]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/transaction.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22
23 #define BTRFS_ROOT_TRANS_TAG 0
24
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN),
32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
33 __TRANS_ATTACH |
34 __TRANS_JOIN |
35 __TRANS_JOIN_NOLOCK),
36 [TRANS_STATE_COMPLETED] = (__TRANS_START |
37 __TRANS_ATTACH |
38 __TRANS_JOIN |
39 __TRANS_JOIN_NOLOCK),
40 };
41
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 WARN_ON(refcount_read(&transaction->use_count) == 0);
45 if (refcount_dec_and_test(&transaction->use_count)) {
46 BUG_ON(!list_empty(&transaction->list));
47 WARN_ON(!RB_EMPTY_ROOT(
48 &transaction->delayed_refs.href_root.rb_root));
49 if (transaction->delayed_refs.pending_csums)
50 btrfs_err(transaction->fs_info,
51 "pending csums is %llu",
52 transaction->delayed_refs.pending_csums);
53 while (!list_empty(&transaction->pending_chunks)) {
54 struct extent_map *em;
55
56 em = list_first_entry(&transaction->pending_chunks,
57 struct extent_map, list);
58 list_del_init(&em->list);
59 free_extent_map(em);
60 }
61 /*
62 * If any block groups are found in ->deleted_bgs then it's
63 * because the transaction was aborted and a commit did not
64 * happen (things failed before writing the new superblock
65 * and calling btrfs_finish_extent_commit()), so we can not
66 * discard the physical locations of the block groups.
67 */
68 while (!list_empty(&transaction->deleted_bgs)) {
69 struct btrfs_block_group_cache *cache;
70
71 cache = list_first_entry(&transaction->deleted_bgs,
72 struct btrfs_block_group_cache,
73 bg_list);
74 list_del_init(&cache->bg_list);
75 btrfs_put_block_group_trimming(cache);
76 btrfs_put_block_group(cache);
77 }
78 kfree(transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 /*
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
89 */
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
94
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
99 /*
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
102 */
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
105
106 cond_resched_lock(&tree->lock);
107 }
108 spin_unlock(&tree->lock);
109 }
110
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
112 {
113 struct btrfs_fs_info *fs_info = trans->fs_info;
114 struct btrfs_root *root, *tmp;
115
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->root_key.objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
125 }
126
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
136 }
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
139 }
140
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
143 {
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
146 }
147
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
150 {
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
153 }
154
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
157 {
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167 * either allocate a new transaction or hop into the existing one
168 */
169 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
170 unsigned int type)
171 {
172 struct btrfs_transaction *cur_trans;
173
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
180 }
181
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
187 }
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
191 }
192 refcount_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
197 }
198 spin_unlock(&fs_info->trans_lock);
199
200 /*
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
203 */
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
206
207 /*
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
210 */
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
216
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
219 /*
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
222 */
223 kfree(cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kfree(cur_trans);
228 return -EROFS;
229 }
230
231 cur_trans->fs_info = fs_info;
232 atomic_set(&cur_trans->num_writers, 1);
233 extwriter_counter_init(cur_trans, type);
234 init_waitqueue_head(&cur_trans->writer_wait);
235 init_waitqueue_head(&cur_trans->commit_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
237 /*
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
240 */
241 refcount_set(&cur_trans->use_count, 2);
242 cur_trans->flags = 0;
243 cur_trans->start_time = ktime_get_seconds();
244
245 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
246
247 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
248 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
249 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
250
251 /*
252 * although the tree mod log is per file system and not per transaction,
253 * the log must never go across transaction boundaries.
254 */
255 smp_mb();
256 if (!list_empty(&fs_info->tree_mod_seq_list))
257 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
258 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
259 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
260 atomic64_set(&fs_info->tree_mod_seq, 0);
261
262 spin_lock_init(&cur_trans->delayed_refs.lock);
263
264 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 INIT_LIST_HEAD(&cur_trans->switch_commits);
267 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
268 INIT_LIST_HEAD(&cur_trans->io_bgs);
269 INIT_LIST_HEAD(&cur_trans->dropped_roots);
270 mutex_init(&cur_trans->cache_write_mutex);
271 cur_trans->num_dirty_bgs = 0;
272 spin_lock_init(&cur_trans->dirty_bgs_lock);
273 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
274 spin_lock_init(&cur_trans->dropped_roots_lock);
275 list_add_tail(&cur_trans->list, &fs_info->trans_list);
276 extent_io_tree_init(&cur_trans->dirty_pages,
277 fs_info->btree_inode);
278 fs_info->generation++;
279 cur_trans->transid = fs_info->generation;
280 fs_info->running_transaction = cur_trans;
281 cur_trans->aborted = 0;
282 spin_unlock(&fs_info->trans_lock);
283
284 return 0;
285 }
286
287 /*
288 * this does all the record keeping required to make sure that a reference
289 * counted root is properly recorded in a given transaction. This is required
290 * to make sure the old root from before we joined the transaction is deleted
291 * when the transaction commits
292 */
293 static int record_root_in_trans(struct btrfs_trans_handle *trans,
294 struct btrfs_root *root,
295 int force)
296 {
297 struct btrfs_fs_info *fs_info = root->fs_info;
298
299 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300 root->last_trans < trans->transid) || force) {
301 WARN_ON(root == fs_info->extent_root);
302 WARN_ON(!force && root->commit_root != root->node);
303
304 /*
305 * see below for IN_TRANS_SETUP usage rules
306 * we have the reloc mutex held now, so there
307 * is only one writer in this function
308 */
309 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
310
311 /* make sure readers find IN_TRANS_SETUP before
312 * they find our root->last_trans update
313 */
314 smp_wmb();
315
316 spin_lock(&fs_info->fs_roots_radix_lock);
317 if (root->last_trans == trans->transid && !force) {
318 spin_unlock(&fs_info->fs_roots_radix_lock);
319 return 0;
320 }
321 radix_tree_tag_set(&fs_info->fs_roots_radix,
322 (unsigned long)root->root_key.objectid,
323 BTRFS_ROOT_TRANS_TAG);
324 spin_unlock(&fs_info->fs_roots_radix_lock);
325 root->last_trans = trans->transid;
326
327 /* this is pretty tricky. We don't want to
328 * take the relocation lock in btrfs_record_root_in_trans
329 * unless we're really doing the first setup for this root in
330 * this transaction.
331 *
332 * Normally we'd use root->last_trans as a flag to decide
333 * if we want to take the expensive mutex.
334 *
335 * But, we have to set root->last_trans before we
336 * init the relocation root, otherwise, we trip over warnings
337 * in ctree.c. The solution used here is to flag ourselves
338 * with root IN_TRANS_SETUP. When this is 1, we're still
339 * fixing up the reloc trees and everyone must wait.
340 *
341 * When this is zero, they can trust root->last_trans and fly
342 * through btrfs_record_root_in_trans without having to take the
343 * lock. smp_wmb() makes sure that all the writes above are
344 * done before we pop in the zero below
345 */
346 btrfs_init_reloc_root(trans, root);
347 smp_mb__before_atomic();
348 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
349 }
350 return 0;
351 }
352
353
354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root)
356 {
357 struct btrfs_fs_info *fs_info = root->fs_info;
358 struct btrfs_transaction *cur_trans = trans->transaction;
359
360 /* Add ourselves to the transaction dropped list */
361 spin_lock(&cur_trans->dropped_roots_lock);
362 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 spin_unlock(&cur_trans->dropped_roots_lock);
364
365 /* Make sure we don't try to update the root at commit time */
366 spin_lock(&fs_info->fs_roots_radix_lock);
367 radix_tree_tag_clear(&fs_info->fs_roots_radix,
368 (unsigned long)root->root_key.objectid,
369 BTRFS_ROOT_TRANS_TAG);
370 spin_unlock(&fs_info->fs_roots_radix_lock);
371 }
372
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root)
375 {
376 struct btrfs_fs_info *fs_info = root->fs_info;
377
378 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
379 return 0;
380
381 /*
382 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
383 * and barriers
384 */
385 smp_rmb();
386 if (root->last_trans == trans->transid &&
387 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
388 return 0;
389
390 mutex_lock(&fs_info->reloc_mutex);
391 record_root_in_trans(trans, root, 0);
392 mutex_unlock(&fs_info->reloc_mutex);
393
394 return 0;
395 }
396
397 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
398 {
399 return (trans->state >= TRANS_STATE_BLOCKED &&
400 trans->state < TRANS_STATE_UNBLOCKED &&
401 !trans->aborted);
402 }
403
404 /* wait for commit against the current transaction to become unblocked
405 * when this is done, it is safe to start a new transaction, but the current
406 * transaction might not be fully on disk.
407 */
408 static void wait_current_trans(struct btrfs_fs_info *fs_info)
409 {
410 struct btrfs_transaction *cur_trans;
411
412 spin_lock(&fs_info->trans_lock);
413 cur_trans = fs_info->running_transaction;
414 if (cur_trans && is_transaction_blocked(cur_trans)) {
415 refcount_inc(&cur_trans->use_count);
416 spin_unlock(&fs_info->trans_lock);
417
418 wait_event(fs_info->transaction_wait,
419 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
420 cur_trans->aborted);
421 btrfs_put_transaction(cur_trans);
422 } else {
423 spin_unlock(&fs_info->trans_lock);
424 }
425 }
426
427 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
428 {
429 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
430 return 0;
431
432 if (type == TRANS_START)
433 return 1;
434
435 return 0;
436 }
437
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
439 {
440 struct btrfs_fs_info *fs_info = root->fs_info;
441
442 if (!fs_info->reloc_ctl ||
443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 root->reloc_root)
446 return false;
447
448 return true;
449 }
450
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 unsigned int type, enum btrfs_reserve_flush_enum flush,
454 bool enforce_qgroups)
455 {
456 struct btrfs_fs_info *fs_info = root->fs_info;
457 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
458 struct btrfs_trans_handle *h;
459 struct btrfs_transaction *cur_trans;
460 u64 num_bytes = 0;
461 u64 qgroup_reserved = 0;
462 bool reloc_reserved = false;
463 int ret;
464
465 /* Send isn't supposed to start transactions. */
466 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
467
468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
469 return ERR_PTR(-EROFS);
470
471 if (current->journal_info) {
472 WARN_ON(type & TRANS_EXTWRITERS);
473 h = current->journal_info;
474 refcount_inc(&h->use_count);
475 WARN_ON(refcount_read(&h->use_count) > 2);
476 h->orig_rsv = h->block_rsv;
477 h->block_rsv = NULL;
478 goto got_it;
479 }
480
481 /*
482 * Do the reservation before we join the transaction so we can do all
483 * the appropriate flushing if need be.
484 */
485 if (num_items && root != fs_info->chunk_root) {
486 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
487 u64 delayed_refs_bytes = 0;
488
489 qgroup_reserved = num_items * fs_info->nodesize;
490 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
491 enforce_qgroups);
492 if (ret)
493 return ERR_PTR(ret);
494
495 /*
496 * We want to reserve all the bytes we may need all at once, so
497 * we only do 1 enospc flushing cycle per transaction start. We
498 * accomplish this by simply assuming we'll do 2 x num_items
499 * worth of delayed refs updates in this trans handle, and
500 * refill that amount for whatever is missing in the reserve.
501 */
502 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
503 if (delayed_refs_rsv->full == 0) {
504 delayed_refs_bytes = num_bytes;
505 num_bytes <<= 1;
506 }
507
508 /*
509 * Do the reservation for the relocation root creation
510 */
511 if (need_reserve_reloc_root(root)) {
512 num_bytes += fs_info->nodesize;
513 reloc_reserved = true;
514 }
515
516 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
517 if (ret)
518 goto reserve_fail;
519 if (delayed_refs_bytes) {
520 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
521 delayed_refs_bytes);
522 num_bytes -= delayed_refs_bytes;
523 }
524 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
525 !delayed_refs_rsv->full) {
526 /*
527 * Some people call with btrfs_start_transaction(root, 0)
528 * because they can be throttled, but have some other mechanism
529 * for reserving space. We still want these guys to refill the
530 * delayed block_rsv so just add 1 items worth of reservation
531 * here.
532 */
533 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
534 if (ret)
535 goto reserve_fail;
536 }
537 again:
538 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
539 if (!h) {
540 ret = -ENOMEM;
541 goto alloc_fail;
542 }
543
544 /*
545 * If we are JOIN_NOLOCK we're already committing a transaction and
546 * waiting on this guy, so we don't need to do the sb_start_intwrite
547 * because we're already holding a ref. We need this because we could
548 * have raced in and did an fsync() on a file which can kick a commit
549 * and then we deadlock with somebody doing a freeze.
550 *
551 * If we are ATTACH, it means we just want to catch the current
552 * transaction and commit it, so we needn't do sb_start_intwrite().
553 */
554 if (type & __TRANS_FREEZABLE)
555 sb_start_intwrite(fs_info->sb);
556
557 if (may_wait_transaction(fs_info, type))
558 wait_current_trans(fs_info);
559
560 do {
561 ret = join_transaction(fs_info, type);
562 if (ret == -EBUSY) {
563 wait_current_trans(fs_info);
564 if (unlikely(type == TRANS_ATTACH))
565 ret = -ENOENT;
566 }
567 } while (ret == -EBUSY);
568
569 if (ret < 0)
570 goto join_fail;
571
572 cur_trans = fs_info->running_transaction;
573
574 h->transid = cur_trans->transid;
575 h->transaction = cur_trans;
576 h->root = root;
577 refcount_set(&h->use_count, 1);
578 h->fs_info = root->fs_info;
579
580 h->type = type;
581 h->can_flush_pending_bgs = true;
582 INIT_LIST_HEAD(&h->new_bgs);
583
584 smp_mb();
585 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
586 may_wait_transaction(fs_info, type)) {
587 current->journal_info = h;
588 btrfs_commit_transaction(h);
589 goto again;
590 }
591
592 if (num_bytes) {
593 trace_btrfs_space_reservation(fs_info, "transaction",
594 h->transid, num_bytes, 1);
595 h->block_rsv = &fs_info->trans_block_rsv;
596 h->bytes_reserved = num_bytes;
597 h->reloc_reserved = reloc_reserved;
598 }
599
600 got_it:
601 btrfs_record_root_in_trans(h, root);
602
603 if (!current->journal_info)
604 current->journal_info = h;
605 return h;
606
607 join_fail:
608 if (type & __TRANS_FREEZABLE)
609 sb_end_intwrite(fs_info->sb);
610 kmem_cache_free(btrfs_trans_handle_cachep, h);
611 alloc_fail:
612 if (num_bytes)
613 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
614 num_bytes);
615 reserve_fail:
616 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
617 return ERR_PTR(ret);
618 }
619
620 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
621 unsigned int num_items)
622 {
623 return start_transaction(root, num_items, TRANS_START,
624 BTRFS_RESERVE_FLUSH_ALL, true);
625 }
626
627 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
628 struct btrfs_root *root,
629 unsigned int num_items,
630 int min_factor)
631 {
632 struct btrfs_fs_info *fs_info = root->fs_info;
633 struct btrfs_trans_handle *trans;
634 u64 num_bytes;
635 int ret;
636
637 /*
638 * We have two callers: unlink and block group removal. The
639 * former should succeed even if we will temporarily exceed
640 * quota and the latter operates on the extent root so
641 * qgroup enforcement is ignored anyway.
642 */
643 trans = start_transaction(root, num_items, TRANS_START,
644 BTRFS_RESERVE_FLUSH_ALL, false);
645 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
646 return trans;
647
648 trans = btrfs_start_transaction(root, 0);
649 if (IS_ERR(trans))
650 return trans;
651
652 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
653 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
654 num_bytes, min_factor);
655 if (ret) {
656 btrfs_end_transaction(trans);
657 return ERR_PTR(ret);
658 }
659
660 trans->block_rsv = &fs_info->trans_block_rsv;
661 trans->bytes_reserved = num_bytes;
662 trace_btrfs_space_reservation(fs_info, "transaction",
663 trans->transid, num_bytes, 1);
664
665 return trans;
666 }
667
668 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
669 {
670 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
671 true);
672 }
673
674 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
675 {
676 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
677 BTRFS_RESERVE_NO_FLUSH, true);
678 }
679
680 /*
681 * btrfs_attach_transaction() - catch the running transaction
682 *
683 * It is used when we want to commit the current the transaction, but
684 * don't want to start a new one.
685 *
686 * Note: If this function return -ENOENT, it just means there is no
687 * running transaction. But it is possible that the inactive transaction
688 * is still in the memory, not fully on disk. If you hope there is no
689 * inactive transaction in the fs when -ENOENT is returned, you should
690 * invoke
691 * btrfs_attach_transaction_barrier()
692 */
693 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
694 {
695 return start_transaction(root, 0, TRANS_ATTACH,
696 BTRFS_RESERVE_NO_FLUSH, true);
697 }
698
699 /*
700 * btrfs_attach_transaction_barrier() - catch the running transaction
701 *
702 * It is similar to the above function, the difference is this one
703 * will wait for all the inactive transactions until they fully
704 * complete.
705 */
706 struct btrfs_trans_handle *
707 btrfs_attach_transaction_barrier(struct btrfs_root *root)
708 {
709 struct btrfs_trans_handle *trans;
710
711 trans = start_transaction(root, 0, TRANS_ATTACH,
712 BTRFS_RESERVE_NO_FLUSH, true);
713 if (trans == ERR_PTR(-ENOENT))
714 btrfs_wait_for_commit(root->fs_info, 0);
715
716 return trans;
717 }
718
719 /* wait for a transaction commit to be fully complete */
720 static noinline void wait_for_commit(struct btrfs_transaction *commit)
721 {
722 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
723 }
724
725 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
726 {
727 struct btrfs_transaction *cur_trans = NULL, *t;
728 int ret = 0;
729
730 if (transid) {
731 if (transid <= fs_info->last_trans_committed)
732 goto out;
733
734 /* find specified transaction */
735 spin_lock(&fs_info->trans_lock);
736 list_for_each_entry(t, &fs_info->trans_list, list) {
737 if (t->transid == transid) {
738 cur_trans = t;
739 refcount_inc(&cur_trans->use_count);
740 ret = 0;
741 break;
742 }
743 if (t->transid > transid) {
744 ret = 0;
745 break;
746 }
747 }
748 spin_unlock(&fs_info->trans_lock);
749
750 /*
751 * The specified transaction doesn't exist, or we
752 * raced with btrfs_commit_transaction
753 */
754 if (!cur_trans) {
755 if (transid > fs_info->last_trans_committed)
756 ret = -EINVAL;
757 goto out;
758 }
759 } else {
760 /* find newest transaction that is committing | committed */
761 spin_lock(&fs_info->trans_lock);
762 list_for_each_entry_reverse(t, &fs_info->trans_list,
763 list) {
764 if (t->state >= TRANS_STATE_COMMIT_START) {
765 if (t->state == TRANS_STATE_COMPLETED)
766 break;
767 cur_trans = t;
768 refcount_inc(&cur_trans->use_count);
769 break;
770 }
771 }
772 spin_unlock(&fs_info->trans_lock);
773 if (!cur_trans)
774 goto out; /* nothing committing|committed */
775 }
776
777 wait_for_commit(cur_trans);
778 btrfs_put_transaction(cur_trans);
779 out:
780 return ret;
781 }
782
783 void btrfs_throttle(struct btrfs_fs_info *fs_info)
784 {
785 wait_current_trans(fs_info);
786 }
787
788 static int should_end_transaction(struct btrfs_trans_handle *trans)
789 {
790 struct btrfs_fs_info *fs_info = trans->fs_info;
791
792 if (btrfs_check_space_for_delayed_refs(fs_info))
793 return 1;
794
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796 }
797
798 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
799 {
800 struct btrfs_transaction *cur_trans = trans->transaction;
801
802 smp_mb();
803 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
804 cur_trans->delayed_refs.flushing)
805 return 1;
806
807 return should_end_transaction(trans);
808 }
809
810 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
811
812 {
813 struct btrfs_fs_info *fs_info = trans->fs_info;
814
815 if (!trans->block_rsv) {
816 ASSERT(!trans->bytes_reserved);
817 return;
818 }
819
820 if (!trans->bytes_reserved)
821 return;
822
823 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
824 trace_btrfs_space_reservation(fs_info, "transaction",
825 trans->transid, trans->bytes_reserved, 0);
826 btrfs_block_rsv_release(fs_info, trans->block_rsv,
827 trans->bytes_reserved);
828 trans->bytes_reserved = 0;
829 }
830
831 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
832 int throttle)
833 {
834 struct btrfs_fs_info *info = trans->fs_info;
835 struct btrfs_transaction *cur_trans = trans->transaction;
836 int lock = (trans->type != TRANS_JOIN_NOLOCK);
837 int err = 0;
838
839 if (refcount_read(&trans->use_count) > 1) {
840 refcount_dec(&trans->use_count);
841 trans->block_rsv = trans->orig_rsv;
842 return 0;
843 }
844
845 btrfs_trans_release_metadata(trans);
846 trans->block_rsv = NULL;
847
848 if (!list_empty(&trans->new_bgs))
849 btrfs_create_pending_block_groups(trans);
850
851 btrfs_trans_release_chunk_metadata(trans);
852
853 if (lock && should_end_transaction(trans) &&
854 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
855 spin_lock(&info->trans_lock);
856 if (cur_trans->state == TRANS_STATE_RUNNING)
857 cur_trans->state = TRANS_STATE_BLOCKED;
858 spin_unlock(&info->trans_lock);
859 }
860
861 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
862 if (throttle)
863 return btrfs_commit_transaction(trans);
864 else
865 wake_up_process(info->transaction_kthread);
866 }
867
868 if (trans->type & __TRANS_FREEZABLE)
869 sb_end_intwrite(info->sb);
870
871 WARN_ON(cur_trans != info->running_transaction);
872 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
873 atomic_dec(&cur_trans->num_writers);
874 extwriter_counter_dec(cur_trans, trans->type);
875
876 cond_wake_up(&cur_trans->writer_wait);
877 btrfs_put_transaction(cur_trans);
878
879 if (current->journal_info == trans)
880 current->journal_info = NULL;
881
882 if (throttle)
883 btrfs_run_delayed_iputs(info);
884
885 if (trans->aborted ||
886 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
887 wake_up_process(info->transaction_kthread);
888 err = -EIO;
889 }
890
891 kmem_cache_free(btrfs_trans_handle_cachep, trans);
892 return err;
893 }
894
895 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
896 {
897 return __btrfs_end_transaction(trans, 0);
898 }
899
900 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
901 {
902 return __btrfs_end_transaction(trans, 1);
903 }
904
905 /*
906 * when btree blocks are allocated, they have some corresponding bits set for
907 * them in one of two extent_io trees. This is used to make sure all of
908 * those extents are sent to disk but does not wait on them
909 */
910 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
911 struct extent_io_tree *dirty_pages, int mark)
912 {
913 int err = 0;
914 int werr = 0;
915 struct address_space *mapping = fs_info->btree_inode->i_mapping;
916 struct extent_state *cached_state = NULL;
917 u64 start = 0;
918 u64 end;
919
920 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
921 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
922 mark, &cached_state)) {
923 bool wait_writeback = false;
924
925 err = convert_extent_bit(dirty_pages, start, end,
926 EXTENT_NEED_WAIT,
927 mark, &cached_state);
928 /*
929 * convert_extent_bit can return -ENOMEM, which is most of the
930 * time a temporary error. So when it happens, ignore the error
931 * and wait for writeback of this range to finish - because we
932 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
933 * to __btrfs_wait_marked_extents() would not know that
934 * writeback for this range started and therefore wouldn't
935 * wait for it to finish - we don't want to commit a
936 * superblock that points to btree nodes/leafs for which
937 * writeback hasn't finished yet (and without errors).
938 * We cleanup any entries left in the io tree when committing
939 * the transaction (through clear_btree_io_tree()).
940 */
941 if (err == -ENOMEM) {
942 err = 0;
943 wait_writeback = true;
944 }
945 if (!err)
946 err = filemap_fdatawrite_range(mapping, start, end);
947 if (err)
948 werr = err;
949 else if (wait_writeback)
950 werr = filemap_fdatawait_range(mapping, start, end);
951 free_extent_state(cached_state);
952 cached_state = NULL;
953 cond_resched();
954 start = end + 1;
955 }
956 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
957 return werr;
958 }
959
960 /*
961 * when btree blocks are allocated, they have some corresponding bits set for
962 * them in one of two extent_io trees. This is used to make sure all of
963 * those extents are on disk for transaction or log commit. We wait
964 * on all the pages and clear them from the dirty pages state tree
965 */
966 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
967 struct extent_io_tree *dirty_pages)
968 {
969 int err = 0;
970 int werr = 0;
971 struct address_space *mapping = fs_info->btree_inode->i_mapping;
972 struct extent_state *cached_state = NULL;
973 u64 start = 0;
974 u64 end;
975
976 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 EXTENT_NEED_WAIT, &cached_state)) {
978 /*
979 * Ignore -ENOMEM errors returned by clear_extent_bit().
980 * When committing the transaction, we'll remove any entries
981 * left in the io tree. For a log commit, we don't remove them
982 * after committing the log because the tree can be accessed
983 * concurrently - we do it only at transaction commit time when
984 * it's safe to do it (through clear_btree_io_tree()).
985 */
986 err = clear_extent_bit(dirty_pages, start, end,
987 EXTENT_NEED_WAIT, 0, 0, &cached_state);
988 if (err == -ENOMEM)
989 err = 0;
990 if (!err)
991 err = filemap_fdatawait_range(mapping, start, end);
992 if (err)
993 werr = err;
994 free_extent_state(cached_state);
995 cached_state = NULL;
996 cond_resched();
997 start = end + 1;
998 }
999 if (err)
1000 werr = err;
1001 return werr;
1002 }
1003
1004 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1005 struct extent_io_tree *dirty_pages)
1006 {
1007 bool errors = false;
1008 int err;
1009
1010 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1011 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1012 errors = true;
1013
1014 if (errors && !err)
1015 err = -EIO;
1016 return err;
1017 }
1018
1019 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1020 {
1021 struct btrfs_fs_info *fs_info = log_root->fs_info;
1022 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1023 bool errors = false;
1024 int err;
1025
1026 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1027
1028 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1029 if ((mark & EXTENT_DIRTY) &&
1030 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1031 errors = true;
1032
1033 if ((mark & EXTENT_NEW) &&
1034 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1035 errors = true;
1036
1037 if (errors && !err)
1038 err = -EIO;
1039 return err;
1040 }
1041
1042 /*
1043 * When btree blocks are allocated the corresponding extents are marked dirty.
1044 * This function ensures such extents are persisted on disk for transaction or
1045 * log commit.
1046 *
1047 * @trans: transaction whose dirty pages we'd like to write
1048 */
1049 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1050 {
1051 int ret;
1052 int ret2;
1053 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1054 struct btrfs_fs_info *fs_info = trans->fs_info;
1055 struct blk_plug plug;
1056
1057 blk_start_plug(&plug);
1058 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1059 blk_finish_plug(&plug);
1060 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1061
1062 clear_btree_io_tree(&trans->transaction->dirty_pages);
1063
1064 if (ret)
1065 return ret;
1066 else if (ret2)
1067 return ret2;
1068 else
1069 return 0;
1070 }
1071
1072 /*
1073 * this is used to update the root pointer in the tree of tree roots.
1074 *
1075 * But, in the case of the extent allocation tree, updating the root
1076 * pointer may allocate blocks which may change the root of the extent
1077 * allocation tree.
1078 *
1079 * So, this loops and repeats and makes sure the cowonly root didn't
1080 * change while the root pointer was being updated in the metadata.
1081 */
1082 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root)
1084 {
1085 int ret;
1086 u64 old_root_bytenr;
1087 u64 old_root_used;
1088 struct btrfs_fs_info *fs_info = root->fs_info;
1089 struct btrfs_root *tree_root = fs_info->tree_root;
1090
1091 old_root_used = btrfs_root_used(&root->root_item);
1092
1093 while (1) {
1094 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1095 if (old_root_bytenr == root->node->start &&
1096 old_root_used == btrfs_root_used(&root->root_item))
1097 break;
1098
1099 btrfs_set_root_node(&root->root_item, root->node);
1100 ret = btrfs_update_root(trans, tree_root,
1101 &root->root_key,
1102 &root->root_item);
1103 if (ret)
1104 return ret;
1105
1106 old_root_used = btrfs_root_used(&root->root_item);
1107 }
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * update all the cowonly tree roots on disk
1114 *
1115 * The error handling in this function may not be obvious. Any of the
1116 * failures will cause the file system to go offline. We still need
1117 * to clean up the delayed refs.
1118 */
1119 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1120 {
1121 struct btrfs_fs_info *fs_info = trans->fs_info;
1122 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1123 struct list_head *io_bgs = &trans->transaction->io_bgs;
1124 struct list_head *next;
1125 struct extent_buffer *eb;
1126 int ret;
1127
1128 eb = btrfs_lock_root_node(fs_info->tree_root);
1129 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1130 0, &eb);
1131 btrfs_tree_unlock(eb);
1132 free_extent_buffer(eb);
1133
1134 if (ret)
1135 return ret;
1136
1137 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1138 if (ret)
1139 return ret;
1140
1141 ret = btrfs_run_dev_stats(trans, fs_info);
1142 if (ret)
1143 return ret;
1144 ret = btrfs_run_dev_replace(trans, fs_info);
1145 if (ret)
1146 return ret;
1147 ret = btrfs_run_qgroups(trans);
1148 if (ret)
1149 return ret;
1150
1151 ret = btrfs_setup_space_cache(trans, fs_info);
1152 if (ret)
1153 return ret;
1154
1155 /* run_qgroups might have added some more refs */
1156 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1157 if (ret)
1158 return ret;
1159 again:
1160 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1161 struct btrfs_root *root;
1162 next = fs_info->dirty_cowonly_roots.next;
1163 list_del_init(next);
1164 root = list_entry(next, struct btrfs_root, dirty_list);
1165 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1166
1167 if (root != fs_info->extent_root)
1168 list_add_tail(&root->dirty_list,
1169 &trans->transaction->switch_commits);
1170 ret = update_cowonly_root(trans, root);
1171 if (ret)
1172 return ret;
1173 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1174 if (ret)
1175 return ret;
1176 }
1177
1178 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1179 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1180 if (ret)
1181 return ret;
1182 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1183 if (ret)
1184 return ret;
1185 }
1186
1187 if (!list_empty(&fs_info->dirty_cowonly_roots))
1188 goto again;
1189
1190 list_add_tail(&fs_info->extent_root->dirty_list,
1191 &trans->transaction->switch_commits);
1192
1193 /* Update dev-replace pointer once everything is committed */
1194 fs_info->dev_replace.committed_cursor_left =
1195 fs_info->dev_replace.cursor_left_last_write_of_item;
1196
1197 return 0;
1198 }
1199
1200 /*
1201 * dead roots are old snapshots that need to be deleted. This allocates
1202 * a dirty root struct and adds it into the list of dead roots that need to
1203 * be deleted
1204 */
1205 void btrfs_add_dead_root(struct btrfs_root *root)
1206 {
1207 struct btrfs_fs_info *fs_info = root->fs_info;
1208
1209 spin_lock(&fs_info->trans_lock);
1210 if (list_empty(&root->root_list))
1211 list_add_tail(&root->root_list, &fs_info->dead_roots);
1212 spin_unlock(&fs_info->trans_lock);
1213 }
1214
1215 /*
1216 * update all the cowonly tree roots on disk
1217 */
1218 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1219 {
1220 struct btrfs_fs_info *fs_info = trans->fs_info;
1221 struct btrfs_root *gang[8];
1222 int i;
1223 int ret;
1224 int err = 0;
1225
1226 spin_lock(&fs_info->fs_roots_radix_lock);
1227 while (1) {
1228 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1229 (void **)gang, 0,
1230 ARRAY_SIZE(gang),
1231 BTRFS_ROOT_TRANS_TAG);
1232 if (ret == 0)
1233 break;
1234 for (i = 0; i < ret; i++) {
1235 struct btrfs_root *root = gang[i];
1236 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1237 (unsigned long)root->root_key.objectid,
1238 BTRFS_ROOT_TRANS_TAG);
1239 spin_unlock(&fs_info->fs_roots_radix_lock);
1240
1241 btrfs_free_log(trans, root);
1242 btrfs_update_reloc_root(trans, root);
1243
1244 btrfs_save_ino_cache(root, trans);
1245
1246 /* see comments in should_cow_block() */
1247 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1248 smp_mb__after_atomic();
1249
1250 if (root->commit_root != root->node) {
1251 list_add_tail(&root->dirty_list,
1252 &trans->transaction->switch_commits);
1253 btrfs_set_root_node(&root->root_item,
1254 root->node);
1255 }
1256
1257 err = btrfs_update_root(trans, fs_info->tree_root,
1258 &root->root_key,
1259 &root->root_item);
1260 spin_lock(&fs_info->fs_roots_radix_lock);
1261 if (err)
1262 break;
1263 btrfs_qgroup_free_meta_all_pertrans(root);
1264 }
1265 }
1266 spin_unlock(&fs_info->fs_roots_radix_lock);
1267 return err;
1268 }
1269
1270 /*
1271 * defrag a given btree.
1272 * Every leaf in the btree is read and defragged.
1273 */
1274 int btrfs_defrag_root(struct btrfs_root *root)
1275 {
1276 struct btrfs_fs_info *info = root->fs_info;
1277 struct btrfs_trans_handle *trans;
1278 int ret;
1279
1280 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1281 return 0;
1282
1283 while (1) {
1284 trans = btrfs_start_transaction(root, 0);
1285 if (IS_ERR(trans))
1286 return PTR_ERR(trans);
1287
1288 ret = btrfs_defrag_leaves(trans, root);
1289
1290 btrfs_end_transaction(trans);
1291 btrfs_btree_balance_dirty(info);
1292 cond_resched();
1293
1294 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1295 break;
1296
1297 if (btrfs_defrag_cancelled(info)) {
1298 btrfs_debug(info, "defrag_root cancelled");
1299 ret = -EAGAIN;
1300 break;
1301 }
1302 }
1303 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1304 return ret;
1305 }
1306
1307 /*
1308 * Do all special snapshot related qgroup dirty hack.
1309 *
1310 * Will do all needed qgroup inherit and dirty hack like switch commit
1311 * roots inside one transaction and write all btree into disk, to make
1312 * qgroup works.
1313 */
1314 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1315 struct btrfs_root *src,
1316 struct btrfs_root *parent,
1317 struct btrfs_qgroup_inherit *inherit,
1318 u64 dst_objectid)
1319 {
1320 struct btrfs_fs_info *fs_info = src->fs_info;
1321 int ret;
1322
1323 /*
1324 * Save some performance in the case that qgroups are not
1325 * enabled. If this check races with the ioctl, rescan will
1326 * kick in anyway.
1327 */
1328 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1329 return 0;
1330
1331 /*
1332 * Ensure dirty @src will be committed. Or, after coming
1333 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1334 * recorded root will never be updated again, causing an outdated root
1335 * item.
1336 */
1337 record_root_in_trans(trans, src, 1);
1338
1339 /*
1340 * We are going to commit transaction, see btrfs_commit_transaction()
1341 * comment for reason locking tree_log_mutex
1342 */
1343 mutex_lock(&fs_info->tree_log_mutex);
1344
1345 ret = commit_fs_roots(trans);
1346 if (ret)
1347 goto out;
1348 ret = btrfs_qgroup_account_extents(trans);
1349 if (ret < 0)
1350 goto out;
1351
1352 /* Now qgroup are all updated, we can inherit it to new qgroups */
1353 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1354 inherit);
1355 if (ret < 0)
1356 goto out;
1357
1358 /*
1359 * Now we do a simplified commit transaction, which will:
1360 * 1) commit all subvolume and extent tree
1361 * To ensure all subvolume and extent tree have a valid
1362 * commit_root to accounting later insert_dir_item()
1363 * 2) write all btree blocks onto disk
1364 * This is to make sure later btree modification will be cowed
1365 * Or commit_root can be populated and cause wrong qgroup numbers
1366 * In this simplified commit, we don't really care about other trees
1367 * like chunk and root tree, as they won't affect qgroup.
1368 * And we don't write super to avoid half committed status.
1369 */
1370 ret = commit_cowonly_roots(trans);
1371 if (ret)
1372 goto out;
1373 switch_commit_roots(trans->transaction);
1374 ret = btrfs_write_and_wait_transaction(trans);
1375 if (ret)
1376 btrfs_handle_fs_error(fs_info, ret,
1377 "Error while writing out transaction for qgroup");
1378
1379 out:
1380 mutex_unlock(&fs_info->tree_log_mutex);
1381
1382 /*
1383 * Force parent root to be updated, as we recorded it before so its
1384 * last_trans == cur_transid.
1385 * Or it won't be committed again onto disk after later
1386 * insert_dir_item()
1387 */
1388 if (!ret)
1389 record_root_in_trans(trans, parent, 1);
1390 return ret;
1391 }
1392
1393 /*
1394 * new snapshots need to be created at a very specific time in the
1395 * transaction commit. This does the actual creation.
1396 *
1397 * Note:
1398 * If the error which may affect the commitment of the current transaction
1399 * happens, we should return the error number. If the error which just affect
1400 * the creation of the pending snapshots, just return 0.
1401 */
1402 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1403 struct btrfs_pending_snapshot *pending)
1404 {
1405
1406 struct btrfs_fs_info *fs_info = trans->fs_info;
1407 struct btrfs_key key;
1408 struct btrfs_root_item *new_root_item;
1409 struct btrfs_root *tree_root = fs_info->tree_root;
1410 struct btrfs_root *root = pending->root;
1411 struct btrfs_root *parent_root;
1412 struct btrfs_block_rsv *rsv;
1413 struct inode *parent_inode;
1414 struct btrfs_path *path;
1415 struct btrfs_dir_item *dir_item;
1416 struct dentry *dentry;
1417 struct extent_buffer *tmp;
1418 struct extent_buffer *old;
1419 struct timespec64 cur_time;
1420 int ret = 0;
1421 u64 to_reserve = 0;
1422 u64 index = 0;
1423 u64 objectid;
1424 u64 root_flags;
1425 uuid_le new_uuid;
1426
1427 ASSERT(pending->path);
1428 path = pending->path;
1429
1430 ASSERT(pending->root_item);
1431 new_root_item = pending->root_item;
1432
1433 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1434 if (pending->error)
1435 goto no_free_objectid;
1436
1437 /*
1438 * Make qgroup to skip current new snapshot's qgroupid, as it is
1439 * accounted by later btrfs_qgroup_inherit().
1440 */
1441 btrfs_set_skip_qgroup(trans, objectid);
1442
1443 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1444
1445 if (to_reserve > 0) {
1446 pending->error = btrfs_block_rsv_add(root,
1447 &pending->block_rsv,
1448 to_reserve,
1449 BTRFS_RESERVE_NO_FLUSH);
1450 if (pending->error)
1451 goto clear_skip_qgroup;
1452 }
1453
1454 key.objectid = objectid;
1455 key.offset = (u64)-1;
1456 key.type = BTRFS_ROOT_ITEM_KEY;
1457
1458 rsv = trans->block_rsv;
1459 trans->block_rsv = &pending->block_rsv;
1460 trans->bytes_reserved = trans->block_rsv->reserved;
1461 trace_btrfs_space_reservation(fs_info, "transaction",
1462 trans->transid,
1463 trans->bytes_reserved, 1);
1464 dentry = pending->dentry;
1465 parent_inode = pending->dir;
1466 parent_root = BTRFS_I(parent_inode)->root;
1467 record_root_in_trans(trans, parent_root, 0);
1468
1469 cur_time = current_time(parent_inode);
1470
1471 /*
1472 * insert the directory item
1473 */
1474 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1475 BUG_ON(ret); /* -ENOMEM */
1476
1477 /* check if there is a file/dir which has the same name. */
1478 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1479 btrfs_ino(BTRFS_I(parent_inode)),
1480 dentry->d_name.name,
1481 dentry->d_name.len, 0);
1482 if (dir_item != NULL && !IS_ERR(dir_item)) {
1483 pending->error = -EEXIST;
1484 goto dir_item_existed;
1485 } else if (IS_ERR(dir_item)) {
1486 ret = PTR_ERR(dir_item);
1487 btrfs_abort_transaction(trans, ret);
1488 goto fail;
1489 }
1490 btrfs_release_path(path);
1491
1492 /*
1493 * pull in the delayed directory update
1494 * and the delayed inode item
1495 * otherwise we corrupt the FS during
1496 * snapshot
1497 */
1498 ret = btrfs_run_delayed_items(trans);
1499 if (ret) { /* Transaction aborted */
1500 btrfs_abort_transaction(trans, ret);
1501 goto fail;
1502 }
1503
1504 record_root_in_trans(trans, root, 0);
1505 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1506 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1507 btrfs_check_and_init_root_item(new_root_item);
1508
1509 root_flags = btrfs_root_flags(new_root_item);
1510 if (pending->readonly)
1511 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1512 else
1513 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1514 btrfs_set_root_flags(new_root_item, root_flags);
1515
1516 btrfs_set_root_generation_v2(new_root_item,
1517 trans->transid);
1518 uuid_le_gen(&new_uuid);
1519 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1520 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1521 BTRFS_UUID_SIZE);
1522 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1523 memset(new_root_item->received_uuid, 0,
1524 sizeof(new_root_item->received_uuid));
1525 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1526 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1527 btrfs_set_root_stransid(new_root_item, 0);
1528 btrfs_set_root_rtransid(new_root_item, 0);
1529 }
1530 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1531 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1532 btrfs_set_root_otransid(new_root_item, trans->transid);
1533
1534 old = btrfs_lock_root_node(root);
1535 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1536 if (ret) {
1537 btrfs_tree_unlock(old);
1538 free_extent_buffer(old);
1539 btrfs_abort_transaction(trans, ret);
1540 goto fail;
1541 }
1542
1543 btrfs_set_lock_blocking(old);
1544
1545 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1546 /* clean up in any case */
1547 btrfs_tree_unlock(old);
1548 free_extent_buffer(old);
1549 if (ret) {
1550 btrfs_abort_transaction(trans, ret);
1551 goto fail;
1552 }
1553 /* see comments in should_cow_block() */
1554 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1555 smp_wmb();
1556
1557 btrfs_set_root_node(new_root_item, tmp);
1558 /* record when the snapshot was created in key.offset */
1559 key.offset = trans->transid;
1560 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1561 btrfs_tree_unlock(tmp);
1562 free_extent_buffer(tmp);
1563 if (ret) {
1564 btrfs_abort_transaction(trans, ret);
1565 goto fail;
1566 }
1567
1568 /*
1569 * insert root back/forward references
1570 */
1571 ret = btrfs_add_root_ref(trans, objectid,
1572 parent_root->root_key.objectid,
1573 btrfs_ino(BTRFS_I(parent_inode)), index,
1574 dentry->d_name.name, dentry->d_name.len);
1575 if (ret) {
1576 btrfs_abort_transaction(trans, ret);
1577 goto fail;
1578 }
1579
1580 key.offset = (u64)-1;
1581 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1582 if (IS_ERR(pending->snap)) {
1583 ret = PTR_ERR(pending->snap);
1584 btrfs_abort_transaction(trans, ret);
1585 goto fail;
1586 }
1587
1588 ret = btrfs_reloc_post_snapshot(trans, pending);
1589 if (ret) {
1590 btrfs_abort_transaction(trans, ret);
1591 goto fail;
1592 }
1593
1594 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1595 if (ret) {
1596 btrfs_abort_transaction(trans, ret);
1597 goto fail;
1598 }
1599
1600 /*
1601 * Do special qgroup accounting for snapshot, as we do some qgroup
1602 * snapshot hack to do fast snapshot.
1603 * To co-operate with that hack, we do hack again.
1604 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1605 */
1606 ret = qgroup_account_snapshot(trans, root, parent_root,
1607 pending->inherit, objectid);
1608 if (ret < 0)
1609 goto fail;
1610
1611 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1612 dentry->d_name.len, BTRFS_I(parent_inode),
1613 &key, BTRFS_FT_DIR, index);
1614 /* We have check then name at the beginning, so it is impossible. */
1615 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1616 if (ret) {
1617 btrfs_abort_transaction(trans, ret);
1618 goto fail;
1619 }
1620
1621 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1622 dentry->d_name.len * 2);
1623 parent_inode->i_mtime = parent_inode->i_ctime =
1624 current_time(parent_inode);
1625 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1626 if (ret) {
1627 btrfs_abort_transaction(trans, ret);
1628 goto fail;
1629 }
1630 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1631 objectid);
1632 if (ret) {
1633 btrfs_abort_transaction(trans, ret);
1634 goto fail;
1635 }
1636 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1637 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1638 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1639 objectid);
1640 if (ret && ret != -EEXIST) {
1641 btrfs_abort_transaction(trans, ret);
1642 goto fail;
1643 }
1644 }
1645
1646 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1647 if (ret) {
1648 btrfs_abort_transaction(trans, ret);
1649 goto fail;
1650 }
1651
1652 fail:
1653 pending->error = ret;
1654 dir_item_existed:
1655 trans->block_rsv = rsv;
1656 trans->bytes_reserved = 0;
1657 clear_skip_qgroup:
1658 btrfs_clear_skip_qgroup(trans);
1659 no_free_objectid:
1660 kfree(new_root_item);
1661 pending->root_item = NULL;
1662 btrfs_free_path(path);
1663 pending->path = NULL;
1664
1665 return ret;
1666 }
1667
1668 /*
1669 * create all the snapshots we've scheduled for creation
1670 */
1671 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1672 {
1673 struct btrfs_pending_snapshot *pending, *next;
1674 struct list_head *head = &trans->transaction->pending_snapshots;
1675 int ret = 0;
1676
1677 list_for_each_entry_safe(pending, next, head, list) {
1678 list_del(&pending->list);
1679 ret = create_pending_snapshot(trans, pending);
1680 if (ret)
1681 break;
1682 }
1683 return ret;
1684 }
1685
1686 static void update_super_roots(struct btrfs_fs_info *fs_info)
1687 {
1688 struct btrfs_root_item *root_item;
1689 struct btrfs_super_block *super;
1690
1691 super = fs_info->super_copy;
1692
1693 root_item = &fs_info->chunk_root->root_item;
1694 super->chunk_root = root_item->bytenr;
1695 super->chunk_root_generation = root_item->generation;
1696 super->chunk_root_level = root_item->level;
1697
1698 root_item = &fs_info->tree_root->root_item;
1699 super->root = root_item->bytenr;
1700 super->generation = root_item->generation;
1701 super->root_level = root_item->level;
1702 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1703 super->cache_generation = root_item->generation;
1704 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1705 super->uuid_tree_generation = root_item->generation;
1706 }
1707
1708 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1709 {
1710 struct btrfs_transaction *trans;
1711 int ret = 0;
1712
1713 spin_lock(&info->trans_lock);
1714 trans = info->running_transaction;
1715 if (trans)
1716 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1717 spin_unlock(&info->trans_lock);
1718 return ret;
1719 }
1720
1721 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1722 {
1723 struct btrfs_transaction *trans;
1724 int ret = 0;
1725
1726 spin_lock(&info->trans_lock);
1727 trans = info->running_transaction;
1728 if (trans)
1729 ret = is_transaction_blocked(trans);
1730 spin_unlock(&info->trans_lock);
1731 return ret;
1732 }
1733
1734 /*
1735 * wait for the current transaction commit to start and block subsequent
1736 * transaction joins
1737 */
1738 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1739 struct btrfs_transaction *trans)
1740 {
1741 wait_event(fs_info->transaction_blocked_wait,
1742 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1743 }
1744
1745 /*
1746 * wait for the current transaction to start and then become unblocked.
1747 * caller holds ref.
1748 */
1749 static void wait_current_trans_commit_start_and_unblock(
1750 struct btrfs_fs_info *fs_info,
1751 struct btrfs_transaction *trans)
1752 {
1753 wait_event(fs_info->transaction_wait,
1754 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1755 }
1756
1757 /*
1758 * commit transactions asynchronously. once btrfs_commit_transaction_async
1759 * returns, any subsequent transaction will not be allowed to join.
1760 */
1761 struct btrfs_async_commit {
1762 struct btrfs_trans_handle *newtrans;
1763 struct work_struct work;
1764 };
1765
1766 static void do_async_commit(struct work_struct *work)
1767 {
1768 struct btrfs_async_commit *ac =
1769 container_of(work, struct btrfs_async_commit, work);
1770
1771 /*
1772 * We've got freeze protection passed with the transaction.
1773 * Tell lockdep about it.
1774 */
1775 if (ac->newtrans->type & __TRANS_FREEZABLE)
1776 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1777
1778 current->journal_info = ac->newtrans;
1779
1780 btrfs_commit_transaction(ac->newtrans);
1781 kfree(ac);
1782 }
1783
1784 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1785 int wait_for_unblock)
1786 {
1787 struct btrfs_fs_info *fs_info = trans->fs_info;
1788 struct btrfs_async_commit *ac;
1789 struct btrfs_transaction *cur_trans;
1790
1791 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1792 if (!ac)
1793 return -ENOMEM;
1794
1795 INIT_WORK(&ac->work, do_async_commit);
1796 ac->newtrans = btrfs_join_transaction(trans->root);
1797 if (IS_ERR(ac->newtrans)) {
1798 int err = PTR_ERR(ac->newtrans);
1799 kfree(ac);
1800 return err;
1801 }
1802
1803 /* take transaction reference */
1804 cur_trans = trans->transaction;
1805 refcount_inc(&cur_trans->use_count);
1806
1807 btrfs_end_transaction(trans);
1808
1809 /*
1810 * Tell lockdep we've released the freeze rwsem, since the
1811 * async commit thread will be the one to unlock it.
1812 */
1813 if (ac->newtrans->type & __TRANS_FREEZABLE)
1814 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1815
1816 schedule_work(&ac->work);
1817
1818 /* wait for transaction to start and unblock */
1819 if (wait_for_unblock)
1820 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1821 else
1822 wait_current_trans_commit_start(fs_info, cur_trans);
1823
1824 if (current->journal_info == trans)
1825 current->journal_info = NULL;
1826
1827 btrfs_put_transaction(cur_trans);
1828 return 0;
1829 }
1830
1831
1832 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1833 {
1834 struct btrfs_fs_info *fs_info = trans->fs_info;
1835 struct btrfs_transaction *cur_trans = trans->transaction;
1836
1837 WARN_ON(refcount_read(&trans->use_count) > 1);
1838
1839 btrfs_abort_transaction(trans, err);
1840
1841 spin_lock(&fs_info->trans_lock);
1842
1843 /*
1844 * If the transaction is removed from the list, it means this
1845 * transaction has been committed successfully, so it is impossible
1846 * to call the cleanup function.
1847 */
1848 BUG_ON(list_empty(&cur_trans->list));
1849
1850 list_del_init(&cur_trans->list);
1851 if (cur_trans == fs_info->running_transaction) {
1852 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1853 spin_unlock(&fs_info->trans_lock);
1854 wait_event(cur_trans->writer_wait,
1855 atomic_read(&cur_trans->num_writers) == 1);
1856
1857 spin_lock(&fs_info->trans_lock);
1858 }
1859 spin_unlock(&fs_info->trans_lock);
1860
1861 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1862
1863 spin_lock(&fs_info->trans_lock);
1864 if (cur_trans == fs_info->running_transaction)
1865 fs_info->running_transaction = NULL;
1866 spin_unlock(&fs_info->trans_lock);
1867
1868 if (trans->type & __TRANS_FREEZABLE)
1869 sb_end_intwrite(fs_info->sb);
1870 btrfs_put_transaction(cur_trans);
1871 btrfs_put_transaction(cur_trans);
1872
1873 trace_btrfs_transaction_commit(trans->root);
1874
1875 if (current->journal_info == trans)
1876 current->journal_info = NULL;
1877 btrfs_scrub_cancel(fs_info);
1878
1879 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1880 }
1881
1882 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1883 {
1884 /*
1885 * We use writeback_inodes_sb here because if we used
1886 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1887 * Currently are holding the fs freeze lock, if we do an async flush
1888 * we'll do btrfs_join_transaction() and deadlock because we need to
1889 * wait for the fs freeze lock. Using the direct flushing we benefit
1890 * from already being in a transaction and our join_transaction doesn't
1891 * have to re-take the fs freeze lock.
1892 */
1893 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1894 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1895 return 0;
1896 }
1897
1898 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1899 {
1900 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1901 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1902 }
1903
1904 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1905 {
1906 struct btrfs_fs_info *fs_info = trans->fs_info;
1907 struct btrfs_transaction *cur_trans = trans->transaction;
1908 struct btrfs_transaction *prev_trans = NULL;
1909 int ret;
1910
1911 /* Stop the commit early if ->aborted is set */
1912 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1913 ret = cur_trans->aborted;
1914 btrfs_end_transaction(trans);
1915 return ret;
1916 }
1917
1918 btrfs_trans_release_metadata(trans);
1919 trans->block_rsv = NULL;
1920
1921 /* make a pass through all the delayed refs we have so far
1922 * any runnings procs may add more while we are here
1923 */
1924 ret = btrfs_run_delayed_refs(trans, 0);
1925 if (ret) {
1926 btrfs_end_transaction(trans);
1927 return ret;
1928 }
1929
1930 cur_trans = trans->transaction;
1931
1932 /*
1933 * set the flushing flag so procs in this transaction have to
1934 * start sending their work down.
1935 */
1936 cur_trans->delayed_refs.flushing = 1;
1937 smp_wmb();
1938
1939 if (!list_empty(&trans->new_bgs))
1940 btrfs_create_pending_block_groups(trans);
1941
1942 ret = btrfs_run_delayed_refs(trans, 0);
1943 if (ret) {
1944 btrfs_end_transaction(trans);
1945 return ret;
1946 }
1947
1948 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1949 int run_it = 0;
1950
1951 /* this mutex is also taken before trying to set
1952 * block groups readonly. We need to make sure
1953 * that nobody has set a block group readonly
1954 * after a extents from that block group have been
1955 * allocated for cache files. btrfs_set_block_group_ro
1956 * will wait for the transaction to commit if it
1957 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1958 *
1959 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1960 * only one process starts all the block group IO. It wouldn't
1961 * hurt to have more than one go through, but there's no
1962 * real advantage to it either.
1963 */
1964 mutex_lock(&fs_info->ro_block_group_mutex);
1965 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1966 &cur_trans->flags))
1967 run_it = 1;
1968 mutex_unlock(&fs_info->ro_block_group_mutex);
1969
1970 if (run_it) {
1971 ret = btrfs_start_dirty_block_groups(trans);
1972 if (ret) {
1973 btrfs_end_transaction(trans);
1974 return ret;
1975 }
1976 }
1977 }
1978
1979 spin_lock(&fs_info->trans_lock);
1980 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1981 spin_unlock(&fs_info->trans_lock);
1982 refcount_inc(&cur_trans->use_count);
1983 ret = btrfs_end_transaction(trans);
1984
1985 wait_for_commit(cur_trans);
1986
1987 if (unlikely(cur_trans->aborted))
1988 ret = cur_trans->aborted;
1989
1990 btrfs_put_transaction(cur_trans);
1991
1992 return ret;
1993 }
1994
1995 cur_trans->state = TRANS_STATE_COMMIT_START;
1996 wake_up(&fs_info->transaction_blocked_wait);
1997
1998 if (cur_trans->list.prev != &fs_info->trans_list) {
1999 prev_trans = list_entry(cur_trans->list.prev,
2000 struct btrfs_transaction, list);
2001 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2002 refcount_inc(&prev_trans->use_count);
2003 spin_unlock(&fs_info->trans_lock);
2004
2005 wait_for_commit(prev_trans);
2006 ret = prev_trans->aborted;
2007
2008 btrfs_put_transaction(prev_trans);
2009 if (ret)
2010 goto cleanup_transaction;
2011 } else {
2012 spin_unlock(&fs_info->trans_lock);
2013 }
2014 } else {
2015 spin_unlock(&fs_info->trans_lock);
2016 }
2017
2018 extwriter_counter_dec(cur_trans, trans->type);
2019
2020 ret = btrfs_start_delalloc_flush(fs_info);
2021 if (ret)
2022 goto cleanup_transaction;
2023
2024 ret = btrfs_run_delayed_items(trans);
2025 if (ret)
2026 goto cleanup_transaction;
2027
2028 wait_event(cur_trans->writer_wait,
2029 extwriter_counter_read(cur_trans) == 0);
2030
2031 /* some pending stuffs might be added after the previous flush. */
2032 ret = btrfs_run_delayed_items(trans);
2033 if (ret)
2034 goto cleanup_transaction;
2035
2036 btrfs_wait_delalloc_flush(fs_info);
2037
2038 btrfs_scrub_pause(fs_info);
2039 /*
2040 * Ok now we need to make sure to block out any other joins while we
2041 * commit the transaction. We could have started a join before setting
2042 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2043 */
2044 spin_lock(&fs_info->trans_lock);
2045 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2046 spin_unlock(&fs_info->trans_lock);
2047 wait_event(cur_trans->writer_wait,
2048 atomic_read(&cur_trans->num_writers) == 1);
2049
2050 /* ->aborted might be set after the previous check, so check it */
2051 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2052 ret = cur_trans->aborted;
2053 goto scrub_continue;
2054 }
2055 /*
2056 * the reloc mutex makes sure that we stop
2057 * the balancing code from coming in and moving
2058 * extents around in the middle of the commit
2059 */
2060 mutex_lock(&fs_info->reloc_mutex);
2061
2062 /*
2063 * We needn't worry about the delayed items because we will
2064 * deal with them in create_pending_snapshot(), which is the
2065 * core function of the snapshot creation.
2066 */
2067 ret = create_pending_snapshots(trans);
2068 if (ret) {
2069 mutex_unlock(&fs_info->reloc_mutex);
2070 goto scrub_continue;
2071 }
2072
2073 /*
2074 * We insert the dir indexes of the snapshots and update the inode
2075 * of the snapshots' parents after the snapshot creation, so there
2076 * are some delayed items which are not dealt with. Now deal with
2077 * them.
2078 *
2079 * We needn't worry that this operation will corrupt the snapshots,
2080 * because all the tree which are snapshoted will be forced to COW
2081 * the nodes and leaves.
2082 */
2083 ret = btrfs_run_delayed_items(trans);
2084 if (ret) {
2085 mutex_unlock(&fs_info->reloc_mutex);
2086 goto scrub_continue;
2087 }
2088
2089 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2090 if (ret) {
2091 mutex_unlock(&fs_info->reloc_mutex);
2092 goto scrub_continue;
2093 }
2094
2095 /*
2096 * make sure none of the code above managed to slip in a
2097 * delayed item
2098 */
2099 btrfs_assert_delayed_root_empty(fs_info);
2100
2101 WARN_ON(cur_trans != trans->transaction);
2102
2103 /* btrfs_commit_tree_roots is responsible for getting the
2104 * various roots consistent with each other. Every pointer
2105 * in the tree of tree roots has to point to the most up to date
2106 * root for every subvolume and other tree. So, we have to keep
2107 * the tree logging code from jumping in and changing any
2108 * of the trees.
2109 *
2110 * At this point in the commit, there can't be any tree-log
2111 * writers, but a little lower down we drop the trans mutex
2112 * and let new people in. By holding the tree_log_mutex
2113 * from now until after the super is written, we avoid races
2114 * with the tree-log code.
2115 */
2116 mutex_lock(&fs_info->tree_log_mutex);
2117
2118 ret = commit_fs_roots(trans);
2119 if (ret) {
2120 mutex_unlock(&fs_info->tree_log_mutex);
2121 mutex_unlock(&fs_info->reloc_mutex);
2122 goto scrub_continue;
2123 }
2124
2125 /*
2126 * Since the transaction is done, we can apply the pending changes
2127 * before the next transaction.
2128 */
2129 btrfs_apply_pending_changes(fs_info);
2130
2131 /* commit_fs_roots gets rid of all the tree log roots, it is now
2132 * safe to free the root of tree log roots
2133 */
2134 btrfs_free_log_root_tree(trans, fs_info);
2135
2136 /*
2137 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2138 * new delayed refs. Must handle them or qgroup can be wrong.
2139 */
2140 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2141 if (ret) {
2142 mutex_unlock(&fs_info->tree_log_mutex);
2143 mutex_unlock(&fs_info->reloc_mutex);
2144 goto scrub_continue;
2145 }
2146
2147 /*
2148 * Since fs roots are all committed, we can get a quite accurate
2149 * new_roots. So let's do quota accounting.
2150 */
2151 ret = btrfs_qgroup_account_extents(trans);
2152 if (ret < 0) {
2153 mutex_unlock(&fs_info->tree_log_mutex);
2154 mutex_unlock(&fs_info->reloc_mutex);
2155 goto scrub_continue;
2156 }
2157
2158 ret = commit_cowonly_roots(trans);
2159 if (ret) {
2160 mutex_unlock(&fs_info->tree_log_mutex);
2161 mutex_unlock(&fs_info->reloc_mutex);
2162 goto scrub_continue;
2163 }
2164
2165 /*
2166 * The tasks which save the space cache and inode cache may also
2167 * update ->aborted, check it.
2168 */
2169 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2170 ret = cur_trans->aborted;
2171 mutex_unlock(&fs_info->tree_log_mutex);
2172 mutex_unlock(&fs_info->reloc_mutex);
2173 goto scrub_continue;
2174 }
2175
2176 btrfs_prepare_extent_commit(fs_info);
2177
2178 cur_trans = fs_info->running_transaction;
2179
2180 btrfs_set_root_node(&fs_info->tree_root->root_item,
2181 fs_info->tree_root->node);
2182 list_add_tail(&fs_info->tree_root->dirty_list,
2183 &cur_trans->switch_commits);
2184
2185 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2186 fs_info->chunk_root->node);
2187 list_add_tail(&fs_info->chunk_root->dirty_list,
2188 &cur_trans->switch_commits);
2189
2190 switch_commit_roots(cur_trans);
2191
2192 ASSERT(list_empty(&cur_trans->dirty_bgs));
2193 ASSERT(list_empty(&cur_trans->io_bgs));
2194 update_super_roots(fs_info);
2195
2196 btrfs_set_super_log_root(fs_info->super_copy, 0);
2197 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2198 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2199 sizeof(*fs_info->super_copy));
2200
2201 btrfs_update_commit_device_size(fs_info);
2202 btrfs_update_commit_device_bytes_used(cur_trans);
2203
2204 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2205 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2206
2207 btrfs_trans_release_chunk_metadata(trans);
2208
2209 spin_lock(&fs_info->trans_lock);
2210 cur_trans->state = TRANS_STATE_UNBLOCKED;
2211 fs_info->running_transaction = NULL;
2212 spin_unlock(&fs_info->trans_lock);
2213 mutex_unlock(&fs_info->reloc_mutex);
2214
2215 wake_up(&fs_info->transaction_wait);
2216
2217 ret = btrfs_write_and_wait_transaction(trans);
2218 if (ret) {
2219 btrfs_handle_fs_error(fs_info, ret,
2220 "Error while writing out transaction");
2221 mutex_unlock(&fs_info->tree_log_mutex);
2222 goto scrub_continue;
2223 }
2224
2225 ret = write_all_supers(fs_info, 0);
2226 /*
2227 * the super is written, we can safely allow the tree-loggers
2228 * to go about their business
2229 */
2230 mutex_unlock(&fs_info->tree_log_mutex);
2231 if (ret)
2232 goto scrub_continue;
2233
2234 btrfs_finish_extent_commit(trans);
2235
2236 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2237 btrfs_clear_space_info_full(fs_info);
2238
2239 fs_info->last_trans_committed = cur_trans->transid;
2240 /*
2241 * We needn't acquire the lock here because there is no other task
2242 * which can change it.
2243 */
2244 cur_trans->state = TRANS_STATE_COMPLETED;
2245 wake_up(&cur_trans->commit_wait);
2246 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2247
2248 spin_lock(&fs_info->trans_lock);
2249 list_del_init(&cur_trans->list);
2250 spin_unlock(&fs_info->trans_lock);
2251
2252 btrfs_put_transaction(cur_trans);
2253 btrfs_put_transaction(cur_trans);
2254
2255 if (trans->type & __TRANS_FREEZABLE)
2256 sb_end_intwrite(fs_info->sb);
2257
2258 trace_btrfs_transaction_commit(trans->root);
2259
2260 btrfs_scrub_continue(fs_info);
2261
2262 if (current->journal_info == trans)
2263 current->journal_info = NULL;
2264
2265 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2266
2267 return ret;
2268
2269 scrub_continue:
2270 btrfs_scrub_continue(fs_info);
2271 cleanup_transaction:
2272 btrfs_trans_release_metadata(trans);
2273 btrfs_trans_release_chunk_metadata(trans);
2274 trans->block_rsv = NULL;
2275 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2276 if (current->journal_info == trans)
2277 current->journal_info = NULL;
2278 cleanup_transaction(trans, ret);
2279
2280 return ret;
2281 }
2282
2283 /*
2284 * return < 0 if error
2285 * 0 if there are no more dead_roots at the time of call
2286 * 1 there are more to be processed, call me again
2287 *
2288 * The return value indicates there are certainly more snapshots to delete, but
2289 * if there comes a new one during processing, it may return 0. We don't mind,
2290 * because btrfs_commit_super will poke cleaner thread and it will process it a
2291 * few seconds later.
2292 */
2293 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2294 {
2295 int ret;
2296 struct btrfs_fs_info *fs_info = root->fs_info;
2297
2298 spin_lock(&fs_info->trans_lock);
2299 if (list_empty(&fs_info->dead_roots)) {
2300 spin_unlock(&fs_info->trans_lock);
2301 return 0;
2302 }
2303 root = list_first_entry(&fs_info->dead_roots,
2304 struct btrfs_root, root_list);
2305 list_del_init(&root->root_list);
2306 spin_unlock(&fs_info->trans_lock);
2307
2308 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2309
2310 btrfs_kill_all_delayed_nodes(root);
2311
2312 if (btrfs_header_backref_rev(root->node) <
2313 BTRFS_MIXED_BACKREF_REV)
2314 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2315 else
2316 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2317
2318 return (ret < 0) ? 0 : 1;
2319 }
2320
2321 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2322 {
2323 unsigned long prev;
2324 unsigned long bit;
2325
2326 prev = xchg(&fs_info->pending_changes, 0);
2327 if (!prev)
2328 return;
2329
2330 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2331 if (prev & bit)
2332 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2333 prev &= ~bit;
2334
2335 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2336 if (prev & bit)
2337 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2338 prev &= ~bit;
2339
2340 bit = 1 << BTRFS_PENDING_COMMIT;
2341 if (prev & bit)
2342 btrfs_debug(fs_info, "pending commit done");
2343 prev &= ~bit;
2344
2345 if (prev)
2346 btrfs_warn(fs_info,
2347 "unknown pending changes left 0x%lx, ignoring", prev);
2348 }