]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/transaction.c
Merge tag 'sh-pfc-for-v5.1-tag2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22
23 #define BTRFS_ROOT_TRANS_TAG 0
24
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN),
32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
33 __TRANS_ATTACH |
34 __TRANS_JOIN |
35 __TRANS_JOIN_NOLOCK),
36 [TRANS_STATE_COMPLETED] = (__TRANS_START |
37 __TRANS_ATTACH |
38 __TRANS_JOIN |
39 __TRANS_JOIN_NOLOCK),
40 };
41
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 WARN_ON(refcount_read(&transaction->use_count) == 0);
45 if (refcount_dec_and_test(&transaction->use_count)) {
46 BUG_ON(!list_empty(&transaction->list));
47 WARN_ON(!RB_EMPTY_ROOT(
48 &transaction->delayed_refs.href_root.rb_root));
49 if (transaction->delayed_refs.pending_csums)
50 btrfs_err(transaction->fs_info,
51 "pending csums is %llu",
52 transaction->delayed_refs.pending_csums);
53 while (!list_empty(&transaction->pending_chunks)) {
54 struct extent_map *em;
55
56 em = list_first_entry(&transaction->pending_chunks,
57 struct extent_map, list);
58 list_del_init(&em->list);
59 free_extent_map(em);
60 }
61 /*
62 * If any block groups are found in ->deleted_bgs then it's
63 * because the transaction was aborted and a commit did not
64 * happen (things failed before writing the new superblock
65 * and calling btrfs_finish_extent_commit()), so we can not
66 * discard the physical locations of the block groups.
67 */
68 while (!list_empty(&transaction->deleted_bgs)) {
69 struct btrfs_block_group_cache *cache;
70
71 cache = list_first_entry(&transaction->deleted_bgs,
72 struct btrfs_block_group_cache,
73 bg_list);
74 list_del_init(&cache->bg_list);
75 btrfs_put_block_group_trimming(cache);
76 btrfs_put_block_group(cache);
77 }
78 kfree(transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 /*
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
89 */
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
94
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
99 /*
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
102 */
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
105
106 cond_resched_lock(&tree->lock);
107 }
108 spin_unlock(&tree->lock);
109 }
110
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
112 {
113 struct btrfs_fs_info *fs_info = trans->fs_info;
114 struct btrfs_root *root, *tmp;
115
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->root_key.objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
125 }
126
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
136 }
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
139 }
140
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
143 {
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
146 }
147
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
150 {
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
153 }
154
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
157 {
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167 * either allocate a new transaction or hop into the existing one
168 */
169 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
170 unsigned int type)
171 {
172 struct btrfs_transaction *cur_trans;
173
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
180 }
181
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
187 }
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
191 }
192 refcount_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
197 }
198 spin_unlock(&fs_info->trans_lock);
199
200 /*
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
203 */
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
206
207 /*
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
210 */
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
216
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
219 /*
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
222 */
223 kfree(cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kfree(cur_trans);
228 return -EROFS;
229 }
230
231 cur_trans->fs_info = fs_info;
232 atomic_set(&cur_trans->num_writers, 1);
233 extwriter_counter_init(cur_trans, type);
234 init_waitqueue_head(&cur_trans->writer_wait);
235 init_waitqueue_head(&cur_trans->commit_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
237 /*
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
240 */
241 refcount_set(&cur_trans->use_count, 2);
242 cur_trans->flags = 0;
243 cur_trans->start_time = ktime_get_seconds();
244
245 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
246
247 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
248 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
249 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
250
251 /*
252 * although the tree mod log is per file system and not per transaction,
253 * the log must never go across transaction boundaries.
254 */
255 smp_mb();
256 if (!list_empty(&fs_info->tree_mod_seq_list))
257 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
258 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
259 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
260 atomic64_set(&fs_info->tree_mod_seq, 0);
261
262 spin_lock_init(&cur_trans->delayed_refs.lock);
263
264 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 INIT_LIST_HEAD(&cur_trans->switch_commits);
267 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
268 INIT_LIST_HEAD(&cur_trans->io_bgs);
269 INIT_LIST_HEAD(&cur_trans->dropped_roots);
270 mutex_init(&cur_trans->cache_write_mutex);
271 cur_trans->num_dirty_bgs = 0;
272 spin_lock_init(&cur_trans->dirty_bgs_lock);
273 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
274 spin_lock_init(&cur_trans->dropped_roots_lock);
275 list_add_tail(&cur_trans->list, &fs_info->trans_list);
276 extent_io_tree_init(&cur_trans->dirty_pages,
277 fs_info->btree_inode);
278 fs_info->generation++;
279 cur_trans->transid = fs_info->generation;
280 fs_info->running_transaction = cur_trans;
281 cur_trans->aborted = 0;
282 spin_unlock(&fs_info->trans_lock);
283
284 return 0;
285 }
286
287 /*
288 * this does all the record keeping required to make sure that a reference
289 * counted root is properly recorded in a given transaction. This is required
290 * to make sure the old root from before we joined the transaction is deleted
291 * when the transaction commits
292 */
293 static int record_root_in_trans(struct btrfs_trans_handle *trans,
294 struct btrfs_root *root,
295 int force)
296 {
297 struct btrfs_fs_info *fs_info = root->fs_info;
298
299 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300 root->last_trans < trans->transid) || force) {
301 WARN_ON(root == fs_info->extent_root);
302 WARN_ON(!force && root->commit_root != root->node);
303
304 /*
305 * see below for IN_TRANS_SETUP usage rules
306 * we have the reloc mutex held now, so there
307 * is only one writer in this function
308 */
309 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
310
311 /* make sure readers find IN_TRANS_SETUP before
312 * they find our root->last_trans update
313 */
314 smp_wmb();
315
316 spin_lock(&fs_info->fs_roots_radix_lock);
317 if (root->last_trans == trans->transid && !force) {
318 spin_unlock(&fs_info->fs_roots_radix_lock);
319 return 0;
320 }
321 radix_tree_tag_set(&fs_info->fs_roots_radix,
322 (unsigned long)root->root_key.objectid,
323 BTRFS_ROOT_TRANS_TAG);
324 spin_unlock(&fs_info->fs_roots_radix_lock);
325 root->last_trans = trans->transid;
326
327 /* this is pretty tricky. We don't want to
328 * take the relocation lock in btrfs_record_root_in_trans
329 * unless we're really doing the first setup for this root in
330 * this transaction.
331 *
332 * Normally we'd use root->last_trans as a flag to decide
333 * if we want to take the expensive mutex.
334 *
335 * But, we have to set root->last_trans before we
336 * init the relocation root, otherwise, we trip over warnings
337 * in ctree.c. The solution used here is to flag ourselves
338 * with root IN_TRANS_SETUP. When this is 1, we're still
339 * fixing up the reloc trees and everyone must wait.
340 *
341 * When this is zero, they can trust root->last_trans and fly
342 * through btrfs_record_root_in_trans without having to take the
343 * lock. smp_wmb() makes sure that all the writes above are
344 * done before we pop in the zero below
345 */
346 btrfs_init_reloc_root(trans, root);
347 smp_mb__before_atomic();
348 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
349 }
350 return 0;
351 }
352
353
354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root)
356 {
357 struct btrfs_fs_info *fs_info = root->fs_info;
358 struct btrfs_transaction *cur_trans = trans->transaction;
359
360 /* Add ourselves to the transaction dropped list */
361 spin_lock(&cur_trans->dropped_roots_lock);
362 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 spin_unlock(&cur_trans->dropped_roots_lock);
364
365 /* Make sure we don't try to update the root at commit time */
366 spin_lock(&fs_info->fs_roots_radix_lock);
367 radix_tree_tag_clear(&fs_info->fs_roots_radix,
368 (unsigned long)root->root_key.objectid,
369 BTRFS_ROOT_TRANS_TAG);
370 spin_unlock(&fs_info->fs_roots_radix_lock);
371 }
372
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root)
375 {
376 struct btrfs_fs_info *fs_info = root->fs_info;
377
378 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
379 return 0;
380
381 /*
382 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
383 * and barriers
384 */
385 smp_rmb();
386 if (root->last_trans == trans->transid &&
387 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
388 return 0;
389
390 mutex_lock(&fs_info->reloc_mutex);
391 record_root_in_trans(trans, root, 0);
392 mutex_unlock(&fs_info->reloc_mutex);
393
394 return 0;
395 }
396
397 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
398 {
399 return (trans->state >= TRANS_STATE_BLOCKED &&
400 trans->state < TRANS_STATE_UNBLOCKED &&
401 !trans->aborted);
402 }
403
404 /* wait for commit against the current transaction to become unblocked
405 * when this is done, it is safe to start a new transaction, but the current
406 * transaction might not be fully on disk.
407 */
408 static void wait_current_trans(struct btrfs_fs_info *fs_info)
409 {
410 struct btrfs_transaction *cur_trans;
411
412 spin_lock(&fs_info->trans_lock);
413 cur_trans = fs_info->running_transaction;
414 if (cur_trans && is_transaction_blocked(cur_trans)) {
415 refcount_inc(&cur_trans->use_count);
416 spin_unlock(&fs_info->trans_lock);
417
418 wait_event(fs_info->transaction_wait,
419 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
420 cur_trans->aborted);
421 btrfs_put_transaction(cur_trans);
422 } else {
423 spin_unlock(&fs_info->trans_lock);
424 }
425 }
426
427 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
428 {
429 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
430 return 0;
431
432 if (type == TRANS_START)
433 return 1;
434
435 return 0;
436 }
437
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
439 {
440 struct btrfs_fs_info *fs_info = root->fs_info;
441
442 if (!fs_info->reloc_ctl ||
443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 root->reloc_root)
446 return false;
447
448 return true;
449 }
450
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 unsigned int type, enum btrfs_reserve_flush_enum flush,
454 bool enforce_qgroups)
455 {
456 struct btrfs_fs_info *fs_info = root->fs_info;
457 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
458 struct btrfs_trans_handle *h;
459 struct btrfs_transaction *cur_trans;
460 u64 num_bytes = 0;
461 u64 qgroup_reserved = 0;
462 bool reloc_reserved = false;
463 int ret;
464
465 /* Send isn't supposed to start transactions. */
466 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
467
468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
469 return ERR_PTR(-EROFS);
470
471 if (current->journal_info) {
472 WARN_ON(type & TRANS_EXTWRITERS);
473 h = current->journal_info;
474 refcount_inc(&h->use_count);
475 WARN_ON(refcount_read(&h->use_count) > 2);
476 h->orig_rsv = h->block_rsv;
477 h->block_rsv = NULL;
478 goto got_it;
479 }
480
481 /*
482 * Do the reservation before we join the transaction so we can do all
483 * the appropriate flushing if need be.
484 */
485 if (num_items && root != fs_info->chunk_root) {
486 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
487 u64 delayed_refs_bytes = 0;
488
489 qgroup_reserved = num_items * fs_info->nodesize;
490 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
491 enforce_qgroups);
492 if (ret)
493 return ERR_PTR(ret);
494
495 /*
496 * We want to reserve all the bytes we may need all at once, so
497 * we only do 1 enospc flushing cycle per transaction start. We
498 * accomplish this by simply assuming we'll do 2 x num_items
499 * worth of delayed refs updates in this trans handle, and
500 * refill that amount for whatever is missing in the reserve.
501 */
502 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
503 if (delayed_refs_rsv->full == 0) {
504 delayed_refs_bytes = num_bytes;
505 num_bytes <<= 1;
506 }
507
508 /*
509 * Do the reservation for the relocation root creation
510 */
511 if (need_reserve_reloc_root(root)) {
512 num_bytes += fs_info->nodesize;
513 reloc_reserved = true;
514 }
515
516 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
517 if (ret)
518 goto reserve_fail;
519 if (delayed_refs_bytes) {
520 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
521 delayed_refs_bytes);
522 num_bytes -= delayed_refs_bytes;
523 }
524 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
525 !delayed_refs_rsv->full) {
526 /*
527 * Some people call with btrfs_start_transaction(root, 0)
528 * because they can be throttled, but have some other mechanism
529 * for reserving space. We still want these guys to refill the
530 * delayed block_rsv so just add 1 items worth of reservation
531 * here.
532 */
533 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
534 if (ret)
535 goto reserve_fail;
536 }
537 again:
538 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
539 if (!h) {
540 ret = -ENOMEM;
541 goto alloc_fail;
542 }
543
544 /*
545 * If we are JOIN_NOLOCK we're already committing a transaction and
546 * waiting on this guy, so we don't need to do the sb_start_intwrite
547 * because we're already holding a ref. We need this because we could
548 * have raced in and did an fsync() on a file which can kick a commit
549 * and then we deadlock with somebody doing a freeze.
550 *
551 * If we are ATTACH, it means we just want to catch the current
552 * transaction and commit it, so we needn't do sb_start_intwrite().
553 */
554 if (type & __TRANS_FREEZABLE)
555 sb_start_intwrite(fs_info->sb);
556
557 if (may_wait_transaction(fs_info, type))
558 wait_current_trans(fs_info);
559
560 do {
561 ret = join_transaction(fs_info, type);
562 if (ret == -EBUSY) {
563 wait_current_trans(fs_info);
564 if (unlikely(type == TRANS_ATTACH))
565 ret = -ENOENT;
566 }
567 } while (ret == -EBUSY);
568
569 if (ret < 0)
570 goto join_fail;
571
572 cur_trans = fs_info->running_transaction;
573
574 h->transid = cur_trans->transid;
575 h->transaction = cur_trans;
576 h->root = root;
577 refcount_set(&h->use_count, 1);
578 h->fs_info = root->fs_info;
579
580 h->type = type;
581 h->can_flush_pending_bgs = true;
582 INIT_LIST_HEAD(&h->new_bgs);
583
584 smp_mb();
585 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
586 may_wait_transaction(fs_info, type)) {
587 current->journal_info = h;
588 btrfs_commit_transaction(h);
589 goto again;
590 }
591
592 if (num_bytes) {
593 trace_btrfs_space_reservation(fs_info, "transaction",
594 h->transid, num_bytes, 1);
595 h->block_rsv = &fs_info->trans_block_rsv;
596 h->bytes_reserved = num_bytes;
597 h->reloc_reserved = reloc_reserved;
598 }
599
600 got_it:
601 btrfs_record_root_in_trans(h, root);
602
603 if (!current->journal_info)
604 current->journal_info = h;
605 return h;
606
607 join_fail:
608 if (type & __TRANS_FREEZABLE)
609 sb_end_intwrite(fs_info->sb);
610 kmem_cache_free(btrfs_trans_handle_cachep, h);
611 alloc_fail:
612 if (num_bytes)
613 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
614 num_bytes);
615 reserve_fail:
616 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
617 return ERR_PTR(ret);
618 }
619
620 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
621 unsigned int num_items)
622 {
623 return start_transaction(root, num_items, TRANS_START,
624 BTRFS_RESERVE_FLUSH_ALL, true);
625 }
626
627 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
628 struct btrfs_root *root,
629 unsigned int num_items,
630 int min_factor)
631 {
632 struct btrfs_fs_info *fs_info = root->fs_info;
633 struct btrfs_trans_handle *trans;
634 u64 num_bytes;
635 int ret;
636
637 /*
638 * We have two callers: unlink and block group removal. The
639 * former should succeed even if we will temporarily exceed
640 * quota and the latter operates on the extent root so
641 * qgroup enforcement is ignored anyway.
642 */
643 trans = start_transaction(root, num_items, TRANS_START,
644 BTRFS_RESERVE_FLUSH_ALL, false);
645 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
646 return trans;
647
648 trans = btrfs_start_transaction(root, 0);
649 if (IS_ERR(trans))
650 return trans;
651
652 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
653 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
654 num_bytes, min_factor);
655 if (ret) {
656 btrfs_end_transaction(trans);
657 return ERR_PTR(ret);
658 }
659
660 trans->block_rsv = &fs_info->trans_block_rsv;
661 trans->bytes_reserved = num_bytes;
662 trace_btrfs_space_reservation(fs_info, "transaction",
663 trans->transid, num_bytes, 1);
664
665 return trans;
666 }
667
668 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
669 {
670 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
671 true);
672 }
673
674 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
675 {
676 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
677 BTRFS_RESERVE_NO_FLUSH, true);
678 }
679
680 /*
681 * btrfs_attach_transaction() - catch the running transaction
682 *
683 * It is used when we want to commit the current the transaction, but
684 * don't want to start a new one.
685 *
686 * Note: If this function return -ENOENT, it just means there is no
687 * running transaction. But it is possible that the inactive transaction
688 * is still in the memory, not fully on disk. If you hope there is no
689 * inactive transaction in the fs when -ENOENT is returned, you should
690 * invoke
691 * btrfs_attach_transaction_barrier()
692 */
693 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
694 {
695 return start_transaction(root, 0, TRANS_ATTACH,
696 BTRFS_RESERVE_NO_FLUSH, true);
697 }
698
699 /*
700 * btrfs_attach_transaction_barrier() - catch the running transaction
701 *
702 * It is similar to the above function, the difference is this one
703 * will wait for all the inactive transactions until they fully
704 * complete.
705 */
706 struct btrfs_trans_handle *
707 btrfs_attach_transaction_barrier(struct btrfs_root *root)
708 {
709 struct btrfs_trans_handle *trans;
710
711 trans = start_transaction(root, 0, TRANS_ATTACH,
712 BTRFS_RESERVE_NO_FLUSH, true);
713 if (trans == ERR_PTR(-ENOENT))
714 btrfs_wait_for_commit(root->fs_info, 0);
715
716 return trans;
717 }
718
719 /* wait for a transaction commit to be fully complete */
720 static noinline void wait_for_commit(struct btrfs_transaction *commit)
721 {
722 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
723 }
724
725 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
726 {
727 struct btrfs_transaction *cur_trans = NULL, *t;
728 int ret = 0;
729
730 if (transid) {
731 if (transid <= fs_info->last_trans_committed)
732 goto out;
733
734 /* find specified transaction */
735 spin_lock(&fs_info->trans_lock);
736 list_for_each_entry(t, &fs_info->trans_list, list) {
737 if (t->transid == transid) {
738 cur_trans = t;
739 refcount_inc(&cur_trans->use_count);
740 ret = 0;
741 break;
742 }
743 if (t->transid > transid) {
744 ret = 0;
745 break;
746 }
747 }
748 spin_unlock(&fs_info->trans_lock);
749
750 /*
751 * The specified transaction doesn't exist, or we
752 * raced with btrfs_commit_transaction
753 */
754 if (!cur_trans) {
755 if (transid > fs_info->last_trans_committed)
756 ret = -EINVAL;
757 goto out;
758 }
759 } else {
760 /* find newest transaction that is committing | committed */
761 spin_lock(&fs_info->trans_lock);
762 list_for_each_entry_reverse(t, &fs_info->trans_list,
763 list) {
764 if (t->state >= TRANS_STATE_COMMIT_START) {
765 if (t->state == TRANS_STATE_COMPLETED)
766 break;
767 cur_trans = t;
768 refcount_inc(&cur_trans->use_count);
769 break;
770 }
771 }
772 spin_unlock(&fs_info->trans_lock);
773 if (!cur_trans)
774 goto out; /* nothing committing|committed */
775 }
776
777 wait_for_commit(cur_trans);
778 btrfs_put_transaction(cur_trans);
779 out:
780 return ret;
781 }
782
783 void btrfs_throttle(struct btrfs_fs_info *fs_info)
784 {
785 wait_current_trans(fs_info);
786 }
787
788 static int should_end_transaction(struct btrfs_trans_handle *trans)
789 {
790 struct btrfs_fs_info *fs_info = trans->fs_info;
791
792 if (btrfs_check_space_for_delayed_refs(fs_info))
793 return 1;
794
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796 }
797
798 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
799 {
800 struct btrfs_transaction *cur_trans = trans->transaction;
801
802 smp_mb();
803 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
804 cur_trans->delayed_refs.flushing)
805 return 1;
806
807 return should_end_transaction(trans);
808 }
809
810 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
811
812 {
813 struct btrfs_fs_info *fs_info = trans->fs_info;
814
815 if (!trans->block_rsv) {
816 ASSERT(!trans->bytes_reserved);
817 return;
818 }
819
820 if (!trans->bytes_reserved)
821 return;
822
823 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
824 trace_btrfs_space_reservation(fs_info, "transaction",
825 trans->transid, trans->bytes_reserved, 0);
826 btrfs_block_rsv_release(fs_info, trans->block_rsv,
827 trans->bytes_reserved);
828 trans->bytes_reserved = 0;
829 }
830
831 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
832 int throttle)
833 {
834 struct btrfs_fs_info *info = trans->fs_info;
835 struct btrfs_transaction *cur_trans = trans->transaction;
836 int lock = (trans->type != TRANS_JOIN_NOLOCK);
837 int err = 0;
838
839 if (refcount_read(&trans->use_count) > 1) {
840 refcount_dec(&trans->use_count);
841 trans->block_rsv = trans->orig_rsv;
842 return 0;
843 }
844
845 btrfs_trans_release_metadata(trans);
846 trans->block_rsv = NULL;
847
848 if (!list_empty(&trans->new_bgs))
849 btrfs_create_pending_block_groups(trans);
850
851 btrfs_trans_release_chunk_metadata(trans);
852
853 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
854 if (throttle)
855 return btrfs_commit_transaction(trans);
856 else
857 wake_up_process(info->transaction_kthread);
858 }
859
860 if (trans->type & __TRANS_FREEZABLE)
861 sb_end_intwrite(info->sb);
862
863 WARN_ON(cur_trans != info->running_transaction);
864 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
865 atomic_dec(&cur_trans->num_writers);
866 extwriter_counter_dec(cur_trans, trans->type);
867
868 cond_wake_up(&cur_trans->writer_wait);
869 btrfs_put_transaction(cur_trans);
870
871 if (current->journal_info == trans)
872 current->journal_info = NULL;
873
874 if (throttle)
875 btrfs_run_delayed_iputs(info);
876
877 if (trans->aborted ||
878 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
879 wake_up_process(info->transaction_kthread);
880 err = -EIO;
881 }
882
883 kmem_cache_free(btrfs_trans_handle_cachep, trans);
884 return err;
885 }
886
887 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
888 {
889 return __btrfs_end_transaction(trans, 0);
890 }
891
892 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
893 {
894 return __btrfs_end_transaction(trans, 1);
895 }
896
897 /*
898 * when btree blocks are allocated, they have some corresponding bits set for
899 * them in one of two extent_io trees. This is used to make sure all of
900 * those extents are sent to disk but does not wait on them
901 */
902 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
903 struct extent_io_tree *dirty_pages, int mark)
904 {
905 int err = 0;
906 int werr = 0;
907 struct address_space *mapping = fs_info->btree_inode->i_mapping;
908 struct extent_state *cached_state = NULL;
909 u64 start = 0;
910 u64 end;
911
912 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
913 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
914 mark, &cached_state)) {
915 bool wait_writeback = false;
916
917 err = convert_extent_bit(dirty_pages, start, end,
918 EXTENT_NEED_WAIT,
919 mark, &cached_state);
920 /*
921 * convert_extent_bit can return -ENOMEM, which is most of the
922 * time a temporary error. So when it happens, ignore the error
923 * and wait for writeback of this range to finish - because we
924 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
925 * to __btrfs_wait_marked_extents() would not know that
926 * writeback for this range started and therefore wouldn't
927 * wait for it to finish - we don't want to commit a
928 * superblock that points to btree nodes/leafs for which
929 * writeback hasn't finished yet (and without errors).
930 * We cleanup any entries left in the io tree when committing
931 * the transaction (through clear_btree_io_tree()).
932 */
933 if (err == -ENOMEM) {
934 err = 0;
935 wait_writeback = true;
936 }
937 if (!err)
938 err = filemap_fdatawrite_range(mapping, start, end);
939 if (err)
940 werr = err;
941 else if (wait_writeback)
942 werr = filemap_fdatawait_range(mapping, start, end);
943 free_extent_state(cached_state);
944 cached_state = NULL;
945 cond_resched();
946 start = end + 1;
947 }
948 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
949 return werr;
950 }
951
952 /*
953 * when btree blocks are allocated, they have some corresponding bits set for
954 * them in one of two extent_io trees. This is used to make sure all of
955 * those extents are on disk for transaction or log commit. We wait
956 * on all the pages and clear them from the dirty pages state tree
957 */
958 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
959 struct extent_io_tree *dirty_pages)
960 {
961 int err = 0;
962 int werr = 0;
963 struct address_space *mapping = fs_info->btree_inode->i_mapping;
964 struct extent_state *cached_state = NULL;
965 u64 start = 0;
966 u64 end;
967
968 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
969 EXTENT_NEED_WAIT, &cached_state)) {
970 /*
971 * Ignore -ENOMEM errors returned by clear_extent_bit().
972 * When committing the transaction, we'll remove any entries
973 * left in the io tree. For a log commit, we don't remove them
974 * after committing the log because the tree can be accessed
975 * concurrently - we do it only at transaction commit time when
976 * it's safe to do it (through clear_btree_io_tree()).
977 */
978 err = clear_extent_bit(dirty_pages, start, end,
979 EXTENT_NEED_WAIT, 0, 0, &cached_state);
980 if (err == -ENOMEM)
981 err = 0;
982 if (!err)
983 err = filemap_fdatawait_range(mapping, start, end);
984 if (err)
985 werr = err;
986 free_extent_state(cached_state);
987 cached_state = NULL;
988 cond_resched();
989 start = end + 1;
990 }
991 if (err)
992 werr = err;
993 return werr;
994 }
995
996 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
997 struct extent_io_tree *dirty_pages)
998 {
999 bool errors = false;
1000 int err;
1001
1002 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1003 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1004 errors = true;
1005
1006 if (errors && !err)
1007 err = -EIO;
1008 return err;
1009 }
1010
1011 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1012 {
1013 struct btrfs_fs_info *fs_info = log_root->fs_info;
1014 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1015 bool errors = false;
1016 int err;
1017
1018 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1019
1020 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1021 if ((mark & EXTENT_DIRTY) &&
1022 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1023 errors = true;
1024
1025 if ((mark & EXTENT_NEW) &&
1026 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1027 errors = true;
1028
1029 if (errors && !err)
1030 err = -EIO;
1031 return err;
1032 }
1033
1034 /*
1035 * When btree blocks are allocated the corresponding extents are marked dirty.
1036 * This function ensures such extents are persisted on disk for transaction or
1037 * log commit.
1038 *
1039 * @trans: transaction whose dirty pages we'd like to write
1040 */
1041 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1042 {
1043 int ret;
1044 int ret2;
1045 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1046 struct btrfs_fs_info *fs_info = trans->fs_info;
1047 struct blk_plug plug;
1048
1049 blk_start_plug(&plug);
1050 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1051 blk_finish_plug(&plug);
1052 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1053
1054 clear_btree_io_tree(&trans->transaction->dirty_pages);
1055
1056 if (ret)
1057 return ret;
1058 else if (ret2)
1059 return ret2;
1060 else
1061 return 0;
1062 }
1063
1064 /*
1065 * this is used to update the root pointer in the tree of tree roots.
1066 *
1067 * But, in the case of the extent allocation tree, updating the root
1068 * pointer may allocate blocks which may change the root of the extent
1069 * allocation tree.
1070 *
1071 * So, this loops and repeats and makes sure the cowonly root didn't
1072 * change while the root pointer was being updated in the metadata.
1073 */
1074 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1075 struct btrfs_root *root)
1076 {
1077 int ret;
1078 u64 old_root_bytenr;
1079 u64 old_root_used;
1080 struct btrfs_fs_info *fs_info = root->fs_info;
1081 struct btrfs_root *tree_root = fs_info->tree_root;
1082
1083 old_root_used = btrfs_root_used(&root->root_item);
1084
1085 while (1) {
1086 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1087 if (old_root_bytenr == root->node->start &&
1088 old_root_used == btrfs_root_used(&root->root_item))
1089 break;
1090
1091 btrfs_set_root_node(&root->root_item, root->node);
1092 ret = btrfs_update_root(trans, tree_root,
1093 &root->root_key,
1094 &root->root_item);
1095 if (ret)
1096 return ret;
1097
1098 old_root_used = btrfs_root_used(&root->root_item);
1099 }
1100
1101 return 0;
1102 }
1103
1104 /*
1105 * update all the cowonly tree roots on disk
1106 *
1107 * The error handling in this function may not be obvious. Any of the
1108 * failures will cause the file system to go offline. We still need
1109 * to clean up the delayed refs.
1110 */
1111 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1112 {
1113 struct btrfs_fs_info *fs_info = trans->fs_info;
1114 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1115 struct list_head *io_bgs = &trans->transaction->io_bgs;
1116 struct list_head *next;
1117 struct extent_buffer *eb;
1118 int ret;
1119
1120 eb = btrfs_lock_root_node(fs_info->tree_root);
1121 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1122 0, &eb);
1123 btrfs_tree_unlock(eb);
1124 free_extent_buffer(eb);
1125
1126 if (ret)
1127 return ret;
1128
1129 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1130 if (ret)
1131 return ret;
1132
1133 ret = btrfs_run_dev_stats(trans, fs_info);
1134 if (ret)
1135 return ret;
1136 ret = btrfs_run_dev_replace(trans, fs_info);
1137 if (ret)
1138 return ret;
1139 ret = btrfs_run_qgroups(trans);
1140 if (ret)
1141 return ret;
1142
1143 ret = btrfs_setup_space_cache(trans, fs_info);
1144 if (ret)
1145 return ret;
1146
1147 /* run_qgroups might have added some more refs */
1148 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1149 if (ret)
1150 return ret;
1151 again:
1152 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1153 struct btrfs_root *root;
1154 next = fs_info->dirty_cowonly_roots.next;
1155 list_del_init(next);
1156 root = list_entry(next, struct btrfs_root, dirty_list);
1157 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1158
1159 if (root != fs_info->extent_root)
1160 list_add_tail(&root->dirty_list,
1161 &trans->transaction->switch_commits);
1162 ret = update_cowonly_root(trans, root);
1163 if (ret)
1164 return ret;
1165 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1166 if (ret)
1167 return ret;
1168 }
1169
1170 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1171 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1172 if (ret)
1173 return ret;
1174 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1175 if (ret)
1176 return ret;
1177 }
1178
1179 if (!list_empty(&fs_info->dirty_cowonly_roots))
1180 goto again;
1181
1182 list_add_tail(&fs_info->extent_root->dirty_list,
1183 &trans->transaction->switch_commits);
1184
1185 /* Update dev-replace pointer once everything is committed */
1186 fs_info->dev_replace.committed_cursor_left =
1187 fs_info->dev_replace.cursor_left_last_write_of_item;
1188
1189 return 0;
1190 }
1191
1192 /*
1193 * dead roots are old snapshots that need to be deleted. This allocates
1194 * a dirty root struct and adds it into the list of dead roots that need to
1195 * be deleted
1196 */
1197 void btrfs_add_dead_root(struct btrfs_root *root)
1198 {
1199 struct btrfs_fs_info *fs_info = root->fs_info;
1200
1201 spin_lock(&fs_info->trans_lock);
1202 if (list_empty(&root->root_list))
1203 list_add_tail(&root->root_list, &fs_info->dead_roots);
1204 spin_unlock(&fs_info->trans_lock);
1205 }
1206
1207 /*
1208 * update all the cowonly tree roots on disk
1209 */
1210 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1211 {
1212 struct btrfs_fs_info *fs_info = trans->fs_info;
1213 struct btrfs_root *gang[8];
1214 int i;
1215 int ret;
1216 int err = 0;
1217
1218 spin_lock(&fs_info->fs_roots_radix_lock);
1219 while (1) {
1220 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1221 (void **)gang, 0,
1222 ARRAY_SIZE(gang),
1223 BTRFS_ROOT_TRANS_TAG);
1224 if (ret == 0)
1225 break;
1226 for (i = 0; i < ret; i++) {
1227 struct btrfs_root *root = gang[i];
1228 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1229 (unsigned long)root->root_key.objectid,
1230 BTRFS_ROOT_TRANS_TAG);
1231 spin_unlock(&fs_info->fs_roots_radix_lock);
1232
1233 btrfs_free_log(trans, root);
1234 btrfs_update_reloc_root(trans, root);
1235
1236 btrfs_save_ino_cache(root, trans);
1237
1238 /* see comments in should_cow_block() */
1239 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1240 smp_mb__after_atomic();
1241
1242 if (root->commit_root != root->node) {
1243 list_add_tail(&root->dirty_list,
1244 &trans->transaction->switch_commits);
1245 btrfs_set_root_node(&root->root_item,
1246 root->node);
1247 }
1248
1249 err = btrfs_update_root(trans, fs_info->tree_root,
1250 &root->root_key,
1251 &root->root_item);
1252 spin_lock(&fs_info->fs_roots_radix_lock);
1253 if (err)
1254 break;
1255 btrfs_qgroup_free_meta_all_pertrans(root);
1256 }
1257 }
1258 spin_unlock(&fs_info->fs_roots_radix_lock);
1259 return err;
1260 }
1261
1262 /*
1263 * defrag a given btree.
1264 * Every leaf in the btree is read and defragged.
1265 */
1266 int btrfs_defrag_root(struct btrfs_root *root)
1267 {
1268 struct btrfs_fs_info *info = root->fs_info;
1269 struct btrfs_trans_handle *trans;
1270 int ret;
1271
1272 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1273 return 0;
1274
1275 while (1) {
1276 trans = btrfs_start_transaction(root, 0);
1277 if (IS_ERR(trans))
1278 return PTR_ERR(trans);
1279
1280 ret = btrfs_defrag_leaves(trans, root);
1281
1282 btrfs_end_transaction(trans);
1283 btrfs_btree_balance_dirty(info);
1284 cond_resched();
1285
1286 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1287 break;
1288
1289 if (btrfs_defrag_cancelled(info)) {
1290 btrfs_debug(info, "defrag_root cancelled");
1291 ret = -EAGAIN;
1292 break;
1293 }
1294 }
1295 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1296 return ret;
1297 }
1298
1299 /*
1300 * Do all special snapshot related qgroup dirty hack.
1301 *
1302 * Will do all needed qgroup inherit and dirty hack like switch commit
1303 * roots inside one transaction and write all btree into disk, to make
1304 * qgroup works.
1305 */
1306 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1307 struct btrfs_root *src,
1308 struct btrfs_root *parent,
1309 struct btrfs_qgroup_inherit *inherit,
1310 u64 dst_objectid)
1311 {
1312 struct btrfs_fs_info *fs_info = src->fs_info;
1313 int ret;
1314
1315 /*
1316 * Save some performance in the case that qgroups are not
1317 * enabled. If this check races with the ioctl, rescan will
1318 * kick in anyway.
1319 */
1320 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1321 return 0;
1322
1323 /*
1324 * Ensure dirty @src will be committed. Or, after coming
1325 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1326 * recorded root will never be updated again, causing an outdated root
1327 * item.
1328 */
1329 record_root_in_trans(trans, src, 1);
1330
1331 /*
1332 * We are going to commit transaction, see btrfs_commit_transaction()
1333 * comment for reason locking tree_log_mutex
1334 */
1335 mutex_lock(&fs_info->tree_log_mutex);
1336
1337 ret = commit_fs_roots(trans);
1338 if (ret)
1339 goto out;
1340 ret = btrfs_qgroup_account_extents(trans);
1341 if (ret < 0)
1342 goto out;
1343
1344 /* Now qgroup are all updated, we can inherit it to new qgroups */
1345 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1346 inherit);
1347 if (ret < 0)
1348 goto out;
1349
1350 /*
1351 * Now we do a simplified commit transaction, which will:
1352 * 1) commit all subvolume and extent tree
1353 * To ensure all subvolume and extent tree have a valid
1354 * commit_root to accounting later insert_dir_item()
1355 * 2) write all btree blocks onto disk
1356 * This is to make sure later btree modification will be cowed
1357 * Or commit_root can be populated and cause wrong qgroup numbers
1358 * In this simplified commit, we don't really care about other trees
1359 * like chunk and root tree, as they won't affect qgroup.
1360 * And we don't write super to avoid half committed status.
1361 */
1362 ret = commit_cowonly_roots(trans);
1363 if (ret)
1364 goto out;
1365 switch_commit_roots(trans->transaction);
1366 ret = btrfs_write_and_wait_transaction(trans);
1367 if (ret)
1368 btrfs_handle_fs_error(fs_info, ret,
1369 "Error while writing out transaction for qgroup");
1370
1371 out:
1372 mutex_unlock(&fs_info->tree_log_mutex);
1373
1374 /*
1375 * Force parent root to be updated, as we recorded it before so its
1376 * last_trans == cur_transid.
1377 * Or it won't be committed again onto disk after later
1378 * insert_dir_item()
1379 */
1380 if (!ret)
1381 record_root_in_trans(trans, parent, 1);
1382 return ret;
1383 }
1384
1385 /*
1386 * new snapshots need to be created at a very specific time in the
1387 * transaction commit. This does the actual creation.
1388 *
1389 * Note:
1390 * If the error which may affect the commitment of the current transaction
1391 * happens, we should return the error number. If the error which just affect
1392 * the creation of the pending snapshots, just return 0.
1393 */
1394 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1395 struct btrfs_pending_snapshot *pending)
1396 {
1397
1398 struct btrfs_fs_info *fs_info = trans->fs_info;
1399 struct btrfs_key key;
1400 struct btrfs_root_item *new_root_item;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct btrfs_root *root = pending->root;
1403 struct btrfs_root *parent_root;
1404 struct btrfs_block_rsv *rsv;
1405 struct inode *parent_inode;
1406 struct btrfs_path *path;
1407 struct btrfs_dir_item *dir_item;
1408 struct dentry *dentry;
1409 struct extent_buffer *tmp;
1410 struct extent_buffer *old;
1411 struct timespec64 cur_time;
1412 int ret = 0;
1413 u64 to_reserve = 0;
1414 u64 index = 0;
1415 u64 objectid;
1416 u64 root_flags;
1417 uuid_le new_uuid;
1418
1419 ASSERT(pending->path);
1420 path = pending->path;
1421
1422 ASSERT(pending->root_item);
1423 new_root_item = pending->root_item;
1424
1425 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1426 if (pending->error)
1427 goto no_free_objectid;
1428
1429 /*
1430 * Make qgroup to skip current new snapshot's qgroupid, as it is
1431 * accounted by later btrfs_qgroup_inherit().
1432 */
1433 btrfs_set_skip_qgroup(trans, objectid);
1434
1435 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1436
1437 if (to_reserve > 0) {
1438 pending->error = btrfs_block_rsv_add(root,
1439 &pending->block_rsv,
1440 to_reserve,
1441 BTRFS_RESERVE_NO_FLUSH);
1442 if (pending->error)
1443 goto clear_skip_qgroup;
1444 }
1445
1446 key.objectid = objectid;
1447 key.offset = (u64)-1;
1448 key.type = BTRFS_ROOT_ITEM_KEY;
1449
1450 rsv = trans->block_rsv;
1451 trans->block_rsv = &pending->block_rsv;
1452 trans->bytes_reserved = trans->block_rsv->reserved;
1453 trace_btrfs_space_reservation(fs_info, "transaction",
1454 trans->transid,
1455 trans->bytes_reserved, 1);
1456 dentry = pending->dentry;
1457 parent_inode = pending->dir;
1458 parent_root = BTRFS_I(parent_inode)->root;
1459 record_root_in_trans(trans, parent_root, 0);
1460
1461 cur_time = current_time(parent_inode);
1462
1463 /*
1464 * insert the directory item
1465 */
1466 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1467 BUG_ON(ret); /* -ENOMEM */
1468
1469 /* check if there is a file/dir which has the same name. */
1470 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1471 btrfs_ino(BTRFS_I(parent_inode)),
1472 dentry->d_name.name,
1473 dentry->d_name.len, 0);
1474 if (dir_item != NULL && !IS_ERR(dir_item)) {
1475 pending->error = -EEXIST;
1476 goto dir_item_existed;
1477 } else if (IS_ERR(dir_item)) {
1478 ret = PTR_ERR(dir_item);
1479 btrfs_abort_transaction(trans, ret);
1480 goto fail;
1481 }
1482 btrfs_release_path(path);
1483
1484 /*
1485 * pull in the delayed directory update
1486 * and the delayed inode item
1487 * otherwise we corrupt the FS during
1488 * snapshot
1489 */
1490 ret = btrfs_run_delayed_items(trans);
1491 if (ret) { /* Transaction aborted */
1492 btrfs_abort_transaction(trans, ret);
1493 goto fail;
1494 }
1495
1496 record_root_in_trans(trans, root, 0);
1497 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1498 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1499 btrfs_check_and_init_root_item(new_root_item);
1500
1501 root_flags = btrfs_root_flags(new_root_item);
1502 if (pending->readonly)
1503 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1504 else
1505 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1506 btrfs_set_root_flags(new_root_item, root_flags);
1507
1508 btrfs_set_root_generation_v2(new_root_item,
1509 trans->transid);
1510 uuid_le_gen(&new_uuid);
1511 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1512 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1513 BTRFS_UUID_SIZE);
1514 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1515 memset(new_root_item->received_uuid, 0,
1516 sizeof(new_root_item->received_uuid));
1517 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1518 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1519 btrfs_set_root_stransid(new_root_item, 0);
1520 btrfs_set_root_rtransid(new_root_item, 0);
1521 }
1522 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1523 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1524 btrfs_set_root_otransid(new_root_item, trans->transid);
1525
1526 old = btrfs_lock_root_node(root);
1527 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1528 if (ret) {
1529 btrfs_tree_unlock(old);
1530 free_extent_buffer(old);
1531 btrfs_abort_transaction(trans, ret);
1532 goto fail;
1533 }
1534
1535 btrfs_set_lock_blocking(old);
1536
1537 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1538 /* clean up in any case */
1539 btrfs_tree_unlock(old);
1540 free_extent_buffer(old);
1541 if (ret) {
1542 btrfs_abort_transaction(trans, ret);
1543 goto fail;
1544 }
1545 /* see comments in should_cow_block() */
1546 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1547 smp_wmb();
1548
1549 btrfs_set_root_node(new_root_item, tmp);
1550 /* record when the snapshot was created in key.offset */
1551 key.offset = trans->transid;
1552 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1553 btrfs_tree_unlock(tmp);
1554 free_extent_buffer(tmp);
1555 if (ret) {
1556 btrfs_abort_transaction(trans, ret);
1557 goto fail;
1558 }
1559
1560 /*
1561 * insert root back/forward references
1562 */
1563 ret = btrfs_add_root_ref(trans, objectid,
1564 parent_root->root_key.objectid,
1565 btrfs_ino(BTRFS_I(parent_inode)), index,
1566 dentry->d_name.name, dentry->d_name.len);
1567 if (ret) {
1568 btrfs_abort_transaction(trans, ret);
1569 goto fail;
1570 }
1571
1572 key.offset = (u64)-1;
1573 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1574 if (IS_ERR(pending->snap)) {
1575 ret = PTR_ERR(pending->snap);
1576 btrfs_abort_transaction(trans, ret);
1577 goto fail;
1578 }
1579
1580 ret = btrfs_reloc_post_snapshot(trans, pending);
1581 if (ret) {
1582 btrfs_abort_transaction(trans, ret);
1583 goto fail;
1584 }
1585
1586 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1587 if (ret) {
1588 btrfs_abort_transaction(trans, ret);
1589 goto fail;
1590 }
1591
1592 /*
1593 * Do special qgroup accounting for snapshot, as we do some qgroup
1594 * snapshot hack to do fast snapshot.
1595 * To co-operate with that hack, we do hack again.
1596 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1597 */
1598 ret = qgroup_account_snapshot(trans, root, parent_root,
1599 pending->inherit, objectid);
1600 if (ret < 0)
1601 goto fail;
1602
1603 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1604 dentry->d_name.len, BTRFS_I(parent_inode),
1605 &key, BTRFS_FT_DIR, index);
1606 /* We have check then name at the beginning, so it is impossible. */
1607 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1608 if (ret) {
1609 btrfs_abort_transaction(trans, ret);
1610 goto fail;
1611 }
1612
1613 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1614 dentry->d_name.len * 2);
1615 parent_inode->i_mtime = parent_inode->i_ctime =
1616 current_time(parent_inode);
1617 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1618 if (ret) {
1619 btrfs_abort_transaction(trans, ret);
1620 goto fail;
1621 }
1622 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1623 objectid);
1624 if (ret) {
1625 btrfs_abort_transaction(trans, ret);
1626 goto fail;
1627 }
1628 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1629 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1630 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1631 objectid);
1632 if (ret && ret != -EEXIST) {
1633 btrfs_abort_transaction(trans, ret);
1634 goto fail;
1635 }
1636 }
1637
1638 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1639 if (ret) {
1640 btrfs_abort_transaction(trans, ret);
1641 goto fail;
1642 }
1643
1644 fail:
1645 pending->error = ret;
1646 dir_item_existed:
1647 trans->block_rsv = rsv;
1648 trans->bytes_reserved = 0;
1649 clear_skip_qgroup:
1650 btrfs_clear_skip_qgroup(trans);
1651 no_free_objectid:
1652 kfree(new_root_item);
1653 pending->root_item = NULL;
1654 btrfs_free_path(path);
1655 pending->path = NULL;
1656
1657 return ret;
1658 }
1659
1660 /*
1661 * create all the snapshots we've scheduled for creation
1662 */
1663 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1664 {
1665 struct btrfs_pending_snapshot *pending, *next;
1666 struct list_head *head = &trans->transaction->pending_snapshots;
1667 int ret = 0;
1668
1669 list_for_each_entry_safe(pending, next, head, list) {
1670 list_del(&pending->list);
1671 ret = create_pending_snapshot(trans, pending);
1672 if (ret)
1673 break;
1674 }
1675 return ret;
1676 }
1677
1678 static void update_super_roots(struct btrfs_fs_info *fs_info)
1679 {
1680 struct btrfs_root_item *root_item;
1681 struct btrfs_super_block *super;
1682
1683 super = fs_info->super_copy;
1684
1685 root_item = &fs_info->chunk_root->root_item;
1686 super->chunk_root = root_item->bytenr;
1687 super->chunk_root_generation = root_item->generation;
1688 super->chunk_root_level = root_item->level;
1689
1690 root_item = &fs_info->tree_root->root_item;
1691 super->root = root_item->bytenr;
1692 super->generation = root_item->generation;
1693 super->root_level = root_item->level;
1694 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1695 super->cache_generation = root_item->generation;
1696 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1697 super->uuid_tree_generation = root_item->generation;
1698 }
1699
1700 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1701 {
1702 struct btrfs_transaction *trans;
1703 int ret = 0;
1704
1705 spin_lock(&info->trans_lock);
1706 trans = info->running_transaction;
1707 if (trans)
1708 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1709 spin_unlock(&info->trans_lock);
1710 return ret;
1711 }
1712
1713 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1714 {
1715 struct btrfs_transaction *trans;
1716 int ret = 0;
1717
1718 spin_lock(&info->trans_lock);
1719 trans = info->running_transaction;
1720 if (trans)
1721 ret = is_transaction_blocked(trans);
1722 spin_unlock(&info->trans_lock);
1723 return ret;
1724 }
1725
1726 /*
1727 * wait for the current transaction commit to start and block subsequent
1728 * transaction joins
1729 */
1730 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1731 struct btrfs_transaction *trans)
1732 {
1733 wait_event(fs_info->transaction_blocked_wait,
1734 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1735 }
1736
1737 /*
1738 * wait for the current transaction to start and then become unblocked.
1739 * caller holds ref.
1740 */
1741 static void wait_current_trans_commit_start_and_unblock(
1742 struct btrfs_fs_info *fs_info,
1743 struct btrfs_transaction *trans)
1744 {
1745 wait_event(fs_info->transaction_wait,
1746 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1747 }
1748
1749 /*
1750 * commit transactions asynchronously. once btrfs_commit_transaction_async
1751 * returns, any subsequent transaction will not be allowed to join.
1752 */
1753 struct btrfs_async_commit {
1754 struct btrfs_trans_handle *newtrans;
1755 struct work_struct work;
1756 };
1757
1758 static void do_async_commit(struct work_struct *work)
1759 {
1760 struct btrfs_async_commit *ac =
1761 container_of(work, struct btrfs_async_commit, work);
1762
1763 /*
1764 * We've got freeze protection passed with the transaction.
1765 * Tell lockdep about it.
1766 */
1767 if (ac->newtrans->type & __TRANS_FREEZABLE)
1768 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1769
1770 current->journal_info = ac->newtrans;
1771
1772 btrfs_commit_transaction(ac->newtrans);
1773 kfree(ac);
1774 }
1775
1776 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1777 int wait_for_unblock)
1778 {
1779 struct btrfs_fs_info *fs_info = trans->fs_info;
1780 struct btrfs_async_commit *ac;
1781 struct btrfs_transaction *cur_trans;
1782
1783 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1784 if (!ac)
1785 return -ENOMEM;
1786
1787 INIT_WORK(&ac->work, do_async_commit);
1788 ac->newtrans = btrfs_join_transaction(trans->root);
1789 if (IS_ERR(ac->newtrans)) {
1790 int err = PTR_ERR(ac->newtrans);
1791 kfree(ac);
1792 return err;
1793 }
1794
1795 /* take transaction reference */
1796 cur_trans = trans->transaction;
1797 refcount_inc(&cur_trans->use_count);
1798
1799 btrfs_end_transaction(trans);
1800
1801 /*
1802 * Tell lockdep we've released the freeze rwsem, since the
1803 * async commit thread will be the one to unlock it.
1804 */
1805 if (ac->newtrans->type & __TRANS_FREEZABLE)
1806 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1807
1808 schedule_work(&ac->work);
1809
1810 /* wait for transaction to start and unblock */
1811 if (wait_for_unblock)
1812 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1813 else
1814 wait_current_trans_commit_start(fs_info, cur_trans);
1815
1816 if (current->journal_info == trans)
1817 current->journal_info = NULL;
1818
1819 btrfs_put_transaction(cur_trans);
1820 return 0;
1821 }
1822
1823
1824 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1825 {
1826 struct btrfs_fs_info *fs_info = trans->fs_info;
1827 struct btrfs_transaction *cur_trans = trans->transaction;
1828
1829 WARN_ON(refcount_read(&trans->use_count) > 1);
1830
1831 btrfs_abort_transaction(trans, err);
1832
1833 spin_lock(&fs_info->trans_lock);
1834
1835 /*
1836 * If the transaction is removed from the list, it means this
1837 * transaction has been committed successfully, so it is impossible
1838 * to call the cleanup function.
1839 */
1840 BUG_ON(list_empty(&cur_trans->list));
1841
1842 list_del_init(&cur_trans->list);
1843 if (cur_trans == fs_info->running_transaction) {
1844 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1845 spin_unlock(&fs_info->trans_lock);
1846 wait_event(cur_trans->writer_wait,
1847 atomic_read(&cur_trans->num_writers) == 1);
1848
1849 spin_lock(&fs_info->trans_lock);
1850 }
1851 spin_unlock(&fs_info->trans_lock);
1852
1853 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1854
1855 spin_lock(&fs_info->trans_lock);
1856 if (cur_trans == fs_info->running_transaction)
1857 fs_info->running_transaction = NULL;
1858 spin_unlock(&fs_info->trans_lock);
1859
1860 if (trans->type & __TRANS_FREEZABLE)
1861 sb_end_intwrite(fs_info->sb);
1862 btrfs_put_transaction(cur_trans);
1863 btrfs_put_transaction(cur_trans);
1864
1865 trace_btrfs_transaction_commit(trans->root);
1866
1867 if (current->journal_info == trans)
1868 current->journal_info = NULL;
1869 btrfs_scrub_cancel(fs_info);
1870
1871 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1872 }
1873
1874 /*
1875 * Release reserved delayed ref space of all pending block groups of the
1876 * transaction and remove them from the list
1877 */
1878 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1879 {
1880 struct btrfs_fs_info *fs_info = trans->fs_info;
1881 struct btrfs_block_group_cache *block_group, *tmp;
1882
1883 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1884 btrfs_delayed_refs_rsv_release(fs_info, 1);
1885 list_del_init(&block_group->bg_list);
1886 }
1887 }
1888
1889 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1890 {
1891 /*
1892 * We use writeback_inodes_sb here because if we used
1893 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1894 * Currently are holding the fs freeze lock, if we do an async flush
1895 * we'll do btrfs_join_transaction() and deadlock because we need to
1896 * wait for the fs freeze lock. Using the direct flushing we benefit
1897 * from already being in a transaction and our join_transaction doesn't
1898 * have to re-take the fs freeze lock.
1899 */
1900 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1901 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1902 return 0;
1903 }
1904
1905 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1906 {
1907 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1908 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1909 }
1910
1911 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1912 {
1913 struct btrfs_fs_info *fs_info = trans->fs_info;
1914 struct btrfs_transaction *cur_trans = trans->transaction;
1915 struct btrfs_transaction *prev_trans = NULL;
1916 int ret;
1917
1918 /* Stop the commit early if ->aborted is set */
1919 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1920 ret = cur_trans->aborted;
1921 btrfs_end_transaction(trans);
1922 return ret;
1923 }
1924
1925 btrfs_trans_release_metadata(trans);
1926 trans->block_rsv = NULL;
1927
1928 /* make a pass through all the delayed refs we have so far
1929 * any runnings procs may add more while we are here
1930 */
1931 ret = btrfs_run_delayed_refs(trans, 0);
1932 if (ret) {
1933 btrfs_end_transaction(trans);
1934 return ret;
1935 }
1936
1937 cur_trans = trans->transaction;
1938
1939 /*
1940 * set the flushing flag so procs in this transaction have to
1941 * start sending their work down.
1942 */
1943 cur_trans->delayed_refs.flushing = 1;
1944 smp_wmb();
1945
1946 if (!list_empty(&trans->new_bgs))
1947 btrfs_create_pending_block_groups(trans);
1948
1949 ret = btrfs_run_delayed_refs(trans, 0);
1950 if (ret) {
1951 btrfs_end_transaction(trans);
1952 return ret;
1953 }
1954
1955 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1956 int run_it = 0;
1957
1958 /* this mutex is also taken before trying to set
1959 * block groups readonly. We need to make sure
1960 * that nobody has set a block group readonly
1961 * after a extents from that block group have been
1962 * allocated for cache files. btrfs_set_block_group_ro
1963 * will wait for the transaction to commit if it
1964 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1965 *
1966 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1967 * only one process starts all the block group IO. It wouldn't
1968 * hurt to have more than one go through, but there's no
1969 * real advantage to it either.
1970 */
1971 mutex_lock(&fs_info->ro_block_group_mutex);
1972 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1973 &cur_trans->flags))
1974 run_it = 1;
1975 mutex_unlock(&fs_info->ro_block_group_mutex);
1976
1977 if (run_it) {
1978 ret = btrfs_start_dirty_block_groups(trans);
1979 if (ret) {
1980 btrfs_end_transaction(trans);
1981 return ret;
1982 }
1983 }
1984 }
1985
1986 spin_lock(&fs_info->trans_lock);
1987 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1988 spin_unlock(&fs_info->trans_lock);
1989 refcount_inc(&cur_trans->use_count);
1990 ret = btrfs_end_transaction(trans);
1991
1992 wait_for_commit(cur_trans);
1993
1994 if (unlikely(cur_trans->aborted))
1995 ret = cur_trans->aborted;
1996
1997 btrfs_put_transaction(cur_trans);
1998
1999 return ret;
2000 }
2001
2002 cur_trans->state = TRANS_STATE_COMMIT_START;
2003 wake_up(&fs_info->transaction_blocked_wait);
2004
2005 if (cur_trans->list.prev != &fs_info->trans_list) {
2006 prev_trans = list_entry(cur_trans->list.prev,
2007 struct btrfs_transaction, list);
2008 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2009 refcount_inc(&prev_trans->use_count);
2010 spin_unlock(&fs_info->trans_lock);
2011
2012 wait_for_commit(prev_trans);
2013 ret = prev_trans->aborted;
2014
2015 btrfs_put_transaction(prev_trans);
2016 if (ret)
2017 goto cleanup_transaction;
2018 } else {
2019 spin_unlock(&fs_info->trans_lock);
2020 }
2021 } else {
2022 spin_unlock(&fs_info->trans_lock);
2023 }
2024
2025 extwriter_counter_dec(cur_trans, trans->type);
2026
2027 ret = btrfs_start_delalloc_flush(fs_info);
2028 if (ret)
2029 goto cleanup_transaction;
2030
2031 ret = btrfs_run_delayed_items(trans);
2032 if (ret)
2033 goto cleanup_transaction;
2034
2035 wait_event(cur_trans->writer_wait,
2036 extwriter_counter_read(cur_trans) == 0);
2037
2038 /* some pending stuffs might be added after the previous flush. */
2039 ret = btrfs_run_delayed_items(trans);
2040 if (ret)
2041 goto cleanup_transaction;
2042
2043 btrfs_wait_delalloc_flush(fs_info);
2044
2045 btrfs_scrub_pause(fs_info);
2046 /*
2047 * Ok now we need to make sure to block out any other joins while we
2048 * commit the transaction. We could have started a join before setting
2049 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2050 */
2051 spin_lock(&fs_info->trans_lock);
2052 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2053 spin_unlock(&fs_info->trans_lock);
2054 wait_event(cur_trans->writer_wait,
2055 atomic_read(&cur_trans->num_writers) == 1);
2056
2057 /* ->aborted might be set after the previous check, so check it */
2058 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2059 ret = cur_trans->aborted;
2060 goto scrub_continue;
2061 }
2062 /*
2063 * the reloc mutex makes sure that we stop
2064 * the balancing code from coming in and moving
2065 * extents around in the middle of the commit
2066 */
2067 mutex_lock(&fs_info->reloc_mutex);
2068
2069 /*
2070 * We needn't worry about the delayed items because we will
2071 * deal with them in create_pending_snapshot(), which is the
2072 * core function of the snapshot creation.
2073 */
2074 ret = create_pending_snapshots(trans);
2075 if (ret) {
2076 mutex_unlock(&fs_info->reloc_mutex);
2077 goto scrub_continue;
2078 }
2079
2080 /*
2081 * We insert the dir indexes of the snapshots and update the inode
2082 * of the snapshots' parents after the snapshot creation, so there
2083 * are some delayed items which are not dealt with. Now deal with
2084 * them.
2085 *
2086 * We needn't worry that this operation will corrupt the snapshots,
2087 * because all the tree which are snapshoted will be forced to COW
2088 * the nodes and leaves.
2089 */
2090 ret = btrfs_run_delayed_items(trans);
2091 if (ret) {
2092 mutex_unlock(&fs_info->reloc_mutex);
2093 goto scrub_continue;
2094 }
2095
2096 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2097 if (ret) {
2098 mutex_unlock(&fs_info->reloc_mutex);
2099 goto scrub_continue;
2100 }
2101
2102 /*
2103 * make sure none of the code above managed to slip in a
2104 * delayed item
2105 */
2106 btrfs_assert_delayed_root_empty(fs_info);
2107
2108 WARN_ON(cur_trans != trans->transaction);
2109
2110 /* btrfs_commit_tree_roots is responsible for getting the
2111 * various roots consistent with each other. Every pointer
2112 * in the tree of tree roots has to point to the most up to date
2113 * root for every subvolume and other tree. So, we have to keep
2114 * the tree logging code from jumping in and changing any
2115 * of the trees.
2116 *
2117 * At this point in the commit, there can't be any tree-log
2118 * writers, but a little lower down we drop the trans mutex
2119 * and let new people in. By holding the tree_log_mutex
2120 * from now until after the super is written, we avoid races
2121 * with the tree-log code.
2122 */
2123 mutex_lock(&fs_info->tree_log_mutex);
2124
2125 ret = commit_fs_roots(trans);
2126 if (ret) {
2127 mutex_unlock(&fs_info->tree_log_mutex);
2128 mutex_unlock(&fs_info->reloc_mutex);
2129 goto scrub_continue;
2130 }
2131
2132 /*
2133 * Since the transaction is done, we can apply the pending changes
2134 * before the next transaction.
2135 */
2136 btrfs_apply_pending_changes(fs_info);
2137
2138 /* commit_fs_roots gets rid of all the tree log roots, it is now
2139 * safe to free the root of tree log roots
2140 */
2141 btrfs_free_log_root_tree(trans, fs_info);
2142
2143 /*
2144 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2145 * new delayed refs. Must handle them or qgroup can be wrong.
2146 */
2147 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2148 if (ret) {
2149 mutex_unlock(&fs_info->tree_log_mutex);
2150 mutex_unlock(&fs_info->reloc_mutex);
2151 goto scrub_continue;
2152 }
2153
2154 /*
2155 * Since fs roots are all committed, we can get a quite accurate
2156 * new_roots. So let's do quota accounting.
2157 */
2158 ret = btrfs_qgroup_account_extents(trans);
2159 if (ret < 0) {
2160 mutex_unlock(&fs_info->tree_log_mutex);
2161 mutex_unlock(&fs_info->reloc_mutex);
2162 goto scrub_continue;
2163 }
2164
2165 ret = commit_cowonly_roots(trans);
2166 if (ret) {
2167 mutex_unlock(&fs_info->tree_log_mutex);
2168 mutex_unlock(&fs_info->reloc_mutex);
2169 goto scrub_continue;
2170 }
2171
2172 /*
2173 * The tasks which save the space cache and inode cache may also
2174 * update ->aborted, check it.
2175 */
2176 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2177 ret = cur_trans->aborted;
2178 mutex_unlock(&fs_info->tree_log_mutex);
2179 mutex_unlock(&fs_info->reloc_mutex);
2180 goto scrub_continue;
2181 }
2182
2183 btrfs_prepare_extent_commit(fs_info);
2184
2185 cur_trans = fs_info->running_transaction;
2186
2187 btrfs_set_root_node(&fs_info->tree_root->root_item,
2188 fs_info->tree_root->node);
2189 list_add_tail(&fs_info->tree_root->dirty_list,
2190 &cur_trans->switch_commits);
2191
2192 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2193 fs_info->chunk_root->node);
2194 list_add_tail(&fs_info->chunk_root->dirty_list,
2195 &cur_trans->switch_commits);
2196
2197 switch_commit_roots(cur_trans);
2198
2199 ASSERT(list_empty(&cur_trans->dirty_bgs));
2200 ASSERT(list_empty(&cur_trans->io_bgs));
2201 update_super_roots(fs_info);
2202
2203 btrfs_set_super_log_root(fs_info->super_copy, 0);
2204 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2205 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2206 sizeof(*fs_info->super_copy));
2207
2208 btrfs_update_commit_device_size(fs_info);
2209 btrfs_update_commit_device_bytes_used(cur_trans);
2210
2211 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2212 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2213
2214 btrfs_trans_release_chunk_metadata(trans);
2215
2216 spin_lock(&fs_info->trans_lock);
2217 cur_trans->state = TRANS_STATE_UNBLOCKED;
2218 fs_info->running_transaction = NULL;
2219 spin_unlock(&fs_info->trans_lock);
2220 mutex_unlock(&fs_info->reloc_mutex);
2221
2222 wake_up(&fs_info->transaction_wait);
2223
2224 ret = btrfs_write_and_wait_transaction(trans);
2225 if (ret) {
2226 btrfs_handle_fs_error(fs_info, ret,
2227 "Error while writing out transaction");
2228 mutex_unlock(&fs_info->tree_log_mutex);
2229 goto scrub_continue;
2230 }
2231
2232 ret = write_all_supers(fs_info, 0);
2233 /*
2234 * the super is written, we can safely allow the tree-loggers
2235 * to go about their business
2236 */
2237 mutex_unlock(&fs_info->tree_log_mutex);
2238 if (ret)
2239 goto scrub_continue;
2240
2241 btrfs_finish_extent_commit(trans);
2242
2243 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2244 btrfs_clear_space_info_full(fs_info);
2245
2246 fs_info->last_trans_committed = cur_trans->transid;
2247 /*
2248 * We needn't acquire the lock here because there is no other task
2249 * which can change it.
2250 */
2251 cur_trans->state = TRANS_STATE_COMPLETED;
2252 wake_up(&cur_trans->commit_wait);
2253 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2254
2255 spin_lock(&fs_info->trans_lock);
2256 list_del_init(&cur_trans->list);
2257 spin_unlock(&fs_info->trans_lock);
2258
2259 btrfs_put_transaction(cur_trans);
2260 btrfs_put_transaction(cur_trans);
2261
2262 if (trans->type & __TRANS_FREEZABLE)
2263 sb_end_intwrite(fs_info->sb);
2264
2265 trace_btrfs_transaction_commit(trans->root);
2266
2267 btrfs_scrub_continue(fs_info);
2268
2269 if (current->journal_info == trans)
2270 current->journal_info = NULL;
2271
2272 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2273
2274 return ret;
2275
2276 scrub_continue:
2277 btrfs_scrub_continue(fs_info);
2278 cleanup_transaction:
2279 btrfs_trans_release_metadata(trans);
2280 btrfs_cleanup_pending_block_groups(trans);
2281 btrfs_trans_release_chunk_metadata(trans);
2282 trans->block_rsv = NULL;
2283 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2284 if (current->journal_info == trans)
2285 current->journal_info = NULL;
2286 cleanup_transaction(trans, ret);
2287
2288 return ret;
2289 }
2290
2291 /*
2292 * return < 0 if error
2293 * 0 if there are no more dead_roots at the time of call
2294 * 1 there are more to be processed, call me again
2295 *
2296 * The return value indicates there are certainly more snapshots to delete, but
2297 * if there comes a new one during processing, it may return 0. We don't mind,
2298 * because btrfs_commit_super will poke cleaner thread and it will process it a
2299 * few seconds later.
2300 */
2301 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2302 {
2303 int ret;
2304 struct btrfs_fs_info *fs_info = root->fs_info;
2305
2306 spin_lock(&fs_info->trans_lock);
2307 if (list_empty(&fs_info->dead_roots)) {
2308 spin_unlock(&fs_info->trans_lock);
2309 return 0;
2310 }
2311 root = list_first_entry(&fs_info->dead_roots,
2312 struct btrfs_root, root_list);
2313 list_del_init(&root->root_list);
2314 spin_unlock(&fs_info->trans_lock);
2315
2316 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2317
2318 btrfs_kill_all_delayed_nodes(root);
2319
2320 if (btrfs_header_backref_rev(root->node) <
2321 BTRFS_MIXED_BACKREF_REV)
2322 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2323 else
2324 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2325
2326 return (ret < 0) ? 0 : 1;
2327 }
2328
2329 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2330 {
2331 unsigned long prev;
2332 unsigned long bit;
2333
2334 prev = xchg(&fs_info->pending_changes, 0);
2335 if (!prev)
2336 return;
2337
2338 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2339 if (prev & bit)
2340 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2341 prev &= ~bit;
2342
2343 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2344 if (prev & bit)
2345 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2346 prev &= ~bit;
2347
2348 bit = 1 << BTRFS_PENDING_COMMIT;
2349 if (prev & bit)
2350 btrfs_debug(fs_info, "pending commit done");
2351 prev &= ~bit;
2352
2353 if (prev)
2354 btrfs_warn(fs_info,
2355 "unknown pending changes left 0x%lx, ignoring", prev);
2356 }