]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/transaction.c
Merge tag 'atlas7-pinctrl-dts-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 while (!RB_EMPTY_ROOT(&tree->state)) {
86 struct rb_node *node;
87 struct extent_state *state;
88
89 node = rb_first(&tree->state);
90 state = rb_entry(node, struct extent_state, rb_node);
91 rb_erase(&state->rb_node, &tree->state);
92 RB_CLEAR_NODE(&state->rb_node);
93 /*
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
96 */
97 ASSERT(!waitqueue_active(&state->wq));
98 free_extent_state(state);
99
100 cond_resched_lock(&tree->lock);
101 }
102 spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 struct btrfs_fs_info *fs_info)
107 {
108 struct btrfs_root *root, *tmp;
109
110 down_write(&fs_info->commit_root_sem);
111 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 dirty_list) {
113 list_del_init(&root->dirty_list);
114 free_extent_buffer(root->commit_root);
115 root->commit_root = btrfs_root_node(root);
116 if (is_fstree(root->objectid))
117 btrfs_unpin_free_ino(root);
118 clear_btree_io_tree(&root->dirty_log_pages);
119 }
120 up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 unsigned int type)
125 {
126 if (type & TRANS_EXTWRITERS)
127 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 unsigned int type)
132 {
133 if (type & TRANS_EXTWRITERS)
134 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 unsigned int type)
139 {
140 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149 * either allocate a new transaction or hop into the existing one
150 */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 struct btrfs_transaction *cur_trans;
154 struct btrfs_fs_info *fs_info = root->fs_info;
155
156 spin_lock(&fs_info->trans_lock);
157 loop:
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 spin_unlock(&fs_info->trans_lock);
161 return -EROFS;
162 }
163
164 cur_trans = fs_info->running_transaction;
165 if (cur_trans) {
166 if (cur_trans->aborted) {
167 spin_unlock(&fs_info->trans_lock);
168 return cur_trans->aborted;
169 }
170 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 spin_unlock(&fs_info->trans_lock);
172 return -EBUSY;
173 }
174 atomic_inc(&cur_trans->use_count);
175 atomic_inc(&cur_trans->num_writers);
176 extwriter_counter_inc(cur_trans, type);
177 spin_unlock(&fs_info->trans_lock);
178 return 0;
179 }
180 spin_unlock(&fs_info->trans_lock);
181
182 /*
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
185 */
186 if (type == TRANS_ATTACH)
187 return -ENOENT;
188
189 /*
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
192 */
193 BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 if (!cur_trans)
197 return -ENOMEM;
198
199 spin_lock(&fs_info->trans_lock);
200 if (fs_info->running_transaction) {
201 /*
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
204 */
205 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 goto loop;
207 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 spin_unlock(&fs_info->trans_lock);
209 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 return -EROFS;
211 }
212
213 atomic_set(&cur_trans->num_writers, 1);
214 extwriter_counter_init(cur_trans, type);
215 init_waitqueue_head(&cur_trans->writer_wait);
216 init_waitqueue_head(&cur_trans->commit_wait);
217 cur_trans->state = TRANS_STATE_RUNNING;
218 /*
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
221 */
222 atomic_set(&cur_trans->use_count, 2);
223 cur_trans->have_free_bgs = 0;
224 cur_trans->start_time = get_seconds();
225 cur_trans->dirty_bg_run = 0;
226
227 cur_trans->delayed_refs.href_root = RB_ROOT;
228 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
229 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
230 cur_trans->delayed_refs.num_heads_ready = 0;
231 cur_trans->delayed_refs.pending_csums = 0;
232 cur_trans->delayed_refs.num_heads = 0;
233 cur_trans->delayed_refs.flushing = 0;
234 cur_trans->delayed_refs.run_delayed_start = 0;
235 cur_trans->delayed_refs.qgroup_to_skip = 0;
236
237 /*
238 * although the tree mod log is per file system and not per transaction,
239 * the log must never go across transaction boundaries.
240 */
241 smp_mb();
242 if (!list_empty(&fs_info->tree_mod_seq_list))
243 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
244 "creating a fresh transaction\n");
245 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
246 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
247 "creating a fresh transaction\n");
248 atomic64_set(&fs_info->tree_mod_seq, 0);
249
250 spin_lock_init(&cur_trans->delayed_refs.lock);
251
252 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
253 INIT_LIST_HEAD(&cur_trans->pending_chunks);
254 INIT_LIST_HEAD(&cur_trans->switch_commits);
255 INIT_LIST_HEAD(&cur_trans->pending_ordered);
256 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
257 INIT_LIST_HEAD(&cur_trans->io_bgs);
258 mutex_init(&cur_trans->cache_write_mutex);
259 cur_trans->num_dirty_bgs = 0;
260 spin_lock_init(&cur_trans->dirty_bgs_lock);
261 list_add_tail(&cur_trans->list, &fs_info->trans_list);
262 extent_io_tree_init(&cur_trans->dirty_pages,
263 fs_info->btree_inode->i_mapping);
264 fs_info->generation++;
265 cur_trans->transid = fs_info->generation;
266 fs_info->running_transaction = cur_trans;
267 cur_trans->aborted = 0;
268 spin_unlock(&fs_info->trans_lock);
269
270 return 0;
271 }
272
273 /*
274 * this does all the record keeping required to make sure that a reference
275 * counted root is properly recorded in a given transaction. This is required
276 * to make sure the old root from before we joined the transaction is deleted
277 * when the transaction commits
278 */
279 static int record_root_in_trans(struct btrfs_trans_handle *trans,
280 struct btrfs_root *root)
281 {
282 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
283 root->last_trans < trans->transid) {
284 WARN_ON(root == root->fs_info->extent_root);
285 WARN_ON(root->commit_root != root->node);
286
287 /*
288 * see below for IN_TRANS_SETUP usage rules
289 * we have the reloc mutex held now, so there
290 * is only one writer in this function
291 */
292 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
293
294 /* make sure readers find IN_TRANS_SETUP before
295 * they find our root->last_trans update
296 */
297 smp_wmb();
298
299 spin_lock(&root->fs_info->fs_roots_radix_lock);
300 if (root->last_trans == trans->transid) {
301 spin_unlock(&root->fs_info->fs_roots_radix_lock);
302 return 0;
303 }
304 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
305 (unsigned long)root->root_key.objectid,
306 BTRFS_ROOT_TRANS_TAG);
307 spin_unlock(&root->fs_info->fs_roots_radix_lock);
308 root->last_trans = trans->transid;
309
310 /* this is pretty tricky. We don't want to
311 * take the relocation lock in btrfs_record_root_in_trans
312 * unless we're really doing the first setup for this root in
313 * this transaction.
314 *
315 * Normally we'd use root->last_trans as a flag to decide
316 * if we want to take the expensive mutex.
317 *
318 * But, we have to set root->last_trans before we
319 * init the relocation root, otherwise, we trip over warnings
320 * in ctree.c. The solution used here is to flag ourselves
321 * with root IN_TRANS_SETUP. When this is 1, we're still
322 * fixing up the reloc trees and everyone must wait.
323 *
324 * When this is zero, they can trust root->last_trans and fly
325 * through btrfs_record_root_in_trans without having to take the
326 * lock. smp_wmb() makes sure that all the writes above are
327 * done before we pop in the zero below
328 */
329 btrfs_init_reloc_root(trans, root);
330 smp_mb__before_atomic();
331 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
332 }
333 return 0;
334 }
335
336
337 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
338 struct btrfs_root *root)
339 {
340 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
341 return 0;
342
343 /*
344 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
345 * and barriers
346 */
347 smp_rmb();
348 if (root->last_trans == trans->transid &&
349 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
350 return 0;
351
352 mutex_lock(&root->fs_info->reloc_mutex);
353 record_root_in_trans(trans, root);
354 mutex_unlock(&root->fs_info->reloc_mutex);
355
356 return 0;
357 }
358
359 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
360 {
361 return (trans->state >= TRANS_STATE_BLOCKED &&
362 trans->state < TRANS_STATE_UNBLOCKED &&
363 !trans->aborted);
364 }
365
366 /* wait for commit against the current transaction to become unblocked
367 * when this is done, it is safe to start a new transaction, but the current
368 * transaction might not be fully on disk.
369 */
370 static void wait_current_trans(struct btrfs_root *root)
371 {
372 struct btrfs_transaction *cur_trans;
373
374 spin_lock(&root->fs_info->trans_lock);
375 cur_trans = root->fs_info->running_transaction;
376 if (cur_trans && is_transaction_blocked(cur_trans)) {
377 atomic_inc(&cur_trans->use_count);
378 spin_unlock(&root->fs_info->trans_lock);
379
380 wait_event(root->fs_info->transaction_wait,
381 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
382 cur_trans->aborted);
383 btrfs_put_transaction(cur_trans);
384 } else {
385 spin_unlock(&root->fs_info->trans_lock);
386 }
387 }
388
389 static int may_wait_transaction(struct btrfs_root *root, int type)
390 {
391 if (root->fs_info->log_root_recovering)
392 return 0;
393
394 if (type == TRANS_USERSPACE)
395 return 1;
396
397 if (type == TRANS_START &&
398 !atomic_read(&root->fs_info->open_ioctl_trans))
399 return 1;
400
401 return 0;
402 }
403
404 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
405 {
406 if (!root->fs_info->reloc_ctl ||
407 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
408 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
409 root->reloc_root)
410 return false;
411
412 return true;
413 }
414
415 static struct btrfs_trans_handle *
416 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
417 enum btrfs_reserve_flush_enum flush)
418 {
419 struct btrfs_trans_handle *h;
420 struct btrfs_transaction *cur_trans;
421 u64 num_bytes = 0;
422 u64 qgroup_reserved = 0;
423 bool reloc_reserved = false;
424 int ret;
425
426 /* Send isn't supposed to start transactions. */
427 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
428
429 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
430 return ERR_PTR(-EROFS);
431
432 if (current->journal_info) {
433 WARN_ON(type & TRANS_EXTWRITERS);
434 h = current->journal_info;
435 h->use_count++;
436 WARN_ON(h->use_count > 2);
437 h->orig_rsv = h->block_rsv;
438 h->block_rsv = NULL;
439 goto got_it;
440 }
441
442 /*
443 * Do the reservation before we join the transaction so we can do all
444 * the appropriate flushing if need be.
445 */
446 if (num_items > 0 && root != root->fs_info->chunk_root) {
447 if (root->fs_info->quota_enabled &&
448 is_fstree(root->root_key.objectid)) {
449 qgroup_reserved = num_items * root->nodesize;
450 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
451 if (ret)
452 return ERR_PTR(ret);
453 }
454
455 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
456 /*
457 * Do the reservation for the relocation root creation
458 */
459 if (need_reserve_reloc_root(root)) {
460 num_bytes += root->nodesize;
461 reloc_reserved = true;
462 }
463
464 ret = btrfs_block_rsv_add(root,
465 &root->fs_info->trans_block_rsv,
466 num_bytes, flush);
467 if (ret)
468 goto reserve_fail;
469 }
470 again:
471 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
472 if (!h) {
473 ret = -ENOMEM;
474 goto alloc_fail;
475 }
476
477 /*
478 * If we are JOIN_NOLOCK we're already committing a transaction and
479 * waiting on this guy, so we don't need to do the sb_start_intwrite
480 * because we're already holding a ref. We need this because we could
481 * have raced in and did an fsync() on a file which can kick a commit
482 * and then we deadlock with somebody doing a freeze.
483 *
484 * If we are ATTACH, it means we just want to catch the current
485 * transaction and commit it, so we needn't do sb_start_intwrite().
486 */
487 if (type & __TRANS_FREEZABLE)
488 sb_start_intwrite(root->fs_info->sb);
489
490 if (may_wait_transaction(root, type))
491 wait_current_trans(root);
492
493 do {
494 ret = join_transaction(root, type);
495 if (ret == -EBUSY) {
496 wait_current_trans(root);
497 if (unlikely(type == TRANS_ATTACH))
498 ret = -ENOENT;
499 }
500 } while (ret == -EBUSY);
501
502 if (ret < 0) {
503 /* We must get the transaction if we are JOIN_NOLOCK. */
504 BUG_ON(type == TRANS_JOIN_NOLOCK);
505 goto join_fail;
506 }
507
508 cur_trans = root->fs_info->running_transaction;
509
510 h->transid = cur_trans->transid;
511 h->transaction = cur_trans;
512 h->blocks_used = 0;
513 h->bytes_reserved = 0;
514 h->chunk_bytes_reserved = 0;
515 h->root = root;
516 h->delayed_ref_updates = 0;
517 h->use_count = 1;
518 h->adding_csums = 0;
519 h->block_rsv = NULL;
520 h->orig_rsv = NULL;
521 h->aborted = 0;
522 h->qgroup_reserved = 0;
523 h->delayed_ref_elem.seq = 0;
524 h->type = type;
525 h->allocating_chunk = false;
526 h->reloc_reserved = false;
527 h->sync = false;
528 INIT_LIST_HEAD(&h->qgroup_ref_list);
529 INIT_LIST_HEAD(&h->new_bgs);
530 INIT_LIST_HEAD(&h->ordered);
531
532 smp_mb();
533 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
534 may_wait_transaction(root, type)) {
535 current->journal_info = h;
536 btrfs_commit_transaction(h, root);
537 goto again;
538 }
539
540 if (num_bytes) {
541 trace_btrfs_space_reservation(root->fs_info, "transaction",
542 h->transid, num_bytes, 1);
543 h->block_rsv = &root->fs_info->trans_block_rsv;
544 h->bytes_reserved = num_bytes;
545 h->reloc_reserved = reloc_reserved;
546 }
547 h->qgroup_reserved = qgroup_reserved;
548
549 got_it:
550 btrfs_record_root_in_trans(h, root);
551
552 if (!current->journal_info && type != TRANS_USERSPACE)
553 current->journal_info = h;
554 return h;
555
556 join_fail:
557 if (type & __TRANS_FREEZABLE)
558 sb_end_intwrite(root->fs_info->sb);
559 kmem_cache_free(btrfs_trans_handle_cachep, h);
560 alloc_fail:
561 if (num_bytes)
562 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
563 num_bytes);
564 reserve_fail:
565 if (qgroup_reserved)
566 btrfs_qgroup_free(root, qgroup_reserved);
567 return ERR_PTR(ret);
568 }
569
570 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
571 int num_items)
572 {
573 return start_transaction(root, num_items, TRANS_START,
574 BTRFS_RESERVE_FLUSH_ALL);
575 }
576
577 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
578 struct btrfs_root *root, int num_items)
579 {
580 return start_transaction(root, num_items, TRANS_START,
581 BTRFS_RESERVE_FLUSH_LIMIT);
582 }
583
584 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
585 {
586 return start_transaction(root, 0, TRANS_JOIN, 0);
587 }
588
589 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
590 {
591 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
592 }
593
594 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
595 {
596 return start_transaction(root, 0, TRANS_USERSPACE, 0);
597 }
598
599 /*
600 * btrfs_attach_transaction() - catch the running transaction
601 *
602 * It is used when we want to commit the current the transaction, but
603 * don't want to start a new one.
604 *
605 * Note: If this function return -ENOENT, it just means there is no
606 * running transaction. But it is possible that the inactive transaction
607 * is still in the memory, not fully on disk. If you hope there is no
608 * inactive transaction in the fs when -ENOENT is returned, you should
609 * invoke
610 * btrfs_attach_transaction_barrier()
611 */
612 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
613 {
614 return start_transaction(root, 0, TRANS_ATTACH, 0);
615 }
616
617 /*
618 * btrfs_attach_transaction_barrier() - catch the running transaction
619 *
620 * It is similar to the above function, the differentia is this one
621 * will wait for all the inactive transactions until they fully
622 * complete.
623 */
624 struct btrfs_trans_handle *
625 btrfs_attach_transaction_barrier(struct btrfs_root *root)
626 {
627 struct btrfs_trans_handle *trans;
628
629 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
630 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
631 btrfs_wait_for_commit(root, 0);
632
633 return trans;
634 }
635
636 /* wait for a transaction commit to be fully complete */
637 static noinline void wait_for_commit(struct btrfs_root *root,
638 struct btrfs_transaction *commit)
639 {
640 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
641 }
642
643 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
644 {
645 struct btrfs_transaction *cur_trans = NULL, *t;
646 int ret = 0;
647
648 if (transid) {
649 if (transid <= root->fs_info->last_trans_committed)
650 goto out;
651
652 /* find specified transaction */
653 spin_lock(&root->fs_info->trans_lock);
654 list_for_each_entry(t, &root->fs_info->trans_list, list) {
655 if (t->transid == transid) {
656 cur_trans = t;
657 atomic_inc(&cur_trans->use_count);
658 ret = 0;
659 break;
660 }
661 if (t->transid > transid) {
662 ret = 0;
663 break;
664 }
665 }
666 spin_unlock(&root->fs_info->trans_lock);
667
668 /*
669 * The specified transaction doesn't exist, or we
670 * raced with btrfs_commit_transaction
671 */
672 if (!cur_trans) {
673 if (transid > root->fs_info->last_trans_committed)
674 ret = -EINVAL;
675 goto out;
676 }
677 } else {
678 /* find newest transaction that is committing | committed */
679 spin_lock(&root->fs_info->trans_lock);
680 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
681 list) {
682 if (t->state >= TRANS_STATE_COMMIT_START) {
683 if (t->state == TRANS_STATE_COMPLETED)
684 break;
685 cur_trans = t;
686 atomic_inc(&cur_trans->use_count);
687 break;
688 }
689 }
690 spin_unlock(&root->fs_info->trans_lock);
691 if (!cur_trans)
692 goto out; /* nothing committing|committed */
693 }
694
695 wait_for_commit(root, cur_trans);
696 btrfs_put_transaction(cur_trans);
697 out:
698 return ret;
699 }
700
701 void btrfs_throttle(struct btrfs_root *root)
702 {
703 if (!atomic_read(&root->fs_info->open_ioctl_trans))
704 wait_current_trans(root);
705 }
706
707 static int should_end_transaction(struct btrfs_trans_handle *trans,
708 struct btrfs_root *root)
709 {
710 if (root->fs_info->global_block_rsv.space_info->full &&
711 btrfs_check_space_for_delayed_refs(trans, root))
712 return 1;
713
714 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
715 }
716
717 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
718 struct btrfs_root *root)
719 {
720 struct btrfs_transaction *cur_trans = trans->transaction;
721 int updates;
722 int err;
723
724 smp_mb();
725 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
726 cur_trans->delayed_refs.flushing)
727 return 1;
728
729 updates = trans->delayed_ref_updates;
730 trans->delayed_ref_updates = 0;
731 if (updates) {
732 err = btrfs_run_delayed_refs(trans, root, updates * 2);
733 if (err) /* Error code will also eval true */
734 return err;
735 }
736
737 return should_end_transaction(trans, root);
738 }
739
740 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
741 struct btrfs_root *root, int throttle)
742 {
743 struct btrfs_transaction *cur_trans = trans->transaction;
744 struct btrfs_fs_info *info = root->fs_info;
745 unsigned long cur = trans->delayed_ref_updates;
746 int lock = (trans->type != TRANS_JOIN_NOLOCK);
747 int err = 0;
748 int must_run_delayed_refs = 0;
749
750 if (trans->use_count > 1) {
751 trans->use_count--;
752 trans->block_rsv = trans->orig_rsv;
753 return 0;
754 }
755
756 btrfs_trans_release_metadata(trans, root);
757 trans->block_rsv = NULL;
758
759 if (!list_empty(&trans->new_bgs))
760 btrfs_create_pending_block_groups(trans, root);
761
762 if (!list_empty(&trans->ordered)) {
763 spin_lock(&info->trans_lock);
764 list_splice(&trans->ordered, &cur_trans->pending_ordered);
765 spin_unlock(&info->trans_lock);
766 }
767
768 trans->delayed_ref_updates = 0;
769 if (!trans->sync) {
770 must_run_delayed_refs =
771 btrfs_should_throttle_delayed_refs(trans, root);
772 cur = max_t(unsigned long, cur, 32);
773
774 /*
775 * don't make the caller wait if they are from a NOLOCK
776 * or ATTACH transaction, it will deadlock with commit
777 */
778 if (must_run_delayed_refs == 1 &&
779 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
780 must_run_delayed_refs = 2;
781 }
782
783 if (trans->qgroup_reserved) {
784 /*
785 * the same root has to be passed here between start_transaction
786 * and end_transaction. Subvolume quota depends on this.
787 */
788 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
789 trans->qgroup_reserved = 0;
790 }
791
792 btrfs_trans_release_metadata(trans, root);
793 trans->block_rsv = NULL;
794
795 if (!list_empty(&trans->new_bgs))
796 btrfs_create_pending_block_groups(trans, root);
797
798 btrfs_trans_release_chunk_metadata(trans);
799
800 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
801 should_end_transaction(trans, root) &&
802 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
803 spin_lock(&info->trans_lock);
804 if (cur_trans->state == TRANS_STATE_RUNNING)
805 cur_trans->state = TRANS_STATE_BLOCKED;
806 spin_unlock(&info->trans_lock);
807 }
808
809 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
810 if (throttle)
811 return btrfs_commit_transaction(trans, root);
812 else
813 wake_up_process(info->transaction_kthread);
814 }
815
816 if (trans->type & __TRANS_FREEZABLE)
817 sb_end_intwrite(root->fs_info->sb);
818
819 WARN_ON(cur_trans != info->running_transaction);
820 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
821 atomic_dec(&cur_trans->num_writers);
822 extwriter_counter_dec(cur_trans, trans->type);
823
824 smp_mb();
825 if (waitqueue_active(&cur_trans->writer_wait))
826 wake_up(&cur_trans->writer_wait);
827 btrfs_put_transaction(cur_trans);
828
829 if (current->journal_info == trans)
830 current->journal_info = NULL;
831
832 if (throttle)
833 btrfs_run_delayed_iputs(root);
834
835 if (trans->aborted ||
836 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
837 wake_up_process(info->transaction_kthread);
838 err = -EIO;
839 }
840 assert_qgroups_uptodate(trans);
841
842 kmem_cache_free(btrfs_trans_handle_cachep, trans);
843 if (must_run_delayed_refs) {
844 btrfs_async_run_delayed_refs(root, cur,
845 must_run_delayed_refs == 1);
846 }
847 return err;
848 }
849
850 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root)
852 {
853 return __btrfs_end_transaction(trans, root, 0);
854 }
855
856 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
857 struct btrfs_root *root)
858 {
859 return __btrfs_end_transaction(trans, root, 1);
860 }
861
862 /*
863 * when btree blocks are allocated, they have some corresponding bits set for
864 * them in one of two extent_io trees. This is used to make sure all of
865 * those extents are sent to disk but does not wait on them
866 */
867 int btrfs_write_marked_extents(struct btrfs_root *root,
868 struct extent_io_tree *dirty_pages, int mark)
869 {
870 int err = 0;
871 int werr = 0;
872 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
873 struct extent_state *cached_state = NULL;
874 u64 start = 0;
875 u64 end;
876
877 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
878 mark, &cached_state)) {
879 bool wait_writeback = false;
880
881 err = convert_extent_bit(dirty_pages, start, end,
882 EXTENT_NEED_WAIT,
883 mark, &cached_state, GFP_NOFS);
884 /*
885 * convert_extent_bit can return -ENOMEM, which is most of the
886 * time a temporary error. So when it happens, ignore the error
887 * and wait for writeback of this range to finish - because we
888 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
889 * to btrfs_wait_marked_extents() would not know that writeback
890 * for this range started and therefore wouldn't wait for it to
891 * finish - we don't want to commit a superblock that points to
892 * btree nodes/leafs for which writeback hasn't finished yet
893 * (and without errors).
894 * We cleanup any entries left in the io tree when committing
895 * the transaction (through clear_btree_io_tree()).
896 */
897 if (err == -ENOMEM) {
898 err = 0;
899 wait_writeback = true;
900 }
901 if (!err)
902 err = filemap_fdatawrite_range(mapping, start, end);
903 if (err)
904 werr = err;
905 else if (wait_writeback)
906 werr = filemap_fdatawait_range(mapping, start, end);
907 free_extent_state(cached_state);
908 cached_state = NULL;
909 cond_resched();
910 start = end + 1;
911 }
912 return werr;
913 }
914
915 /*
916 * when btree blocks are allocated, they have some corresponding bits set for
917 * them in one of two extent_io trees. This is used to make sure all of
918 * those extents are on disk for transaction or log commit. We wait
919 * on all the pages and clear them from the dirty pages state tree
920 */
921 int btrfs_wait_marked_extents(struct btrfs_root *root,
922 struct extent_io_tree *dirty_pages, int mark)
923 {
924 int err = 0;
925 int werr = 0;
926 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
927 struct extent_state *cached_state = NULL;
928 u64 start = 0;
929 u64 end;
930 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
931 bool errors = false;
932
933 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
934 EXTENT_NEED_WAIT, &cached_state)) {
935 /*
936 * Ignore -ENOMEM errors returned by clear_extent_bit().
937 * When committing the transaction, we'll remove any entries
938 * left in the io tree. For a log commit, we don't remove them
939 * after committing the log because the tree can be accessed
940 * concurrently - we do it only at transaction commit time when
941 * it's safe to do it (through clear_btree_io_tree()).
942 */
943 err = clear_extent_bit(dirty_pages, start, end,
944 EXTENT_NEED_WAIT,
945 0, 0, &cached_state, GFP_NOFS);
946 if (err == -ENOMEM)
947 err = 0;
948 if (!err)
949 err = filemap_fdatawait_range(mapping, start, end);
950 if (err)
951 werr = err;
952 free_extent_state(cached_state);
953 cached_state = NULL;
954 cond_resched();
955 start = end + 1;
956 }
957 if (err)
958 werr = err;
959
960 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
961 if ((mark & EXTENT_DIRTY) &&
962 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
963 &btree_ino->runtime_flags))
964 errors = true;
965
966 if ((mark & EXTENT_NEW) &&
967 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
968 &btree_ino->runtime_flags))
969 errors = true;
970 } else {
971 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
972 &btree_ino->runtime_flags))
973 errors = true;
974 }
975
976 if (errors && !werr)
977 werr = -EIO;
978
979 return werr;
980 }
981
982 /*
983 * when btree blocks are allocated, they have some corresponding bits set for
984 * them in one of two extent_io trees. This is used to make sure all of
985 * those extents are on disk for transaction or log commit
986 */
987 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
988 struct extent_io_tree *dirty_pages, int mark)
989 {
990 int ret;
991 int ret2;
992 struct blk_plug plug;
993
994 blk_start_plug(&plug);
995 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
996 blk_finish_plug(&plug);
997 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
998
999 if (ret)
1000 return ret;
1001 if (ret2)
1002 return ret2;
1003 return 0;
1004 }
1005
1006 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root)
1008 {
1009 int ret;
1010
1011 ret = btrfs_write_and_wait_marked_extents(root,
1012 &trans->transaction->dirty_pages,
1013 EXTENT_DIRTY);
1014 clear_btree_io_tree(&trans->transaction->dirty_pages);
1015
1016 return ret;
1017 }
1018
1019 /*
1020 * this is used to update the root pointer in the tree of tree roots.
1021 *
1022 * But, in the case of the extent allocation tree, updating the root
1023 * pointer may allocate blocks which may change the root of the extent
1024 * allocation tree.
1025 *
1026 * So, this loops and repeats and makes sure the cowonly root didn't
1027 * change while the root pointer was being updated in the metadata.
1028 */
1029 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1030 struct btrfs_root *root)
1031 {
1032 int ret;
1033 u64 old_root_bytenr;
1034 u64 old_root_used;
1035 struct btrfs_root *tree_root = root->fs_info->tree_root;
1036
1037 old_root_used = btrfs_root_used(&root->root_item);
1038
1039 while (1) {
1040 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1041 if (old_root_bytenr == root->node->start &&
1042 old_root_used == btrfs_root_used(&root->root_item))
1043 break;
1044
1045 btrfs_set_root_node(&root->root_item, root->node);
1046 ret = btrfs_update_root(trans, tree_root,
1047 &root->root_key,
1048 &root->root_item);
1049 if (ret)
1050 return ret;
1051
1052 old_root_used = btrfs_root_used(&root->root_item);
1053 }
1054
1055 return 0;
1056 }
1057
1058 /*
1059 * update all the cowonly tree roots on disk
1060 *
1061 * The error handling in this function may not be obvious. Any of the
1062 * failures will cause the file system to go offline. We still need
1063 * to clean up the delayed refs.
1064 */
1065 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1066 struct btrfs_root *root)
1067 {
1068 struct btrfs_fs_info *fs_info = root->fs_info;
1069 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1070 struct list_head *io_bgs = &trans->transaction->io_bgs;
1071 struct list_head *next;
1072 struct extent_buffer *eb;
1073 int ret;
1074
1075 eb = btrfs_lock_root_node(fs_info->tree_root);
1076 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1077 0, &eb);
1078 btrfs_tree_unlock(eb);
1079 free_extent_buffer(eb);
1080
1081 if (ret)
1082 return ret;
1083
1084 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1085 if (ret)
1086 return ret;
1087
1088 ret = btrfs_run_dev_stats(trans, root->fs_info);
1089 if (ret)
1090 return ret;
1091 ret = btrfs_run_dev_replace(trans, root->fs_info);
1092 if (ret)
1093 return ret;
1094 ret = btrfs_run_qgroups(trans, root->fs_info);
1095 if (ret)
1096 return ret;
1097
1098 ret = btrfs_setup_space_cache(trans, root);
1099 if (ret)
1100 return ret;
1101
1102 /* run_qgroups might have added some more refs */
1103 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1104 if (ret)
1105 return ret;
1106 again:
1107 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1108 next = fs_info->dirty_cowonly_roots.next;
1109 list_del_init(next);
1110 root = list_entry(next, struct btrfs_root, dirty_list);
1111 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1112
1113 if (root != fs_info->extent_root)
1114 list_add_tail(&root->dirty_list,
1115 &trans->transaction->switch_commits);
1116 ret = update_cowonly_root(trans, root);
1117 if (ret)
1118 return ret;
1119 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1120 if (ret)
1121 return ret;
1122 }
1123
1124 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1125 ret = btrfs_write_dirty_block_groups(trans, root);
1126 if (ret)
1127 return ret;
1128 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 if (!list_empty(&fs_info->dirty_cowonly_roots))
1134 goto again;
1135
1136 list_add_tail(&fs_info->extent_root->dirty_list,
1137 &trans->transaction->switch_commits);
1138 btrfs_after_dev_replace_commit(fs_info);
1139
1140 return 0;
1141 }
1142
1143 /*
1144 * dead roots are old snapshots that need to be deleted. This allocates
1145 * a dirty root struct and adds it into the list of dead roots that need to
1146 * be deleted
1147 */
1148 void btrfs_add_dead_root(struct btrfs_root *root)
1149 {
1150 spin_lock(&root->fs_info->trans_lock);
1151 if (list_empty(&root->root_list))
1152 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1153 spin_unlock(&root->fs_info->trans_lock);
1154 }
1155
1156 /*
1157 * update all the cowonly tree roots on disk
1158 */
1159 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root)
1161 {
1162 struct btrfs_root *gang[8];
1163 struct btrfs_fs_info *fs_info = root->fs_info;
1164 int i;
1165 int ret;
1166 int err = 0;
1167
1168 spin_lock(&fs_info->fs_roots_radix_lock);
1169 while (1) {
1170 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1171 (void **)gang, 0,
1172 ARRAY_SIZE(gang),
1173 BTRFS_ROOT_TRANS_TAG);
1174 if (ret == 0)
1175 break;
1176 for (i = 0; i < ret; i++) {
1177 root = gang[i];
1178 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1179 (unsigned long)root->root_key.objectid,
1180 BTRFS_ROOT_TRANS_TAG);
1181 spin_unlock(&fs_info->fs_roots_radix_lock);
1182
1183 btrfs_free_log(trans, root);
1184 btrfs_update_reloc_root(trans, root);
1185 btrfs_orphan_commit_root(trans, root);
1186
1187 btrfs_save_ino_cache(root, trans);
1188
1189 /* see comments in should_cow_block() */
1190 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1191 smp_mb__after_atomic();
1192
1193 if (root->commit_root != root->node) {
1194 list_add_tail(&root->dirty_list,
1195 &trans->transaction->switch_commits);
1196 btrfs_set_root_node(&root->root_item,
1197 root->node);
1198 }
1199
1200 err = btrfs_update_root(trans, fs_info->tree_root,
1201 &root->root_key,
1202 &root->root_item);
1203 spin_lock(&fs_info->fs_roots_radix_lock);
1204 if (err)
1205 break;
1206 }
1207 }
1208 spin_unlock(&fs_info->fs_roots_radix_lock);
1209 return err;
1210 }
1211
1212 /*
1213 * defrag a given btree.
1214 * Every leaf in the btree is read and defragged.
1215 */
1216 int btrfs_defrag_root(struct btrfs_root *root)
1217 {
1218 struct btrfs_fs_info *info = root->fs_info;
1219 struct btrfs_trans_handle *trans;
1220 int ret;
1221
1222 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1223 return 0;
1224
1225 while (1) {
1226 trans = btrfs_start_transaction(root, 0);
1227 if (IS_ERR(trans))
1228 return PTR_ERR(trans);
1229
1230 ret = btrfs_defrag_leaves(trans, root);
1231
1232 btrfs_end_transaction(trans, root);
1233 btrfs_btree_balance_dirty(info->tree_root);
1234 cond_resched();
1235
1236 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1237 break;
1238
1239 if (btrfs_defrag_cancelled(root->fs_info)) {
1240 pr_debug("BTRFS: defrag_root cancelled\n");
1241 ret = -EAGAIN;
1242 break;
1243 }
1244 }
1245 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1246 return ret;
1247 }
1248
1249 /*
1250 * new snapshots need to be created at a very specific time in the
1251 * transaction commit. This does the actual creation.
1252 *
1253 * Note:
1254 * If the error which may affect the commitment of the current transaction
1255 * happens, we should return the error number. If the error which just affect
1256 * the creation of the pending snapshots, just return 0.
1257 */
1258 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1259 struct btrfs_fs_info *fs_info,
1260 struct btrfs_pending_snapshot *pending)
1261 {
1262 struct btrfs_key key;
1263 struct btrfs_root_item *new_root_item;
1264 struct btrfs_root *tree_root = fs_info->tree_root;
1265 struct btrfs_root *root = pending->root;
1266 struct btrfs_root *parent_root;
1267 struct btrfs_block_rsv *rsv;
1268 struct inode *parent_inode;
1269 struct btrfs_path *path;
1270 struct btrfs_dir_item *dir_item;
1271 struct dentry *dentry;
1272 struct extent_buffer *tmp;
1273 struct extent_buffer *old;
1274 struct timespec cur_time = CURRENT_TIME;
1275 int ret = 0;
1276 u64 to_reserve = 0;
1277 u64 index = 0;
1278 u64 objectid;
1279 u64 root_flags;
1280 uuid_le new_uuid;
1281
1282 path = btrfs_alloc_path();
1283 if (!path) {
1284 pending->error = -ENOMEM;
1285 return 0;
1286 }
1287
1288 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1289 if (!new_root_item) {
1290 pending->error = -ENOMEM;
1291 goto root_item_alloc_fail;
1292 }
1293
1294 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1295 if (pending->error)
1296 goto no_free_objectid;
1297
1298 /*
1299 * Make qgroup to skip current new snapshot's qgroupid, as it is
1300 * accounted by later btrfs_qgroup_inherit().
1301 */
1302 btrfs_set_skip_qgroup(trans, objectid);
1303
1304 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1305
1306 if (to_reserve > 0) {
1307 pending->error = btrfs_block_rsv_add(root,
1308 &pending->block_rsv,
1309 to_reserve,
1310 BTRFS_RESERVE_NO_FLUSH);
1311 if (pending->error)
1312 goto clear_skip_qgroup;
1313 }
1314
1315 key.objectid = objectid;
1316 key.offset = (u64)-1;
1317 key.type = BTRFS_ROOT_ITEM_KEY;
1318
1319 rsv = trans->block_rsv;
1320 trans->block_rsv = &pending->block_rsv;
1321 trans->bytes_reserved = trans->block_rsv->reserved;
1322
1323 dentry = pending->dentry;
1324 parent_inode = pending->dir;
1325 parent_root = BTRFS_I(parent_inode)->root;
1326 record_root_in_trans(trans, parent_root);
1327
1328 /*
1329 * insert the directory item
1330 */
1331 ret = btrfs_set_inode_index(parent_inode, &index);
1332 BUG_ON(ret); /* -ENOMEM */
1333
1334 /* check if there is a file/dir which has the same name. */
1335 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1336 btrfs_ino(parent_inode),
1337 dentry->d_name.name,
1338 dentry->d_name.len, 0);
1339 if (dir_item != NULL && !IS_ERR(dir_item)) {
1340 pending->error = -EEXIST;
1341 goto dir_item_existed;
1342 } else if (IS_ERR(dir_item)) {
1343 ret = PTR_ERR(dir_item);
1344 btrfs_abort_transaction(trans, root, ret);
1345 goto fail;
1346 }
1347 btrfs_release_path(path);
1348
1349 /*
1350 * pull in the delayed directory update
1351 * and the delayed inode item
1352 * otherwise we corrupt the FS during
1353 * snapshot
1354 */
1355 ret = btrfs_run_delayed_items(trans, root);
1356 if (ret) { /* Transaction aborted */
1357 btrfs_abort_transaction(trans, root, ret);
1358 goto fail;
1359 }
1360
1361 record_root_in_trans(trans, root);
1362 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1363 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1364 btrfs_check_and_init_root_item(new_root_item);
1365
1366 root_flags = btrfs_root_flags(new_root_item);
1367 if (pending->readonly)
1368 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1369 else
1370 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1371 btrfs_set_root_flags(new_root_item, root_flags);
1372
1373 btrfs_set_root_generation_v2(new_root_item,
1374 trans->transid);
1375 uuid_le_gen(&new_uuid);
1376 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1377 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1378 BTRFS_UUID_SIZE);
1379 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1380 memset(new_root_item->received_uuid, 0,
1381 sizeof(new_root_item->received_uuid));
1382 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1383 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1384 btrfs_set_root_stransid(new_root_item, 0);
1385 btrfs_set_root_rtransid(new_root_item, 0);
1386 }
1387 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1388 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1389 btrfs_set_root_otransid(new_root_item, trans->transid);
1390
1391 old = btrfs_lock_root_node(root);
1392 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1393 if (ret) {
1394 btrfs_tree_unlock(old);
1395 free_extent_buffer(old);
1396 btrfs_abort_transaction(trans, root, ret);
1397 goto fail;
1398 }
1399
1400 btrfs_set_lock_blocking(old);
1401
1402 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1403 /* clean up in any case */
1404 btrfs_tree_unlock(old);
1405 free_extent_buffer(old);
1406 if (ret) {
1407 btrfs_abort_transaction(trans, root, ret);
1408 goto fail;
1409 }
1410 /* see comments in should_cow_block() */
1411 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1412 smp_wmb();
1413
1414 btrfs_set_root_node(new_root_item, tmp);
1415 /* record when the snapshot was created in key.offset */
1416 key.offset = trans->transid;
1417 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1418 btrfs_tree_unlock(tmp);
1419 free_extent_buffer(tmp);
1420 if (ret) {
1421 btrfs_abort_transaction(trans, root, ret);
1422 goto fail;
1423 }
1424
1425 /*
1426 * insert root back/forward references
1427 */
1428 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1429 parent_root->root_key.objectid,
1430 btrfs_ino(parent_inode), index,
1431 dentry->d_name.name, dentry->d_name.len);
1432 if (ret) {
1433 btrfs_abort_transaction(trans, root, ret);
1434 goto fail;
1435 }
1436
1437 key.offset = (u64)-1;
1438 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1439 if (IS_ERR(pending->snap)) {
1440 ret = PTR_ERR(pending->snap);
1441 btrfs_abort_transaction(trans, root, ret);
1442 goto fail;
1443 }
1444
1445 ret = btrfs_reloc_post_snapshot(trans, pending);
1446 if (ret) {
1447 btrfs_abort_transaction(trans, root, ret);
1448 goto fail;
1449 }
1450
1451 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1452 if (ret) {
1453 btrfs_abort_transaction(trans, root, ret);
1454 goto fail;
1455 }
1456
1457 ret = btrfs_insert_dir_item(trans, parent_root,
1458 dentry->d_name.name, dentry->d_name.len,
1459 parent_inode, &key,
1460 BTRFS_FT_DIR, index);
1461 /* We have check then name at the beginning, so it is impossible. */
1462 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1463 if (ret) {
1464 btrfs_abort_transaction(trans, root, ret);
1465 goto fail;
1466 }
1467
1468 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1469 dentry->d_name.len * 2);
1470 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1471 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1472 if (ret) {
1473 btrfs_abort_transaction(trans, root, ret);
1474 goto fail;
1475 }
1476 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1477 BTRFS_UUID_KEY_SUBVOL, objectid);
1478 if (ret) {
1479 btrfs_abort_transaction(trans, root, ret);
1480 goto fail;
1481 }
1482 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1483 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1484 new_root_item->received_uuid,
1485 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1486 objectid);
1487 if (ret && ret != -EEXIST) {
1488 btrfs_abort_transaction(trans, root, ret);
1489 goto fail;
1490 }
1491 }
1492
1493 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1494 if (ret) {
1495 btrfs_abort_transaction(trans, root, ret);
1496 goto fail;
1497 }
1498
1499 /*
1500 * account qgroup counters before qgroup_inherit()
1501 */
1502 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1503 if (ret)
1504 goto fail;
1505 ret = btrfs_qgroup_account_extents(trans, fs_info);
1506 if (ret)
1507 goto fail;
1508 ret = btrfs_qgroup_inherit(trans, fs_info,
1509 root->root_key.objectid,
1510 objectid, pending->inherit);
1511 if (ret) {
1512 btrfs_abort_transaction(trans, root, ret);
1513 goto fail;
1514 }
1515
1516 fail:
1517 pending->error = ret;
1518 dir_item_existed:
1519 trans->block_rsv = rsv;
1520 trans->bytes_reserved = 0;
1521 clear_skip_qgroup:
1522 btrfs_clear_skip_qgroup(trans);
1523 no_free_objectid:
1524 kfree(new_root_item);
1525 root_item_alloc_fail:
1526 btrfs_free_path(path);
1527 return ret;
1528 }
1529
1530 /*
1531 * create all the snapshots we've scheduled for creation
1532 */
1533 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1534 struct btrfs_fs_info *fs_info)
1535 {
1536 struct btrfs_pending_snapshot *pending, *next;
1537 struct list_head *head = &trans->transaction->pending_snapshots;
1538 int ret = 0;
1539
1540 list_for_each_entry_safe(pending, next, head, list) {
1541 list_del(&pending->list);
1542 ret = create_pending_snapshot(trans, fs_info, pending);
1543 if (ret)
1544 break;
1545 }
1546 return ret;
1547 }
1548
1549 static void update_super_roots(struct btrfs_root *root)
1550 {
1551 struct btrfs_root_item *root_item;
1552 struct btrfs_super_block *super;
1553
1554 super = root->fs_info->super_copy;
1555
1556 root_item = &root->fs_info->chunk_root->root_item;
1557 super->chunk_root = root_item->bytenr;
1558 super->chunk_root_generation = root_item->generation;
1559 super->chunk_root_level = root_item->level;
1560
1561 root_item = &root->fs_info->tree_root->root_item;
1562 super->root = root_item->bytenr;
1563 super->generation = root_item->generation;
1564 super->root_level = root_item->level;
1565 if (btrfs_test_opt(root, SPACE_CACHE))
1566 super->cache_generation = root_item->generation;
1567 if (root->fs_info->update_uuid_tree_gen)
1568 super->uuid_tree_generation = root_item->generation;
1569 }
1570
1571 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1572 {
1573 struct btrfs_transaction *trans;
1574 int ret = 0;
1575
1576 spin_lock(&info->trans_lock);
1577 trans = info->running_transaction;
1578 if (trans)
1579 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1580 spin_unlock(&info->trans_lock);
1581 return ret;
1582 }
1583
1584 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1585 {
1586 struct btrfs_transaction *trans;
1587 int ret = 0;
1588
1589 spin_lock(&info->trans_lock);
1590 trans = info->running_transaction;
1591 if (trans)
1592 ret = is_transaction_blocked(trans);
1593 spin_unlock(&info->trans_lock);
1594 return ret;
1595 }
1596
1597 /*
1598 * wait for the current transaction commit to start and block subsequent
1599 * transaction joins
1600 */
1601 static void wait_current_trans_commit_start(struct btrfs_root *root,
1602 struct btrfs_transaction *trans)
1603 {
1604 wait_event(root->fs_info->transaction_blocked_wait,
1605 trans->state >= TRANS_STATE_COMMIT_START ||
1606 trans->aborted);
1607 }
1608
1609 /*
1610 * wait for the current transaction to start and then become unblocked.
1611 * caller holds ref.
1612 */
1613 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1614 struct btrfs_transaction *trans)
1615 {
1616 wait_event(root->fs_info->transaction_wait,
1617 trans->state >= TRANS_STATE_UNBLOCKED ||
1618 trans->aborted);
1619 }
1620
1621 /*
1622 * commit transactions asynchronously. once btrfs_commit_transaction_async
1623 * returns, any subsequent transaction will not be allowed to join.
1624 */
1625 struct btrfs_async_commit {
1626 struct btrfs_trans_handle *newtrans;
1627 struct btrfs_root *root;
1628 struct work_struct work;
1629 };
1630
1631 static void do_async_commit(struct work_struct *work)
1632 {
1633 struct btrfs_async_commit *ac =
1634 container_of(work, struct btrfs_async_commit, work);
1635
1636 /*
1637 * We've got freeze protection passed with the transaction.
1638 * Tell lockdep about it.
1639 */
1640 if (ac->newtrans->type & __TRANS_FREEZABLE)
1641 rwsem_acquire_read(
1642 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1643 0, 1, _THIS_IP_);
1644
1645 current->journal_info = ac->newtrans;
1646
1647 btrfs_commit_transaction(ac->newtrans, ac->root);
1648 kfree(ac);
1649 }
1650
1651 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1652 struct btrfs_root *root,
1653 int wait_for_unblock)
1654 {
1655 struct btrfs_async_commit *ac;
1656 struct btrfs_transaction *cur_trans;
1657
1658 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1659 if (!ac)
1660 return -ENOMEM;
1661
1662 INIT_WORK(&ac->work, do_async_commit);
1663 ac->root = root;
1664 ac->newtrans = btrfs_join_transaction(root);
1665 if (IS_ERR(ac->newtrans)) {
1666 int err = PTR_ERR(ac->newtrans);
1667 kfree(ac);
1668 return err;
1669 }
1670
1671 /* take transaction reference */
1672 cur_trans = trans->transaction;
1673 atomic_inc(&cur_trans->use_count);
1674
1675 btrfs_end_transaction(trans, root);
1676
1677 /*
1678 * Tell lockdep we've released the freeze rwsem, since the
1679 * async commit thread will be the one to unlock it.
1680 */
1681 if (ac->newtrans->type & __TRANS_FREEZABLE)
1682 rwsem_release(
1683 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1684 1, _THIS_IP_);
1685
1686 schedule_work(&ac->work);
1687
1688 /* wait for transaction to start and unblock */
1689 if (wait_for_unblock)
1690 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1691 else
1692 wait_current_trans_commit_start(root, cur_trans);
1693
1694 if (current->journal_info == trans)
1695 current->journal_info = NULL;
1696
1697 btrfs_put_transaction(cur_trans);
1698 return 0;
1699 }
1700
1701
1702 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1703 struct btrfs_root *root, int err)
1704 {
1705 struct btrfs_transaction *cur_trans = trans->transaction;
1706 DEFINE_WAIT(wait);
1707
1708 WARN_ON(trans->use_count > 1);
1709
1710 btrfs_abort_transaction(trans, root, err);
1711
1712 spin_lock(&root->fs_info->trans_lock);
1713
1714 /*
1715 * If the transaction is removed from the list, it means this
1716 * transaction has been committed successfully, so it is impossible
1717 * to call the cleanup function.
1718 */
1719 BUG_ON(list_empty(&cur_trans->list));
1720
1721 list_del_init(&cur_trans->list);
1722 if (cur_trans == root->fs_info->running_transaction) {
1723 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1724 spin_unlock(&root->fs_info->trans_lock);
1725 wait_event(cur_trans->writer_wait,
1726 atomic_read(&cur_trans->num_writers) == 1);
1727
1728 spin_lock(&root->fs_info->trans_lock);
1729 }
1730 spin_unlock(&root->fs_info->trans_lock);
1731
1732 btrfs_cleanup_one_transaction(trans->transaction, root);
1733
1734 spin_lock(&root->fs_info->trans_lock);
1735 if (cur_trans == root->fs_info->running_transaction)
1736 root->fs_info->running_transaction = NULL;
1737 spin_unlock(&root->fs_info->trans_lock);
1738
1739 if (trans->type & __TRANS_FREEZABLE)
1740 sb_end_intwrite(root->fs_info->sb);
1741 btrfs_put_transaction(cur_trans);
1742 btrfs_put_transaction(cur_trans);
1743
1744 trace_btrfs_transaction_commit(root);
1745
1746 if (current->journal_info == trans)
1747 current->journal_info = NULL;
1748 btrfs_scrub_cancel(root->fs_info);
1749
1750 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1751 }
1752
1753 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1754 {
1755 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1756 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1757 return 0;
1758 }
1759
1760 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1761 {
1762 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1763 btrfs_wait_ordered_roots(fs_info, -1);
1764 }
1765
1766 static inline void
1767 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1768 struct btrfs_fs_info *fs_info)
1769 {
1770 struct btrfs_ordered_extent *ordered;
1771
1772 spin_lock(&fs_info->trans_lock);
1773 while (!list_empty(&cur_trans->pending_ordered)) {
1774 ordered = list_first_entry(&cur_trans->pending_ordered,
1775 struct btrfs_ordered_extent,
1776 trans_list);
1777 list_del_init(&ordered->trans_list);
1778 spin_unlock(&fs_info->trans_lock);
1779
1780 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1781 &ordered->flags));
1782 btrfs_put_ordered_extent(ordered);
1783 spin_lock(&fs_info->trans_lock);
1784 }
1785 spin_unlock(&fs_info->trans_lock);
1786 }
1787
1788 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root)
1790 {
1791 struct btrfs_transaction *cur_trans = trans->transaction;
1792 struct btrfs_transaction *prev_trans = NULL;
1793 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1794 int ret;
1795
1796 /* Stop the commit early if ->aborted is set */
1797 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1798 ret = cur_trans->aborted;
1799 btrfs_end_transaction(trans, root);
1800 return ret;
1801 }
1802
1803 /* make a pass through all the delayed refs we have so far
1804 * any runnings procs may add more while we are here
1805 */
1806 ret = btrfs_run_delayed_refs(trans, root, 0);
1807 if (ret) {
1808 btrfs_end_transaction(trans, root);
1809 return ret;
1810 }
1811
1812 btrfs_trans_release_metadata(trans, root);
1813 trans->block_rsv = NULL;
1814 if (trans->qgroup_reserved) {
1815 btrfs_qgroup_free(root, trans->qgroup_reserved);
1816 trans->qgroup_reserved = 0;
1817 }
1818
1819 cur_trans = trans->transaction;
1820
1821 /*
1822 * set the flushing flag so procs in this transaction have to
1823 * start sending their work down.
1824 */
1825 cur_trans->delayed_refs.flushing = 1;
1826 smp_wmb();
1827
1828 if (!list_empty(&trans->new_bgs))
1829 btrfs_create_pending_block_groups(trans, root);
1830
1831 ret = btrfs_run_delayed_refs(trans, root, 0);
1832 if (ret) {
1833 btrfs_end_transaction(trans, root);
1834 return ret;
1835 }
1836
1837 if (!cur_trans->dirty_bg_run) {
1838 int run_it = 0;
1839
1840 /* this mutex is also taken before trying to set
1841 * block groups readonly. We need to make sure
1842 * that nobody has set a block group readonly
1843 * after a extents from that block group have been
1844 * allocated for cache files. btrfs_set_block_group_ro
1845 * will wait for the transaction to commit if it
1846 * finds dirty_bg_run = 1
1847 *
1848 * The dirty_bg_run flag is also used to make sure only
1849 * one process starts all the block group IO. It wouldn't
1850 * hurt to have more than one go through, but there's no
1851 * real advantage to it either.
1852 */
1853 mutex_lock(&root->fs_info->ro_block_group_mutex);
1854 if (!cur_trans->dirty_bg_run) {
1855 run_it = 1;
1856 cur_trans->dirty_bg_run = 1;
1857 }
1858 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1859
1860 if (run_it)
1861 ret = btrfs_start_dirty_block_groups(trans, root);
1862 }
1863 if (ret) {
1864 btrfs_end_transaction(trans, root);
1865 return ret;
1866 }
1867
1868 spin_lock(&root->fs_info->trans_lock);
1869 list_splice(&trans->ordered, &cur_trans->pending_ordered);
1870 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1871 spin_unlock(&root->fs_info->trans_lock);
1872 atomic_inc(&cur_trans->use_count);
1873 ret = btrfs_end_transaction(trans, root);
1874
1875 wait_for_commit(root, cur_trans);
1876
1877 if (unlikely(cur_trans->aborted))
1878 ret = cur_trans->aborted;
1879
1880 btrfs_put_transaction(cur_trans);
1881
1882 return ret;
1883 }
1884
1885 cur_trans->state = TRANS_STATE_COMMIT_START;
1886 wake_up(&root->fs_info->transaction_blocked_wait);
1887
1888 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1889 prev_trans = list_entry(cur_trans->list.prev,
1890 struct btrfs_transaction, list);
1891 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1892 atomic_inc(&prev_trans->use_count);
1893 spin_unlock(&root->fs_info->trans_lock);
1894
1895 wait_for_commit(root, prev_trans);
1896
1897 btrfs_put_transaction(prev_trans);
1898 } else {
1899 spin_unlock(&root->fs_info->trans_lock);
1900 }
1901 } else {
1902 spin_unlock(&root->fs_info->trans_lock);
1903 }
1904
1905 extwriter_counter_dec(cur_trans, trans->type);
1906
1907 ret = btrfs_start_delalloc_flush(root->fs_info);
1908 if (ret)
1909 goto cleanup_transaction;
1910
1911 ret = btrfs_run_delayed_items(trans, root);
1912 if (ret)
1913 goto cleanup_transaction;
1914
1915 wait_event(cur_trans->writer_wait,
1916 extwriter_counter_read(cur_trans) == 0);
1917
1918 /* some pending stuffs might be added after the previous flush. */
1919 ret = btrfs_run_delayed_items(trans, root);
1920 if (ret)
1921 goto cleanup_transaction;
1922
1923 btrfs_wait_delalloc_flush(root->fs_info);
1924
1925 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1926
1927 btrfs_scrub_pause(root);
1928 /*
1929 * Ok now we need to make sure to block out any other joins while we
1930 * commit the transaction. We could have started a join before setting
1931 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1932 */
1933 spin_lock(&root->fs_info->trans_lock);
1934 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1935 spin_unlock(&root->fs_info->trans_lock);
1936 wait_event(cur_trans->writer_wait,
1937 atomic_read(&cur_trans->num_writers) == 1);
1938
1939 /* ->aborted might be set after the previous check, so check it */
1940 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1941 ret = cur_trans->aborted;
1942 goto scrub_continue;
1943 }
1944 /*
1945 * the reloc mutex makes sure that we stop
1946 * the balancing code from coming in and moving
1947 * extents around in the middle of the commit
1948 */
1949 mutex_lock(&root->fs_info->reloc_mutex);
1950
1951 /*
1952 * We needn't worry about the delayed items because we will
1953 * deal with them in create_pending_snapshot(), which is the
1954 * core function of the snapshot creation.
1955 */
1956 ret = create_pending_snapshots(trans, root->fs_info);
1957 if (ret) {
1958 mutex_unlock(&root->fs_info->reloc_mutex);
1959 goto scrub_continue;
1960 }
1961
1962 /*
1963 * We insert the dir indexes of the snapshots and update the inode
1964 * of the snapshots' parents after the snapshot creation, so there
1965 * are some delayed items which are not dealt with. Now deal with
1966 * them.
1967 *
1968 * We needn't worry that this operation will corrupt the snapshots,
1969 * because all the tree which are snapshoted will be forced to COW
1970 * the nodes and leaves.
1971 */
1972 ret = btrfs_run_delayed_items(trans, root);
1973 if (ret) {
1974 mutex_unlock(&root->fs_info->reloc_mutex);
1975 goto scrub_continue;
1976 }
1977
1978 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1979 if (ret) {
1980 mutex_unlock(&root->fs_info->reloc_mutex);
1981 goto scrub_continue;
1982 }
1983
1984 /* Reocrd old roots for later qgroup accounting */
1985 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1986 if (ret) {
1987 mutex_unlock(&root->fs_info->reloc_mutex);
1988 goto scrub_continue;
1989 }
1990
1991 /*
1992 * make sure none of the code above managed to slip in a
1993 * delayed item
1994 */
1995 btrfs_assert_delayed_root_empty(root);
1996
1997 WARN_ON(cur_trans != trans->transaction);
1998
1999 /* btrfs_commit_tree_roots is responsible for getting the
2000 * various roots consistent with each other. Every pointer
2001 * in the tree of tree roots has to point to the most up to date
2002 * root for every subvolume and other tree. So, we have to keep
2003 * the tree logging code from jumping in and changing any
2004 * of the trees.
2005 *
2006 * At this point in the commit, there can't be any tree-log
2007 * writers, but a little lower down we drop the trans mutex
2008 * and let new people in. By holding the tree_log_mutex
2009 * from now until after the super is written, we avoid races
2010 * with the tree-log code.
2011 */
2012 mutex_lock(&root->fs_info->tree_log_mutex);
2013
2014 ret = commit_fs_roots(trans, root);
2015 if (ret) {
2016 mutex_unlock(&root->fs_info->tree_log_mutex);
2017 mutex_unlock(&root->fs_info->reloc_mutex);
2018 goto scrub_continue;
2019 }
2020
2021 /*
2022 * Since the transaction is done, we can apply the pending changes
2023 * before the next transaction.
2024 */
2025 btrfs_apply_pending_changes(root->fs_info);
2026
2027 /* commit_fs_roots gets rid of all the tree log roots, it is now
2028 * safe to free the root of tree log roots
2029 */
2030 btrfs_free_log_root_tree(trans, root->fs_info);
2031
2032 /*
2033 * Since fs roots are all committed, we can get a quite accurate
2034 * new_roots. So let's do quota accounting.
2035 */
2036 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2037 if (ret < 0) {
2038 mutex_unlock(&root->fs_info->tree_log_mutex);
2039 mutex_unlock(&root->fs_info->reloc_mutex);
2040 goto scrub_continue;
2041 }
2042
2043 ret = commit_cowonly_roots(trans, root);
2044 if (ret) {
2045 mutex_unlock(&root->fs_info->tree_log_mutex);
2046 mutex_unlock(&root->fs_info->reloc_mutex);
2047 goto scrub_continue;
2048 }
2049
2050 /*
2051 * The tasks which save the space cache and inode cache may also
2052 * update ->aborted, check it.
2053 */
2054 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2055 ret = cur_trans->aborted;
2056 mutex_unlock(&root->fs_info->tree_log_mutex);
2057 mutex_unlock(&root->fs_info->reloc_mutex);
2058 goto scrub_continue;
2059 }
2060
2061 btrfs_prepare_extent_commit(trans, root);
2062
2063 cur_trans = root->fs_info->running_transaction;
2064
2065 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2066 root->fs_info->tree_root->node);
2067 list_add_tail(&root->fs_info->tree_root->dirty_list,
2068 &cur_trans->switch_commits);
2069
2070 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2071 root->fs_info->chunk_root->node);
2072 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2073 &cur_trans->switch_commits);
2074
2075 switch_commit_roots(cur_trans, root->fs_info);
2076
2077 assert_qgroups_uptodate(trans);
2078 ASSERT(list_empty(&cur_trans->dirty_bgs));
2079 ASSERT(list_empty(&cur_trans->io_bgs));
2080 update_super_roots(root);
2081
2082 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2083 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2084 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2085 sizeof(*root->fs_info->super_copy));
2086
2087 btrfs_update_commit_device_size(root->fs_info);
2088 btrfs_update_commit_device_bytes_used(root, cur_trans);
2089
2090 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2091 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2092
2093 btrfs_trans_release_chunk_metadata(trans);
2094
2095 spin_lock(&root->fs_info->trans_lock);
2096 cur_trans->state = TRANS_STATE_UNBLOCKED;
2097 root->fs_info->running_transaction = NULL;
2098 spin_unlock(&root->fs_info->trans_lock);
2099 mutex_unlock(&root->fs_info->reloc_mutex);
2100
2101 wake_up(&root->fs_info->transaction_wait);
2102
2103 ret = btrfs_write_and_wait_transaction(trans, root);
2104 if (ret) {
2105 btrfs_error(root->fs_info, ret,
2106 "Error while writing out transaction");
2107 mutex_unlock(&root->fs_info->tree_log_mutex);
2108 goto scrub_continue;
2109 }
2110
2111 ret = write_ctree_super(trans, root, 0);
2112 if (ret) {
2113 mutex_unlock(&root->fs_info->tree_log_mutex);
2114 goto scrub_continue;
2115 }
2116
2117 /*
2118 * the super is written, we can safely allow the tree-loggers
2119 * to go about their business
2120 */
2121 mutex_unlock(&root->fs_info->tree_log_mutex);
2122
2123 btrfs_finish_extent_commit(trans, root);
2124
2125 if (cur_trans->have_free_bgs)
2126 btrfs_clear_space_info_full(root->fs_info);
2127
2128 root->fs_info->last_trans_committed = cur_trans->transid;
2129 /*
2130 * We needn't acquire the lock here because there is no other task
2131 * which can change it.
2132 */
2133 cur_trans->state = TRANS_STATE_COMPLETED;
2134 wake_up(&cur_trans->commit_wait);
2135
2136 spin_lock(&root->fs_info->trans_lock);
2137 list_del_init(&cur_trans->list);
2138 spin_unlock(&root->fs_info->trans_lock);
2139
2140 btrfs_put_transaction(cur_trans);
2141 btrfs_put_transaction(cur_trans);
2142
2143 if (trans->type & __TRANS_FREEZABLE)
2144 sb_end_intwrite(root->fs_info->sb);
2145
2146 trace_btrfs_transaction_commit(root);
2147
2148 btrfs_scrub_continue(root);
2149
2150 if (current->journal_info == trans)
2151 current->journal_info = NULL;
2152
2153 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2154
2155 if (current != root->fs_info->transaction_kthread)
2156 btrfs_run_delayed_iputs(root);
2157
2158 return ret;
2159
2160 scrub_continue:
2161 btrfs_scrub_continue(root);
2162 cleanup_transaction:
2163 btrfs_trans_release_metadata(trans, root);
2164 btrfs_trans_release_chunk_metadata(trans);
2165 trans->block_rsv = NULL;
2166 if (trans->qgroup_reserved) {
2167 btrfs_qgroup_free(root, trans->qgroup_reserved);
2168 trans->qgroup_reserved = 0;
2169 }
2170 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2171 if (current->journal_info == trans)
2172 current->journal_info = NULL;
2173 cleanup_transaction(trans, root, ret);
2174
2175 return ret;
2176 }
2177
2178 /*
2179 * return < 0 if error
2180 * 0 if there are no more dead_roots at the time of call
2181 * 1 there are more to be processed, call me again
2182 *
2183 * The return value indicates there are certainly more snapshots to delete, but
2184 * if there comes a new one during processing, it may return 0. We don't mind,
2185 * because btrfs_commit_super will poke cleaner thread and it will process it a
2186 * few seconds later.
2187 */
2188 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2189 {
2190 int ret;
2191 struct btrfs_fs_info *fs_info = root->fs_info;
2192
2193 spin_lock(&fs_info->trans_lock);
2194 if (list_empty(&fs_info->dead_roots)) {
2195 spin_unlock(&fs_info->trans_lock);
2196 return 0;
2197 }
2198 root = list_first_entry(&fs_info->dead_roots,
2199 struct btrfs_root, root_list);
2200 list_del_init(&root->root_list);
2201 spin_unlock(&fs_info->trans_lock);
2202
2203 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2204
2205 btrfs_kill_all_delayed_nodes(root);
2206
2207 if (btrfs_header_backref_rev(root->node) <
2208 BTRFS_MIXED_BACKREF_REV)
2209 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2210 else
2211 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2212
2213 return (ret < 0) ? 0 : 1;
2214 }
2215
2216 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2217 {
2218 unsigned long prev;
2219 unsigned long bit;
2220
2221 prev = xchg(&fs_info->pending_changes, 0);
2222 if (!prev)
2223 return;
2224
2225 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2226 if (prev & bit)
2227 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2228 prev &= ~bit;
2229
2230 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2231 if (prev & bit)
2232 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2233 prev &= ~bit;
2234
2235 bit = 1 << BTRFS_PENDING_COMMIT;
2236 if (prev & bit)
2237 btrfs_debug(fs_info, "pending commit done");
2238 prev &= ~bit;
2239
2240 if (prev)
2241 btrfs_warn(fs_info,
2242 "unknown pending changes left 0x%lx, ignoring", prev);
2243 }