]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
Btrfs: use dget_parent where we can UPDATED
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 WARN_ON(transaction->use_count == 0);
36 transaction->use_count--;
37 if (transaction->use_count == 0) {
38 list_del_init(&transaction->list);
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
41 }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51 * either allocate a new transaction or hop into the existing one
52 */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
60 BUG_ON(!cur_trans);
61 root->fs_info->generation++;
62 cur_trans->num_writers = 1;
63 cur_trans->num_joined = 0;
64 cur_trans->transid = root->fs_info->generation;
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
68 cur_trans->blocked = 0;
69 cur_trans->use_count = 1;
70 cur_trans->commit_done = 0;
71 cur_trans->start_time = get_seconds();
72
73 cur_trans->delayed_refs.root = RB_ROOT;
74 cur_trans->delayed_refs.num_entries = 0;
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
77 cur_trans->delayed_refs.flushing = 0;
78 cur_trans->delayed_refs.run_delayed_start = 0;
79 spin_lock_init(&cur_trans->delayed_refs.lock);
80
81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 extent_io_tree_init(&cur_trans->dirty_pages,
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
89 } else {
90 cur_trans->num_writers++;
91 cur_trans->num_joined++;
92 }
93
94 return 0;
95 }
96
97 /*
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
102 */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
105 {
106 if (root->ref_cows && root->last_trans < trans->transid) {
107 WARN_ON(root == root->fs_info->extent_root);
108 WARN_ON(root->commit_root != root->node);
109
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
115 }
116 return 0;
117 }
118
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
121 {
122 if (!root->ref_cows)
123 return 0;
124
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
129 }
130
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
133 return 0;
134 }
135
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
139 */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142 struct btrfs_transaction *cur_trans;
143
144 cur_trans = root->fs_info->running_transaction;
145 if (cur_trans && cur_trans->blocked) {
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
148 while (1) {
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
151 if (!cur_trans->blocked)
152 break;
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
156 }
157 finish_wait(&root->fs_info->transaction_wait, &wait);
158 put_transaction(cur_trans);
159 }
160 }
161
162 enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
166 TRANS_JOIN_NOLOCK,
167 };
168
169 static int may_wait_transaction(struct btrfs_root *root, int type)
170 {
171 if (!root->fs_info->log_root_recovering &&
172 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173 type == TRANS_USERSPACE))
174 return 1;
175 return 0;
176 }
177
178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
179 u64 num_items, int type)
180 {
181 struct btrfs_trans_handle *h;
182 struct btrfs_transaction *cur_trans;
183 int ret;
184 again:
185 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186 if (!h)
187 return ERR_PTR(-ENOMEM);
188
189 if (type != TRANS_JOIN_NOLOCK)
190 mutex_lock(&root->fs_info->trans_mutex);
191 if (may_wait_transaction(root, type))
192 wait_current_trans(root);
193
194 ret = join_transaction(root);
195 BUG_ON(ret);
196
197 cur_trans = root->fs_info->running_transaction;
198 cur_trans->use_count++;
199 if (type != TRANS_JOIN_NOLOCK)
200 mutex_unlock(&root->fs_info->trans_mutex);
201
202 h->transid = cur_trans->transid;
203 h->transaction = cur_trans;
204 h->blocks_used = 0;
205 h->block_group = 0;
206 h->bytes_reserved = 0;
207 h->delayed_ref_updates = 0;
208 h->block_rsv = NULL;
209
210 smp_mb();
211 if (cur_trans->blocked && may_wait_transaction(root, type)) {
212 btrfs_commit_transaction(h, root);
213 goto again;
214 }
215
216 if (num_items > 0) {
217 ret = btrfs_trans_reserve_metadata(h, root, num_items);
218 if (ret == -EAGAIN) {
219 btrfs_commit_transaction(h, root);
220 goto again;
221 }
222 if (ret < 0) {
223 btrfs_end_transaction(h, root);
224 return ERR_PTR(ret);
225 }
226 }
227
228 if (type != TRANS_JOIN_NOLOCK)
229 mutex_lock(&root->fs_info->trans_mutex);
230 record_root_in_trans(h, root);
231 if (type != TRANS_JOIN_NOLOCK)
232 mutex_unlock(&root->fs_info->trans_mutex);
233
234 if (!current->journal_info && type != TRANS_USERSPACE)
235 current->journal_info = h;
236 return h;
237 }
238
239 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
240 int num_items)
241 {
242 return start_transaction(root, num_items, TRANS_START);
243 }
244 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
245 int num_blocks)
246 {
247 return start_transaction(root, 0, TRANS_JOIN);
248 }
249
250 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
251 int num_blocks)
252 {
253 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
254 }
255
256 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
257 int num_blocks)
258 {
259 return start_transaction(r, 0, TRANS_USERSPACE);
260 }
261
262 /* wait for a transaction commit to be fully complete */
263 static noinline int wait_for_commit(struct btrfs_root *root,
264 struct btrfs_transaction *commit)
265 {
266 DEFINE_WAIT(wait);
267 mutex_lock(&root->fs_info->trans_mutex);
268 while (!commit->commit_done) {
269 prepare_to_wait(&commit->commit_wait, &wait,
270 TASK_UNINTERRUPTIBLE);
271 if (commit->commit_done)
272 break;
273 mutex_unlock(&root->fs_info->trans_mutex);
274 schedule();
275 mutex_lock(&root->fs_info->trans_mutex);
276 }
277 mutex_unlock(&root->fs_info->trans_mutex);
278 finish_wait(&commit->commit_wait, &wait);
279 return 0;
280 }
281
282 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
283 {
284 struct btrfs_transaction *cur_trans = NULL, *t;
285 int ret;
286
287 mutex_lock(&root->fs_info->trans_mutex);
288
289 ret = 0;
290 if (transid) {
291 if (transid <= root->fs_info->last_trans_committed)
292 goto out_unlock;
293
294 /* find specified transaction */
295 list_for_each_entry(t, &root->fs_info->trans_list, list) {
296 if (t->transid == transid) {
297 cur_trans = t;
298 break;
299 }
300 if (t->transid > transid)
301 break;
302 }
303 ret = -EINVAL;
304 if (!cur_trans)
305 goto out_unlock; /* bad transid */
306 } else {
307 /* find newest transaction that is committing | committed */
308 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
309 list) {
310 if (t->in_commit) {
311 if (t->commit_done)
312 goto out_unlock;
313 cur_trans = t;
314 break;
315 }
316 }
317 if (!cur_trans)
318 goto out_unlock; /* nothing committing|committed */
319 }
320
321 cur_trans->use_count++;
322 mutex_unlock(&root->fs_info->trans_mutex);
323
324 wait_for_commit(root, cur_trans);
325
326 mutex_lock(&root->fs_info->trans_mutex);
327 put_transaction(cur_trans);
328 ret = 0;
329 out_unlock:
330 mutex_unlock(&root->fs_info->trans_mutex);
331 return ret;
332 }
333
334 #if 0
335 /*
336 * rate limit against the drop_snapshot code. This helps to slow down new
337 * operations if the drop_snapshot code isn't able to keep up.
338 */
339 static void throttle_on_drops(struct btrfs_root *root)
340 {
341 struct btrfs_fs_info *info = root->fs_info;
342 int harder_count = 0;
343
344 harder:
345 if (atomic_read(&info->throttles)) {
346 DEFINE_WAIT(wait);
347 int thr;
348 thr = atomic_read(&info->throttle_gen);
349
350 do {
351 prepare_to_wait(&info->transaction_throttle,
352 &wait, TASK_UNINTERRUPTIBLE);
353 if (!atomic_read(&info->throttles)) {
354 finish_wait(&info->transaction_throttle, &wait);
355 break;
356 }
357 schedule();
358 finish_wait(&info->transaction_throttle, &wait);
359 } while (thr == atomic_read(&info->throttle_gen));
360 harder_count++;
361
362 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
363 harder_count < 2)
364 goto harder;
365
366 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
367 harder_count < 10)
368 goto harder;
369
370 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
371 harder_count < 20)
372 goto harder;
373 }
374 }
375 #endif
376
377 void btrfs_throttle(struct btrfs_root *root)
378 {
379 mutex_lock(&root->fs_info->trans_mutex);
380 if (!root->fs_info->open_ioctl_trans)
381 wait_current_trans(root);
382 mutex_unlock(&root->fs_info->trans_mutex);
383 }
384
385 static int should_end_transaction(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root)
387 {
388 int ret;
389 ret = btrfs_block_rsv_check(trans, root,
390 &root->fs_info->global_block_rsv, 0, 5);
391 return ret ? 1 : 0;
392 }
393
394 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
395 struct btrfs_root *root)
396 {
397 struct btrfs_transaction *cur_trans = trans->transaction;
398 int updates;
399
400 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
401 return 1;
402
403 updates = trans->delayed_ref_updates;
404 trans->delayed_ref_updates = 0;
405 if (updates)
406 btrfs_run_delayed_refs(trans, root, updates);
407
408 return should_end_transaction(trans, root);
409 }
410
411 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
412 struct btrfs_root *root, int throttle, int lock)
413 {
414 struct btrfs_transaction *cur_trans = trans->transaction;
415 struct btrfs_fs_info *info = root->fs_info;
416 int count = 0;
417
418 while (count < 4) {
419 unsigned long cur = trans->delayed_ref_updates;
420 trans->delayed_ref_updates = 0;
421 if (cur &&
422 trans->transaction->delayed_refs.num_heads_ready > 64) {
423 trans->delayed_ref_updates = 0;
424
425 /*
426 * do a full flush if the transaction is trying
427 * to close
428 */
429 if (trans->transaction->delayed_refs.flushing)
430 cur = 0;
431 btrfs_run_delayed_refs(trans, root, cur);
432 } else {
433 break;
434 }
435 count++;
436 }
437
438 btrfs_trans_release_metadata(trans, root);
439
440 if (lock && !root->fs_info->open_ioctl_trans &&
441 should_end_transaction(trans, root))
442 trans->transaction->blocked = 1;
443
444 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
445 if (throttle)
446 return btrfs_commit_transaction(trans, root);
447 else
448 wake_up_process(info->transaction_kthread);
449 }
450
451 if (lock)
452 mutex_lock(&info->trans_mutex);
453 WARN_ON(cur_trans != info->running_transaction);
454 WARN_ON(cur_trans->num_writers < 1);
455 cur_trans->num_writers--;
456
457 smp_mb();
458 if (waitqueue_active(&cur_trans->writer_wait))
459 wake_up(&cur_trans->writer_wait);
460 put_transaction(cur_trans);
461 if (lock)
462 mutex_unlock(&info->trans_mutex);
463
464 if (current->journal_info == trans)
465 current->journal_info = NULL;
466 memset(trans, 0, sizeof(*trans));
467 kmem_cache_free(btrfs_trans_handle_cachep, trans);
468
469 if (throttle)
470 btrfs_run_delayed_iputs(root);
471
472 return 0;
473 }
474
475 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
476 struct btrfs_root *root)
477 {
478 return __btrfs_end_transaction(trans, root, 0, 1);
479 }
480
481 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
482 struct btrfs_root *root)
483 {
484 return __btrfs_end_transaction(trans, root, 1, 1);
485 }
486
487 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
488 struct btrfs_root *root)
489 {
490 return __btrfs_end_transaction(trans, root, 0, 0);
491 }
492
493 /*
494 * when btree blocks are allocated, they have some corresponding bits set for
495 * them in one of two extent_io trees. This is used to make sure all of
496 * those extents are sent to disk but does not wait on them
497 */
498 int btrfs_write_marked_extents(struct btrfs_root *root,
499 struct extent_io_tree *dirty_pages, int mark)
500 {
501 int ret;
502 int err = 0;
503 int werr = 0;
504 struct page *page;
505 struct inode *btree_inode = root->fs_info->btree_inode;
506 u64 start = 0;
507 u64 end;
508 unsigned long index;
509
510 while (1) {
511 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
512 mark);
513 if (ret)
514 break;
515 while (start <= end) {
516 cond_resched();
517
518 index = start >> PAGE_CACHE_SHIFT;
519 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
520 page = find_get_page(btree_inode->i_mapping, index);
521 if (!page)
522 continue;
523
524 btree_lock_page_hook(page);
525 if (!page->mapping) {
526 unlock_page(page);
527 page_cache_release(page);
528 continue;
529 }
530
531 if (PageWriteback(page)) {
532 if (PageDirty(page))
533 wait_on_page_writeback(page);
534 else {
535 unlock_page(page);
536 page_cache_release(page);
537 continue;
538 }
539 }
540 err = write_one_page(page, 0);
541 if (err)
542 werr = err;
543 page_cache_release(page);
544 }
545 }
546 if (err)
547 werr = err;
548 return werr;
549 }
550
551 /*
552 * when btree blocks are allocated, they have some corresponding bits set for
553 * them in one of two extent_io trees. This is used to make sure all of
554 * those extents are on disk for transaction or log commit. We wait
555 * on all the pages and clear them from the dirty pages state tree
556 */
557 int btrfs_wait_marked_extents(struct btrfs_root *root,
558 struct extent_io_tree *dirty_pages, int mark)
559 {
560 int ret;
561 int err = 0;
562 int werr = 0;
563 struct page *page;
564 struct inode *btree_inode = root->fs_info->btree_inode;
565 u64 start = 0;
566 u64 end;
567 unsigned long index;
568
569 while (1) {
570 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
571 mark);
572 if (ret)
573 break;
574
575 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
576 while (start <= end) {
577 index = start >> PAGE_CACHE_SHIFT;
578 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
579 page = find_get_page(btree_inode->i_mapping, index);
580 if (!page)
581 continue;
582 if (PageDirty(page)) {
583 btree_lock_page_hook(page);
584 wait_on_page_writeback(page);
585 err = write_one_page(page, 0);
586 if (err)
587 werr = err;
588 }
589 wait_on_page_writeback(page);
590 page_cache_release(page);
591 cond_resched();
592 }
593 }
594 if (err)
595 werr = err;
596 return werr;
597 }
598
599 /*
600 * when btree blocks are allocated, they have some corresponding bits set for
601 * them in one of two extent_io trees. This is used to make sure all of
602 * those extents are on disk for transaction or log commit
603 */
604 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
605 struct extent_io_tree *dirty_pages, int mark)
606 {
607 int ret;
608 int ret2;
609
610 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
611 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
612 return ret || ret2;
613 }
614
615 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
616 struct btrfs_root *root)
617 {
618 if (!trans || !trans->transaction) {
619 struct inode *btree_inode;
620 btree_inode = root->fs_info->btree_inode;
621 return filemap_write_and_wait(btree_inode->i_mapping);
622 }
623 return btrfs_write_and_wait_marked_extents(root,
624 &trans->transaction->dirty_pages,
625 EXTENT_DIRTY);
626 }
627
628 /*
629 * this is used to update the root pointer in the tree of tree roots.
630 *
631 * But, in the case of the extent allocation tree, updating the root
632 * pointer may allocate blocks which may change the root of the extent
633 * allocation tree.
634 *
635 * So, this loops and repeats and makes sure the cowonly root didn't
636 * change while the root pointer was being updated in the metadata.
637 */
638 static int update_cowonly_root(struct btrfs_trans_handle *trans,
639 struct btrfs_root *root)
640 {
641 int ret;
642 u64 old_root_bytenr;
643 u64 old_root_used;
644 struct btrfs_root *tree_root = root->fs_info->tree_root;
645
646 old_root_used = btrfs_root_used(&root->root_item);
647 btrfs_write_dirty_block_groups(trans, root);
648
649 while (1) {
650 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
651 if (old_root_bytenr == root->node->start &&
652 old_root_used == btrfs_root_used(&root->root_item))
653 break;
654
655 btrfs_set_root_node(&root->root_item, root->node);
656 ret = btrfs_update_root(trans, tree_root,
657 &root->root_key,
658 &root->root_item);
659 BUG_ON(ret);
660
661 old_root_used = btrfs_root_used(&root->root_item);
662 ret = btrfs_write_dirty_block_groups(trans, root);
663 BUG_ON(ret);
664 }
665
666 if (root != root->fs_info->extent_root)
667 switch_commit_root(root);
668
669 return 0;
670 }
671
672 /*
673 * update all the cowonly tree roots on disk
674 */
675 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
676 struct btrfs_root *root)
677 {
678 struct btrfs_fs_info *fs_info = root->fs_info;
679 struct list_head *next;
680 struct extent_buffer *eb;
681 int ret;
682
683 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
684 BUG_ON(ret);
685
686 eb = btrfs_lock_root_node(fs_info->tree_root);
687 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
688 btrfs_tree_unlock(eb);
689 free_extent_buffer(eb);
690
691 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
692 BUG_ON(ret);
693
694 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
695 next = fs_info->dirty_cowonly_roots.next;
696 list_del_init(next);
697 root = list_entry(next, struct btrfs_root, dirty_list);
698
699 update_cowonly_root(trans, root);
700 }
701
702 down_write(&fs_info->extent_commit_sem);
703 switch_commit_root(fs_info->extent_root);
704 up_write(&fs_info->extent_commit_sem);
705
706 return 0;
707 }
708
709 /*
710 * dead roots are old snapshots that need to be deleted. This allocates
711 * a dirty root struct and adds it into the list of dead roots that need to
712 * be deleted
713 */
714 int btrfs_add_dead_root(struct btrfs_root *root)
715 {
716 mutex_lock(&root->fs_info->trans_mutex);
717 list_add(&root->root_list, &root->fs_info->dead_roots);
718 mutex_unlock(&root->fs_info->trans_mutex);
719 return 0;
720 }
721
722 /*
723 * update all the cowonly tree roots on disk
724 */
725 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
726 struct btrfs_root *root)
727 {
728 struct btrfs_root *gang[8];
729 struct btrfs_fs_info *fs_info = root->fs_info;
730 int i;
731 int ret;
732 int err = 0;
733
734 while (1) {
735 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
736 (void **)gang, 0,
737 ARRAY_SIZE(gang),
738 BTRFS_ROOT_TRANS_TAG);
739 if (ret == 0)
740 break;
741 for (i = 0; i < ret; i++) {
742 root = gang[i];
743 radix_tree_tag_clear(&fs_info->fs_roots_radix,
744 (unsigned long)root->root_key.objectid,
745 BTRFS_ROOT_TRANS_TAG);
746
747 btrfs_free_log(trans, root);
748 btrfs_update_reloc_root(trans, root);
749 btrfs_orphan_commit_root(trans, root);
750
751 if (root->commit_root != root->node) {
752 switch_commit_root(root);
753 btrfs_set_root_node(&root->root_item,
754 root->node);
755 }
756
757 err = btrfs_update_root(trans, fs_info->tree_root,
758 &root->root_key,
759 &root->root_item);
760 if (err)
761 break;
762 }
763 }
764 return err;
765 }
766
767 /*
768 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
769 * otherwise every leaf in the btree is read and defragged.
770 */
771 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
772 {
773 struct btrfs_fs_info *info = root->fs_info;
774 struct btrfs_trans_handle *trans;
775 int ret;
776 unsigned long nr;
777
778 if (xchg(&root->defrag_running, 1))
779 return 0;
780
781 while (1) {
782 trans = btrfs_start_transaction(root, 0);
783 if (IS_ERR(trans))
784 return PTR_ERR(trans);
785
786 ret = btrfs_defrag_leaves(trans, root, cacheonly);
787
788 nr = trans->blocks_used;
789 btrfs_end_transaction(trans, root);
790 btrfs_btree_balance_dirty(info->tree_root, nr);
791 cond_resched();
792
793 if (root->fs_info->closing || ret != -EAGAIN)
794 break;
795 }
796 root->defrag_running = 0;
797 return ret;
798 }
799
800 #if 0
801 /*
802 * when dropping snapshots, we generate a ton of delayed refs, and it makes
803 * sense not to join the transaction while it is trying to flush the current
804 * queue of delayed refs out.
805 *
806 * This is used by the drop snapshot code only
807 */
808 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
809 {
810 DEFINE_WAIT(wait);
811
812 mutex_lock(&info->trans_mutex);
813 while (info->running_transaction &&
814 info->running_transaction->delayed_refs.flushing) {
815 prepare_to_wait(&info->transaction_wait, &wait,
816 TASK_UNINTERRUPTIBLE);
817 mutex_unlock(&info->trans_mutex);
818
819 schedule();
820
821 mutex_lock(&info->trans_mutex);
822 finish_wait(&info->transaction_wait, &wait);
823 }
824 mutex_unlock(&info->trans_mutex);
825 return 0;
826 }
827
828 /*
829 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
830 * all of them
831 */
832 int btrfs_drop_dead_root(struct btrfs_root *root)
833 {
834 struct btrfs_trans_handle *trans;
835 struct btrfs_root *tree_root = root->fs_info->tree_root;
836 unsigned long nr;
837 int ret;
838
839 while (1) {
840 /*
841 * we don't want to jump in and create a bunch of
842 * delayed refs if the transaction is starting to close
843 */
844 wait_transaction_pre_flush(tree_root->fs_info);
845 trans = btrfs_start_transaction(tree_root, 1);
846
847 /*
848 * we've joined a transaction, make sure it isn't
849 * closing right now
850 */
851 if (trans->transaction->delayed_refs.flushing) {
852 btrfs_end_transaction(trans, tree_root);
853 continue;
854 }
855
856 ret = btrfs_drop_snapshot(trans, root);
857 if (ret != -EAGAIN)
858 break;
859
860 ret = btrfs_update_root(trans, tree_root,
861 &root->root_key,
862 &root->root_item);
863 if (ret)
864 break;
865
866 nr = trans->blocks_used;
867 ret = btrfs_end_transaction(trans, tree_root);
868 BUG_ON(ret);
869
870 btrfs_btree_balance_dirty(tree_root, nr);
871 cond_resched();
872 }
873 BUG_ON(ret);
874
875 ret = btrfs_del_root(trans, tree_root, &root->root_key);
876 BUG_ON(ret);
877
878 nr = trans->blocks_used;
879 ret = btrfs_end_transaction(trans, tree_root);
880 BUG_ON(ret);
881
882 free_extent_buffer(root->node);
883 free_extent_buffer(root->commit_root);
884 kfree(root);
885
886 btrfs_btree_balance_dirty(tree_root, nr);
887 return ret;
888 }
889 #endif
890
891 /*
892 * new snapshots need to be created at a very specific time in the
893 * transaction commit. This does the actual creation
894 */
895 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
896 struct btrfs_fs_info *fs_info,
897 struct btrfs_pending_snapshot *pending)
898 {
899 struct btrfs_key key;
900 struct btrfs_root_item *new_root_item;
901 struct btrfs_root *tree_root = fs_info->tree_root;
902 struct btrfs_root *root = pending->root;
903 struct btrfs_root *parent_root;
904 struct inode *parent_inode;
905 struct dentry *parent;
906 struct dentry *dentry;
907 struct extent_buffer *tmp;
908 struct extent_buffer *old;
909 int ret;
910 u64 to_reserve = 0;
911 u64 index = 0;
912 u64 objectid;
913
914 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
915 if (!new_root_item) {
916 pending->error = -ENOMEM;
917 goto fail;
918 }
919
920 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
921 if (ret) {
922 pending->error = ret;
923 goto fail;
924 }
925
926 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
927 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
928
929 if (to_reserve > 0) {
930 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
931 to_reserve);
932 if (ret) {
933 pending->error = ret;
934 goto fail;
935 }
936 }
937
938 key.objectid = objectid;
939 key.offset = (u64)-1;
940 key.type = BTRFS_ROOT_ITEM_KEY;
941
942 trans->block_rsv = &pending->block_rsv;
943
944 dentry = pending->dentry;
945 parent = dget_parent(dentry);
946 parent_inode = parent->d_inode;
947 parent_root = BTRFS_I(parent_inode)->root;
948 record_root_in_trans(trans, parent_root);
949
950 /*
951 * insert the directory item
952 */
953 ret = btrfs_set_inode_index(parent_inode, &index);
954 BUG_ON(ret);
955 ret = btrfs_insert_dir_item(trans, parent_root,
956 dentry->d_name.name, dentry->d_name.len,
957 parent_inode->i_ino, &key,
958 BTRFS_FT_DIR, index);
959 BUG_ON(ret);
960
961 btrfs_i_size_write(parent_inode, parent_inode->i_size +
962 dentry->d_name.len * 2);
963 ret = btrfs_update_inode(trans, parent_root, parent_inode);
964 BUG_ON(ret);
965
966 record_root_in_trans(trans, root);
967 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
968 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
969
970 old = btrfs_lock_root_node(root);
971 btrfs_cow_block(trans, root, old, NULL, 0, &old);
972 btrfs_set_lock_blocking(old);
973
974 btrfs_copy_root(trans, root, old, &tmp, objectid);
975 btrfs_tree_unlock(old);
976 free_extent_buffer(old);
977
978 btrfs_set_root_node(new_root_item, tmp);
979 /* record when the snapshot was created in key.offset */
980 key.offset = trans->transid;
981 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
982 btrfs_tree_unlock(tmp);
983 free_extent_buffer(tmp);
984 BUG_ON(ret);
985
986 /*
987 * insert root back/forward references
988 */
989 ret = btrfs_add_root_ref(trans, tree_root, objectid,
990 parent_root->root_key.objectid,
991 parent_inode->i_ino, index,
992 dentry->d_name.name, dentry->d_name.len);
993 BUG_ON(ret);
994 dput(parent);
995
996 key.offset = (u64)-1;
997 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
998 BUG_ON(IS_ERR(pending->snap));
999
1000 btrfs_reloc_post_snapshot(trans, pending);
1001 btrfs_orphan_post_snapshot(trans, pending);
1002 fail:
1003 kfree(new_root_item);
1004 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1005 return 0;
1006 }
1007
1008 /*
1009 * create all the snapshots we've scheduled for creation
1010 */
1011 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1012 struct btrfs_fs_info *fs_info)
1013 {
1014 struct btrfs_pending_snapshot *pending;
1015 struct list_head *head = &trans->transaction->pending_snapshots;
1016 int ret;
1017
1018 list_for_each_entry(pending, head, list) {
1019 ret = create_pending_snapshot(trans, fs_info, pending);
1020 BUG_ON(ret);
1021 }
1022 return 0;
1023 }
1024
1025 static void update_super_roots(struct btrfs_root *root)
1026 {
1027 struct btrfs_root_item *root_item;
1028 struct btrfs_super_block *super;
1029
1030 super = &root->fs_info->super_copy;
1031
1032 root_item = &root->fs_info->chunk_root->root_item;
1033 super->chunk_root = root_item->bytenr;
1034 super->chunk_root_generation = root_item->generation;
1035 super->chunk_root_level = root_item->level;
1036
1037 root_item = &root->fs_info->tree_root->root_item;
1038 super->root = root_item->bytenr;
1039 super->generation = root_item->generation;
1040 super->root_level = root_item->level;
1041 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1042 super->cache_generation = root_item->generation;
1043 }
1044
1045 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1046 {
1047 int ret = 0;
1048 spin_lock(&info->new_trans_lock);
1049 if (info->running_transaction)
1050 ret = info->running_transaction->in_commit;
1051 spin_unlock(&info->new_trans_lock);
1052 return ret;
1053 }
1054
1055 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1056 {
1057 int ret = 0;
1058 spin_lock(&info->new_trans_lock);
1059 if (info->running_transaction)
1060 ret = info->running_transaction->blocked;
1061 spin_unlock(&info->new_trans_lock);
1062 return ret;
1063 }
1064
1065 /*
1066 * wait for the current transaction commit to start and block subsequent
1067 * transaction joins
1068 */
1069 static void wait_current_trans_commit_start(struct btrfs_root *root,
1070 struct btrfs_transaction *trans)
1071 {
1072 DEFINE_WAIT(wait);
1073
1074 if (trans->in_commit)
1075 return;
1076
1077 while (1) {
1078 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1079 TASK_UNINTERRUPTIBLE);
1080 if (trans->in_commit) {
1081 finish_wait(&root->fs_info->transaction_blocked_wait,
1082 &wait);
1083 break;
1084 }
1085 mutex_unlock(&root->fs_info->trans_mutex);
1086 schedule();
1087 mutex_lock(&root->fs_info->trans_mutex);
1088 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1089 }
1090 }
1091
1092 /*
1093 * wait for the current transaction to start and then become unblocked.
1094 * caller holds ref.
1095 */
1096 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1097 struct btrfs_transaction *trans)
1098 {
1099 DEFINE_WAIT(wait);
1100
1101 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1102 return;
1103
1104 while (1) {
1105 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1106 TASK_UNINTERRUPTIBLE);
1107 if (trans->commit_done ||
1108 (trans->in_commit && !trans->blocked)) {
1109 finish_wait(&root->fs_info->transaction_wait,
1110 &wait);
1111 break;
1112 }
1113 mutex_unlock(&root->fs_info->trans_mutex);
1114 schedule();
1115 mutex_lock(&root->fs_info->trans_mutex);
1116 finish_wait(&root->fs_info->transaction_wait,
1117 &wait);
1118 }
1119 }
1120
1121 /*
1122 * commit transactions asynchronously. once btrfs_commit_transaction_async
1123 * returns, any subsequent transaction will not be allowed to join.
1124 */
1125 struct btrfs_async_commit {
1126 struct btrfs_trans_handle *newtrans;
1127 struct btrfs_root *root;
1128 struct delayed_work work;
1129 };
1130
1131 static void do_async_commit(struct work_struct *work)
1132 {
1133 struct btrfs_async_commit *ac =
1134 container_of(work, struct btrfs_async_commit, work.work);
1135
1136 btrfs_commit_transaction(ac->newtrans, ac->root);
1137 kfree(ac);
1138 }
1139
1140 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root,
1142 int wait_for_unblock)
1143 {
1144 struct btrfs_async_commit *ac;
1145 struct btrfs_transaction *cur_trans;
1146
1147 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1148 BUG_ON(!ac);
1149
1150 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1151 ac->root = root;
1152 ac->newtrans = btrfs_join_transaction(root, 0);
1153
1154 /* take transaction reference */
1155 mutex_lock(&root->fs_info->trans_mutex);
1156 cur_trans = trans->transaction;
1157 cur_trans->use_count++;
1158 mutex_unlock(&root->fs_info->trans_mutex);
1159
1160 btrfs_end_transaction(trans, root);
1161 schedule_delayed_work(&ac->work, 0);
1162
1163 /* wait for transaction to start and unblock */
1164 mutex_lock(&root->fs_info->trans_mutex);
1165 if (wait_for_unblock)
1166 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1167 else
1168 wait_current_trans_commit_start(root, cur_trans);
1169 put_transaction(cur_trans);
1170 mutex_unlock(&root->fs_info->trans_mutex);
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * btrfs_transaction state sequence:
1177 * in_commit = 0, blocked = 0 (initial)
1178 * in_commit = 1, blocked = 1
1179 * blocked = 0
1180 * commit_done = 1
1181 */
1182 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root)
1184 {
1185 unsigned long joined = 0;
1186 struct btrfs_transaction *cur_trans;
1187 struct btrfs_transaction *prev_trans = NULL;
1188 DEFINE_WAIT(wait);
1189 int ret;
1190 int should_grow = 0;
1191 unsigned long now = get_seconds();
1192 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1193
1194 btrfs_run_ordered_operations(root, 0);
1195
1196 /* make a pass through all the delayed refs we have so far
1197 * any runnings procs may add more while we are here
1198 */
1199 ret = btrfs_run_delayed_refs(trans, root, 0);
1200 BUG_ON(ret);
1201
1202 btrfs_trans_release_metadata(trans, root);
1203
1204 cur_trans = trans->transaction;
1205 /*
1206 * set the flushing flag so procs in this transaction have to
1207 * start sending their work down.
1208 */
1209 cur_trans->delayed_refs.flushing = 1;
1210
1211 ret = btrfs_run_delayed_refs(trans, root, 0);
1212 BUG_ON(ret);
1213
1214 mutex_lock(&root->fs_info->trans_mutex);
1215 if (cur_trans->in_commit) {
1216 cur_trans->use_count++;
1217 mutex_unlock(&root->fs_info->trans_mutex);
1218 btrfs_end_transaction(trans, root);
1219
1220 ret = wait_for_commit(root, cur_trans);
1221 BUG_ON(ret);
1222
1223 mutex_lock(&root->fs_info->trans_mutex);
1224 put_transaction(cur_trans);
1225 mutex_unlock(&root->fs_info->trans_mutex);
1226
1227 return 0;
1228 }
1229
1230 trans->transaction->in_commit = 1;
1231 trans->transaction->blocked = 1;
1232 wake_up(&root->fs_info->transaction_blocked_wait);
1233
1234 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1235 prev_trans = list_entry(cur_trans->list.prev,
1236 struct btrfs_transaction, list);
1237 if (!prev_trans->commit_done) {
1238 prev_trans->use_count++;
1239 mutex_unlock(&root->fs_info->trans_mutex);
1240
1241 wait_for_commit(root, prev_trans);
1242
1243 mutex_lock(&root->fs_info->trans_mutex);
1244 put_transaction(prev_trans);
1245 }
1246 }
1247
1248 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1249 should_grow = 1;
1250
1251 do {
1252 int snap_pending = 0;
1253 joined = cur_trans->num_joined;
1254 if (!list_empty(&trans->transaction->pending_snapshots))
1255 snap_pending = 1;
1256
1257 WARN_ON(cur_trans != trans->transaction);
1258 mutex_unlock(&root->fs_info->trans_mutex);
1259
1260 if (flush_on_commit || snap_pending) {
1261 btrfs_start_delalloc_inodes(root, 1);
1262 ret = btrfs_wait_ordered_extents(root, 0, 1);
1263 BUG_ON(ret);
1264 }
1265
1266 /*
1267 * rename don't use btrfs_join_transaction, so, once we
1268 * set the transaction to blocked above, we aren't going
1269 * to get any new ordered operations. We can safely run
1270 * it here and no for sure that nothing new will be added
1271 * to the list
1272 */
1273 btrfs_run_ordered_operations(root, 1);
1274
1275 prepare_to_wait(&cur_trans->writer_wait, &wait,
1276 TASK_UNINTERRUPTIBLE);
1277
1278 smp_mb();
1279 if (cur_trans->num_writers > 1)
1280 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1281 else if (should_grow)
1282 schedule_timeout(1);
1283
1284 mutex_lock(&root->fs_info->trans_mutex);
1285 finish_wait(&cur_trans->writer_wait, &wait);
1286 } while (cur_trans->num_writers > 1 ||
1287 (should_grow && cur_trans->num_joined != joined));
1288
1289 ret = create_pending_snapshots(trans, root->fs_info);
1290 BUG_ON(ret);
1291
1292 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1293 BUG_ON(ret);
1294
1295 WARN_ON(cur_trans != trans->transaction);
1296
1297 /* btrfs_commit_tree_roots is responsible for getting the
1298 * various roots consistent with each other. Every pointer
1299 * in the tree of tree roots has to point to the most up to date
1300 * root for every subvolume and other tree. So, we have to keep
1301 * the tree logging code from jumping in and changing any
1302 * of the trees.
1303 *
1304 * At this point in the commit, there can't be any tree-log
1305 * writers, but a little lower down we drop the trans mutex
1306 * and let new people in. By holding the tree_log_mutex
1307 * from now until after the super is written, we avoid races
1308 * with the tree-log code.
1309 */
1310 mutex_lock(&root->fs_info->tree_log_mutex);
1311
1312 ret = commit_fs_roots(trans, root);
1313 BUG_ON(ret);
1314
1315 /* commit_fs_roots gets rid of all the tree log roots, it is now
1316 * safe to free the root of tree log roots
1317 */
1318 btrfs_free_log_root_tree(trans, root->fs_info);
1319
1320 ret = commit_cowonly_roots(trans, root);
1321 BUG_ON(ret);
1322
1323 btrfs_prepare_extent_commit(trans, root);
1324
1325 cur_trans = root->fs_info->running_transaction;
1326 spin_lock(&root->fs_info->new_trans_lock);
1327 root->fs_info->running_transaction = NULL;
1328 spin_unlock(&root->fs_info->new_trans_lock);
1329
1330 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1331 root->fs_info->tree_root->node);
1332 switch_commit_root(root->fs_info->tree_root);
1333
1334 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1335 root->fs_info->chunk_root->node);
1336 switch_commit_root(root->fs_info->chunk_root);
1337
1338 update_super_roots(root);
1339
1340 if (!root->fs_info->log_root_recovering) {
1341 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1342 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1343 }
1344
1345 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1346 sizeof(root->fs_info->super_copy));
1347
1348 trans->transaction->blocked = 0;
1349
1350 wake_up(&root->fs_info->transaction_wait);
1351
1352 mutex_unlock(&root->fs_info->trans_mutex);
1353 ret = btrfs_write_and_wait_transaction(trans, root);
1354 BUG_ON(ret);
1355 write_ctree_super(trans, root, 0);
1356
1357 /*
1358 * the super is written, we can safely allow the tree-loggers
1359 * to go about their business
1360 */
1361 mutex_unlock(&root->fs_info->tree_log_mutex);
1362
1363 btrfs_finish_extent_commit(trans, root);
1364
1365 mutex_lock(&root->fs_info->trans_mutex);
1366
1367 cur_trans->commit_done = 1;
1368
1369 root->fs_info->last_trans_committed = cur_trans->transid;
1370
1371 wake_up(&cur_trans->commit_wait);
1372
1373 put_transaction(cur_trans);
1374 put_transaction(cur_trans);
1375
1376 mutex_unlock(&root->fs_info->trans_mutex);
1377
1378 if (current->journal_info == trans)
1379 current->journal_info = NULL;
1380
1381 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1382
1383 if (current != root->fs_info->transaction_kthread)
1384 btrfs_run_delayed_iputs(root);
1385
1386 return ret;
1387 }
1388
1389 /*
1390 * interface function to delete all the snapshots we have scheduled for deletion
1391 */
1392 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1393 {
1394 LIST_HEAD(list);
1395 struct btrfs_fs_info *fs_info = root->fs_info;
1396
1397 mutex_lock(&fs_info->trans_mutex);
1398 list_splice_init(&fs_info->dead_roots, &list);
1399 mutex_unlock(&fs_info->trans_mutex);
1400
1401 while (!list_empty(&list)) {
1402 root = list_entry(list.next, struct btrfs_root, root_list);
1403 list_del(&root->root_list);
1404
1405 if (btrfs_header_backref_rev(root->node) <
1406 BTRFS_MIXED_BACKREF_REV)
1407 btrfs_drop_snapshot(root, NULL, 0);
1408 else
1409 btrfs_drop_snapshot(root, NULL, 1);
1410 }
1411 return 0;
1412 }