]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/transaction.c
Merge remote-tracking branches 'asoc/fix/sgtl5000' and 'asoc/fix/sn95031' into asoc...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81 spin_lock(&tree->lock);
82 while (!RB_EMPTY_ROOT(&tree->state)) {
83 struct rb_node *node;
84 struct extent_state *state;
85
86 node = rb_first(&tree->state);
87 state = rb_entry(node, struct extent_state, rb_node);
88 rb_erase(&state->rb_node, &tree->state);
89 RB_CLEAR_NODE(&state->rb_node);
90 /*
91 * btree io trees aren't supposed to have tasks waiting for
92 * changes in the flags of extent states ever.
93 */
94 ASSERT(!waitqueue_active(&state->wq));
95 free_extent_state(state);
96 if (need_resched()) {
97 spin_unlock(&tree->lock);
98 cond_resched();
99 spin_lock(&tree->lock);
100 }
101 }
102 spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 struct btrfs_fs_info *fs_info)
107 {
108 struct btrfs_root *root, *tmp;
109
110 down_write(&fs_info->commit_root_sem);
111 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 dirty_list) {
113 list_del_init(&root->dirty_list);
114 free_extent_buffer(root->commit_root);
115 root->commit_root = btrfs_root_node(root);
116 if (is_fstree(root->objectid))
117 btrfs_unpin_free_ino(root);
118 clear_btree_io_tree(&root->dirty_log_pages);
119 }
120 up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 unsigned int type)
125 {
126 if (type & TRANS_EXTWRITERS)
127 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 unsigned int type)
132 {
133 if (type & TRANS_EXTWRITERS)
134 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 unsigned int type)
139 {
140 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149 * either allocate a new transaction or hop into the existing one
150 */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 struct btrfs_transaction *cur_trans;
154 struct btrfs_fs_info *fs_info = root->fs_info;
155
156 spin_lock(&fs_info->trans_lock);
157 loop:
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 spin_unlock(&fs_info->trans_lock);
161 return -EROFS;
162 }
163
164 cur_trans = fs_info->running_transaction;
165 if (cur_trans) {
166 if (cur_trans->aborted) {
167 spin_unlock(&fs_info->trans_lock);
168 return cur_trans->aborted;
169 }
170 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 spin_unlock(&fs_info->trans_lock);
172 return -EBUSY;
173 }
174 atomic_inc(&cur_trans->use_count);
175 atomic_inc(&cur_trans->num_writers);
176 extwriter_counter_inc(cur_trans, type);
177 spin_unlock(&fs_info->trans_lock);
178 return 0;
179 }
180 spin_unlock(&fs_info->trans_lock);
181
182 /*
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
185 */
186 if (type == TRANS_ATTACH)
187 return -ENOENT;
188
189 /*
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
192 */
193 BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 if (!cur_trans)
197 return -ENOMEM;
198
199 spin_lock(&fs_info->trans_lock);
200 if (fs_info->running_transaction) {
201 /*
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
204 */
205 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 goto loop;
207 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 spin_unlock(&fs_info->trans_lock);
209 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 return -EROFS;
211 }
212
213 atomic_set(&cur_trans->num_writers, 1);
214 extwriter_counter_init(cur_trans, type);
215 init_waitqueue_head(&cur_trans->writer_wait);
216 init_waitqueue_head(&cur_trans->commit_wait);
217 cur_trans->state = TRANS_STATE_RUNNING;
218 /*
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
221 */
222 atomic_set(&cur_trans->use_count, 2);
223 cur_trans->have_free_bgs = 0;
224 cur_trans->start_time = get_seconds();
225
226 cur_trans->delayed_refs.href_root = RB_ROOT;
227 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
228 cur_trans->delayed_refs.num_heads_ready = 0;
229 cur_trans->delayed_refs.num_heads = 0;
230 cur_trans->delayed_refs.flushing = 0;
231 cur_trans->delayed_refs.run_delayed_start = 0;
232
233 /*
234 * although the tree mod log is per file system and not per transaction,
235 * the log must never go across transaction boundaries.
236 */
237 smp_mb();
238 if (!list_empty(&fs_info->tree_mod_seq_list))
239 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
240 "creating a fresh transaction\n");
241 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
242 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
243 "creating a fresh transaction\n");
244 atomic64_set(&fs_info->tree_mod_seq, 0);
245
246 spin_lock_init(&cur_trans->delayed_refs.lock);
247
248 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
249 INIT_LIST_HEAD(&cur_trans->pending_chunks);
250 INIT_LIST_HEAD(&cur_trans->switch_commits);
251 INIT_LIST_HEAD(&cur_trans->pending_ordered);
252 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
253 spin_lock_init(&cur_trans->dirty_bgs_lock);
254 list_add_tail(&cur_trans->list, &fs_info->trans_list);
255 extent_io_tree_init(&cur_trans->dirty_pages,
256 fs_info->btree_inode->i_mapping);
257 fs_info->generation++;
258 cur_trans->transid = fs_info->generation;
259 fs_info->running_transaction = cur_trans;
260 cur_trans->aborted = 0;
261 spin_unlock(&fs_info->trans_lock);
262
263 return 0;
264 }
265
266 /*
267 * this does all the record keeping required to make sure that a reference
268 * counted root is properly recorded in a given transaction. This is required
269 * to make sure the old root from before we joined the transaction is deleted
270 * when the transaction commits
271 */
272 static int record_root_in_trans(struct btrfs_trans_handle *trans,
273 struct btrfs_root *root)
274 {
275 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
276 root->last_trans < trans->transid) {
277 WARN_ON(root == root->fs_info->extent_root);
278 WARN_ON(root->commit_root != root->node);
279
280 /*
281 * see below for IN_TRANS_SETUP usage rules
282 * we have the reloc mutex held now, so there
283 * is only one writer in this function
284 */
285 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
286
287 /* make sure readers find IN_TRANS_SETUP before
288 * they find our root->last_trans update
289 */
290 smp_wmb();
291
292 spin_lock(&root->fs_info->fs_roots_radix_lock);
293 if (root->last_trans == trans->transid) {
294 spin_unlock(&root->fs_info->fs_roots_radix_lock);
295 return 0;
296 }
297 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
298 (unsigned long)root->root_key.objectid,
299 BTRFS_ROOT_TRANS_TAG);
300 spin_unlock(&root->fs_info->fs_roots_radix_lock);
301 root->last_trans = trans->transid;
302
303 /* this is pretty tricky. We don't want to
304 * take the relocation lock in btrfs_record_root_in_trans
305 * unless we're really doing the first setup for this root in
306 * this transaction.
307 *
308 * Normally we'd use root->last_trans as a flag to decide
309 * if we want to take the expensive mutex.
310 *
311 * But, we have to set root->last_trans before we
312 * init the relocation root, otherwise, we trip over warnings
313 * in ctree.c. The solution used here is to flag ourselves
314 * with root IN_TRANS_SETUP. When this is 1, we're still
315 * fixing up the reloc trees and everyone must wait.
316 *
317 * When this is zero, they can trust root->last_trans and fly
318 * through btrfs_record_root_in_trans without having to take the
319 * lock. smp_wmb() makes sure that all the writes above are
320 * done before we pop in the zero below
321 */
322 btrfs_init_reloc_root(trans, root);
323 smp_mb__before_atomic();
324 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325 }
326 return 0;
327 }
328
329
330 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
331 struct btrfs_root *root)
332 {
333 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
334 return 0;
335
336 /*
337 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
338 * and barriers
339 */
340 smp_rmb();
341 if (root->last_trans == trans->transid &&
342 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
343 return 0;
344
345 mutex_lock(&root->fs_info->reloc_mutex);
346 record_root_in_trans(trans, root);
347 mutex_unlock(&root->fs_info->reloc_mutex);
348
349 return 0;
350 }
351
352 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
353 {
354 return (trans->state >= TRANS_STATE_BLOCKED &&
355 trans->state < TRANS_STATE_UNBLOCKED &&
356 !trans->aborted);
357 }
358
359 /* wait for commit against the current transaction to become unblocked
360 * when this is done, it is safe to start a new transaction, but the current
361 * transaction might not be fully on disk.
362 */
363 static void wait_current_trans(struct btrfs_root *root)
364 {
365 struct btrfs_transaction *cur_trans;
366
367 spin_lock(&root->fs_info->trans_lock);
368 cur_trans = root->fs_info->running_transaction;
369 if (cur_trans && is_transaction_blocked(cur_trans)) {
370 atomic_inc(&cur_trans->use_count);
371 spin_unlock(&root->fs_info->trans_lock);
372
373 wait_event(root->fs_info->transaction_wait,
374 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
375 cur_trans->aborted);
376 btrfs_put_transaction(cur_trans);
377 } else {
378 spin_unlock(&root->fs_info->trans_lock);
379 }
380 }
381
382 static int may_wait_transaction(struct btrfs_root *root, int type)
383 {
384 if (root->fs_info->log_root_recovering)
385 return 0;
386
387 if (type == TRANS_USERSPACE)
388 return 1;
389
390 if (type == TRANS_START &&
391 !atomic_read(&root->fs_info->open_ioctl_trans))
392 return 1;
393
394 return 0;
395 }
396
397 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
398 {
399 if (!root->fs_info->reloc_ctl ||
400 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
401 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
402 root->reloc_root)
403 return false;
404
405 return true;
406 }
407
408 static struct btrfs_trans_handle *
409 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
410 enum btrfs_reserve_flush_enum flush)
411 {
412 struct btrfs_trans_handle *h;
413 struct btrfs_transaction *cur_trans;
414 u64 num_bytes = 0;
415 u64 qgroup_reserved = 0;
416 bool reloc_reserved = false;
417 int ret;
418
419 /* Send isn't supposed to start transactions. */
420 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
421
422 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
423 return ERR_PTR(-EROFS);
424
425 if (current->journal_info) {
426 WARN_ON(type & TRANS_EXTWRITERS);
427 h = current->journal_info;
428 h->use_count++;
429 WARN_ON(h->use_count > 2);
430 h->orig_rsv = h->block_rsv;
431 h->block_rsv = NULL;
432 goto got_it;
433 }
434
435 /*
436 * Do the reservation before we join the transaction so we can do all
437 * the appropriate flushing if need be.
438 */
439 if (num_items > 0 && root != root->fs_info->chunk_root) {
440 if (root->fs_info->quota_enabled &&
441 is_fstree(root->root_key.objectid)) {
442 qgroup_reserved = num_items * root->nodesize;
443 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
444 if (ret)
445 return ERR_PTR(ret);
446 }
447
448 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
449 /*
450 * Do the reservation for the relocation root creation
451 */
452 if (need_reserve_reloc_root(root)) {
453 num_bytes += root->nodesize;
454 reloc_reserved = true;
455 }
456
457 ret = btrfs_block_rsv_add(root,
458 &root->fs_info->trans_block_rsv,
459 num_bytes, flush);
460 if (ret)
461 goto reserve_fail;
462 }
463 again:
464 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
465 if (!h) {
466 ret = -ENOMEM;
467 goto alloc_fail;
468 }
469
470 /*
471 * If we are JOIN_NOLOCK we're already committing a transaction and
472 * waiting on this guy, so we don't need to do the sb_start_intwrite
473 * because we're already holding a ref. We need this because we could
474 * have raced in and did an fsync() on a file which can kick a commit
475 * and then we deadlock with somebody doing a freeze.
476 *
477 * If we are ATTACH, it means we just want to catch the current
478 * transaction and commit it, so we needn't do sb_start_intwrite().
479 */
480 if (type & __TRANS_FREEZABLE)
481 sb_start_intwrite(root->fs_info->sb);
482
483 if (may_wait_transaction(root, type))
484 wait_current_trans(root);
485
486 do {
487 ret = join_transaction(root, type);
488 if (ret == -EBUSY) {
489 wait_current_trans(root);
490 if (unlikely(type == TRANS_ATTACH))
491 ret = -ENOENT;
492 }
493 } while (ret == -EBUSY);
494
495 if (ret < 0) {
496 /* We must get the transaction if we are JOIN_NOLOCK. */
497 BUG_ON(type == TRANS_JOIN_NOLOCK);
498 goto join_fail;
499 }
500
501 cur_trans = root->fs_info->running_transaction;
502
503 h->transid = cur_trans->transid;
504 h->transaction = cur_trans;
505 h->blocks_used = 0;
506 h->bytes_reserved = 0;
507 h->root = root;
508 h->delayed_ref_updates = 0;
509 h->use_count = 1;
510 h->adding_csums = 0;
511 h->block_rsv = NULL;
512 h->orig_rsv = NULL;
513 h->aborted = 0;
514 h->qgroup_reserved = 0;
515 h->delayed_ref_elem.seq = 0;
516 h->type = type;
517 h->allocating_chunk = false;
518 h->reloc_reserved = false;
519 h->sync = false;
520 INIT_LIST_HEAD(&h->qgroup_ref_list);
521 INIT_LIST_HEAD(&h->new_bgs);
522 INIT_LIST_HEAD(&h->ordered);
523
524 smp_mb();
525 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
526 may_wait_transaction(root, type)) {
527 current->journal_info = h;
528 btrfs_commit_transaction(h, root);
529 goto again;
530 }
531
532 if (num_bytes) {
533 trace_btrfs_space_reservation(root->fs_info, "transaction",
534 h->transid, num_bytes, 1);
535 h->block_rsv = &root->fs_info->trans_block_rsv;
536 h->bytes_reserved = num_bytes;
537 h->reloc_reserved = reloc_reserved;
538 }
539 h->qgroup_reserved = qgroup_reserved;
540
541 got_it:
542 btrfs_record_root_in_trans(h, root);
543
544 if (!current->journal_info && type != TRANS_USERSPACE)
545 current->journal_info = h;
546 return h;
547
548 join_fail:
549 if (type & __TRANS_FREEZABLE)
550 sb_end_intwrite(root->fs_info->sb);
551 kmem_cache_free(btrfs_trans_handle_cachep, h);
552 alloc_fail:
553 if (num_bytes)
554 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
555 num_bytes);
556 reserve_fail:
557 if (qgroup_reserved)
558 btrfs_qgroup_free(root, qgroup_reserved);
559 return ERR_PTR(ret);
560 }
561
562 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
563 int num_items)
564 {
565 return start_transaction(root, num_items, TRANS_START,
566 BTRFS_RESERVE_FLUSH_ALL);
567 }
568
569 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
570 struct btrfs_root *root, int num_items)
571 {
572 return start_transaction(root, num_items, TRANS_START,
573 BTRFS_RESERVE_FLUSH_LIMIT);
574 }
575
576 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
577 {
578 return start_transaction(root, 0, TRANS_JOIN, 0);
579 }
580
581 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
582 {
583 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
584 }
585
586 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
587 {
588 return start_transaction(root, 0, TRANS_USERSPACE, 0);
589 }
590
591 /*
592 * btrfs_attach_transaction() - catch the running transaction
593 *
594 * It is used when we want to commit the current the transaction, but
595 * don't want to start a new one.
596 *
597 * Note: If this function return -ENOENT, it just means there is no
598 * running transaction. But it is possible that the inactive transaction
599 * is still in the memory, not fully on disk. If you hope there is no
600 * inactive transaction in the fs when -ENOENT is returned, you should
601 * invoke
602 * btrfs_attach_transaction_barrier()
603 */
604 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
605 {
606 return start_transaction(root, 0, TRANS_ATTACH, 0);
607 }
608
609 /*
610 * btrfs_attach_transaction_barrier() - catch the running transaction
611 *
612 * It is similar to the above function, the differentia is this one
613 * will wait for all the inactive transactions until they fully
614 * complete.
615 */
616 struct btrfs_trans_handle *
617 btrfs_attach_transaction_barrier(struct btrfs_root *root)
618 {
619 struct btrfs_trans_handle *trans;
620
621 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
622 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
623 btrfs_wait_for_commit(root, 0);
624
625 return trans;
626 }
627
628 /* wait for a transaction commit to be fully complete */
629 static noinline void wait_for_commit(struct btrfs_root *root,
630 struct btrfs_transaction *commit)
631 {
632 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
633 }
634
635 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
636 {
637 struct btrfs_transaction *cur_trans = NULL, *t;
638 int ret = 0;
639
640 if (transid) {
641 if (transid <= root->fs_info->last_trans_committed)
642 goto out;
643
644 /* find specified transaction */
645 spin_lock(&root->fs_info->trans_lock);
646 list_for_each_entry(t, &root->fs_info->trans_list, list) {
647 if (t->transid == transid) {
648 cur_trans = t;
649 atomic_inc(&cur_trans->use_count);
650 ret = 0;
651 break;
652 }
653 if (t->transid > transid) {
654 ret = 0;
655 break;
656 }
657 }
658 spin_unlock(&root->fs_info->trans_lock);
659
660 /*
661 * The specified transaction doesn't exist, or we
662 * raced with btrfs_commit_transaction
663 */
664 if (!cur_trans) {
665 if (transid > root->fs_info->last_trans_committed)
666 ret = -EINVAL;
667 goto out;
668 }
669 } else {
670 /* find newest transaction that is committing | committed */
671 spin_lock(&root->fs_info->trans_lock);
672 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
673 list) {
674 if (t->state >= TRANS_STATE_COMMIT_START) {
675 if (t->state == TRANS_STATE_COMPLETED)
676 break;
677 cur_trans = t;
678 atomic_inc(&cur_trans->use_count);
679 break;
680 }
681 }
682 spin_unlock(&root->fs_info->trans_lock);
683 if (!cur_trans)
684 goto out; /* nothing committing|committed */
685 }
686
687 wait_for_commit(root, cur_trans);
688 btrfs_put_transaction(cur_trans);
689 out:
690 return ret;
691 }
692
693 void btrfs_throttle(struct btrfs_root *root)
694 {
695 if (!atomic_read(&root->fs_info->open_ioctl_trans))
696 wait_current_trans(root);
697 }
698
699 static int should_end_transaction(struct btrfs_trans_handle *trans,
700 struct btrfs_root *root)
701 {
702 if (root->fs_info->global_block_rsv.space_info->full &&
703 btrfs_check_space_for_delayed_refs(trans, root))
704 return 1;
705
706 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
707 }
708
709 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
710 struct btrfs_root *root)
711 {
712 struct btrfs_transaction *cur_trans = trans->transaction;
713 int updates;
714 int err;
715
716 smp_mb();
717 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
718 cur_trans->delayed_refs.flushing)
719 return 1;
720
721 updates = trans->delayed_ref_updates;
722 trans->delayed_ref_updates = 0;
723 if (updates) {
724 err = btrfs_run_delayed_refs(trans, root, updates);
725 if (err) /* Error code will also eval true */
726 return err;
727 }
728
729 return should_end_transaction(trans, root);
730 }
731
732 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
733 struct btrfs_root *root, int throttle)
734 {
735 struct btrfs_transaction *cur_trans = trans->transaction;
736 struct btrfs_fs_info *info = root->fs_info;
737 unsigned long cur = trans->delayed_ref_updates;
738 int lock = (trans->type != TRANS_JOIN_NOLOCK);
739 int err = 0;
740 int must_run_delayed_refs = 0;
741
742 if (trans->use_count > 1) {
743 trans->use_count--;
744 trans->block_rsv = trans->orig_rsv;
745 return 0;
746 }
747
748 btrfs_trans_release_metadata(trans, root);
749 trans->block_rsv = NULL;
750
751 if (!list_empty(&trans->new_bgs))
752 btrfs_create_pending_block_groups(trans, root);
753
754 if (!list_empty(&trans->ordered)) {
755 spin_lock(&info->trans_lock);
756 list_splice(&trans->ordered, &cur_trans->pending_ordered);
757 spin_unlock(&info->trans_lock);
758 }
759
760 trans->delayed_ref_updates = 0;
761 if (!trans->sync) {
762 must_run_delayed_refs =
763 btrfs_should_throttle_delayed_refs(trans, root);
764 cur = max_t(unsigned long, cur, 32);
765
766 /*
767 * don't make the caller wait if they are from a NOLOCK
768 * or ATTACH transaction, it will deadlock with commit
769 */
770 if (must_run_delayed_refs == 1 &&
771 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
772 must_run_delayed_refs = 2;
773 }
774
775 if (trans->qgroup_reserved) {
776 /*
777 * the same root has to be passed here between start_transaction
778 * and end_transaction. Subvolume quota depends on this.
779 */
780 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
781 trans->qgroup_reserved = 0;
782 }
783
784 btrfs_trans_release_metadata(trans, root);
785 trans->block_rsv = NULL;
786
787 if (!list_empty(&trans->new_bgs))
788 btrfs_create_pending_block_groups(trans, root);
789
790 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
791 should_end_transaction(trans, root) &&
792 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
793 spin_lock(&info->trans_lock);
794 if (cur_trans->state == TRANS_STATE_RUNNING)
795 cur_trans->state = TRANS_STATE_BLOCKED;
796 spin_unlock(&info->trans_lock);
797 }
798
799 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
800 if (throttle)
801 return btrfs_commit_transaction(trans, root);
802 else
803 wake_up_process(info->transaction_kthread);
804 }
805
806 if (trans->type & __TRANS_FREEZABLE)
807 sb_end_intwrite(root->fs_info->sb);
808
809 WARN_ON(cur_trans != info->running_transaction);
810 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
811 atomic_dec(&cur_trans->num_writers);
812 extwriter_counter_dec(cur_trans, trans->type);
813
814 smp_mb();
815 if (waitqueue_active(&cur_trans->writer_wait))
816 wake_up(&cur_trans->writer_wait);
817 btrfs_put_transaction(cur_trans);
818
819 if (current->journal_info == trans)
820 current->journal_info = NULL;
821
822 if (throttle)
823 btrfs_run_delayed_iputs(root);
824
825 if (trans->aborted ||
826 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
827 wake_up_process(info->transaction_kthread);
828 err = -EIO;
829 }
830 assert_qgroups_uptodate(trans);
831
832 kmem_cache_free(btrfs_trans_handle_cachep, trans);
833 if (must_run_delayed_refs) {
834 btrfs_async_run_delayed_refs(root, cur,
835 must_run_delayed_refs == 1);
836 }
837 return err;
838 }
839
840 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root)
842 {
843 return __btrfs_end_transaction(trans, root, 0);
844 }
845
846 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
847 struct btrfs_root *root)
848 {
849 return __btrfs_end_transaction(trans, root, 1);
850 }
851
852 /*
853 * when btree blocks are allocated, they have some corresponding bits set for
854 * them in one of two extent_io trees. This is used to make sure all of
855 * those extents are sent to disk but does not wait on them
856 */
857 int btrfs_write_marked_extents(struct btrfs_root *root,
858 struct extent_io_tree *dirty_pages, int mark)
859 {
860 int err = 0;
861 int werr = 0;
862 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
863 struct extent_state *cached_state = NULL;
864 u64 start = 0;
865 u64 end;
866
867 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
868 mark, &cached_state)) {
869 bool wait_writeback = false;
870
871 err = convert_extent_bit(dirty_pages, start, end,
872 EXTENT_NEED_WAIT,
873 mark, &cached_state, GFP_NOFS);
874 /*
875 * convert_extent_bit can return -ENOMEM, which is most of the
876 * time a temporary error. So when it happens, ignore the error
877 * and wait for writeback of this range to finish - because we
878 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
879 * to btrfs_wait_marked_extents() would not know that writeback
880 * for this range started and therefore wouldn't wait for it to
881 * finish - we don't want to commit a superblock that points to
882 * btree nodes/leafs for which writeback hasn't finished yet
883 * (and without errors).
884 * We cleanup any entries left in the io tree when committing
885 * the transaction (through clear_btree_io_tree()).
886 */
887 if (err == -ENOMEM) {
888 err = 0;
889 wait_writeback = true;
890 }
891 if (!err)
892 err = filemap_fdatawrite_range(mapping, start, end);
893 if (err)
894 werr = err;
895 else if (wait_writeback)
896 werr = filemap_fdatawait_range(mapping, start, end);
897 free_extent_state(cached_state);
898 cached_state = NULL;
899 cond_resched();
900 start = end + 1;
901 }
902 return werr;
903 }
904
905 /*
906 * when btree blocks are allocated, they have some corresponding bits set for
907 * them in one of two extent_io trees. This is used to make sure all of
908 * those extents are on disk for transaction or log commit. We wait
909 * on all the pages and clear them from the dirty pages state tree
910 */
911 int btrfs_wait_marked_extents(struct btrfs_root *root,
912 struct extent_io_tree *dirty_pages, int mark)
913 {
914 int err = 0;
915 int werr = 0;
916 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
917 struct extent_state *cached_state = NULL;
918 u64 start = 0;
919 u64 end;
920 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
921 bool errors = false;
922
923 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
924 EXTENT_NEED_WAIT, &cached_state)) {
925 /*
926 * Ignore -ENOMEM errors returned by clear_extent_bit().
927 * When committing the transaction, we'll remove any entries
928 * left in the io tree. For a log commit, we don't remove them
929 * after committing the log because the tree can be accessed
930 * concurrently - we do it only at transaction commit time when
931 * it's safe to do it (through clear_btree_io_tree()).
932 */
933 err = clear_extent_bit(dirty_pages, start, end,
934 EXTENT_NEED_WAIT,
935 0, 0, &cached_state, GFP_NOFS);
936 if (err == -ENOMEM)
937 err = 0;
938 if (!err)
939 err = filemap_fdatawait_range(mapping, start, end);
940 if (err)
941 werr = err;
942 free_extent_state(cached_state);
943 cached_state = NULL;
944 cond_resched();
945 start = end + 1;
946 }
947 if (err)
948 werr = err;
949
950 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
951 if ((mark & EXTENT_DIRTY) &&
952 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
953 &btree_ino->runtime_flags))
954 errors = true;
955
956 if ((mark & EXTENT_NEW) &&
957 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
958 &btree_ino->runtime_flags))
959 errors = true;
960 } else {
961 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
962 &btree_ino->runtime_flags))
963 errors = true;
964 }
965
966 if (errors && !werr)
967 werr = -EIO;
968
969 return werr;
970 }
971
972 /*
973 * when btree blocks are allocated, they have some corresponding bits set for
974 * them in one of two extent_io trees. This is used to make sure all of
975 * those extents are on disk for transaction or log commit
976 */
977 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
978 struct extent_io_tree *dirty_pages, int mark)
979 {
980 int ret;
981 int ret2;
982 struct blk_plug plug;
983
984 blk_start_plug(&plug);
985 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
986 blk_finish_plug(&plug);
987 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
988
989 if (ret)
990 return ret;
991 if (ret2)
992 return ret2;
993 return 0;
994 }
995
996 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
997 struct btrfs_root *root)
998 {
999 int ret;
1000
1001 ret = btrfs_write_and_wait_marked_extents(root,
1002 &trans->transaction->dirty_pages,
1003 EXTENT_DIRTY);
1004 clear_btree_io_tree(&trans->transaction->dirty_pages);
1005
1006 return ret;
1007 }
1008
1009 /*
1010 * this is used to update the root pointer in the tree of tree roots.
1011 *
1012 * But, in the case of the extent allocation tree, updating the root
1013 * pointer may allocate blocks which may change the root of the extent
1014 * allocation tree.
1015 *
1016 * So, this loops and repeats and makes sure the cowonly root didn't
1017 * change while the root pointer was being updated in the metadata.
1018 */
1019 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1020 struct btrfs_root *root)
1021 {
1022 int ret;
1023 u64 old_root_bytenr;
1024 u64 old_root_used;
1025 struct btrfs_root *tree_root = root->fs_info->tree_root;
1026 bool extent_root = (root->objectid == BTRFS_EXTENT_TREE_OBJECTID);
1027
1028 old_root_used = btrfs_root_used(&root->root_item);
1029 btrfs_write_dirty_block_groups(trans, root);
1030
1031 while (1) {
1032 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1033 if (old_root_bytenr == root->node->start &&
1034 old_root_used == btrfs_root_used(&root->root_item) &&
1035 (!extent_root ||
1036 list_empty(&trans->transaction->dirty_bgs)))
1037 break;
1038
1039 btrfs_set_root_node(&root->root_item, root->node);
1040 ret = btrfs_update_root(trans, tree_root,
1041 &root->root_key,
1042 &root->root_item);
1043 if (ret)
1044 return ret;
1045
1046 old_root_used = btrfs_root_used(&root->root_item);
1047 if (extent_root) {
1048 ret = btrfs_write_dirty_block_groups(trans, root);
1049 if (ret)
1050 return ret;
1051 }
1052 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1053 if (ret)
1054 return ret;
1055 }
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * update all the cowonly tree roots on disk
1062 *
1063 * The error handling in this function may not be obvious. Any of the
1064 * failures will cause the file system to go offline. We still need
1065 * to clean up the delayed refs.
1066 */
1067 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1068 struct btrfs_root *root)
1069 {
1070 struct btrfs_fs_info *fs_info = root->fs_info;
1071 struct list_head *next;
1072 struct extent_buffer *eb;
1073 int ret;
1074
1075 eb = btrfs_lock_root_node(fs_info->tree_root);
1076 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1077 0, &eb);
1078 btrfs_tree_unlock(eb);
1079 free_extent_buffer(eb);
1080
1081 if (ret)
1082 return ret;
1083
1084 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1085 if (ret)
1086 return ret;
1087
1088 ret = btrfs_run_dev_stats(trans, root->fs_info);
1089 if (ret)
1090 return ret;
1091 ret = btrfs_run_dev_replace(trans, root->fs_info);
1092 if (ret)
1093 return ret;
1094 ret = btrfs_run_qgroups(trans, root->fs_info);
1095 if (ret)
1096 return ret;
1097
1098 /* run_qgroups might have added some more refs */
1099 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1100 if (ret)
1101 return ret;
1102
1103 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1104 next = fs_info->dirty_cowonly_roots.next;
1105 list_del_init(next);
1106 root = list_entry(next, struct btrfs_root, dirty_list);
1107 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1108
1109 if (root != fs_info->extent_root)
1110 list_add_tail(&root->dirty_list,
1111 &trans->transaction->switch_commits);
1112 ret = update_cowonly_root(trans, root);
1113 if (ret)
1114 return ret;
1115 }
1116
1117 list_add_tail(&fs_info->extent_root->dirty_list,
1118 &trans->transaction->switch_commits);
1119 btrfs_after_dev_replace_commit(fs_info);
1120
1121 return 0;
1122 }
1123
1124 /*
1125 * dead roots are old snapshots that need to be deleted. This allocates
1126 * a dirty root struct and adds it into the list of dead roots that need to
1127 * be deleted
1128 */
1129 void btrfs_add_dead_root(struct btrfs_root *root)
1130 {
1131 spin_lock(&root->fs_info->trans_lock);
1132 if (list_empty(&root->root_list))
1133 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1134 spin_unlock(&root->fs_info->trans_lock);
1135 }
1136
1137 /*
1138 * update all the cowonly tree roots on disk
1139 */
1140 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root)
1142 {
1143 struct btrfs_root *gang[8];
1144 struct btrfs_fs_info *fs_info = root->fs_info;
1145 int i;
1146 int ret;
1147 int err = 0;
1148
1149 spin_lock(&fs_info->fs_roots_radix_lock);
1150 while (1) {
1151 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1152 (void **)gang, 0,
1153 ARRAY_SIZE(gang),
1154 BTRFS_ROOT_TRANS_TAG);
1155 if (ret == 0)
1156 break;
1157 for (i = 0; i < ret; i++) {
1158 root = gang[i];
1159 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1160 (unsigned long)root->root_key.objectid,
1161 BTRFS_ROOT_TRANS_TAG);
1162 spin_unlock(&fs_info->fs_roots_radix_lock);
1163
1164 btrfs_free_log(trans, root);
1165 btrfs_update_reloc_root(trans, root);
1166 btrfs_orphan_commit_root(trans, root);
1167
1168 btrfs_save_ino_cache(root, trans);
1169
1170 /* see comments in should_cow_block() */
1171 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1172 smp_mb__after_atomic();
1173
1174 if (root->commit_root != root->node) {
1175 list_add_tail(&root->dirty_list,
1176 &trans->transaction->switch_commits);
1177 btrfs_set_root_node(&root->root_item,
1178 root->node);
1179 }
1180
1181 err = btrfs_update_root(trans, fs_info->tree_root,
1182 &root->root_key,
1183 &root->root_item);
1184 spin_lock(&fs_info->fs_roots_radix_lock);
1185 if (err)
1186 break;
1187 }
1188 }
1189 spin_unlock(&fs_info->fs_roots_radix_lock);
1190 return err;
1191 }
1192
1193 /*
1194 * defrag a given btree.
1195 * Every leaf in the btree is read and defragged.
1196 */
1197 int btrfs_defrag_root(struct btrfs_root *root)
1198 {
1199 struct btrfs_fs_info *info = root->fs_info;
1200 struct btrfs_trans_handle *trans;
1201 int ret;
1202
1203 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1204 return 0;
1205
1206 while (1) {
1207 trans = btrfs_start_transaction(root, 0);
1208 if (IS_ERR(trans))
1209 return PTR_ERR(trans);
1210
1211 ret = btrfs_defrag_leaves(trans, root);
1212
1213 btrfs_end_transaction(trans, root);
1214 btrfs_btree_balance_dirty(info->tree_root);
1215 cond_resched();
1216
1217 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1218 break;
1219
1220 if (btrfs_defrag_cancelled(root->fs_info)) {
1221 pr_debug("BTRFS: defrag_root cancelled\n");
1222 ret = -EAGAIN;
1223 break;
1224 }
1225 }
1226 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1227 return ret;
1228 }
1229
1230 /*
1231 * new snapshots need to be created at a very specific time in the
1232 * transaction commit. This does the actual creation.
1233 *
1234 * Note:
1235 * If the error which may affect the commitment of the current transaction
1236 * happens, we should return the error number. If the error which just affect
1237 * the creation of the pending snapshots, just return 0.
1238 */
1239 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info,
1241 struct btrfs_pending_snapshot *pending)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_root_item *new_root_item;
1245 struct btrfs_root *tree_root = fs_info->tree_root;
1246 struct btrfs_root *root = pending->root;
1247 struct btrfs_root *parent_root;
1248 struct btrfs_block_rsv *rsv;
1249 struct inode *parent_inode;
1250 struct btrfs_path *path;
1251 struct btrfs_dir_item *dir_item;
1252 struct dentry *dentry;
1253 struct extent_buffer *tmp;
1254 struct extent_buffer *old;
1255 struct timespec cur_time = CURRENT_TIME;
1256 int ret = 0;
1257 u64 to_reserve = 0;
1258 u64 index = 0;
1259 u64 objectid;
1260 u64 root_flags;
1261 uuid_le new_uuid;
1262
1263 path = btrfs_alloc_path();
1264 if (!path) {
1265 pending->error = -ENOMEM;
1266 return 0;
1267 }
1268
1269 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1270 if (!new_root_item) {
1271 pending->error = -ENOMEM;
1272 goto root_item_alloc_fail;
1273 }
1274
1275 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1276 if (pending->error)
1277 goto no_free_objectid;
1278
1279 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1280
1281 if (to_reserve > 0) {
1282 pending->error = btrfs_block_rsv_add(root,
1283 &pending->block_rsv,
1284 to_reserve,
1285 BTRFS_RESERVE_NO_FLUSH);
1286 if (pending->error)
1287 goto no_free_objectid;
1288 }
1289
1290 key.objectid = objectid;
1291 key.offset = (u64)-1;
1292 key.type = BTRFS_ROOT_ITEM_KEY;
1293
1294 rsv = trans->block_rsv;
1295 trans->block_rsv = &pending->block_rsv;
1296 trans->bytes_reserved = trans->block_rsv->reserved;
1297
1298 dentry = pending->dentry;
1299 parent_inode = pending->dir;
1300 parent_root = BTRFS_I(parent_inode)->root;
1301 record_root_in_trans(trans, parent_root);
1302
1303 /*
1304 * insert the directory item
1305 */
1306 ret = btrfs_set_inode_index(parent_inode, &index);
1307 BUG_ON(ret); /* -ENOMEM */
1308
1309 /* check if there is a file/dir which has the same name. */
1310 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1311 btrfs_ino(parent_inode),
1312 dentry->d_name.name,
1313 dentry->d_name.len, 0);
1314 if (dir_item != NULL && !IS_ERR(dir_item)) {
1315 pending->error = -EEXIST;
1316 goto dir_item_existed;
1317 } else if (IS_ERR(dir_item)) {
1318 ret = PTR_ERR(dir_item);
1319 btrfs_abort_transaction(trans, root, ret);
1320 goto fail;
1321 }
1322 btrfs_release_path(path);
1323
1324 /*
1325 * pull in the delayed directory update
1326 * and the delayed inode item
1327 * otherwise we corrupt the FS during
1328 * snapshot
1329 */
1330 ret = btrfs_run_delayed_items(trans, root);
1331 if (ret) { /* Transaction aborted */
1332 btrfs_abort_transaction(trans, root, ret);
1333 goto fail;
1334 }
1335
1336 record_root_in_trans(trans, root);
1337 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1338 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1339 btrfs_check_and_init_root_item(new_root_item);
1340
1341 root_flags = btrfs_root_flags(new_root_item);
1342 if (pending->readonly)
1343 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1344 else
1345 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1346 btrfs_set_root_flags(new_root_item, root_flags);
1347
1348 btrfs_set_root_generation_v2(new_root_item,
1349 trans->transid);
1350 uuid_le_gen(&new_uuid);
1351 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1352 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1353 BTRFS_UUID_SIZE);
1354 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1355 memset(new_root_item->received_uuid, 0,
1356 sizeof(new_root_item->received_uuid));
1357 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1358 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1359 btrfs_set_root_stransid(new_root_item, 0);
1360 btrfs_set_root_rtransid(new_root_item, 0);
1361 }
1362 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1363 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1364 btrfs_set_root_otransid(new_root_item, trans->transid);
1365
1366 old = btrfs_lock_root_node(root);
1367 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1368 if (ret) {
1369 btrfs_tree_unlock(old);
1370 free_extent_buffer(old);
1371 btrfs_abort_transaction(trans, root, ret);
1372 goto fail;
1373 }
1374
1375 btrfs_set_lock_blocking(old);
1376
1377 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1378 /* clean up in any case */
1379 btrfs_tree_unlock(old);
1380 free_extent_buffer(old);
1381 if (ret) {
1382 btrfs_abort_transaction(trans, root, ret);
1383 goto fail;
1384 }
1385
1386 /*
1387 * We need to flush delayed refs in order to make sure all of our quota
1388 * operations have been done before we call btrfs_qgroup_inherit.
1389 */
1390 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1391 if (ret) {
1392 btrfs_abort_transaction(trans, root, ret);
1393 goto fail;
1394 }
1395
1396 ret = btrfs_qgroup_inherit(trans, fs_info,
1397 root->root_key.objectid,
1398 objectid, pending->inherit);
1399 if (ret) {
1400 btrfs_abort_transaction(trans, root, ret);
1401 goto fail;
1402 }
1403
1404 /* see comments in should_cow_block() */
1405 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1406 smp_wmb();
1407
1408 btrfs_set_root_node(new_root_item, tmp);
1409 /* record when the snapshot was created in key.offset */
1410 key.offset = trans->transid;
1411 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1412 btrfs_tree_unlock(tmp);
1413 free_extent_buffer(tmp);
1414 if (ret) {
1415 btrfs_abort_transaction(trans, root, ret);
1416 goto fail;
1417 }
1418
1419 /*
1420 * insert root back/forward references
1421 */
1422 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1423 parent_root->root_key.objectid,
1424 btrfs_ino(parent_inode), index,
1425 dentry->d_name.name, dentry->d_name.len);
1426 if (ret) {
1427 btrfs_abort_transaction(trans, root, ret);
1428 goto fail;
1429 }
1430
1431 key.offset = (u64)-1;
1432 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1433 if (IS_ERR(pending->snap)) {
1434 ret = PTR_ERR(pending->snap);
1435 btrfs_abort_transaction(trans, root, ret);
1436 goto fail;
1437 }
1438
1439 ret = btrfs_reloc_post_snapshot(trans, pending);
1440 if (ret) {
1441 btrfs_abort_transaction(trans, root, ret);
1442 goto fail;
1443 }
1444
1445 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1446 if (ret) {
1447 btrfs_abort_transaction(trans, root, ret);
1448 goto fail;
1449 }
1450
1451 ret = btrfs_insert_dir_item(trans, parent_root,
1452 dentry->d_name.name, dentry->d_name.len,
1453 parent_inode, &key,
1454 BTRFS_FT_DIR, index);
1455 /* We have check then name at the beginning, so it is impossible. */
1456 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1457 if (ret) {
1458 btrfs_abort_transaction(trans, root, ret);
1459 goto fail;
1460 }
1461
1462 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1463 dentry->d_name.len * 2);
1464 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1465 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1466 if (ret) {
1467 btrfs_abort_transaction(trans, root, ret);
1468 goto fail;
1469 }
1470 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1471 BTRFS_UUID_KEY_SUBVOL, objectid);
1472 if (ret) {
1473 btrfs_abort_transaction(trans, root, ret);
1474 goto fail;
1475 }
1476 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1477 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1478 new_root_item->received_uuid,
1479 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1480 objectid);
1481 if (ret && ret != -EEXIST) {
1482 btrfs_abort_transaction(trans, root, ret);
1483 goto fail;
1484 }
1485 }
1486 fail:
1487 pending->error = ret;
1488 dir_item_existed:
1489 trans->block_rsv = rsv;
1490 trans->bytes_reserved = 0;
1491 no_free_objectid:
1492 kfree(new_root_item);
1493 root_item_alloc_fail:
1494 btrfs_free_path(path);
1495 return ret;
1496 }
1497
1498 /*
1499 * create all the snapshots we've scheduled for creation
1500 */
1501 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1502 struct btrfs_fs_info *fs_info)
1503 {
1504 struct btrfs_pending_snapshot *pending, *next;
1505 struct list_head *head = &trans->transaction->pending_snapshots;
1506 int ret = 0;
1507
1508 list_for_each_entry_safe(pending, next, head, list) {
1509 list_del(&pending->list);
1510 ret = create_pending_snapshot(trans, fs_info, pending);
1511 if (ret)
1512 break;
1513 }
1514 return ret;
1515 }
1516
1517 static void update_super_roots(struct btrfs_root *root)
1518 {
1519 struct btrfs_root_item *root_item;
1520 struct btrfs_super_block *super;
1521
1522 super = root->fs_info->super_copy;
1523
1524 root_item = &root->fs_info->chunk_root->root_item;
1525 super->chunk_root = root_item->bytenr;
1526 super->chunk_root_generation = root_item->generation;
1527 super->chunk_root_level = root_item->level;
1528
1529 root_item = &root->fs_info->tree_root->root_item;
1530 super->root = root_item->bytenr;
1531 super->generation = root_item->generation;
1532 super->root_level = root_item->level;
1533 if (btrfs_test_opt(root, SPACE_CACHE))
1534 super->cache_generation = root_item->generation;
1535 if (root->fs_info->update_uuid_tree_gen)
1536 super->uuid_tree_generation = root_item->generation;
1537 }
1538
1539 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1540 {
1541 struct btrfs_transaction *trans;
1542 int ret = 0;
1543
1544 spin_lock(&info->trans_lock);
1545 trans = info->running_transaction;
1546 if (trans)
1547 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1548 spin_unlock(&info->trans_lock);
1549 return ret;
1550 }
1551
1552 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1553 {
1554 struct btrfs_transaction *trans;
1555 int ret = 0;
1556
1557 spin_lock(&info->trans_lock);
1558 trans = info->running_transaction;
1559 if (trans)
1560 ret = is_transaction_blocked(trans);
1561 spin_unlock(&info->trans_lock);
1562 return ret;
1563 }
1564
1565 /*
1566 * wait for the current transaction commit to start and block subsequent
1567 * transaction joins
1568 */
1569 static void wait_current_trans_commit_start(struct btrfs_root *root,
1570 struct btrfs_transaction *trans)
1571 {
1572 wait_event(root->fs_info->transaction_blocked_wait,
1573 trans->state >= TRANS_STATE_COMMIT_START ||
1574 trans->aborted);
1575 }
1576
1577 /*
1578 * wait for the current transaction to start and then become unblocked.
1579 * caller holds ref.
1580 */
1581 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1582 struct btrfs_transaction *trans)
1583 {
1584 wait_event(root->fs_info->transaction_wait,
1585 trans->state >= TRANS_STATE_UNBLOCKED ||
1586 trans->aborted);
1587 }
1588
1589 /*
1590 * commit transactions asynchronously. once btrfs_commit_transaction_async
1591 * returns, any subsequent transaction will not be allowed to join.
1592 */
1593 struct btrfs_async_commit {
1594 struct btrfs_trans_handle *newtrans;
1595 struct btrfs_root *root;
1596 struct work_struct work;
1597 };
1598
1599 static void do_async_commit(struct work_struct *work)
1600 {
1601 struct btrfs_async_commit *ac =
1602 container_of(work, struct btrfs_async_commit, work);
1603
1604 /*
1605 * We've got freeze protection passed with the transaction.
1606 * Tell lockdep about it.
1607 */
1608 if (ac->newtrans->type & __TRANS_FREEZABLE)
1609 rwsem_acquire_read(
1610 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1611 0, 1, _THIS_IP_);
1612
1613 current->journal_info = ac->newtrans;
1614
1615 btrfs_commit_transaction(ac->newtrans, ac->root);
1616 kfree(ac);
1617 }
1618
1619 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root,
1621 int wait_for_unblock)
1622 {
1623 struct btrfs_async_commit *ac;
1624 struct btrfs_transaction *cur_trans;
1625
1626 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1627 if (!ac)
1628 return -ENOMEM;
1629
1630 INIT_WORK(&ac->work, do_async_commit);
1631 ac->root = root;
1632 ac->newtrans = btrfs_join_transaction(root);
1633 if (IS_ERR(ac->newtrans)) {
1634 int err = PTR_ERR(ac->newtrans);
1635 kfree(ac);
1636 return err;
1637 }
1638
1639 /* take transaction reference */
1640 cur_trans = trans->transaction;
1641 atomic_inc(&cur_trans->use_count);
1642
1643 btrfs_end_transaction(trans, root);
1644
1645 /*
1646 * Tell lockdep we've released the freeze rwsem, since the
1647 * async commit thread will be the one to unlock it.
1648 */
1649 if (ac->newtrans->type & __TRANS_FREEZABLE)
1650 rwsem_release(
1651 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1652 1, _THIS_IP_);
1653
1654 schedule_work(&ac->work);
1655
1656 /* wait for transaction to start and unblock */
1657 if (wait_for_unblock)
1658 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1659 else
1660 wait_current_trans_commit_start(root, cur_trans);
1661
1662 if (current->journal_info == trans)
1663 current->journal_info = NULL;
1664
1665 btrfs_put_transaction(cur_trans);
1666 return 0;
1667 }
1668
1669
1670 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1671 struct btrfs_root *root, int err)
1672 {
1673 struct btrfs_transaction *cur_trans = trans->transaction;
1674 DEFINE_WAIT(wait);
1675
1676 WARN_ON(trans->use_count > 1);
1677
1678 btrfs_abort_transaction(trans, root, err);
1679
1680 spin_lock(&root->fs_info->trans_lock);
1681
1682 /*
1683 * If the transaction is removed from the list, it means this
1684 * transaction has been committed successfully, so it is impossible
1685 * to call the cleanup function.
1686 */
1687 BUG_ON(list_empty(&cur_trans->list));
1688
1689 list_del_init(&cur_trans->list);
1690 if (cur_trans == root->fs_info->running_transaction) {
1691 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1692 spin_unlock(&root->fs_info->trans_lock);
1693 wait_event(cur_trans->writer_wait,
1694 atomic_read(&cur_trans->num_writers) == 1);
1695
1696 spin_lock(&root->fs_info->trans_lock);
1697 }
1698 spin_unlock(&root->fs_info->trans_lock);
1699
1700 btrfs_cleanup_one_transaction(trans->transaction, root);
1701
1702 spin_lock(&root->fs_info->trans_lock);
1703 if (cur_trans == root->fs_info->running_transaction)
1704 root->fs_info->running_transaction = NULL;
1705 spin_unlock(&root->fs_info->trans_lock);
1706
1707 if (trans->type & __TRANS_FREEZABLE)
1708 sb_end_intwrite(root->fs_info->sb);
1709 btrfs_put_transaction(cur_trans);
1710 btrfs_put_transaction(cur_trans);
1711
1712 trace_btrfs_transaction_commit(root);
1713
1714 if (current->journal_info == trans)
1715 current->journal_info = NULL;
1716 btrfs_scrub_cancel(root->fs_info);
1717
1718 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1719 }
1720
1721 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1722 {
1723 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1724 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1725 return 0;
1726 }
1727
1728 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1729 {
1730 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1731 btrfs_wait_ordered_roots(fs_info, -1);
1732 }
1733
1734 static inline void
1735 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1736 struct btrfs_fs_info *fs_info)
1737 {
1738 struct btrfs_ordered_extent *ordered;
1739
1740 spin_lock(&fs_info->trans_lock);
1741 while (!list_empty(&cur_trans->pending_ordered)) {
1742 ordered = list_first_entry(&cur_trans->pending_ordered,
1743 struct btrfs_ordered_extent,
1744 trans_list);
1745 list_del_init(&ordered->trans_list);
1746 spin_unlock(&fs_info->trans_lock);
1747
1748 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1749 &ordered->flags));
1750 btrfs_put_ordered_extent(ordered);
1751 spin_lock(&fs_info->trans_lock);
1752 }
1753 spin_unlock(&fs_info->trans_lock);
1754 }
1755
1756 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root)
1758 {
1759 struct btrfs_transaction *cur_trans = trans->transaction;
1760 struct btrfs_transaction *prev_trans = NULL;
1761 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1762 int ret;
1763
1764 /* Stop the commit early if ->aborted is set */
1765 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1766 ret = cur_trans->aborted;
1767 btrfs_end_transaction(trans, root);
1768 return ret;
1769 }
1770
1771 /* make a pass through all the delayed refs we have so far
1772 * any runnings procs may add more while we are here
1773 */
1774 ret = btrfs_run_delayed_refs(trans, root, 0);
1775 if (ret) {
1776 btrfs_end_transaction(trans, root);
1777 return ret;
1778 }
1779
1780 btrfs_trans_release_metadata(trans, root);
1781 trans->block_rsv = NULL;
1782 if (trans->qgroup_reserved) {
1783 btrfs_qgroup_free(root, trans->qgroup_reserved);
1784 trans->qgroup_reserved = 0;
1785 }
1786
1787 cur_trans = trans->transaction;
1788
1789 /*
1790 * set the flushing flag so procs in this transaction have to
1791 * start sending their work down.
1792 */
1793 cur_trans->delayed_refs.flushing = 1;
1794 smp_wmb();
1795
1796 if (!list_empty(&trans->new_bgs))
1797 btrfs_create_pending_block_groups(trans, root);
1798
1799 ret = btrfs_run_delayed_refs(trans, root, 0);
1800 if (ret) {
1801 btrfs_end_transaction(trans, root);
1802 return ret;
1803 }
1804
1805 spin_lock(&root->fs_info->trans_lock);
1806 list_splice(&trans->ordered, &cur_trans->pending_ordered);
1807 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1808 spin_unlock(&root->fs_info->trans_lock);
1809 atomic_inc(&cur_trans->use_count);
1810 ret = btrfs_end_transaction(trans, root);
1811
1812 wait_for_commit(root, cur_trans);
1813
1814 btrfs_put_transaction(cur_trans);
1815
1816 return ret;
1817 }
1818
1819 cur_trans->state = TRANS_STATE_COMMIT_START;
1820 wake_up(&root->fs_info->transaction_blocked_wait);
1821
1822 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1823 prev_trans = list_entry(cur_trans->list.prev,
1824 struct btrfs_transaction, list);
1825 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1826 atomic_inc(&prev_trans->use_count);
1827 spin_unlock(&root->fs_info->trans_lock);
1828
1829 wait_for_commit(root, prev_trans);
1830
1831 btrfs_put_transaction(prev_trans);
1832 } else {
1833 spin_unlock(&root->fs_info->trans_lock);
1834 }
1835 } else {
1836 spin_unlock(&root->fs_info->trans_lock);
1837 }
1838
1839 extwriter_counter_dec(cur_trans, trans->type);
1840
1841 ret = btrfs_start_delalloc_flush(root->fs_info);
1842 if (ret)
1843 goto cleanup_transaction;
1844
1845 ret = btrfs_run_delayed_items(trans, root);
1846 if (ret)
1847 goto cleanup_transaction;
1848
1849 wait_event(cur_trans->writer_wait,
1850 extwriter_counter_read(cur_trans) == 0);
1851
1852 /* some pending stuffs might be added after the previous flush. */
1853 ret = btrfs_run_delayed_items(trans, root);
1854 if (ret)
1855 goto cleanup_transaction;
1856
1857 btrfs_wait_delalloc_flush(root->fs_info);
1858
1859 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1860
1861 btrfs_scrub_pause(root);
1862 /*
1863 * Ok now we need to make sure to block out any other joins while we
1864 * commit the transaction. We could have started a join before setting
1865 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1866 */
1867 spin_lock(&root->fs_info->trans_lock);
1868 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1869 spin_unlock(&root->fs_info->trans_lock);
1870 wait_event(cur_trans->writer_wait,
1871 atomic_read(&cur_trans->num_writers) == 1);
1872
1873 /* ->aborted might be set after the previous check, so check it */
1874 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1875 ret = cur_trans->aborted;
1876 goto scrub_continue;
1877 }
1878 /*
1879 * the reloc mutex makes sure that we stop
1880 * the balancing code from coming in and moving
1881 * extents around in the middle of the commit
1882 */
1883 mutex_lock(&root->fs_info->reloc_mutex);
1884
1885 /*
1886 * We needn't worry about the delayed items because we will
1887 * deal with them in create_pending_snapshot(), which is the
1888 * core function of the snapshot creation.
1889 */
1890 ret = create_pending_snapshots(trans, root->fs_info);
1891 if (ret) {
1892 mutex_unlock(&root->fs_info->reloc_mutex);
1893 goto scrub_continue;
1894 }
1895
1896 /*
1897 * We insert the dir indexes of the snapshots and update the inode
1898 * of the snapshots' parents after the snapshot creation, so there
1899 * are some delayed items which are not dealt with. Now deal with
1900 * them.
1901 *
1902 * We needn't worry that this operation will corrupt the snapshots,
1903 * because all the tree which are snapshoted will be forced to COW
1904 * the nodes and leaves.
1905 */
1906 ret = btrfs_run_delayed_items(trans, root);
1907 if (ret) {
1908 mutex_unlock(&root->fs_info->reloc_mutex);
1909 goto scrub_continue;
1910 }
1911
1912 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1913 if (ret) {
1914 mutex_unlock(&root->fs_info->reloc_mutex);
1915 goto scrub_continue;
1916 }
1917
1918 /*
1919 * make sure none of the code above managed to slip in a
1920 * delayed item
1921 */
1922 btrfs_assert_delayed_root_empty(root);
1923
1924 WARN_ON(cur_trans != trans->transaction);
1925
1926 /* btrfs_commit_tree_roots is responsible for getting the
1927 * various roots consistent with each other. Every pointer
1928 * in the tree of tree roots has to point to the most up to date
1929 * root for every subvolume and other tree. So, we have to keep
1930 * the tree logging code from jumping in and changing any
1931 * of the trees.
1932 *
1933 * At this point in the commit, there can't be any tree-log
1934 * writers, but a little lower down we drop the trans mutex
1935 * and let new people in. By holding the tree_log_mutex
1936 * from now until after the super is written, we avoid races
1937 * with the tree-log code.
1938 */
1939 mutex_lock(&root->fs_info->tree_log_mutex);
1940
1941 ret = commit_fs_roots(trans, root);
1942 if (ret) {
1943 mutex_unlock(&root->fs_info->tree_log_mutex);
1944 mutex_unlock(&root->fs_info->reloc_mutex);
1945 goto scrub_continue;
1946 }
1947
1948 /*
1949 * Since the transaction is done, we can apply the pending changes
1950 * before the next transaction.
1951 */
1952 btrfs_apply_pending_changes(root->fs_info);
1953
1954 /* commit_fs_roots gets rid of all the tree log roots, it is now
1955 * safe to free the root of tree log roots
1956 */
1957 btrfs_free_log_root_tree(trans, root->fs_info);
1958
1959 ret = commit_cowonly_roots(trans, root);
1960 if (ret) {
1961 mutex_unlock(&root->fs_info->tree_log_mutex);
1962 mutex_unlock(&root->fs_info->reloc_mutex);
1963 goto scrub_continue;
1964 }
1965
1966 /*
1967 * The tasks which save the space cache and inode cache may also
1968 * update ->aborted, check it.
1969 */
1970 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1971 ret = cur_trans->aborted;
1972 mutex_unlock(&root->fs_info->tree_log_mutex);
1973 mutex_unlock(&root->fs_info->reloc_mutex);
1974 goto scrub_continue;
1975 }
1976
1977 btrfs_prepare_extent_commit(trans, root);
1978
1979 cur_trans = root->fs_info->running_transaction;
1980
1981 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1982 root->fs_info->tree_root->node);
1983 list_add_tail(&root->fs_info->tree_root->dirty_list,
1984 &cur_trans->switch_commits);
1985
1986 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1987 root->fs_info->chunk_root->node);
1988 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1989 &cur_trans->switch_commits);
1990
1991 switch_commit_roots(cur_trans, root->fs_info);
1992
1993 assert_qgroups_uptodate(trans);
1994 ASSERT(list_empty(&cur_trans->dirty_bgs));
1995 update_super_roots(root);
1996
1997 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1998 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1999 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2000 sizeof(*root->fs_info->super_copy));
2001
2002 btrfs_update_commit_device_size(root->fs_info);
2003 btrfs_update_commit_device_bytes_used(root, cur_trans);
2004
2005 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2006 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2007
2008 spin_lock(&root->fs_info->trans_lock);
2009 cur_trans->state = TRANS_STATE_UNBLOCKED;
2010 root->fs_info->running_transaction = NULL;
2011 spin_unlock(&root->fs_info->trans_lock);
2012 mutex_unlock(&root->fs_info->reloc_mutex);
2013
2014 wake_up(&root->fs_info->transaction_wait);
2015
2016 ret = btrfs_write_and_wait_transaction(trans, root);
2017 if (ret) {
2018 btrfs_error(root->fs_info, ret,
2019 "Error while writing out transaction");
2020 mutex_unlock(&root->fs_info->tree_log_mutex);
2021 goto scrub_continue;
2022 }
2023
2024 ret = write_ctree_super(trans, root, 0);
2025 if (ret) {
2026 mutex_unlock(&root->fs_info->tree_log_mutex);
2027 goto scrub_continue;
2028 }
2029
2030 /*
2031 * the super is written, we can safely allow the tree-loggers
2032 * to go about their business
2033 */
2034 mutex_unlock(&root->fs_info->tree_log_mutex);
2035
2036 btrfs_finish_extent_commit(trans, root);
2037
2038 if (cur_trans->have_free_bgs)
2039 btrfs_clear_space_info_full(root->fs_info);
2040
2041 root->fs_info->last_trans_committed = cur_trans->transid;
2042 /*
2043 * We needn't acquire the lock here because there is no other task
2044 * which can change it.
2045 */
2046 cur_trans->state = TRANS_STATE_COMPLETED;
2047 wake_up(&cur_trans->commit_wait);
2048
2049 spin_lock(&root->fs_info->trans_lock);
2050 list_del_init(&cur_trans->list);
2051 spin_unlock(&root->fs_info->trans_lock);
2052
2053 btrfs_put_transaction(cur_trans);
2054 btrfs_put_transaction(cur_trans);
2055
2056 if (trans->type & __TRANS_FREEZABLE)
2057 sb_end_intwrite(root->fs_info->sb);
2058
2059 trace_btrfs_transaction_commit(root);
2060
2061 btrfs_scrub_continue(root);
2062
2063 if (current->journal_info == trans)
2064 current->journal_info = NULL;
2065
2066 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2067
2068 if (current != root->fs_info->transaction_kthread)
2069 btrfs_run_delayed_iputs(root);
2070
2071 return ret;
2072
2073 scrub_continue:
2074 btrfs_scrub_continue(root);
2075 cleanup_transaction:
2076 btrfs_trans_release_metadata(trans, root);
2077 trans->block_rsv = NULL;
2078 if (trans->qgroup_reserved) {
2079 btrfs_qgroup_free(root, trans->qgroup_reserved);
2080 trans->qgroup_reserved = 0;
2081 }
2082 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2083 if (current->journal_info == trans)
2084 current->journal_info = NULL;
2085 cleanup_transaction(trans, root, ret);
2086
2087 return ret;
2088 }
2089
2090 /*
2091 * return < 0 if error
2092 * 0 if there are no more dead_roots at the time of call
2093 * 1 there are more to be processed, call me again
2094 *
2095 * The return value indicates there are certainly more snapshots to delete, but
2096 * if there comes a new one during processing, it may return 0. We don't mind,
2097 * because btrfs_commit_super will poke cleaner thread and it will process it a
2098 * few seconds later.
2099 */
2100 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2101 {
2102 int ret;
2103 struct btrfs_fs_info *fs_info = root->fs_info;
2104
2105 spin_lock(&fs_info->trans_lock);
2106 if (list_empty(&fs_info->dead_roots)) {
2107 spin_unlock(&fs_info->trans_lock);
2108 return 0;
2109 }
2110 root = list_first_entry(&fs_info->dead_roots,
2111 struct btrfs_root, root_list);
2112 list_del_init(&root->root_list);
2113 spin_unlock(&fs_info->trans_lock);
2114
2115 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2116
2117 btrfs_kill_all_delayed_nodes(root);
2118
2119 if (btrfs_header_backref_rev(root->node) <
2120 BTRFS_MIXED_BACKREF_REV)
2121 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2122 else
2123 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2124
2125 return (ret < 0) ? 0 : 1;
2126 }
2127
2128 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2129 {
2130 unsigned long prev;
2131 unsigned long bit;
2132
2133 prev = xchg(&fs_info->pending_changes, 0);
2134 if (!prev)
2135 return;
2136
2137 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2138 if (prev & bit)
2139 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2140 prev &= ~bit;
2141
2142 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2143 if (prev & bit)
2144 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2145 prev &= ~bit;
2146
2147 bit = 1 << BTRFS_PENDING_COMMIT;
2148 if (prev & bit)
2149 btrfs_debug(fs_info, "pending commit done");
2150 prev &= ~bit;
2151
2152 if (prev)
2153 btrfs_warn(fs_info,
2154 "unknown pending changes left 0x%lx, ignoring", prev);
2155 }