]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
Btrfs: fix wrong disk size when writing super blocks
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 struct btrfs_fs_info *fs_info)
81 {
82 struct btrfs_root *root, *tmp;
83
84 down_write(&fs_info->commit_root_sem);
85 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 dirty_list) {
87 list_del_init(&root->dirty_list);
88 free_extent_buffer(root->commit_root);
89 root->commit_root = btrfs_root_node(root);
90 if (is_fstree(root->objectid))
91 btrfs_unpin_free_ino(root);
92 }
93 up_write(&fs_info->commit_root_sem);
94 }
95
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 unsigned int type)
98 {
99 if (type & TRANS_EXTWRITERS)
100 atomic_inc(&trans->num_extwriters);
101 }
102
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 unsigned int type)
105 {
106 if (type & TRANS_EXTWRITERS)
107 atomic_dec(&trans->num_extwriters);
108 }
109
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 unsigned int type)
112 {
113 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 return atomic_read(&trans->num_extwriters);
119 }
120
121 /*
122 * either allocate a new transaction or hop into the existing one
123 */
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 struct btrfs_transaction *cur_trans;
127 struct btrfs_fs_info *fs_info = root->fs_info;
128
129 spin_lock(&fs_info->trans_lock);
130 loop:
131 /* The file system has been taken offline. No new transactions. */
132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 spin_unlock(&fs_info->trans_lock);
134 return -EROFS;
135 }
136
137 cur_trans = fs_info->running_transaction;
138 if (cur_trans) {
139 if (cur_trans->aborted) {
140 spin_unlock(&fs_info->trans_lock);
141 return cur_trans->aborted;
142 }
143 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 spin_unlock(&fs_info->trans_lock);
145 return -EBUSY;
146 }
147 atomic_inc(&cur_trans->use_count);
148 atomic_inc(&cur_trans->num_writers);
149 extwriter_counter_inc(cur_trans, type);
150 spin_unlock(&fs_info->trans_lock);
151 return 0;
152 }
153 spin_unlock(&fs_info->trans_lock);
154
155 /*
156 * If we are ATTACH, we just want to catch the current transaction,
157 * and commit it. If there is no transaction, just return ENOENT.
158 */
159 if (type == TRANS_ATTACH)
160 return -ENOENT;
161
162 /*
163 * JOIN_NOLOCK only happens during the transaction commit, so
164 * it is impossible that ->running_transaction is NULL
165 */
166 BUG_ON(type == TRANS_JOIN_NOLOCK);
167
168 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 if (!cur_trans)
170 return -ENOMEM;
171
172 spin_lock(&fs_info->trans_lock);
173 if (fs_info->running_transaction) {
174 /*
175 * someone started a transaction after we unlocked. Make sure
176 * to redo the checks above
177 */
178 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 goto loop;
180 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 spin_unlock(&fs_info->trans_lock);
182 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 return -EROFS;
184 }
185
186 atomic_set(&cur_trans->num_writers, 1);
187 extwriter_counter_init(cur_trans, type);
188 init_waitqueue_head(&cur_trans->writer_wait);
189 init_waitqueue_head(&cur_trans->commit_wait);
190 cur_trans->state = TRANS_STATE_RUNNING;
191 /*
192 * One for this trans handle, one so it will live on until we
193 * commit the transaction.
194 */
195 atomic_set(&cur_trans->use_count, 2);
196 cur_trans->start_time = get_seconds();
197
198 cur_trans->delayed_refs.href_root = RB_ROOT;
199 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 cur_trans->delayed_refs.num_heads_ready = 0;
201 cur_trans->delayed_refs.num_heads = 0;
202 cur_trans->delayed_refs.flushing = 0;
203 cur_trans->delayed_refs.run_delayed_start = 0;
204
205 /*
206 * although the tree mod log is per file system and not per transaction,
207 * the log must never go across transaction boundaries.
208 */
209 smp_mb();
210 if (!list_empty(&fs_info->tree_mod_seq_list))
211 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 "creating a fresh transaction\n");
213 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 "creating a fresh transaction\n");
216 atomic64_set(&fs_info->tree_mod_seq, 0);
217
218 spin_lock_init(&cur_trans->delayed_refs.lock);
219
220 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 INIT_LIST_HEAD(&cur_trans->switch_commits);
223 list_add_tail(&cur_trans->list, &fs_info->trans_list);
224 extent_io_tree_init(&cur_trans->dirty_pages,
225 fs_info->btree_inode->i_mapping);
226 fs_info->generation++;
227 cur_trans->transid = fs_info->generation;
228 fs_info->running_transaction = cur_trans;
229 cur_trans->aborted = 0;
230 spin_unlock(&fs_info->trans_lock);
231
232 return 0;
233 }
234
235 /*
236 * this does all the record keeping required to make sure that a reference
237 * counted root is properly recorded in a given transaction. This is required
238 * to make sure the old root from before we joined the transaction is deleted
239 * when the transaction commits
240 */
241 static int record_root_in_trans(struct btrfs_trans_handle *trans,
242 struct btrfs_root *root)
243 {
244 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
245 root->last_trans < trans->transid) {
246 WARN_ON(root == root->fs_info->extent_root);
247 WARN_ON(root->commit_root != root->node);
248
249 /*
250 * see below for IN_TRANS_SETUP usage rules
251 * we have the reloc mutex held now, so there
252 * is only one writer in this function
253 */
254 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
255
256 /* make sure readers find IN_TRANS_SETUP before
257 * they find our root->last_trans update
258 */
259 smp_wmb();
260
261 spin_lock(&root->fs_info->fs_roots_radix_lock);
262 if (root->last_trans == trans->transid) {
263 spin_unlock(&root->fs_info->fs_roots_radix_lock);
264 return 0;
265 }
266 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
267 (unsigned long)root->root_key.objectid,
268 BTRFS_ROOT_TRANS_TAG);
269 spin_unlock(&root->fs_info->fs_roots_radix_lock);
270 root->last_trans = trans->transid;
271
272 /* this is pretty tricky. We don't want to
273 * take the relocation lock in btrfs_record_root_in_trans
274 * unless we're really doing the first setup for this root in
275 * this transaction.
276 *
277 * Normally we'd use root->last_trans as a flag to decide
278 * if we want to take the expensive mutex.
279 *
280 * But, we have to set root->last_trans before we
281 * init the relocation root, otherwise, we trip over warnings
282 * in ctree.c. The solution used here is to flag ourselves
283 * with root IN_TRANS_SETUP. When this is 1, we're still
284 * fixing up the reloc trees and everyone must wait.
285 *
286 * When this is zero, they can trust root->last_trans and fly
287 * through btrfs_record_root_in_trans without having to take the
288 * lock. smp_wmb() makes sure that all the writes above are
289 * done before we pop in the zero below
290 */
291 btrfs_init_reloc_root(trans, root);
292 smp_mb__before_atomic();
293 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
294 }
295 return 0;
296 }
297
298
299 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
300 struct btrfs_root *root)
301 {
302 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
303 return 0;
304
305 /*
306 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
307 * and barriers
308 */
309 smp_rmb();
310 if (root->last_trans == trans->transid &&
311 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
312 return 0;
313
314 mutex_lock(&root->fs_info->reloc_mutex);
315 record_root_in_trans(trans, root);
316 mutex_unlock(&root->fs_info->reloc_mutex);
317
318 return 0;
319 }
320
321 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
322 {
323 return (trans->state >= TRANS_STATE_BLOCKED &&
324 trans->state < TRANS_STATE_UNBLOCKED &&
325 !trans->aborted);
326 }
327
328 /* wait for commit against the current transaction to become unblocked
329 * when this is done, it is safe to start a new transaction, but the current
330 * transaction might not be fully on disk.
331 */
332 static void wait_current_trans(struct btrfs_root *root)
333 {
334 struct btrfs_transaction *cur_trans;
335
336 spin_lock(&root->fs_info->trans_lock);
337 cur_trans = root->fs_info->running_transaction;
338 if (cur_trans && is_transaction_blocked(cur_trans)) {
339 atomic_inc(&cur_trans->use_count);
340 spin_unlock(&root->fs_info->trans_lock);
341
342 wait_event(root->fs_info->transaction_wait,
343 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
344 cur_trans->aborted);
345 btrfs_put_transaction(cur_trans);
346 } else {
347 spin_unlock(&root->fs_info->trans_lock);
348 }
349 }
350
351 static int may_wait_transaction(struct btrfs_root *root, int type)
352 {
353 if (root->fs_info->log_root_recovering)
354 return 0;
355
356 if (type == TRANS_USERSPACE)
357 return 1;
358
359 if (type == TRANS_START &&
360 !atomic_read(&root->fs_info->open_ioctl_trans))
361 return 1;
362
363 return 0;
364 }
365
366 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
367 {
368 if (!root->fs_info->reloc_ctl ||
369 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
370 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
371 root->reloc_root)
372 return false;
373
374 return true;
375 }
376
377 static struct btrfs_trans_handle *
378 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
379 enum btrfs_reserve_flush_enum flush)
380 {
381 struct btrfs_trans_handle *h;
382 struct btrfs_transaction *cur_trans;
383 u64 num_bytes = 0;
384 u64 qgroup_reserved = 0;
385 bool reloc_reserved = false;
386 int ret;
387
388 /* Send isn't supposed to start transactions. */
389 ASSERT(current->journal_info != (void *)BTRFS_SEND_TRANS_STUB);
390
391 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
392 return ERR_PTR(-EROFS);
393
394 if (current->journal_info) {
395 WARN_ON(type & TRANS_EXTWRITERS);
396 h = current->journal_info;
397 h->use_count++;
398 WARN_ON(h->use_count > 2);
399 h->orig_rsv = h->block_rsv;
400 h->block_rsv = NULL;
401 goto got_it;
402 }
403
404 /*
405 * Do the reservation before we join the transaction so we can do all
406 * the appropriate flushing if need be.
407 */
408 if (num_items > 0 && root != root->fs_info->chunk_root) {
409 if (root->fs_info->quota_enabled &&
410 is_fstree(root->root_key.objectid)) {
411 qgroup_reserved = num_items * root->nodesize;
412 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
413 if (ret)
414 return ERR_PTR(ret);
415 }
416
417 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
418 /*
419 * Do the reservation for the relocation root creation
420 */
421 if (unlikely(need_reserve_reloc_root(root))) {
422 num_bytes += root->nodesize;
423 reloc_reserved = true;
424 }
425
426 ret = btrfs_block_rsv_add(root,
427 &root->fs_info->trans_block_rsv,
428 num_bytes, flush);
429 if (ret)
430 goto reserve_fail;
431 }
432 again:
433 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
434 if (!h) {
435 ret = -ENOMEM;
436 goto alloc_fail;
437 }
438
439 /*
440 * If we are JOIN_NOLOCK we're already committing a transaction and
441 * waiting on this guy, so we don't need to do the sb_start_intwrite
442 * because we're already holding a ref. We need this because we could
443 * have raced in and did an fsync() on a file which can kick a commit
444 * and then we deadlock with somebody doing a freeze.
445 *
446 * If we are ATTACH, it means we just want to catch the current
447 * transaction and commit it, so we needn't do sb_start_intwrite().
448 */
449 if (type & __TRANS_FREEZABLE)
450 sb_start_intwrite(root->fs_info->sb);
451
452 if (may_wait_transaction(root, type))
453 wait_current_trans(root);
454
455 do {
456 ret = join_transaction(root, type);
457 if (ret == -EBUSY) {
458 wait_current_trans(root);
459 if (unlikely(type == TRANS_ATTACH))
460 ret = -ENOENT;
461 }
462 } while (ret == -EBUSY);
463
464 if (ret < 0) {
465 /* We must get the transaction if we are JOIN_NOLOCK. */
466 BUG_ON(type == TRANS_JOIN_NOLOCK);
467 goto join_fail;
468 }
469
470 cur_trans = root->fs_info->running_transaction;
471
472 h->transid = cur_trans->transid;
473 h->transaction = cur_trans;
474 h->blocks_used = 0;
475 h->bytes_reserved = 0;
476 h->root = root;
477 h->delayed_ref_updates = 0;
478 h->use_count = 1;
479 h->adding_csums = 0;
480 h->block_rsv = NULL;
481 h->orig_rsv = NULL;
482 h->aborted = 0;
483 h->qgroup_reserved = 0;
484 h->delayed_ref_elem.seq = 0;
485 h->type = type;
486 h->allocating_chunk = false;
487 h->reloc_reserved = false;
488 h->sync = false;
489 INIT_LIST_HEAD(&h->qgroup_ref_list);
490 INIT_LIST_HEAD(&h->new_bgs);
491
492 smp_mb();
493 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
494 may_wait_transaction(root, type)) {
495 current->journal_info = h;
496 btrfs_commit_transaction(h, root);
497 goto again;
498 }
499
500 if (num_bytes) {
501 trace_btrfs_space_reservation(root->fs_info, "transaction",
502 h->transid, num_bytes, 1);
503 h->block_rsv = &root->fs_info->trans_block_rsv;
504 h->bytes_reserved = num_bytes;
505 h->reloc_reserved = reloc_reserved;
506 }
507 h->qgroup_reserved = qgroup_reserved;
508
509 got_it:
510 btrfs_record_root_in_trans(h, root);
511
512 if (!current->journal_info && type != TRANS_USERSPACE)
513 current->journal_info = h;
514 return h;
515
516 join_fail:
517 if (type & __TRANS_FREEZABLE)
518 sb_end_intwrite(root->fs_info->sb);
519 kmem_cache_free(btrfs_trans_handle_cachep, h);
520 alloc_fail:
521 if (num_bytes)
522 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
523 num_bytes);
524 reserve_fail:
525 if (qgroup_reserved)
526 btrfs_qgroup_free(root, qgroup_reserved);
527 return ERR_PTR(ret);
528 }
529
530 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
531 int num_items)
532 {
533 return start_transaction(root, num_items, TRANS_START,
534 BTRFS_RESERVE_FLUSH_ALL);
535 }
536
537 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
538 struct btrfs_root *root, int num_items)
539 {
540 return start_transaction(root, num_items, TRANS_START,
541 BTRFS_RESERVE_FLUSH_LIMIT);
542 }
543
544 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
545 {
546 return start_transaction(root, 0, TRANS_JOIN, 0);
547 }
548
549 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
550 {
551 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
552 }
553
554 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
555 {
556 return start_transaction(root, 0, TRANS_USERSPACE, 0);
557 }
558
559 /*
560 * btrfs_attach_transaction() - catch the running transaction
561 *
562 * It is used when we want to commit the current the transaction, but
563 * don't want to start a new one.
564 *
565 * Note: If this function return -ENOENT, it just means there is no
566 * running transaction. But it is possible that the inactive transaction
567 * is still in the memory, not fully on disk. If you hope there is no
568 * inactive transaction in the fs when -ENOENT is returned, you should
569 * invoke
570 * btrfs_attach_transaction_barrier()
571 */
572 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
573 {
574 return start_transaction(root, 0, TRANS_ATTACH, 0);
575 }
576
577 /*
578 * btrfs_attach_transaction_barrier() - catch the running transaction
579 *
580 * It is similar to the above function, the differentia is this one
581 * will wait for all the inactive transactions until they fully
582 * complete.
583 */
584 struct btrfs_trans_handle *
585 btrfs_attach_transaction_barrier(struct btrfs_root *root)
586 {
587 struct btrfs_trans_handle *trans;
588
589 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
590 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
591 btrfs_wait_for_commit(root, 0);
592
593 return trans;
594 }
595
596 /* wait for a transaction commit to be fully complete */
597 static noinline void wait_for_commit(struct btrfs_root *root,
598 struct btrfs_transaction *commit)
599 {
600 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
601 }
602
603 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
604 {
605 struct btrfs_transaction *cur_trans = NULL, *t;
606 int ret = 0;
607
608 if (transid) {
609 if (transid <= root->fs_info->last_trans_committed)
610 goto out;
611
612 ret = -EINVAL;
613 /* find specified transaction */
614 spin_lock(&root->fs_info->trans_lock);
615 list_for_each_entry(t, &root->fs_info->trans_list, list) {
616 if (t->transid == transid) {
617 cur_trans = t;
618 atomic_inc(&cur_trans->use_count);
619 ret = 0;
620 break;
621 }
622 if (t->transid > transid) {
623 ret = 0;
624 break;
625 }
626 }
627 spin_unlock(&root->fs_info->trans_lock);
628 /* The specified transaction doesn't exist */
629 if (!cur_trans)
630 goto out;
631 } else {
632 /* find newest transaction that is committing | committed */
633 spin_lock(&root->fs_info->trans_lock);
634 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
635 list) {
636 if (t->state >= TRANS_STATE_COMMIT_START) {
637 if (t->state == TRANS_STATE_COMPLETED)
638 break;
639 cur_trans = t;
640 atomic_inc(&cur_trans->use_count);
641 break;
642 }
643 }
644 spin_unlock(&root->fs_info->trans_lock);
645 if (!cur_trans)
646 goto out; /* nothing committing|committed */
647 }
648
649 wait_for_commit(root, cur_trans);
650 btrfs_put_transaction(cur_trans);
651 out:
652 return ret;
653 }
654
655 void btrfs_throttle(struct btrfs_root *root)
656 {
657 if (!atomic_read(&root->fs_info->open_ioctl_trans))
658 wait_current_trans(root);
659 }
660
661 static int should_end_transaction(struct btrfs_trans_handle *trans,
662 struct btrfs_root *root)
663 {
664 if (root->fs_info->global_block_rsv.space_info->full &&
665 btrfs_check_space_for_delayed_refs(trans, root))
666 return 1;
667
668 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
669 }
670
671 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
672 struct btrfs_root *root)
673 {
674 struct btrfs_transaction *cur_trans = trans->transaction;
675 int updates;
676 int err;
677
678 smp_mb();
679 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
680 cur_trans->delayed_refs.flushing)
681 return 1;
682
683 updates = trans->delayed_ref_updates;
684 trans->delayed_ref_updates = 0;
685 if (updates) {
686 err = btrfs_run_delayed_refs(trans, root, updates);
687 if (err) /* Error code will also eval true */
688 return err;
689 }
690
691 return should_end_transaction(trans, root);
692 }
693
694 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
695 struct btrfs_root *root, int throttle)
696 {
697 struct btrfs_transaction *cur_trans = trans->transaction;
698 struct btrfs_fs_info *info = root->fs_info;
699 unsigned long cur = trans->delayed_ref_updates;
700 int lock = (trans->type != TRANS_JOIN_NOLOCK);
701 int err = 0;
702 int must_run_delayed_refs = 0;
703
704 if (trans->use_count > 1) {
705 trans->use_count--;
706 trans->block_rsv = trans->orig_rsv;
707 return 0;
708 }
709
710 btrfs_trans_release_metadata(trans, root);
711 trans->block_rsv = NULL;
712
713 if (!list_empty(&trans->new_bgs))
714 btrfs_create_pending_block_groups(trans, root);
715
716 trans->delayed_ref_updates = 0;
717 if (!trans->sync) {
718 must_run_delayed_refs =
719 btrfs_should_throttle_delayed_refs(trans, root);
720 cur = max_t(unsigned long, cur, 32);
721
722 /*
723 * don't make the caller wait if they are from a NOLOCK
724 * or ATTACH transaction, it will deadlock with commit
725 */
726 if (must_run_delayed_refs == 1 &&
727 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
728 must_run_delayed_refs = 2;
729 }
730
731 if (trans->qgroup_reserved) {
732 /*
733 * the same root has to be passed here between start_transaction
734 * and end_transaction. Subvolume quota depends on this.
735 */
736 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
737 trans->qgroup_reserved = 0;
738 }
739
740 btrfs_trans_release_metadata(trans, root);
741 trans->block_rsv = NULL;
742
743 if (!list_empty(&trans->new_bgs))
744 btrfs_create_pending_block_groups(trans, root);
745
746 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
747 should_end_transaction(trans, root) &&
748 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
749 spin_lock(&info->trans_lock);
750 if (cur_trans->state == TRANS_STATE_RUNNING)
751 cur_trans->state = TRANS_STATE_BLOCKED;
752 spin_unlock(&info->trans_lock);
753 }
754
755 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
756 if (throttle)
757 return btrfs_commit_transaction(trans, root);
758 else
759 wake_up_process(info->transaction_kthread);
760 }
761
762 if (trans->type & __TRANS_FREEZABLE)
763 sb_end_intwrite(root->fs_info->sb);
764
765 WARN_ON(cur_trans != info->running_transaction);
766 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
767 atomic_dec(&cur_trans->num_writers);
768 extwriter_counter_dec(cur_trans, trans->type);
769
770 smp_mb();
771 if (waitqueue_active(&cur_trans->writer_wait))
772 wake_up(&cur_trans->writer_wait);
773 btrfs_put_transaction(cur_trans);
774
775 if (current->journal_info == trans)
776 current->journal_info = NULL;
777
778 if (throttle)
779 btrfs_run_delayed_iputs(root);
780
781 if (trans->aborted ||
782 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
783 wake_up_process(info->transaction_kthread);
784 err = -EIO;
785 }
786 assert_qgroups_uptodate(trans);
787
788 kmem_cache_free(btrfs_trans_handle_cachep, trans);
789 if (must_run_delayed_refs) {
790 btrfs_async_run_delayed_refs(root, cur,
791 must_run_delayed_refs == 1);
792 }
793 return err;
794 }
795
796 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
797 struct btrfs_root *root)
798 {
799 return __btrfs_end_transaction(trans, root, 0);
800 }
801
802 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
803 struct btrfs_root *root)
804 {
805 return __btrfs_end_transaction(trans, root, 1);
806 }
807
808 /*
809 * when btree blocks are allocated, they have some corresponding bits set for
810 * them in one of two extent_io trees. This is used to make sure all of
811 * those extents are sent to disk but does not wait on them
812 */
813 int btrfs_write_marked_extents(struct btrfs_root *root,
814 struct extent_io_tree *dirty_pages, int mark)
815 {
816 int err = 0;
817 int werr = 0;
818 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
819 struct extent_state *cached_state = NULL;
820 u64 start = 0;
821 u64 end;
822
823 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
824 mark, &cached_state)) {
825 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
826 mark, &cached_state, GFP_NOFS);
827 cached_state = NULL;
828 err = filemap_fdatawrite_range(mapping, start, end);
829 if (err)
830 werr = err;
831 cond_resched();
832 start = end + 1;
833 }
834 if (err)
835 werr = err;
836 return werr;
837 }
838
839 /*
840 * when btree blocks are allocated, they have some corresponding bits set for
841 * them in one of two extent_io trees. This is used to make sure all of
842 * those extents are on disk for transaction or log commit. We wait
843 * on all the pages and clear them from the dirty pages state tree
844 */
845 int btrfs_wait_marked_extents(struct btrfs_root *root,
846 struct extent_io_tree *dirty_pages, int mark)
847 {
848 int err = 0;
849 int werr = 0;
850 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
851 struct extent_state *cached_state = NULL;
852 u64 start = 0;
853 u64 end;
854
855 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
856 EXTENT_NEED_WAIT, &cached_state)) {
857 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
858 0, 0, &cached_state, GFP_NOFS);
859 err = filemap_fdatawait_range(mapping, start, end);
860 if (err)
861 werr = err;
862 cond_resched();
863 start = end + 1;
864 }
865 if (err)
866 werr = err;
867 return werr;
868 }
869
870 /*
871 * when btree blocks are allocated, they have some corresponding bits set for
872 * them in one of two extent_io trees. This is used to make sure all of
873 * those extents are on disk for transaction or log commit
874 */
875 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
876 struct extent_io_tree *dirty_pages, int mark)
877 {
878 int ret;
879 int ret2;
880 struct blk_plug plug;
881
882 blk_start_plug(&plug);
883 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
884 blk_finish_plug(&plug);
885 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
886
887 if (ret)
888 return ret;
889 if (ret2)
890 return ret2;
891 return 0;
892 }
893
894 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
895 struct btrfs_root *root)
896 {
897 if (!trans || !trans->transaction) {
898 struct inode *btree_inode;
899 btree_inode = root->fs_info->btree_inode;
900 return filemap_write_and_wait(btree_inode->i_mapping);
901 }
902 return btrfs_write_and_wait_marked_extents(root,
903 &trans->transaction->dirty_pages,
904 EXTENT_DIRTY);
905 }
906
907 /*
908 * this is used to update the root pointer in the tree of tree roots.
909 *
910 * But, in the case of the extent allocation tree, updating the root
911 * pointer may allocate blocks which may change the root of the extent
912 * allocation tree.
913 *
914 * So, this loops and repeats and makes sure the cowonly root didn't
915 * change while the root pointer was being updated in the metadata.
916 */
917 static int update_cowonly_root(struct btrfs_trans_handle *trans,
918 struct btrfs_root *root)
919 {
920 int ret;
921 u64 old_root_bytenr;
922 u64 old_root_used;
923 struct btrfs_root *tree_root = root->fs_info->tree_root;
924
925 old_root_used = btrfs_root_used(&root->root_item);
926 btrfs_write_dirty_block_groups(trans, root);
927
928 while (1) {
929 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
930 if (old_root_bytenr == root->node->start &&
931 old_root_used == btrfs_root_used(&root->root_item))
932 break;
933
934 btrfs_set_root_node(&root->root_item, root->node);
935 ret = btrfs_update_root(trans, tree_root,
936 &root->root_key,
937 &root->root_item);
938 if (ret)
939 return ret;
940
941 old_root_used = btrfs_root_used(&root->root_item);
942 ret = btrfs_write_dirty_block_groups(trans, root);
943 if (ret)
944 return ret;
945 }
946
947 return 0;
948 }
949
950 /*
951 * update all the cowonly tree roots on disk
952 *
953 * The error handling in this function may not be obvious. Any of the
954 * failures will cause the file system to go offline. We still need
955 * to clean up the delayed refs.
956 */
957 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root)
959 {
960 struct btrfs_fs_info *fs_info = root->fs_info;
961 struct list_head *next;
962 struct extent_buffer *eb;
963 int ret;
964
965 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
966 if (ret)
967 return ret;
968
969 eb = btrfs_lock_root_node(fs_info->tree_root);
970 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
971 0, &eb);
972 btrfs_tree_unlock(eb);
973 free_extent_buffer(eb);
974
975 if (ret)
976 return ret;
977
978 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
979 if (ret)
980 return ret;
981
982 ret = btrfs_run_dev_stats(trans, root->fs_info);
983 if (ret)
984 return ret;
985 ret = btrfs_run_dev_replace(trans, root->fs_info);
986 if (ret)
987 return ret;
988 ret = btrfs_run_qgroups(trans, root->fs_info);
989 if (ret)
990 return ret;
991
992 /* run_qgroups might have added some more refs */
993 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
994 if (ret)
995 return ret;
996
997 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
998 next = fs_info->dirty_cowonly_roots.next;
999 list_del_init(next);
1000 root = list_entry(next, struct btrfs_root, dirty_list);
1001
1002 if (root != fs_info->extent_root)
1003 list_add_tail(&root->dirty_list,
1004 &trans->transaction->switch_commits);
1005 ret = update_cowonly_root(trans, root);
1006 if (ret)
1007 return ret;
1008 }
1009
1010 list_add_tail(&fs_info->extent_root->dirty_list,
1011 &trans->transaction->switch_commits);
1012 btrfs_after_dev_replace_commit(fs_info);
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * dead roots are old snapshots that need to be deleted. This allocates
1019 * a dirty root struct and adds it into the list of dead roots that need to
1020 * be deleted
1021 */
1022 void btrfs_add_dead_root(struct btrfs_root *root)
1023 {
1024 spin_lock(&root->fs_info->trans_lock);
1025 if (list_empty(&root->root_list))
1026 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1027 spin_unlock(&root->fs_info->trans_lock);
1028 }
1029
1030 /*
1031 * update all the cowonly tree roots on disk
1032 */
1033 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1034 struct btrfs_root *root)
1035 {
1036 struct btrfs_root *gang[8];
1037 struct btrfs_fs_info *fs_info = root->fs_info;
1038 int i;
1039 int ret;
1040 int err = 0;
1041
1042 spin_lock(&fs_info->fs_roots_radix_lock);
1043 while (1) {
1044 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1045 (void **)gang, 0,
1046 ARRAY_SIZE(gang),
1047 BTRFS_ROOT_TRANS_TAG);
1048 if (ret == 0)
1049 break;
1050 for (i = 0; i < ret; i++) {
1051 root = gang[i];
1052 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1053 (unsigned long)root->root_key.objectid,
1054 BTRFS_ROOT_TRANS_TAG);
1055 spin_unlock(&fs_info->fs_roots_radix_lock);
1056
1057 btrfs_free_log(trans, root);
1058 btrfs_update_reloc_root(trans, root);
1059 btrfs_orphan_commit_root(trans, root);
1060
1061 btrfs_save_ino_cache(root, trans);
1062
1063 /* see comments in should_cow_block() */
1064 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1065 smp_mb__after_atomic();
1066
1067 if (root->commit_root != root->node) {
1068 list_add_tail(&root->dirty_list,
1069 &trans->transaction->switch_commits);
1070 btrfs_set_root_node(&root->root_item,
1071 root->node);
1072 }
1073
1074 err = btrfs_update_root(trans, fs_info->tree_root,
1075 &root->root_key,
1076 &root->root_item);
1077 spin_lock(&fs_info->fs_roots_radix_lock);
1078 if (err)
1079 break;
1080 }
1081 }
1082 spin_unlock(&fs_info->fs_roots_radix_lock);
1083 return err;
1084 }
1085
1086 /*
1087 * defrag a given btree.
1088 * Every leaf in the btree is read and defragged.
1089 */
1090 int btrfs_defrag_root(struct btrfs_root *root)
1091 {
1092 struct btrfs_fs_info *info = root->fs_info;
1093 struct btrfs_trans_handle *trans;
1094 int ret;
1095
1096 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1097 return 0;
1098
1099 while (1) {
1100 trans = btrfs_start_transaction(root, 0);
1101 if (IS_ERR(trans))
1102 return PTR_ERR(trans);
1103
1104 ret = btrfs_defrag_leaves(trans, root);
1105
1106 btrfs_end_transaction(trans, root);
1107 btrfs_btree_balance_dirty(info->tree_root);
1108 cond_resched();
1109
1110 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1111 break;
1112
1113 if (btrfs_defrag_cancelled(root->fs_info)) {
1114 pr_debug("BTRFS: defrag_root cancelled\n");
1115 ret = -EAGAIN;
1116 break;
1117 }
1118 }
1119 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1120 return ret;
1121 }
1122
1123 /*
1124 * new snapshots need to be created at a very specific time in the
1125 * transaction commit. This does the actual creation.
1126 *
1127 * Note:
1128 * If the error which may affect the commitment of the current transaction
1129 * happens, we should return the error number. If the error which just affect
1130 * the creation of the pending snapshots, just return 0.
1131 */
1132 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1133 struct btrfs_fs_info *fs_info,
1134 struct btrfs_pending_snapshot *pending)
1135 {
1136 struct btrfs_key key;
1137 struct btrfs_root_item *new_root_item;
1138 struct btrfs_root *tree_root = fs_info->tree_root;
1139 struct btrfs_root *root = pending->root;
1140 struct btrfs_root *parent_root;
1141 struct btrfs_block_rsv *rsv;
1142 struct inode *parent_inode;
1143 struct btrfs_path *path;
1144 struct btrfs_dir_item *dir_item;
1145 struct dentry *dentry;
1146 struct extent_buffer *tmp;
1147 struct extent_buffer *old;
1148 struct timespec cur_time = CURRENT_TIME;
1149 int ret = 0;
1150 u64 to_reserve = 0;
1151 u64 index = 0;
1152 u64 objectid;
1153 u64 root_flags;
1154 uuid_le new_uuid;
1155
1156 path = btrfs_alloc_path();
1157 if (!path) {
1158 pending->error = -ENOMEM;
1159 return 0;
1160 }
1161
1162 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1163 if (!new_root_item) {
1164 pending->error = -ENOMEM;
1165 goto root_item_alloc_fail;
1166 }
1167
1168 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1169 if (pending->error)
1170 goto no_free_objectid;
1171
1172 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1173
1174 if (to_reserve > 0) {
1175 pending->error = btrfs_block_rsv_add(root,
1176 &pending->block_rsv,
1177 to_reserve,
1178 BTRFS_RESERVE_NO_FLUSH);
1179 if (pending->error)
1180 goto no_free_objectid;
1181 }
1182
1183 key.objectid = objectid;
1184 key.offset = (u64)-1;
1185 key.type = BTRFS_ROOT_ITEM_KEY;
1186
1187 rsv = trans->block_rsv;
1188 trans->block_rsv = &pending->block_rsv;
1189 trans->bytes_reserved = trans->block_rsv->reserved;
1190
1191 dentry = pending->dentry;
1192 parent_inode = pending->dir;
1193 parent_root = BTRFS_I(parent_inode)->root;
1194 record_root_in_trans(trans, parent_root);
1195
1196 /*
1197 * insert the directory item
1198 */
1199 ret = btrfs_set_inode_index(parent_inode, &index);
1200 BUG_ON(ret); /* -ENOMEM */
1201
1202 /* check if there is a file/dir which has the same name. */
1203 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1204 btrfs_ino(parent_inode),
1205 dentry->d_name.name,
1206 dentry->d_name.len, 0);
1207 if (dir_item != NULL && !IS_ERR(dir_item)) {
1208 pending->error = -EEXIST;
1209 goto dir_item_existed;
1210 } else if (IS_ERR(dir_item)) {
1211 ret = PTR_ERR(dir_item);
1212 btrfs_abort_transaction(trans, root, ret);
1213 goto fail;
1214 }
1215 btrfs_release_path(path);
1216
1217 /*
1218 * pull in the delayed directory update
1219 * and the delayed inode item
1220 * otherwise we corrupt the FS during
1221 * snapshot
1222 */
1223 ret = btrfs_run_delayed_items(trans, root);
1224 if (ret) { /* Transaction aborted */
1225 btrfs_abort_transaction(trans, root, ret);
1226 goto fail;
1227 }
1228
1229 record_root_in_trans(trans, root);
1230 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1231 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1232 btrfs_check_and_init_root_item(new_root_item);
1233
1234 root_flags = btrfs_root_flags(new_root_item);
1235 if (pending->readonly)
1236 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1237 else
1238 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1239 btrfs_set_root_flags(new_root_item, root_flags);
1240
1241 btrfs_set_root_generation_v2(new_root_item,
1242 trans->transid);
1243 uuid_le_gen(&new_uuid);
1244 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1245 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1246 BTRFS_UUID_SIZE);
1247 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1248 memset(new_root_item->received_uuid, 0,
1249 sizeof(new_root_item->received_uuid));
1250 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1251 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1252 btrfs_set_root_stransid(new_root_item, 0);
1253 btrfs_set_root_rtransid(new_root_item, 0);
1254 }
1255 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1256 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1257 btrfs_set_root_otransid(new_root_item, trans->transid);
1258
1259 old = btrfs_lock_root_node(root);
1260 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1261 if (ret) {
1262 btrfs_tree_unlock(old);
1263 free_extent_buffer(old);
1264 btrfs_abort_transaction(trans, root, ret);
1265 goto fail;
1266 }
1267
1268 btrfs_set_lock_blocking(old);
1269
1270 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1271 /* clean up in any case */
1272 btrfs_tree_unlock(old);
1273 free_extent_buffer(old);
1274 if (ret) {
1275 btrfs_abort_transaction(trans, root, ret);
1276 goto fail;
1277 }
1278
1279 /*
1280 * We need to flush delayed refs in order to make sure all of our quota
1281 * operations have been done before we call btrfs_qgroup_inherit.
1282 */
1283 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1284 if (ret) {
1285 btrfs_abort_transaction(trans, root, ret);
1286 goto fail;
1287 }
1288
1289 ret = btrfs_qgroup_inherit(trans, fs_info,
1290 root->root_key.objectid,
1291 objectid, pending->inherit);
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto fail;
1295 }
1296
1297 /* see comments in should_cow_block() */
1298 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1299 smp_wmb();
1300
1301 btrfs_set_root_node(new_root_item, tmp);
1302 /* record when the snapshot was created in key.offset */
1303 key.offset = trans->transid;
1304 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1305 btrfs_tree_unlock(tmp);
1306 free_extent_buffer(tmp);
1307 if (ret) {
1308 btrfs_abort_transaction(trans, root, ret);
1309 goto fail;
1310 }
1311
1312 /*
1313 * insert root back/forward references
1314 */
1315 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1316 parent_root->root_key.objectid,
1317 btrfs_ino(parent_inode), index,
1318 dentry->d_name.name, dentry->d_name.len);
1319 if (ret) {
1320 btrfs_abort_transaction(trans, root, ret);
1321 goto fail;
1322 }
1323
1324 key.offset = (u64)-1;
1325 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1326 if (IS_ERR(pending->snap)) {
1327 ret = PTR_ERR(pending->snap);
1328 btrfs_abort_transaction(trans, root, ret);
1329 goto fail;
1330 }
1331
1332 ret = btrfs_reloc_post_snapshot(trans, pending);
1333 if (ret) {
1334 btrfs_abort_transaction(trans, root, ret);
1335 goto fail;
1336 }
1337
1338 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1339 if (ret) {
1340 btrfs_abort_transaction(trans, root, ret);
1341 goto fail;
1342 }
1343
1344 ret = btrfs_insert_dir_item(trans, parent_root,
1345 dentry->d_name.name, dentry->d_name.len,
1346 parent_inode, &key,
1347 BTRFS_FT_DIR, index);
1348 /* We have check then name at the beginning, so it is impossible. */
1349 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1350 if (ret) {
1351 btrfs_abort_transaction(trans, root, ret);
1352 goto fail;
1353 }
1354
1355 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1356 dentry->d_name.len * 2);
1357 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1358 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1359 if (ret) {
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto fail;
1362 }
1363 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1364 BTRFS_UUID_KEY_SUBVOL, objectid);
1365 if (ret) {
1366 btrfs_abort_transaction(trans, root, ret);
1367 goto fail;
1368 }
1369 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1370 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1371 new_root_item->received_uuid,
1372 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1373 objectid);
1374 if (ret && ret != -EEXIST) {
1375 btrfs_abort_transaction(trans, root, ret);
1376 goto fail;
1377 }
1378 }
1379 fail:
1380 pending->error = ret;
1381 dir_item_existed:
1382 trans->block_rsv = rsv;
1383 trans->bytes_reserved = 0;
1384 no_free_objectid:
1385 kfree(new_root_item);
1386 root_item_alloc_fail:
1387 btrfs_free_path(path);
1388 return ret;
1389 }
1390
1391 /*
1392 * create all the snapshots we've scheduled for creation
1393 */
1394 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1395 struct btrfs_fs_info *fs_info)
1396 {
1397 struct btrfs_pending_snapshot *pending, *next;
1398 struct list_head *head = &trans->transaction->pending_snapshots;
1399 int ret = 0;
1400
1401 list_for_each_entry_safe(pending, next, head, list) {
1402 list_del(&pending->list);
1403 ret = create_pending_snapshot(trans, fs_info, pending);
1404 if (ret)
1405 break;
1406 }
1407 return ret;
1408 }
1409
1410 static void update_super_roots(struct btrfs_root *root)
1411 {
1412 struct btrfs_root_item *root_item;
1413 struct btrfs_super_block *super;
1414
1415 super = root->fs_info->super_copy;
1416
1417 root_item = &root->fs_info->chunk_root->root_item;
1418 super->chunk_root = root_item->bytenr;
1419 super->chunk_root_generation = root_item->generation;
1420 super->chunk_root_level = root_item->level;
1421
1422 root_item = &root->fs_info->tree_root->root_item;
1423 super->root = root_item->bytenr;
1424 super->generation = root_item->generation;
1425 super->root_level = root_item->level;
1426 if (btrfs_test_opt(root, SPACE_CACHE))
1427 super->cache_generation = root_item->generation;
1428 if (root->fs_info->update_uuid_tree_gen)
1429 super->uuid_tree_generation = root_item->generation;
1430 }
1431
1432 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1433 {
1434 struct btrfs_transaction *trans;
1435 int ret = 0;
1436
1437 spin_lock(&info->trans_lock);
1438 trans = info->running_transaction;
1439 if (trans)
1440 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1441 spin_unlock(&info->trans_lock);
1442 return ret;
1443 }
1444
1445 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1446 {
1447 struct btrfs_transaction *trans;
1448 int ret = 0;
1449
1450 spin_lock(&info->trans_lock);
1451 trans = info->running_transaction;
1452 if (trans)
1453 ret = is_transaction_blocked(trans);
1454 spin_unlock(&info->trans_lock);
1455 return ret;
1456 }
1457
1458 /*
1459 * wait for the current transaction commit to start and block subsequent
1460 * transaction joins
1461 */
1462 static void wait_current_trans_commit_start(struct btrfs_root *root,
1463 struct btrfs_transaction *trans)
1464 {
1465 wait_event(root->fs_info->transaction_blocked_wait,
1466 trans->state >= TRANS_STATE_COMMIT_START ||
1467 trans->aborted);
1468 }
1469
1470 /*
1471 * wait for the current transaction to start and then become unblocked.
1472 * caller holds ref.
1473 */
1474 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1475 struct btrfs_transaction *trans)
1476 {
1477 wait_event(root->fs_info->transaction_wait,
1478 trans->state >= TRANS_STATE_UNBLOCKED ||
1479 trans->aborted);
1480 }
1481
1482 /*
1483 * commit transactions asynchronously. once btrfs_commit_transaction_async
1484 * returns, any subsequent transaction will not be allowed to join.
1485 */
1486 struct btrfs_async_commit {
1487 struct btrfs_trans_handle *newtrans;
1488 struct btrfs_root *root;
1489 struct work_struct work;
1490 };
1491
1492 static void do_async_commit(struct work_struct *work)
1493 {
1494 struct btrfs_async_commit *ac =
1495 container_of(work, struct btrfs_async_commit, work);
1496
1497 /*
1498 * We've got freeze protection passed with the transaction.
1499 * Tell lockdep about it.
1500 */
1501 if (ac->newtrans->type & __TRANS_FREEZABLE)
1502 rwsem_acquire_read(
1503 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1504 0, 1, _THIS_IP_);
1505
1506 current->journal_info = ac->newtrans;
1507
1508 btrfs_commit_transaction(ac->newtrans, ac->root);
1509 kfree(ac);
1510 }
1511
1512 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1513 struct btrfs_root *root,
1514 int wait_for_unblock)
1515 {
1516 struct btrfs_async_commit *ac;
1517 struct btrfs_transaction *cur_trans;
1518
1519 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1520 if (!ac)
1521 return -ENOMEM;
1522
1523 INIT_WORK(&ac->work, do_async_commit);
1524 ac->root = root;
1525 ac->newtrans = btrfs_join_transaction(root);
1526 if (IS_ERR(ac->newtrans)) {
1527 int err = PTR_ERR(ac->newtrans);
1528 kfree(ac);
1529 return err;
1530 }
1531
1532 /* take transaction reference */
1533 cur_trans = trans->transaction;
1534 atomic_inc(&cur_trans->use_count);
1535
1536 btrfs_end_transaction(trans, root);
1537
1538 /*
1539 * Tell lockdep we've released the freeze rwsem, since the
1540 * async commit thread will be the one to unlock it.
1541 */
1542 if (ac->newtrans->type & __TRANS_FREEZABLE)
1543 rwsem_release(
1544 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1545 1, _THIS_IP_);
1546
1547 schedule_work(&ac->work);
1548
1549 /* wait for transaction to start and unblock */
1550 if (wait_for_unblock)
1551 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1552 else
1553 wait_current_trans_commit_start(root, cur_trans);
1554
1555 if (current->journal_info == trans)
1556 current->journal_info = NULL;
1557
1558 btrfs_put_transaction(cur_trans);
1559 return 0;
1560 }
1561
1562
1563 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1564 struct btrfs_root *root, int err)
1565 {
1566 struct btrfs_transaction *cur_trans = trans->transaction;
1567 DEFINE_WAIT(wait);
1568
1569 WARN_ON(trans->use_count > 1);
1570
1571 btrfs_abort_transaction(trans, root, err);
1572
1573 spin_lock(&root->fs_info->trans_lock);
1574
1575 /*
1576 * If the transaction is removed from the list, it means this
1577 * transaction has been committed successfully, so it is impossible
1578 * to call the cleanup function.
1579 */
1580 BUG_ON(list_empty(&cur_trans->list));
1581
1582 list_del_init(&cur_trans->list);
1583 if (cur_trans == root->fs_info->running_transaction) {
1584 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1585 spin_unlock(&root->fs_info->trans_lock);
1586 wait_event(cur_trans->writer_wait,
1587 atomic_read(&cur_trans->num_writers) == 1);
1588
1589 spin_lock(&root->fs_info->trans_lock);
1590 }
1591 spin_unlock(&root->fs_info->trans_lock);
1592
1593 btrfs_cleanup_one_transaction(trans->transaction, root);
1594
1595 spin_lock(&root->fs_info->trans_lock);
1596 if (cur_trans == root->fs_info->running_transaction)
1597 root->fs_info->running_transaction = NULL;
1598 spin_unlock(&root->fs_info->trans_lock);
1599
1600 if (trans->type & __TRANS_FREEZABLE)
1601 sb_end_intwrite(root->fs_info->sb);
1602 btrfs_put_transaction(cur_trans);
1603 btrfs_put_transaction(cur_trans);
1604
1605 trace_btrfs_transaction_commit(root);
1606
1607 if (current->journal_info == trans)
1608 current->journal_info = NULL;
1609 btrfs_scrub_cancel(root->fs_info);
1610
1611 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1612 }
1613
1614 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1615 {
1616 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1617 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1618 return 0;
1619 }
1620
1621 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1622 {
1623 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1624 btrfs_wait_ordered_roots(fs_info, -1);
1625 }
1626
1627 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1628 struct btrfs_root *root)
1629 {
1630 struct btrfs_transaction *cur_trans = trans->transaction;
1631 struct btrfs_transaction *prev_trans = NULL;
1632 int ret;
1633
1634 /* Stop the commit early if ->aborted is set */
1635 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1636 ret = cur_trans->aborted;
1637 btrfs_end_transaction(trans, root);
1638 return ret;
1639 }
1640
1641 /* make a pass through all the delayed refs we have so far
1642 * any runnings procs may add more while we are here
1643 */
1644 ret = btrfs_run_delayed_refs(trans, root, 0);
1645 if (ret) {
1646 btrfs_end_transaction(trans, root);
1647 return ret;
1648 }
1649
1650 btrfs_trans_release_metadata(trans, root);
1651 trans->block_rsv = NULL;
1652 if (trans->qgroup_reserved) {
1653 btrfs_qgroup_free(root, trans->qgroup_reserved);
1654 trans->qgroup_reserved = 0;
1655 }
1656
1657 cur_trans = trans->transaction;
1658
1659 /*
1660 * set the flushing flag so procs in this transaction have to
1661 * start sending their work down.
1662 */
1663 cur_trans->delayed_refs.flushing = 1;
1664 smp_wmb();
1665
1666 if (!list_empty(&trans->new_bgs))
1667 btrfs_create_pending_block_groups(trans, root);
1668
1669 ret = btrfs_run_delayed_refs(trans, root, 0);
1670 if (ret) {
1671 btrfs_end_transaction(trans, root);
1672 return ret;
1673 }
1674
1675 spin_lock(&root->fs_info->trans_lock);
1676 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1677 spin_unlock(&root->fs_info->trans_lock);
1678 atomic_inc(&cur_trans->use_count);
1679 ret = btrfs_end_transaction(trans, root);
1680
1681 wait_for_commit(root, cur_trans);
1682
1683 btrfs_put_transaction(cur_trans);
1684
1685 return ret;
1686 }
1687
1688 cur_trans->state = TRANS_STATE_COMMIT_START;
1689 wake_up(&root->fs_info->transaction_blocked_wait);
1690
1691 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1692 prev_trans = list_entry(cur_trans->list.prev,
1693 struct btrfs_transaction, list);
1694 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1695 atomic_inc(&prev_trans->use_count);
1696 spin_unlock(&root->fs_info->trans_lock);
1697
1698 wait_for_commit(root, prev_trans);
1699
1700 btrfs_put_transaction(prev_trans);
1701 } else {
1702 spin_unlock(&root->fs_info->trans_lock);
1703 }
1704 } else {
1705 spin_unlock(&root->fs_info->trans_lock);
1706 }
1707
1708 extwriter_counter_dec(cur_trans, trans->type);
1709
1710 ret = btrfs_start_delalloc_flush(root->fs_info);
1711 if (ret)
1712 goto cleanup_transaction;
1713
1714 ret = btrfs_run_delayed_items(trans, root);
1715 if (ret)
1716 goto cleanup_transaction;
1717
1718 wait_event(cur_trans->writer_wait,
1719 extwriter_counter_read(cur_trans) == 0);
1720
1721 /* some pending stuffs might be added after the previous flush. */
1722 ret = btrfs_run_delayed_items(trans, root);
1723 if (ret)
1724 goto cleanup_transaction;
1725
1726 btrfs_wait_delalloc_flush(root->fs_info);
1727
1728 btrfs_scrub_pause(root);
1729 /*
1730 * Ok now we need to make sure to block out any other joins while we
1731 * commit the transaction. We could have started a join before setting
1732 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1733 */
1734 spin_lock(&root->fs_info->trans_lock);
1735 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1736 spin_unlock(&root->fs_info->trans_lock);
1737 wait_event(cur_trans->writer_wait,
1738 atomic_read(&cur_trans->num_writers) == 1);
1739
1740 /* ->aborted might be set after the previous check, so check it */
1741 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1742 ret = cur_trans->aborted;
1743 goto scrub_continue;
1744 }
1745 /*
1746 * the reloc mutex makes sure that we stop
1747 * the balancing code from coming in and moving
1748 * extents around in the middle of the commit
1749 */
1750 mutex_lock(&root->fs_info->reloc_mutex);
1751
1752 /*
1753 * We needn't worry about the delayed items because we will
1754 * deal with them in create_pending_snapshot(), which is the
1755 * core function of the snapshot creation.
1756 */
1757 ret = create_pending_snapshots(trans, root->fs_info);
1758 if (ret) {
1759 mutex_unlock(&root->fs_info->reloc_mutex);
1760 goto scrub_continue;
1761 }
1762
1763 /*
1764 * We insert the dir indexes of the snapshots and update the inode
1765 * of the snapshots' parents after the snapshot creation, so there
1766 * are some delayed items which are not dealt with. Now deal with
1767 * them.
1768 *
1769 * We needn't worry that this operation will corrupt the snapshots,
1770 * because all the tree which are snapshoted will be forced to COW
1771 * the nodes and leaves.
1772 */
1773 ret = btrfs_run_delayed_items(trans, root);
1774 if (ret) {
1775 mutex_unlock(&root->fs_info->reloc_mutex);
1776 goto scrub_continue;
1777 }
1778
1779 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1780 if (ret) {
1781 mutex_unlock(&root->fs_info->reloc_mutex);
1782 goto scrub_continue;
1783 }
1784
1785 /*
1786 * make sure none of the code above managed to slip in a
1787 * delayed item
1788 */
1789 btrfs_assert_delayed_root_empty(root);
1790
1791 WARN_ON(cur_trans != trans->transaction);
1792
1793 /* btrfs_commit_tree_roots is responsible for getting the
1794 * various roots consistent with each other. Every pointer
1795 * in the tree of tree roots has to point to the most up to date
1796 * root for every subvolume and other tree. So, we have to keep
1797 * the tree logging code from jumping in and changing any
1798 * of the trees.
1799 *
1800 * At this point in the commit, there can't be any tree-log
1801 * writers, but a little lower down we drop the trans mutex
1802 * and let new people in. By holding the tree_log_mutex
1803 * from now until after the super is written, we avoid races
1804 * with the tree-log code.
1805 */
1806 mutex_lock(&root->fs_info->tree_log_mutex);
1807
1808 ret = commit_fs_roots(trans, root);
1809 if (ret) {
1810 mutex_unlock(&root->fs_info->tree_log_mutex);
1811 mutex_unlock(&root->fs_info->reloc_mutex);
1812 goto scrub_continue;
1813 }
1814
1815 /*
1816 * Since the transaction is done, we should set the inode map cache flag
1817 * before any other comming transaction.
1818 */
1819 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1820 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1821 else
1822 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1823
1824 /* commit_fs_roots gets rid of all the tree log roots, it is now
1825 * safe to free the root of tree log roots
1826 */
1827 btrfs_free_log_root_tree(trans, root->fs_info);
1828
1829 ret = commit_cowonly_roots(trans, root);
1830 if (ret) {
1831 mutex_unlock(&root->fs_info->tree_log_mutex);
1832 mutex_unlock(&root->fs_info->reloc_mutex);
1833 goto scrub_continue;
1834 }
1835
1836 /*
1837 * The tasks which save the space cache and inode cache may also
1838 * update ->aborted, check it.
1839 */
1840 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1841 ret = cur_trans->aborted;
1842 mutex_unlock(&root->fs_info->tree_log_mutex);
1843 mutex_unlock(&root->fs_info->reloc_mutex);
1844 goto scrub_continue;
1845 }
1846
1847 btrfs_prepare_extent_commit(trans, root);
1848
1849 cur_trans = root->fs_info->running_transaction;
1850
1851 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1852 root->fs_info->tree_root->node);
1853 list_add_tail(&root->fs_info->tree_root->dirty_list,
1854 &cur_trans->switch_commits);
1855
1856 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1857 root->fs_info->chunk_root->node);
1858 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1859 &cur_trans->switch_commits);
1860
1861 switch_commit_roots(cur_trans, root->fs_info);
1862
1863 assert_qgroups_uptodate(trans);
1864 update_super_roots(root);
1865
1866 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1867 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1868 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1869 sizeof(*root->fs_info->super_copy));
1870
1871 btrfs_update_commit_device_size(root->fs_info);
1872
1873 spin_lock(&root->fs_info->trans_lock);
1874 cur_trans->state = TRANS_STATE_UNBLOCKED;
1875 root->fs_info->running_transaction = NULL;
1876 spin_unlock(&root->fs_info->trans_lock);
1877 mutex_unlock(&root->fs_info->reloc_mutex);
1878
1879 wake_up(&root->fs_info->transaction_wait);
1880
1881 ret = btrfs_write_and_wait_transaction(trans, root);
1882 if (ret) {
1883 btrfs_error(root->fs_info, ret,
1884 "Error while writing out transaction");
1885 mutex_unlock(&root->fs_info->tree_log_mutex);
1886 goto scrub_continue;
1887 }
1888
1889 ret = write_ctree_super(trans, root, 0);
1890 if (ret) {
1891 mutex_unlock(&root->fs_info->tree_log_mutex);
1892 goto scrub_continue;
1893 }
1894
1895 /*
1896 * the super is written, we can safely allow the tree-loggers
1897 * to go about their business
1898 */
1899 mutex_unlock(&root->fs_info->tree_log_mutex);
1900
1901 btrfs_finish_extent_commit(trans, root);
1902
1903 root->fs_info->last_trans_committed = cur_trans->transid;
1904 /*
1905 * We needn't acquire the lock here because there is no other task
1906 * which can change it.
1907 */
1908 cur_trans->state = TRANS_STATE_COMPLETED;
1909 wake_up(&cur_trans->commit_wait);
1910
1911 spin_lock(&root->fs_info->trans_lock);
1912 list_del_init(&cur_trans->list);
1913 spin_unlock(&root->fs_info->trans_lock);
1914
1915 btrfs_put_transaction(cur_trans);
1916 btrfs_put_transaction(cur_trans);
1917
1918 if (trans->type & __TRANS_FREEZABLE)
1919 sb_end_intwrite(root->fs_info->sb);
1920
1921 trace_btrfs_transaction_commit(root);
1922
1923 btrfs_scrub_continue(root);
1924
1925 if (current->journal_info == trans)
1926 current->journal_info = NULL;
1927
1928 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1929
1930 if (current != root->fs_info->transaction_kthread)
1931 btrfs_run_delayed_iputs(root);
1932
1933 return ret;
1934
1935 scrub_continue:
1936 btrfs_scrub_continue(root);
1937 cleanup_transaction:
1938 btrfs_trans_release_metadata(trans, root);
1939 trans->block_rsv = NULL;
1940 if (trans->qgroup_reserved) {
1941 btrfs_qgroup_free(root, trans->qgroup_reserved);
1942 trans->qgroup_reserved = 0;
1943 }
1944 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1945 if (current->journal_info == trans)
1946 current->journal_info = NULL;
1947 cleanup_transaction(trans, root, ret);
1948
1949 return ret;
1950 }
1951
1952 /*
1953 * return < 0 if error
1954 * 0 if there are no more dead_roots at the time of call
1955 * 1 there are more to be processed, call me again
1956 *
1957 * The return value indicates there are certainly more snapshots to delete, but
1958 * if there comes a new one during processing, it may return 0. We don't mind,
1959 * because btrfs_commit_super will poke cleaner thread and it will process it a
1960 * few seconds later.
1961 */
1962 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1963 {
1964 int ret;
1965 struct btrfs_fs_info *fs_info = root->fs_info;
1966
1967 spin_lock(&fs_info->trans_lock);
1968 if (list_empty(&fs_info->dead_roots)) {
1969 spin_unlock(&fs_info->trans_lock);
1970 return 0;
1971 }
1972 root = list_first_entry(&fs_info->dead_roots,
1973 struct btrfs_root, root_list);
1974 list_del_init(&root->root_list);
1975 spin_unlock(&fs_info->trans_lock);
1976
1977 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1978
1979 btrfs_kill_all_delayed_nodes(root);
1980
1981 if (btrfs_header_backref_rev(root->node) <
1982 BTRFS_MIXED_BACKREF_REV)
1983 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1984 else
1985 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1986
1987 return (ret < 0) ? 0 : 1;
1988 }