]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/transaction.c
Merge git://www.linux-watchdog.org/linux-watchdog
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 /*
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
89 */
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
94
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
99 /*
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
102 */
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
105
106 cond_resched_lock(&tree->lock);
107 }
108 spin_unlock(&tree->lock);
109 }
110
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 struct btrfs_fs_info *fs_info)
113 {
114 struct btrfs_root *root, *tmp;
115
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
125 }
126
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
136 }
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
139 }
140
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
143 {
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
146 }
147
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
150 {
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
153 }
154
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
157 {
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167 * either allocate a new transaction or hop into the existing one
168 */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 struct btrfs_transaction *cur_trans;
172 struct btrfs_fs_info *fs_info = root->fs_info;
173
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
180 }
181
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
187 }
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
191 }
192 atomic_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
197 }
198 spin_unlock(&fs_info->trans_lock);
199
200 /*
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
203 */
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
206
207 /*
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
210 */
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
216
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
219 /*
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
222 */
223 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 return -EROFS;
229 }
230
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 init_waitqueue_head(&cur_trans->pending_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
237 /*
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
240 */
241 atomic_set(&cur_trans->use_count, 2);
242 atomic_set(&cur_trans->pending_ordered, 0);
243 cur_trans->flags = 0;
244 cur_trans->start_time = get_seconds();
245
246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247
248 cur_trans->delayed_refs.href_root = RB_ROOT;
249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251
252 /*
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
255 */
256 smp_mb();
257 if (!list_empty(&fs_info->tree_mod_seq_list))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259 "creating a fresh transaction\n");
260 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262 "creating a fresh transaction\n");
263 atomic64_set(&fs_info->tree_mod_seq, 0);
264
265 spin_lock_init(&cur_trans->delayed_refs.lock);
266
267 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268 INIT_LIST_HEAD(&cur_trans->pending_chunks);
269 INIT_LIST_HEAD(&cur_trans->switch_commits);
270 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 INIT_LIST_HEAD(&cur_trans->io_bgs);
272 INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 mutex_init(&cur_trans->cache_write_mutex);
274 cur_trans->num_dirty_bgs = 0;
275 spin_lock_init(&cur_trans->dirty_bgs_lock);
276 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 spin_lock_init(&cur_trans->deleted_bgs_lock);
278 spin_lock_init(&cur_trans->dropped_roots_lock);
279 list_add_tail(&cur_trans->list, &fs_info->trans_list);
280 extent_io_tree_init(&cur_trans->dirty_pages,
281 fs_info->btree_inode->i_mapping);
282 fs_info->generation++;
283 cur_trans->transid = fs_info->generation;
284 fs_info->running_transaction = cur_trans;
285 cur_trans->aborted = 0;
286 spin_unlock(&fs_info->trans_lock);
287
288 return 0;
289 }
290
291 /*
292 * this does all the record keeping required to make sure that a reference
293 * counted root is properly recorded in a given transaction. This is required
294 * to make sure the old root from before we joined the transaction is deleted
295 * when the transaction commits
296 */
297 static int record_root_in_trans(struct btrfs_trans_handle *trans,
298 struct btrfs_root *root)
299 {
300 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 root->last_trans < trans->transid) {
302 WARN_ON(root == root->fs_info->extent_root);
303 WARN_ON(root->commit_root != root->node);
304
305 /*
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
309 */
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
314 */
315 smp_wmb();
316
317 spin_lock(&root->fs_info->fs_roots_radix_lock);
318 if (root->last_trans == trans->transid) {
319 spin_unlock(&root->fs_info->fs_roots_radix_lock);
320 return 0;
321 }
322 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
323 (unsigned long)root->root_key.objectid,
324 BTRFS_ROOT_TRANS_TAG);
325 spin_unlock(&root->fs_info->fs_roots_radix_lock);
326 root->last_trans = trans->transid;
327
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
331 * this transaction.
332 *
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
335 *
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
341 *
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
346 */
347 btrfs_init_reloc_root(trans, root);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 }
351 return 0;
352 }
353
354
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 struct btrfs_root *root)
357 {
358 struct btrfs_transaction *cur_trans = trans->transaction;
359
360 /* Add ourselves to the transaction dropped list */
361 spin_lock(&cur_trans->dropped_roots_lock);
362 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 spin_unlock(&cur_trans->dropped_roots_lock);
364
365 /* Make sure we don't try to update the root at commit time */
366 spin_lock(&root->fs_info->fs_roots_radix_lock);
367 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
368 (unsigned long)root->root_key.objectid,
369 BTRFS_ROOT_TRANS_TAG);
370 spin_unlock(&root->fs_info->fs_roots_radix_lock);
371 }
372
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root)
375 {
376 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
377 return 0;
378
379 /*
380 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
381 * and barriers
382 */
383 smp_rmb();
384 if (root->last_trans == trans->transid &&
385 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
386 return 0;
387
388 mutex_lock(&root->fs_info->reloc_mutex);
389 record_root_in_trans(trans, root);
390 mutex_unlock(&root->fs_info->reloc_mutex);
391
392 return 0;
393 }
394
395 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
396 {
397 return (trans->state >= TRANS_STATE_BLOCKED &&
398 trans->state < TRANS_STATE_UNBLOCKED &&
399 !trans->aborted);
400 }
401
402 /* wait for commit against the current transaction to become unblocked
403 * when this is done, it is safe to start a new transaction, but the current
404 * transaction might not be fully on disk.
405 */
406 static void wait_current_trans(struct btrfs_root *root)
407 {
408 struct btrfs_transaction *cur_trans;
409
410 spin_lock(&root->fs_info->trans_lock);
411 cur_trans = root->fs_info->running_transaction;
412 if (cur_trans && is_transaction_blocked(cur_trans)) {
413 atomic_inc(&cur_trans->use_count);
414 spin_unlock(&root->fs_info->trans_lock);
415
416 wait_event(root->fs_info->transaction_wait,
417 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
418 cur_trans->aborted);
419 btrfs_put_transaction(cur_trans);
420 } else {
421 spin_unlock(&root->fs_info->trans_lock);
422 }
423 }
424
425 static int may_wait_transaction(struct btrfs_root *root, int type)
426 {
427 if (root->fs_info->log_root_recovering)
428 return 0;
429
430 if (type == TRANS_USERSPACE)
431 return 1;
432
433 if (type == TRANS_START &&
434 !atomic_read(&root->fs_info->open_ioctl_trans))
435 return 1;
436
437 return 0;
438 }
439
440 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
441 {
442 if (!root->fs_info->reloc_ctl ||
443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 root->reloc_root)
446 return false;
447
448 return true;
449 }
450
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 unsigned int type, enum btrfs_reserve_flush_enum flush)
454 {
455 struct btrfs_trans_handle *h;
456 struct btrfs_transaction *cur_trans;
457 u64 num_bytes = 0;
458 u64 qgroup_reserved = 0;
459 bool reloc_reserved = false;
460 int ret;
461
462 /* Send isn't supposed to start transactions. */
463 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
464
465 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
466 return ERR_PTR(-EROFS);
467
468 if (current->journal_info) {
469 WARN_ON(type & TRANS_EXTWRITERS);
470 h = current->journal_info;
471 h->use_count++;
472 WARN_ON(h->use_count > 2);
473 h->orig_rsv = h->block_rsv;
474 h->block_rsv = NULL;
475 goto got_it;
476 }
477
478 /*
479 * Do the reservation before we join the transaction so we can do all
480 * the appropriate flushing if need be.
481 */
482 if (num_items > 0 && root != root->fs_info->chunk_root) {
483 qgroup_reserved = num_items * root->nodesize;
484 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
485 if (ret)
486 return ERR_PTR(ret);
487
488 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
489 /*
490 * Do the reservation for the relocation root creation
491 */
492 if (need_reserve_reloc_root(root)) {
493 num_bytes += root->nodesize;
494 reloc_reserved = true;
495 }
496
497 ret = btrfs_block_rsv_add(root,
498 &root->fs_info->trans_block_rsv,
499 num_bytes, flush);
500 if (ret)
501 goto reserve_fail;
502 }
503 again:
504 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
505 if (!h) {
506 ret = -ENOMEM;
507 goto alloc_fail;
508 }
509
510 /*
511 * If we are JOIN_NOLOCK we're already committing a transaction and
512 * waiting on this guy, so we don't need to do the sb_start_intwrite
513 * because we're already holding a ref. We need this because we could
514 * have raced in and did an fsync() on a file which can kick a commit
515 * and then we deadlock with somebody doing a freeze.
516 *
517 * If we are ATTACH, it means we just want to catch the current
518 * transaction and commit it, so we needn't do sb_start_intwrite().
519 */
520 if (type & __TRANS_FREEZABLE)
521 sb_start_intwrite(root->fs_info->sb);
522
523 if (may_wait_transaction(root, type))
524 wait_current_trans(root);
525
526 do {
527 ret = join_transaction(root, type);
528 if (ret == -EBUSY) {
529 wait_current_trans(root);
530 if (unlikely(type == TRANS_ATTACH))
531 ret = -ENOENT;
532 }
533 } while (ret == -EBUSY);
534
535 if (ret < 0) {
536 /* We must get the transaction if we are JOIN_NOLOCK. */
537 BUG_ON(type == TRANS_JOIN_NOLOCK);
538 goto join_fail;
539 }
540
541 cur_trans = root->fs_info->running_transaction;
542
543 h->transid = cur_trans->transid;
544 h->transaction = cur_trans;
545 h->root = root;
546 h->use_count = 1;
547
548 h->type = type;
549 h->can_flush_pending_bgs = true;
550 INIT_LIST_HEAD(&h->qgroup_ref_list);
551 INIT_LIST_HEAD(&h->new_bgs);
552
553 smp_mb();
554 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
555 may_wait_transaction(root, type)) {
556 current->journal_info = h;
557 btrfs_commit_transaction(h, root);
558 goto again;
559 }
560
561 if (num_bytes) {
562 trace_btrfs_space_reservation(root->fs_info, "transaction",
563 h->transid, num_bytes, 1);
564 h->block_rsv = &root->fs_info->trans_block_rsv;
565 h->bytes_reserved = num_bytes;
566 h->reloc_reserved = reloc_reserved;
567 }
568
569 got_it:
570 btrfs_record_root_in_trans(h, root);
571
572 if (!current->journal_info && type != TRANS_USERSPACE)
573 current->journal_info = h;
574 return h;
575
576 join_fail:
577 if (type & __TRANS_FREEZABLE)
578 sb_end_intwrite(root->fs_info->sb);
579 kmem_cache_free(btrfs_trans_handle_cachep, h);
580 alloc_fail:
581 if (num_bytes)
582 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
583 num_bytes);
584 reserve_fail:
585 btrfs_qgroup_free_meta(root, qgroup_reserved);
586 return ERR_PTR(ret);
587 }
588
589 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
590 unsigned int num_items)
591 {
592 return start_transaction(root, num_items, TRANS_START,
593 BTRFS_RESERVE_FLUSH_ALL);
594 }
595
596 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
597 struct btrfs_root *root,
598 unsigned int num_items)
599 {
600 return start_transaction(root, num_items, TRANS_START,
601 BTRFS_RESERVE_FLUSH_LIMIT);
602 }
603
604 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
605 {
606 return start_transaction(root, 0, TRANS_JOIN, 0);
607 }
608
609 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
610 {
611 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
612 }
613
614 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
615 {
616 return start_transaction(root, 0, TRANS_USERSPACE, 0);
617 }
618
619 /*
620 * btrfs_attach_transaction() - catch the running transaction
621 *
622 * It is used when we want to commit the current the transaction, but
623 * don't want to start a new one.
624 *
625 * Note: If this function return -ENOENT, it just means there is no
626 * running transaction. But it is possible that the inactive transaction
627 * is still in the memory, not fully on disk. If you hope there is no
628 * inactive transaction in the fs when -ENOENT is returned, you should
629 * invoke
630 * btrfs_attach_transaction_barrier()
631 */
632 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
633 {
634 return start_transaction(root, 0, TRANS_ATTACH, 0);
635 }
636
637 /*
638 * btrfs_attach_transaction_barrier() - catch the running transaction
639 *
640 * It is similar to the above function, the differentia is this one
641 * will wait for all the inactive transactions until they fully
642 * complete.
643 */
644 struct btrfs_trans_handle *
645 btrfs_attach_transaction_barrier(struct btrfs_root *root)
646 {
647 struct btrfs_trans_handle *trans;
648
649 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
650 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
651 btrfs_wait_for_commit(root, 0);
652
653 return trans;
654 }
655
656 /* wait for a transaction commit to be fully complete */
657 static noinline void wait_for_commit(struct btrfs_root *root,
658 struct btrfs_transaction *commit)
659 {
660 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
661 }
662
663 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
664 {
665 struct btrfs_transaction *cur_trans = NULL, *t;
666 int ret = 0;
667
668 if (transid) {
669 if (transid <= root->fs_info->last_trans_committed)
670 goto out;
671
672 /* find specified transaction */
673 spin_lock(&root->fs_info->trans_lock);
674 list_for_each_entry(t, &root->fs_info->trans_list, list) {
675 if (t->transid == transid) {
676 cur_trans = t;
677 atomic_inc(&cur_trans->use_count);
678 ret = 0;
679 break;
680 }
681 if (t->transid > transid) {
682 ret = 0;
683 break;
684 }
685 }
686 spin_unlock(&root->fs_info->trans_lock);
687
688 /*
689 * The specified transaction doesn't exist, or we
690 * raced with btrfs_commit_transaction
691 */
692 if (!cur_trans) {
693 if (transid > root->fs_info->last_trans_committed)
694 ret = -EINVAL;
695 goto out;
696 }
697 } else {
698 /* find newest transaction that is committing | committed */
699 spin_lock(&root->fs_info->trans_lock);
700 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
701 list) {
702 if (t->state >= TRANS_STATE_COMMIT_START) {
703 if (t->state == TRANS_STATE_COMPLETED)
704 break;
705 cur_trans = t;
706 atomic_inc(&cur_trans->use_count);
707 break;
708 }
709 }
710 spin_unlock(&root->fs_info->trans_lock);
711 if (!cur_trans)
712 goto out; /* nothing committing|committed */
713 }
714
715 wait_for_commit(root, cur_trans);
716 btrfs_put_transaction(cur_trans);
717 out:
718 return ret;
719 }
720
721 void btrfs_throttle(struct btrfs_root *root)
722 {
723 if (!atomic_read(&root->fs_info->open_ioctl_trans))
724 wait_current_trans(root);
725 }
726
727 static int should_end_transaction(struct btrfs_trans_handle *trans,
728 struct btrfs_root *root)
729 {
730 if (root->fs_info->global_block_rsv.space_info->full &&
731 btrfs_check_space_for_delayed_refs(trans, root))
732 return 1;
733
734 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
735 }
736
737 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root)
739 {
740 struct btrfs_transaction *cur_trans = trans->transaction;
741 int updates;
742 int err;
743
744 smp_mb();
745 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
746 cur_trans->delayed_refs.flushing)
747 return 1;
748
749 updates = trans->delayed_ref_updates;
750 trans->delayed_ref_updates = 0;
751 if (updates) {
752 err = btrfs_run_delayed_refs(trans, root, updates * 2);
753 if (err) /* Error code will also eval true */
754 return err;
755 }
756
757 return should_end_transaction(trans, root);
758 }
759
760 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
761 struct btrfs_root *root, int throttle)
762 {
763 struct btrfs_transaction *cur_trans = trans->transaction;
764 struct btrfs_fs_info *info = root->fs_info;
765 unsigned long cur = trans->delayed_ref_updates;
766 int lock = (trans->type != TRANS_JOIN_NOLOCK);
767 int err = 0;
768 int must_run_delayed_refs = 0;
769
770 if (trans->use_count > 1) {
771 trans->use_count--;
772 trans->block_rsv = trans->orig_rsv;
773 return 0;
774 }
775
776 btrfs_trans_release_metadata(trans, root);
777 trans->block_rsv = NULL;
778
779 if (!list_empty(&trans->new_bgs))
780 btrfs_create_pending_block_groups(trans, root);
781
782 trans->delayed_ref_updates = 0;
783 if (!trans->sync) {
784 must_run_delayed_refs =
785 btrfs_should_throttle_delayed_refs(trans, root);
786 cur = max_t(unsigned long, cur, 32);
787
788 /*
789 * don't make the caller wait if they are from a NOLOCK
790 * or ATTACH transaction, it will deadlock with commit
791 */
792 if (must_run_delayed_refs == 1 &&
793 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
794 must_run_delayed_refs = 2;
795 }
796
797 btrfs_trans_release_metadata(trans, root);
798 trans->block_rsv = NULL;
799
800 if (!list_empty(&trans->new_bgs))
801 btrfs_create_pending_block_groups(trans, root);
802
803 btrfs_trans_release_chunk_metadata(trans);
804
805 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
806 should_end_transaction(trans, root) &&
807 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
808 spin_lock(&info->trans_lock);
809 if (cur_trans->state == TRANS_STATE_RUNNING)
810 cur_trans->state = TRANS_STATE_BLOCKED;
811 spin_unlock(&info->trans_lock);
812 }
813
814 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
815 if (throttle)
816 return btrfs_commit_transaction(trans, root);
817 else
818 wake_up_process(info->transaction_kthread);
819 }
820
821 if (trans->type & __TRANS_FREEZABLE)
822 sb_end_intwrite(root->fs_info->sb);
823
824 WARN_ON(cur_trans != info->running_transaction);
825 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
826 atomic_dec(&cur_trans->num_writers);
827 extwriter_counter_dec(cur_trans, trans->type);
828
829 /*
830 * Make sure counter is updated before we wake up waiters.
831 */
832 smp_mb();
833 if (waitqueue_active(&cur_trans->writer_wait))
834 wake_up(&cur_trans->writer_wait);
835 btrfs_put_transaction(cur_trans);
836
837 if (current->journal_info == trans)
838 current->journal_info = NULL;
839
840 if (throttle)
841 btrfs_run_delayed_iputs(root);
842
843 if (trans->aborted ||
844 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
845 wake_up_process(info->transaction_kthread);
846 err = -EIO;
847 }
848 assert_qgroups_uptodate(trans);
849
850 kmem_cache_free(btrfs_trans_handle_cachep, trans);
851 if (must_run_delayed_refs) {
852 btrfs_async_run_delayed_refs(root, cur,
853 must_run_delayed_refs == 1);
854 }
855 return err;
856 }
857
858 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
859 struct btrfs_root *root)
860 {
861 return __btrfs_end_transaction(trans, root, 0);
862 }
863
864 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
865 struct btrfs_root *root)
866 {
867 return __btrfs_end_transaction(trans, root, 1);
868 }
869
870 /*
871 * when btree blocks are allocated, they have some corresponding bits set for
872 * them in one of two extent_io trees. This is used to make sure all of
873 * those extents are sent to disk but does not wait on them
874 */
875 int btrfs_write_marked_extents(struct btrfs_root *root,
876 struct extent_io_tree *dirty_pages, int mark)
877 {
878 int err = 0;
879 int werr = 0;
880 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
881 struct extent_state *cached_state = NULL;
882 u64 start = 0;
883 u64 end;
884
885 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
886 mark, &cached_state)) {
887 bool wait_writeback = false;
888
889 err = convert_extent_bit(dirty_pages, start, end,
890 EXTENT_NEED_WAIT,
891 mark, &cached_state, GFP_NOFS);
892 /*
893 * convert_extent_bit can return -ENOMEM, which is most of the
894 * time a temporary error. So when it happens, ignore the error
895 * and wait for writeback of this range to finish - because we
896 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
897 * to btrfs_wait_marked_extents() would not know that writeback
898 * for this range started and therefore wouldn't wait for it to
899 * finish - we don't want to commit a superblock that points to
900 * btree nodes/leafs for which writeback hasn't finished yet
901 * (and without errors).
902 * We cleanup any entries left in the io tree when committing
903 * the transaction (through clear_btree_io_tree()).
904 */
905 if (err == -ENOMEM) {
906 err = 0;
907 wait_writeback = true;
908 }
909 if (!err)
910 err = filemap_fdatawrite_range(mapping, start, end);
911 if (err)
912 werr = err;
913 else if (wait_writeback)
914 werr = filemap_fdatawait_range(mapping, start, end);
915 free_extent_state(cached_state);
916 cached_state = NULL;
917 cond_resched();
918 start = end + 1;
919 }
920 return werr;
921 }
922
923 /*
924 * when btree blocks are allocated, they have some corresponding bits set for
925 * them in one of two extent_io trees. This is used to make sure all of
926 * those extents are on disk for transaction or log commit. We wait
927 * on all the pages and clear them from the dirty pages state tree
928 */
929 int btrfs_wait_marked_extents(struct btrfs_root *root,
930 struct extent_io_tree *dirty_pages, int mark)
931 {
932 int err = 0;
933 int werr = 0;
934 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
935 struct extent_state *cached_state = NULL;
936 u64 start = 0;
937 u64 end;
938 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
939 bool errors = false;
940
941 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
942 EXTENT_NEED_WAIT, &cached_state)) {
943 /*
944 * Ignore -ENOMEM errors returned by clear_extent_bit().
945 * When committing the transaction, we'll remove any entries
946 * left in the io tree. For a log commit, we don't remove them
947 * after committing the log because the tree can be accessed
948 * concurrently - we do it only at transaction commit time when
949 * it's safe to do it (through clear_btree_io_tree()).
950 */
951 err = clear_extent_bit(dirty_pages, start, end,
952 EXTENT_NEED_WAIT,
953 0, 0, &cached_state, GFP_NOFS);
954 if (err == -ENOMEM)
955 err = 0;
956 if (!err)
957 err = filemap_fdatawait_range(mapping, start, end);
958 if (err)
959 werr = err;
960 free_extent_state(cached_state);
961 cached_state = NULL;
962 cond_resched();
963 start = end + 1;
964 }
965 if (err)
966 werr = err;
967
968 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
969 if ((mark & EXTENT_DIRTY) &&
970 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
971 &btree_ino->runtime_flags))
972 errors = true;
973
974 if ((mark & EXTENT_NEW) &&
975 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
976 &btree_ino->runtime_flags))
977 errors = true;
978 } else {
979 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
980 &btree_ino->runtime_flags))
981 errors = true;
982 }
983
984 if (errors && !werr)
985 werr = -EIO;
986
987 return werr;
988 }
989
990 /*
991 * when btree blocks are allocated, they have some corresponding bits set for
992 * them in one of two extent_io trees. This is used to make sure all of
993 * those extents are on disk for transaction or log commit
994 */
995 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
996 struct extent_io_tree *dirty_pages, int mark)
997 {
998 int ret;
999 int ret2;
1000 struct blk_plug plug;
1001
1002 blk_start_plug(&plug);
1003 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1004 blk_finish_plug(&plug);
1005 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1006
1007 if (ret)
1008 return ret;
1009 if (ret2)
1010 return ret2;
1011 return 0;
1012 }
1013
1014 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root)
1016 {
1017 int ret;
1018
1019 ret = btrfs_write_and_wait_marked_extents(root,
1020 &trans->transaction->dirty_pages,
1021 EXTENT_DIRTY);
1022 clear_btree_io_tree(&trans->transaction->dirty_pages);
1023
1024 return ret;
1025 }
1026
1027 /*
1028 * this is used to update the root pointer in the tree of tree roots.
1029 *
1030 * But, in the case of the extent allocation tree, updating the root
1031 * pointer may allocate blocks which may change the root of the extent
1032 * allocation tree.
1033 *
1034 * So, this loops and repeats and makes sure the cowonly root didn't
1035 * change while the root pointer was being updated in the metadata.
1036 */
1037 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1038 struct btrfs_root *root)
1039 {
1040 int ret;
1041 u64 old_root_bytenr;
1042 u64 old_root_used;
1043 struct btrfs_root *tree_root = root->fs_info->tree_root;
1044
1045 old_root_used = btrfs_root_used(&root->root_item);
1046
1047 while (1) {
1048 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1049 if (old_root_bytenr == root->node->start &&
1050 old_root_used == btrfs_root_used(&root->root_item))
1051 break;
1052
1053 btrfs_set_root_node(&root->root_item, root->node);
1054 ret = btrfs_update_root(trans, tree_root,
1055 &root->root_key,
1056 &root->root_item);
1057 if (ret)
1058 return ret;
1059
1060 old_root_used = btrfs_root_used(&root->root_item);
1061 }
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * update all the cowonly tree roots on disk
1068 *
1069 * The error handling in this function may not be obvious. Any of the
1070 * failures will cause the file system to go offline. We still need
1071 * to clean up the delayed refs.
1072 */
1073 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1074 struct btrfs_root *root)
1075 {
1076 struct btrfs_fs_info *fs_info = root->fs_info;
1077 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1078 struct list_head *io_bgs = &trans->transaction->io_bgs;
1079 struct list_head *next;
1080 struct extent_buffer *eb;
1081 int ret;
1082
1083 eb = btrfs_lock_root_node(fs_info->tree_root);
1084 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1085 0, &eb);
1086 btrfs_tree_unlock(eb);
1087 free_extent_buffer(eb);
1088
1089 if (ret)
1090 return ret;
1091
1092 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1093 if (ret)
1094 return ret;
1095
1096 ret = btrfs_run_dev_stats(trans, root->fs_info);
1097 if (ret)
1098 return ret;
1099 ret = btrfs_run_dev_replace(trans, root->fs_info);
1100 if (ret)
1101 return ret;
1102 ret = btrfs_run_qgroups(trans, root->fs_info);
1103 if (ret)
1104 return ret;
1105
1106 ret = btrfs_setup_space_cache(trans, root);
1107 if (ret)
1108 return ret;
1109
1110 /* run_qgroups might have added some more refs */
1111 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1112 if (ret)
1113 return ret;
1114 again:
1115 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1116 next = fs_info->dirty_cowonly_roots.next;
1117 list_del_init(next);
1118 root = list_entry(next, struct btrfs_root, dirty_list);
1119 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1120
1121 if (root != fs_info->extent_root)
1122 list_add_tail(&root->dirty_list,
1123 &trans->transaction->switch_commits);
1124 ret = update_cowonly_root(trans, root);
1125 if (ret)
1126 return ret;
1127 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1128 if (ret)
1129 return ret;
1130 }
1131
1132 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1133 ret = btrfs_write_dirty_block_groups(trans, root);
1134 if (ret)
1135 return ret;
1136 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1137 if (ret)
1138 return ret;
1139 }
1140
1141 if (!list_empty(&fs_info->dirty_cowonly_roots))
1142 goto again;
1143
1144 list_add_tail(&fs_info->extent_root->dirty_list,
1145 &trans->transaction->switch_commits);
1146 btrfs_after_dev_replace_commit(fs_info);
1147
1148 return 0;
1149 }
1150
1151 /*
1152 * dead roots are old snapshots that need to be deleted. This allocates
1153 * a dirty root struct and adds it into the list of dead roots that need to
1154 * be deleted
1155 */
1156 void btrfs_add_dead_root(struct btrfs_root *root)
1157 {
1158 spin_lock(&root->fs_info->trans_lock);
1159 if (list_empty(&root->root_list))
1160 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1161 spin_unlock(&root->fs_info->trans_lock);
1162 }
1163
1164 /*
1165 * update all the cowonly tree roots on disk
1166 */
1167 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1168 struct btrfs_root *root)
1169 {
1170 struct btrfs_root *gang[8];
1171 struct btrfs_fs_info *fs_info = root->fs_info;
1172 int i;
1173 int ret;
1174 int err = 0;
1175
1176 spin_lock(&fs_info->fs_roots_radix_lock);
1177 while (1) {
1178 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1179 (void **)gang, 0,
1180 ARRAY_SIZE(gang),
1181 BTRFS_ROOT_TRANS_TAG);
1182 if (ret == 0)
1183 break;
1184 for (i = 0; i < ret; i++) {
1185 root = gang[i];
1186 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1187 (unsigned long)root->root_key.objectid,
1188 BTRFS_ROOT_TRANS_TAG);
1189 spin_unlock(&fs_info->fs_roots_radix_lock);
1190
1191 btrfs_free_log(trans, root);
1192 btrfs_update_reloc_root(trans, root);
1193 btrfs_orphan_commit_root(trans, root);
1194
1195 btrfs_save_ino_cache(root, trans);
1196
1197 /* see comments in should_cow_block() */
1198 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1199 smp_mb__after_atomic();
1200
1201 if (root->commit_root != root->node) {
1202 list_add_tail(&root->dirty_list,
1203 &trans->transaction->switch_commits);
1204 btrfs_set_root_node(&root->root_item,
1205 root->node);
1206 }
1207
1208 err = btrfs_update_root(trans, fs_info->tree_root,
1209 &root->root_key,
1210 &root->root_item);
1211 spin_lock(&fs_info->fs_roots_radix_lock);
1212 if (err)
1213 break;
1214 btrfs_qgroup_free_meta_all(root);
1215 }
1216 }
1217 spin_unlock(&fs_info->fs_roots_radix_lock);
1218 return err;
1219 }
1220
1221 /*
1222 * defrag a given btree.
1223 * Every leaf in the btree is read and defragged.
1224 */
1225 int btrfs_defrag_root(struct btrfs_root *root)
1226 {
1227 struct btrfs_fs_info *info = root->fs_info;
1228 struct btrfs_trans_handle *trans;
1229 int ret;
1230
1231 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1232 return 0;
1233
1234 while (1) {
1235 trans = btrfs_start_transaction(root, 0);
1236 if (IS_ERR(trans))
1237 return PTR_ERR(trans);
1238
1239 ret = btrfs_defrag_leaves(trans, root);
1240
1241 btrfs_end_transaction(trans, root);
1242 btrfs_btree_balance_dirty(info->tree_root);
1243 cond_resched();
1244
1245 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1246 break;
1247
1248 if (btrfs_defrag_cancelled(root->fs_info)) {
1249 pr_debug("BTRFS: defrag_root cancelled\n");
1250 ret = -EAGAIN;
1251 break;
1252 }
1253 }
1254 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1255 return ret;
1256 }
1257
1258 /*
1259 * new snapshots need to be created at a very specific time in the
1260 * transaction commit. This does the actual creation.
1261 *
1262 * Note:
1263 * If the error which may affect the commitment of the current transaction
1264 * happens, we should return the error number. If the error which just affect
1265 * the creation of the pending snapshots, just return 0.
1266 */
1267 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1268 struct btrfs_fs_info *fs_info,
1269 struct btrfs_pending_snapshot *pending)
1270 {
1271 struct btrfs_key key;
1272 struct btrfs_root_item *new_root_item;
1273 struct btrfs_root *tree_root = fs_info->tree_root;
1274 struct btrfs_root *root = pending->root;
1275 struct btrfs_root *parent_root;
1276 struct btrfs_block_rsv *rsv;
1277 struct inode *parent_inode;
1278 struct btrfs_path *path;
1279 struct btrfs_dir_item *dir_item;
1280 struct dentry *dentry;
1281 struct extent_buffer *tmp;
1282 struct extent_buffer *old;
1283 struct timespec cur_time = CURRENT_TIME;
1284 int ret = 0;
1285 u64 to_reserve = 0;
1286 u64 index = 0;
1287 u64 objectid;
1288 u64 root_flags;
1289 uuid_le new_uuid;
1290
1291 path = btrfs_alloc_path();
1292 if (!path) {
1293 pending->error = -ENOMEM;
1294 return 0;
1295 }
1296
1297 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1298 if (!new_root_item) {
1299 pending->error = -ENOMEM;
1300 goto root_item_alloc_fail;
1301 }
1302
1303 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1304 if (pending->error)
1305 goto no_free_objectid;
1306
1307 /*
1308 * Make qgroup to skip current new snapshot's qgroupid, as it is
1309 * accounted by later btrfs_qgroup_inherit().
1310 */
1311 btrfs_set_skip_qgroup(trans, objectid);
1312
1313 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1314
1315 if (to_reserve > 0) {
1316 pending->error = btrfs_block_rsv_add(root,
1317 &pending->block_rsv,
1318 to_reserve,
1319 BTRFS_RESERVE_NO_FLUSH);
1320 if (pending->error)
1321 goto clear_skip_qgroup;
1322 }
1323
1324 key.objectid = objectid;
1325 key.offset = (u64)-1;
1326 key.type = BTRFS_ROOT_ITEM_KEY;
1327
1328 rsv = trans->block_rsv;
1329 trans->block_rsv = &pending->block_rsv;
1330 trans->bytes_reserved = trans->block_rsv->reserved;
1331
1332 dentry = pending->dentry;
1333 parent_inode = pending->dir;
1334 parent_root = BTRFS_I(parent_inode)->root;
1335 record_root_in_trans(trans, parent_root);
1336
1337 /*
1338 * insert the directory item
1339 */
1340 ret = btrfs_set_inode_index(parent_inode, &index);
1341 BUG_ON(ret); /* -ENOMEM */
1342
1343 /* check if there is a file/dir which has the same name. */
1344 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1345 btrfs_ino(parent_inode),
1346 dentry->d_name.name,
1347 dentry->d_name.len, 0);
1348 if (dir_item != NULL && !IS_ERR(dir_item)) {
1349 pending->error = -EEXIST;
1350 goto dir_item_existed;
1351 } else if (IS_ERR(dir_item)) {
1352 ret = PTR_ERR(dir_item);
1353 btrfs_abort_transaction(trans, root, ret);
1354 goto fail;
1355 }
1356 btrfs_release_path(path);
1357
1358 /*
1359 * pull in the delayed directory update
1360 * and the delayed inode item
1361 * otherwise we corrupt the FS during
1362 * snapshot
1363 */
1364 ret = btrfs_run_delayed_items(trans, root);
1365 if (ret) { /* Transaction aborted */
1366 btrfs_abort_transaction(trans, root, ret);
1367 goto fail;
1368 }
1369
1370 record_root_in_trans(trans, root);
1371 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1372 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1373 btrfs_check_and_init_root_item(new_root_item);
1374
1375 root_flags = btrfs_root_flags(new_root_item);
1376 if (pending->readonly)
1377 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1378 else
1379 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1380 btrfs_set_root_flags(new_root_item, root_flags);
1381
1382 btrfs_set_root_generation_v2(new_root_item,
1383 trans->transid);
1384 uuid_le_gen(&new_uuid);
1385 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1386 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1387 BTRFS_UUID_SIZE);
1388 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1389 memset(new_root_item->received_uuid, 0,
1390 sizeof(new_root_item->received_uuid));
1391 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1392 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1393 btrfs_set_root_stransid(new_root_item, 0);
1394 btrfs_set_root_rtransid(new_root_item, 0);
1395 }
1396 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1397 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1398 btrfs_set_root_otransid(new_root_item, trans->transid);
1399
1400 old = btrfs_lock_root_node(root);
1401 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1402 if (ret) {
1403 btrfs_tree_unlock(old);
1404 free_extent_buffer(old);
1405 btrfs_abort_transaction(trans, root, ret);
1406 goto fail;
1407 }
1408
1409 btrfs_set_lock_blocking(old);
1410
1411 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1412 /* clean up in any case */
1413 btrfs_tree_unlock(old);
1414 free_extent_buffer(old);
1415 if (ret) {
1416 btrfs_abort_transaction(trans, root, ret);
1417 goto fail;
1418 }
1419 /* see comments in should_cow_block() */
1420 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1421 smp_wmb();
1422
1423 btrfs_set_root_node(new_root_item, tmp);
1424 /* record when the snapshot was created in key.offset */
1425 key.offset = trans->transid;
1426 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1427 btrfs_tree_unlock(tmp);
1428 free_extent_buffer(tmp);
1429 if (ret) {
1430 btrfs_abort_transaction(trans, root, ret);
1431 goto fail;
1432 }
1433
1434 /*
1435 * insert root back/forward references
1436 */
1437 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1438 parent_root->root_key.objectid,
1439 btrfs_ino(parent_inode), index,
1440 dentry->d_name.name, dentry->d_name.len);
1441 if (ret) {
1442 btrfs_abort_transaction(trans, root, ret);
1443 goto fail;
1444 }
1445
1446 key.offset = (u64)-1;
1447 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1448 if (IS_ERR(pending->snap)) {
1449 ret = PTR_ERR(pending->snap);
1450 btrfs_abort_transaction(trans, root, ret);
1451 goto fail;
1452 }
1453
1454 ret = btrfs_reloc_post_snapshot(trans, pending);
1455 if (ret) {
1456 btrfs_abort_transaction(trans, root, ret);
1457 goto fail;
1458 }
1459
1460 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1461 if (ret) {
1462 btrfs_abort_transaction(trans, root, ret);
1463 goto fail;
1464 }
1465
1466 ret = btrfs_insert_dir_item(trans, parent_root,
1467 dentry->d_name.name, dentry->d_name.len,
1468 parent_inode, &key,
1469 BTRFS_FT_DIR, index);
1470 /* We have check then name at the beginning, so it is impossible. */
1471 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1472 if (ret) {
1473 btrfs_abort_transaction(trans, root, ret);
1474 goto fail;
1475 }
1476
1477 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1478 dentry->d_name.len * 2);
1479 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1480 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1481 if (ret) {
1482 btrfs_abort_transaction(trans, root, ret);
1483 goto fail;
1484 }
1485 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1486 BTRFS_UUID_KEY_SUBVOL, objectid);
1487 if (ret) {
1488 btrfs_abort_transaction(trans, root, ret);
1489 goto fail;
1490 }
1491 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1492 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1493 new_root_item->received_uuid,
1494 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1495 objectid);
1496 if (ret && ret != -EEXIST) {
1497 btrfs_abort_transaction(trans, root, ret);
1498 goto fail;
1499 }
1500 }
1501
1502 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1503 if (ret) {
1504 btrfs_abort_transaction(trans, root, ret);
1505 goto fail;
1506 }
1507
1508 /*
1509 * account qgroup counters before qgroup_inherit()
1510 */
1511 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1512 if (ret)
1513 goto fail;
1514 ret = btrfs_qgroup_account_extents(trans, fs_info);
1515 if (ret)
1516 goto fail;
1517 ret = btrfs_qgroup_inherit(trans, fs_info,
1518 root->root_key.objectid,
1519 objectid, pending->inherit);
1520 if (ret) {
1521 btrfs_abort_transaction(trans, root, ret);
1522 goto fail;
1523 }
1524
1525 fail:
1526 pending->error = ret;
1527 dir_item_existed:
1528 trans->block_rsv = rsv;
1529 trans->bytes_reserved = 0;
1530 clear_skip_qgroup:
1531 btrfs_clear_skip_qgroup(trans);
1532 no_free_objectid:
1533 kfree(new_root_item);
1534 root_item_alloc_fail:
1535 btrfs_free_path(path);
1536 return ret;
1537 }
1538
1539 /*
1540 * create all the snapshots we've scheduled for creation
1541 */
1542 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1543 struct btrfs_fs_info *fs_info)
1544 {
1545 struct btrfs_pending_snapshot *pending, *next;
1546 struct list_head *head = &trans->transaction->pending_snapshots;
1547 int ret = 0;
1548
1549 list_for_each_entry_safe(pending, next, head, list) {
1550 list_del(&pending->list);
1551 ret = create_pending_snapshot(trans, fs_info, pending);
1552 if (ret)
1553 break;
1554 }
1555 return ret;
1556 }
1557
1558 static void update_super_roots(struct btrfs_root *root)
1559 {
1560 struct btrfs_root_item *root_item;
1561 struct btrfs_super_block *super;
1562
1563 super = root->fs_info->super_copy;
1564
1565 root_item = &root->fs_info->chunk_root->root_item;
1566 super->chunk_root = root_item->bytenr;
1567 super->chunk_root_generation = root_item->generation;
1568 super->chunk_root_level = root_item->level;
1569
1570 root_item = &root->fs_info->tree_root->root_item;
1571 super->root = root_item->bytenr;
1572 super->generation = root_item->generation;
1573 super->root_level = root_item->level;
1574 if (btrfs_test_opt(root, SPACE_CACHE))
1575 super->cache_generation = root_item->generation;
1576 if (root->fs_info->update_uuid_tree_gen)
1577 super->uuid_tree_generation = root_item->generation;
1578 }
1579
1580 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1581 {
1582 struct btrfs_transaction *trans;
1583 int ret = 0;
1584
1585 spin_lock(&info->trans_lock);
1586 trans = info->running_transaction;
1587 if (trans)
1588 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1589 spin_unlock(&info->trans_lock);
1590 return ret;
1591 }
1592
1593 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1594 {
1595 struct btrfs_transaction *trans;
1596 int ret = 0;
1597
1598 spin_lock(&info->trans_lock);
1599 trans = info->running_transaction;
1600 if (trans)
1601 ret = is_transaction_blocked(trans);
1602 spin_unlock(&info->trans_lock);
1603 return ret;
1604 }
1605
1606 /*
1607 * wait for the current transaction commit to start and block subsequent
1608 * transaction joins
1609 */
1610 static void wait_current_trans_commit_start(struct btrfs_root *root,
1611 struct btrfs_transaction *trans)
1612 {
1613 wait_event(root->fs_info->transaction_blocked_wait,
1614 trans->state >= TRANS_STATE_COMMIT_START ||
1615 trans->aborted);
1616 }
1617
1618 /*
1619 * wait for the current transaction to start and then become unblocked.
1620 * caller holds ref.
1621 */
1622 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1623 struct btrfs_transaction *trans)
1624 {
1625 wait_event(root->fs_info->transaction_wait,
1626 trans->state >= TRANS_STATE_UNBLOCKED ||
1627 trans->aborted);
1628 }
1629
1630 /*
1631 * commit transactions asynchronously. once btrfs_commit_transaction_async
1632 * returns, any subsequent transaction will not be allowed to join.
1633 */
1634 struct btrfs_async_commit {
1635 struct btrfs_trans_handle *newtrans;
1636 struct btrfs_root *root;
1637 struct work_struct work;
1638 };
1639
1640 static void do_async_commit(struct work_struct *work)
1641 {
1642 struct btrfs_async_commit *ac =
1643 container_of(work, struct btrfs_async_commit, work);
1644
1645 /*
1646 * We've got freeze protection passed with the transaction.
1647 * Tell lockdep about it.
1648 */
1649 if (ac->newtrans->type & __TRANS_FREEZABLE)
1650 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1651
1652 current->journal_info = ac->newtrans;
1653
1654 btrfs_commit_transaction(ac->newtrans, ac->root);
1655 kfree(ac);
1656 }
1657
1658 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1659 struct btrfs_root *root,
1660 int wait_for_unblock)
1661 {
1662 struct btrfs_async_commit *ac;
1663 struct btrfs_transaction *cur_trans;
1664
1665 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1666 if (!ac)
1667 return -ENOMEM;
1668
1669 INIT_WORK(&ac->work, do_async_commit);
1670 ac->root = root;
1671 ac->newtrans = btrfs_join_transaction(root);
1672 if (IS_ERR(ac->newtrans)) {
1673 int err = PTR_ERR(ac->newtrans);
1674 kfree(ac);
1675 return err;
1676 }
1677
1678 /* take transaction reference */
1679 cur_trans = trans->transaction;
1680 atomic_inc(&cur_trans->use_count);
1681
1682 btrfs_end_transaction(trans, root);
1683
1684 /*
1685 * Tell lockdep we've released the freeze rwsem, since the
1686 * async commit thread will be the one to unlock it.
1687 */
1688 if (ac->newtrans->type & __TRANS_FREEZABLE)
1689 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1690
1691 schedule_work(&ac->work);
1692
1693 /* wait for transaction to start and unblock */
1694 if (wait_for_unblock)
1695 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1696 else
1697 wait_current_trans_commit_start(root, cur_trans);
1698
1699 if (current->journal_info == trans)
1700 current->journal_info = NULL;
1701
1702 btrfs_put_transaction(cur_trans);
1703 return 0;
1704 }
1705
1706
1707 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1708 struct btrfs_root *root, int err)
1709 {
1710 struct btrfs_transaction *cur_trans = trans->transaction;
1711 DEFINE_WAIT(wait);
1712
1713 WARN_ON(trans->use_count > 1);
1714
1715 btrfs_abort_transaction(trans, root, err);
1716
1717 spin_lock(&root->fs_info->trans_lock);
1718
1719 /*
1720 * If the transaction is removed from the list, it means this
1721 * transaction has been committed successfully, so it is impossible
1722 * to call the cleanup function.
1723 */
1724 BUG_ON(list_empty(&cur_trans->list));
1725
1726 list_del_init(&cur_trans->list);
1727 if (cur_trans == root->fs_info->running_transaction) {
1728 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1729 spin_unlock(&root->fs_info->trans_lock);
1730 wait_event(cur_trans->writer_wait,
1731 atomic_read(&cur_trans->num_writers) == 1);
1732
1733 spin_lock(&root->fs_info->trans_lock);
1734 }
1735 spin_unlock(&root->fs_info->trans_lock);
1736
1737 btrfs_cleanup_one_transaction(trans->transaction, root);
1738
1739 spin_lock(&root->fs_info->trans_lock);
1740 if (cur_trans == root->fs_info->running_transaction)
1741 root->fs_info->running_transaction = NULL;
1742 spin_unlock(&root->fs_info->trans_lock);
1743
1744 if (trans->type & __TRANS_FREEZABLE)
1745 sb_end_intwrite(root->fs_info->sb);
1746 btrfs_put_transaction(cur_trans);
1747 btrfs_put_transaction(cur_trans);
1748
1749 trace_btrfs_transaction_commit(root);
1750
1751 if (current->journal_info == trans)
1752 current->journal_info = NULL;
1753 btrfs_scrub_cancel(root->fs_info);
1754
1755 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1756 }
1757
1758 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1759 {
1760 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1761 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1762 return 0;
1763 }
1764
1765 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1766 {
1767 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1768 btrfs_wait_ordered_roots(fs_info, -1);
1769 }
1770
1771 static inline void
1772 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1773 {
1774 wait_event(cur_trans->pending_wait,
1775 atomic_read(&cur_trans->pending_ordered) == 0);
1776 }
1777
1778 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1779 struct btrfs_root *root)
1780 {
1781 struct btrfs_transaction *cur_trans = trans->transaction;
1782 struct btrfs_transaction *prev_trans = NULL;
1783 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1784 int ret;
1785
1786 /* Stop the commit early if ->aborted is set */
1787 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1788 ret = cur_trans->aborted;
1789 btrfs_end_transaction(trans, root);
1790 return ret;
1791 }
1792
1793 /* make a pass through all the delayed refs we have so far
1794 * any runnings procs may add more while we are here
1795 */
1796 ret = btrfs_run_delayed_refs(trans, root, 0);
1797 if (ret) {
1798 btrfs_end_transaction(trans, root);
1799 return ret;
1800 }
1801
1802 btrfs_trans_release_metadata(trans, root);
1803 trans->block_rsv = NULL;
1804
1805 cur_trans = trans->transaction;
1806
1807 /*
1808 * set the flushing flag so procs in this transaction have to
1809 * start sending their work down.
1810 */
1811 cur_trans->delayed_refs.flushing = 1;
1812 smp_wmb();
1813
1814 if (!list_empty(&trans->new_bgs))
1815 btrfs_create_pending_block_groups(trans, root);
1816
1817 ret = btrfs_run_delayed_refs(trans, root, 0);
1818 if (ret) {
1819 btrfs_end_transaction(trans, root);
1820 return ret;
1821 }
1822
1823 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1824 int run_it = 0;
1825
1826 /* this mutex is also taken before trying to set
1827 * block groups readonly. We need to make sure
1828 * that nobody has set a block group readonly
1829 * after a extents from that block group have been
1830 * allocated for cache files. btrfs_set_block_group_ro
1831 * will wait for the transaction to commit if it
1832 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1833 *
1834 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1835 * only one process starts all the block group IO. It wouldn't
1836 * hurt to have more than one go through, but there's no
1837 * real advantage to it either.
1838 */
1839 mutex_lock(&root->fs_info->ro_block_group_mutex);
1840 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1841 &cur_trans->flags))
1842 run_it = 1;
1843 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1844
1845 if (run_it)
1846 ret = btrfs_start_dirty_block_groups(trans, root);
1847 }
1848 if (ret) {
1849 btrfs_end_transaction(trans, root);
1850 return ret;
1851 }
1852
1853 spin_lock(&root->fs_info->trans_lock);
1854 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1855 spin_unlock(&root->fs_info->trans_lock);
1856 atomic_inc(&cur_trans->use_count);
1857 ret = btrfs_end_transaction(trans, root);
1858
1859 wait_for_commit(root, cur_trans);
1860
1861 if (unlikely(cur_trans->aborted))
1862 ret = cur_trans->aborted;
1863
1864 btrfs_put_transaction(cur_trans);
1865
1866 return ret;
1867 }
1868
1869 cur_trans->state = TRANS_STATE_COMMIT_START;
1870 wake_up(&root->fs_info->transaction_blocked_wait);
1871
1872 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1873 prev_trans = list_entry(cur_trans->list.prev,
1874 struct btrfs_transaction, list);
1875 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1876 atomic_inc(&prev_trans->use_count);
1877 spin_unlock(&root->fs_info->trans_lock);
1878
1879 wait_for_commit(root, prev_trans);
1880 ret = prev_trans->aborted;
1881
1882 btrfs_put_transaction(prev_trans);
1883 if (ret)
1884 goto cleanup_transaction;
1885 } else {
1886 spin_unlock(&root->fs_info->trans_lock);
1887 }
1888 } else {
1889 spin_unlock(&root->fs_info->trans_lock);
1890 }
1891
1892 extwriter_counter_dec(cur_trans, trans->type);
1893
1894 ret = btrfs_start_delalloc_flush(root->fs_info);
1895 if (ret)
1896 goto cleanup_transaction;
1897
1898 ret = btrfs_run_delayed_items(trans, root);
1899 if (ret)
1900 goto cleanup_transaction;
1901
1902 wait_event(cur_trans->writer_wait,
1903 extwriter_counter_read(cur_trans) == 0);
1904
1905 /* some pending stuffs might be added after the previous flush. */
1906 ret = btrfs_run_delayed_items(trans, root);
1907 if (ret)
1908 goto cleanup_transaction;
1909
1910 btrfs_wait_delalloc_flush(root->fs_info);
1911
1912 btrfs_wait_pending_ordered(cur_trans);
1913
1914 btrfs_scrub_pause(root);
1915 /*
1916 * Ok now we need to make sure to block out any other joins while we
1917 * commit the transaction. We could have started a join before setting
1918 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1919 */
1920 spin_lock(&root->fs_info->trans_lock);
1921 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1922 spin_unlock(&root->fs_info->trans_lock);
1923 wait_event(cur_trans->writer_wait,
1924 atomic_read(&cur_trans->num_writers) == 1);
1925
1926 /* ->aborted might be set after the previous check, so check it */
1927 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1928 ret = cur_trans->aborted;
1929 goto scrub_continue;
1930 }
1931 /*
1932 * the reloc mutex makes sure that we stop
1933 * the balancing code from coming in and moving
1934 * extents around in the middle of the commit
1935 */
1936 mutex_lock(&root->fs_info->reloc_mutex);
1937
1938 /*
1939 * We needn't worry about the delayed items because we will
1940 * deal with them in create_pending_snapshot(), which is the
1941 * core function of the snapshot creation.
1942 */
1943 ret = create_pending_snapshots(trans, root->fs_info);
1944 if (ret) {
1945 mutex_unlock(&root->fs_info->reloc_mutex);
1946 goto scrub_continue;
1947 }
1948
1949 /*
1950 * We insert the dir indexes of the snapshots and update the inode
1951 * of the snapshots' parents after the snapshot creation, so there
1952 * are some delayed items which are not dealt with. Now deal with
1953 * them.
1954 *
1955 * We needn't worry that this operation will corrupt the snapshots,
1956 * because all the tree which are snapshoted will be forced to COW
1957 * the nodes and leaves.
1958 */
1959 ret = btrfs_run_delayed_items(trans, root);
1960 if (ret) {
1961 mutex_unlock(&root->fs_info->reloc_mutex);
1962 goto scrub_continue;
1963 }
1964
1965 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1966 if (ret) {
1967 mutex_unlock(&root->fs_info->reloc_mutex);
1968 goto scrub_continue;
1969 }
1970
1971 /* Reocrd old roots for later qgroup accounting */
1972 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1973 if (ret) {
1974 mutex_unlock(&root->fs_info->reloc_mutex);
1975 goto scrub_continue;
1976 }
1977
1978 /*
1979 * make sure none of the code above managed to slip in a
1980 * delayed item
1981 */
1982 btrfs_assert_delayed_root_empty(root);
1983
1984 WARN_ON(cur_trans != trans->transaction);
1985
1986 /* btrfs_commit_tree_roots is responsible for getting the
1987 * various roots consistent with each other. Every pointer
1988 * in the tree of tree roots has to point to the most up to date
1989 * root for every subvolume and other tree. So, we have to keep
1990 * the tree logging code from jumping in and changing any
1991 * of the trees.
1992 *
1993 * At this point in the commit, there can't be any tree-log
1994 * writers, but a little lower down we drop the trans mutex
1995 * and let new people in. By holding the tree_log_mutex
1996 * from now until after the super is written, we avoid races
1997 * with the tree-log code.
1998 */
1999 mutex_lock(&root->fs_info->tree_log_mutex);
2000
2001 ret = commit_fs_roots(trans, root);
2002 if (ret) {
2003 mutex_unlock(&root->fs_info->tree_log_mutex);
2004 mutex_unlock(&root->fs_info->reloc_mutex);
2005 goto scrub_continue;
2006 }
2007
2008 /*
2009 * Since the transaction is done, we can apply the pending changes
2010 * before the next transaction.
2011 */
2012 btrfs_apply_pending_changes(root->fs_info);
2013
2014 /* commit_fs_roots gets rid of all the tree log roots, it is now
2015 * safe to free the root of tree log roots
2016 */
2017 btrfs_free_log_root_tree(trans, root->fs_info);
2018
2019 /*
2020 * Since fs roots are all committed, we can get a quite accurate
2021 * new_roots. So let's do quota accounting.
2022 */
2023 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2024 if (ret < 0) {
2025 mutex_unlock(&root->fs_info->tree_log_mutex);
2026 mutex_unlock(&root->fs_info->reloc_mutex);
2027 goto scrub_continue;
2028 }
2029
2030 ret = commit_cowonly_roots(trans, root);
2031 if (ret) {
2032 mutex_unlock(&root->fs_info->tree_log_mutex);
2033 mutex_unlock(&root->fs_info->reloc_mutex);
2034 goto scrub_continue;
2035 }
2036
2037 /*
2038 * The tasks which save the space cache and inode cache may also
2039 * update ->aborted, check it.
2040 */
2041 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2042 ret = cur_trans->aborted;
2043 mutex_unlock(&root->fs_info->tree_log_mutex);
2044 mutex_unlock(&root->fs_info->reloc_mutex);
2045 goto scrub_continue;
2046 }
2047
2048 btrfs_prepare_extent_commit(trans, root);
2049
2050 cur_trans = root->fs_info->running_transaction;
2051
2052 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2053 root->fs_info->tree_root->node);
2054 list_add_tail(&root->fs_info->tree_root->dirty_list,
2055 &cur_trans->switch_commits);
2056
2057 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2058 root->fs_info->chunk_root->node);
2059 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2060 &cur_trans->switch_commits);
2061
2062 switch_commit_roots(cur_trans, root->fs_info);
2063
2064 assert_qgroups_uptodate(trans);
2065 ASSERT(list_empty(&cur_trans->dirty_bgs));
2066 ASSERT(list_empty(&cur_trans->io_bgs));
2067 update_super_roots(root);
2068
2069 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2070 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2071 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2072 sizeof(*root->fs_info->super_copy));
2073
2074 btrfs_update_commit_device_size(root->fs_info);
2075 btrfs_update_commit_device_bytes_used(root, cur_trans);
2076
2077 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2078 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2079
2080 btrfs_trans_release_chunk_metadata(trans);
2081
2082 spin_lock(&root->fs_info->trans_lock);
2083 cur_trans->state = TRANS_STATE_UNBLOCKED;
2084 root->fs_info->running_transaction = NULL;
2085 spin_unlock(&root->fs_info->trans_lock);
2086 mutex_unlock(&root->fs_info->reloc_mutex);
2087
2088 wake_up(&root->fs_info->transaction_wait);
2089
2090 ret = btrfs_write_and_wait_transaction(trans, root);
2091 if (ret) {
2092 btrfs_std_error(root->fs_info, ret,
2093 "Error while writing out transaction");
2094 mutex_unlock(&root->fs_info->tree_log_mutex);
2095 goto scrub_continue;
2096 }
2097
2098 ret = write_ctree_super(trans, root, 0);
2099 if (ret) {
2100 mutex_unlock(&root->fs_info->tree_log_mutex);
2101 goto scrub_continue;
2102 }
2103
2104 /*
2105 * the super is written, we can safely allow the tree-loggers
2106 * to go about their business
2107 */
2108 mutex_unlock(&root->fs_info->tree_log_mutex);
2109
2110 btrfs_finish_extent_commit(trans, root);
2111
2112 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2113 btrfs_clear_space_info_full(root->fs_info);
2114
2115 root->fs_info->last_trans_committed = cur_trans->transid;
2116 /*
2117 * We needn't acquire the lock here because there is no other task
2118 * which can change it.
2119 */
2120 cur_trans->state = TRANS_STATE_COMPLETED;
2121 wake_up(&cur_trans->commit_wait);
2122
2123 spin_lock(&root->fs_info->trans_lock);
2124 list_del_init(&cur_trans->list);
2125 spin_unlock(&root->fs_info->trans_lock);
2126
2127 btrfs_put_transaction(cur_trans);
2128 btrfs_put_transaction(cur_trans);
2129
2130 if (trans->type & __TRANS_FREEZABLE)
2131 sb_end_intwrite(root->fs_info->sb);
2132
2133 trace_btrfs_transaction_commit(root);
2134
2135 btrfs_scrub_continue(root);
2136
2137 if (current->journal_info == trans)
2138 current->journal_info = NULL;
2139
2140 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2141
2142 if (current != root->fs_info->transaction_kthread &&
2143 current != root->fs_info->cleaner_kthread)
2144 btrfs_run_delayed_iputs(root);
2145
2146 return ret;
2147
2148 scrub_continue:
2149 btrfs_scrub_continue(root);
2150 cleanup_transaction:
2151 btrfs_trans_release_metadata(trans, root);
2152 btrfs_trans_release_chunk_metadata(trans);
2153 trans->block_rsv = NULL;
2154 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2155 if (current->journal_info == trans)
2156 current->journal_info = NULL;
2157 cleanup_transaction(trans, root, ret);
2158
2159 return ret;
2160 }
2161
2162 /*
2163 * return < 0 if error
2164 * 0 if there are no more dead_roots at the time of call
2165 * 1 there are more to be processed, call me again
2166 *
2167 * The return value indicates there are certainly more snapshots to delete, but
2168 * if there comes a new one during processing, it may return 0. We don't mind,
2169 * because btrfs_commit_super will poke cleaner thread and it will process it a
2170 * few seconds later.
2171 */
2172 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2173 {
2174 int ret;
2175 struct btrfs_fs_info *fs_info = root->fs_info;
2176
2177 spin_lock(&fs_info->trans_lock);
2178 if (list_empty(&fs_info->dead_roots)) {
2179 spin_unlock(&fs_info->trans_lock);
2180 return 0;
2181 }
2182 root = list_first_entry(&fs_info->dead_roots,
2183 struct btrfs_root, root_list);
2184 list_del_init(&root->root_list);
2185 spin_unlock(&fs_info->trans_lock);
2186
2187 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2188
2189 btrfs_kill_all_delayed_nodes(root);
2190
2191 if (btrfs_header_backref_rev(root->node) <
2192 BTRFS_MIXED_BACKREF_REV)
2193 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2194 else
2195 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2196
2197 return (ret < 0) ? 0 : 1;
2198 }
2199
2200 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2201 {
2202 unsigned long prev;
2203 unsigned long bit;
2204
2205 prev = xchg(&fs_info->pending_changes, 0);
2206 if (!prev)
2207 return;
2208
2209 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2210 if (prev & bit)
2211 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2212 prev &= ~bit;
2213
2214 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2215 if (prev & bit)
2216 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2217 prev &= ~bit;
2218
2219 bit = 1 << BTRFS_PENDING_COMMIT;
2220 if (prev & bit)
2221 btrfs_debug(fs_info, "pending commit done");
2222 prev &= ~bit;
2223
2224 if (prev)
2225 btrfs_warn(fs_info,
2226 "unknown pending changes left 0x%lx, ignoring", prev);
2227 }