]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/btrfs/tree-log.c
btrfs: scrub
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28
29 /* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37
38 /*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
81 /*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
105
106 /*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
129 /*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136 {
137 int ret;
138 int err = 0;
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
161 }
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
166 }
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
172 }
173
174 /*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
191 }
192 mutex_unlock(&root->log_mutex);
193 return ret;
194 }
195
196 /*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209 }
210
211 /*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
222 return 0;
223 }
224
225
226 /*
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
231 */
232 struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
235 */
236 int free;
237
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
240 */
241 int write;
242
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
245 */
246 int wait;
247
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
250 */
251 int pin;
252
253 /* what stage of the replay code we're currently in */
254 int stage;
255
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
258
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
261
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
266 */
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
269 };
270
271 /*
272 * process_func used to pin down extents, write them or wait on them
273 */
274 static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
277 {
278 if (wc->pin)
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289 }
290
291 /*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310 {
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(root, path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(root, path);
365 return 0;
366 }
367
368 }
369 insert:
370 btrfs_release_path(root, path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
385 BUG_ON(ret);
386 }
387 } else if (ret) {
388 return ret;
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439 no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(root, path);
442 return 0;
443 }
444
445 /*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451 {
452 struct btrfs_key key;
453 struct inode *inode;
454
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466 }
467
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485 {
486 int found_type;
487 u64 mask = root->sectorsize - 1;
488 u64 extent_end;
489 u64 alloc_hint;
490 u64 start = key->offset;
491 u64 saved_nbytes;
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
496
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
499
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 size = btrfs_file_extent_inline_len(eb, item);
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
509 }
510
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
515 }
516
517 /*
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
521 */
522 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
523 start, 0);
524
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
532
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
536
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
541
542 /*
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
545 */
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 btrfs_release_path(root, path);
548 goto out;
549 }
550 }
551 btrfs_release_path(root, path);
552
553 saved_nbytes = inode_get_bytes(inode);
554 /* drop any overlapping extents */
555 ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 &alloc_hint, 1);
557 BUG_ON(ret);
558
559 if (found_type == BTRFS_FILE_EXTENT_REG ||
560 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
561 u64 offset;
562 unsigned long dest_offset;
563 struct btrfs_key ins;
564
565 ret = btrfs_insert_empty_item(trans, root, path, key,
566 sizeof(*item));
567 BUG_ON(ret);
568 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 path->slots[0]);
570 copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 (unsigned long)item, sizeof(*item));
572
573 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 ins.type = BTRFS_EXTENT_ITEM_KEY;
576 offset = key->offset - btrfs_file_extent_offset(eb, item);
577
578 if (ins.objectid > 0) {
579 u64 csum_start;
580 u64 csum_end;
581 LIST_HEAD(ordered_sums);
582 /*
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
585 */
586 ret = btrfs_lookup_extent(root, ins.objectid,
587 ins.offset);
588 if (ret == 0) {
589 ret = btrfs_inc_extent_ref(trans, root,
590 ins.objectid, ins.offset,
591 0, root->root_key.objectid,
592 key->objectid, offset);
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
601 BUG_ON(ret);
602 }
603 btrfs_release_path(root, path);
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums, 0);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
632 btrfs_release_path(root, path);
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
639
640 inode_set_bytes(inode, saved_nbytes);
641 btrfs_update_inode(trans, root, inode);
642 out:
643 if (inode)
644 iput(inode);
645 return ret;
646 }
647
648 /*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661 {
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
674 if (!name)
675 return -ENOMEM;
676
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(root, path);
679
680 inode = read_one_inode(root, location.objectid);
681 BUG_ON(!inode);
682
683 ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 BUG_ON(ret);
685
686 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
687 BUG_ON(ret);
688 kfree(name);
689
690 iput(inode);
691 return ret;
692 }
693
694 /*
695 * helper function to see if a given name and sequence number found
696 * in an inode back reference are already in a directory and correctly
697 * point to this inode
698 */
699 static noinline int inode_in_dir(struct btrfs_root *root,
700 struct btrfs_path *path,
701 u64 dirid, u64 objectid, u64 index,
702 const char *name, int name_len)
703 {
704 struct btrfs_dir_item *di;
705 struct btrfs_key location;
706 int match = 0;
707
708 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 index, name, name_len, 0);
710 if (di && !IS_ERR(di)) {
711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 if (location.objectid != objectid)
713 goto out;
714 } else
715 goto out;
716 btrfs_release_path(root, path);
717
718 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 if (di && !IS_ERR(di)) {
720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 if (location.objectid != objectid)
722 goto out;
723 } else
724 goto out;
725 match = 1;
726 out:
727 btrfs_release_path(root, path);
728 return match;
729 }
730
731 /*
732 * helper function to check a log tree for a named back reference in
733 * an inode. This is used to decide if a back reference that is
734 * found in the subvolume conflicts with what we find in the log.
735 *
736 * inode backreferences may have multiple refs in a single item,
737 * during replay we process one reference at a time, and we don't
738 * want to delete valid links to a file from the subvolume if that
739 * link is also in the log.
740 */
741 static noinline int backref_in_log(struct btrfs_root *log,
742 struct btrfs_key *key,
743 char *name, int namelen)
744 {
745 struct btrfs_path *path;
746 struct btrfs_inode_ref *ref;
747 unsigned long ptr;
748 unsigned long ptr_end;
749 unsigned long name_ptr;
750 int found_name_len;
751 int item_size;
752 int ret;
753 int match = 0;
754
755 path = btrfs_alloc_path();
756 if (!path)
757 return -ENOMEM;
758
759 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 if (ret != 0)
761 goto out;
762
763 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 ptr_end = ptr + item_size;
766 while (ptr < ptr_end) {
767 ref = (struct btrfs_inode_ref *)ptr;
768 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 if (found_name_len == namelen) {
770 name_ptr = (unsigned long)(ref + 1);
771 ret = memcmp_extent_buffer(path->nodes[0], name,
772 name_ptr, namelen);
773 if (ret == 0) {
774 match = 1;
775 goto out;
776 }
777 }
778 ptr = (unsigned long)(ref + 1) + found_name_len;
779 }
780 out:
781 btrfs_free_path(path);
782 return match;
783 }
784
785
786 /*
787 * replay one inode back reference item found in the log tree.
788 * eb, slot and key refer to the buffer and key found in the log tree.
789 * root is the destination we are replaying into, and path is for temp
790 * use by this function. (it should be released on return).
791 */
792 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root,
794 struct btrfs_root *log,
795 struct btrfs_path *path,
796 struct extent_buffer *eb, int slot,
797 struct btrfs_key *key)
798 {
799 struct inode *dir;
800 int ret;
801 struct btrfs_inode_ref *ref;
802 struct inode *inode;
803 char *name;
804 int namelen;
805 unsigned long ref_ptr;
806 unsigned long ref_end;
807 int search_done = 0;
808
809 /*
810 * it is possible that we didn't log all the parent directories
811 * for a given inode. If we don't find the dir, just don't
812 * copy the back ref in. The link count fixup code will take
813 * care of the rest
814 */
815 dir = read_one_inode(root, key->offset);
816 if (!dir)
817 return -ENOENT;
818
819 inode = read_one_inode(root, key->objectid);
820 BUG_ON(!inode);
821
822 ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
824
825 again:
826 ref = (struct btrfs_inode_ref *)ref_ptr;
827
828 namelen = btrfs_inode_ref_name_len(eb, ref);
829 name = kmalloc(namelen, GFP_NOFS);
830 BUG_ON(!name);
831
832 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
833
834 /* if we already have a perfect match, we're done */
835 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
836 btrfs_inode_ref_index(eb, ref),
837 name, namelen)) {
838 goto out;
839 }
840
841 /*
842 * look for a conflicting back reference in the metadata.
843 * if we find one we have to unlink that name of the file
844 * before we add our new link. Later on, we overwrite any
845 * existing back reference, and we don't want to create
846 * dangling pointers in the directory.
847 */
848
849 if (search_done)
850 goto insert;
851
852 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
853 if (ret == 0) {
854 char *victim_name;
855 int victim_name_len;
856 struct btrfs_inode_ref *victim_ref;
857 unsigned long ptr;
858 unsigned long ptr_end;
859 struct extent_buffer *leaf = path->nodes[0];
860
861 /* are we trying to overwrite a back ref for the root directory
862 * if so, just jump out, we're done
863 */
864 if (key->objectid == key->offset)
865 goto out_nowrite;
866
867 /* check all the names in this back reference to see
868 * if they are in the log. if so, we allow them to stay
869 * otherwise they must be unlinked as a conflict
870 */
871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
872 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
873 while (ptr < ptr_end) {
874 victim_ref = (struct btrfs_inode_ref *)ptr;
875 victim_name_len = btrfs_inode_ref_name_len(leaf,
876 victim_ref);
877 victim_name = kmalloc(victim_name_len, GFP_NOFS);
878 BUG_ON(!victim_name);
879
880 read_extent_buffer(leaf, victim_name,
881 (unsigned long)(victim_ref + 1),
882 victim_name_len);
883
884 if (!backref_in_log(log, key, victim_name,
885 victim_name_len)) {
886 btrfs_inc_nlink(inode);
887 btrfs_release_path(root, path);
888
889 ret = btrfs_unlink_inode(trans, root, dir,
890 inode, victim_name,
891 victim_name_len);
892 }
893 kfree(victim_name);
894 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
895 }
896 BUG_ON(ret);
897
898 /*
899 * NOTE: we have searched root tree and checked the
900 * coresponding ref, it does not need to check again.
901 */
902 search_done = 1;
903 }
904 btrfs_release_path(root, path);
905
906 insert:
907 /* insert our name */
908 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
909 btrfs_inode_ref_index(eb, ref));
910 BUG_ON(ret);
911
912 btrfs_update_inode(trans, root, inode);
913
914 out:
915 ref_ptr = (unsigned long)(ref + 1) + namelen;
916 kfree(name);
917 if (ref_ptr < ref_end)
918 goto again;
919
920 /* finally write the back reference in the inode */
921 ret = overwrite_item(trans, root, path, eb, slot, key);
922 BUG_ON(ret);
923
924 out_nowrite:
925 btrfs_release_path(root, path);
926 iput(dir);
927 iput(inode);
928 return 0;
929 }
930
931 static int insert_orphan_item(struct btrfs_trans_handle *trans,
932 struct btrfs_root *root, u64 offset)
933 {
934 int ret;
935 ret = btrfs_find_orphan_item(root, offset);
936 if (ret > 0)
937 ret = btrfs_insert_orphan_item(trans, root, offset);
938 return ret;
939 }
940
941
942 /*
943 * There are a few corners where the link count of the file can't
944 * be properly maintained during replay. So, instead of adding
945 * lots of complexity to the log code, we just scan the backrefs
946 * for any file that has been through replay.
947 *
948 * The scan will update the link count on the inode to reflect the
949 * number of back refs found. If it goes down to zero, the iput
950 * will free the inode.
951 */
952 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
953 struct btrfs_root *root,
954 struct inode *inode)
955 {
956 struct btrfs_path *path;
957 int ret;
958 struct btrfs_key key;
959 u64 nlink = 0;
960 unsigned long ptr;
961 unsigned long ptr_end;
962 int name_len;
963
964 key.objectid = inode->i_ino;
965 key.type = BTRFS_INODE_REF_KEY;
966 key.offset = (u64)-1;
967
968 path = btrfs_alloc_path();
969 if (!path)
970 return -ENOMEM;
971
972 while (1) {
973 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
974 if (ret < 0)
975 break;
976 if (ret > 0) {
977 if (path->slots[0] == 0)
978 break;
979 path->slots[0]--;
980 }
981 btrfs_item_key_to_cpu(path->nodes[0], &key,
982 path->slots[0]);
983 if (key.objectid != inode->i_ino ||
984 key.type != BTRFS_INODE_REF_KEY)
985 break;
986 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
987 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
988 path->slots[0]);
989 while (ptr < ptr_end) {
990 struct btrfs_inode_ref *ref;
991
992 ref = (struct btrfs_inode_ref *)ptr;
993 name_len = btrfs_inode_ref_name_len(path->nodes[0],
994 ref);
995 ptr = (unsigned long)(ref + 1) + name_len;
996 nlink++;
997 }
998
999 if (key.offset == 0)
1000 break;
1001 key.offset--;
1002 btrfs_release_path(root, path);
1003 }
1004 btrfs_release_path(root, path);
1005 if (nlink != inode->i_nlink) {
1006 inode->i_nlink = nlink;
1007 btrfs_update_inode(trans, root, inode);
1008 }
1009 BTRFS_I(inode)->index_cnt = (u64)-1;
1010
1011 if (inode->i_nlink == 0) {
1012 if (S_ISDIR(inode->i_mode)) {
1013 ret = replay_dir_deletes(trans, root, NULL, path,
1014 inode->i_ino, 1);
1015 BUG_ON(ret);
1016 }
1017 ret = insert_orphan_item(trans, root, inode->i_ino);
1018 BUG_ON(ret);
1019 }
1020 btrfs_free_path(path);
1021
1022 return 0;
1023 }
1024
1025 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1026 struct btrfs_root *root,
1027 struct btrfs_path *path)
1028 {
1029 int ret;
1030 struct btrfs_key key;
1031 struct inode *inode;
1032
1033 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1034 key.type = BTRFS_ORPHAN_ITEM_KEY;
1035 key.offset = (u64)-1;
1036 while (1) {
1037 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1038 if (ret < 0)
1039 break;
1040
1041 if (ret == 1) {
1042 if (path->slots[0] == 0)
1043 break;
1044 path->slots[0]--;
1045 }
1046
1047 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1048 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1049 key.type != BTRFS_ORPHAN_ITEM_KEY)
1050 break;
1051
1052 ret = btrfs_del_item(trans, root, path);
1053 BUG_ON(ret);
1054
1055 btrfs_release_path(root, path);
1056 inode = read_one_inode(root, key.offset);
1057 BUG_ON(!inode);
1058
1059 ret = fixup_inode_link_count(trans, root, inode);
1060 BUG_ON(ret);
1061
1062 iput(inode);
1063
1064 /*
1065 * fixup on a directory may create new entries,
1066 * make sure we always look for the highset possible
1067 * offset
1068 */
1069 key.offset = (u64)-1;
1070 }
1071 btrfs_release_path(root, path);
1072 return 0;
1073 }
1074
1075
1076 /*
1077 * record a given inode in the fixup dir so we can check its link
1078 * count when replay is done. The link count is incremented here
1079 * so the inode won't go away until we check it
1080 */
1081 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1082 struct btrfs_root *root,
1083 struct btrfs_path *path,
1084 u64 objectid)
1085 {
1086 struct btrfs_key key;
1087 int ret = 0;
1088 struct inode *inode;
1089
1090 inode = read_one_inode(root, objectid);
1091 BUG_ON(!inode);
1092
1093 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1094 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1095 key.offset = objectid;
1096
1097 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1098
1099 btrfs_release_path(root, path);
1100 if (ret == 0) {
1101 btrfs_inc_nlink(inode);
1102 btrfs_update_inode(trans, root, inode);
1103 } else if (ret == -EEXIST) {
1104 ret = 0;
1105 } else {
1106 BUG();
1107 }
1108 iput(inode);
1109
1110 return ret;
1111 }
1112
1113 /*
1114 * when replaying the log for a directory, we only insert names
1115 * for inodes that actually exist. This means an fsync on a directory
1116 * does not implicitly fsync all the new files in it
1117 */
1118 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1119 struct btrfs_root *root,
1120 struct btrfs_path *path,
1121 u64 dirid, u64 index,
1122 char *name, int name_len, u8 type,
1123 struct btrfs_key *location)
1124 {
1125 struct inode *inode;
1126 struct inode *dir;
1127 int ret;
1128
1129 inode = read_one_inode(root, location->objectid);
1130 if (!inode)
1131 return -ENOENT;
1132
1133 dir = read_one_inode(root, dirid);
1134 if (!dir) {
1135 iput(inode);
1136 return -EIO;
1137 }
1138 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1139
1140 /* FIXME, put inode into FIXUP list */
1141
1142 iput(inode);
1143 iput(dir);
1144 return ret;
1145 }
1146
1147 /*
1148 * take a single entry in a log directory item and replay it into
1149 * the subvolume.
1150 *
1151 * if a conflicting item exists in the subdirectory already,
1152 * the inode it points to is unlinked and put into the link count
1153 * fix up tree.
1154 *
1155 * If a name from the log points to a file or directory that does
1156 * not exist in the FS, it is skipped. fsyncs on directories
1157 * do not force down inodes inside that directory, just changes to the
1158 * names or unlinks in a directory.
1159 */
1160 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *root,
1162 struct btrfs_path *path,
1163 struct extent_buffer *eb,
1164 struct btrfs_dir_item *di,
1165 struct btrfs_key *key)
1166 {
1167 char *name;
1168 int name_len;
1169 struct btrfs_dir_item *dst_di;
1170 struct btrfs_key found_key;
1171 struct btrfs_key log_key;
1172 struct inode *dir;
1173 u8 log_type;
1174 int exists;
1175 int ret;
1176
1177 dir = read_one_inode(root, key->objectid);
1178 BUG_ON(!dir);
1179
1180 name_len = btrfs_dir_name_len(eb, di);
1181 name = kmalloc(name_len, GFP_NOFS);
1182 if (!name)
1183 return -ENOMEM;
1184
1185 log_type = btrfs_dir_type(eb, di);
1186 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1187 name_len);
1188
1189 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1190 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1191 if (exists == 0)
1192 exists = 1;
1193 else
1194 exists = 0;
1195 btrfs_release_path(root, path);
1196
1197 if (key->type == BTRFS_DIR_ITEM_KEY) {
1198 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1199 name, name_len, 1);
1200 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1201 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1202 key->objectid,
1203 key->offset, name,
1204 name_len, 1);
1205 } else {
1206 BUG();
1207 }
1208 if (!dst_di || IS_ERR(dst_di)) {
1209 /* we need a sequence number to insert, so we only
1210 * do inserts for the BTRFS_DIR_INDEX_KEY types
1211 */
1212 if (key->type != BTRFS_DIR_INDEX_KEY)
1213 goto out;
1214 goto insert;
1215 }
1216
1217 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1218 /* the existing item matches the logged item */
1219 if (found_key.objectid == log_key.objectid &&
1220 found_key.type == log_key.type &&
1221 found_key.offset == log_key.offset &&
1222 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1223 goto out;
1224 }
1225
1226 /*
1227 * don't drop the conflicting directory entry if the inode
1228 * for the new entry doesn't exist
1229 */
1230 if (!exists)
1231 goto out;
1232
1233 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1234 BUG_ON(ret);
1235
1236 if (key->type == BTRFS_DIR_INDEX_KEY)
1237 goto insert;
1238 out:
1239 btrfs_release_path(root, path);
1240 kfree(name);
1241 iput(dir);
1242 return 0;
1243
1244 insert:
1245 btrfs_release_path(root, path);
1246 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1247 name, name_len, log_type, &log_key);
1248
1249 BUG_ON(ret && ret != -ENOENT);
1250 goto out;
1251 }
1252
1253 /*
1254 * find all the names in a directory item and reconcile them into
1255 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1256 * one name in a directory item, but the same code gets used for
1257 * both directory index types
1258 */
1259 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1260 struct btrfs_root *root,
1261 struct btrfs_path *path,
1262 struct extent_buffer *eb, int slot,
1263 struct btrfs_key *key)
1264 {
1265 int ret;
1266 u32 item_size = btrfs_item_size_nr(eb, slot);
1267 struct btrfs_dir_item *di;
1268 int name_len;
1269 unsigned long ptr;
1270 unsigned long ptr_end;
1271
1272 ptr = btrfs_item_ptr_offset(eb, slot);
1273 ptr_end = ptr + item_size;
1274 while (ptr < ptr_end) {
1275 di = (struct btrfs_dir_item *)ptr;
1276 if (verify_dir_item(root, eb, di))
1277 return -EIO;
1278 name_len = btrfs_dir_name_len(eb, di);
1279 ret = replay_one_name(trans, root, path, eb, di, key);
1280 BUG_ON(ret);
1281 ptr = (unsigned long)(di + 1);
1282 ptr += name_len;
1283 }
1284 return 0;
1285 }
1286
1287 /*
1288 * directory replay has two parts. There are the standard directory
1289 * items in the log copied from the subvolume, and range items
1290 * created in the log while the subvolume was logged.
1291 *
1292 * The range items tell us which parts of the key space the log
1293 * is authoritative for. During replay, if a key in the subvolume
1294 * directory is in a logged range item, but not actually in the log
1295 * that means it was deleted from the directory before the fsync
1296 * and should be removed.
1297 */
1298 static noinline int find_dir_range(struct btrfs_root *root,
1299 struct btrfs_path *path,
1300 u64 dirid, int key_type,
1301 u64 *start_ret, u64 *end_ret)
1302 {
1303 struct btrfs_key key;
1304 u64 found_end;
1305 struct btrfs_dir_log_item *item;
1306 int ret;
1307 int nritems;
1308
1309 if (*start_ret == (u64)-1)
1310 return 1;
1311
1312 key.objectid = dirid;
1313 key.type = key_type;
1314 key.offset = *start_ret;
1315
1316 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1317 if (ret < 0)
1318 goto out;
1319 if (ret > 0) {
1320 if (path->slots[0] == 0)
1321 goto out;
1322 path->slots[0]--;
1323 }
1324 if (ret != 0)
1325 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1326
1327 if (key.type != key_type || key.objectid != dirid) {
1328 ret = 1;
1329 goto next;
1330 }
1331 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1332 struct btrfs_dir_log_item);
1333 found_end = btrfs_dir_log_end(path->nodes[0], item);
1334
1335 if (*start_ret >= key.offset && *start_ret <= found_end) {
1336 ret = 0;
1337 *start_ret = key.offset;
1338 *end_ret = found_end;
1339 goto out;
1340 }
1341 ret = 1;
1342 next:
1343 /* check the next slot in the tree to see if it is a valid item */
1344 nritems = btrfs_header_nritems(path->nodes[0]);
1345 if (path->slots[0] >= nritems) {
1346 ret = btrfs_next_leaf(root, path);
1347 if (ret)
1348 goto out;
1349 } else {
1350 path->slots[0]++;
1351 }
1352
1353 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1354
1355 if (key.type != key_type || key.objectid != dirid) {
1356 ret = 1;
1357 goto out;
1358 }
1359 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1360 struct btrfs_dir_log_item);
1361 found_end = btrfs_dir_log_end(path->nodes[0], item);
1362 *start_ret = key.offset;
1363 *end_ret = found_end;
1364 ret = 0;
1365 out:
1366 btrfs_release_path(root, path);
1367 return ret;
1368 }
1369
1370 /*
1371 * this looks for a given directory item in the log. If the directory
1372 * item is not in the log, the item is removed and the inode it points
1373 * to is unlinked
1374 */
1375 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1376 struct btrfs_root *root,
1377 struct btrfs_root *log,
1378 struct btrfs_path *path,
1379 struct btrfs_path *log_path,
1380 struct inode *dir,
1381 struct btrfs_key *dir_key)
1382 {
1383 int ret;
1384 struct extent_buffer *eb;
1385 int slot;
1386 u32 item_size;
1387 struct btrfs_dir_item *di;
1388 struct btrfs_dir_item *log_di;
1389 int name_len;
1390 unsigned long ptr;
1391 unsigned long ptr_end;
1392 char *name;
1393 struct inode *inode;
1394 struct btrfs_key location;
1395
1396 again:
1397 eb = path->nodes[0];
1398 slot = path->slots[0];
1399 item_size = btrfs_item_size_nr(eb, slot);
1400 ptr = btrfs_item_ptr_offset(eb, slot);
1401 ptr_end = ptr + item_size;
1402 while (ptr < ptr_end) {
1403 di = (struct btrfs_dir_item *)ptr;
1404 if (verify_dir_item(root, eb, di)) {
1405 ret = -EIO;
1406 goto out;
1407 }
1408
1409 name_len = btrfs_dir_name_len(eb, di);
1410 name = kmalloc(name_len, GFP_NOFS);
1411 if (!name) {
1412 ret = -ENOMEM;
1413 goto out;
1414 }
1415 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1416 name_len);
1417 log_di = NULL;
1418 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1419 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1420 dir_key->objectid,
1421 name, name_len, 0);
1422 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1423 log_di = btrfs_lookup_dir_index_item(trans, log,
1424 log_path,
1425 dir_key->objectid,
1426 dir_key->offset,
1427 name, name_len, 0);
1428 }
1429 if (!log_di || IS_ERR(log_di)) {
1430 btrfs_dir_item_key_to_cpu(eb, di, &location);
1431 btrfs_release_path(root, path);
1432 btrfs_release_path(log, log_path);
1433 inode = read_one_inode(root, location.objectid);
1434 BUG_ON(!inode);
1435
1436 ret = link_to_fixup_dir(trans, root,
1437 path, location.objectid);
1438 BUG_ON(ret);
1439 btrfs_inc_nlink(inode);
1440 ret = btrfs_unlink_inode(trans, root, dir, inode,
1441 name, name_len);
1442 BUG_ON(ret);
1443 kfree(name);
1444 iput(inode);
1445
1446 /* there might still be more names under this key
1447 * check and repeat if required
1448 */
1449 ret = btrfs_search_slot(NULL, root, dir_key, path,
1450 0, 0);
1451 if (ret == 0)
1452 goto again;
1453 ret = 0;
1454 goto out;
1455 }
1456 btrfs_release_path(log, log_path);
1457 kfree(name);
1458
1459 ptr = (unsigned long)(di + 1);
1460 ptr += name_len;
1461 }
1462 ret = 0;
1463 out:
1464 btrfs_release_path(root, path);
1465 btrfs_release_path(log, log_path);
1466 return ret;
1467 }
1468
1469 /*
1470 * deletion replay happens before we copy any new directory items
1471 * out of the log or out of backreferences from inodes. It
1472 * scans the log to find ranges of keys that log is authoritative for,
1473 * and then scans the directory to find items in those ranges that are
1474 * not present in the log.
1475 *
1476 * Anything we don't find in the log is unlinked and removed from the
1477 * directory.
1478 */
1479 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1480 struct btrfs_root *root,
1481 struct btrfs_root *log,
1482 struct btrfs_path *path,
1483 u64 dirid, int del_all)
1484 {
1485 u64 range_start;
1486 u64 range_end;
1487 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1488 int ret = 0;
1489 struct btrfs_key dir_key;
1490 struct btrfs_key found_key;
1491 struct btrfs_path *log_path;
1492 struct inode *dir;
1493
1494 dir_key.objectid = dirid;
1495 dir_key.type = BTRFS_DIR_ITEM_KEY;
1496 log_path = btrfs_alloc_path();
1497 if (!log_path)
1498 return -ENOMEM;
1499
1500 dir = read_one_inode(root, dirid);
1501 /* it isn't an error if the inode isn't there, that can happen
1502 * because we replay the deletes before we copy in the inode item
1503 * from the log
1504 */
1505 if (!dir) {
1506 btrfs_free_path(log_path);
1507 return 0;
1508 }
1509 again:
1510 range_start = 0;
1511 range_end = 0;
1512 while (1) {
1513 if (del_all)
1514 range_end = (u64)-1;
1515 else {
1516 ret = find_dir_range(log, path, dirid, key_type,
1517 &range_start, &range_end);
1518 if (ret != 0)
1519 break;
1520 }
1521
1522 dir_key.offset = range_start;
1523 while (1) {
1524 int nritems;
1525 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1526 0, 0);
1527 if (ret < 0)
1528 goto out;
1529
1530 nritems = btrfs_header_nritems(path->nodes[0]);
1531 if (path->slots[0] >= nritems) {
1532 ret = btrfs_next_leaf(root, path);
1533 if (ret)
1534 break;
1535 }
1536 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1537 path->slots[0]);
1538 if (found_key.objectid != dirid ||
1539 found_key.type != dir_key.type)
1540 goto next_type;
1541
1542 if (found_key.offset > range_end)
1543 break;
1544
1545 ret = check_item_in_log(trans, root, log, path,
1546 log_path, dir,
1547 &found_key);
1548 BUG_ON(ret);
1549 if (found_key.offset == (u64)-1)
1550 break;
1551 dir_key.offset = found_key.offset + 1;
1552 }
1553 btrfs_release_path(root, path);
1554 if (range_end == (u64)-1)
1555 break;
1556 range_start = range_end + 1;
1557 }
1558
1559 next_type:
1560 ret = 0;
1561 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1562 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1563 dir_key.type = BTRFS_DIR_INDEX_KEY;
1564 btrfs_release_path(root, path);
1565 goto again;
1566 }
1567 out:
1568 btrfs_release_path(root, path);
1569 btrfs_free_path(log_path);
1570 iput(dir);
1571 return ret;
1572 }
1573
1574 /*
1575 * the process_func used to replay items from the log tree. This
1576 * gets called in two different stages. The first stage just looks
1577 * for inodes and makes sure they are all copied into the subvolume.
1578 *
1579 * The second stage copies all the other item types from the log into
1580 * the subvolume. The two stage approach is slower, but gets rid of
1581 * lots of complexity around inodes referencing other inodes that exist
1582 * only in the log (references come from either directory items or inode
1583 * back refs).
1584 */
1585 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1586 struct walk_control *wc, u64 gen)
1587 {
1588 int nritems;
1589 struct btrfs_path *path;
1590 struct btrfs_root *root = wc->replay_dest;
1591 struct btrfs_key key;
1592 int level;
1593 int i;
1594 int ret;
1595
1596 btrfs_read_buffer(eb, gen);
1597
1598 level = btrfs_header_level(eb);
1599
1600 if (level != 0)
1601 return 0;
1602
1603 path = btrfs_alloc_path();
1604 BUG_ON(!path);
1605
1606 nritems = btrfs_header_nritems(eb);
1607 for (i = 0; i < nritems; i++) {
1608 btrfs_item_key_to_cpu(eb, &key, i);
1609
1610 /* inode keys are done during the first stage */
1611 if (key.type == BTRFS_INODE_ITEM_KEY &&
1612 wc->stage == LOG_WALK_REPLAY_INODES) {
1613 struct btrfs_inode_item *inode_item;
1614 u32 mode;
1615
1616 inode_item = btrfs_item_ptr(eb, i,
1617 struct btrfs_inode_item);
1618 mode = btrfs_inode_mode(eb, inode_item);
1619 if (S_ISDIR(mode)) {
1620 ret = replay_dir_deletes(wc->trans,
1621 root, log, path, key.objectid, 0);
1622 BUG_ON(ret);
1623 }
1624 ret = overwrite_item(wc->trans, root, path,
1625 eb, i, &key);
1626 BUG_ON(ret);
1627
1628 /* for regular files, make sure corresponding
1629 * orhpan item exist. extents past the new EOF
1630 * will be truncated later by orphan cleanup.
1631 */
1632 if (S_ISREG(mode)) {
1633 ret = insert_orphan_item(wc->trans, root,
1634 key.objectid);
1635 BUG_ON(ret);
1636 }
1637
1638 ret = link_to_fixup_dir(wc->trans, root,
1639 path, key.objectid);
1640 BUG_ON(ret);
1641 }
1642 if (wc->stage < LOG_WALK_REPLAY_ALL)
1643 continue;
1644
1645 /* these keys are simply copied */
1646 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1647 ret = overwrite_item(wc->trans, root, path,
1648 eb, i, &key);
1649 BUG_ON(ret);
1650 } else if (key.type == BTRFS_INODE_REF_KEY) {
1651 ret = add_inode_ref(wc->trans, root, log, path,
1652 eb, i, &key);
1653 BUG_ON(ret && ret != -ENOENT);
1654 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1655 ret = replay_one_extent(wc->trans, root, path,
1656 eb, i, &key);
1657 BUG_ON(ret);
1658 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1659 key.type == BTRFS_DIR_INDEX_KEY) {
1660 ret = replay_one_dir_item(wc->trans, root, path,
1661 eb, i, &key);
1662 BUG_ON(ret);
1663 }
1664 }
1665 btrfs_free_path(path);
1666 return 0;
1667 }
1668
1669 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1670 struct btrfs_root *root,
1671 struct btrfs_path *path, int *level,
1672 struct walk_control *wc)
1673 {
1674 u64 root_owner;
1675 u64 bytenr;
1676 u64 ptr_gen;
1677 struct extent_buffer *next;
1678 struct extent_buffer *cur;
1679 struct extent_buffer *parent;
1680 u32 blocksize;
1681 int ret = 0;
1682
1683 WARN_ON(*level < 0);
1684 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1685
1686 while (*level > 0) {
1687 WARN_ON(*level < 0);
1688 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1689 cur = path->nodes[*level];
1690
1691 if (btrfs_header_level(cur) != *level)
1692 WARN_ON(1);
1693
1694 if (path->slots[*level] >=
1695 btrfs_header_nritems(cur))
1696 break;
1697
1698 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1699 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1700 blocksize = btrfs_level_size(root, *level - 1);
1701
1702 parent = path->nodes[*level];
1703 root_owner = btrfs_header_owner(parent);
1704
1705 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1706 if (!next)
1707 return -ENOMEM;
1708
1709 if (*level == 1) {
1710 wc->process_func(root, next, wc, ptr_gen);
1711
1712 path->slots[*level]++;
1713 if (wc->free) {
1714 btrfs_read_buffer(next, ptr_gen);
1715
1716 btrfs_tree_lock(next);
1717 clean_tree_block(trans, root, next);
1718 btrfs_set_lock_blocking(next);
1719 btrfs_wait_tree_block_writeback(next);
1720 btrfs_tree_unlock(next);
1721
1722 WARN_ON(root_owner !=
1723 BTRFS_TREE_LOG_OBJECTID);
1724 ret = btrfs_free_reserved_extent(root,
1725 bytenr, blocksize);
1726 BUG_ON(ret);
1727 }
1728 free_extent_buffer(next);
1729 continue;
1730 }
1731 btrfs_read_buffer(next, ptr_gen);
1732
1733 WARN_ON(*level <= 0);
1734 if (path->nodes[*level-1])
1735 free_extent_buffer(path->nodes[*level-1]);
1736 path->nodes[*level-1] = next;
1737 *level = btrfs_header_level(next);
1738 path->slots[*level] = 0;
1739 cond_resched();
1740 }
1741 WARN_ON(*level < 0);
1742 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1743
1744 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1745
1746 cond_resched();
1747 return 0;
1748 }
1749
1750 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1751 struct btrfs_root *root,
1752 struct btrfs_path *path, int *level,
1753 struct walk_control *wc)
1754 {
1755 u64 root_owner;
1756 int i;
1757 int slot;
1758 int ret;
1759
1760 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1761 slot = path->slots[i];
1762 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1763 path->slots[i]++;
1764 *level = i;
1765 WARN_ON(*level == 0);
1766 return 0;
1767 } else {
1768 struct extent_buffer *parent;
1769 if (path->nodes[*level] == root->node)
1770 parent = path->nodes[*level];
1771 else
1772 parent = path->nodes[*level + 1];
1773
1774 root_owner = btrfs_header_owner(parent);
1775 wc->process_func(root, path->nodes[*level], wc,
1776 btrfs_header_generation(path->nodes[*level]));
1777 if (wc->free) {
1778 struct extent_buffer *next;
1779
1780 next = path->nodes[*level];
1781
1782 btrfs_tree_lock(next);
1783 clean_tree_block(trans, root, next);
1784 btrfs_set_lock_blocking(next);
1785 btrfs_wait_tree_block_writeback(next);
1786 btrfs_tree_unlock(next);
1787
1788 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1789 ret = btrfs_free_reserved_extent(root,
1790 path->nodes[*level]->start,
1791 path->nodes[*level]->len);
1792 BUG_ON(ret);
1793 }
1794 free_extent_buffer(path->nodes[*level]);
1795 path->nodes[*level] = NULL;
1796 *level = i + 1;
1797 }
1798 }
1799 return 1;
1800 }
1801
1802 /*
1803 * drop the reference count on the tree rooted at 'snap'. This traverses
1804 * the tree freeing any blocks that have a ref count of zero after being
1805 * decremented.
1806 */
1807 static int walk_log_tree(struct btrfs_trans_handle *trans,
1808 struct btrfs_root *log, struct walk_control *wc)
1809 {
1810 int ret = 0;
1811 int wret;
1812 int level;
1813 struct btrfs_path *path;
1814 int i;
1815 int orig_level;
1816
1817 path = btrfs_alloc_path();
1818 if (!path)
1819 return -ENOMEM;
1820
1821 level = btrfs_header_level(log->node);
1822 orig_level = level;
1823 path->nodes[level] = log->node;
1824 extent_buffer_get(log->node);
1825 path->slots[level] = 0;
1826
1827 while (1) {
1828 wret = walk_down_log_tree(trans, log, path, &level, wc);
1829 if (wret > 0)
1830 break;
1831 if (wret < 0)
1832 ret = wret;
1833
1834 wret = walk_up_log_tree(trans, log, path, &level, wc);
1835 if (wret > 0)
1836 break;
1837 if (wret < 0)
1838 ret = wret;
1839 }
1840
1841 /* was the root node processed? if not, catch it here */
1842 if (path->nodes[orig_level]) {
1843 wc->process_func(log, path->nodes[orig_level], wc,
1844 btrfs_header_generation(path->nodes[orig_level]));
1845 if (wc->free) {
1846 struct extent_buffer *next;
1847
1848 next = path->nodes[orig_level];
1849
1850 btrfs_tree_lock(next);
1851 clean_tree_block(trans, log, next);
1852 btrfs_set_lock_blocking(next);
1853 btrfs_wait_tree_block_writeback(next);
1854 btrfs_tree_unlock(next);
1855
1856 WARN_ON(log->root_key.objectid !=
1857 BTRFS_TREE_LOG_OBJECTID);
1858 ret = btrfs_free_reserved_extent(log, next->start,
1859 next->len);
1860 BUG_ON(ret);
1861 }
1862 }
1863
1864 for (i = 0; i <= orig_level; i++) {
1865 if (path->nodes[i]) {
1866 free_extent_buffer(path->nodes[i]);
1867 path->nodes[i] = NULL;
1868 }
1869 }
1870 btrfs_free_path(path);
1871 return ret;
1872 }
1873
1874 /*
1875 * helper function to update the item for a given subvolumes log root
1876 * in the tree of log roots
1877 */
1878 static int update_log_root(struct btrfs_trans_handle *trans,
1879 struct btrfs_root *log)
1880 {
1881 int ret;
1882
1883 if (log->log_transid == 1) {
1884 /* insert root item on the first sync */
1885 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1886 &log->root_key, &log->root_item);
1887 } else {
1888 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1889 &log->root_key, &log->root_item);
1890 }
1891 return ret;
1892 }
1893
1894 static int wait_log_commit(struct btrfs_trans_handle *trans,
1895 struct btrfs_root *root, unsigned long transid)
1896 {
1897 DEFINE_WAIT(wait);
1898 int index = transid % 2;
1899
1900 /*
1901 * we only allow two pending log transactions at a time,
1902 * so we know that if ours is more than 2 older than the
1903 * current transaction, we're done
1904 */
1905 do {
1906 prepare_to_wait(&root->log_commit_wait[index],
1907 &wait, TASK_UNINTERRUPTIBLE);
1908 mutex_unlock(&root->log_mutex);
1909
1910 if (root->fs_info->last_trans_log_full_commit !=
1911 trans->transid && root->log_transid < transid + 2 &&
1912 atomic_read(&root->log_commit[index]))
1913 schedule();
1914
1915 finish_wait(&root->log_commit_wait[index], &wait);
1916 mutex_lock(&root->log_mutex);
1917 } while (root->log_transid < transid + 2 &&
1918 atomic_read(&root->log_commit[index]));
1919 return 0;
1920 }
1921
1922 static int wait_for_writer(struct btrfs_trans_handle *trans,
1923 struct btrfs_root *root)
1924 {
1925 DEFINE_WAIT(wait);
1926 while (atomic_read(&root->log_writers)) {
1927 prepare_to_wait(&root->log_writer_wait,
1928 &wait, TASK_UNINTERRUPTIBLE);
1929 mutex_unlock(&root->log_mutex);
1930 if (root->fs_info->last_trans_log_full_commit !=
1931 trans->transid && atomic_read(&root->log_writers))
1932 schedule();
1933 mutex_lock(&root->log_mutex);
1934 finish_wait(&root->log_writer_wait, &wait);
1935 }
1936 return 0;
1937 }
1938
1939 /*
1940 * btrfs_sync_log does sends a given tree log down to the disk and
1941 * updates the super blocks to record it. When this call is done,
1942 * you know that any inodes previously logged are safely on disk only
1943 * if it returns 0.
1944 *
1945 * Any other return value means you need to call btrfs_commit_transaction.
1946 * Some of the edge cases for fsyncing directories that have had unlinks
1947 * or renames done in the past mean that sometimes the only safe
1948 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1949 * that has happened.
1950 */
1951 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1952 struct btrfs_root *root)
1953 {
1954 int index1;
1955 int index2;
1956 int mark;
1957 int ret;
1958 struct btrfs_root *log = root->log_root;
1959 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1960 unsigned long log_transid = 0;
1961
1962 mutex_lock(&root->log_mutex);
1963 index1 = root->log_transid % 2;
1964 if (atomic_read(&root->log_commit[index1])) {
1965 wait_log_commit(trans, root, root->log_transid);
1966 mutex_unlock(&root->log_mutex);
1967 return 0;
1968 }
1969 atomic_set(&root->log_commit[index1], 1);
1970
1971 /* wait for previous tree log sync to complete */
1972 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1973 wait_log_commit(trans, root, root->log_transid - 1);
1974
1975 while (1) {
1976 unsigned long batch = root->log_batch;
1977 if (root->log_multiple_pids) {
1978 mutex_unlock(&root->log_mutex);
1979 schedule_timeout_uninterruptible(1);
1980 mutex_lock(&root->log_mutex);
1981 }
1982 wait_for_writer(trans, root);
1983 if (batch == root->log_batch)
1984 break;
1985 }
1986
1987 /* bail out if we need to do a full commit */
1988 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1989 ret = -EAGAIN;
1990 mutex_unlock(&root->log_mutex);
1991 goto out;
1992 }
1993
1994 log_transid = root->log_transid;
1995 if (log_transid % 2 == 0)
1996 mark = EXTENT_DIRTY;
1997 else
1998 mark = EXTENT_NEW;
1999
2000 /* we start IO on all the marked extents here, but we don't actually
2001 * wait for them until later.
2002 */
2003 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2004 BUG_ON(ret);
2005
2006 btrfs_set_root_node(&log->root_item, log->node);
2007
2008 root->log_batch = 0;
2009 root->log_transid++;
2010 log->log_transid = root->log_transid;
2011 root->log_start_pid = 0;
2012 smp_mb();
2013 /*
2014 * IO has been started, blocks of the log tree have WRITTEN flag set
2015 * in their headers. new modifications of the log will be written to
2016 * new positions. so it's safe to allow log writers to go in.
2017 */
2018 mutex_unlock(&root->log_mutex);
2019
2020 mutex_lock(&log_root_tree->log_mutex);
2021 log_root_tree->log_batch++;
2022 atomic_inc(&log_root_tree->log_writers);
2023 mutex_unlock(&log_root_tree->log_mutex);
2024
2025 ret = update_log_root(trans, log);
2026
2027 mutex_lock(&log_root_tree->log_mutex);
2028 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2029 smp_mb();
2030 if (waitqueue_active(&log_root_tree->log_writer_wait))
2031 wake_up(&log_root_tree->log_writer_wait);
2032 }
2033
2034 if (ret) {
2035 BUG_ON(ret != -ENOSPC);
2036 root->fs_info->last_trans_log_full_commit = trans->transid;
2037 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2038 mutex_unlock(&log_root_tree->log_mutex);
2039 ret = -EAGAIN;
2040 goto out;
2041 }
2042
2043 index2 = log_root_tree->log_transid % 2;
2044 if (atomic_read(&log_root_tree->log_commit[index2])) {
2045 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2046 wait_log_commit(trans, log_root_tree,
2047 log_root_tree->log_transid);
2048 mutex_unlock(&log_root_tree->log_mutex);
2049 ret = 0;
2050 goto out;
2051 }
2052 atomic_set(&log_root_tree->log_commit[index2], 1);
2053
2054 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2055 wait_log_commit(trans, log_root_tree,
2056 log_root_tree->log_transid - 1);
2057 }
2058
2059 wait_for_writer(trans, log_root_tree);
2060
2061 /*
2062 * now that we've moved on to the tree of log tree roots,
2063 * check the full commit flag again
2064 */
2065 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2066 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2067 mutex_unlock(&log_root_tree->log_mutex);
2068 ret = -EAGAIN;
2069 goto out_wake_log_root;
2070 }
2071
2072 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2073 &log_root_tree->dirty_log_pages,
2074 EXTENT_DIRTY | EXTENT_NEW);
2075 BUG_ON(ret);
2076 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2077
2078 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2079 log_root_tree->node->start);
2080 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2081 btrfs_header_level(log_root_tree->node));
2082
2083 log_root_tree->log_batch = 0;
2084 log_root_tree->log_transid++;
2085 smp_mb();
2086
2087 mutex_unlock(&log_root_tree->log_mutex);
2088
2089 /*
2090 * nobody else is going to jump in and write the the ctree
2091 * super here because the log_commit atomic below is protecting
2092 * us. We must be called with a transaction handle pinning
2093 * the running transaction open, so a full commit can't hop
2094 * in and cause problems either.
2095 */
2096 btrfs_scrub_pause_super(root);
2097 write_ctree_super(trans, root->fs_info->tree_root, 1);
2098 btrfs_scrub_continue_super(root);
2099 ret = 0;
2100
2101 mutex_lock(&root->log_mutex);
2102 if (root->last_log_commit < log_transid)
2103 root->last_log_commit = log_transid;
2104 mutex_unlock(&root->log_mutex);
2105
2106 out_wake_log_root:
2107 atomic_set(&log_root_tree->log_commit[index2], 0);
2108 smp_mb();
2109 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2110 wake_up(&log_root_tree->log_commit_wait[index2]);
2111 out:
2112 atomic_set(&root->log_commit[index1], 0);
2113 smp_mb();
2114 if (waitqueue_active(&root->log_commit_wait[index1]))
2115 wake_up(&root->log_commit_wait[index1]);
2116 return ret;
2117 }
2118
2119 static void free_log_tree(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *log)
2121 {
2122 int ret;
2123 u64 start;
2124 u64 end;
2125 struct walk_control wc = {
2126 .free = 1,
2127 .process_func = process_one_buffer
2128 };
2129
2130 ret = walk_log_tree(trans, log, &wc);
2131 BUG_ON(ret);
2132
2133 while (1) {
2134 ret = find_first_extent_bit(&log->dirty_log_pages,
2135 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2136 if (ret)
2137 break;
2138
2139 clear_extent_bits(&log->dirty_log_pages, start, end,
2140 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2141 }
2142
2143 free_extent_buffer(log->node);
2144 kfree(log);
2145 }
2146
2147 /*
2148 * free all the extents used by the tree log. This should be called
2149 * at commit time of the full transaction
2150 */
2151 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2152 {
2153 if (root->log_root) {
2154 free_log_tree(trans, root->log_root);
2155 root->log_root = NULL;
2156 }
2157 return 0;
2158 }
2159
2160 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2161 struct btrfs_fs_info *fs_info)
2162 {
2163 if (fs_info->log_root_tree) {
2164 free_log_tree(trans, fs_info->log_root_tree);
2165 fs_info->log_root_tree = NULL;
2166 }
2167 return 0;
2168 }
2169
2170 /*
2171 * If both a file and directory are logged, and unlinks or renames are
2172 * mixed in, we have a few interesting corners:
2173 *
2174 * create file X in dir Y
2175 * link file X to X.link in dir Y
2176 * fsync file X
2177 * unlink file X but leave X.link
2178 * fsync dir Y
2179 *
2180 * After a crash we would expect only X.link to exist. But file X
2181 * didn't get fsync'd again so the log has back refs for X and X.link.
2182 *
2183 * We solve this by removing directory entries and inode backrefs from the
2184 * log when a file that was logged in the current transaction is
2185 * unlinked. Any later fsync will include the updated log entries, and
2186 * we'll be able to reconstruct the proper directory items from backrefs.
2187 *
2188 * This optimizations allows us to avoid relogging the entire inode
2189 * or the entire directory.
2190 */
2191 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2192 struct btrfs_root *root,
2193 const char *name, int name_len,
2194 struct inode *dir, u64 index)
2195 {
2196 struct btrfs_root *log;
2197 struct btrfs_dir_item *di;
2198 struct btrfs_path *path;
2199 int ret;
2200 int err = 0;
2201 int bytes_del = 0;
2202
2203 if (BTRFS_I(dir)->logged_trans < trans->transid)
2204 return 0;
2205
2206 ret = join_running_log_trans(root);
2207 if (ret)
2208 return 0;
2209
2210 mutex_lock(&BTRFS_I(dir)->log_mutex);
2211
2212 log = root->log_root;
2213 path = btrfs_alloc_path();
2214 if (!path) {
2215 err = -ENOMEM;
2216 goto out_unlock;
2217 }
2218
2219 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2220 name, name_len, -1);
2221 if (IS_ERR(di)) {
2222 err = PTR_ERR(di);
2223 goto fail;
2224 }
2225 if (di) {
2226 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2227 bytes_del += name_len;
2228 BUG_ON(ret);
2229 }
2230 btrfs_release_path(log, path);
2231 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2232 index, name, name_len, -1);
2233 if (IS_ERR(di)) {
2234 err = PTR_ERR(di);
2235 goto fail;
2236 }
2237 if (di) {
2238 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2239 bytes_del += name_len;
2240 BUG_ON(ret);
2241 }
2242
2243 /* update the directory size in the log to reflect the names
2244 * we have removed
2245 */
2246 if (bytes_del) {
2247 struct btrfs_key key;
2248
2249 key.objectid = dir->i_ino;
2250 key.offset = 0;
2251 key.type = BTRFS_INODE_ITEM_KEY;
2252 btrfs_release_path(log, path);
2253
2254 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2255 if (ret < 0) {
2256 err = ret;
2257 goto fail;
2258 }
2259 if (ret == 0) {
2260 struct btrfs_inode_item *item;
2261 u64 i_size;
2262
2263 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2264 struct btrfs_inode_item);
2265 i_size = btrfs_inode_size(path->nodes[0], item);
2266 if (i_size > bytes_del)
2267 i_size -= bytes_del;
2268 else
2269 i_size = 0;
2270 btrfs_set_inode_size(path->nodes[0], item, i_size);
2271 btrfs_mark_buffer_dirty(path->nodes[0]);
2272 } else
2273 ret = 0;
2274 btrfs_release_path(log, path);
2275 }
2276 fail:
2277 btrfs_free_path(path);
2278 out_unlock:
2279 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2280 if (ret == -ENOSPC) {
2281 root->fs_info->last_trans_log_full_commit = trans->transid;
2282 ret = 0;
2283 }
2284 btrfs_end_log_trans(root);
2285
2286 return err;
2287 }
2288
2289 /* see comments for btrfs_del_dir_entries_in_log */
2290 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2291 struct btrfs_root *root,
2292 const char *name, int name_len,
2293 struct inode *inode, u64 dirid)
2294 {
2295 struct btrfs_root *log;
2296 u64 index;
2297 int ret;
2298
2299 if (BTRFS_I(inode)->logged_trans < trans->transid)
2300 return 0;
2301
2302 ret = join_running_log_trans(root);
2303 if (ret)
2304 return 0;
2305 log = root->log_root;
2306 mutex_lock(&BTRFS_I(inode)->log_mutex);
2307
2308 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2309 dirid, &index);
2310 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2311 if (ret == -ENOSPC) {
2312 root->fs_info->last_trans_log_full_commit = trans->transid;
2313 ret = 0;
2314 }
2315 btrfs_end_log_trans(root);
2316
2317 return ret;
2318 }
2319
2320 /*
2321 * creates a range item in the log for 'dirid'. first_offset and
2322 * last_offset tell us which parts of the key space the log should
2323 * be considered authoritative for.
2324 */
2325 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *log,
2327 struct btrfs_path *path,
2328 int key_type, u64 dirid,
2329 u64 first_offset, u64 last_offset)
2330 {
2331 int ret;
2332 struct btrfs_key key;
2333 struct btrfs_dir_log_item *item;
2334
2335 key.objectid = dirid;
2336 key.offset = first_offset;
2337 if (key_type == BTRFS_DIR_ITEM_KEY)
2338 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2339 else
2340 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2341 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2342 if (ret)
2343 return ret;
2344
2345 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2346 struct btrfs_dir_log_item);
2347 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2348 btrfs_mark_buffer_dirty(path->nodes[0]);
2349 btrfs_release_path(log, path);
2350 return 0;
2351 }
2352
2353 /*
2354 * log all the items included in the current transaction for a given
2355 * directory. This also creates the range items in the log tree required
2356 * to replay anything deleted before the fsync
2357 */
2358 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2359 struct btrfs_root *root, struct inode *inode,
2360 struct btrfs_path *path,
2361 struct btrfs_path *dst_path, int key_type,
2362 u64 min_offset, u64 *last_offset_ret)
2363 {
2364 struct btrfs_key min_key;
2365 struct btrfs_key max_key;
2366 struct btrfs_root *log = root->log_root;
2367 struct extent_buffer *src;
2368 int err = 0;
2369 int ret;
2370 int i;
2371 int nritems;
2372 u64 first_offset = min_offset;
2373 u64 last_offset = (u64)-1;
2374
2375 log = root->log_root;
2376 max_key.objectid = inode->i_ino;
2377 max_key.offset = (u64)-1;
2378 max_key.type = key_type;
2379
2380 min_key.objectid = inode->i_ino;
2381 min_key.type = key_type;
2382 min_key.offset = min_offset;
2383
2384 path->keep_locks = 1;
2385
2386 ret = btrfs_search_forward(root, &min_key, &max_key,
2387 path, 0, trans->transid);
2388
2389 /*
2390 * we didn't find anything from this transaction, see if there
2391 * is anything at all
2392 */
2393 if (ret != 0 || min_key.objectid != inode->i_ino ||
2394 min_key.type != key_type) {
2395 min_key.objectid = inode->i_ino;
2396 min_key.type = key_type;
2397 min_key.offset = (u64)-1;
2398 btrfs_release_path(root, path);
2399 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2400 if (ret < 0) {
2401 btrfs_release_path(root, path);
2402 return ret;
2403 }
2404 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2405
2406 /* if ret == 0 there are items for this type,
2407 * create a range to tell us the last key of this type.
2408 * otherwise, there are no items in this directory after
2409 * *min_offset, and we create a range to indicate that.
2410 */
2411 if (ret == 0) {
2412 struct btrfs_key tmp;
2413 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2414 path->slots[0]);
2415 if (key_type == tmp.type)
2416 first_offset = max(min_offset, tmp.offset) + 1;
2417 }
2418 goto done;
2419 }
2420
2421 /* go backward to find any previous key */
2422 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2423 if (ret == 0) {
2424 struct btrfs_key tmp;
2425 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2426 if (key_type == tmp.type) {
2427 first_offset = tmp.offset;
2428 ret = overwrite_item(trans, log, dst_path,
2429 path->nodes[0], path->slots[0],
2430 &tmp);
2431 if (ret) {
2432 err = ret;
2433 goto done;
2434 }
2435 }
2436 }
2437 btrfs_release_path(root, path);
2438
2439 /* find the first key from this transaction again */
2440 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2441 if (ret != 0) {
2442 WARN_ON(1);
2443 goto done;
2444 }
2445
2446 /*
2447 * we have a block from this transaction, log every item in it
2448 * from our directory
2449 */
2450 while (1) {
2451 struct btrfs_key tmp;
2452 src = path->nodes[0];
2453 nritems = btrfs_header_nritems(src);
2454 for (i = path->slots[0]; i < nritems; i++) {
2455 btrfs_item_key_to_cpu(src, &min_key, i);
2456
2457 if (min_key.objectid != inode->i_ino ||
2458 min_key.type != key_type)
2459 goto done;
2460 ret = overwrite_item(trans, log, dst_path, src, i,
2461 &min_key);
2462 if (ret) {
2463 err = ret;
2464 goto done;
2465 }
2466 }
2467 path->slots[0] = nritems;
2468
2469 /*
2470 * look ahead to the next item and see if it is also
2471 * from this directory and from this transaction
2472 */
2473 ret = btrfs_next_leaf(root, path);
2474 if (ret == 1) {
2475 last_offset = (u64)-1;
2476 goto done;
2477 }
2478 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2479 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2480 last_offset = (u64)-1;
2481 goto done;
2482 }
2483 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2484 ret = overwrite_item(trans, log, dst_path,
2485 path->nodes[0], path->slots[0],
2486 &tmp);
2487 if (ret)
2488 err = ret;
2489 else
2490 last_offset = tmp.offset;
2491 goto done;
2492 }
2493 }
2494 done:
2495 btrfs_release_path(root, path);
2496 btrfs_release_path(log, dst_path);
2497
2498 if (err == 0) {
2499 *last_offset_ret = last_offset;
2500 /*
2501 * insert the log range keys to indicate where the log
2502 * is valid
2503 */
2504 ret = insert_dir_log_key(trans, log, path, key_type,
2505 inode->i_ino, first_offset,
2506 last_offset);
2507 if (ret)
2508 err = ret;
2509 }
2510 return err;
2511 }
2512
2513 /*
2514 * logging directories is very similar to logging inodes, We find all the items
2515 * from the current transaction and write them to the log.
2516 *
2517 * The recovery code scans the directory in the subvolume, and if it finds a
2518 * key in the range logged that is not present in the log tree, then it means
2519 * that dir entry was unlinked during the transaction.
2520 *
2521 * In order for that scan to work, we must include one key smaller than
2522 * the smallest logged by this transaction and one key larger than the largest
2523 * key logged by this transaction.
2524 */
2525 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2526 struct btrfs_root *root, struct inode *inode,
2527 struct btrfs_path *path,
2528 struct btrfs_path *dst_path)
2529 {
2530 u64 min_key;
2531 u64 max_key;
2532 int ret;
2533 int key_type = BTRFS_DIR_ITEM_KEY;
2534
2535 again:
2536 min_key = 0;
2537 max_key = 0;
2538 while (1) {
2539 ret = log_dir_items(trans, root, inode, path,
2540 dst_path, key_type, min_key,
2541 &max_key);
2542 if (ret)
2543 return ret;
2544 if (max_key == (u64)-1)
2545 break;
2546 min_key = max_key + 1;
2547 }
2548
2549 if (key_type == BTRFS_DIR_ITEM_KEY) {
2550 key_type = BTRFS_DIR_INDEX_KEY;
2551 goto again;
2552 }
2553 return 0;
2554 }
2555
2556 /*
2557 * a helper function to drop items from the log before we relog an
2558 * inode. max_key_type indicates the highest item type to remove.
2559 * This cannot be run for file data extents because it does not
2560 * free the extents they point to.
2561 */
2562 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2563 struct btrfs_root *log,
2564 struct btrfs_path *path,
2565 u64 objectid, int max_key_type)
2566 {
2567 int ret;
2568 struct btrfs_key key;
2569 struct btrfs_key found_key;
2570
2571 key.objectid = objectid;
2572 key.type = max_key_type;
2573 key.offset = (u64)-1;
2574
2575 while (1) {
2576 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2577 BUG_ON(ret == 0);
2578 if (ret < 0)
2579 break;
2580
2581 if (path->slots[0] == 0)
2582 break;
2583
2584 path->slots[0]--;
2585 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2586 path->slots[0]);
2587
2588 if (found_key.objectid != objectid)
2589 break;
2590
2591 ret = btrfs_del_item(trans, log, path);
2592 BUG_ON(ret);
2593 btrfs_release_path(log, path);
2594 }
2595 btrfs_release_path(log, path);
2596 return ret;
2597 }
2598
2599 static noinline int copy_items(struct btrfs_trans_handle *trans,
2600 struct btrfs_root *log,
2601 struct btrfs_path *dst_path,
2602 struct extent_buffer *src,
2603 int start_slot, int nr, int inode_only)
2604 {
2605 unsigned long src_offset;
2606 unsigned long dst_offset;
2607 struct btrfs_file_extent_item *extent;
2608 struct btrfs_inode_item *inode_item;
2609 int ret;
2610 struct btrfs_key *ins_keys;
2611 u32 *ins_sizes;
2612 char *ins_data;
2613 int i;
2614 struct list_head ordered_sums;
2615
2616 INIT_LIST_HEAD(&ordered_sums);
2617
2618 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2619 nr * sizeof(u32), GFP_NOFS);
2620 if (!ins_data)
2621 return -ENOMEM;
2622
2623 ins_sizes = (u32 *)ins_data;
2624 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2625
2626 for (i = 0; i < nr; i++) {
2627 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2628 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2629 }
2630 ret = btrfs_insert_empty_items(trans, log, dst_path,
2631 ins_keys, ins_sizes, nr);
2632 if (ret) {
2633 kfree(ins_data);
2634 return ret;
2635 }
2636
2637 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2638 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2639 dst_path->slots[0]);
2640
2641 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2642
2643 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2644 src_offset, ins_sizes[i]);
2645
2646 if (inode_only == LOG_INODE_EXISTS &&
2647 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2648 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2649 dst_path->slots[0],
2650 struct btrfs_inode_item);
2651 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2652
2653 /* set the generation to zero so the recover code
2654 * can tell the difference between an logging
2655 * just to say 'this inode exists' and a logging
2656 * to say 'update this inode with these values'
2657 */
2658 btrfs_set_inode_generation(dst_path->nodes[0],
2659 inode_item, 0);
2660 }
2661 /* take a reference on file data extents so that truncates
2662 * or deletes of this inode don't have to relog the inode
2663 * again
2664 */
2665 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2666 int found_type;
2667 extent = btrfs_item_ptr(src, start_slot + i,
2668 struct btrfs_file_extent_item);
2669
2670 found_type = btrfs_file_extent_type(src, extent);
2671 if (found_type == BTRFS_FILE_EXTENT_REG ||
2672 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2673 u64 ds, dl, cs, cl;
2674 ds = btrfs_file_extent_disk_bytenr(src,
2675 extent);
2676 /* ds == 0 is a hole */
2677 if (ds == 0)
2678 continue;
2679
2680 dl = btrfs_file_extent_disk_num_bytes(src,
2681 extent);
2682 cs = btrfs_file_extent_offset(src, extent);
2683 cl = btrfs_file_extent_num_bytes(src,
2684 extent);
2685 if (btrfs_file_extent_compression(src,
2686 extent)) {
2687 cs = 0;
2688 cl = dl;
2689 }
2690
2691 ret = btrfs_lookup_csums_range(
2692 log->fs_info->csum_root,
2693 ds + cs, ds + cs + cl - 1,
2694 &ordered_sums, 0);
2695 BUG_ON(ret);
2696 }
2697 }
2698 }
2699
2700 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2701 btrfs_release_path(log, dst_path);
2702 kfree(ins_data);
2703
2704 /*
2705 * we have to do this after the loop above to avoid changing the
2706 * log tree while trying to change the log tree.
2707 */
2708 ret = 0;
2709 while (!list_empty(&ordered_sums)) {
2710 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2711 struct btrfs_ordered_sum,
2712 list);
2713 if (!ret)
2714 ret = btrfs_csum_file_blocks(trans, log, sums);
2715 list_del(&sums->list);
2716 kfree(sums);
2717 }
2718 return ret;
2719 }
2720
2721 /* log a single inode in the tree log.
2722 * At least one parent directory for this inode must exist in the tree
2723 * or be logged already.
2724 *
2725 * Any items from this inode changed by the current transaction are copied
2726 * to the log tree. An extra reference is taken on any extents in this
2727 * file, allowing us to avoid a whole pile of corner cases around logging
2728 * blocks that have been removed from the tree.
2729 *
2730 * See LOG_INODE_ALL and related defines for a description of what inode_only
2731 * does.
2732 *
2733 * This handles both files and directories.
2734 */
2735 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2736 struct btrfs_root *root, struct inode *inode,
2737 int inode_only)
2738 {
2739 struct btrfs_path *path;
2740 struct btrfs_path *dst_path;
2741 struct btrfs_key min_key;
2742 struct btrfs_key max_key;
2743 struct btrfs_root *log = root->log_root;
2744 struct extent_buffer *src = NULL;
2745 int err = 0;
2746 int ret;
2747 int nritems;
2748 int ins_start_slot = 0;
2749 int ins_nr;
2750
2751 log = root->log_root;
2752
2753 path = btrfs_alloc_path();
2754 if (!path)
2755 return -ENOMEM;
2756 dst_path = btrfs_alloc_path();
2757 if (!dst_path) {
2758 btrfs_free_path(path);
2759 return -ENOMEM;
2760 }
2761
2762 min_key.objectid = inode->i_ino;
2763 min_key.type = BTRFS_INODE_ITEM_KEY;
2764 min_key.offset = 0;
2765
2766 max_key.objectid = inode->i_ino;
2767
2768 /* today the code can only do partial logging of directories */
2769 if (!S_ISDIR(inode->i_mode))
2770 inode_only = LOG_INODE_ALL;
2771
2772 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2773 max_key.type = BTRFS_XATTR_ITEM_KEY;
2774 else
2775 max_key.type = (u8)-1;
2776 max_key.offset = (u64)-1;
2777
2778 mutex_lock(&BTRFS_I(inode)->log_mutex);
2779
2780 /*
2781 * a brute force approach to making sure we get the most uptodate
2782 * copies of everything.
2783 */
2784 if (S_ISDIR(inode->i_mode)) {
2785 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2786
2787 if (inode_only == LOG_INODE_EXISTS)
2788 max_key_type = BTRFS_XATTR_ITEM_KEY;
2789 ret = drop_objectid_items(trans, log, path,
2790 inode->i_ino, max_key_type);
2791 } else {
2792 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2793 }
2794 if (ret) {
2795 err = ret;
2796 goto out_unlock;
2797 }
2798 path->keep_locks = 1;
2799
2800 while (1) {
2801 ins_nr = 0;
2802 ret = btrfs_search_forward(root, &min_key, &max_key,
2803 path, 0, trans->transid);
2804 if (ret != 0)
2805 break;
2806 again:
2807 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2808 if (min_key.objectid != inode->i_ino)
2809 break;
2810 if (min_key.type > max_key.type)
2811 break;
2812
2813 src = path->nodes[0];
2814 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2815 ins_nr++;
2816 goto next_slot;
2817 } else if (!ins_nr) {
2818 ins_start_slot = path->slots[0];
2819 ins_nr = 1;
2820 goto next_slot;
2821 }
2822
2823 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2824 ins_nr, inode_only);
2825 if (ret) {
2826 err = ret;
2827 goto out_unlock;
2828 }
2829 ins_nr = 1;
2830 ins_start_slot = path->slots[0];
2831 next_slot:
2832
2833 nritems = btrfs_header_nritems(path->nodes[0]);
2834 path->slots[0]++;
2835 if (path->slots[0] < nritems) {
2836 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2837 path->slots[0]);
2838 goto again;
2839 }
2840 if (ins_nr) {
2841 ret = copy_items(trans, log, dst_path, src,
2842 ins_start_slot,
2843 ins_nr, inode_only);
2844 if (ret) {
2845 err = ret;
2846 goto out_unlock;
2847 }
2848 ins_nr = 0;
2849 }
2850 btrfs_release_path(root, path);
2851
2852 if (min_key.offset < (u64)-1)
2853 min_key.offset++;
2854 else if (min_key.type < (u8)-1)
2855 min_key.type++;
2856 else if (min_key.objectid < (u64)-1)
2857 min_key.objectid++;
2858 else
2859 break;
2860 }
2861 if (ins_nr) {
2862 ret = copy_items(trans, log, dst_path, src,
2863 ins_start_slot,
2864 ins_nr, inode_only);
2865 if (ret) {
2866 err = ret;
2867 goto out_unlock;
2868 }
2869 ins_nr = 0;
2870 }
2871 WARN_ON(ins_nr);
2872 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2873 btrfs_release_path(root, path);
2874 btrfs_release_path(log, dst_path);
2875 ret = log_directory_changes(trans, root, inode, path, dst_path);
2876 if (ret) {
2877 err = ret;
2878 goto out_unlock;
2879 }
2880 }
2881 BTRFS_I(inode)->logged_trans = trans->transid;
2882 out_unlock:
2883 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2884
2885 btrfs_free_path(path);
2886 btrfs_free_path(dst_path);
2887 return err;
2888 }
2889
2890 /*
2891 * follow the dentry parent pointers up the chain and see if any
2892 * of the directories in it require a full commit before they can
2893 * be logged. Returns zero if nothing special needs to be done or 1 if
2894 * a full commit is required.
2895 */
2896 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2897 struct inode *inode,
2898 struct dentry *parent,
2899 struct super_block *sb,
2900 u64 last_committed)
2901 {
2902 int ret = 0;
2903 struct btrfs_root *root;
2904 struct dentry *old_parent = NULL;
2905
2906 /*
2907 * for regular files, if its inode is already on disk, we don't
2908 * have to worry about the parents at all. This is because
2909 * we can use the last_unlink_trans field to record renames
2910 * and other fun in this file.
2911 */
2912 if (S_ISREG(inode->i_mode) &&
2913 BTRFS_I(inode)->generation <= last_committed &&
2914 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2915 goto out;
2916
2917 if (!S_ISDIR(inode->i_mode)) {
2918 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2919 goto out;
2920 inode = parent->d_inode;
2921 }
2922
2923 while (1) {
2924 BTRFS_I(inode)->logged_trans = trans->transid;
2925 smp_mb();
2926
2927 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2928 root = BTRFS_I(inode)->root;
2929
2930 /*
2931 * make sure any commits to the log are forced
2932 * to be full commits
2933 */
2934 root->fs_info->last_trans_log_full_commit =
2935 trans->transid;
2936 ret = 1;
2937 break;
2938 }
2939
2940 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2941 break;
2942
2943 if (IS_ROOT(parent))
2944 break;
2945
2946 parent = dget_parent(parent);
2947 dput(old_parent);
2948 old_parent = parent;
2949 inode = parent->d_inode;
2950
2951 }
2952 dput(old_parent);
2953 out:
2954 return ret;
2955 }
2956
2957 static int inode_in_log(struct btrfs_trans_handle *trans,
2958 struct inode *inode)
2959 {
2960 struct btrfs_root *root = BTRFS_I(inode)->root;
2961 int ret = 0;
2962
2963 mutex_lock(&root->log_mutex);
2964 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2965 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2966 ret = 1;
2967 mutex_unlock(&root->log_mutex);
2968 return ret;
2969 }
2970
2971
2972 /*
2973 * helper function around btrfs_log_inode to make sure newly created
2974 * parent directories also end up in the log. A minimal inode and backref
2975 * only logging is done of any parent directories that are older than
2976 * the last committed transaction
2977 */
2978 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2979 struct btrfs_root *root, struct inode *inode,
2980 struct dentry *parent, int exists_only)
2981 {
2982 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2983 struct super_block *sb;
2984 struct dentry *old_parent = NULL;
2985 int ret = 0;
2986 u64 last_committed = root->fs_info->last_trans_committed;
2987
2988 sb = inode->i_sb;
2989
2990 if (btrfs_test_opt(root, NOTREELOG)) {
2991 ret = 1;
2992 goto end_no_trans;
2993 }
2994
2995 if (root->fs_info->last_trans_log_full_commit >
2996 root->fs_info->last_trans_committed) {
2997 ret = 1;
2998 goto end_no_trans;
2999 }
3000
3001 if (root != BTRFS_I(inode)->root ||
3002 btrfs_root_refs(&root->root_item) == 0) {
3003 ret = 1;
3004 goto end_no_trans;
3005 }
3006
3007 ret = check_parent_dirs_for_sync(trans, inode, parent,
3008 sb, last_committed);
3009 if (ret)
3010 goto end_no_trans;
3011
3012 if (inode_in_log(trans, inode)) {
3013 ret = BTRFS_NO_LOG_SYNC;
3014 goto end_no_trans;
3015 }
3016
3017 ret = start_log_trans(trans, root);
3018 if (ret)
3019 goto end_trans;
3020
3021 ret = btrfs_log_inode(trans, root, inode, inode_only);
3022 if (ret)
3023 goto end_trans;
3024
3025 /*
3026 * for regular files, if its inode is already on disk, we don't
3027 * have to worry about the parents at all. This is because
3028 * we can use the last_unlink_trans field to record renames
3029 * and other fun in this file.
3030 */
3031 if (S_ISREG(inode->i_mode) &&
3032 BTRFS_I(inode)->generation <= last_committed &&
3033 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3034 ret = 0;
3035 goto end_trans;
3036 }
3037
3038 inode_only = LOG_INODE_EXISTS;
3039 while (1) {
3040 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3041 break;
3042
3043 inode = parent->d_inode;
3044 if (root != BTRFS_I(inode)->root)
3045 break;
3046
3047 if (BTRFS_I(inode)->generation >
3048 root->fs_info->last_trans_committed) {
3049 ret = btrfs_log_inode(trans, root, inode, inode_only);
3050 if (ret)
3051 goto end_trans;
3052 }
3053 if (IS_ROOT(parent))
3054 break;
3055
3056 parent = dget_parent(parent);
3057 dput(old_parent);
3058 old_parent = parent;
3059 }
3060 ret = 0;
3061 end_trans:
3062 dput(old_parent);
3063 if (ret < 0) {
3064 BUG_ON(ret != -ENOSPC);
3065 root->fs_info->last_trans_log_full_commit = trans->transid;
3066 ret = 1;
3067 }
3068 btrfs_end_log_trans(root);
3069 end_no_trans:
3070 return ret;
3071 }
3072
3073 /*
3074 * it is not safe to log dentry if the chunk root has added new
3075 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3076 * If this returns 1, you must commit the transaction to safely get your
3077 * data on disk.
3078 */
3079 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3080 struct btrfs_root *root, struct dentry *dentry)
3081 {
3082 struct dentry *parent = dget_parent(dentry);
3083 int ret;
3084
3085 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3086 dput(parent);
3087
3088 return ret;
3089 }
3090
3091 /*
3092 * should be called during mount to recover any replay any log trees
3093 * from the FS
3094 */
3095 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3096 {
3097 int ret;
3098 struct btrfs_path *path;
3099 struct btrfs_trans_handle *trans;
3100 struct btrfs_key key;
3101 struct btrfs_key found_key;
3102 struct btrfs_key tmp_key;
3103 struct btrfs_root *log;
3104 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3105 struct walk_control wc = {
3106 .process_func = process_one_buffer,
3107 .stage = 0,
3108 };
3109
3110 path = btrfs_alloc_path();
3111 if (!path)
3112 return -ENOMEM;
3113
3114 fs_info->log_root_recovering = 1;
3115
3116 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3117 BUG_ON(IS_ERR(trans));
3118
3119 wc.trans = trans;
3120 wc.pin = 1;
3121
3122 ret = walk_log_tree(trans, log_root_tree, &wc);
3123 BUG_ON(ret);
3124
3125 again:
3126 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3127 key.offset = (u64)-1;
3128 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3129
3130 while (1) {
3131 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3132 if (ret < 0)
3133 break;
3134 if (ret > 0) {
3135 if (path->slots[0] == 0)
3136 break;
3137 path->slots[0]--;
3138 }
3139 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3140 path->slots[0]);
3141 btrfs_release_path(log_root_tree, path);
3142 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3143 break;
3144
3145 log = btrfs_read_fs_root_no_radix(log_root_tree,
3146 &found_key);
3147 BUG_ON(IS_ERR(log));
3148
3149 tmp_key.objectid = found_key.offset;
3150 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3151 tmp_key.offset = (u64)-1;
3152
3153 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3154 BUG_ON(!wc.replay_dest);
3155
3156 wc.replay_dest->log_root = log;
3157 btrfs_record_root_in_trans(trans, wc.replay_dest);
3158 ret = walk_log_tree(trans, log, &wc);
3159 BUG_ON(ret);
3160
3161 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3162 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3163 path);
3164 BUG_ON(ret);
3165 }
3166
3167 key.offset = found_key.offset - 1;
3168 wc.replay_dest->log_root = NULL;
3169 free_extent_buffer(log->node);
3170 free_extent_buffer(log->commit_root);
3171 kfree(log);
3172
3173 if (found_key.offset == 0)
3174 break;
3175 }
3176 btrfs_release_path(log_root_tree, path);
3177
3178 /* step one is to pin it all, step two is to replay just inodes */
3179 if (wc.pin) {
3180 wc.pin = 0;
3181 wc.process_func = replay_one_buffer;
3182 wc.stage = LOG_WALK_REPLAY_INODES;
3183 goto again;
3184 }
3185 /* step three is to replay everything */
3186 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3187 wc.stage++;
3188 goto again;
3189 }
3190
3191 btrfs_free_path(path);
3192
3193 free_extent_buffer(log_root_tree->node);
3194 log_root_tree->log_root = NULL;
3195 fs_info->log_root_recovering = 0;
3196
3197 /* step 4: commit the transaction, which also unpins the blocks */
3198 btrfs_commit_transaction(trans, fs_info->tree_root);
3199
3200 kfree(log_root_tree);
3201 return 0;
3202 }
3203
3204 /*
3205 * there are some corner cases where we want to force a full
3206 * commit instead of allowing a directory to be logged.
3207 *
3208 * They revolve around files there were unlinked from the directory, and
3209 * this function updates the parent directory so that a full commit is
3210 * properly done if it is fsync'd later after the unlinks are done.
3211 */
3212 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3213 struct inode *dir, struct inode *inode,
3214 int for_rename)
3215 {
3216 /*
3217 * when we're logging a file, if it hasn't been renamed
3218 * or unlinked, and its inode is fully committed on disk,
3219 * we don't have to worry about walking up the directory chain
3220 * to log its parents.
3221 *
3222 * So, we use the last_unlink_trans field to put this transid
3223 * into the file. When the file is logged we check it and
3224 * don't log the parents if the file is fully on disk.
3225 */
3226 if (S_ISREG(inode->i_mode))
3227 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3228
3229 /*
3230 * if this directory was already logged any new
3231 * names for this file/dir will get recorded
3232 */
3233 smp_mb();
3234 if (BTRFS_I(dir)->logged_trans == trans->transid)
3235 return;
3236
3237 /*
3238 * if the inode we're about to unlink was logged,
3239 * the log will be properly updated for any new names
3240 */
3241 if (BTRFS_I(inode)->logged_trans == trans->transid)
3242 return;
3243
3244 /*
3245 * when renaming files across directories, if the directory
3246 * there we're unlinking from gets fsync'd later on, there's
3247 * no way to find the destination directory later and fsync it
3248 * properly. So, we have to be conservative and force commits
3249 * so the new name gets discovered.
3250 */
3251 if (for_rename)
3252 goto record;
3253
3254 /* we can safely do the unlink without any special recording */
3255 return;
3256
3257 record:
3258 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3259 }
3260
3261 /*
3262 * Call this after adding a new name for a file and it will properly
3263 * update the log to reflect the new name.
3264 *
3265 * It will return zero if all goes well, and it will return 1 if a
3266 * full transaction commit is required.
3267 */
3268 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3269 struct inode *inode, struct inode *old_dir,
3270 struct dentry *parent)
3271 {
3272 struct btrfs_root * root = BTRFS_I(inode)->root;
3273
3274 /*
3275 * this will force the logging code to walk the dentry chain
3276 * up for the file
3277 */
3278 if (S_ISREG(inode->i_mode))
3279 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3280
3281 /*
3282 * if this inode hasn't been logged and directory we're renaming it
3283 * from hasn't been logged, we don't need to log it
3284 */
3285 if (BTRFS_I(inode)->logged_trans <=
3286 root->fs_info->last_trans_committed &&
3287 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3288 root->fs_info->last_trans_committed))
3289 return 0;
3290
3291 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3292 }
3293