]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/volumes.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142
143 DEFINE_MUTEX(uuid_mutex);
144 static LIST_HEAD(fs_uuids);
145 struct list_head *btrfs_get_fs_uuids(void)
146 {
147 return &fs_uuids;
148 }
149
150 static struct btrfs_fs_devices *__alloc_fs_devices(void)
151 {
152 struct btrfs_fs_devices *fs_devs;
153
154 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
155 if (!fs_devs)
156 return ERR_PTR(-ENOMEM);
157
158 mutex_init(&fs_devs->device_list_mutex);
159
160 INIT_LIST_HEAD(&fs_devs->devices);
161 INIT_LIST_HEAD(&fs_devs->resized_devices);
162 INIT_LIST_HEAD(&fs_devs->alloc_list);
163 INIT_LIST_HEAD(&fs_devs->list);
164
165 return fs_devs;
166 }
167
168 /**
169 * alloc_fs_devices - allocate struct btrfs_fs_devices
170 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
171 * generated.
172 *
173 * Return: a pointer to a new &struct btrfs_fs_devices on success;
174 * ERR_PTR() on error. Returned struct is not linked onto any lists and
175 * can be destroyed with kfree() right away.
176 */
177 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
178 {
179 struct btrfs_fs_devices *fs_devs;
180
181 fs_devs = __alloc_fs_devices();
182 if (IS_ERR(fs_devs))
183 return fs_devs;
184
185 if (fsid)
186 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
187 else
188 generate_random_uuid(fs_devs->fsid);
189
190 return fs_devs;
191 }
192
193 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
194 {
195 struct btrfs_device *device;
196 WARN_ON(fs_devices->opened);
197 while (!list_empty(&fs_devices->devices)) {
198 device = list_entry(fs_devices->devices.next,
199 struct btrfs_device, dev_list);
200 list_del(&device->dev_list);
201 rcu_string_free(device->name);
202 kfree(device);
203 }
204 kfree(fs_devices);
205 }
206
207 static void btrfs_kobject_uevent(struct block_device *bdev,
208 enum kobject_action action)
209 {
210 int ret;
211
212 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
213 if (ret)
214 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
215 action,
216 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
217 &disk_to_dev(bdev->bd_disk)->kobj);
218 }
219
220 void btrfs_cleanup_fs_uuids(void)
221 {
222 struct btrfs_fs_devices *fs_devices;
223
224 while (!list_empty(&fs_uuids)) {
225 fs_devices = list_entry(fs_uuids.next,
226 struct btrfs_fs_devices, list);
227 list_del(&fs_devices->list);
228 free_fs_devices(fs_devices);
229 }
230 }
231
232 static struct btrfs_device *__alloc_device(void)
233 {
234 struct btrfs_device *dev;
235
236 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
237 if (!dev)
238 return ERR_PTR(-ENOMEM);
239
240 INIT_LIST_HEAD(&dev->dev_list);
241 INIT_LIST_HEAD(&dev->dev_alloc_list);
242 INIT_LIST_HEAD(&dev->resized_list);
243
244 spin_lock_init(&dev->io_lock);
245
246 spin_lock_init(&dev->reada_lock);
247 atomic_set(&dev->reada_in_flight, 0);
248 atomic_set(&dev->dev_stats_ccnt, 0);
249 btrfs_device_data_ordered_init(dev);
250 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
251 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252
253 return dev;
254 }
255
256 static noinline struct btrfs_device *__find_device(struct list_head *head,
257 u64 devid, u8 *uuid)
258 {
259 struct btrfs_device *dev;
260
261 list_for_each_entry(dev, head, dev_list) {
262 if (dev->devid == devid &&
263 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
264 return dev;
265 }
266 }
267 return NULL;
268 }
269
270 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
271 {
272 struct btrfs_fs_devices *fs_devices;
273
274 list_for_each_entry(fs_devices, &fs_uuids, list) {
275 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
276 return fs_devices;
277 }
278 return NULL;
279 }
280
281 static int
282 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
283 int flush, struct block_device **bdev,
284 struct buffer_head **bh)
285 {
286 int ret;
287
288 *bdev = blkdev_get_by_path(device_path, flags, holder);
289
290 if (IS_ERR(*bdev)) {
291 ret = PTR_ERR(*bdev);
292 goto error;
293 }
294
295 if (flush)
296 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
297 ret = set_blocksize(*bdev, 4096);
298 if (ret) {
299 blkdev_put(*bdev, flags);
300 goto error;
301 }
302 invalidate_bdev(*bdev);
303 *bh = btrfs_read_dev_super(*bdev);
304 if (IS_ERR(*bh)) {
305 ret = PTR_ERR(*bh);
306 blkdev_put(*bdev, flags);
307 goto error;
308 }
309
310 return 0;
311
312 error:
313 *bdev = NULL;
314 *bh = NULL;
315 return ret;
316 }
317
318 static void requeue_list(struct btrfs_pending_bios *pending_bios,
319 struct bio *head, struct bio *tail)
320 {
321
322 struct bio *old_head;
323
324 old_head = pending_bios->head;
325 pending_bios->head = head;
326 if (pending_bios->tail)
327 tail->bi_next = old_head;
328 else
329 pending_bios->tail = tail;
330 }
331
332 /*
333 * we try to collect pending bios for a device so we don't get a large
334 * number of procs sending bios down to the same device. This greatly
335 * improves the schedulers ability to collect and merge the bios.
336 *
337 * But, it also turns into a long list of bios to process and that is sure
338 * to eventually make the worker thread block. The solution here is to
339 * make some progress and then put this work struct back at the end of
340 * the list if the block device is congested. This way, multiple devices
341 * can make progress from a single worker thread.
342 */
343 static noinline void run_scheduled_bios(struct btrfs_device *device)
344 {
345 struct btrfs_fs_info *fs_info = device->fs_info;
346 struct bio *pending;
347 struct backing_dev_info *bdi;
348 struct btrfs_pending_bios *pending_bios;
349 struct bio *tail;
350 struct bio *cur;
351 int again = 0;
352 unsigned long num_run;
353 unsigned long batch_run = 0;
354 unsigned long limit;
355 unsigned long last_waited = 0;
356 int force_reg = 0;
357 int sync_pending = 0;
358 struct blk_plug plug;
359
360 /*
361 * this function runs all the bios we've collected for
362 * a particular device. We don't want to wander off to
363 * another device without first sending all of these down.
364 * So, setup a plug here and finish it off before we return
365 */
366 blk_start_plug(&plug);
367
368 bdi = device->bdev->bd_bdi;
369 limit = btrfs_async_submit_limit(fs_info);
370 limit = limit * 2 / 3;
371
372 loop:
373 spin_lock(&device->io_lock);
374
375 loop_lock:
376 num_run = 0;
377
378 /* take all the bios off the list at once and process them
379 * later on (without the lock held). But, remember the
380 * tail and other pointers so the bios can be properly reinserted
381 * into the list if we hit congestion
382 */
383 if (!force_reg && device->pending_sync_bios.head) {
384 pending_bios = &device->pending_sync_bios;
385 force_reg = 1;
386 } else {
387 pending_bios = &device->pending_bios;
388 force_reg = 0;
389 }
390
391 pending = pending_bios->head;
392 tail = pending_bios->tail;
393 WARN_ON(pending && !tail);
394
395 /*
396 * if pending was null this time around, no bios need processing
397 * at all and we can stop. Otherwise it'll loop back up again
398 * and do an additional check so no bios are missed.
399 *
400 * device->running_pending is used to synchronize with the
401 * schedule_bio code.
402 */
403 if (device->pending_sync_bios.head == NULL &&
404 device->pending_bios.head == NULL) {
405 again = 0;
406 device->running_pending = 0;
407 } else {
408 again = 1;
409 device->running_pending = 1;
410 }
411
412 pending_bios->head = NULL;
413 pending_bios->tail = NULL;
414
415 spin_unlock(&device->io_lock);
416
417 while (pending) {
418
419 rmb();
420 /* we want to work on both lists, but do more bios on the
421 * sync list than the regular list
422 */
423 if ((num_run > 32 &&
424 pending_bios != &device->pending_sync_bios &&
425 device->pending_sync_bios.head) ||
426 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
427 device->pending_bios.head)) {
428 spin_lock(&device->io_lock);
429 requeue_list(pending_bios, pending, tail);
430 goto loop_lock;
431 }
432
433 cur = pending;
434 pending = pending->bi_next;
435 cur->bi_next = NULL;
436
437 /*
438 * atomic_dec_return implies a barrier for waitqueue_active
439 */
440 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
441 waitqueue_active(&fs_info->async_submit_wait))
442 wake_up(&fs_info->async_submit_wait);
443
444 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
445
446 /*
447 * if we're doing the sync list, record that our
448 * plug has some sync requests on it
449 *
450 * If we're doing the regular list and there are
451 * sync requests sitting around, unplug before
452 * we add more
453 */
454 if (pending_bios == &device->pending_sync_bios) {
455 sync_pending = 1;
456 } else if (sync_pending) {
457 blk_finish_plug(&plug);
458 blk_start_plug(&plug);
459 sync_pending = 0;
460 }
461
462 btrfsic_submit_bio(cur);
463 num_run++;
464 batch_run++;
465
466 cond_resched();
467
468 /*
469 * we made progress, there is more work to do and the bdi
470 * is now congested. Back off and let other work structs
471 * run instead
472 */
473 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
474 fs_info->fs_devices->open_devices > 1) {
475 struct io_context *ioc;
476
477 ioc = current->io_context;
478
479 /*
480 * the main goal here is that we don't want to
481 * block if we're going to be able to submit
482 * more requests without blocking.
483 *
484 * This code does two great things, it pokes into
485 * the elevator code from a filesystem _and_
486 * it makes assumptions about how batching works.
487 */
488 if (ioc && ioc->nr_batch_requests > 0 &&
489 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
490 (last_waited == 0 ||
491 ioc->last_waited == last_waited)) {
492 /*
493 * we want to go through our batch of
494 * requests and stop. So, we copy out
495 * the ioc->last_waited time and test
496 * against it before looping
497 */
498 last_waited = ioc->last_waited;
499 cond_resched();
500 continue;
501 }
502 spin_lock(&device->io_lock);
503 requeue_list(pending_bios, pending, tail);
504 device->running_pending = 1;
505
506 spin_unlock(&device->io_lock);
507 btrfs_queue_work(fs_info->submit_workers,
508 &device->work);
509 goto done;
510 }
511 /* unplug every 64 requests just for good measure */
512 if (batch_run % 64 == 0) {
513 blk_finish_plug(&plug);
514 blk_start_plug(&plug);
515 sync_pending = 0;
516 }
517 }
518
519 cond_resched();
520 if (again)
521 goto loop;
522
523 spin_lock(&device->io_lock);
524 if (device->pending_bios.head || device->pending_sync_bios.head)
525 goto loop_lock;
526 spin_unlock(&device->io_lock);
527
528 done:
529 blk_finish_plug(&plug);
530 }
531
532 static void pending_bios_fn(struct btrfs_work *work)
533 {
534 struct btrfs_device *device;
535
536 device = container_of(work, struct btrfs_device, work);
537 run_scheduled_bios(device);
538 }
539
540
541 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
542 {
543 struct btrfs_fs_devices *fs_devs;
544 struct btrfs_device *dev;
545
546 if (!cur_dev->name)
547 return;
548
549 list_for_each_entry(fs_devs, &fs_uuids, list) {
550 int del = 1;
551
552 if (fs_devs->opened)
553 continue;
554 if (fs_devs->seeding)
555 continue;
556
557 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
558
559 if (dev == cur_dev)
560 continue;
561 if (!dev->name)
562 continue;
563
564 /*
565 * Todo: This won't be enough. What if the same device
566 * comes back (with new uuid and) with its mapper path?
567 * But for now, this does help as mostly an admin will
568 * either use mapper or non mapper path throughout.
569 */
570 rcu_read_lock();
571 del = strcmp(rcu_str_deref(dev->name),
572 rcu_str_deref(cur_dev->name));
573 rcu_read_unlock();
574 if (!del)
575 break;
576 }
577
578 if (!del) {
579 /* delete the stale device */
580 if (fs_devs->num_devices == 1) {
581 btrfs_sysfs_remove_fsid(fs_devs);
582 list_del(&fs_devs->list);
583 free_fs_devices(fs_devs);
584 } else {
585 fs_devs->num_devices--;
586 list_del(&dev->dev_list);
587 rcu_string_free(dev->name);
588 kfree(dev);
589 }
590 break;
591 }
592 }
593 }
594
595 /*
596 * Add new device to list of registered devices
597 *
598 * Returns:
599 * 1 - first time device is seen
600 * 0 - device already known
601 * < 0 - error
602 */
603 static noinline int device_list_add(const char *path,
604 struct btrfs_super_block *disk_super,
605 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
606 {
607 struct btrfs_device *device;
608 struct btrfs_fs_devices *fs_devices;
609 struct rcu_string *name;
610 int ret = 0;
611 u64 found_transid = btrfs_super_generation(disk_super);
612
613 fs_devices = find_fsid(disk_super->fsid);
614 if (!fs_devices) {
615 fs_devices = alloc_fs_devices(disk_super->fsid);
616 if (IS_ERR(fs_devices))
617 return PTR_ERR(fs_devices);
618
619 list_add(&fs_devices->list, &fs_uuids);
620
621 device = NULL;
622 } else {
623 device = __find_device(&fs_devices->devices, devid,
624 disk_super->dev_item.uuid);
625 }
626
627 if (!device) {
628 if (fs_devices->opened)
629 return -EBUSY;
630
631 device = btrfs_alloc_device(NULL, &devid,
632 disk_super->dev_item.uuid);
633 if (IS_ERR(device)) {
634 /* we can safely leave the fs_devices entry around */
635 return PTR_ERR(device);
636 }
637
638 name = rcu_string_strdup(path, GFP_NOFS);
639 if (!name) {
640 kfree(device);
641 return -ENOMEM;
642 }
643 rcu_assign_pointer(device->name, name);
644
645 mutex_lock(&fs_devices->device_list_mutex);
646 list_add_rcu(&device->dev_list, &fs_devices->devices);
647 fs_devices->num_devices++;
648 mutex_unlock(&fs_devices->device_list_mutex);
649
650 ret = 1;
651 device->fs_devices = fs_devices;
652 } else if (!device->name || strcmp(device->name->str, path)) {
653 /*
654 * When FS is already mounted.
655 * 1. If you are here and if the device->name is NULL that
656 * means this device was missing at time of FS mount.
657 * 2. If you are here and if the device->name is different
658 * from 'path' that means either
659 * a. The same device disappeared and reappeared with
660 * different name. or
661 * b. The missing-disk-which-was-replaced, has
662 * reappeared now.
663 *
664 * We must allow 1 and 2a above. But 2b would be a spurious
665 * and unintentional.
666 *
667 * Further in case of 1 and 2a above, the disk at 'path'
668 * would have missed some transaction when it was away and
669 * in case of 2a the stale bdev has to be updated as well.
670 * 2b must not be allowed at all time.
671 */
672
673 /*
674 * For now, we do allow update to btrfs_fs_device through the
675 * btrfs dev scan cli after FS has been mounted. We're still
676 * tracking a problem where systems fail mount by subvolume id
677 * when we reject replacement on a mounted FS.
678 */
679 if (!fs_devices->opened && found_transid < device->generation) {
680 /*
681 * That is if the FS is _not_ mounted and if you
682 * are here, that means there is more than one
683 * disk with same uuid and devid.We keep the one
684 * with larger generation number or the last-in if
685 * generation are equal.
686 */
687 return -EEXIST;
688 }
689
690 name = rcu_string_strdup(path, GFP_NOFS);
691 if (!name)
692 return -ENOMEM;
693 rcu_string_free(device->name);
694 rcu_assign_pointer(device->name, name);
695 if (device->missing) {
696 fs_devices->missing_devices--;
697 device->missing = 0;
698 }
699 }
700
701 /*
702 * Unmount does not free the btrfs_device struct but would zero
703 * generation along with most of the other members. So just update
704 * it back. We need it to pick the disk with largest generation
705 * (as above).
706 */
707 if (!fs_devices->opened)
708 device->generation = found_transid;
709
710 /*
711 * if there is new btrfs on an already registered device,
712 * then remove the stale device entry.
713 */
714 if (ret > 0)
715 btrfs_free_stale_device(device);
716
717 *fs_devices_ret = fs_devices;
718
719 return ret;
720 }
721
722 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
723 {
724 struct btrfs_fs_devices *fs_devices;
725 struct btrfs_device *device;
726 struct btrfs_device *orig_dev;
727
728 fs_devices = alloc_fs_devices(orig->fsid);
729 if (IS_ERR(fs_devices))
730 return fs_devices;
731
732 mutex_lock(&orig->device_list_mutex);
733 fs_devices->total_devices = orig->total_devices;
734
735 /* We have held the volume lock, it is safe to get the devices. */
736 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
737 struct rcu_string *name;
738
739 device = btrfs_alloc_device(NULL, &orig_dev->devid,
740 orig_dev->uuid);
741 if (IS_ERR(device))
742 goto error;
743
744 /*
745 * This is ok to do without rcu read locked because we hold the
746 * uuid mutex so nothing we touch in here is going to disappear.
747 */
748 if (orig_dev->name) {
749 name = rcu_string_strdup(orig_dev->name->str,
750 GFP_KERNEL);
751 if (!name) {
752 kfree(device);
753 goto error;
754 }
755 rcu_assign_pointer(device->name, name);
756 }
757
758 list_add(&device->dev_list, &fs_devices->devices);
759 device->fs_devices = fs_devices;
760 fs_devices->num_devices++;
761 }
762 mutex_unlock(&orig->device_list_mutex);
763 return fs_devices;
764 error:
765 mutex_unlock(&orig->device_list_mutex);
766 free_fs_devices(fs_devices);
767 return ERR_PTR(-ENOMEM);
768 }
769
770 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
771 {
772 struct btrfs_device *device, *next;
773 struct btrfs_device *latest_dev = NULL;
774
775 mutex_lock(&uuid_mutex);
776 again:
777 /* This is the initialized path, it is safe to release the devices. */
778 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
779 if (device->in_fs_metadata) {
780 if (!device->is_tgtdev_for_dev_replace &&
781 (!latest_dev ||
782 device->generation > latest_dev->generation)) {
783 latest_dev = device;
784 }
785 continue;
786 }
787
788 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
789 /*
790 * In the first step, keep the device which has
791 * the correct fsid and the devid that is used
792 * for the dev_replace procedure.
793 * In the second step, the dev_replace state is
794 * read from the device tree and it is known
795 * whether the procedure is really active or
796 * not, which means whether this device is
797 * used or whether it should be removed.
798 */
799 if (step == 0 || device->is_tgtdev_for_dev_replace) {
800 continue;
801 }
802 }
803 if (device->bdev) {
804 blkdev_put(device->bdev, device->mode);
805 device->bdev = NULL;
806 fs_devices->open_devices--;
807 }
808 if (device->writeable) {
809 list_del_init(&device->dev_alloc_list);
810 device->writeable = 0;
811 if (!device->is_tgtdev_for_dev_replace)
812 fs_devices->rw_devices--;
813 }
814 list_del_init(&device->dev_list);
815 fs_devices->num_devices--;
816 rcu_string_free(device->name);
817 kfree(device);
818 }
819
820 if (fs_devices->seed) {
821 fs_devices = fs_devices->seed;
822 goto again;
823 }
824
825 fs_devices->latest_bdev = latest_dev->bdev;
826
827 mutex_unlock(&uuid_mutex);
828 }
829
830 static void __free_device(struct work_struct *work)
831 {
832 struct btrfs_device *device;
833
834 device = container_of(work, struct btrfs_device, rcu_work);
835 rcu_string_free(device->name);
836 kfree(device);
837 }
838
839 static void free_device(struct rcu_head *head)
840 {
841 struct btrfs_device *device;
842
843 device = container_of(head, struct btrfs_device, rcu);
844
845 INIT_WORK(&device->rcu_work, __free_device);
846 schedule_work(&device->rcu_work);
847 }
848
849 static void btrfs_close_bdev(struct btrfs_device *device)
850 {
851 if (device->bdev && device->writeable) {
852 sync_blockdev(device->bdev);
853 invalidate_bdev(device->bdev);
854 }
855
856 if (device->bdev)
857 blkdev_put(device->bdev, device->mode);
858 }
859
860 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
861 {
862 struct btrfs_fs_devices *fs_devices = device->fs_devices;
863 struct btrfs_device *new_device;
864 struct rcu_string *name;
865
866 if (device->bdev)
867 fs_devices->open_devices--;
868
869 if (device->writeable &&
870 device->devid != BTRFS_DEV_REPLACE_DEVID) {
871 list_del_init(&device->dev_alloc_list);
872 fs_devices->rw_devices--;
873 }
874
875 if (device->missing)
876 fs_devices->missing_devices--;
877
878 new_device = btrfs_alloc_device(NULL, &device->devid,
879 device->uuid);
880 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
881
882 /* Safe because we are under uuid_mutex */
883 if (device->name) {
884 name = rcu_string_strdup(device->name->str, GFP_NOFS);
885 BUG_ON(!name); /* -ENOMEM */
886 rcu_assign_pointer(new_device->name, name);
887 }
888
889 list_replace_rcu(&device->dev_list, &new_device->dev_list);
890 new_device->fs_devices = device->fs_devices;
891 }
892
893 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
894 {
895 struct btrfs_device *device, *tmp;
896 struct list_head pending_put;
897
898 INIT_LIST_HEAD(&pending_put);
899
900 if (--fs_devices->opened > 0)
901 return 0;
902
903 mutex_lock(&fs_devices->device_list_mutex);
904 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
905 btrfs_prepare_close_one_device(device);
906 list_add(&device->dev_list, &pending_put);
907 }
908 mutex_unlock(&fs_devices->device_list_mutex);
909
910 /*
911 * btrfs_show_devname() is using the device_list_mutex,
912 * sometimes call to blkdev_put() leads vfs calling
913 * into this func. So do put outside of device_list_mutex,
914 * as of now.
915 */
916 while (!list_empty(&pending_put)) {
917 device = list_first_entry(&pending_put,
918 struct btrfs_device, dev_list);
919 list_del(&device->dev_list);
920 btrfs_close_bdev(device);
921 call_rcu(&device->rcu, free_device);
922 }
923
924 WARN_ON(fs_devices->open_devices);
925 WARN_ON(fs_devices->rw_devices);
926 fs_devices->opened = 0;
927 fs_devices->seeding = 0;
928
929 return 0;
930 }
931
932 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
933 {
934 struct btrfs_fs_devices *seed_devices = NULL;
935 int ret;
936
937 mutex_lock(&uuid_mutex);
938 ret = __btrfs_close_devices(fs_devices);
939 if (!fs_devices->opened) {
940 seed_devices = fs_devices->seed;
941 fs_devices->seed = NULL;
942 }
943 mutex_unlock(&uuid_mutex);
944
945 while (seed_devices) {
946 fs_devices = seed_devices;
947 seed_devices = fs_devices->seed;
948 __btrfs_close_devices(fs_devices);
949 free_fs_devices(fs_devices);
950 }
951 /*
952 * Wait for rcu kworkers under __btrfs_close_devices
953 * to finish all blkdev_puts so device is really
954 * free when umount is done.
955 */
956 rcu_barrier();
957 return ret;
958 }
959
960 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
961 fmode_t flags, void *holder)
962 {
963 struct request_queue *q;
964 struct block_device *bdev;
965 struct list_head *head = &fs_devices->devices;
966 struct btrfs_device *device;
967 struct btrfs_device *latest_dev = NULL;
968 struct buffer_head *bh;
969 struct btrfs_super_block *disk_super;
970 u64 devid;
971 int seeding = 1;
972 int ret = 0;
973
974 flags |= FMODE_EXCL;
975
976 list_for_each_entry(device, head, dev_list) {
977 if (device->bdev)
978 continue;
979 if (!device->name)
980 continue;
981
982 /* Just open everything we can; ignore failures here */
983 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
984 &bdev, &bh))
985 continue;
986
987 disk_super = (struct btrfs_super_block *)bh->b_data;
988 devid = btrfs_stack_device_id(&disk_super->dev_item);
989 if (devid != device->devid)
990 goto error_brelse;
991
992 if (memcmp(device->uuid, disk_super->dev_item.uuid,
993 BTRFS_UUID_SIZE))
994 goto error_brelse;
995
996 device->generation = btrfs_super_generation(disk_super);
997 if (!latest_dev ||
998 device->generation > latest_dev->generation)
999 latest_dev = device;
1000
1001 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1002 device->writeable = 0;
1003 } else {
1004 device->writeable = !bdev_read_only(bdev);
1005 seeding = 0;
1006 }
1007
1008 q = bdev_get_queue(bdev);
1009 if (blk_queue_discard(q))
1010 device->can_discard = 1;
1011
1012 device->bdev = bdev;
1013 device->in_fs_metadata = 0;
1014 device->mode = flags;
1015
1016 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1017 fs_devices->rotating = 1;
1018
1019 fs_devices->open_devices++;
1020 if (device->writeable &&
1021 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1022 fs_devices->rw_devices++;
1023 list_add(&device->dev_alloc_list,
1024 &fs_devices->alloc_list);
1025 }
1026 brelse(bh);
1027 continue;
1028
1029 error_brelse:
1030 brelse(bh);
1031 blkdev_put(bdev, flags);
1032 continue;
1033 }
1034 if (fs_devices->open_devices == 0) {
1035 ret = -EINVAL;
1036 goto out;
1037 }
1038 fs_devices->seeding = seeding;
1039 fs_devices->opened = 1;
1040 fs_devices->latest_bdev = latest_dev->bdev;
1041 fs_devices->total_rw_bytes = 0;
1042 out:
1043 return ret;
1044 }
1045
1046 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1047 fmode_t flags, void *holder)
1048 {
1049 int ret;
1050
1051 mutex_lock(&uuid_mutex);
1052 if (fs_devices->opened) {
1053 fs_devices->opened++;
1054 ret = 0;
1055 } else {
1056 ret = __btrfs_open_devices(fs_devices, flags, holder);
1057 }
1058 mutex_unlock(&uuid_mutex);
1059 return ret;
1060 }
1061
1062 void btrfs_release_disk_super(struct page *page)
1063 {
1064 kunmap(page);
1065 put_page(page);
1066 }
1067
1068 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1069 struct page **page, struct btrfs_super_block **disk_super)
1070 {
1071 void *p;
1072 pgoff_t index;
1073
1074 /* make sure our super fits in the device */
1075 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1076 return 1;
1077
1078 /* make sure our super fits in the page */
1079 if (sizeof(**disk_super) > PAGE_SIZE)
1080 return 1;
1081
1082 /* make sure our super doesn't straddle pages on disk */
1083 index = bytenr >> PAGE_SHIFT;
1084 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1085 return 1;
1086
1087 /* pull in the page with our super */
1088 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1089 index, GFP_KERNEL);
1090
1091 if (IS_ERR_OR_NULL(*page))
1092 return 1;
1093
1094 p = kmap(*page);
1095
1096 /* align our pointer to the offset of the super block */
1097 *disk_super = p + (bytenr & ~PAGE_MASK);
1098
1099 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1100 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1101 btrfs_release_disk_super(*page);
1102 return 1;
1103 }
1104
1105 if ((*disk_super)->label[0] &&
1106 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * Look for a btrfs signature on a device. This may be called out of the mount path
1114 * and we are not allowed to call set_blocksize during the scan. The superblock
1115 * is read via pagecache
1116 */
1117 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1118 struct btrfs_fs_devices **fs_devices_ret)
1119 {
1120 struct btrfs_super_block *disk_super;
1121 struct block_device *bdev;
1122 struct page *page;
1123 int ret = -EINVAL;
1124 u64 devid;
1125 u64 transid;
1126 u64 total_devices;
1127 u64 bytenr;
1128
1129 /*
1130 * we would like to check all the supers, but that would make
1131 * a btrfs mount succeed after a mkfs from a different FS.
1132 * So, we need to add a special mount option to scan for
1133 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1134 */
1135 bytenr = btrfs_sb_offset(0);
1136 flags |= FMODE_EXCL;
1137 mutex_lock(&uuid_mutex);
1138
1139 bdev = blkdev_get_by_path(path, flags, holder);
1140 if (IS_ERR(bdev)) {
1141 ret = PTR_ERR(bdev);
1142 goto error;
1143 }
1144
1145 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1146 goto error_bdev_put;
1147
1148 devid = btrfs_stack_device_id(&disk_super->dev_item);
1149 transid = btrfs_super_generation(disk_super);
1150 total_devices = btrfs_super_num_devices(disk_super);
1151
1152 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1153 if (ret > 0) {
1154 if (disk_super->label[0]) {
1155 pr_info("BTRFS: device label %s ", disk_super->label);
1156 } else {
1157 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1158 }
1159
1160 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1161 ret = 0;
1162 }
1163 if (!ret && fs_devices_ret)
1164 (*fs_devices_ret)->total_devices = total_devices;
1165
1166 btrfs_release_disk_super(page);
1167
1168 error_bdev_put:
1169 blkdev_put(bdev, flags);
1170 error:
1171 mutex_unlock(&uuid_mutex);
1172 return ret;
1173 }
1174
1175 /* helper to account the used device space in the range */
1176 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1177 u64 end, u64 *length)
1178 {
1179 struct btrfs_key key;
1180 struct btrfs_root *root = device->fs_info->dev_root;
1181 struct btrfs_dev_extent *dev_extent;
1182 struct btrfs_path *path;
1183 u64 extent_end;
1184 int ret;
1185 int slot;
1186 struct extent_buffer *l;
1187
1188 *length = 0;
1189
1190 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1191 return 0;
1192
1193 path = btrfs_alloc_path();
1194 if (!path)
1195 return -ENOMEM;
1196 path->reada = READA_FORWARD;
1197
1198 key.objectid = device->devid;
1199 key.offset = start;
1200 key.type = BTRFS_DEV_EXTENT_KEY;
1201
1202 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1203 if (ret < 0)
1204 goto out;
1205 if (ret > 0) {
1206 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1207 if (ret < 0)
1208 goto out;
1209 }
1210
1211 while (1) {
1212 l = path->nodes[0];
1213 slot = path->slots[0];
1214 if (slot >= btrfs_header_nritems(l)) {
1215 ret = btrfs_next_leaf(root, path);
1216 if (ret == 0)
1217 continue;
1218 if (ret < 0)
1219 goto out;
1220
1221 break;
1222 }
1223 btrfs_item_key_to_cpu(l, &key, slot);
1224
1225 if (key.objectid < device->devid)
1226 goto next;
1227
1228 if (key.objectid > device->devid)
1229 break;
1230
1231 if (key.type != BTRFS_DEV_EXTENT_KEY)
1232 goto next;
1233
1234 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1235 extent_end = key.offset + btrfs_dev_extent_length(l,
1236 dev_extent);
1237 if (key.offset <= start && extent_end > end) {
1238 *length = end - start + 1;
1239 break;
1240 } else if (key.offset <= start && extent_end > start)
1241 *length += extent_end - start;
1242 else if (key.offset > start && extent_end <= end)
1243 *length += extent_end - key.offset;
1244 else if (key.offset > start && key.offset <= end) {
1245 *length += end - key.offset + 1;
1246 break;
1247 } else if (key.offset > end)
1248 break;
1249
1250 next:
1251 path->slots[0]++;
1252 }
1253 ret = 0;
1254 out:
1255 btrfs_free_path(path);
1256 return ret;
1257 }
1258
1259 static int contains_pending_extent(struct btrfs_transaction *transaction,
1260 struct btrfs_device *device,
1261 u64 *start, u64 len)
1262 {
1263 struct btrfs_fs_info *fs_info = device->fs_info;
1264 struct extent_map *em;
1265 struct list_head *search_list = &fs_info->pinned_chunks;
1266 int ret = 0;
1267 u64 physical_start = *start;
1268
1269 if (transaction)
1270 search_list = &transaction->pending_chunks;
1271 again:
1272 list_for_each_entry(em, search_list, list) {
1273 struct map_lookup *map;
1274 int i;
1275
1276 map = em->map_lookup;
1277 for (i = 0; i < map->num_stripes; i++) {
1278 u64 end;
1279
1280 if (map->stripes[i].dev != device)
1281 continue;
1282 if (map->stripes[i].physical >= physical_start + len ||
1283 map->stripes[i].physical + em->orig_block_len <=
1284 physical_start)
1285 continue;
1286 /*
1287 * Make sure that while processing the pinned list we do
1288 * not override our *start with a lower value, because
1289 * we can have pinned chunks that fall within this
1290 * device hole and that have lower physical addresses
1291 * than the pending chunks we processed before. If we
1292 * do not take this special care we can end up getting
1293 * 2 pending chunks that start at the same physical
1294 * device offsets because the end offset of a pinned
1295 * chunk can be equal to the start offset of some
1296 * pending chunk.
1297 */
1298 end = map->stripes[i].physical + em->orig_block_len;
1299 if (end > *start) {
1300 *start = end;
1301 ret = 1;
1302 }
1303 }
1304 }
1305 if (search_list != &fs_info->pinned_chunks) {
1306 search_list = &fs_info->pinned_chunks;
1307 goto again;
1308 }
1309
1310 return ret;
1311 }
1312
1313
1314 /*
1315 * find_free_dev_extent_start - find free space in the specified device
1316 * @device: the device which we search the free space in
1317 * @num_bytes: the size of the free space that we need
1318 * @search_start: the position from which to begin the search
1319 * @start: store the start of the free space.
1320 * @len: the size of the free space. that we find, or the size
1321 * of the max free space if we don't find suitable free space
1322 *
1323 * this uses a pretty simple search, the expectation is that it is
1324 * called very infrequently and that a given device has a small number
1325 * of extents
1326 *
1327 * @start is used to store the start of the free space if we find. But if we
1328 * don't find suitable free space, it will be used to store the start position
1329 * of the max free space.
1330 *
1331 * @len is used to store the size of the free space that we find.
1332 * But if we don't find suitable free space, it is used to store the size of
1333 * the max free space.
1334 */
1335 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1336 struct btrfs_device *device, u64 num_bytes,
1337 u64 search_start, u64 *start, u64 *len)
1338 {
1339 struct btrfs_fs_info *fs_info = device->fs_info;
1340 struct btrfs_root *root = fs_info->dev_root;
1341 struct btrfs_key key;
1342 struct btrfs_dev_extent *dev_extent;
1343 struct btrfs_path *path;
1344 u64 hole_size;
1345 u64 max_hole_start;
1346 u64 max_hole_size;
1347 u64 extent_end;
1348 u64 search_end = device->total_bytes;
1349 int ret;
1350 int slot;
1351 struct extent_buffer *l;
1352 u64 min_search_start;
1353
1354 /*
1355 * We don't want to overwrite the superblock on the drive nor any area
1356 * used by the boot loader (grub for example), so we make sure to start
1357 * at an offset of at least 1MB.
1358 */
1359 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1360 search_start = max(search_start, min_search_start);
1361
1362 path = btrfs_alloc_path();
1363 if (!path)
1364 return -ENOMEM;
1365
1366 max_hole_start = search_start;
1367 max_hole_size = 0;
1368
1369 again:
1370 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1371 ret = -ENOSPC;
1372 goto out;
1373 }
1374
1375 path->reada = READA_FORWARD;
1376 path->search_commit_root = 1;
1377 path->skip_locking = 1;
1378
1379 key.objectid = device->devid;
1380 key.offset = search_start;
1381 key.type = BTRFS_DEV_EXTENT_KEY;
1382
1383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384 if (ret < 0)
1385 goto out;
1386 if (ret > 0) {
1387 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 if (ret < 0)
1389 goto out;
1390 }
1391
1392 while (1) {
1393 l = path->nodes[0];
1394 slot = path->slots[0];
1395 if (slot >= btrfs_header_nritems(l)) {
1396 ret = btrfs_next_leaf(root, path);
1397 if (ret == 0)
1398 continue;
1399 if (ret < 0)
1400 goto out;
1401
1402 break;
1403 }
1404 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406 if (key.objectid < device->devid)
1407 goto next;
1408
1409 if (key.objectid > device->devid)
1410 break;
1411
1412 if (key.type != BTRFS_DEV_EXTENT_KEY)
1413 goto next;
1414
1415 if (key.offset > search_start) {
1416 hole_size = key.offset - search_start;
1417
1418 /*
1419 * Have to check before we set max_hole_start, otherwise
1420 * we could end up sending back this offset anyway.
1421 */
1422 if (contains_pending_extent(transaction, device,
1423 &search_start,
1424 hole_size)) {
1425 if (key.offset >= search_start) {
1426 hole_size = key.offset - search_start;
1427 } else {
1428 WARN_ON_ONCE(1);
1429 hole_size = 0;
1430 }
1431 }
1432
1433 if (hole_size > max_hole_size) {
1434 max_hole_start = search_start;
1435 max_hole_size = hole_size;
1436 }
1437
1438 /*
1439 * If this free space is greater than which we need,
1440 * it must be the max free space that we have found
1441 * until now, so max_hole_start must point to the start
1442 * of this free space and the length of this free space
1443 * is stored in max_hole_size. Thus, we return
1444 * max_hole_start and max_hole_size and go back to the
1445 * caller.
1446 */
1447 if (hole_size >= num_bytes) {
1448 ret = 0;
1449 goto out;
1450 }
1451 }
1452
1453 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454 extent_end = key.offset + btrfs_dev_extent_length(l,
1455 dev_extent);
1456 if (extent_end > search_start)
1457 search_start = extent_end;
1458 next:
1459 path->slots[0]++;
1460 cond_resched();
1461 }
1462
1463 /*
1464 * At this point, search_start should be the end of
1465 * allocated dev extents, and when shrinking the device,
1466 * search_end may be smaller than search_start.
1467 */
1468 if (search_end > search_start) {
1469 hole_size = search_end - search_start;
1470
1471 if (contains_pending_extent(transaction, device, &search_start,
1472 hole_size)) {
1473 btrfs_release_path(path);
1474 goto again;
1475 }
1476
1477 if (hole_size > max_hole_size) {
1478 max_hole_start = search_start;
1479 max_hole_size = hole_size;
1480 }
1481 }
1482
1483 /* See above. */
1484 if (max_hole_size < num_bytes)
1485 ret = -ENOSPC;
1486 else
1487 ret = 0;
1488
1489 out:
1490 btrfs_free_path(path);
1491 *start = max_hole_start;
1492 if (len)
1493 *len = max_hole_size;
1494 return ret;
1495 }
1496
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 struct btrfs_device *device, u64 num_bytes,
1499 u64 *start, u64 *len)
1500 {
1501 /* FIXME use last free of some kind */
1502 return find_free_dev_extent_start(trans->transaction, device,
1503 num_bytes, 0, start, len);
1504 }
1505
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507 struct btrfs_device *device,
1508 u64 start, u64 *dev_extent_len)
1509 {
1510 struct btrfs_fs_info *fs_info = device->fs_info;
1511 struct btrfs_root *root = fs_info->dev_root;
1512 int ret;
1513 struct btrfs_path *path;
1514 struct btrfs_key key;
1515 struct btrfs_key found_key;
1516 struct extent_buffer *leaf = NULL;
1517 struct btrfs_dev_extent *extent = NULL;
1518
1519 path = btrfs_alloc_path();
1520 if (!path)
1521 return -ENOMEM;
1522
1523 key.objectid = device->devid;
1524 key.offset = start;
1525 key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 if (ret > 0) {
1529 ret = btrfs_previous_item(root, path, key.objectid,
1530 BTRFS_DEV_EXTENT_KEY);
1531 if (ret)
1532 goto out;
1533 leaf = path->nodes[0];
1534 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 extent = btrfs_item_ptr(leaf, path->slots[0],
1536 struct btrfs_dev_extent);
1537 BUG_ON(found_key.offset > start || found_key.offset +
1538 btrfs_dev_extent_length(leaf, extent) < start);
1539 key = found_key;
1540 btrfs_release_path(path);
1541 goto again;
1542 } else if (ret == 0) {
1543 leaf = path->nodes[0];
1544 extent = btrfs_item_ptr(leaf, path->slots[0],
1545 struct btrfs_dev_extent);
1546 } else {
1547 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548 goto out;
1549 }
1550
1551 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553 ret = btrfs_del_item(trans, root, path);
1554 if (ret) {
1555 btrfs_handle_fs_error(fs_info, ret,
1556 "Failed to remove dev extent item");
1557 } else {
1558 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 }
1560 out:
1561 btrfs_free_path(path);
1562 return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 struct btrfs_device *device,
1567 u64 chunk_tree, u64 chunk_objectid,
1568 u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570 int ret;
1571 struct btrfs_path *path;
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_dev_extent *extent;
1575 struct extent_buffer *leaf;
1576 struct btrfs_key key;
1577
1578 WARN_ON(!device->in_fs_metadata);
1579 WARN_ON(device->is_tgtdev_for_dev_replace);
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
1584 key.objectid = device->devid;
1585 key.offset = start;
1586 key.type = BTRFS_DEV_EXTENT_KEY;
1587 ret = btrfs_insert_empty_item(trans, root, path, &key,
1588 sizeof(*extent));
1589 if (ret)
1590 goto out;
1591
1592 leaf = path->nodes[0];
1593 extent = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_dev_extent);
1595 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1597 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1598
1599 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1600
1601 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602 btrfs_mark_buffer_dirty(leaf);
1603 out:
1604 btrfs_free_path(path);
1605 return ret;
1606 }
1607
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610 struct extent_map_tree *em_tree;
1611 struct extent_map *em;
1612 struct rb_node *n;
1613 u64 ret = 0;
1614
1615 em_tree = &fs_info->mapping_tree.map_tree;
1616 read_lock(&em_tree->lock);
1617 n = rb_last(&em_tree->map);
1618 if (n) {
1619 em = rb_entry(n, struct extent_map, rb_node);
1620 ret = em->start + em->len;
1621 }
1622 read_unlock(&em_tree->lock);
1623
1624 return ret;
1625 }
1626
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628 u64 *devid_ret)
1629 {
1630 int ret;
1631 struct btrfs_key key;
1632 struct btrfs_key found_key;
1633 struct btrfs_path *path;
1634
1635 path = btrfs_alloc_path();
1636 if (!path)
1637 return -ENOMEM;
1638
1639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640 key.type = BTRFS_DEV_ITEM_KEY;
1641 key.offset = (u64)-1;
1642
1643 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644 if (ret < 0)
1645 goto error;
1646
1647 BUG_ON(ret == 0); /* Corruption */
1648
1649 ret = btrfs_previous_item(fs_info->chunk_root, path,
1650 BTRFS_DEV_ITEMS_OBJECTID,
1651 BTRFS_DEV_ITEM_KEY);
1652 if (ret) {
1653 *devid_ret = 1;
1654 } else {
1655 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656 path->slots[0]);
1657 *devid_ret = found_key.offset + 1;
1658 }
1659 ret = 0;
1660 error:
1661 btrfs_free_path(path);
1662 return ret;
1663 }
1664
1665 /*
1666 * the device information is stored in the chunk root
1667 * the btrfs_device struct should be fully filled in
1668 */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670 struct btrfs_fs_info *fs_info,
1671 struct btrfs_device *device)
1672 {
1673 struct btrfs_root *root = fs_info->chunk_root;
1674 int ret;
1675 struct btrfs_path *path;
1676 struct btrfs_dev_item *dev_item;
1677 struct extent_buffer *leaf;
1678 struct btrfs_key key;
1679 unsigned long ptr;
1680
1681 path = btrfs_alloc_path();
1682 if (!path)
1683 return -ENOMEM;
1684
1685 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1686 key.type = BTRFS_DEV_ITEM_KEY;
1687 key.offset = device->devid;
1688
1689 ret = btrfs_insert_empty_item(trans, root, path, &key,
1690 sizeof(*dev_item));
1691 if (ret)
1692 goto out;
1693
1694 leaf = path->nodes[0];
1695 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1696
1697 btrfs_set_device_id(leaf, dev_item, device->devid);
1698 btrfs_set_device_generation(leaf, dev_item, 0);
1699 btrfs_set_device_type(leaf, dev_item, device->type);
1700 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1701 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1702 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1703 btrfs_set_device_total_bytes(leaf, dev_item,
1704 btrfs_device_get_disk_total_bytes(device));
1705 btrfs_set_device_bytes_used(leaf, dev_item,
1706 btrfs_device_get_bytes_used(device));
1707 btrfs_set_device_group(leaf, dev_item, 0);
1708 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1709 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1710 btrfs_set_device_start_offset(leaf, dev_item, 0);
1711
1712 ptr = btrfs_device_uuid(dev_item);
1713 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1714 ptr = btrfs_device_fsid(dev_item);
1715 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1716 btrfs_mark_buffer_dirty(leaf);
1717
1718 ret = 0;
1719 out:
1720 btrfs_free_path(path);
1721 return ret;
1722 }
1723
1724 /*
1725 * Function to update ctime/mtime for a given device path.
1726 * Mainly used for ctime/mtime based probe like libblkid.
1727 */
1728 static void update_dev_time(char *path_name)
1729 {
1730 struct file *filp;
1731
1732 filp = filp_open(path_name, O_RDWR, 0);
1733 if (IS_ERR(filp))
1734 return;
1735 file_update_time(filp);
1736 filp_close(filp, NULL);
1737 }
1738
1739 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1740 struct btrfs_device *device)
1741 {
1742 struct btrfs_root *root = fs_info->chunk_root;
1743 int ret;
1744 struct btrfs_path *path;
1745 struct btrfs_key key;
1746 struct btrfs_trans_handle *trans;
1747
1748 path = btrfs_alloc_path();
1749 if (!path)
1750 return -ENOMEM;
1751
1752 trans = btrfs_start_transaction(root, 0);
1753 if (IS_ERR(trans)) {
1754 btrfs_free_path(path);
1755 return PTR_ERR(trans);
1756 }
1757 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1758 key.type = BTRFS_DEV_ITEM_KEY;
1759 key.offset = device->devid;
1760
1761 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1762 if (ret < 0)
1763 goto out;
1764
1765 if (ret > 0) {
1766 ret = -ENOENT;
1767 goto out;
1768 }
1769
1770 ret = btrfs_del_item(trans, root, path);
1771 if (ret)
1772 goto out;
1773 out:
1774 btrfs_free_path(path);
1775 btrfs_commit_transaction(trans);
1776 return ret;
1777 }
1778
1779 /*
1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781 * filesystem. It's up to the caller to adjust that number regarding eg. device
1782 * replace.
1783 */
1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785 u64 num_devices)
1786 {
1787 u64 all_avail;
1788 unsigned seq;
1789 int i;
1790
1791 do {
1792 seq = read_seqbegin(&fs_info->profiles_lock);
1793
1794 all_avail = fs_info->avail_data_alloc_bits |
1795 fs_info->avail_system_alloc_bits |
1796 fs_info->avail_metadata_alloc_bits;
1797 } while (read_seqretry(&fs_info->profiles_lock, seq));
1798
1799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800 if (!(all_avail & btrfs_raid_group[i]))
1801 continue;
1802
1803 if (num_devices < btrfs_raid_array[i].devs_min) {
1804 int ret = btrfs_raid_mindev_error[i];
1805
1806 if (ret)
1807 return ret;
1808 }
1809 }
1810
1811 return 0;
1812 }
1813
1814 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1815 struct btrfs_device *device)
1816 {
1817 struct btrfs_device *next_device;
1818
1819 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820 if (next_device != device &&
1821 !next_device->missing && next_device->bdev)
1822 return next_device;
1823 }
1824
1825 return NULL;
1826 }
1827
1828 /*
1829 * Helper function to check if the given device is part of s_bdev / latest_bdev
1830 * and replace it with the provided or the next active device, in the context
1831 * where this function called, there should be always be another device (or
1832 * this_dev) which is active.
1833 */
1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835 struct btrfs_device *device, struct btrfs_device *this_dev)
1836 {
1837 struct btrfs_device *next_device;
1838
1839 if (this_dev)
1840 next_device = this_dev;
1841 else
1842 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843 device);
1844 ASSERT(next_device);
1845
1846 if (fs_info->sb->s_bdev &&
1847 (fs_info->sb->s_bdev == device->bdev))
1848 fs_info->sb->s_bdev = next_device->bdev;
1849
1850 if (fs_info->fs_devices->latest_bdev == device->bdev)
1851 fs_info->fs_devices->latest_bdev = next_device->bdev;
1852 }
1853
1854 int btrfs_rm_device(struct btrfs_fs_info *fs_info, char *device_path, u64 devid)
1855 {
1856 struct btrfs_device *device;
1857 struct btrfs_fs_devices *cur_devices;
1858 u64 num_devices;
1859 int ret = 0;
1860 bool clear_super = false;
1861
1862 mutex_lock(&uuid_mutex);
1863
1864 num_devices = fs_info->fs_devices->num_devices;
1865 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1866 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867 WARN_ON(num_devices < 1);
1868 num_devices--;
1869 }
1870 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1871
1872 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1873 if (ret)
1874 goto out;
1875
1876 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1877 &device);
1878 if (ret)
1879 goto out;
1880
1881 if (device->is_tgtdev_for_dev_replace) {
1882 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1883 goto out;
1884 }
1885
1886 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1887 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1888 goto out;
1889 }
1890
1891 if (device->writeable) {
1892 mutex_lock(&fs_info->chunk_mutex);
1893 list_del_init(&device->dev_alloc_list);
1894 device->fs_devices->rw_devices--;
1895 mutex_unlock(&fs_info->chunk_mutex);
1896 clear_super = true;
1897 }
1898
1899 mutex_unlock(&uuid_mutex);
1900 ret = btrfs_shrink_device(device, 0);
1901 mutex_lock(&uuid_mutex);
1902 if (ret)
1903 goto error_undo;
1904
1905 /*
1906 * TODO: the superblock still includes this device in its num_devices
1907 * counter although write_all_supers() is not locked out. This
1908 * could give a filesystem state which requires a degraded mount.
1909 */
1910 ret = btrfs_rm_dev_item(fs_info, device);
1911 if (ret)
1912 goto error_undo;
1913
1914 device->in_fs_metadata = 0;
1915 btrfs_scrub_cancel_dev(fs_info, device);
1916
1917 /*
1918 * the device list mutex makes sure that we don't change
1919 * the device list while someone else is writing out all
1920 * the device supers. Whoever is writing all supers, should
1921 * lock the device list mutex before getting the number of
1922 * devices in the super block (super_copy). Conversely,
1923 * whoever updates the number of devices in the super block
1924 * (super_copy) should hold the device list mutex.
1925 */
1926
1927 cur_devices = device->fs_devices;
1928 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1929 list_del_rcu(&device->dev_list);
1930
1931 device->fs_devices->num_devices--;
1932 device->fs_devices->total_devices--;
1933
1934 if (device->missing)
1935 device->fs_devices->missing_devices--;
1936
1937 btrfs_assign_next_active_device(fs_info, device, NULL);
1938
1939 if (device->bdev) {
1940 device->fs_devices->open_devices--;
1941 /* remove sysfs entry */
1942 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1943 }
1944
1945 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1946 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1947 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1948
1949 /*
1950 * at this point, the device is zero sized and detached from
1951 * the devices list. All that's left is to zero out the old
1952 * supers and free the device.
1953 */
1954 if (device->writeable)
1955 btrfs_scratch_superblocks(device->bdev, device->name->str);
1956
1957 btrfs_close_bdev(device);
1958 call_rcu(&device->rcu, free_device);
1959
1960 if (cur_devices->open_devices == 0) {
1961 struct btrfs_fs_devices *fs_devices;
1962 fs_devices = fs_info->fs_devices;
1963 while (fs_devices) {
1964 if (fs_devices->seed == cur_devices) {
1965 fs_devices->seed = cur_devices->seed;
1966 break;
1967 }
1968 fs_devices = fs_devices->seed;
1969 }
1970 cur_devices->seed = NULL;
1971 __btrfs_close_devices(cur_devices);
1972 free_fs_devices(cur_devices);
1973 }
1974
1975 fs_info->num_tolerated_disk_barrier_failures =
1976 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1977
1978 out:
1979 mutex_unlock(&uuid_mutex);
1980 return ret;
1981
1982 error_undo:
1983 if (device->writeable) {
1984 mutex_lock(&fs_info->chunk_mutex);
1985 list_add(&device->dev_alloc_list,
1986 &fs_info->fs_devices->alloc_list);
1987 device->fs_devices->rw_devices++;
1988 mutex_unlock(&fs_info->chunk_mutex);
1989 }
1990 goto out;
1991 }
1992
1993 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1994 struct btrfs_device *srcdev)
1995 {
1996 struct btrfs_fs_devices *fs_devices;
1997
1998 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1999
2000 /*
2001 * in case of fs with no seed, srcdev->fs_devices will point
2002 * to fs_devices of fs_info. However when the dev being replaced is
2003 * a seed dev it will point to the seed's local fs_devices. In short
2004 * srcdev will have its correct fs_devices in both the cases.
2005 */
2006 fs_devices = srcdev->fs_devices;
2007
2008 list_del_rcu(&srcdev->dev_list);
2009 list_del_rcu(&srcdev->dev_alloc_list);
2010 fs_devices->num_devices--;
2011 if (srcdev->missing)
2012 fs_devices->missing_devices--;
2013
2014 if (srcdev->writeable)
2015 fs_devices->rw_devices--;
2016
2017 if (srcdev->bdev)
2018 fs_devices->open_devices--;
2019 }
2020
2021 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2022 struct btrfs_device *srcdev)
2023 {
2024 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2025
2026 if (srcdev->writeable) {
2027 /* zero out the old super if it is writable */
2028 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2029 }
2030
2031 btrfs_close_bdev(srcdev);
2032
2033 call_rcu(&srcdev->rcu, free_device);
2034
2035 /*
2036 * unless fs_devices is seed fs, num_devices shouldn't go
2037 * zero
2038 */
2039 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2040
2041 /* if this is no devs we rather delete the fs_devices */
2042 if (!fs_devices->num_devices) {
2043 struct btrfs_fs_devices *tmp_fs_devices;
2044
2045 tmp_fs_devices = fs_info->fs_devices;
2046 while (tmp_fs_devices) {
2047 if (tmp_fs_devices->seed == fs_devices) {
2048 tmp_fs_devices->seed = fs_devices->seed;
2049 break;
2050 }
2051 tmp_fs_devices = tmp_fs_devices->seed;
2052 }
2053 fs_devices->seed = NULL;
2054 __btrfs_close_devices(fs_devices);
2055 free_fs_devices(fs_devices);
2056 }
2057 }
2058
2059 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2060 struct btrfs_device *tgtdev)
2061 {
2062 mutex_lock(&uuid_mutex);
2063 WARN_ON(!tgtdev);
2064 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2065
2066 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2067
2068 if (tgtdev->bdev)
2069 fs_info->fs_devices->open_devices--;
2070
2071 fs_info->fs_devices->num_devices--;
2072
2073 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2074
2075 list_del_rcu(&tgtdev->dev_list);
2076
2077 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2078 mutex_unlock(&uuid_mutex);
2079
2080 /*
2081 * The update_dev_time() with in btrfs_scratch_superblocks()
2082 * may lead to a call to btrfs_show_devname() which will try
2083 * to hold device_list_mutex. And here this device
2084 * is already out of device list, so we don't have to hold
2085 * the device_list_mutex lock.
2086 */
2087 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2088
2089 btrfs_close_bdev(tgtdev);
2090 call_rcu(&tgtdev->rcu, free_device);
2091 }
2092
2093 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2094 char *device_path,
2095 struct btrfs_device **device)
2096 {
2097 int ret = 0;
2098 struct btrfs_super_block *disk_super;
2099 u64 devid;
2100 u8 *dev_uuid;
2101 struct block_device *bdev;
2102 struct buffer_head *bh;
2103
2104 *device = NULL;
2105 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2106 fs_info->bdev_holder, 0, &bdev, &bh);
2107 if (ret)
2108 return ret;
2109 disk_super = (struct btrfs_super_block *)bh->b_data;
2110 devid = btrfs_stack_device_id(&disk_super->dev_item);
2111 dev_uuid = disk_super->dev_item.uuid;
2112 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2113 brelse(bh);
2114 if (!*device)
2115 ret = -ENOENT;
2116 blkdev_put(bdev, FMODE_READ);
2117 return ret;
2118 }
2119
2120 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2121 char *device_path,
2122 struct btrfs_device **device)
2123 {
2124 *device = NULL;
2125 if (strcmp(device_path, "missing") == 0) {
2126 struct list_head *devices;
2127 struct btrfs_device *tmp;
2128
2129 devices = &fs_info->fs_devices->devices;
2130 /*
2131 * It is safe to read the devices since the volume_mutex
2132 * is held by the caller.
2133 */
2134 list_for_each_entry(tmp, devices, dev_list) {
2135 if (tmp->in_fs_metadata && !tmp->bdev) {
2136 *device = tmp;
2137 break;
2138 }
2139 }
2140
2141 if (!*device)
2142 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2143
2144 return 0;
2145 } else {
2146 return btrfs_find_device_by_path(fs_info, device_path, device);
2147 }
2148 }
2149
2150 /*
2151 * Lookup a device given by device id, or the path if the id is 0.
2152 */
2153 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2154 char *devpath, struct btrfs_device **device)
2155 {
2156 int ret;
2157
2158 if (devid) {
2159 ret = 0;
2160 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2161 if (!*device)
2162 ret = -ENOENT;
2163 } else {
2164 if (!devpath || !devpath[0])
2165 return -EINVAL;
2166
2167 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2168 device);
2169 }
2170 return ret;
2171 }
2172
2173 /*
2174 * does all the dirty work required for changing file system's UUID.
2175 */
2176 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2177 {
2178 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2179 struct btrfs_fs_devices *old_devices;
2180 struct btrfs_fs_devices *seed_devices;
2181 struct btrfs_super_block *disk_super = fs_info->super_copy;
2182 struct btrfs_device *device;
2183 u64 super_flags;
2184
2185 BUG_ON(!mutex_is_locked(&uuid_mutex));
2186 if (!fs_devices->seeding)
2187 return -EINVAL;
2188
2189 seed_devices = __alloc_fs_devices();
2190 if (IS_ERR(seed_devices))
2191 return PTR_ERR(seed_devices);
2192
2193 old_devices = clone_fs_devices(fs_devices);
2194 if (IS_ERR(old_devices)) {
2195 kfree(seed_devices);
2196 return PTR_ERR(old_devices);
2197 }
2198
2199 list_add(&old_devices->list, &fs_uuids);
2200
2201 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2202 seed_devices->opened = 1;
2203 INIT_LIST_HEAD(&seed_devices->devices);
2204 INIT_LIST_HEAD(&seed_devices->alloc_list);
2205 mutex_init(&seed_devices->device_list_mutex);
2206
2207 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2208 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2209 synchronize_rcu);
2210 list_for_each_entry(device, &seed_devices->devices, dev_list)
2211 device->fs_devices = seed_devices;
2212
2213 mutex_lock(&fs_info->chunk_mutex);
2214 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2215 mutex_unlock(&fs_info->chunk_mutex);
2216
2217 fs_devices->seeding = 0;
2218 fs_devices->num_devices = 0;
2219 fs_devices->open_devices = 0;
2220 fs_devices->missing_devices = 0;
2221 fs_devices->rotating = 0;
2222 fs_devices->seed = seed_devices;
2223
2224 generate_random_uuid(fs_devices->fsid);
2225 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2226 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2227 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2228
2229 super_flags = btrfs_super_flags(disk_super) &
2230 ~BTRFS_SUPER_FLAG_SEEDING;
2231 btrfs_set_super_flags(disk_super, super_flags);
2232
2233 return 0;
2234 }
2235
2236 /*
2237 * Store the expected generation for seed devices in device items.
2238 */
2239 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2240 struct btrfs_fs_info *fs_info)
2241 {
2242 struct btrfs_root *root = fs_info->chunk_root;
2243 struct btrfs_path *path;
2244 struct extent_buffer *leaf;
2245 struct btrfs_dev_item *dev_item;
2246 struct btrfs_device *device;
2247 struct btrfs_key key;
2248 u8 fs_uuid[BTRFS_UUID_SIZE];
2249 u8 dev_uuid[BTRFS_UUID_SIZE];
2250 u64 devid;
2251 int ret;
2252
2253 path = btrfs_alloc_path();
2254 if (!path)
2255 return -ENOMEM;
2256
2257 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2258 key.offset = 0;
2259 key.type = BTRFS_DEV_ITEM_KEY;
2260
2261 while (1) {
2262 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2263 if (ret < 0)
2264 goto error;
2265
2266 leaf = path->nodes[0];
2267 next_slot:
2268 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2269 ret = btrfs_next_leaf(root, path);
2270 if (ret > 0)
2271 break;
2272 if (ret < 0)
2273 goto error;
2274 leaf = path->nodes[0];
2275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2276 btrfs_release_path(path);
2277 continue;
2278 }
2279
2280 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2281 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2282 key.type != BTRFS_DEV_ITEM_KEY)
2283 break;
2284
2285 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2286 struct btrfs_dev_item);
2287 devid = btrfs_device_id(leaf, dev_item);
2288 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2289 BTRFS_UUID_SIZE);
2290 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2291 BTRFS_UUID_SIZE);
2292 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2293 BUG_ON(!device); /* Logic error */
2294
2295 if (device->fs_devices->seeding) {
2296 btrfs_set_device_generation(leaf, dev_item,
2297 device->generation);
2298 btrfs_mark_buffer_dirty(leaf);
2299 }
2300
2301 path->slots[0]++;
2302 goto next_slot;
2303 }
2304 ret = 0;
2305 error:
2306 btrfs_free_path(path);
2307 return ret;
2308 }
2309
2310 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
2311 {
2312 struct btrfs_root *root = fs_info->dev_root;
2313 struct request_queue *q;
2314 struct btrfs_trans_handle *trans;
2315 struct btrfs_device *device;
2316 struct block_device *bdev;
2317 struct list_head *devices;
2318 struct super_block *sb = fs_info->sb;
2319 struct rcu_string *name;
2320 u64 tmp;
2321 int seeding_dev = 0;
2322 int ret = 0;
2323
2324 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2325 return -EROFS;
2326
2327 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2328 fs_info->bdev_holder);
2329 if (IS_ERR(bdev))
2330 return PTR_ERR(bdev);
2331
2332 if (fs_info->fs_devices->seeding) {
2333 seeding_dev = 1;
2334 down_write(&sb->s_umount);
2335 mutex_lock(&uuid_mutex);
2336 }
2337
2338 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2339
2340 devices = &fs_info->fs_devices->devices;
2341
2342 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2343 list_for_each_entry(device, devices, dev_list) {
2344 if (device->bdev == bdev) {
2345 ret = -EEXIST;
2346 mutex_unlock(
2347 &fs_info->fs_devices->device_list_mutex);
2348 goto error;
2349 }
2350 }
2351 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2352
2353 device = btrfs_alloc_device(fs_info, NULL, NULL);
2354 if (IS_ERR(device)) {
2355 /* we can safely leave the fs_devices entry around */
2356 ret = PTR_ERR(device);
2357 goto error;
2358 }
2359
2360 name = rcu_string_strdup(device_path, GFP_KERNEL);
2361 if (!name) {
2362 kfree(device);
2363 ret = -ENOMEM;
2364 goto error;
2365 }
2366 rcu_assign_pointer(device->name, name);
2367
2368 trans = btrfs_start_transaction(root, 0);
2369 if (IS_ERR(trans)) {
2370 rcu_string_free(device->name);
2371 kfree(device);
2372 ret = PTR_ERR(trans);
2373 goto error;
2374 }
2375
2376 q = bdev_get_queue(bdev);
2377 if (blk_queue_discard(q))
2378 device->can_discard = 1;
2379 device->writeable = 1;
2380 device->generation = trans->transid;
2381 device->io_width = fs_info->sectorsize;
2382 device->io_align = fs_info->sectorsize;
2383 device->sector_size = fs_info->sectorsize;
2384 device->total_bytes = i_size_read(bdev->bd_inode);
2385 device->disk_total_bytes = device->total_bytes;
2386 device->commit_total_bytes = device->total_bytes;
2387 device->fs_info = fs_info;
2388 device->bdev = bdev;
2389 device->in_fs_metadata = 1;
2390 device->is_tgtdev_for_dev_replace = 0;
2391 device->mode = FMODE_EXCL;
2392 device->dev_stats_valid = 1;
2393 set_blocksize(device->bdev, 4096);
2394
2395 if (seeding_dev) {
2396 sb->s_flags &= ~MS_RDONLY;
2397 ret = btrfs_prepare_sprout(fs_info);
2398 BUG_ON(ret); /* -ENOMEM */
2399 }
2400
2401 device->fs_devices = fs_info->fs_devices;
2402
2403 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2404 mutex_lock(&fs_info->chunk_mutex);
2405 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2406 list_add(&device->dev_alloc_list,
2407 &fs_info->fs_devices->alloc_list);
2408 fs_info->fs_devices->num_devices++;
2409 fs_info->fs_devices->open_devices++;
2410 fs_info->fs_devices->rw_devices++;
2411 fs_info->fs_devices->total_devices++;
2412 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2413
2414 spin_lock(&fs_info->free_chunk_lock);
2415 fs_info->free_chunk_space += device->total_bytes;
2416 spin_unlock(&fs_info->free_chunk_lock);
2417
2418 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2419 fs_info->fs_devices->rotating = 1;
2420
2421 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2422 btrfs_set_super_total_bytes(fs_info->super_copy,
2423 tmp + device->total_bytes);
2424
2425 tmp = btrfs_super_num_devices(fs_info->super_copy);
2426 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2427
2428 /* add sysfs device entry */
2429 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2430
2431 /*
2432 * we've got more storage, clear any full flags on the space
2433 * infos
2434 */
2435 btrfs_clear_space_info_full(fs_info);
2436
2437 mutex_unlock(&fs_info->chunk_mutex);
2438 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2439
2440 if (seeding_dev) {
2441 mutex_lock(&fs_info->chunk_mutex);
2442 ret = init_first_rw_device(trans, fs_info);
2443 mutex_unlock(&fs_info->chunk_mutex);
2444 if (ret) {
2445 btrfs_abort_transaction(trans, ret);
2446 goto error_trans;
2447 }
2448 }
2449
2450 ret = btrfs_add_device(trans, fs_info, device);
2451 if (ret) {
2452 btrfs_abort_transaction(trans, ret);
2453 goto error_trans;
2454 }
2455
2456 if (seeding_dev) {
2457 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2458
2459 ret = btrfs_finish_sprout(trans, fs_info);
2460 if (ret) {
2461 btrfs_abort_transaction(trans, ret);
2462 goto error_trans;
2463 }
2464
2465 /* Sprouting would change fsid of the mounted root,
2466 * so rename the fsid on the sysfs
2467 */
2468 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2469 fs_info->fsid);
2470 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2471 btrfs_warn(fs_info,
2472 "sysfs: failed to create fsid for sprout");
2473 }
2474
2475 fs_info->num_tolerated_disk_barrier_failures =
2476 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2477 ret = btrfs_commit_transaction(trans);
2478
2479 if (seeding_dev) {
2480 mutex_unlock(&uuid_mutex);
2481 up_write(&sb->s_umount);
2482
2483 if (ret) /* transaction commit */
2484 return ret;
2485
2486 ret = btrfs_relocate_sys_chunks(fs_info);
2487 if (ret < 0)
2488 btrfs_handle_fs_error(fs_info, ret,
2489 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2490 trans = btrfs_attach_transaction(root);
2491 if (IS_ERR(trans)) {
2492 if (PTR_ERR(trans) == -ENOENT)
2493 return 0;
2494 return PTR_ERR(trans);
2495 }
2496 ret = btrfs_commit_transaction(trans);
2497 }
2498
2499 /* Update ctime/mtime for libblkid */
2500 update_dev_time(device_path);
2501 return ret;
2502
2503 error_trans:
2504 btrfs_end_transaction(trans);
2505 rcu_string_free(device->name);
2506 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2507 kfree(device);
2508 error:
2509 blkdev_put(bdev, FMODE_EXCL);
2510 if (seeding_dev) {
2511 mutex_unlock(&uuid_mutex);
2512 up_write(&sb->s_umount);
2513 }
2514 return ret;
2515 }
2516
2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2518 char *device_path,
2519 struct btrfs_device *srcdev,
2520 struct btrfs_device **device_out)
2521 {
2522 struct request_queue *q;
2523 struct btrfs_device *device;
2524 struct block_device *bdev;
2525 struct list_head *devices;
2526 struct rcu_string *name;
2527 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2528 int ret = 0;
2529
2530 *device_out = NULL;
2531 if (fs_info->fs_devices->seeding) {
2532 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2533 return -EINVAL;
2534 }
2535
2536 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2537 fs_info->bdev_holder);
2538 if (IS_ERR(bdev)) {
2539 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2540 return PTR_ERR(bdev);
2541 }
2542
2543 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2544
2545 devices = &fs_info->fs_devices->devices;
2546 list_for_each_entry(device, devices, dev_list) {
2547 if (device->bdev == bdev) {
2548 btrfs_err(fs_info,
2549 "target device is in the filesystem!");
2550 ret = -EEXIST;
2551 goto error;
2552 }
2553 }
2554
2555
2556 if (i_size_read(bdev->bd_inode) <
2557 btrfs_device_get_total_bytes(srcdev)) {
2558 btrfs_err(fs_info,
2559 "target device is smaller than source device!");
2560 ret = -EINVAL;
2561 goto error;
2562 }
2563
2564
2565 device = btrfs_alloc_device(NULL, &devid, NULL);
2566 if (IS_ERR(device)) {
2567 ret = PTR_ERR(device);
2568 goto error;
2569 }
2570
2571 name = rcu_string_strdup(device_path, GFP_NOFS);
2572 if (!name) {
2573 kfree(device);
2574 ret = -ENOMEM;
2575 goto error;
2576 }
2577 rcu_assign_pointer(device->name, name);
2578
2579 q = bdev_get_queue(bdev);
2580 if (blk_queue_discard(q))
2581 device->can_discard = 1;
2582 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2583 device->writeable = 1;
2584 device->generation = 0;
2585 device->io_width = fs_info->sectorsize;
2586 device->io_align = fs_info->sectorsize;
2587 device->sector_size = fs_info->sectorsize;
2588 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2589 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2590 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2591 ASSERT(list_empty(&srcdev->resized_list));
2592 device->commit_total_bytes = srcdev->commit_total_bytes;
2593 device->commit_bytes_used = device->bytes_used;
2594 device->fs_info = fs_info;
2595 device->bdev = bdev;
2596 device->in_fs_metadata = 1;
2597 device->is_tgtdev_for_dev_replace = 1;
2598 device->mode = FMODE_EXCL;
2599 device->dev_stats_valid = 1;
2600 set_blocksize(device->bdev, 4096);
2601 device->fs_devices = fs_info->fs_devices;
2602 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2603 fs_info->fs_devices->num_devices++;
2604 fs_info->fs_devices->open_devices++;
2605 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2606
2607 *device_out = device;
2608 return ret;
2609
2610 error:
2611 blkdev_put(bdev, FMODE_EXCL);
2612 return ret;
2613 }
2614
2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2616 struct btrfs_device *tgtdev)
2617 {
2618 u32 sectorsize = fs_info->sectorsize;
2619
2620 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2621 tgtdev->io_width = sectorsize;
2622 tgtdev->io_align = sectorsize;
2623 tgtdev->sector_size = sectorsize;
2624 tgtdev->fs_info = fs_info;
2625 tgtdev->in_fs_metadata = 1;
2626 }
2627
2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2629 struct btrfs_device *device)
2630 {
2631 int ret;
2632 struct btrfs_path *path;
2633 struct btrfs_root *root = device->fs_info->chunk_root;
2634 struct btrfs_dev_item *dev_item;
2635 struct extent_buffer *leaf;
2636 struct btrfs_key key;
2637
2638 path = btrfs_alloc_path();
2639 if (!path)
2640 return -ENOMEM;
2641
2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643 key.type = BTRFS_DEV_ITEM_KEY;
2644 key.offset = device->devid;
2645
2646 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2647 if (ret < 0)
2648 goto out;
2649
2650 if (ret > 0) {
2651 ret = -ENOENT;
2652 goto out;
2653 }
2654
2655 leaf = path->nodes[0];
2656 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2657
2658 btrfs_set_device_id(leaf, dev_item, device->devid);
2659 btrfs_set_device_type(leaf, dev_item, device->type);
2660 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2661 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2662 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2663 btrfs_set_device_total_bytes(leaf, dev_item,
2664 btrfs_device_get_disk_total_bytes(device));
2665 btrfs_set_device_bytes_used(leaf, dev_item,
2666 btrfs_device_get_bytes_used(device));
2667 btrfs_mark_buffer_dirty(leaf);
2668
2669 out:
2670 btrfs_free_path(path);
2671 return ret;
2672 }
2673
2674 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2675 struct btrfs_device *device, u64 new_size)
2676 {
2677 struct btrfs_fs_info *fs_info = device->fs_info;
2678 struct btrfs_super_block *super_copy = fs_info->super_copy;
2679 struct btrfs_fs_devices *fs_devices;
2680 u64 old_total;
2681 u64 diff;
2682
2683 if (!device->writeable)
2684 return -EACCES;
2685
2686 mutex_lock(&fs_info->chunk_mutex);
2687 old_total = btrfs_super_total_bytes(super_copy);
2688 diff = new_size - device->total_bytes;
2689
2690 if (new_size <= device->total_bytes ||
2691 device->is_tgtdev_for_dev_replace) {
2692 mutex_unlock(&fs_info->chunk_mutex);
2693 return -EINVAL;
2694 }
2695
2696 fs_devices = fs_info->fs_devices;
2697
2698 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2699 device->fs_devices->total_rw_bytes += diff;
2700
2701 btrfs_device_set_total_bytes(device, new_size);
2702 btrfs_device_set_disk_total_bytes(device, new_size);
2703 btrfs_clear_space_info_full(device->fs_info);
2704 if (list_empty(&device->resized_list))
2705 list_add_tail(&device->resized_list,
2706 &fs_devices->resized_devices);
2707 mutex_unlock(&fs_info->chunk_mutex);
2708
2709 return btrfs_update_device(trans, device);
2710 }
2711
2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2713 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2714 u64 chunk_offset)
2715 {
2716 struct btrfs_root *root = fs_info->chunk_root;
2717 int ret;
2718 struct btrfs_path *path;
2719 struct btrfs_key key;
2720
2721 path = btrfs_alloc_path();
2722 if (!path)
2723 return -ENOMEM;
2724
2725 key.objectid = chunk_objectid;
2726 key.offset = chunk_offset;
2727 key.type = BTRFS_CHUNK_ITEM_KEY;
2728
2729 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2730 if (ret < 0)
2731 goto out;
2732 else if (ret > 0) { /* Logic error or corruption */
2733 btrfs_handle_fs_error(fs_info, -ENOENT,
2734 "Failed lookup while freeing chunk.");
2735 ret = -ENOENT;
2736 goto out;
2737 }
2738
2739 ret = btrfs_del_item(trans, root, path);
2740 if (ret < 0)
2741 btrfs_handle_fs_error(fs_info, ret,
2742 "Failed to delete chunk item.");
2743 out:
2744 btrfs_free_path(path);
2745 return ret;
2746 }
2747
2748 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2749 u64 chunk_objectid, u64 chunk_offset)
2750 {
2751 struct btrfs_super_block *super_copy = fs_info->super_copy;
2752 struct btrfs_disk_key *disk_key;
2753 struct btrfs_chunk *chunk;
2754 u8 *ptr;
2755 int ret = 0;
2756 u32 num_stripes;
2757 u32 array_size;
2758 u32 len = 0;
2759 u32 cur;
2760 struct btrfs_key key;
2761
2762 mutex_lock(&fs_info->chunk_mutex);
2763 array_size = btrfs_super_sys_array_size(super_copy);
2764
2765 ptr = super_copy->sys_chunk_array;
2766 cur = 0;
2767
2768 while (cur < array_size) {
2769 disk_key = (struct btrfs_disk_key *)ptr;
2770 btrfs_disk_key_to_cpu(&key, disk_key);
2771
2772 len = sizeof(*disk_key);
2773
2774 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2775 chunk = (struct btrfs_chunk *)(ptr + len);
2776 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2777 len += btrfs_chunk_item_size(num_stripes);
2778 } else {
2779 ret = -EIO;
2780 break;
2781 }
2782 if (key.objectid == chunk_objectid &&
2783 key.offset == chunk_offset) {
2784 memmove(ptr, ptr + len, array_size - (cur + len));
2785 array_size -= len;
2786 btrfs_set_super_sys_array_size(super_copy, array_size);
2787 } else {
2788 ptr += len;
2789 cur += len;
2790 }
2791 }
2792 mutex_unlock(&fs_info->chunk_mutex);
2793 return ret;
2794 }
2795
2796 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2797 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2798 {
2799 struct extent_map_tree *em_tree;
2800 struct extent_map *em;
2801 struct map_lookup *map;
2802 u64 dev_extent_len = 0;
2803 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2804 int i, ret = 0;
2805 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2806
2807 em_tree = &fs_info->mapping_tree.map_tree;
2808
2809 read_lock(&em_tree->lock);
2810 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2811 read_unlock(&em_tree->lock);
2812
2813 if (!em || em->start > chunk_offset ||
2814 em->start + em->len < chunk_offset) {
2815 /*
2816 * This is a logic error, but we don't want to just rely on the
2817 * user having built with ASSERT enabled, so if ASSERT doesn't
2818 * do anything we still error out.
2819 */
2820 ASSERT(0);
2821 if (em)
2822 free_extent_map(em);
2823 return -EINVAL;
2824 }
2825 map = em->map_lookup;
2826 mutex_lock(&fs_info->chunk_mutex);
2827 check_system_chunk(trans, fs_info, map->type);
2828 mutex_unlock(&fs_info->chunk_mutex);
2829
2830 /*
2831 * Take the device list mutex to prevent races with the final phase of
2832 * a device replace operation that replaces the device object associated
2833 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2834 */
2835 mutex_lock(&fs_devices->device_list_mutex);
2836 for (i = 0; i < map->num_stripes; i++) {
2837 struct btrfs_device *device = map->stripes[i].dev;
2838 ret = btrfs_free_dev_extent(trans, device,
2839 map->stripes[i].physical,
2840 &dev_extent_len);
2841 if (ret) {
2842 mutex_unlock(&fs_devices->device_list_mutex);
2843 btrfs_abort_transaction(trans, ret);
2844 goto out;
2845 }
2846
2847 if (device->bytes_used > 0) {
2848 mutex_lock(&fs_info->chunk_mutex);
2849 btrfs_device_set_bytes_used(device,
2850 device->bytes_used - dev_extent_len);
2851 spin_lock(&fs_info->free_chunk_lock);
2852 fs_info->free_chunk_space += dev_extent_len;
2853 spin_unlock(&fs_info->free_chunk_lock);
2854 btrfs_clear_space_info_full(fs_info);
2855 mutex_unlock(&fs_info->chunk_mutex);
2856 }
2857
2858 if (map->stripes[i].dev) {
2859 ret = btrfs_update_device(trans, map->stripes[i].dev);
2860 if (ret) {
2861 mutex_unlock(&fs_devices->device_list_mutex);
2862 btrfs_abort_transaction(trans, ret);
2863 goto out;
2864 }
2865 }
2866 }
2867 mutex_unlock(&fs_devices->device_list_mutex);
2868
2869 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2870 if (ret) {
2871 btrfs_abort_transaction(trans, ret);
2872 goto out;
2873 }
2874
2875 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2876
2877 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2878 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2879 chunk_offset);
2880 if (ret) {
2881 btrfs_abort_transaction(trans, ret);
2882 goto out;
2883 }
2884 }
2885
2886 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2887 if (ret) {
2888 btrfs_abort_transaction(trans, ret);
2889 goto out;
2890 }
2891
2892 out:
2893 /* once for us */
2894 free_extent_map(em);
2895 return ret;
2896 }
2897
2898 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2899 {
2900 struct btrfs_root *root = fs_info->chunk_root;
2901 struct btrfs_trans_handle *trans;
2902 int ret;
2903
2904 /*
2905 * Prevent races with automatic removal of unused block groups.
2906 * After we relocate and before we remove the chunk with offset
2907 * chunk_offset, automatic removal of the block group can kick in,
2908 * resulting in a failure when calling btrfs_remove_chunk() below.
2909 *
2910 * Make sure to acquire this mutex before doing a tree search (dev
2911 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2912 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2913 * we release the path used to search the chunk/dev tree and before
2914 * the current task acquires this mutex and calls us.
2915 */
2916 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2917
2918 ret = btrfs_can_relocate(fs_info, chunk_offset);
2919 if (ret)
2920 return -ENOSPC;
2921
2922 /* step one, relocate all the extents inside this chunk */
2923 btrfs_scrub_pause(fs_info);
2924 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2925 btrfs_scrub_continue(fs_info);
2926 if (ret)
2927 return ret;
2928
2929 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2930 chunk_offset);
2931 if (IS_ERR(trans)) {
2932 ret = PTR_ERR(trans);
2933 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2934 return ret;
2935 }
2936
2937 /*
2938 * step two, delete the device extents and the
2939 * chunk tree entries
2940 */
2941 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2942 btrfs_end_transaction(trans);
2943 return ret;
2944 }
2945
2946 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2947 {
2948 struct btrfs_root *chunk_root = fs_info->chunk_root;
2949 struct btrfs_path *path;
2950 struct extent_buffer *leaf;
2951 struct btrfs_chunk *chunk;
2952 struct btrfs_key key;
2953 struct btrfs_key found_key;
2954 u64 chunk_type;
2955 bool retried = false;
2956 int failed = 0;
2957 int ret;
2958
2959 path = btrfs_alloc_path();
2960 if (!path)
2961 return -ENOMEM;
2962
2963 again:
2964 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2965 key.offset = (u64)-1;
2966 key.type = BTRFS_CHUNK_ITEM_KEY;
2967
2968 while (1) {
2969 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2970 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2971 if (ret < 0) {
2972 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2973 goto error;
2974 }
2975 BUG_ON(ret == 0); /* Corruption */
2976
2977 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2978 key.type);
2979 if (ret)
2980 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2981 if (ret < 0)
2982 goto error;
2983 if (ret > 0)
2984 break;
2985
2986 leaf = path->nodes[0];
2987 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2988
2989 chunk = btrfs_item_ptr(leaf, path->slots[0],
2990 struct btrfs_chunk);
2991 chunk_type = btrfs_chunk_type(leaf, chunk);
2992 btrfs_release_path(path);
2993
2994 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2995 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2996 if (ret == -ENOSPC)
2997 failed++;
2998 else
2999 BUG_ON(ret);
3000 }
3001 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3002
3003 if (found_key.offset == 0)
3004 break;
3005 key.offset = found_key.offset - 1;
3006 }
3007 ret = 0;
3008 if (failed && !retried) {
3009 failed = 0;
3010 retried = true;
3011 goto again;
3012 } else if (WARN_ON(failed && retried)) {
3013 ret = -ENOSPC;
3014 }
3015 error:
3016 btrfs_free_path(path);
3017 return ret;
3018 }
3019
3020 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3021 struct btrfs_balance_control *bctl)
3022 {
3023 struct btrfs_root *root = fs_info->tree_root;
3024 struct btrfs_trans_handle *trans;
3025 struct btrfs_balance_item *item;
3026 struct btrfs_disk_balance_args disk_bargs;
3027 struct btrfs_path *path;
3028 struct extent_buffer *leaf;
3029 struct btrfs_key key;
3030 int ret, err;
3031
3032 path = btrfs_alloc_path();
3033 if (!path)
3034 return -ENOMEM;
3035
3036 trans = btrfs_start_transaction(root, 0);
3037 if (IS_ERR(trans)) {
3038 btrfs_free_path(path);
3039 return PTR_ERR(trans);
3040 }
3041
3042 key.objectid = BTRFS_BALANCE_OBJECTID;
3043 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3044 key.offset = 0;
3045
3046 ret = btrfs_insert_empty_item(trans, root, path, &key,
3047 sizeof(*item));
3048 if (ret)
3049 goto out;
3050
3051 leaf = path->nodes[0];
3052 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3053
3054 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3055
3056 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3057 btrfs_set_balance_data(leaf, item, &disk_bargs);
3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3059 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3061 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3062
3063 btrfs_set_balance_flags(leaf, item, bctl->flags);
3064
3065 btrfs_mark_buffer_dirty(leaf);
3066 out:
3067 btrfs_free_path(path);
3068 err = btrfs_commit_transaction(trans);
3069 if (err && !ret)
3070 ret = err;
3071 return ret;
3072 }
3073
3074 static int del_balance_item(struct btrfs_fs_info *fs_info)
3075 {
3076 struct btrfs_root *root = fs_info->tree_root;
3077 struct btrfs_trans_handle *trans;
3078 struct btrfs_path *path;
3079 struct btrfs_key key;
3080 int ret, err;
3081
3082 path = btrfs_alloc_path();
3083 if (!path)
3084 return -ENOMEM;
3085
3086 trans = btrfs_start_transaction(root, 0);
3087 if (IS_ERR(trans)) {
3088 btrfs_free_path(path);
3089 return PTR_ERR(trans);
3090 }
3091
3092 key.objectid = BTRFS_BALANCE_OBJECTID;
3093 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3094 key.offset = 0;
3095
3096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3097 if (ret < 0)
3098 goto out;
3099 if (ret > 0) {
3100 ret = -ENOENT;
3101 goto out;
3102 }
3103
3104 ret = btrfs_del_item(trans, root, path);
3105 out:
3106 btrfs_free_path(path);
3107 err = btrfs_commit_transaction(trans);
3108 if (err && !ret)
3109 ret = err;
3110 return ret;
3111 }
3112
3113 /*
3114 * This is a heuristic used to reduce the number of chunks balanced on
3115 * resume after balance was interrupted.
3116 */
3117 static void update_balance_args(struct btrfs_balance_control *bctl)
3118 {
3119 /*
3120 * Turn on soft mode for chunk types that were being converted.
3121 */
3122 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3123 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3124 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3125 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3126 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3127 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3128
3129 /*
3130 * Turn on usage filter if is not already used. The idea is
3131 * that chunks that we have already balanced should be
3132 * reasonably full. Don't do it for chunks that are being
3133 * converted - that will keep us from relocating unconverted
3134 * (albeit full) chunks.
3135 */
3136 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3137 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3138 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3139 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3140 bctl->data.usage = 90;
3141 }
3142 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3143 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3144 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3145 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3146 bctl->sys.usage = 90;
3147 }
3148 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3149 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3150 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152 bctl->meta.usage = 90;
3153 }
3154 }
3155
3156 /*
3157 * Should be called with both balance and volume mutexes held to
3158 * serialize other volume operations (add_dev/rm_dev/resize) with
3159 * restriper. Same goes for unset_balance_control.
3160 */
3161 static void set_balance_control(struct btrfs_balance_control *bctl)
3162 {
3163 struct btrfs_fs_info *fs_info = bctl->fs_info;
3164
3165 BUG_ON(fs_info->balance_ctl);
3166
3167 spin_lock(&fs_info->balance_lock);
3168 fs_info->balance_ctl = bctl;
3169 spin_unlock(&fs_info->balance_lock);
3170 }
3171
3172 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3173 {
3174 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3175
3176 BUG_ON(!fs_info->balance_ctl);
3177
3178 spin_lock(&fs_info->balance_lock);
3179 fs_info->balance_ctl = NULL;
3180 spin_unlock(&fs_info->balance_lock);
3181
3182 kfree(bctl);
3183 }
3184
3185 /*
3186 * Balance filters. Return 1 if chunk should be filtered out
3187 * (should not be balanced).
3188 */
3189 static int chunk_profiles_filter(u64 chunk_type,
3190 struct btrfs_balance_args *bargs)
3191 {
3192 chunk_type = chunk_to_extended(chunk_type) &
3193 BTRFS_EXTENDED_PROFILE_MASK;
3194
3195 if (bargs->profiles & chunk_type)
3196 return 0;
3197
3198 return 1;
3199 }
3200
3201 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3202 struct btrfs_balance_args *bargs)
3203 {
3204 struct btrfs_block_group_cache *cache;
3205 u64 chunk_used;
3206 u64 user_thresh_min;
3207 u64 user_thresh_max;
3208 int ret = 1;
3209
3210 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3211 chunk_used = btrfs_block_group_used(&cache->item);
3212
3213 if (bargs->usage_min == 0)
3214 user_thresh_min = 0;
3215 else
3216 user_thresh_min = div_factor_fine(cache->key.offset,
3217 bargs->usage_min);
3218
3219 if (bargs->usage_max == 0)
3220 user_thresh_max = 1;
3221 else if (bargs->usage_max > 100)
3222 user_thresh_max = cache->key.offset;
3223 else
3224 user_thresh_max = div_factor_fine(cache->key.offset,
3225 bargs->usage_max);
3226
3227 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3228 ret = 0;
3229
3230 btrfs_put_block_group(cache);
3231 return ret;
3232 }
3233
3234 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3235 u64 chunk_offset, struct btrfs_balance_args *bargs)
3236 {
3237 struct btrfs_block_group_cache *cache;
3238 u64 chunk_used, user_thresh;
3239 int ret = 1;
3240
3241 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3242 chunk_used = btrfs_block_group_used(&cache->item);
3243
3244 if (bargs->usage_min == 0)
3245 user_thresh = 1;
3246 else if (bargs->usage > 100)
3247 user_thresh = cache->key.offset;
3248 else
3249 user_thresh = div_factor_fine(cache->key.offset,
3250 bargs->usage);
3251
3252 if (chunk_used < user_thresh)
3253 ret = 0;
3254
3255 btrfs_put_block_group(cache);
3256 return ret;
3257 }
3258
3259 static int chunk_devid_filter(struct extent_buffer *leaf,
3260 struct btrfs_chunk *chunk,
3261 struct btrfs_balance_args *bargs)
3262 {
3263 struct btrfs_stripe *stripe;
3264 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265 int i;
3266
3267 for (i = 0; i < num_stripes; i++) {
3268 stripe = btrfs_stripe_nr(chunk, i);
3269 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3270 return 0;
3271 }
3272
3273 return 1;
3274 }
3275
3276 /* [pstart, pend) */
3277 static int chunk_drange_filter(struct extent_buffer *leaf,
3278 struct btrfs_chunk *chunk,
3279 u64 chunk_offset,
3280 struct btrfs_balance_args *bargs)
3281 {
3282 struct btrfs_stripe *stripe;
3283 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3284 u64 stripe_offset;
3285 u64 stripe_length;
3286 int factor;
3287 int i;
3288
3289 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3290 return 0;
3291
3292 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3293 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3294 factor = num_stripes / 2;
3295 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3296 factor = num_stripes - 1;
3297 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3298 factor = num_stripes - 2;
3299 } else {
3300 factor = num_stripes;
3301 }
3302
3303 for (i = 0; i < num_stripes; i++) {
3304 stripe = btrfs_stripe_nr(chunk, i);
3305 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3306 continue;
3307
3308 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3309 stripe_length = btrfs_chunk_length(leaf, chunk);
3310 stripe_length = div_u64(stripe_length, factor);
3311
3312 if (stripe_offset < bargs->pend &&
3313 stripe_offset + stripe_length > bargs->pstart)
3314 return 0;
3315 }
3316
3317 return 1;
3318 }
3319
3320 /* [vstart, vend) */
3321 static int chunk_vrange_filter(struct extent_buffer *leaf,
3322 struct btrfs_chunk *chunk,
3323 u64 chunk_offset,
3324 struct btrfs_balance_args *bargs)
3325 {
3326 if (chunk_offset < bargs->vend &&
3327 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3328 /* at least part of the chunk is inside this vrange */
3329 return 0;
3330
3331 return 1;
3332 }
3333
3334 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3335 struct btrfs_chunk *chunk,
3336 struct btrfs_balance_args *bargs)
3337 {
3338 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3339
3340 if (bargs->stripes_min <= num_stripes
3341 && num_stripes <= bargs->stripes_max)
3342 return 0;
3343
3344 return 1;
3345 }
3346
3347 static int chunk_soft_convert_filter(u64 chunk_type,
3348 struct btrfs_balance_args *bargs)
3349 {
3350 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3351 return 0;
3352
3353 chunk_type = chunk_to_extended(chunk_type) &
3354 BTRFS_EXTENDED_PROFILE_MASK;
3355
3356 if (bargs->target == chunk_type)
3357 return 1;
3358
3359 return 0;
3360 }
3361
3362 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3363 struct extent_buffer *leaf,
3364 struct btrfs_chunk *chunk, u64 chunk_offset)
3365 {
3366 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3367 struct btrfs_balance_args *bargs = NULL;
3368 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3369
3370 /* type filter */
3371 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3372 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3373 return 0;
3374 }
3375
3376 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3377 bargs = &bctl->data;
3378 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3379 bargs = &bctl->sys;
3380 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3381 bargs = &bctl->meta;
3382
3383 /* profiles filter */
3384 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3385 chunk_profiles_filter(chunk_type, bargs)) {
3386 return 0;
3387 }
3388
3389 /* usage filter */
3390 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3391 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3392 return 0;
3393 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3394 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3395 return 0;
3396 }
3397
3398 /* devid filter */
3399 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3400 chunk_devid_filter(leaf, chunk, bargs)) {
3401 return 0;
3402 }
3403
3404 /* drange filter, makes sense only with devid filter */
3405 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3406 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3407 return 0;
3408 }
3409
3410 /* vrange filter */
3411 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3412 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3413 return 0;
3414 }
3415
3416 /* stripes filter */
3417 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3418 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3419 return 0;
3420 }
3421
3422 /* soft profile changing mode */
3423 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3424 chunk_soft_convert_filter(chunk_type, bargs)) {
3425 return 0;
3426 }
3427
3428 /*
3429 * limited by count, must be the last filter
3430 */
3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3432 if (bargs->limit == 0)
3433 return 0;
3434 else
3435 bargs->limit--;
3436 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3437 /*
3438 * Same logic as the 'limit' filter; the minimum cannot be
3439 * determined here because we do not have the global information
3440 * about the count of all chunks that satisfy the filters.
3441 */
3442 if (bargs->limit_max == 0)
3443 return 0;
3444 else
3445 bargs->limit_max--;
3446 }
3447
3448 return 1;
3449 }
3450
3451 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3452 {
3453 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3454 struct btrfs_root *chunk_root = fs_info->chunk_root;
3455 struct btrfs_root *dev_root = fs_info->dev_root;
3456 struct list_head *devices;
3457 struct btrfs_device *device;
3458 u64 old_size;
3459 u64 size_to_free;
3460 u64 chunk_type;
3461 struct btrfs_chunk *chunk;
3462 struct btrfs_path *path = NULL;
3463 struct btrfs_key key;
3464 struct btrfs_key found_key;
3465 struct btrfs_trans_handle *trans;
3466 struct extent_buffer *leaf;
3467 int slot;
3468 int ret;
3469 int enospc_errors = 0;
3470 bool counting = true;
3471 /* The single value limit and min/max limits use the same bytes in the */
3472 u64 limit_data = bctl->data.limit;
3473 u64 limit_meta = bctl->meta.limit;
3474 u64 limit_sys = bctl->sys.limit;
3475 u32 count_data = 0;
3476 u32 count_meta = 0;
3477 u32 count_sys = 0;
3478 int chunk_reserved = 0;
3479 u64 bytes_used = 0;
3480
3481 /* step one make some room on all the devices */
3482 devices = &fs_info->fs_devices->devices;
3483 list_for_each_entry(device, devices, dev_list) {
3484 old_size = btrfs_device_get_total_bytes(device);
3485 size_to_free = div_factor(old_size, 1);
3486 size_to_free = min_t(u64, size_to_free, SZ_1M);
3487 if (!device->writeable ||
3488 btrfs_device_get_total_bytes(device) -
3489 btrfs_device_get_bytes_used(device) > size_to_free ||
3490 device->is_tgtdev_for_dev_replace)
3491 continue;
3492
3493 ret = btrfs_shrink_device(device, old_size - size_to_free);
3494 if (ret == -ENOSPC)
3495 break;
3496 if (ret) {
3497 /* btrfs_shrink_device never returns ret > 0 */
3498 WARN_ON(ret > 0);
3499 goto error;
3500 }
3501
3502 trans = btrfs_start_transaction(dev_root, 0);
3503 if (IS_ERR(trans)) {
3504 ret = PTR_ERR(trans);
3505 btrfs_info_in_rcu(fs_info,
3506 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3507 rcu_str_deref(device->name), ret,
3508 old_size, old_size - size_to_free);
3509 goto error;
3510 }
3511
3512 ret = btrfs_grow_device(trans, device, old_size);
3513 if (ret) {
3514 btrfs_end_transaction(trans);
3515 /* btrfs_grow_device never returns ret > 0 */
3516 WARN_ON(ret > 0);
3517 btrfs_info_in_rcu(fs_info,
3518 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3519 rcu_str_deref(device->name), ret,
3520 old_size, old_size - size_to_free);
3521 goto error;
3522 }
3523
3524 btrfs_end_transaction(trans);
3525 }
3526
3527 /* step two, relocate all the chunks */
3528 path = btrfs_alloc_path();
3529 if (!path) {
3530 ret = -ENOMEM;
3531 goto error;
3532 }
3533
3534 /* zero out stat counters */
3535 spin_lock(&fs_info->balance_lock);
3536 memset(&bctl->stat, 0, sizeof(bctl->stat));
3537 spin_unlock(&fs_info->balance_lock);
3538 again:
3539 if (!counting) {
3540 /*
3541 * The single value limit and min/max limits use the same bytes
3542 * in the
3543 */
3544 bctl->data.limit = limit_data;
3545 bctl->meta.limit = limit_meta;
3546 bctl->sys.limit = limit_sys;
3547 }
3548 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3549 key.offset = (u64)-1;
3550 key.type = BTRFS_CHUNK_ITEM_KEY;
3551
3552 while (1) {
3553 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3554 atomic_read(&fs_info->balance_cancel_req)) {
3555 ret = -ECANCELED;
3556 goto error;
3557 }
3558
3559 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3560 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3561 if (ret < 0) {
3562 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3563 goto error;
3564 }
3565
3566 /*
3567 * this shouldn't happen, it means the last relocate
3568 * failed
3569 */
3570 if (ret == 0)
3571 BUG(); /* FIXME break ? */
3572
3573 ret = btrfs_previous_item(chunk_root, path, 0,
3574 BTRFS_CHUNK_ITEM_KEY);
3575 if (ret) {
3576 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3577 ret = 0;
3578 break;
3579 }
3580
3581 leaf = path->nodes[0];
3582 slot = path->slots[0];
3583 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3584
3585 if (found_key.objectid != key.objectid) {
3586 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3587 break;
3588 }
3589
3590 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3591 chunk_type = btrfs_chunk_type(leaf, chunk);
3592
3593 if (!counting) {
3594 spin_lock(&fs_info->balance_lock);
3595 bctl->stat.considered++;
3596 spin_unlock(&fs_info->balance_lock);
3597 }
3598
3599 ret = should_balance_chunk(fs_info, leaf, chunk,
3600 found_key.offset);
3601
3602 btrfs_release_path(path);
3603 if (!ret) {
3604 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3605 goto loop;
3606 }
3607
3608 if (counting) {
3609 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3610 spin_lock(&fs_info->balance_lock);
3611 bctl->stat.expected++;
3612 spin_unlock(&fs_info->balance_lock);
3613
3614 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3615 count_data++;
3616 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3617 count_sys++;
3618 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3619 count_meta++;
3620
3621 goto loop;
3622 }
3623
3624 /*
3625 * Apply limit_min filter, no need to check if the LIMITS
3626 * filter is used, limit_min is 0 by default
3627 */
3628 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3629 count_data < bctl->data.limit_min)
3630 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3631 count_meta < bctl->meta.limit_min)
3632 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3633 count_sys < bctl->sys.limit_min)) {
3634 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3635 goto loop;
3636 }
3637
3638 ASSERT(fs_info->data_sinfo);
3639 spin_lock(&fs_info->data_sinfo->lock);
3640 bytes_used = fs_info->data_sinfo->bytes_used;
3641 spin_unlock(&fs_info->data_sinfo->lock);
3642
3643 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3644 !chunk_reserved && !bytes_used) {
3645 trans = btrfs_start_transaction(chunk_root, 0);
3646 if (IS_ERR(trans)) {
3647 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648 ret = PTR_ERR(trans);
3649 goto error;
3650 }
3651
3652 ret = btrfs_force_chunk_alloc(trans, fs_info,
3653 BTRFS_BLOCK_GROUP_DATA);
3654 btrfs_end_transaction(trans);
3655 if (ret < 0) {
3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 goto error;
3658 }
3659 chunk_reserved = 1;
3660 }
3661
3662 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3663 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664 if (ret && ret != -ENOSPC)
3665 goto error;
3666 if (ret == -ENOSPC) {
3667 enospc_errors++;
3668 } else {
3669 spin_lock(&fs_info->balance_lock);
3670 bctl->stat.completed++;
3671 spin_unlock(&fs_info->balance_lock);
3672 }
3673 loop:
3674 if (found_key.offset == 0)
3675 break;
3676 key.offset = found_key.offset - 1;
3677 }
3678
3679 if (counting) {
3680 btrfs_release_path(path);
3681 counting = false;
3682 goto again;
3683 }
3684 error:
3685 btrfs_free_path(path);
3686 if (enospc_errors) {
3687 btrfs_info(fs_info, "%d enospc errors during balance",
3688 enospc_errors);
3689 if (!ret)
3690 ret = -ENOSPC;
3691 }
3692
3693 return ret;
3694 }
3695
3696 /**
3697 * alloc_profile_is_valid - see if a given profile is valid and reduced
3698 * @flags: profile to validate
3699 * @extended: if true @flags is treated as an extended profile
3700 */
3701 static int alloc_profile_is_valid(u64 flags, int extended)
3702 {
3703 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3704 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3705
3706 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3707
3708 /* 1) check that all other bits are zeroed */
3709 if (flags & ~mask)
3710 return 0;
3711
3712 /* 2) see if profile is reduced */
3713 if (flags == 0)
3714 return !extended; /* "0" is valid for usual profiles */
3715
3716 /* true if exactly one bit set */
3717 return (flags & (flags - 1)) == 0;
3718 }
3719
3720 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3721 {
3722 /* cancel requested || normal exit path */
3723 return atomic_read(&fs_info->balance_cancel_req) ||
3724 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3725 atomic_read(&fs_info->balance_cancel_req) == 0);
3726 }
3727
3728 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3729 {
3730 int ret;
3731
3732 unset_balance_control(fs_info);
3733 ret = del_balance_item(fs_info);
3734 if (ret)
3735 btrfs_handle_fs_error(fs_info, ret, NULL);
3736
3737 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3738 }
3739
3740 /* Non-zero return value signifies invalidity */
3741 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3742 u64 allowed)
3743 {
3744 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3745 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3746 (bctl_arg->target & ~allowed)));
3747 }
3748
3749 /*
3750 * Should be called with both balance and volume mutexes held
3751 */
3752 int btrfs_balance(struct btrfs_balance_control *bctl,
3753 struct btrfs_ioctl_balance_args *bargs)
3754 {
3755 struct btrfs_fs_info *fs_info = bctl->fs_info;
3756 u64 allowed;
3757 int mixed = 0;
3758 int ret;
3759 u64 num_devices;
3760 unsigned seq;
3761
3762 if (btrfs_fs_closing(fs_info) ||
3763 atomic_read(&fs_info->balance_pause_req) ||
3764 atomic_read(&fs_info->balance_cancel_req)) {
3765 ret = -EINVAL;
3766 goto out;
3767 }
3768
3769 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3770 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3771 mixed = 1;
3772
3773 /*
3774 * In case of mixed groups both data and meta should be picked,
3775 * and identical options should be given for both of them.
3776 */
3777 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3778 if (mixed && (bctl->flags & allowed)) {
3779 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3780 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3781 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3782 btrfs_err(fs_info,
3783 "with mixed groups data and metadata balance options must be the same");
3784 ret = -EINVAL;
3785 goto out;
3786 }
3787 }
3788
3789 num_devices = fs_info->fs_devices->num_devices;
3790 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3791 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3792 BUG_ON(num_devices < 1);
3793 num_devices--;
3794 }
3795 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3796 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3797 if (num_devices > 1)
3798 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3799 if (num_devices > 2)
3800 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3801 if (num_devices > 3)
3802 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3803 BTRFS_BLOCK_GROUP_RAID6);
3804 if (validate_convert_profile(&bctl->data, allowed)) {
3805 btrfs_err(fs_info,
3806 "unable to start balance with target data profile %llu",
3807 bctl->data.target);
3808 ret = -EINVAL;
3809 goto out;
3810 }
3811 if (validate_convert_profile(&bctl->meta, allowed)) {
3812 btrfs_err(fs_info,
3813 "unable to start balance with target metadata profile %llu",
3814 bctl->meta.target);
3815 ret = -EINVAL;
3816 goto out;
3817 }
3818 if (validate_convert_profile(&bctl->sys, allowed)) {
3819 btrfs_err(fs_info,
3820 "unable to start balance with target system profile %llu",
3821 bctl->sys.target);
3822 ret = -EINVAL;
3823 goto out;
3824 }
3825
3826 /* allow to reduce meta or sys integrity only if force set */
3827 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3828 BTRFS_BLOCK_GROUP_RAID10 |
3829 BTRFS_BLOCK_GROUP_RAID5 |
3830 BTRFS_BLOCK_GROUP_RAID6;
3831 do {
3832 seq = read_seqbegin(&fs_info->profiles_lock);
3833
3834 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3835 (fs_info->avail_system_alloc_bits & allowed) &&
3836 !(bctl->sys.target & allowed)) ||
3837 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3838 (fs_info->avail_metadata_alloc_bits & allowed) &&
3839 !(bctl->meta.target & allowed))) {
3840 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3841 btrfs_info(fs_info,
3842 "force reducing metadata integrity");
3843 } else {
3844 btrfs_err(fs_info,
3845 "balance will reduce metadata integrity, use force if you want this");
3846 ret = -EINVAL;
3847 goto out;
3848 }
3849 }
3850 } while (read_seqretry(&fs_info->profiles_lock, seq));
3851
3852 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3853 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3854 btrfs_warn(fs_info,
3855 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3856 bctl->meta.target, bctl->data.target);
3857 }
3858
3859 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3860 fs_info->num_tolerated_disk_barrier_failures = min(
3861 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3862 btrfs_get_num_tolerated_disk_barrier_failures(
3863 bctl->sys.target));
3864 }
3865
3866 ret = insert_balance_item(fs_info, bctl);
3867 if (ret && ret != -EEXIST)
3868 goto out;
3869
3870 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3871 BUG_ON(ret == -EEXIST);
3872 set_balance_control(bctl);
3873 } else {
3874 BUG_ON(ret != -EEXIST);
3875 spin_lock(&fs_info->balance_lock);
3876 update_balance_args(bctl);
3877 spin_unlock(&fs_info->balance_lock);
3878 }
3879
3880 atomic_inc(&fs_info->balance_running);
3881 mutex_unlock(&fs_info->balance_mutex);
3882
3883 ret = __btrfs_balance(fs_info);
3884
3885 mutex_lock(&fs_info->balance_mutex);
3886 atomic_dec(&fs_info->balance_running);
3887
3888 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3889 fs_info->num_tolerated_disk_barrier_failures =
3890 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3891 }
3892
3893 if (bargs) {
3894 memset(bargs, 0, sizeof(*bargs));
3895 update_ioctl_balance_args(fs_info, 0, bargs);
3896 }
3897
3898 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3899 balance_need_close(fs_info)) {
3900 __cancel_balance(fs_info);
3901 }
3902
3903 wake_up(&fs_info->balance_wait_q);
3904
3905 return ret;
3906 out:
3907 if (bctl->flags & BTRFS_BALANCE_RESUME)
3908 __cancel_balance(fs_info);
3909 else {
3910 kfree(bctl);
3911 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3912 }
3913 return ret;
3914 }
3915
3916 static int balance_kthread(void *data)
3917 {
3918 struct btrfs_fs_info *fs_info = data;
3919 int ret = 0;
3920
3921 mutex_lock(&fs_info->volume_mutex);
3922 mutex_lock(&fs_info->balance_mutex);
3923
3924 if (fs_info->balance_ctl) {
3925 btrfs_info(fs_info, "continuing balance");
3926 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3927 }
3928
3929 mutex_unlock(&fs_info->balance_mutex);
3930 mutex_unlock(&fs_info->volume_mutex);
3931
3932 return ret;
3933 }
3934
3935 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3936 {
3937 struct task_struct *tsk;
3938
3939 spin_lock(&fs_info->balance_lock);
3940 if (!fs_info->balance_ctl) {
3941 spin_unlock(&fs_info->balance_lock);
3942 return 0;
3943 }
3944 spin_unlock(&fs_info->balance_lock);
3945
3946 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3947 btrfs_info(fs_info, "force skipping balance");
3948 return 0;
3949 }
3950
3951 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3952 return PTR_ERR_OR_ZERO(tsk);
3953 }
3954
3955 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3956 {
3957 struct btrfs_balance_control *bctl;
3958 struct btrfs_balance_item *item;
3959 struct btrfs_disk_balance_args disk_bargs;
3960 struct btrfs_path *path;
3961 struct extent_buffer *leaf;
3962 struct btrfs_key key;
3963 int ret;
3964
3965 path = btrfs_alloc_path();
3966 if (!path)
3967 return -ENOMEM;
3968
3969 key.objectid = BTRFS_BALANCE_OBJECTID;
3970 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3971 key.offset = 0;
3972
3973 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3974 if (ret < 0)
3975 goto out;
3976 if (ret > 0) { /* ret = -ENOENT; */
3977 ret = 0;
3978 goto out;
3979 }
3980
3981 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3982 if (!bctl) {
3983 ret = -ENOMEM;
3984 goto out;
3985 }
3986
3987 leaf = path->nodes[0];
3988 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3989
3990 bctl->fs_info = fs_info;
3991 bctl->flags = btrfs_balance_flags(leaf, item);
3992 bctl->flags |= BTRFS_BALANCE_RESUME;
3993
3994 btrfs_balance_data(leaf, item, &disk_bargs);
3995 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3996 btrfs_balance_meta(leaf, item, &disk_bargs);
3997 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3998 btrfs_balance_sys(leaf, item, &disk_bargs);
3999 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4000
4001 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4002
4003 mutex_lock(&fs_info->volume_mutex);
4004 mutex_lock(&fs_info->balance_mutex);
4005
4006 set_balance_control(bctl);
4007
4008 mutex_unlock(&fs_info->balance_mutex);
4009 mutex_unlock(&fs_info->volume_mutex);
4010 out:
4011 btrfs_free_path(path);
4012 return ret;
4013 }
4014
4015 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4016 {
4017 int ret = 0;
4018
4019 mutex_lock(&fs_info->balance_mutex);
4020 if (!fs_info->balance_ctl) {
4021 mutex_unlock(&fs_info->balance_mutex);
4022 return -ENOTCONN;
4023 }
4024
4025 if (atomic_read(&fs_info->balance_running)) {
4026 atomic_inc(&fs_info->balance_pause_req);
4027 mutex_unlock(&fs_info->balance_mutex);
4028
4029 wait_event(fs_info->balance_wait_q,
4030 atomic_read(&fs_info->balance_running) == 0);
4031
4032 mutex_lock(&fs_info->balance_mutex);
4033 /* we are good with balance_ctl ripped off from under us */
4034 BUG_ON(atomic_read(&fs_info->balance_running));
4035 atomic_dec(&fs_info->balance_pause_req);
4036 } else {
4037 ret = -ENOTCONN;
4038 }
4039
4040 mutex_unlock(&fs_info->balance_mutex);
4041 return ret;
4042 }
4043
4044 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4045 {
4046 if (fs_info->sb->s_flags & MS_RDONLY)
4047 return -EROFS;
4048
4049 mutex_lock(&fs_info->balance_mutex);
4050 if (!fs_info->balance_ctl) {
4051 mutex_unlock(&fs_info->balance_mutex);
4052 return -ENOTCONN;
4053 }
4054
4055 atomic_inc(&fs_info->balance_cancel_req);
4056 /*
4057 * if we are running just wait and return, balance item is
4058 * deleted in btrfs_balance in this case
4059 */
4060 if (atomic_read(&fs_info->balance_running)) {
4061 mutex_unlock(&fs_info->balance_mutex);
4062 wait_event(fs_info->balance_wait_q,
4063 atomic_read(&fs_info->balance_running) == 0);
4064 mutex_lock(&fs_info->balance_mutex);
4065 } else {
4066 /* __cancel_balance needs volume_mutex */
4067 mutex_unlock(&fs_info->balance_mutex);
4068 mutex_lock(&fs_info->volume_mutex);
4069 mutex_lock(&fs_info->balance_mutex);
4070
4071 if (fs_info->balance_ctl)
4072 __cancel_balance(fs_info);
4073
4074 mutex_unlock(&fs_info->volume_mutex);
4075 }
4076
4077 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4078 atomic_dec(&fs_info->balance_cancel_req);
4079 mutex_unlock(&fs_info->balance_mutex);
4080 return 0;
4081 }
4082
4083 static int btrfs_uuid_scan_kthread(void *data)
4084 {
4085 struct btrfs_fs_info *fs_info = data;
4086 struct btrfs_root *root = fs_info->tree_root;
4087 struct btrfs_key key;
4088 struct btrfs_key max_key;
4089 struct btrfs_path *path = NULL;
4090 int ret = 0;
4091 struct extent_buffer *eb;
4092 int slot;
4093 struct btrfs_root_item root_item;
4094 u32 item_size;
4095 struct btrfs_trans_handle *trans = NULL;
4096
4097 path = btrfs_alloc_path();
4098 if (!path) {
4099 ret = -ENOMEM;
4100 goto out;
4101 }
4102
4103 key.objectid = 0;
4104 key.type = BTRFS_ROOT_ITEM_KEY;
4105 key.offset = 0;
4106
4107 max_key.objectid = (u64)-1;
4108 max_key.type = BTRFS_ROOT_ITEM_KEY;
4109 max_key.offset = (u64)-1;
4110
4111 while (1) {
4112 ret = btrfs_search_forward(root, &key, path, 0);
4113 if (ret) {
4114 if (ret > 0)
4115 ret = 0;
4116 break;
4117 }
4118
4119 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4120 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4121 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4122 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4123 goto skip;
4124
4125 eb = path->nodes[0];
4126 slot = path->slots[0];
4127 item_size = btrfs_item_size_nr(eb, slot);
4128 if (item_size < sizeof(root_item))
4129 goto skip;
4130
4131 read_extent_buffer(eb, &root_item,
4132 btrfs_item_ptr_offset(eb, slot),
4133 (int)sizeof(root_item));
4134 if (btrfs_root_refs(&root_item) == 0)
4135 goto skip;
4136
4137 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4138 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4139 if (trans)
4140 goto update_tree;
4141
4142 btrfs_release_path(path);
4143 /*
4144 * 1 - subvol uuid item
4145 * 1 - received_subvol uuid item
4146 */
4147 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4148 if (IS_ERR(trans)) {
4149 ret = PTR_ERR(trans);
4150 break;
4151 }
4152 continue;
4153 } else {
4154 goto skip;
4155 }
4156 update_tree:
4157 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4158 ret = btrfs_uuid_tree_add(trans, fs_info,
4159 root_item.uuid,
4160 BTRFS_UUID_KEY_SUBVOL,
4161 key.objectid);
4162 if (ret < 0) {
4163 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4164 ret);
4165 break;
4166 }
4167 }
4168
4169 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4170 ret = btrfs_uuid_tree_add(trans, fs_info,
4171 root_item.received_uuid,
4172 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4173 key.objectid);
4174 if (ret < 0) {
4175 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4176 ret);
4177 break;
4178 }
4179 }
4180
4181 skip:
4182 if (trans) {
4183 ret = btrfs_end_transaction(trans);
4184 trans = NULL;
4185 if (ret)
4186 break;
4187 }
4188
4189 btrfs_release_path(path);
4190 if (key.offset < (u64)-1) {
4191 key.offset++;
4192 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4193 key.offset = 0;
4194 key.type = BTRFS_ROOT_ITEM_KEY;
4195 } else if (key.objectid < (u64)-1) {
4196 key.offset = 0;
4197 key.type = BTRFS_ROOT_ITEM_KEY;
4198 key.objectid++;
4199 } else {
4200 break;
4201 }
4202 cond_resched();
4203 }
4204
4205 out:
4206 btrfs_free_path(path);
4207 if (trans && !IS_ERR(trans))
4208 btrfs_end_transaction(trans);
4209 if (ret)
4210 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4211 else
4212 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4213 up(&fs_info->uuid_tree_rescan_sem);
4214 return 0;
4215 }
4216
4217 /*
4218 * Callback for btrfs_uuid_tree_iterate().
4219 * returns:
4220 * 0 check succeeded, the entry is not outdated.
4221 * < 0 if an error occurred.
4222 * > 0 if the check failed, which means the caller shall remove the entry.
4223 */
4224 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4225 u8 *uuid, u8 type, u64 subid)
4226 {
4227 struct btrfs_key key;
4228 int ret = 0;
4229 struct btrfs_root *subvol_root;
4230
4231 if (type != BTRFS_UUID_KEY_SUBVOL &&
4232 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4233 goto out;
4234
4235 key.objectid = subid;
4236 key.type = BTRFS_ROOT_ITEM_KEY;
4237 key.offset = (u64)-1;
4238 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4239 if (IS_ERR(subvol_root)) {
4240 ret = PTR_ERR(subvol_root);
4241 if (ret == -ENOENT)
4242 ret = 1;
4243 goto out;
4244 }
4245
4246 switch (type) {
4247 case BTRFS_UUID_KEY_SUBVOL:
4248 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4249 ret = 1;
4250 break;
4251 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4252 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4253 BTRFS_UUID_SIZE))
4254 ret = 1;
4255 break;
4256 }
4257
4258 out:
4259 return ret;
4260 }
4261
4262 static int btrfs_uuid_rescan_kthread(void *data)
4263 {
4264 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4265 int ret;
4266
4267 /*
4268 * 1st step is to iterate through the existing UUID tree and
4269 * to delete all entries that contain outdated data.
4270 * 2nd step is to add all missing entries to the UUID tree.
4271 */
4272 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4273 if (ret < 0) {
4274 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4275 up(&fs_info->uuid_tree_rescan_sem);
4276 return ret;
4277 }
4278 return btrfs_uuid_scan_kthread(data);
4279 }
4280
4281 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4282 {
4283 struct btrfs_trans_handle *trans;
4284 struct btrfs_root *tree_root = fs_info->tree_root;
4285 struct btrfs_root *uuid_root;
4286 struct task_struct *task;
4287 int ret;
4288
4289 /*
4290 * 1 - root node
4291 * 1 - root item
4292 */
4293 trans = btrfs_start_transaction(tree_root, 2);
4294 if (IS_ERR(trans))
4295 return PTR_ERR(trans);
4296
4297 uuid_root = btrfs_create_tree(trans, fs_info,
4298 BTRFS_UUID_TREE_OBJECTID);
4299 if (IS_ERR(uuid_root)) {
4300 ret = PTR_ERR(uuid_root);
4301 btrfs_abort_transaction(trans, ret);
4302 btrfs_end_transaction(trans);
4303 return ret;
4304 }
4305
4306 fs_info->uuid_root = uuid_root;
4307
4308 ret = btrfs_commit_transaction(trans);
4309 if (ret)
4310 return ret;
4311
4312 down(&fs_info->uuid_tree_rescan_sem);
4313 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4314 if (IS_ERR(task)) {
4315 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4316 btrfs_warn(fs_info, "failed to start uuid_scan task");
4317 up(&fs_info->uuid_tree_rescan_sem);
4318 return PTR_ERR(task);
4319 }
4320
4321 return 0;
4322 }
4323
4324 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4325 {
4326 struct task_struct *task;
4327
4328 down(&fs_info->uuid_tree_rescan_sem);
4329 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4330 if (IS_ERR(task)) {
4331 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4332 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4333 up(&fs_info->uuid_tree_rescan_sem);
4334 return PTR_ERR(task);
4335 }
4336
4337 return 0;
4338 }
4339
4340 /*
4341 * shrinking a device means finding all of the device extents past
4342 * the new size, and then following the back refs to the chunks.
4343 * The chunk relocation code actually frees the device extent
4344 */
4345 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4346 {
4347 struct btrfs_fs_info *fs_info = device->fs_info;
4348 struct btrfs_root *root = fs_info->dev_root;
4349 struct btrfs_trans_handle *trans;
4350 struct btrfs_dev_extent *dev_extent = NULL;
4351 struct btrfs_path *path;
4352 u64 length;
4353 u64 chunk_offset;
4354 int ret;
4355 int slot;
4356 int failed = 0;
4357 bool retried = false;
4358 bool checked_pending_chunks = false;
4359 struct extent_buffer *l;
4360 struct btrfs_key key;
4361 struct btrfs_super_block *super_copy = fs_info->super_copy;
4362 u64 old_total = btrfs_super_total_bytes(super_copy);
4363 u64 old_size = btrfs_device_get_total_bytes(device);
4364 u64 diff = old_size - new_size;
4365
4366 if (device->is_tgtdev_for_dev_replace)
4367 return -EINVAL;
4368
4369 path = btrfs_alloc_path();
4370 if (!path)
4371 return -ENOMEM;
4372
4373 path->reada = READA_FORWARD;
4374
4375 mutex_lock(&fs_info->chunk_mutex);
4376
4377 btrfs_device_set_total_bytes(device, new_size);
4378 if (device->writeable) {
4379 device->fs_devices->total_rw_bytes -= diff;
4380 spin_lock(&fs_info->free_chunk_lock);
4381 fs_info->free_chunk_space -= diff;
4382 spin_unlock(&fs_info->free_chunk_lock);
4383 }
4384 mutex_unlock(&fs_info->chunk_mutex);
4385
4386 again:
4387 key.objectid = device->devid;
4388 key.offset = (u64)-1;
4389 key.type = BTRFS_DEV_EXTENT_KEY;
4390
4391 do {
4392 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4393 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 if (ret < 0) {
4395 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4396 goto done;
4397 }
4398
4399 ret = btrfs_previous_item(root, path, 0, key.type);
4400 if (ret)
4401 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4402 if (ret < 0)
4403 goto done;
4404 if (ret) {
4405 ret = 0;
4406 btrfs_release_path(path);
4407 break;
4408 }
4409
4410 l = path->nodes[0];
4411 slot = path->slots[0];
4412 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4413
4414 if (key.objectid != device->devid) {
4415 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4416 btrfs_release_path(path);
4417 break;
4418 }
4419
4420 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4421 length = btrfs_dev_extent_length(l, dev_extent);
4422
4423 if (key.offset + length <= new_size) {
4424 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4425 btrfs_release_path(path);
4426 break;
4427 }
4428
4429 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4430 btrfs_release_path(path);
4431
4432 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4433 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4434 if (ret && ret != -ENOSPC)
4435 goto done;
4436 if (ret == -ENOSPC)
4437 failed++;
4438 } while (key.offset-- > 0);
4439
4440 if (failed && !retried) {
4441 failed = 0;
4442 retried = true;
4443 goto again;
4444 } else if (failed && retried) {
4445 ret = -ENOSPC;
4446 goto done;
4447 }
4448
4449 /* Shrinking succeeded, else we would be at "done". */
4450 trans = btrfs_start_transaction(root, 0);
4451 if (IS_ERR(trans)) {
4452 ret = PTR_ERR(trans);
4453 goto done;
4454 }
4455
4456 mutex_lock(&fs_info->chunk_mutex);
4457
4458 /*
4459 * We checked in the above loop all device extents that were already in
4460 * the device tree. However before we have updated the device's
4461 * total_bytes to the new size, we might have had chunk allocations that
4462 * have not complete yet (new block groups attached to transaction
4463 * handles), and therefore their device extents were not yet in the
4464 * device tree and we missed them in the loop above. So if we have any
4465 * pending chunk using a device extent that overlaps the device range
4466 * that we can not use anymore, commit the current transaction and
4467 * repeat the search on the device tree - this way we guarantee we will
4468 * not have chunks using device extents that end beyond 'new_size'.
4469 */
4470 if (!checked_pending_chunks) {
4471 u64 start = new_size;
4472 u64 len = old_size - new_size;
4473
4474 if (contains_pending_extent(trans->transaction, device,
4475 &start, len)) {
4476 mutex_unlock(&fs_info->chunk_mutex);
4477 checked_pending_chunks = true;
4478 failed = 0;
4479 retried = false;
4480 ret = btrfs_commit_transaction(trans);
4481 if (ret)
4482 goto done;
4483 goto again;
4484 }
4485 }
4486
4487 btrfs_device_set_disk_total_bytes(device, new_size);
4488 if (list_empty(&device->resized_list))
4489 list_add_tail(&device->resized_list,
4490 &fs_info->fs_devices->resized_devices);
4491
4492 WARN_ON(diff > old_total);
4493 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4494 mutex_unlock(&fs_info->chunk_mutex);
4495
4496 /* Now btrfs_update_device() will change the on-disk size. */
4497 ret = btrfs_update_device(trans, device);
4498 btrfs_end_transaction(trans);
4499 done:
4500 btrfs_free_path(path);
4501 if (ret) {
4502 mutex_lock(&fs_info->chunk_mutex);
4503 btrfs_device_set_total_bytes(device, old_size);
4504 if (device->writeable)
4505 device->fs_devices->total_rw_bytes += diff;
4506 spin_lock(&fs_info->free_chunk_lock);
4507 fs_info->free_chunk_space += diff;
4508 spin_unlock(&fs_info->free_chunk_lock);
4509 mutex_unlock(&fs_info->chunk_mutex);
4510 }
4511 return ret;
4512 }
4513
4514 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4515 struct btrfs_key *key,
4516 struct btrfs_chunk *chunk, int item_size)
4517 {
4518 struct btrfs_super_block *super_copy = fs_info->super_copy;
4519 struct btrfs_disk_key disk_key;
4520 u32 array_size;
4521 u8 *ptr;
4522
4523 mutex_lock(&fs_info->chunk_mutex);
4524 array_size = btrfs_super_sys_array_size(super_copy);
4525 if (array_size + item_size + sizeof(disk_key)
4526 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4527 mutex_unlock(&fs_info->chunk_mutex);
4528 return -EFBIG;
4529 }
4530
4531 ptr = super_copy->sys_chunk_array + array_size;
4532 btrfs_cpu_key_to_disk(&disk_key, key);
4533 memcpy(ptr, &disk_key, sizeof(disk_key));
4534 ptr += sizeof(disk_key);
4535 memcpy(ptr, chunk, item_size);
4536 item_size += sizeof(disk_key);
4537 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4538 mutex_unlock(&fs_info->chunk_mutex);
4539
4540 return 0;
4541 }
4542
4543 /*
4544 * sort the devices in descending order by max_avail, total_avail
4545 */
4546 static int btrfs_cmp_device_info(const void *a, const void *b)
4547 {
4548 const struct btrfs_device_info *di_a = a;
4549 const struct btrfs_device_info *di_b = b;
4550
4551 if (di_a->max_avail > di_b->max_avail)
4552 return -1;
4553 if (di_a->max_avail < di_b->max_avail)
4554 return 1;
4555 if (di_a->total_avail > di_b->total_avail)
4556 return -1;
4557 if (di_a->total_avail < di_b->total_avail)
4558 return 1;
4559 return 0;
4560 }
4561
4562 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4563 {
4564 /* TODO allow them to set a preferred stripe size */
4565 return SZ_64K;
4566 }
4567
4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4569 {
4570 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4571 return;
4572
4573 btrfs_set_fs_incompat(info, RAID56);
4574 }
4575
4576 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4577 - sizeof(struct btrfs_chunk)) \
4578 / sizeof(struct btrfs_stripe) + 1)
4579
4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4581 - 2 * sizeof(struct btrfs_disk_key) \
4582 - 2 * sizeof(struct btrfs_chunk)) \
4583 / sizeof(struct btrfs_stripe) + 1)
4584
4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4586 u64 start, u64 type)
4587 {
4588 struct btrfs_fs_info *info = trans->fs_info;
4589 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4590 struct list_head *cur;
4591 struct map_lookup *map = NULL;
4592 struct extent_map_tree *em_tree;
4593 struct extent_map *em;
4594 struct btrfs_device_info *devices_info = NULL;
4595 u64 total_avail;
4596 int num_stripes; /* total number of stripes to allocate */
4597 int data_stripes; /* number of stripes that count for
4598 block group size */
4599 int sub_stripes; /* sub_stripes info for map */
4600 int dev_stripes; /* stripes per dev */
4601 int devs_max; /* max devs to use */
4602 int devs_min; /* min devs needed */
4603 int devs_increment; /* ndevs has to be a multiple of this */
4604 int ncopies; /* how many copies to data has */
4605 int ret;
4606 u64 max_stripe_size;
4607 u64 max_chunk_size;
4608 u64 stripe_size;
4609 u64 num_bytes;
4610 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4611 int ndevs;
4612 int i;
4613 int j;
4614 int index;
4615
4616 BUG_ON(!alloc_profile_is_valid(type, 0));
4617
4618 if (list_empty(&fs_devices->alloc_list))
4619 return -ENOSPC;
4620
4621 index = __get_raid_index(type);
4622
4623 sub_stripes = btrfs_raid_array[index].sub_stripes;
4624 dev_stripes = btrfs_raid_array[index].dev_stripes;
4625 devs_max = btrfs_raid_array[index].devs_max;
4626 devs_min = btrfs_raid_array[index].devs_min;
4627 devs_increment = btrfs_raid_array[index].devs_increment;
4628 ncopies = btrfs_raid_array[index].ncopies;
4629
4630 if (type & BTRFS_BLOCK_GROUP_DATA) {
4631 max_stripe_size = SZ_1G;
4632 max_chunk_size = 10 * max_stripe_size;
4633 if (!devs_max)
4634 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4635 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4636 /* for larger filesystems, use larger metadata chunks */
4637 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4638 max_stripe_size = SZ_1G;
4639 else
4640 max_stripe_size = SZ_256M;
4641 max_chunk_size = max_stripe_size;
4642 if (!devs_max)
4643 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4644 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4645 max_stripe_size = SZ_32M;
4646 max_chunk_size = 2 * max_stripe_size;
4647 if (!devs_max)
4648 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4649 } else {
4650 btrfs_err(info, "invalid chunk type 0x%llx requested",
4651 type);
4652 BUG_ON(1);
4653 }
4654
4655 /* we don't want a chunk larger than 10% of writeable space */
4656 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4657 max_chunk_size);
4658
4659 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4660 GFP_NOFS);
4661 if (!devices_info)
4662 return -ENOMEM;
4663
4664 cur = fs_devices->alloc_list.next;
4665
4666 /*
4667 * in the first pass through the devices list, we gather information
4668 * about the available holes on each device.
4669 */
4670 ndevs = 0;
4671 while (cur != &fs_devices->alloc_list) {
4672 struct btrfs_device *device;
4673 u64 max_avail;
4674 u64 dev_offset;
4675
4676 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4677
4678 cur = cur->next;
4679
4680 if (!device->writeable) {
4681 WARN(1, KERN_ERR
4682 "BTRFS: read-only device in alloc_list\n");
4683 continue;
4684 }
4685
4686 if (!device->in_fs_metadata ||
4687 device->is_tgtdev_for_dev_replace)
4688 continue;
4689
4690 if (device->total_bytes > device->bytes_used)
4691 total_avail = device->total_bytes - device->bytes_used;
4692 else
4693 total_avail = 0;
4694
4695 /* If there is no space on this device, skip it. */
4696 if (total_avail == 0)
4697 continue;
4698
4699 ret = find_free_dev_extent(trans, device,
4700 max_stripe_size * dev_stripes,
4701 &dev_offset, &max_avail);
4702 if (ret && ret != -ENOSPC)
4703 goto error;
4704
4705 if (ret == 0)
4706 max_avail = max_stripe_size * dev_stripes;
4707
4708 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4709 continue;
4710
4711 if (ndevs == fs_devices->rw_devices) {
4712 WARN(1, "%s: found more than %llu devices\n",
4713 __func__, fs_devices->rw_devices);
4714 break;
4715 }
4716 devices_info[ndevs].dev_offset = dev_offset;
4717 devices_info[ndevs].max_avail = max_avail;
4718 devices_info[ndevs].total_avail = total_avail;
4719 devices_info[ndevs].dev = device;
4720 ++ndevs;
4721 }
4722
4723 /*
4724 * now sort the devices by hole size / available space
4725 */
4726 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4727 btrfs_cmp_device_info, NULL);
4728
4729 /* round down to number of usable stripes */
4730 ndevs -= ndevs % devs_increment;
4731
4732 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4733 ret = -ENOSPC;
4734 goto error;
4735 }
4736
4737 if (devs_max && ndevs > devs_max)
4738 ndevs = devs_max;
4739 /*
4740 * the primary goal is to maximize the number of stripes, so use as many
4741 * devices as possible, even if the stripes are not maximum sized.
4742 */
4743 stripe_size = devices_info[ndevs-1].max_avail;
4744 num_stripes = ndevs * dev_stripes;
4745
4746 /*
4747 * this will have to be fixed for RAID1 and RAID10 over
4748 * more drives
4749 */
4750 data_stripes = num_stripes / ncopies;
4751
4752 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4753 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4754 info->stripesize);
4755 data_stripes = num_stripes - 1;
4756 }
4757 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4758 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4759 info->stripesize);
4760 data_stripes = num_stripes - 2;
4761 }
4762
4763 /*
4764 * Use the number of data stripes to figure out how big this chunk
4765 * is really going to be in terms of logical address space,
4766 * and compare that answer with the max chunk size
4767 */
4768 if (stripe_size * data_stripes > max_chunk_size) {
4769 u64 mask = (1ULL << 24) - 1;
4770
4771 stripe_size = div_u64(max_chunk_size, data_stripes);
4772
4773 /* bump the answer up to a 16MB boundary */
4774 stripe_size = (stripe_size + mask) & ~mask;
4775
4776 /* but don't go higher than the limits we found
4777 * while searching for free extents
4778 */
4779 if (stripe_size > devices_info[ndevs-1].max_avail)
4780 stripe_size = devices_info[ndevs-1].max_avail;
4781 }
4782
4783 stripe_size = div_u64(stripe_size, dev_stripes);
4784
4785 /* align to BTRFS_STRIPE_LEN */
4786 stripe_size = div_u64(stripe_size, raid_stripe_len);
4787 stripe_size *= raid_stripe_len;
4788
4789 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4790 if (!map) {
4791 ret = -ENOMEM;
4792 goto error;
4793 }
4794 map->num_stripes = num_stripes;
4795
4796 for (i = 0; i < ndevs; ++i) {
4797 for (j = 0; j < dev_stripes; ++j) {
4798 int s = i * dev_stripes + j;
4799 map->stripes[s].dev = devices_info[i].dev;
4800 map->stripes[s].physical = devices_info[i].dev_offset +
4801 j * stripe_size;
4802 }
4803 }
4804 map->sector_size = info->sectorsize;
4805 map->stripe_len = raid_stripe_len;
4806 map->io_align = raid_stripe_len;
4807 map->io_width = raid_stripe_len;
4808 map->type = type;
4809 map->sub_stripes = sub_stripes;
4810
4811 num_bytes = stripe_size * data_stripes;
4812
4813 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4814
4815 em = alloc_extent_map();
4816 if (!em) {
4817 kfree(map);
4818 ret = -ENOMEM;
4819 goto error;
4820 }
4821 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4822 em->map_lookup = map;
4823 em->start = start;
4824 em->len = num_bytes;
4825 em->block_start = 0;
4826 em->block_len = em->len;
4827 em->orig_block_len = stripe_size;
4828
4829 em_tree = &info->mapping_tree.map_tree;
4830 write_lock(&em_tree->lock);
4831 ret = add_extent_mapping(em_tree, em, 0);
4832 if (!ret) {
4833 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4834 atomic_inc(&em->refs);
4835 }
4836 write_unlock(&em_tree->lock);
4837 if (ret) {
4838 free_extent_map(em);
4839 goto error;
4840 }
4841
4842 ret = btrfs_make_block_group(trans, info, 0, type,
4843 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4844 start, num_bytes);
4845 if (ret)
4846 goto error_del_extent;
4847
4848 for (i = 0; i < map->num_stripes; i++) {
4849 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4850 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4851 }
4852
4853 spin_lock(&info->free_chunk_lock);
4854 info->free_chunk_space -= (stripe_size * map->num_stripes);
4855 spin_unlock(&info->free_chunk_lock);
4856
4857 free_extent_map(em);
4858 check_raid56_incompat_flag(info, type);
4859
4860 kfree(devices_info);
4861 return 0;
4862
4863 error_del_extent:
4864 write_lock(&em_tree->lock);
4865 remove_extent_mapping(em_tree, em);
4866 write_unlock(&em_tree->lock);
4867
4868 /* One for our allocation */
4869 free_extent_map(em);
4870 /* One for the tree reference */
4871 free_extent_map(em);
4872 /* One for the pending_chunks list reference */
4873 free_extent_map(em);
4874 error:
4875 kfree(devices_info);
4876 return ret;
4877 }
4878
4879 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4880 struct btrfs_fs_info *fs_info,
4881 u64 chunk_offset, u64 chunk_size)
4882 {
4883 struct btrfs_root *extent_root = fs_info->extent_root;
4884 struct btrfs_root *chunk_root = fs_info->chunk_root;
4885 struct btrfs_key key;
4886 struct btrfs_device *device;
4887 struct btrfs_chunk *chunk;
4888 struct btrfs_stripe *stripe;
4889 struct extent_map_tree *em_tree;
4890 struct extent_map *em;
4891 struct map_lookup *map;
4892 size_t item_size;
4893 u64 dev_offset;
4894 u64 stripe_size;
4895 int i = 0;
4896 int ret = 0;
4897
4898 em_tree = &fs_info->mapping_tree.map_tree;
4899 read_lock(&em_tree->lock);
4900 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4901 read_unlock(&em_tree->lock);
4902
4903 if (!em) {
4904 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
4905 chunk_offset, chunk_size);
4906 return -EINVAL;
4907 }
4908
4909 if (em->start != chunk_offset || em->len != chunk_size) {
4910 btrfs_crit(fs_info,
4911 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4912 chunk_offset, chunk_size, em->start, em->len);
4913 free_extent_map(em);
4914 return -EINVAL;
4915 }
4916
4917 map = em->map_lookup;
4918 item_size = btrfs_chunk_item_size(map->num_stripes);
4919 stripe_size = em->orig_block_len;
4920
4921 chunk = kzalloc(item_size, GFP_NOFS);
4922 if (!chunk) {
4923 ret = -ENOMEM;
4924 goto out;
4925 }
4926
4927 /*
4928 * Take the device list mutex to prevent races with the final phase of
4929 * a device replace operation that replaces the device object associated
4930 * with the map's stripes, because the device object's id can change
4931 * at any time during that final phase of the device replace operation
4932 * (dev-replace.c:btrfs_dev_replace_finishing()).
4933 */
4934 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4935 for (i = 0; i < map->num_stripes; i++) {
4936 device = map->stripes[i].dev;
4937 dev_offset = map->stripes[i].physical;
4938
4939 ret = btrfs_update_device(trans, device);
4940 if (ret)
4941 break;
4942 ret = btrfs_alloc_dev_extent(trans, device,
4943 chunk_root->root_key.objectid,
4944 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4945 chunk_offset, dev_offset,
4946 stripe_size);
4947 if (ret)
4948 break;
4949 }
4950 if (ret) {
4951 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4952 goto out;
4953 }
4954
4955 stripe = &chunk->stripe;
4956 for (i = 0; i < map->num_stripes; i++) {
4957 device = map->stripes[i].dev;
4958 dev_offset = map->stripes[i].physical;
4959
4960 btrfs_set_stack_stripe_devid(stripe, device->devid);
4961 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4962 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4963 stripe++;
4964 }
4965 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4966
4967 btrfs_set_stack_chunk_length(chunk, chunk_size);
4968 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4969 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4970 btrfs_set_stack_chunk_type(chunk, map->type);
4971 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4972 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4973 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4974 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4975 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4976
4977 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4978 key.type = BTRFS_CHUNK_ITEM_KEY;
4979 key.offset = chunk_offset;
4980
4981 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4982 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4983 /*
4984 * TODO: Cleanup of inserted chunk root in case of
4985 * failure.
4986 */
4987 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4988 }
4989
4990 out:
4991 kfree(chunk);
4992 free_extent_map(em);
4993 return ret;
4994 }
4995
4996 /*
4997 * Chunk allocation falls into two parts. The first part does works
4998 * that make the new allocated chunk useable, but not do any operation
4999 * that modifies the chunk tree. The second part does the works that
5000 * require modifying the chunk tree. This division is important for the
5001 * bootstrap process of adding storage to a seed btrfs.
5002 */
5003 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5004 struct btrfs_fs_info *fs_info, u64 type)
5005 {
5006 u64 chunk_offset;
5007
5008 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5009 chunk_offset = find_next_chunk(fs_info);
5010 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5011 }
5012
5013 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5014 struct btrfs_fs_info *fs_info)
5015 {
5016 struct btrfs_root *extent_root = fs_info->extent_root;
5017 u64 chunk_offset;
5018 u64 sys_chunk_offset;
5019 u64 alloc_profile;
5020 int ret;
5021
5022 chunk_offset = find_next_chunk(fs_info);
5023 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5024 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5025 if (ret)
5026 return ret;
5027
5028 sys_chunk_offset = find_next_chunk(fs_info);
5029 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5030 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5031 return ret;
5032 }
5033
5034 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5035 {
5036 int max_errors;
5037
5038 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5039 BTRFS_BLOCK_GROUP_RAID10 |
5040 BTRFS_BLOCK_GROUP_RAID5 |
5041 BTRFS_BLOCK_GROUP_DUP)) {
5042 max_errors = 1;
5043 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5044 max_errors = 2;
5045 } else {
5046 max_errors = 0;
5047 }
5048
5049 return max_errors;
5050 }
5051
5052 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5053 {
5054 struct extent_map *em;
5055 struct map_lookup *map;
5056 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5057 int readonly = 0;
5058 int miss_ndevs = 0;
5059 int i;
5060
5061 read_lock(&map_tree->map_tree.lock);
5062 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5063 read_unlock(&map_tree->map_tree.lock);
5064 if (!em)
5065 return 1;
5066
5067 map = em->map_lookup;
5068 for (i = 0; i < map->num_stripes; i++) {
5069 if (map->stripes[i].dev->missing) {
5070 miss_ndevs++;
5071 continue;
5072 }
5073
5074 if (!map->stripes[i].dev->writeable) {
5075 readonly = 1;
5076 goto end;
5077 }
5078 }
5079
5080 /*
5081 * If the number of missing devices is larger than max errors,
5082 * we can not write the data into that chunk successfully, so
5083 * set it readonly.
5084 */
5085 if (miss_ndevs > btrfs_chunk_max_errors(map))
5086 readonly = 1;
5087 end:
5088 free_extent_map(em);
5089 return readonly;
5090 }
5091
5092 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5093 {
5094 extent_map_tree_init(&tree->map_tree);
5095 }
5096
5097 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5098 {
5099 struct extent_map *em;
5100
5101 while (1) {
5102 write_lock(&tree->map_tree.lock);
5103 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5104 if (em)
5105 remove_extent_mapping(&tree->map_tree, em);
5106 write_unlock(&tree->map_tree.lock);
5107 if (!em)
5108 break;
5109 /* once for us */
5110 free_extent_map(em);
5111 /* once for the tree */
5112 free_extent_map(em);
5113 }
5114 }
5115
5116 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5117 {
5118 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5119 struct extent_map *em;
5120 struct map_lookup *map;
5121 struct extent_map_tree *em_tree = &map_tree->map_tree;
5122 int ret;
5123
5124 read_lock(&em_tree->lock);
5125 em = lookup_extent_mapping(em_tree, logical, len);
5126 read_unlock(&em_tree->lock);
5127
5128 /*
5129 * We could return errors for these cases, but that could get ugly and
5130 * we'd probably do the same thing which is just not do anything else
5131 * and exit, so return 1 so the callers don't try to use other copies.
5132 */
5133 if (!em) {
5134 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5135 logical+len);
5136 return 1;
5137 }
5138
5139 if (em->start > logical || em->start + em->len < logical) {
5140 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5141 logical, logical+len, em->start,
5142 em->start + em->len);
5143 free_extent_map(em);
5144 return 1;
5145 }
5146
5147 map = em->map_lookup;
5148 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5149 ret = map->num_stripes;
5150 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5151 ret = map->sub_stripes;
5152 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5153 ret = 2;
5154 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5155 ret = 3;
5156 else
5157 ret = 1;
5158 free_extent_map(em);
5159
5160 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5161 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5162 ret++;
5163 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5164
5165 return ret;
5166 }
5167
5168 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5169 struct btrfs_mapping_tree *map_tree,
5170 u64 logical)
5171 {
5172 struct extent_map *em;
5173 struct map_lookup *map;
5174 struct extent_map_tree *em_tree = &map_tree->map_tree;
5175 unsigned long len = fs_info->sectorsize;
5176
5177 read_lock(&em_tree->lock);
5178 em = lookup_extent_mapping(em_tree, logical, len);
5179 read_unlock(&em_tree->lock);
5180 BUG_ON(!em);
5181
5182 BUG_ON(em->start > logical || em->start + em->len < logical);
5183 map = em->map_lookup;
5184 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5185 len = map->stripe_len * nr_data_stripes(map);
5186 free_extent_map(em);
5187 return len;
5188 }
5189
5190 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5191 u64 logical, u64 len, int mirror_num)
5192 {
5193 struct extent_map *em;
5194 struct map_lookup *map;
5195 struct extent_map_tree *em_tree = &map_tree->map_tree;
5196 int ret = 0;
5197
5198 read_lock(&em_tree->lock);
5199 em = lookup_extent_mapping(em_tree, logical, len);
5200 read_unlock(&em_tree->lock);
5201 BUG_ON(!em);
5202
5203 BUG_ON(em->start > logical || em->start + em->len < logical);
5204 map = em->map_lookup;
5205 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5206 ret = 1;
5207 free_extent_map(em);
5208 return ret;
5209 }
5210
5211 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5212 struct map_lookup *map, int first, int num,
5213 int optimal, int dev_replace_is_ongoing)
5214 {
5215 int i;
5216 int tolerance;
5217 struct btrfs_device *srcdev;
5218
5219 if (dev_replace_is_ongoing &&
5220 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5221 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5222 srcdev = fs_info->dev_replace.srcdev;
5223 else
5224 srcdev = NULL;
5225
5226 /*
5227 * try to avoid the drive that is the source drive for a
5228 * dev-replace procedure, only choose it if no other non-missing
5229 * mirror is available
5230 */
5231 for (tolerance = 0; tolerance < 2; tolerance++) {
5232 if (map->stripes[optimal].dev->bdev &&
5233 (tolerance || map->stripes[optimal].dev != srcdev))
5234 return optimal;
5235 for (i = first; i < first + num; i++) {
5236 if (map->stripes[i].dev->bdev &&
5237 (tolerance || map->stripes[i].dev != srcdev))
5238 return i;
5239 }
5240 }
5241
5242 /* we couldn't find one that doesn't fail. Just return something
5243 * and the io error handling code will clean up eventually
5244 */
5245 return optimal;
5246 }
5247
5248 static inline int parity_smaller(u64 a, u64 b)
5249 {
5250 return a > b;
5251 }
5252
5253 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5254 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5255 {
5256 struct btrfs_bio_stripe s;
5257 int i;
5258 u64 l;
5259 int again = 1;
5260
5261 while (again) {
5262 again = 0;
5263 for (i = 0; i < num_stripes - 1; i++) {
5264 if (parity_smaller(bbio->raid_map[i],
5265 bbio->raid_map[i+1])) {
5266 s = bbio->stripes[i];
5267 l = bbio->raid_map[i];
5268 bbio->stripes[i] = bbio->stripes[i+1];
5269 bbio->raid_map[i] = bbio->raid_map[i+1];
5270 bbio->stripes[i+1] = s;
5271 bbio->raid_map[i+1] = l;
5272
5273 again = 1;
5274 }
5275 }
5276 }
5277 }
5278
5279 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5280 {
5281 struct btrfs_bio *bbio = kzalloc(
5282 /* the size of the btrfs_bio */
5283 sizeof(struct btrfs_bio) +
5284 /* plus the variable array for the stripes */
5285 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5286 /* plus the variable array for the tgt dev */
5287 sizeof(int) * (real_stripes) +
5288 /*
5289 * plus the raid_map, which includes both the tgt dev
5290 * and the stripes
5291 */
5292 sizeof(u64) * (total_stripes),
5293 GFP_NOFS|__GFP_NOFAIL);
5294
5295 atomic_set(&bbio->error, 0);
5296 atomic_set(&bbio->refs, 1);
5297
5298 return bbio;
5299 }
5300
5301 void btrfs_get_bbio(struct btrfs_bio *bbio)
5302 {
5303 WARN_ON(!atomic_read(&bbio->refs));
5304 atomic_inc(&bbio->refs);
5305 }
5306
5307 void btrfs_put_bbio(struct btrfs_bio *bbio)
5308 {
5309 if (!bbio)
5310 return;
5311 if (atomic_dec_and_test(&bbio->refs))
5312 kfree(bbio);
5313 }
5314
5315 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5316 enum btrfs_map_op op,
5317 u64 logical, u64 *length,
5318 struct btrfs_bio **bbio_ret,
5319 int mirror_num, int need_raid_map)
5320 {
5321 struct extent_map *em;
5322 struct map_lookup *map;
5323 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5324 struct extent_map_tree *em_tree = &map_tree->map_tree;
5325 u64 offset;
5326 u64 stripe_offset;
5327 u64 stripe_end_offset;
5328 u64 stripe_nr;
5329 u64 stripe_nr_orig;
5330 u64 stripe_nr_end;
5331 u64 stripe_len;
5332 u32 stripe_index;
5333 int i;
5334 int ret = 0;
5335 int num_stripes;
5336 int max_errors = 0;
5337 int tgtdev_indexes = 0;
5338 struct btrfs_bio *bbio = NULL;
5339 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5340 int dev_replace_is_ongoing = 0;
5341 int num_alloc_stripes;
5342 int patch_the_first_stripe_for_dev_replace = 0;
5343 u64 physical_to_patch_in_first_stripe = 0;
5344 u64 raid56_full_stripe_start = (u64)-1;
5345
5346 read_lock(&em_tree->lock);
5347 em = lookup_extent_mapping(em_tree, logical, *length);
5348 read_unlock(&em_tree->lock);
5349
5350 if (!em) {
5351 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5352 logical, *length);
5353 return -EINVAL;
5354 }
5355
5356 if (em->start > logical || em->start + em->len < logical) {
5357 btrfs_crit(fs_info,
5358 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5359 logical, em->start, em->start + em->len);
5360 free_extent_map(em);
5361 return -EINVAL;
5362 }
5363
5364 map = em->map_lookup;
5365 offset = logical - em->start;
5366
5367 stripe_len = map->stripe_len;
5368 stripe_nr = offset;
5369 /*
5370 * stripe_nr counts the total number of stripes we have to stride
5371 * to get to this block
5372 */
5373 stripe_nr = div64_u64(stripe_nr, stripe_len);
5374
5375 stripe_offset = stripe_nr * stripe_len;
5376 if (offset < stripe_offset) {
5377 btrfs_crit(fs_info,
5378 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5379 stripe_offset, offset, em->start, logical,
5380 stripe_len);
5381 free_extent_map(em);
5382 return -EINVAL;
5383 }
5384
5385 /* stripe_offset is the offset of this block in its stripe*/
5386 stripe_offset = offset - stripe_offset;
5387
5388 /* if we're here for raid56, we need to know the stripe aligned start */
5389 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5390 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5391 raid56_full_stripe_start = offset;
5392
5393 /* allow a write of a full stripe, but make sure we don't
5394 * allow straddling of stripes
5395 */
5396 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5397 full_stripe_len);
5398 raid56_full_stripe_start *= full_stripe_len;
5399 }
5400
5401 if (op == BTRFS_MAP_DISCARD) {
5402 /* we don't discard raid56 yet */
5403 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5404 ret = -EOPNOTSUPP;
5405 goto out;
5406 }
5407 *length = min_t(u64, em->len - offset, *length);
5408 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5409 u64 max_len;
5410 /* For writes to RAID[56], allow a full stripeset across all disks.
5411 For other RAID types and for RAID[56] reads, just allow a single
5412 stripe (on a single disk). */
5413 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5414 (op == BTRFS_MAP_WRITE)) {
5415 max_len = stripe_len * nr_data_stripes(map) -
5416 (offset - raid56_full_stripe_start);
5417 } else {
5418 /* we limit the length of each bio to what fits in a stripe */
5419 max_len = stripe_len - stripe_offset;
5420 }
5421 *length = min_t(u64, em->len - offset, max_len);
5422 } else {
5423 *length = em->len - offset;
5424 }
5425
5426 /* This is for when we're called from btrfs_merge_bio_hook() and all
5427 it cares about is the length */
5428 if (!bbio_ret)
5429 goto out;
5430
5431 btrfs_dev_replace_lock(dev_replace, 0);
5432 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5433 if (!dev_replace_is_ongoing)
5434 btrfs_dev_replace_unlock(dev_replace, 0);
5435 else
5436 btrfs_dev_replace_set_lock_blocking(dev_replace);
5437
5438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5439 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5440 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5441 /*
5442 * in dev-replace case, for repair case (that's the only
5443 * case where the mirror is selected explicitly when
5444 * calling btrfs_map_block), blocks left of the left cursor
5445 * can also be read from the target drive.
5446 * For REQ_GET_READ_MIRRORS, the target drive is added as
5447 * the last one to the array of stripes. For READ, it also
5448 * needs to be supported using the same mirror number.
5449 * If the requested block is not left of the left cursor,
5450 * EIO is returned. This can happen because btrfs_num_copies()
5451 * returns one more in the dev-replace case.
5452 */
5453 u64 tmp_length = *length;
5454 struct btrfs_bio *tmp_bbio = NULL;
5455 int tmp_num_stripes;
5456 u64 srcdev_devid = dev_replace->srcdev->devid;
5457 int index_srcdev = 0;
5458 int found = 0;
5459 u64 physical_of_found = 0;
5460
5461 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5462 logical, &tmp_length, &tmp_bbio, 0, 0);
5463 if (ret) {
5464 WARN_ON(tmp_bbio != NULL);
5465 goto out;
5466 }
5467
5468 tmp_num_stripes = tmp_bbio->num_stripes;
5469 if (mirror_num > tmp_num_stripes) {
5470 /*
5471 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5472 * mirror, that means that the requested area
5473 * is not left of the left cursor
5474 */
5475 ret = -EIO;
5476 btrfs_put_bbio(tmp_bbio);
5477 goto out;
5478 }
5479
5480 /*
5481 * process the rest of the function using the mirror_num
5482 * of the source drive. Therefore look it up first.
5483 * At the end, patch the device pointer to the one of the
5484 * target drive.
5485 */
5486 for (i = 0; i < tmp_num_stripes; i++) {
5487 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5488 continue;
5489
5490 /*
5491 * In case of DUP, in order to keep it simple, only add
5492 * the mirror with the lowest physical address
5493 */
5494 if (found &&
5495 physical_of_found <= tmp_bbio->stripes[i].physical)
5496 continue;
5497
5498 index_srcdev = i;
5499 found = 1;
5500 physical_of_found = tmp_bbio->stripes[i].physical;
5501 }
5502
5503 btrfs_put_bbio(tmp_bbio);
5504
5505 if (!found) {
5506 WARN_ON(1);
5507 ret = -EIO;
5508 goto out;
5509 }
5510
5511 mirror_num = index_srcdev + 1;
5512 patch_the_first_stripe_for_dev_replace = 1;
5513 physical_to_patch_in_first_stripe = physical_of_found;
5514 } else if (mirror_num > map->num_stripes) {
5515 mirror_num = 0;
5516 }
5517
5518 num_stripes = 1;
5519 stripe_index = 0;
5520 stripe_nr_orig = stripe_nr;
5521 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5522 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5523 stripe_end_offset = stripe_nr_end * map->stripe_len -
5524 (offset + *length);
5525
5526 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5527 if (op == BTRFS_MAP_DISCARD)
5528 num_stripes = min_t(u64, map->num_stripes,
5529 stripe_nr_end - stripe_nr_orig);
5530 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5531 &stripe_index);
5532 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5533 op != BTRFS_MAP_GET_READ_MIRRORS)
5534 mirror_num = 1;
5535 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5536 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5537 op == BTRFS_MAP_GET_READ_MIRRORS)
5538 num_stripes = map->num_stripes;
5539 else if (mirror_num)
5540 stripe_index = mirror_num - 1;
5541 else {
5542 stripe_index = find_live_mirror(fs_info, map, 0,
5543 map->num_stripes,
5544 current->pid % map->num_stripes,
5545 dev_replace_is_ongoing);
5546 mirror_num = stripe_index + 1;
5547 }
5548
5549 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5550 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5551 op == BTRFS_MAP_GET_READ_MIRRORS) {
5552 num_stripes = map->num_stripes;
5553 } else if (mirror_num) {
5554 stripe_index = mirror_num - 1;
5555 } else {
5556 mirror_num = 1;
5557 }
5558
5559 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5560 u32 factor = map->num_stripes / map->sub_stripes;
5561
5562 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5563 stripe_index *= map->sub_stripes;
5564
5565 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5566 num_stripes = map->sub_stripes;
5567 else if (op == BTRFS_MAP_DISCARD)
5568 num_stripes = min_t(u64, map->sub_stripes *
5569 (stripe_nr_end - stripe_nr_orig),
5570 map->num_stripes);
5571 else if (mirror_num)
5572 stripe_index += mirror_num - 1;
5573 else {
5574 int old_stripe_index = stripe_index;
5575 stripe_index = find_live_mirror(fs_info, map,
5576 stripe_index,
5577 map->sub_stripes, stripe_index +
5578 current->pid % map->sub_stripes,
5579 dev_replace_is_ongoing);
5580 mirror_num = stripe_index - old_stripe_index + 1;
5581 }
5582
5583 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5584 if (need_raid_map &&
5585 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5586 mirror_num > 1)) {
5587 /* push stripe_nr back to the start of the full stripe */
5588 stripe_nr = div_u64(raid56_full_stripe_start,
5589 stripe_len * nr_data_stripes(map));
5590
5591 /* RAID[56] write or recovery. Return all stripes */
5592 num_stripes = map->num_stripes;
5593 max_errors = nr_parity_stripes(map);
5594
5595 *length = map->stripe_len;
5596 stripe_index = 0;
5597 stripe_offset = 0;
5598 } else {
5599 /*
5600 * Mirror #0 or #1 means the original data block.
5601 * Mirror #2 is RAID5 parity block.
5602 * Mirror #3 is RAID6 Q block.
5603 */
5604 stripe_nr = div_u64_rem(stripe_nr,
5605 nr_data_stripes(map), &stripe_index);
5606 if (mirror_num > 1)
5607 stripe_index = nr_data_stripes(map) +
5608 mirror_num - 2;
5609
5610 /* We distribute the parity blocks across stripes */
5611 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5612 &stripe_index);
5613 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5614 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
5615 mirror_num = 1;
5616 }
5617 } else {
5618 /*
5619 * after this, stripe_nr is the number of stripes on this
5620 * device we have to walk to find the data, and stripe_index is
5621 * the number of our device in the stripe array
5622 */
5623 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5624 &stripe_index);
5625 mirror_num = stripe_index + 1;
5626 }
5627 if (stripe_index >= map->num_stripes) {
5628 btrfs_crit(fs_info,
5629 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5630 stripe_index, map->num_stripes);
5631 ret = -EINVAL;
5632 goto out;
5633 }
5634
5635 num_alloc_stripes = num_stripes;
5636 if (dev_replace_is_ongoing) {
5637 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
5638 num_alloc_stripes <<= 1;
5639 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5640 num_alloc_stripes++;
5641 tgtdev_indexes = num_stripes;
5642 }
5643
5644 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5645 if (!bbio) {
5646 ret = -ENOMEM;
5647 goto out;
5648 }
5649 if (dev_replace_is_ongoing)
5650 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5651
5652 /* build raid_map */
5653 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5654 need_raid_map &&
5655 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
5656 mirror_num > 1)) {
5657 u64 tmp;
5658 unsigned rot;
5659
5660 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5661 sizeof(struct btrfs_bio_stripe) *
5662 num_alloc_stripes +
5663 sizeof(int) * tgtdev_indexes);
5664
5665 /* Work out the disk rotation on this stripe-set */
5666 div_u64_rem(stripe_nr, num_stripes, &rot);
5667
5668 /* Fill in the logical address of each stripe */
5669 tmp = stripe_nr * nr_data_stripes(map);
5670 for (i = 0; i < nr_data_stripes(map); i++)
5671 bbio->raid_map[(i+rot) % num_stripes] =
5672 em->start + (tmp + i) * map->stripe_len;
5673
5674 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5675 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5676 bbio->raid_map[(i+rot+1) % num_stripes] =
5677 RAID6_Q_STRIPE;
5678 }
5679
5680 if (op == BTRFS_MAP_DISCARD) {
5681 u32 factor = 0;
5682 u32 sub_stripes = 0;
5683 u64 stripes_per_dev = 0;
5684 u32 remaining_stripes = 0;
5685 u32 last_stripe = 0;
5686
5687 if (map->type &
5688 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5689 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5690 sub_stripes = 1;
5691 else
5692 sub_stripes = map->sub_stripes;
5693
5694 factor = map->num_stripes / sub_stripes;
5695 stripes_per_dev = div_u64_rem(stripe_nr_end -
5696 stripe_nr_orig,
5697 factor,
5698 &remaining_stripes);
5699 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5700 last_stripe *= sub_stripes;
5701 }
5702
5703 for (i = 0; i < num_stripes; i++) {
5704 bbio->stripes[i].physical =
5705 map->stripes[stripe_index].physical +
5706 stripe_offset + stripe_nr * map->stripe_len;
5707 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5708
5709 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5710 BTRFS_BLOCK_GROUP_RAID10)) {
5711 bbio->stripes[i].length = stripes_per_dev *
5712 map->stripe_len;
5713
5714 if (i / sub_stripes < remaining_stripes)
5715 bbio->stripes[i].length +=
5716 map->stripe_len;
5717
5718 /*
5719 * Special for the first stripe and
5720 * the last stripe:
5721 *
5722 * |-------|...|-------|
5723 * |----------|
5724 * off end_off
5725 */
5726 if (i < sub_stripes)
5727 bbio->stripes[i].length -=
5728 stripe_offset;
5729
5730 if (stripe_index >= last_stripe &&
5731 stripe_index <= (last_stripe +
5732 sub_stripes - 1))
5733 bbio->stripes[i].length -=
5734 stripe_end_offset;
5735
5736 if (i == sub_stripes - 1)
5737 stripe_offset = 0;
5738 } else
5739 bbio->stripes[i].length = *length;
5740
5741 stripe_index++;
5742 if (stripe_index == map->num_stripes) {
5743 /* This could only happen for RAID0/10 */
5744 stripe_index = 0;
5745 stripe_nr++;
5746 }
5747 }
5748 } else {
5749 for (i = 0; i < num_stripes; i++) {
5750 bbio->stripes[i].physical =
5751 map->stripes[stripe_index].physical +
5752 stripe_offset +
5753 stripe_nr * map->stripe_len;
5754 bbio->stripes[i].dev =
5755 map->stripes[stripe_index].dev;
5756 stripe_index++;
5757 }
5758 }
5759
5760 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5761 max_errors = btrfs_chunk_max_errors(map);
5762
5763 if (bbio->raid_map)
5764 sort_parity_stripes(bbio, num_stripes);
5765
5766 tgtdev_indexes = 0;
5767 if (dev_replace_is_ongoing &&
5768 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
5769 dev_replace->tgtdev != NULL) {
5770 int index_where_to_add;
5771 u64 srcdev_devid = dev_replace->srcdev->devid;
5772
5773 /*
5774 * duplicate the write operations while the dev replace
5775 * procedure is running. Since the copying of the old disk
5776 * to the new disk takes place at run time while the
5777 * filesystem is mounted writable, the regular write
5778 * operations to the old disk have to be duplicated to go
5779 * to the new disk as well.
5780 * Note that device->missing is handled by the caller, and
5781 * that the write to the old disk is already set up in the
5782 * stripes array.
5783 */
5784 index_where_to_add = num_stripes;
5785 for (i = 0; i < num_stripes; i++) {
5786 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5787 /* write to new disk, too */
5788 struct btrfs_bio_stripe *new =
5789 bbio->stripes + index_where_to_add;
5790 struct btrfs_bio_stripe *old =
5791 bbio->stripes + i;
5792
5793 new->physical = old->physical;
5794 new->length = old->length;
5795 new->dev = dev_replace->tgtdev;
5796 bbio->tgtdev_map[i] = index_where_to_add;
5797 index_where_to_add++;
5798 max_errors++;
5799 tgtdev_indexes++;
5800 }
5801 }
5802 num_stripes = index_where_to_add;
5803 } else if (dev_replace_is_ongoing &&
5804 op == BTRFS_MAP_GET_READ_MIRRORS &&
5805 dev_replace->tgtdev != NULL) {
5806 u64 srcdev_devid = dev_replace->srcdev->devid;
5807 int index_srcdev = 0;
5808 int found = 0;
5809 u64 physical_of_found = 0;
5810
5811 /*
5812 * During the dev-replace procedure, the target drive can
5813 * also be used to read data in case it is needed to repair
5814 * a corrupt block elsewhere. This is possible if the
5815 * requested area is left of the left cursor. In this area,
5816 * the target drive is a full copy of the source drive.
5817 */
5818 for (i = 0; i < num_stripes; i++) {
5819 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5820 /*
5821 * In case of DUP, in order to keep it
5822 * simple, only add the mirror with the
5823 * lowest physical address
5824 */
5825 if (found &&
5826 physical_of_found <=
5827 bbio->stripes[i].physical)
5828 continue;
5829 index_srcdev = i;
5830 found = 1;
5831 physical_of_found = bbio->stripes[i].physical;
5832 }
5833 }
5834 if (found) {
5835 struct btrfs_bio_stripe *tgtdev_stripe =
5836 bbio->stripes + num_stripes;
5837
5838 tgtdev_stripe->physical = physical_of_found;
5839 tgtdev_stripe->length =
5840 bbio->stripes[index_srcdev].length;
5841 tgtdev_stripe->dev = dev_replace->tgtdev;
5842 bbio->tgtdev_map[index_srcdev] = num_stripes;
5843
5844 tgtdev_indexes++;
5845 num_stripes++;
5846 }
5847 }
5848
5849 *bbio_ret = bbio;
5850 bbio->map_type = map->type;
5851 bbio->num_stripes = num_stripes;
5852 bbio->max_errors = max_errors;
5853 bbio->mirror_num = mirror_num;
5854 bbio->num_tgtdevs = tgtdev_indexes;
5855
5856 /*
5857 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5858 * mirror_num == num_stripes + 1 && dev_replace target drive is
5859 * available as a mirror
5860 */
5861 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5862 WARN_ON(num_stripes > 1);
5863 bbio->stripes[0].dev = dev_replace->tgtdev;
5864 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5865 bbio->mirror_num = map->num_stripes + 1;
5866 }
5867 out:
5868 if (dev_replace_is_ongoing) {
5869 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5870 btrfs_dev_replace_unlock(dev_replace, 0);
5871 }
5872 free_extent_map(em);
5873 return ret;
5874 }
5875
5876 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5877 u64 logical, u64 *length,
5878 struct btrfs_bio **bbio_ret, int mirror_num)
5879 {
5880 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5881 mirror_num, 0);
5882 }
5883
5884 /* For Scrub/replace */
5885 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5886 u64 logical, u64 *length,
5887 struct btrfs_bio **bbio_ret, int mirror_num,
5888 int need_raid_map)
5889 {
5890 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5891 mirror_num, need_raid_map);
5892 }
5893
5894 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5895 u64 chunk_start, u64 physical, u64 devid,
5896 u64 **logical, int *naddrs, int *stripe_len)
5897 {
5898 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5899 struct extent_map_tree *em_tree = &map_tree->map_tree;
5900 struct extent_map *em;
5901 struct map_lookup *map;
5902 u64 *buf;
5903 u64 bytenr;
5904 u64 length;
5905 u64 stripe_nr;
5906 u64 rmap_len;
5907 int i, j, nr = 0;
5908
5909 read_lock(&em_tree->lock);
5910 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5911 read_unlock(&em_tree->lock);
5912
5913 if (!em) {
5914 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5915 chunk_start);
5916 return -EIO;
5917 }
5918
5919 if (em->start != chunk_start) {
5920 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5921 em->start, chunk_start);
5922 free_extent_map(em);
5923 return -EIO;
5924 }
5925 map = em->map_lookup;
5926
5927 length = em->len;
5928 rmap_len = map->stripe_len;
5929
5930 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5931 length = div_u64(length, map->num_stripes / map->sub_stripes);
5932 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5933 length = div_u64(length, map->num_stripes);
5934 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5935 length = div_u64(length, nr_data_stripes(map));
5936 rmap_len = map->stripe_len * nr_data_stripes(map);
5937 }
5938
5939 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5940 BUG_ON(!buf); /* -ENOMEM */
5941
5942 for (i = 0; i < map->num_stripes; i++) {
5943 if (devid && map->stripes[i].dev->devid != devid)
5944 continue;
5945 if (map->stripes[i].physical > physical ||
5946 map->stripes[i].physical + length <= physical)
5947 continue;
5948
5949 stripe_nr = physical - map->stripes[i].physical;
5950 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5951
5952 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5953 stripe_nr = stripe_nr * map->num_stripes + i;
5954 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5955 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5956 stripe_nr = stripe_nr * map->num_stripes + i;
5957 } /* else if RAID[56], multiply by nr_data_stripes().
5958 * Alternatively, just use rmap_len below instead of
5959 * map->stripe_len */
5960
5961 bytenr = chunk_start + stripe_nr * rmap_len;
5962 WARN_ON(nr >= map->num_stripes);
5963 for (j = 0; j < nr; j++) {
5964 if (buf[j] == bytenr)
5965 break;
5966 }
5967 if (j == nr) {
5968 WARN_ON(nr >= map->num_stripes);
5969 buf[nr++] = bytenr;
5970 }
5971 }
5972
5973 *logical = buf;
5974 *naddrs = nr;
5975 *stripe_len = rmap_len;
5976
5977 free_extent_map(em);
5978 return 0;
5979 }
5980
5981 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5982 {
5983 bio->bi_private = bbio->private;
5984 bio->bi_end_io = bbio->end_io;
5985 bio_endio(bio);
5986
5987 btrfs_put_bbio(bbio);
5988 }
5989
5990 static void btrfs_end_bio(struct bio *bio)
5991 {
5992 struct btrfs_bio *bbio = bio->bi_private;
5993 int is_orig_bio = 0;
5994
5995 if (bio->bi_error) {
5996 atomic_inc(&bbio->error);
5997 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5998 unsigned int stripe_index =
5999 btrfs_io_bio(bio)->stripe_index;
6000 struct btrfs_device *dev;
6001
6002 BUG_ON(stripe_index >= bbio->num_stripes);
6003 dev = bbio->stripes[stripe_index].dev;
6004 if (dev->bdev) {
6005 if (bio_op(bio) == REQ_OP_WRITE)
6006 btrfs_dev_stat_inc(dev,
6007 BTRFS_DEV_STAT_WRITE_ERRS);
6008 else
6009 btrfs_dev_stat_inc(dev,
6010 BTRFS_DEV_STAT_READ_ERRS);
6011 if (bio->bi_opf & REQ_PREFLUSH)
6012 btrfs_dev_stat_inc(dev,
6013 BTRFS_DEV_STAT_FLUSH_ERRS);
6014 btrfs_dev_stat_print_on_error(dev);
6015 }
6016 }
6017 }
6018
6019 if (bio == bbio->orig_bio)
6020 is_orig_bio = 1;
6021
6022 btrfs_bio_counter_dec(bbio->fs_info);
6023
6024 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6025 if (!is_orig_bio) {
6026 bio_put(bio);
6027 bio = bbio->orig_bio;
6028 }
6029
6030 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6031 /* only send an error to the higher layers if it is
6032 * beyond the tolerance of the btrfs bio
6033 */
6034 if (atomic_read(&bbio->error) > bbio->max_errors) {
6035 bio->bi_error = -EIO;
6036 } else {
6037 /*
6038 * this bio is actually up to date, we didn't
6039 * go over the max number of errors
6040 */
6041 bio->bi_error = 0;
6042 }
6043
6044 btrfs_end_bbio(bbio, bio);
6045 } else if (!is_orig_bio) {
6046 bio_put(bio);
6047 }
6048 }
6049
6050 /*
6051 * see run_scheduled_bios for a description of why bios are collected for
6052 * async submit.
6053 *
6054 * This will add one bio to the pending list for a device and make sure
6055 * the work struct is scheduled.
6056 */
6057 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6058 struct bio *bio)
6059 {
6060 struct btrfs_fs_info *fs_info = device->fs_info;
6061 int should_queue = 1;
6062 struct btrfs_pending_bios *pending_bios;
6063
6064 if (device->missing || !device->bdev) {
6065 bio_io_error(bio);
6066 return;
6067 }
6068
6069 /* don't bother with additional async steps for reads, right now */
6070 if (bio_op(bio) == REQ_OP_READ) {
6071 bio_get(bio);
6072 btrfsic_submit_bio(bio);
6073 bio_put(bio);
6074 return;
6075 }
6076
6077 /*
6078 * nr_async_bios allows us to reliably return congestion to the
6079 * higher layers. Otherwise, the async bio makes it appear we have
6080 * made progress against dirty pages when we've really just put it
6081 * on a queue for later
6082 */
6083 atomic_inc(&fs_info->nr_async_bios);
6084 WARN_ON(bio->bi_next);
6085 bio->bi_next = NULL;
6086
6087 spin_lock(&device->io_lock);
6088 if (op_is_sync(bio->bi_opf))
6089 pending_bios = &device->pending_sync_bios;
6090 else
6091 pending_bios = &device->pending_bios;
6092
6093 if (pending_bios->tail)
6094 pending_bios->tail->bi_next = bio;
6095
6096 pending_bios->tail = bio;
6097 if (!pending_bios->head)
6098 pending_bios->head = bio;
6099 if (device->running_pending)
6100 should_queue = 0;
6101
6102 spin_unlock(&device->io_lock);
6103
6104 if (should_queue)
6105 btrfs_queue_work(fs_info->submit_workers, &device->work);
6106 }
6107
6108 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6109 u64 physical, int dev_nr, int async)
6110 {
6111 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6112 struct btrfs_fs_info *fs_info = bbio->fs_info;
6113
6114 bio->bi_private = bbio;
6115 btrfs_io_bio(bio)->stripe_index = dev_nr;
6116 bio->bi_end_io = btrfs_end_bio;
6117 bio->bi_iter.bi_sector = physical >> 9;
6118 #ifdef DEBUG
6119 {
6120 struct rcu_string *name;
6121
6122 rcu_read_lock();
6123 name = rcu_dereference(dev->name);
6124 btrfs_debug(fs_info,
6125 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6126 bio_op(bio), bio->bi_opf,
6127 (u64)bio->bi_iter.bi_sector,
6128 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6129 bio->bi_iter.bi_size);
6130 rcu_read_unlock();
6131 }
6132 #endif
6133 bio->bi_bdev = dev->bdev;
6134
6135 btrfs_bio_counter_inc_noblocked(fs_info);
6136
6137 if (async)
6138 btrfs_schedule_bio(dev, bio);
6139 else
6140 btrfsic_submit_bio(bio);
6141 }
6142
6143 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6144 {
6145 atomic_inc(&bbio->error);
6146 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6147 /* Should be the original bio. */
6148 WARN_ON(bio != bbio->orig_bio);
6149
6150 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6151 bio->bi_iter.bi_sector = logical >> 9;
6152 bio->bi_error = -EIO;
6153 btrfs_end_bbio(bbio, bio);
6154 }
6155 }
6156
6157 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6158 int mirror_num, int async_submit)
6159 {
6160 struct btrfs_device *dev;
6161 struct bio *first_bio = bio;
6162 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6163 u64 length = 0;
6164 u64 map_length;
6165 int ret;
6166 int dev_nr;
6167 int total_devs;
6168 struct btrfs_bio *bbio = NULL;
6169
6170 length = bio->bi_iter.bi_size;
6171 map_length = length;
6172
6173 btrfs_bio_counter_inc_blocked(fs_info);
6174 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6175 &map_length, &bbio, mirror_num, 1);
6176 if (ret) {
6177 btrfs_bio_counter_dec(fs_info);
6178 return ret;
6179 }
6180
6181 total_devs = bbio->num_stripes;
6182 bbio->orig_bio = first_bio;
6183 bbio->private = first_bio->bi_private;
6184 bbio->end_io = first_bio->bi_end_io;
6185 bbio->fs_info = fs_info;
6186 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6187
6188 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6189 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6190 /* In this case, map_length has been set to the length of
6191 a single stripe; not the whole write */
6192 if (bio_op(bio) == REQ_OP_WRITE) {
6193 ret = raid56_parity_write(fs_info, bio, bbio,
6194 map_length);
6195 } else {
6196 ret = raid56_parity_recover(fs_info, bio, bbio,
6197 map_length, mirror_num, 1);
6198 }
6199
6200 btrfs_bio_counter_dec(fs_info);
6201 return ret;
6202 }
6203
6204 if (map_length < length) {
6205 btrfs_crit(fs_info,
6206 "mapping failed logical %llu bio len %llu len %llu",
6207 logical, length, map_length);
6208 BUG();
6209 }
6210
6211 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6212 dev = bbio->stripes[dev_nr].dev;
6213 if (!dev || !dev->bdev ||
6214 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6215 bbio_error(bbio, first_bio, logical);
6216 continue;
6217 }
6218
6219 if (dev_nr < total_devs - 1) {
6220 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6221 BUG_ON(!bio); /* -ENOMEM */
6222 } else
6223 bio = first_bio;
6224
6225 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6226 dev_nr, async_submit);
6227 }
6228 btrfs_bio_counter_dec(fs_info);
6229 return 0;
6230 }
6231
6232 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6233 u8 *uuid, u8 *fsid)
6234 {
6235 struct btrfs_device *device;
6236 struct btrfs_fs_devices *cur_devices;
6237
6238 cur_devices = fs_info->fs_devices;
6239 while (cur_devices) {
6240 if (!fsid ||
6241 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6242 device = __find_device(&cur_devices->devices,
6243 devid, uuid);
6244 if (device)
6245 return device;
6246 }
6247 cur_devices = cur_devices->seed;
6248 }
6249 return NULL;
6250 }
6251
6252 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6253 u64 devid, u8 *dev_uuid)
6254 {
6255 struct btrfs_device *device;
6256
6257 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6258 if (IS_ERR(device))
6259 return NULL;
6260
6261 list_add(&device->dev_list, &fs_devices->devices);
6262 device->fs_devices = fs_devices;
6263 fs_devices->num_devices++;
6264
6265 device->missing = 1;
6266 fs_devices->missing_devices++;
6267
6268 return device;
6269 }
6270
6271 /**
6272 * btrfs_alloc_device - allocate struct btrfs_device
6273 * @fs_info: used only for generating a new devid, can be NULL if
6274 * devid is provided (i.e. @devid != NULL).
6275 * @devid: a pointer to devid for this device. If NULL a new devid
6276 * is generated.
6277 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6278 * is generated.
6279 *
6280 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6281 * on error. Returned struct is not linked onto any lists and can be
6282 * destroyed with kfree() right away.
6283 */
6284 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6285 const u64 *devid,
6286 const u8 *uuid)
6287 {
6288 struct btrfs_device *dev;
6289 u64 tmp;
6290
6291 if (WARN_ON(!devid && !fs_info))
6292 return ERR_PTR(-EINVAL);
6293
6294 dev = __alloc_device();
6295 if (IS_ERR(dev))
6296 return dev;
6297
6298 if (devid)
6299 tmp = *devid;
6300 else {
6301 int ret;
6302
6303 ret = find_next_devid(fs_info, &tmp);
6304 if (ret) {
6305 kfree(dev);
6306 return ERR_PTR(ret);
6307 }
6308 }
6309 dev->devid = tmp;
6310
6311 if (uuid)
6312 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6313 else
6314 generate_random_uuid(dev->uuid);
6315
6316 btrfs_init_work(&dev->work, btrfs_submit_helper,
6317 pending_bios_fn, NULL, NULL);
6318
6319 return dev;
6320 }
6321
6322 /* Return -EIO if any error, otherwise return 0. */
6323 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6324 struct extent_buffer *leaf,
6325 struct btrfs_chunk *chunk, u64 logical)
6326 {
6327 u64 length;
6328 u64 stripe_len;
6329 u16 num_stripes;
6330 u16 sub_stripes;
6331 u64 type;
6332
6333 length = btrfs_chunk_length(leaf, chunk);
6334 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6335 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6336 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6337 type = btrfs_chunk_type(leaf, chunk);
6338
6339 if (!num_stripes) {
6340 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6341 num_stripes);
6342 return -EIO;
6343 }
6344 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6345 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6346 return -EIO;
6347 }
6348 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6349 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6350 btrfs_chunk_sector_size(leaf, chunk));
6351 return -EIO;
6352 }
6353 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6354 btrfs_err(fs_info, "invalid chunk length %llu", length);
6355 return -EIO;
6356 }
6357 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6358 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6359 stripe_len);
6360 return -EIO;
6361 }
6362 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6363 type) {
6364 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6365 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6366 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6367 btrfs_chunk_type(leaf, chunk));
6368 return -EIO;
6369 }
6370 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6371 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6372 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6373 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6374 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6375 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6376 num_stripes != 1)) {
6377 btrfs_err(fs_info,
6378 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6379 num_stripes, sub_stripes,
6380 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6381 return -EIO;
6382 }
6383
6384 return 0;
6385 }
6386
6387 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6388 struct extent_buffer *leaf,
6389 struct btrfs_chunk *chunk)
6390 {
6391 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6392 struct map_lookup *map;
6393 struct extent_map *em;
6394 u64 logical;
6395 u64 length;
6396 u64 stripe_len;
6397 u64 devid;
6398 u8 uuid[BTRFS_UUID_SIZE];
6399 int num_stripes;
6400 int ret;
6401 int i;
6402
6403 logical = key->offset;
6404 length = btrfs_chunk_length(leaf, chunk);
6405 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6406 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6407
6408 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6409 if (ret)
6410 return ret;
6411
6412 read_lock(&map_tree->map_tree.lock);
6413 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6414 read_unlock(&map_tree->map_tree.lock);
6415
6416 /* already mapped? */
6417 if (em && em->start <= logical && em->start + em->len > logical) {
6418 free_extent_map(em);
6419 return 0;
6420 } else if (em) {
6421 free_extent_map(em);
6422 }
6423
6424 em = alloc_extent_map();
6425 if (!em)
6426 return -ENOMEM;
6427 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6428 if (!map) {
6429 free_extent_map(em);
6430 return -ENOMEM;
6431 }
6432
6433 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6434 em->map_lookup = map;
6435 em->start = logical;
6436 em->len = length;
6437 em->orig_start = 0;
6438 em->block_start = 0;
6439 em->block_len = em->len;
6440
6441 map->num_stripes = num_stripes;
6442 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6443 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6444 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6445 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6446 map->type = btrfs_chunk_type(leaf, chunk);
6447 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6448 for (i = 0; i < num_stripes; i++) {
6449 map->stripes[i].physical =
6450 btrfs_stripe_offset_nr(leaf, chunk, i);
6451 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6452 read_extent_buffer(leaf, uuid, (unsigned long)
6453 btrfs_stripe_dev_uuid_nr(chunk, i),
6454 BTRFS_UUID_SIZE);
6455 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6456 uuid, NULL);
6457 if (!map->stripes[i].dev &&
6458 !btrfs_test_opt(fs_info, DEGRADED)) {
6459 free_extent_map(em);
6460 return -EIO;
6461 }
6462 if (!map->stripes[i].dev) {
6463 map->stripes[i].dev =
6464 add_missing_dev(fs_info->fs_devices, devid,
6465 uuid);
6466 if (!map->stripes[i].dev) {
6467 free_extent_map(em);
6468 return -EIO;
6469 }
6470 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6471 devid, uuid);
6472 }
6473 map->stripes[i].dev->in_fs_metadata = 1;
6474 }
6475
6476 write_lock(&map_tree->map_tree.lock);
6477 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6478 write_unlock(&map_tree->map_tree.lock);
6479 BUG_ON(ret); /* Tree corruption */
6480 free_extent_map(em);
6481
6482 return 0;
6483 }
6484
6485 static void fill_device_from_item(struct extent_buffer *leaf,
6486 struct btrfs_dev_item *dev_item,
6487 struct btrfs_device *device)
6488 {
6489 unsigned long ptr;
6490
6491 device->devid = btrfs_device_id(leaf, dev_item);
6492 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6493 device->total_bytes = device->disk_total_bytes;
6494 device->commit_total_bytes = device->disk_total_bytes;
6495 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6496 device->commit_bytes_used = device->bytes_used;
6497 device->type = btrfs_device_type(leaf, dev_item);
6498 device->io_align = btrfs_device_io_align(leaf, dev_item);
6499 device->io_width = btrfs_device_io_width(leaf, dev_item);
6500 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6501 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6502 device->is_tgtdev_for_dev_replace = 0;
6503
6504 ptr = btrfs_device_uuid(dev_item);
6505 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6506 }
6507
6508 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6509 u8 *fsid)
6510 {
6511 struct btrfs_fs_devices *fs_devices;
6512 int ret;
6513
6514 BUG_ON(!mutex_is_locked(&uuid_mutex));
6515
6516 fs_devices = fs_info->fs_devices->seed;
6517 while (fs_devices) {
6518 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6519 return fs_devices;
6520
6521 fs_devices = fs_devices->seed;
6522 }
6523
6524 fs_devices = find_fsid(fsid);
6525 if (!fs_devices) {
6526 if (!btrfs_test_opt(fs_info, DEGRADED))
6527 return ERR_PTR(-ENOENT);
6528
6529 fs_devices = alloc_fs_devices(fsid);
6530 if (IS_ERR(fs_devices))
6531 return fs_devices;
6532
6533 fs_devices->seeding = 1;
6534 fs_devices->opened = 1;
6535 return fs_devices;
6536 }
6537
6538 fs_devices = clone_fs_devices(fs_devices);
6539 if (IS_ERR(fs_devices))
6540 return fs_devices;
6541
6542 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6543 fs_info->bdev_holder);
6544 if (ret) {
6545 free_fs_devices(fs_devices);
6546 fs_devices = ERR_PTR(ret);
6547 goto out;
6548 }
6549
6550 if (!fs_devices->seeding) {
6551 __btrfs_close_devices(fs_devices);
6552 free_fs_devices(fs_devices);
6553 fs_devices = ERR_PTR(-EINVAL);
6554 goto out;
6555 }
6556
6557 fs_devices->seed = fs_info->fs_devices->seed;
6558 fs_info->fs_devices->seed = fs_devices;
6559 out:
6560 return fs_devices;
6561 }
6562
6563 static int read_one_dev(struct btrfs_fs_info *fs_info,
6564 struct extent_buffer *leaf,
6565 struct btrfs_dev_item *dev_item)
6566 {
6567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6568 struct btrfs_device *device;
6569 u64 devid;
6570 int ret;
6571 u8 fs_uuid[BTRFS_UUID_SIZE];
6572 u8 dev_uuid[BTRFS_UUID_SIZE];
6573
6574 devid = btrfs_device_id(leaf, dev_item);
6575 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6576 BTRFS_UUID_SIZE);
6577 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6578 BTRFS_UUID_SIZE);
6579
6580 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6581 fs_devices = open_seed_devices(fs_info, fs_uuid);
6582 if (IS_ERR(fs_devices))
6583 return PTR_ERR(fs_devices);
6584 }
6585
6586 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6587 if (!device) {
6588 if (!btrfs_test_opt(fs_info, DEGRADED))
6589 return -EIO;
6590
6591 device = add_missing_dev(fs_devices, devid, dev_uuid);
6592 if (!device)
6593 return -ENOMEM;
6594 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6595 devid, dev_uuid);
6596 } else {
6597 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6598 return -EIO;
6599
6600 if(!device->bdev && !device->missing) {
6601 /*
6602 * this happens when a device that was properly setup
6603 * in the device info lists suddenly goes bad.
6604 * device->bdev is NULL, and so we have to set
6605 * device->missing to one here
6606 */
6607 device->fs_devices->missing_devices++;
6608 device->missing = 1;
6609 }
6610
6611 /* Move the device to its own fs_devices */
6612 if (device->fs_devices != fs_devices) {
6613 ASSERT(device->missing);
6614
6615 list_move(&device->dev_list, &fs_devices->devices);
6616 device->fs_devices->num_devices--;
6617 fs_devices->num_devices++;
6618
6619 device->fs_devices->missing_devices--;
6620 fs_devices->missing_devices++;
6621
6622 device->fs_devices = fs_devices;
6623 }
6624 }
6625
6626 if (device->fs_devices != fs_info->fs_devices) {
6627 BUG_ON(device->writeable);
6628 if (device->generation !=
6629 btrfs_device_generation(leaf, dev_item))
6630 return -EINVAL;
6631 }
6632
6633 fill_device_from_item(leaf, dev_item, device);
6634 device->in_fs_metadata = 1;
6635 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6636 device->fs_devices->total_rw_bytes += device->total_bytes;
6637 spin_lock(&fs_info->free_chunk_lock);
6638 fs_info->free_chunk_space += device->total_bytes -
6639 device->bytes_used;
6640 spin_unlock(&fs_info->free_chunk_lock);
6641 }
6642 ret = 0;
6643 return ret;
6644 }
6645
6646 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6647 {
6648 struct btrfs_root *root = fs_info->tree_root;
6649 struct btrfs_super_block *super_copy = fs_info->super_copy;
6650 struct extent_buffer *sb;
6651 struct btrfs_disk_key *disk_key;
6652 struct btrfs_chunk *chunk;
6653 u8 *array_ptr;
6654 unsigned long sb_array_offset;
6655 int ret = 0;
6656 u32 num_stripes;
6657 u32 array_size;
6658 u32 len = 0;
6659 u32 cur_offset;
6660 u64 type;
6661 struct btrfs_key key;
6662
6663 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6664 /*
6665 * This will create extent buffer of nodesize, superblock size is
6666 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6667 * overallocate but we can keep it as-is, only the first page is used.
6668 */
6669 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6670 if (IS_ERR(sb))
6671 return PTR_ERR(sb);
6672 set_extent_buffer_uptodate(sb);
6673 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6674 /*
6675 * The sb extent buffer is artificial and just used to read the system array.
6676 * set_extent_buffer_uptodate() call does not properly mark all it's
6677 * pages up-to-date when the page is larger: extent does not cover the
6678 * whole page and consequently check_page_uptodate does not find all
6679 * the page's extents up-to-date (the hole beyond sb),
6680 * write_extent_buffer then triggers a WARN_ON.
6681 *
6682 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6683 * but sb spans only this function. Add an explicit SetPageUptodate call
6684 * to silence the warning eg. on PowerPC 64.
6685 */
6686 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6687 SetPageUptodate(sb->pages[0]);
6688
6689 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6690 array_size = btrfs_super_sys_array_size(super_copy);
6691
6692 array_ptr = super_copy->sys_chunk_array;
6693 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6694 cur_offset = 0;
6695
6696 while (cur_offset < array_size) {
6697 disk_key = (struct btrfs_disk_key *)array_ptr;
6698 len = sizeof(*disk_key);
6699 if (cur_offset + len > array_size)
6700 goto out_short_read;
6701
6702 btrfs_disk_key_to_cpu(&key, disk_key);
6703
6704 array_ptr += len;
6705 sb_array_offset += len;
6706 cur_offset += len;
6707
6708 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6709 chunk = (struct btrfs_chunk *)sb_array_offset;
6710 /*
6711 * At least one btrfs_chunk with one stripe must be
6712 * present, exact stripe count check comes afterwards
6713 */
6714 len = btrfs_chunk_item_size(1);
6715 if (cur_offset + len > array_size)
6716 goto out_short_read;
6717
6718 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6719 if (!num_stripes) {
6720 btrfs_err(fs_info,
6721 "invalid number of stripes %u in sys_array at offset %u",
6722 num_stripes, cur_offset);
6723 ret = -EIO;
6724 break;
6725 }
6726
6727 type = btrfs_chunk_type(sb, chunk);
6728 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6729 btrfs_err(fs_info,
6730 "invalid chunk type %llu in sys_array at offset %u",
6731 type, cur_offset);
6732 ret = -EIO;
6733 break;
6734 }
6735
6736 len = btrfs_chunk_item_size(num_stripes);
6737 if (cur_offset + len > array_size)
6738 goto out_short_read;
6739
6740 ret = read_one_chunk(fs_info, &key, sb, chunk);
6741 if (ret)
6742 break;
6743 } else {
6744 btrfs_err(fs_info,
6745 "unexpected item type %u in sys_array at offset %u",
6746 (u32)key.type, cur_offset);
6747 ret = -EIO;
6748 break;
6749 }
6750 array_ptr += len;
6751 sb_array_offset += len;
6752 cur_offset += len;
6753 }
6754 clear_extent_buffer_uptodate(sb);
6755 free_extent_buffer_stale(sb);
6756 return ret;
6757
6758 out_short_read:
6759 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6760 len, cur_offset);
6761 clear_extent_buffer_uptodate(sb);
6762 free_extent_buffer_stale(sb);
6763 return -EIO;
6764 }
6765
6766 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6767 {
6768 struct btrfs_root *root = fs_info->chunk_root;
6769 struct btrfs_path *path;
6770 struct extent_buffer *leaf;
6771 struct btrfs_key key;
6772 struct btrfs_key found_key;
6773 int ret;
6774 int slot;
6775 u64 total_dev = 0;
6776
6777 path = btrfs_alloc_path();
6778 if (!path)
6779 return -ENOMEM;
6780
6781 mutex_lock(&uuid_mutex);
6782 mutex_lock(&fs_info->chunk_mutex);
6783
6784 /*
6785 * Read all device items, and then all the chunk items. All
6786 * device items are found before any chunk item (their object id
6787 * is smaller than the lowest possible object id for a chunk
6788 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6789 */
6790 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6791 key.offset = 0;
6792 key.type = 0;
6793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6794 if (ret < 0)
6795 goto error;
6796 while (1) {
6797 leaf = path->nodes[0];
6798 slot = path->slots[0];
6799 if (slot >= btrfs_header_nritems(leaf)) {
6800 ret = btrfs_next_leaf(root, path);
6801 if (ret == 0)
6802 continue;
6803 if (ret < 0)
6804 goto error;
6805 break;
6806 }
6807 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6808 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6809 struct btrfs_dev_item *dev_item;
6810 dev_item = btrfs_item_ptr(leaf, slot,
6811 struct btrfs_dev_item);
6812 ret = read_one_dev(fs_info, leaf, dev_item);
6813 if (ret)
6814 goto error;
6815 total_dev++;
6816 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6817 struct btrfs_chunk *chunk;
6818 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6819 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6820 if (ret)
6821 goto error;
6822 }
6823 path->slots[0]++;
6824 }
6825
6826 /*
6827 * After loading chunk tree, we've got all device information,
6828 * do another round of validation checks.
6829 */
6830 if (total_dev != fs_info->fs_devices->total_devices) {
6831 btrfs_err(fs_info,
6832 "super_num_devices %llu mismatch with num_devices %llu found here",
6833 btrfs_super_num_devices(fs_info->super_copy),
6834 total_dev);
6835 ret = -EINVAL;
6836 goto error;
6837 }
6838 if (btrfs_super_total_bytes(fs_info->super_copy) <
6839 fs_info->fs_devices->total_rw_bytes) {
6840 btrfs_err(fs_info,
6841 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6842 btrfs_super_total_bytes(fs_info->super_copy),
6843 fs_info->fs_devices->total_rw_bytes);
6844 ret = -EINVAL;
6845 goto error;
6846 }
6847 ret = 0;
6848 error:
6849 mutex_unlock(&fs_info->chunk_mutex);
6850 mutex_unlock(&uuid_mutex);
6851
6852 btrfs_free_path(path);
6853 return ret;
6854 }
6855
6856 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6857 {
6858 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6859 struct btrfs_device *device;
6860
6861 while (fs_devices) {
6862 mutex_lock(&fs_devices->device_list_mutex);
6863 list_for_each_entry(device, &fs_devices->devices, dev_list)
6864 device->fs_info = fs_info;
6865 mutex_unlock(&fs_devices->device_list_mutex);
6866
6867 fs_devices = fs_devices->seed;
6868 }
6869 }
6870
6871 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6872 {
6873 int i;
6874
6875 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6876 btrfs_dev_stat_reset(dev, i);
6877 }
6878
6879 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6880 {
6881 struct btrfs_key key;
6882 struct btrfs_key found_key;
6883 struct btrfs_root *dev_root = fs_info->dev_root;
6884 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6885 struct extent_buffer *eb;
6886 int slot;
6887 int ret = 0;
6888 struct btrfs_device *device;
6889 struct btrfs_path *path = NULL;
6890 int i;
6891
6892 path = btrfs_alloc_path();
6893 if (!path) {
6894 ret = -ENOMEM;
6895 goto out;
6896 }
6897
6898 mutex_lock(&fs_devices->device_list_mutex);
6899 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6900 int item_size;
6901 struct btrfs_dev_stats_item *ptr;
6902
6903 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6904 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6905 key.offset = device->devid;
6906 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6907 if (ret) {
6908 __btrfs_reset_dev_stats(device);
6909 device->dev_stats_valid = 1;
6910 btrfs_release_path(path);
6911 continue;
6912 }
6913 slot = path->slots[0];
6914 eb = path->nodes[0];
6915 btrfs_item_key_to_cpu(eb, &found_key, slot);
6916 item_size = btrfs_item_size_nr(eb, slot);
6917
6918 ptr = btrfs_item_ptr(eb, slot,
6919 struct btrfs_dev_stats_item);
6920
6921 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6922 if (item_size >= (1 + i) * sizeof(__le64))
6923 btrfs_dev_stat_set(device, i,
6924 btrfs_dev_stats_value(eb, ptr, i));
6925 else
6926 btrfs_dev_stat_reset(device, i);
6927 }
6928
6929 device->dev_stats_valid = 1;
6930 btrfs_dev_stat_print_on_load(device);
6931 btrfs_release_path(path);
6932 }
6933 mutex_unlock(&fs_devices->device_list_mutex);
6934
6935 out:
6936 btrfs_free_path(path);
6937 return ret < 0 ? ret : 0;
6938 }
6939
6940 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6941 struct btrfs_fs_info *fs_info,
6942 struct btrfs_device *device)
6943 {
6944 struct btrfs_root *dev_root = fs_info->dev_root;
6945 struct btrfs_path *path;
6946 struct btrfs_key key;
6947 struct extent_buffer *eb;
6948 struct btrfs_dev_stats_item *ptr;
6949 int ret;
6950 int i;
6951
6952 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6953 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6954 key.offset = device->devid;
6955
6956 path = btrfs_alloc_path();
6957 BUG_ON(!path);
6958 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6959 if (ret < 0) {
6960 btrfs_warn_in_rcu(fs_info,
6961 "error %d while searching for dev_stats item for device %s",
6962 ret, rcu_str_deref(device->name));
6963 goto out;
6964 }
6965
6966 if (ret == 0 &&
6967 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6968 /* need to delete old one and insert a new one */
6969 ret = btrfs_del_item(trans, dev_root, path);
6970 if (ret != 0) {
6971 btrfs_warn_in_rcu(fs_info,
6972 "delete too small dev_stats item for device %s failed %d",
6973 rcu_str_deref(device->name), ret);
6974 goto out;
6975 }
6976 ret = 1;
6977 }
6978
6979 if (ret == 1) {
6980 /* need to insert a new item */
6981 btrfs_release_path(path);
6982 ret = btrfs_insert_empty_item(trans, dev_root, path,
6983 &key, sizeof(*ptr));
6984 if (ret < 0) {
6985 btrfs_warn_in_rcu(fs_info,
6986 "insert dev_stats item for device %s failed %d",
6987 rcu_str_deref(device->name), ret);
6988 goto out;
6989 }
6990 }
6991
6992 eb = path->nodes[0];
6993 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6994 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6995 btrfs_set_dev_stats_value(eb, ptr, i,
6996 btrfs_dev_stat_read(device, i));
6997 btrfs_mark_buffer_dirty(eb);
6998
6999 out:
7000 btrfs_free_path(path);
7001 return ret;
7002 }
7003
7004 /*
7005 * called from commit_transaction. Writes all changed device stats to disk.
7006 */
7007 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7008 struct btrfs_fs_info *fs_info)
7009 {
7010 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7011 struct btrfs_device *device;
7012 int stats_cnt;
7013 int ret = 0;
7014
7015 mutex_lock(&fs_devices->device_list_mutex);
7016 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7017 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7018 continue;
7019
7020 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7021 ret = update_dev_stat_item(trans, fs_info, device);
7022 if (!ret)
7023 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7024 }
7025 mutex_unlock(&fs_devices->device_list_mutex);
7026
7027 return ret;
7028 }
7029
7030 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7031 {
7032 btrfs_dev_stat_inc(dev, index);
7033 btrfs_dev_stat_print_on_error(dev);
7034 }
7035
7036 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7037 {
7038 if (!dev->dev_stats_valid)
7039 return;
7040 btrfs_err_rl_in_rcu(dev->fs_info,
7041 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7042 rcu_str_deref(dev->name),
7043 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7044 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7045 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7048 }
7049
7050 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7051 {
7052 int i;
7053
7054 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7055 if (btrfs_dev_stat_read(dev, i) != 0)
7056 break;
7057 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7058 return; /* all values == 0, suppress message */
7059
7060 btrfs_info_in_rcu(dev->fs_info,
7061 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7062 rcu_str_deref(dev->name),
7063 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7064 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7065 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7068 }
7069
7070 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7071 struct btrfs_ioctl_get_dev_stats *stats)
7072 {
7073 struct btrfs_device *dev;
7074 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7075 int i;
7076
7077 mutex_lock(&fs_devices->device_list_mutex);
7078 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7079 mutex_unlock(&fs_devices->device_list_mutex);
7080
7081 if (!dev) {
7082 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7083 return -ENODEV;
7084 } else if (!dev->dev_stats_valid) {
7085 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7086 return -ENODEV;
7087 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7088 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7089 if (stats->nr_items > i)
7090 stats->values[i] =
7091 btrfs_dev_stat_read_and_reset(dev, i);
7092 else
7093 btrfs_dev_stat_reset(dev, i);
7094 }
7095 } else {
7096 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7097 if (stats->nr_items > i)
7098 stats->values[i] = btrfs_dev_stat_read(dev, i);
7099 }
7100 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7101 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7102 return 0;
7103 }
7104
7105 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7106 {
7107 struct buffer_head *bh;
7108 struct btrfs_super_block *disk_super;
7109 int copy_num;
7110
7111 if (!bdev)
7112 return;
7113
7114 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7115 copy_num++) {
7116
7117 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7118 continue;
7119
7120 disk_super = (struct btrfs_super_block *)bh->b_data;
7121
7122 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7123 set_buffer_dirty(bh);
7124 sync_dirty_buffer(bh);
7125 brelse(bh);
7126 }
7127
7128 /* Notify udev that device has changed */
7129 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7130
7131 /* Update ctime/mtime for device path for libblkid */
7132 update_dev_time(device_path);
7133 }
7134
7135 /*
7136 * Update the size of all devices, which is used for writing out the
7137 * super blocks.
7138 */
7139 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7140 {
7141 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7142 struct btrfs_device *curr, *next;
7143
7144 if (list_empty(&fs_devices->resized_devices))
7145 return;
7146
7147 mutex_lock(&fs_devices->device_list_mutex);
7148 mutex_lock(&fs_info->chunk_mutex);
7149 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7150 resized_list) {
7151 list_del_init(&curr->resized_list);
7152 curr->commit_total_bytes = curr->disk_total_bytes;
7153 }
7154 mutex_unlock(&fs_info->chunk_mutex);
7155 mutex_unlock(&fs_devices->device_list_mutex);
7156 }
7157
7158 /* Must be invoked during the transaction commit */
7159 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7160 struct btrfs_transaction *transaction)
7161 {
7162 struct extent_map *em;
7163 struct map_lookup *map;
7164 struct btrfs_device *dev;
7165 int i;
7166
7167 if (list_empty(&transaction->pending_chunks))
7168 return;
7169
7170 /* In order to kick the device replace finish process */
7171 mutex_lock(&fs_info->chunk_mutex);
7172 list_for_each_entry(em, &transaction->pending_chunks, list) {
7173 map = em->map_lookup;
7174
7175 for (i = 0; i < map->num_stripes; i++) {
7176 dev = map->stripes[i].dev;
7177 dev->commit_bytes_used = dev->bytes_used;
7178 }
7179 }
7180 mutex_unlock(&fs_info->chunk_mutex);
7181 }
7182
7183 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7184 {
7185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7186 while (fs_devices) {
7187 fs_devices->fs_info = fs_info;
7188 fs_devices = fs_devices->seed;
7189 }
7190 }
7191
7192 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7193 {
7194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7195 while (fs_devices) {
7196 fs_devices->fs_info = NULL;
7197 fs_devices = fs_devices->seed;
7198 }
7199 }