various roots consistent with each other. Every pointer
1621 * in the tree of tree roots has to point to the most up to date
1622 * root for every subvolume and other tree. So, we have to keep
1623 * the tree logging code from jumping in and changing any
1624 * of the trees.
1625 *
1626 * At this point in the commit, there can't be any tree-log
1627 * writers, but a little lower down we drop the trans mutex
1628 * and let new people in. By holding the tree_log_mutex
1629 * from now until after the super is written, we avoid races
1630 * with the tree-log code.
1631 */
1632 mutex_lock(&root->fs_info->tree_log_mutex);
1633
1634 ret = commit_fs_roots(trans, root);
1635 if (ret) {
1636 mutex_unlock(&root->fs_info->tree_log_mutex);
1637 mutex_unlock(&root->fs_info->reloc_mutex);
1638 goto cleanup_transaction;
1639 }
1640
1641 /* commit_fs_roots gets rid of all the tree log roots, it is now
1642 * safe to free the root of tree log roots
1643 */
1644 btrfs_free_log_root_tree(trans, root->fs_info);
1645
1646 ret = commit_cowonly_roots(trans, root);
1647 if (ret) {
1648 mutex_unlock(&root->fs_info->tree_log_mutex);
1649 mutex_unlock(&root->fs_info->reloc_mutex);
1650 goto cleanup_transaction;
1651 }
1652
1653 btrfs_prepare_extent_commit(trans, root);
1654
1655 cur_trans = root->fs_info->running_transaction;
1656
1657 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1658 root->fs_info->tree_root->node);
1659 switch_commit_root(root->fs_info->tree_root);
1660
1661 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1662 root->fs_info->chunk_root->node);
1663 switch_commit_root(root->fs_info->chunk_root);
1664
1665 assert_qgroups_uptodate(trans);
1666 update_super_roots(root);
1667
1668 if (!root->fs_info->log_root_recovering) {
1669 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1670 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1671 }
1672
1673 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1674 sizeof(*root->fs_info->super_copy));
1675
1676 trans->transaction->blocked = 0;
1677 spin_lock(&root->fs_info->trans_lock);
1678 root->fs_info->running_transaction = NULL;
1679 root->fs_info->trans_no_join = 0;
1680 spin_unlock(&root->fs_info->trans_lock);
1681 mutex_unlock(&root->fs_info->reloc_mutex);
1682
1683 wake_up(&root->fs_info->transaction_wait);
1684
1685 ret = btrfs_write_and_wait_transaction(trans, root);
1686 if (ret) {
1687 btrfs_error(root->fs_info, ret,
1688 "Error while writing out transaction.");
1689 mutex_unlock(&root->fs_info->tree_log_mutex);
1690 goto cleanup_transaction;
1691 }
1692
1693 ret = write_ctree_super(trans, root, 0);
1694 if (ret) {
1695 mutex_unlock(&root->fs_info->tree_log_mutex);
1696 goto cleanup_transaction;
1697 }
1698
1699 /*
1700 * the super is written, we can safely allow the tree-loggers
1701 * to go about their business
1702 */
1703 mutex_unlock(&root->fs_info->tree_log_mutex);
1704
1705 btrfs_finish_extent_commit(trans, root);
1706
1707 cur_trans->commit_done = 1;
1708
1709 root->fs_info->last_trans_committed = cur_trans->transid;
1710
1711 wake_up(&cur_trans->commit_wait);
1712
1713 spin_lock(&root->fs_info->trans_lock);
1714 list_del_init(&cur_trans->list);
1715 spin_unlock(&root->fs_info->trans_lock);
1716
1717 put_transaction(cur_trans);
1718 put_transaction(cur_trans);
1719
1720 if (trans->type < TRANS_JOIN_NOLOCK)
1721 sb_end_intwrite(root->fs_info->sb);
1722
1723 trace_btrfs_transaction_commit(root);
1724
1725 btrfs_scrub_continue(root);
1726
1727 if (current->journal_info == trans)
1728 current->journal_info = NULL;
1729
1730 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1731
1732 if (current != root->fs_info->transaction_kthread)
1733 btrfs_run_delayed_iputs(root);
1734
1735 return ret;
1736
1737 cleanup_transaction:
1738 btrfs_trans_release_metadata(trans, root);
1739 trans->block_rsv = NULL;
1740 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1741 // WARN_ON(1);
1742 if (current->journal_info == trans)
1743 current->journal_info = NULL;
1744 cleanup_transaction(trans, root, ret);
1745
1746 return ret;
1747 }
1748
1749 /*
1750 * interface function to delete all the snapshots we have scheduled for deletion
1751 */
1752 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1753 {
1754 LIST_HEAD(list);
1755 struct btrfs_fs_info *fs_info = root->fs_info;
1756
1757 spin_lock(&fs_info->trans_lock);
1758 list_splice_init(&fs_info->dead_roots, &list);
1759 spin_unlock(&fs_info->trans_lock);
1760
1761 while (!list_empty(&list)) {
1762 int ret;
1763
1764 root = list_entry(list.next, struct btrfs_root, root_list);
1765 list_del(&root->root_list);
1766
1767 btrfs_kill_all_delayed_nodes(root);
1768
1769 if (btrfs_header_backref_rev(root->node) <
1770 BTRFS_MIXED_BACKREF_REV)
1771 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1772 else
1773 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1774 BUG_ON(ret < 0);
1775 }
1776 return 0;
1777 }