]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/volumes.c
Merge tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
41 .devs_min = 4,
42 .tolerated_failures = 1,
43 .devs_increment = 2,
44 .ncopies = 2,
45 .nparity = 0,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
55 .tolerated_failures = 1,
56 .devs_increment = 2,
57 .ncopies = 2,
58 .nparity = 0,
59 .raid_name = "raid1",
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 },
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
66 .devs_max = 3,
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
71 .nparity = 0,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
79 .devs_max = 4,
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
84 .nparity = 0,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
94 .tolerated_failures = 0,
95 .devs_increment = 1,
96 .ncopies = 2,
97 .nparity = 0,
98 .raid_name = "dup",
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
100 .mindev_error = 0,
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
106 .devs_min = 2,
107 .tolerated_failures = 0,
108 .devs_increment = 1,
109 .ncopies = 1,
110 .nparity = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
113 .mindev_error = 0,
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
120 .tolerated_failures = 0,
121 .devs_increment = 1,
122 .ncopies = 1,
123 .nparity = 0,
124 .raid_name = "single",
125 .bg_flag = 0,
126 .mindev_error = 0,
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
133 .tolerated_failures = 1,
134 .devs_increment = 1,
135 .ncopies = 1,
136 .nparity = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
146 .tolerated_failures = 2,
147 .devs_increment = 1,
148 .ncopies = 1,
149 .nparity = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 },
154 };
155
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158 const int index = btrfs_bg_flags_to_raid_index(flags);
159
160 if (index >= BTRFS_NR_RAID_TYPES)
161 return NULL;
162
163 return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
169 */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172 int i;
173 int ret;
174 char *bp = buf;
175 u64 flags = bg_flags;
176 u32 size_bp = size_buf;
177
178 if (!flags) {
179 strcpy(bp, "NONE");
180 return;
181 }
182
183 #define DESCRIBE_FLAG(flag, desc) \
184 do { \
185 if (flags & (flag)) { \
186 ret = snprintf(bp, size_bp, "%s|", (desc)); \
187 if (ret < 0 || ret >= size_bp) \
188 goto out_overflow; \
189 size_bp -= ret; \
190 bp += ret; \
191 flags &= ~(flag); \
192 } \
193 } while (0)
194
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205 if (flags) {
206 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207 size_bp -= ret;
208 }
209
210 if (size_bp < size_buf)
211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213 /*
214 * The text is trimmed, it's up to the caller to provide sufficiently
215 * large buffer
216 */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 enum btrfs_map_op op,
226 u64 logical, u64 *length,
227 struct btrfs_bio **bbio_ret,
228 int mirror_num, int need_raid_map);
229
230 /*
231 * Device locking
232 * ==============
233 *
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
236 *
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
242 *
243 * the mutex can be very coarse and can cover long-running operations
244 *
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
247 *
248 * global::fs_devs - add, remove, updates to the global list
249 *
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
252 * scan ioctl
253 *
254 * btrfs_device::name - renames (write side), read is RCU
255 *
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
259 *
260 * simple list traversal with read-only actions can be done with RCU protection
261 *
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
264 *
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
267 *
268 * balance_mutex
269 * -------------
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
272 *
273 * chunk_mutex
274 * -----------
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
279 *
280 * cleaner_mutex
281 * -------------
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
284 *
285 *
286 * Lock nesting
287 * ============
288 *
289 * uuid_mutex
290 * device_list_mutex
291 * chunk_mutex
292 * balance_mutex
293 *
294 *
295 * Exclusive operations
296 * ====================
297 *
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
300 *
301 * - Balance (*)
302 * - Device add
303 * - Device remove
304 * - Device replace (*)
305 * - Resize
306 *
307 * The device operations (as above) can be in one of the following states:
308 *
309 * - Running state
310 * - Paused state
311 * - Completed state
312 *
313 * Only device operations marked with (*) can go into the Paused state for the
314 * following reasons:
315 *
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
321 *
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
327 * completed.
328 */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334 return &fs_uuids;
335 }
336
337 /*
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
341 *
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
345 */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 const u8 *metadata_fsid)
348 {
349 struct btrfs_fs_devices *fs_devs;
350
351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352 if (!fs_devs)
353 return ERR_PTR(-ENOMEM);
354
355 mutex_init(&fs_devs->device_list_mutex);
356
357 INIT_LIST_HEAD(&fs_devs->devices);
358 INIT_LIST_HEAD(&fs_devs->alloc_list);
359 INIT_LIST_HEAD(&fs_devs->fs_list);
360 INIT_LIST_HEAD(&fs_devs->seed_list);
361 if (fsid)
362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364 if (metadata_fsid)
365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366 else if (fsid)
367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369 return fs_devs;
370 }
371
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374 WARN_ON(!list_empty(&device->post_commit_list));
375 rcu_string_free(device->name);
376 extent_io_tree_release(&device->alloc_state);
377 bio_put(device->flush_bio);
378 btrfs_destroy_dev_zone_info(device);
379 kfree(device);
380 }
381
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384 struct btrfs_device *device;
385 WARN_ON(fs_devices->opened);
386 while (!list_empty(&fs_devices->devices)) {
387 device = list_entry(fs_devices->devices.next,
388 struct btrfs_device, dev_list);
389 list_del(&device->dev_list);
390 btrfs_free_device(device);
391 }
392 kfree(fs_devices);
393 }
394
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397 struct btrfs_fs_devices *fs_devices;
398
399 while (!list_empty(&fs_uuids)) {
400 fs_devices = list_entry(fs_uuids.next,
401 struct btrfs_fs_devices, fs_list);
402 list_del(&fs_devices->fs_list);
403 free_fs_devices(fs_devices);
404 }
405 }
406
407 /*
408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409 * Returned struct is not linked onto any lists and must be destroyed using
410 * btrfs_free_device.
411 */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414 struct btrfs_device *dev;
415
416 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417 if (!dev)
418 return ERR_PTR(-ENOMEM);
419
420 /*
421 * Preallocate a bio that's always going to be used for flushing device
422 * barriers and matches the device lifespan
423 */
424 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
425 if (!dev->flush_bio) {
426 kfree(dev);
427 return ERR_PTR(-ENOMEM);
428 }
429
430 INIT_LIST_HEAD(&dev->dev_list);
431 INIT_LIST_HEAD(&dev->dev_alloc_list);
432 INIT_LIST_HEAD(&dev->post_commit_list);
433
434 atomic_set(&dev->reada_in_flight, 0);
435 atomic_set(&dev->dev_stats_ccnt, 0);
436 btrfs_device_data_ordered_init(dev);
437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439 extent_io_tree_init(fs_info, &dev->alloc_state,
440 IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442 return dev;
443 }
444
445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447 {
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
463 }
464 return NULL;
465 }
466
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468 struct btrfs_super_block *disk_super)
469 {
470
471 struct btrfs_fs_devices *fs_devices;
472
473 /*
474 * Handle scanned device having completed its fsid change but
475 * belonging to a fs_devices that was created by first scanning
476 * a device which didn't have its fsid/metadata_uuid changed
477 * at all and the CHANGING_FSID_V2 flag set.
478 */
479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480 if (fs_devices->fsid_change &&
481 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482 BTRFS_FSID_SIZE) == 0 &&
483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484 BTRFS_FSID_SIZE) == 0) {
485 return fs_devices;
486 }
487 }
488 /*
489 * Handle scanned device having completed its fsid change but
490 * belonging to a fs_devices that was created by a device that
491 * has an outdated pair of fsid/metadata_uuid and
492 * CHANGING_FSID_V2 flag set.
493 */
494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495 if (fs_devices->fsid_change &&
496 memcmp(fs_devices->metadata_uuid,
497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499 BTRFS_FSID_SIZE) == 0) {
500 return fs_devices;
501 }
502 }
503
504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506
507
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510 int flush, struct block_device **bdev,
511 struct btrfs_super_block **disk_super)
512 {
513 int ret;
514
515 *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517 if (IS_ERR(*bdev)) {
518 ret = PTR_ERR(*bdev);
519 goto error;
520 }
521
522 if (flush)
523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525 if (ret) {
526 blkdev_put(*bdev, flags);
527 goto error;
528 }
529 invalidate_bdev(*bdev);
530 *disk_super = btrfs_read_dev_super(*bdev);
531 if (IS_ERR(*disk_super)) {
532 ret = PTR_ERR(*disk_super);
533 blkdev_put(*bdev, flags);
534 goto error;
535 }
536
537 return 0;
538
539 error:
540 *bdev = NULL;
541 return ret;
542 }
543
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546 int found;
547
548 rcu_read_lock();
549 found = strcmp(rcu_str_deref(device->name), path);
550 rcu_read_unlock();
551
552 return found == 0;
553 }
554
555 /*
556 * Search and remove all stale (devices which are not mounted) devices.
557 * When both inputs are NULL, it will search and release all stale devices.
558 * path: Optional. When provided will it release all unmounted devices
559 * matching this path only.
560 * skip_dev: Optional. Will skip this device when searching for the stale
561 * devices.
562 * Return: 0 for success or if @path is NULL.
563 * -EBUSY if @path is a mounted device.
564 * -ENOENT if @path does not match any device in the list.
565 */
566 static int btrfs_free_stale_devices(const char *path,
567 struct btrfs_device *skip_device)
568 {
569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570 struct btrfs_device *device, *tmp_device;
571 int ret = 0;
572
573 if (path)
574 ret = -ENOENT;
575
576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578 mutex_lock(&fs_devices->device_list_mutex);
579 list_for_each_entry_safe(device, tmp_device,
580 &fs_devices->devices, dev_list) {
581 if (skip_device && skip_device == device)
582 continue;
583 if (path && !device->name)
584 continue;
585 if (path && !device_path_matched(path, device))
586 continue;
587 if (fs_devices->opened) {
588 /* for an already deleted device return 0 */
589 if (path && ret != 0)
590 ret = -EBUSY;
591 break;
592 }
593
594 /* delete the stale device */
595 fs_devices->num_devices--;
596 list_del(&device->dev_list);
597 btrfs_free_device(device);
598
599 ret = 0;
600 }
601 mutex_unlock(&fs_devices->device_list_mutex);
602
603 if (fs_devices->num_devices == 0) {
604 btrfs_sysfs_remove_fsid(fs_devices);
605 list_del(&fs_devices->fs_list);
606 free_fs_devices(fs_devices);
607 }
608 }
609
610 return ret;
611 }
612
613 /*
614 * This is only used on mount, and we are protected from competing things
615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
616 * fs_devices->device_list_mutex here.
617 */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619 struct btrfs_device *device, fmode_t flags,
620 void *holder)
621 {
622 struct request_queue *q;
623 struct block_device *bdev;
624 struct btrfs_super_block *disk_super;
625 u64 devid;
626 int ret;
627
628 if (device->bdev)
629 return -EINVAL;
630 if (!device->name)
631 return -EINVAL;
632
633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634 &bdev, &disk_super);
635 if (ret)
636 return ret;
637
638 devid = btrfs_stack_device_id(&disk_super->dev_item);
639 if (devid != device->devid)
640 goto error_free_page;
641
642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643 goto error_free_page;
644
645 device->generation = btrfs_super_generation(disk_super);
646
647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 if (btrfs_super_incompat_flags(disk_super) &
649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650 pr_err(
651 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652 goto error_free_page;
653 }
654
655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 fs_devices->seeding = true;
657 } else {
658 if (bdev_read_only(bdev))
659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 else
661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 }
663
664 q = bdev_get_queue(bdev);
665 if (!blk_queue_nonrot(q))
666 fs_devices->rotating = true;
667
668 device->bdev = bdev;
669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 device->mode = flags;
671
672 fs_devices->open_devices++;
673 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
674 device->devid != BTRFS_DEV_REPLACE_DEVID) {
675 fs_devices->rw_devices++;
676 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
677 }
678 btrfs_release_disk_super(disk_super);
679
680 return 0;
681
682 error_free_page:
683 btrfs_release_disk_super(disk_super);
684 blkdev_put(bdev, flags);
685
686 return -EINVAL;
687 }
688
689 /*
690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691 * being created with a disk that has already completed its fsid change. Such
692 * disk can belong to an fs which has its FSID changed or to one which doesn't.
693 * Handle both cases here.
694 */
695 static struct btrfs_fs_devices *find_fsid_inprogress(
696 struct btrfs_super_block *disk_super)
697 {
698 struct btrfs_fs_devices *fs_devices;
699
700 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
701 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
702 BTRFS_FSID_SIZE) != 0 &&
703 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
704 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
705 return fs_devices;
706 }
707 }
708
709 return find_fsid(disk_super->fsid, NULL);
710 }
711
712
713 static struct btrfs_fs_devices *find_fsid_changed(
714 struct btrfs_super_block *disk_super)
715 {
716 struct btrfs_fs_devices *fs_devices;
717
718 /*
719 * Handles the case where scanned device is part of an fs that had
720 * multiple successful changes of FSID but curently device didn't
721 * observe it. Meaning our fsid will be different than theirs. We need
722 * to handle two subcases :
723 * 1 - The fs still continues to have different METADATA/FSID uuids.
724 * 2 - The fs is switched back to its original FSID (METADATA/FSID
725 * are equal).
726 */
727 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
728 /* Changed UUIDs */
729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 BTRFS_FSID_SIZE) != 0 &&
731 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
732 BTRFS_FSID_SIZE) == 0 &&
733 memcmp(fs_devices->fsid, disk_super->fsid,
734 BTRFS_FSID_SIZE) != 0)
735 return fs_devices;
736
737 /* Unchanged UUIDs */
738 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
739 BTRFS_FSID_SIZE) == 0 &&
740 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
741 BTRFS_FSID_SIZE) == 0)
742 return fs_devices;
743 }
744
745 return NULL;
746 }
747
748 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
749 struct btrfs_super_block *disk_super)
750 {
751 struct btrfs_fs_devices *fs_devices;
752
753 /*
754 * Handle the case where the scanned device is part of an fs whose last
755 * metadata UUID change reverted it to the original FSID. At the same
756 * time * fs_devices was first created by another constitutent device
757 * which didn't fully observe the operation. This results in an
758 * btrfs_fs_devices created with metadata/fsid different AND
759 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
760 * fs_devices equal to the FSID of the disk.
761 */
762 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
763 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
764 BTRFS_FSID_SIZE) != 0 &&
765 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
766 BTRFS_FSID_SIZE) == 0 &&
767 fs_devices->fsid_change)
768 return fs_devices;
769 }
770
771 return NULL;
772 }
773 /*
774 * Add new device to list of registered devices
775 *
776 * Returns:
777 * device pointer which was just added or updated when successful
778 * error pointer when failed
779 */
780 static noinline struct btrfs_device *device_list_add(const char *path,
781 struct btrfs_super_block *disk_super,
782 bool *new_device_added)
783 {
784 struct btrfs_device *device;
785 struct btrfs_fs_devices *fs_devices = NULL;
786 struct rcu_string *name;
787 u64 found_transid = btrfs_super_generation(disk_super);
788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
790 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
792 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
793
794 if (fsid_change_in_progress) {
795 if (!has_metadata_uuid)
796 fs_devices = find_fsid_inprogress(disk_super);
797 else
798 fs_devices = find_fsid_changed(disk_super);
799 } else if (has_metadata_uuid) {
800 fs_devices = find_fsid_with_metadata_uuid(disk_super);
801 } else {
802 fs_devices = find_fsid_reverted_metadata(disk_super);
803 if (!fs_devices)
804 fs_devices = find_fsid(disk_super->fsid, NULL);
805 }
806
807
808 if (!fs_devices) {
809 if (has_metadata_uuid)
810 fs_devices = alloc_fs_devices(disk_super->fsid,
811 disk_super->metadata_uuid);
812 else
813 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
814
815 if (IS_ERR(fs_devices))
816 return ERR_CAST(fs_devices);
817
818 fs_devices->fsid_change = fsid_change_in_progress;
819
820 mutex_lock(&fs_devices->device_list_mutex);
821 list_add(&fs_devices->fs_list, &fs_uuids);
822
823 device = NULL;
824 } else {
825 mutex_lock(&fs_devices->device_list_mutex);
826 device = btrfs_find_device(fs_devices, devid,
827 disk_super->dev_item.uuid, NULL);
828
829 /*
830 * If this disk has been pulled into an fs devices created by
831 * a device which had the CHANGING_FSID_V2 flag then replace the
832 * metadata_uuid/fsid values of the fs_devices.
833 */
834 if (fs_devices->fsid_change &&
835 found_transid > fs_devices->latest_generation) {
836 memcpy(fs_devices->fsid, disk_super->fsid,
837 BTRFS_FSID_SIZE);
838
839 if (has_metadata_uuid)
840 memcpy(fs_devices->metadata_uuid,
841 disk_super->metadata_uuid,
842 BTRFS_FSID_SIZE);
843 else
844 memcpy(fs_devices->metadata_uuid,
845 disk_super->fsid, BTRFS_FSID_SIZE);
846
847 fs_devices->fsid_change = false;
848 }
849 }
850
851 if (!device) {
852 if (fs_devices->opened) {
853 mutex_unlock(&fs_devices->device_list_mutex);
854 return ERR_PTR(-EBUSY);
855 }
856
857 device = btrfs_alloc_device(NULL, &devid,
858 disk_super->dev_item.uuid);
859 if (IS_ERR(device)) {
860 mutex_unlock(&fs_devices->device_list_mutex);
861 /* we can safely leave the fs_devices entry around */
862 return device;
863 }
864
865 name = rcu_string_strdup(path, GFP_NOFS);
866 if (!name) {
867 btrfs_free_device(device);
868 mutex_unlock(&fs_devices->device_list_mutex);
869 return ERR_PTR(-ENOMEM);
870 }
871 rcu_assign_pointer(device->name, name);
872
873 list_add_rcu(&device->dev_list, &fs_devices->devices);
874 fs_devices->num_devices++;
875
876 device->fs_devices = fs_devices;
877 *new_device_added = true;
878
879 if (disk_super->label[0])
880 pr_info(
881 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
882 disk_super->label, devid, found_transid, path,
883 current->comm, task_pid_nr(current));
884 else
885 pr_info(
886 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
887 disk_super->fsid, devid, found_transid, path,
888 current->comm, task_pid_nr(current));
889
890 } else if (!device->name || strcmp(device->name->str, path)) {
891 /*
892 * When FS is already mounted.
893 * 1. If you are here and if the device->name is NULL that
894 * means this device was missing at time of FS mount.
895 * 2. If you are here and if the device->name is different
896 * from 'path' that means either
897 * a. The same device disappeared and reappeared with
898 * different name. or
899 * b. The missing-disk-which-was-replaced, has
900 * reappeared now.
901 *
902 * We must allow 1 and 2a above. But 2b would be a spurious
903 * and unintentional.
904 *
905 * Further in case of 1 and 2a above, the disk at 'path'
906 * would have missed some transaction when it was away and
907 * in case of 2a the stale bdev has to be updated as well.
908 * 2b must not be allowed at all time.
909 */
910
911 /*
912 * For now, we do allow update to btrfs_fs_device through the
913 * btrfs dev scan cli after FS has been mounted. We're still
914 * tracking a problem where systems fail mount by subvolume id
915 * when we reject replacement on a mounted FS.
916 */
917 if (!fs_devices->opened && found_transid < device->generation) {
918 /*
919 * That is if the FS is _not_ mounted and if you
920 * are here, that means there is more than one
921 * disk with same uuid and devid.We keep the one
922 * with larger generation number or the last-in if
923 * generation are equal.
924 */
925 mutex_unlock(&fs_devices->device_list_mutex);
926 return ERR_PTR(-EEXIST);
927 }
928
929 /*
930 * We are going to replace the device path for a given devid,
931 * make sure it's the same device if the device is mounted
932 */
933 if (device->bdev) {
934 int error;
935 dev_t path_dev;
936
937 error = lookup_bdev(path, &path_dev);
938 if (error) {
939 mutex_unlock(&fs_devices->device_list_mutex);
940 return ERR_PTR(error);
941 }
942
943 if (device->bdev->bd_dev != path_dev) {
944 mutex_unlock(&fs_devices->device_list_mutex);
945 /*
946 * device->fs_info may not be reliable here, so
947 * pass in a NULL instead. This avoids a
948 * possible use-after-free when the fs_info and
949 * fs_info->sb are already torn down.
950 */
951 btrfs_warn_in_rcu(NULL,
952 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
953 path, devid, found_transid,
954 current->comm,
955 task_pid_nr(current));
956 return ERR_PTR(-EEXIST);
957 }
958 btrfs_info_in_rcu(device->fs_info,
959 "devid %llu device path %s changed to %s scanned by %s (%d)",
960 devid, rcu_str_deref(device->name),
961 path, current->comm,
962 task_pid_nr(current));
963 }
964
965 name = rcu_string_strdup(path, GFP_NOFS);
966 if (!name) {
967 mutex_unlock(&fs_devices->device_list_mutex);
968 return ERR_PTR(-ENOMEM);
969 }
970 rcu_string_free(device->name);
971 rcu_assign_pointer(device->name, name);
972 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
973 fs_devices->missing_devices--;
974 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
975 }
976 }
977
978 /*
979 * Unmount does not free the btrfs_device struct but would zero
980 * generation along with most of the other members. So just update
981 * it back. We need it to pick the disk with largest generation
982 * (as above).
983 */
984 if (!fs_devices->opened) {
985 device->generation = found_transid;
986 fs_devices->latest_generation = max_t(u64, found_transid,
987 fs_devices->latest_generation);
988 }
989
990 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
991
992 mutex_unlock(&fs_devices->device_list_mutex);
993 return device;
994 }
995
996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
997 {
998 struct btrfs_fs_devices *fs_devices;
999 struct btrfs_device *device;
1000 struct btrfs_device *orig_dev;
1001 int ret = 0;
1002
1003 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004 if (IS_ERR(fs_devices))
1005 return fs_devices;
1006
1007 mutex_lock(&orig->device_list_mutex);
1008 fs_devices->total_devices = orig->total_devices;
1009
1010 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011 struct rcu_string *name;
1012
1013 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014 orig_dev->uuid);
1015 if (IS_ERR(device)) {
1016 ret = PTR_ERR(device);
1017 goto error;
1018 }
1019
1020 /*
1021 * This is ok to do without rcu read locked because we hold the
1022 * uuid mutex so nothing we touch in here is going to disappear.
1023 */
1024 if (orig_dev->name) {
1025 name = rcu_string_strdup(orig_dev->name->str,
1026 GFP_KERNEL);
1027 if (!name) {
1028 btrfs_free_device(device);
1029 ret = -ENOMEM;
1030 goto error;
1031 }
1032 rcu_assign_pointer(device->name, name);
1033 }
1034
1035 list_add(&device->dev_list, &fs_devices->devices);
1036 device->fs_devices = fs_devices;
1037 fs_devices->num_devices++;
1038 }
1039 mutex_unlock(&orig->device_list_mutex);
1040 return fs_devices;
1041 error:
1042 mutex_unlock(&orig->device_list_mutex);
1043 free_fs_devices(fs_devices);
1044 return ERR_PTR(ret);
1045 }
1046
1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048 struct btrfs_device **latest_dev)
1049 {
1050 struct btrfs_device *device, *next;
1051
1052 /* This is the initialized path, it is safe to release the devices. */
1053 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056 &device->dev_state) &&
1057 !test_bit(BTRFS_DEV_STATE_MISSING,
1058 &device->dev_state) &&
1059 (!*latest_dev ||
1060 device->generation > (*latest_dev)->generation)) {
1061 *latest_dev = device;
1062 }
1063 continue;
1064 }
1065
1066 /*
1067 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068 * in btrfs_init_dev_replace() so just continue.
1069 */
1070 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071 continue;
1072
1073 if (device->bdev) {
1074 blkdev_put(device->bdev, device->mode);
1075 device->bdev = NULL;
1076 fs_devices->open_devices--;
1077 }
1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 list_del_init(&device->dev_alloc_list);
1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081 }
1082 list_del_init(&device->dev_list);
1083 fs_devices->num_devices--;
1084 btrfs_free_device(device);
1085 }
1086
1087 }
1088
1089 /*
1090 * After we have read the system tree and know devids belonging to this
1091 * filesystem, remove the device which does not belong there.
1092 */
1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1094 {
1095 struct btrfs_device *latest_dev = NULL;
1096 struct btrfs_fs_devices *seed_dev;
1097
1098 mutex_lock(&uuid_mutex);
1099 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1100
1101 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1102 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1103
1104 fs_devices->latest_bdev = latest_dev->bdev;
1105
1106 mutex_unlock(&uuid_mutex);
1107 }
1108
1109 static void btrfs_close_bdev(struct btrfs_device *device)
1110 {
1111 if (!device->bdev)
1112 return;
1113
1114 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1115 sync_blockdev(device->bdev);
1116 invalidate_bdev(device->bdev);
1117 }
1118
1119 blkdev_put(device->bdev, device->mode);
1120 }
1121
1122 static void btrfs_close_one_device(struct btrfs_device *device)
1123 {
1124 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1125
1126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1127 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1128 list_del_init(&device->dev_alloc_list);
1129 fs_devices->rw_devices--;
1130 }
1131
1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1133 fs_devices->missing_devices--;
1134
1135 btrfs_close_bdev(device);
1136 if (device->bdev) {
1137 fs_devices->open_devices--;
1138 device->bdev = NULL;
1139 }
1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141 btrfs_destroy_dev_zone_info(device);
1142
1143 device->fs_info = NULL;
1144 atomic_set(&device->dev_stats_ccnt, 0);
1145 extent_io_tree_release(&device->alloc_state);
1146
1147 /* Verify the device is back in a pristine state */
1148 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1149 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1150 ASSERT(list_empty(&device->dev_alloc_list));
1151 ASSERT(list_empty(&device->post_commit_list));
1152 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1153 }
1154
1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157 struct btrfs_device *device, *tmp;
1158
1159 lockdep_assert_held(&uuid_mutex);
1160
1161 if (--fs_devices->opened > 0)
1162 return;
1163
1164 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165 btrfs_close_one_device(device);
1166
1167 WARN_ON(fs_devices->open_devices);
1168 WARN_ON(fs_devices->rw_devices);
1169 fs_devices->opened = 0;
1170 fs_devices->seeding = false;
1171 fs_devices->fs_info = NULL;
1172 }
1173
1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176 LIST_HEAD(list);
1177 struct btrfs_fs_devices *tmp;
1178
1179 mutex_lock(&uuid_mutex);
1180 close_fs_devices(fs_devices);
1181 if (!fs_devices->opened)
1182 list_splice_init(&fs_devices->seed_list, &list);
1183
1184 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185 close_fs_devices(fs_devices);
1186 list_del(&fs_devices->seed_list);
1187 free_fs_devices(fs_devices);
1188 }
1189 mutex_unlock(&uuid_mutex);
1190 }
1191
1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193 fmode_t flags, void *holder)
1194 {
1195 struct btrfs_device *device;
1196 struct btrfs_device *latest_dev = NULL;
1197 struct btrfs_device *tmp_device;
1198
1199 flags |= FMODE_EXCL;
1200
1201 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202 dev_list) {
1203 int ret;
1204
1205 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206 if (ret == 0 &&
1207 (!latest_dev || device->generation > latest_dev->generation)) {
1208 latest_dev = device;
1209 } else if (ret == -ENODATA) {
1210 fs_devices->num_devices--;
1211 list_del(&device->dev_list);
1212 btrfs_free_device(device);
1213 }
1214 }
1215 if (fs_devices->open_devices == 0)
1216 return -EINVAL;
1217
1218 fs_devices->opened = 1;
1219 fs_devices->latest_bdev = latest_dev->bdev;
1220 fs_devices->total_rw_bytes = 0;
1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223
1224 return 0;
1225 }
1226
1227 static int devid_cmp(void *priv, const struct list_head *a,
1228 const struct list_head *b)
1229 {
1230 struct btrfs_device *dev1, *dev2;
1231
1232 dev1 = list_entry(a, struct btrfs_device, dev_list);
1233 dev2 = list_entry(b, struct btrfs_device, dev_list);
1234
1235 if (dev1->devid < dev2->devid)
1236 return -1;
1237 else if (dev1->devid > dev2->devid)
1238 return 1;
1239 return 0;
1240 }
1241
1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243 fmode_t flags, void *holder)
1244 {
1245 int ret;
1246
1247 lockdep_assert_held(&uuid_mutex);
1248 /*
1249 * The device_list_mutex cannot be taken here in case opening the
1250 * underlying device takes further locks like bd_mutex.
1251 *
1252 * We also don't need the lock here as this is called during mount and
1253 * exclusion is provided by uuid_mutex
1254 */
1255
1256 if (fs_devices->opened) {
1257 fs_devices->opened++;
1258 ret = 0;
1259 } else {
1260 list_sort(NULL, &fs_devices->devices, devid_cmp);
1261 ret = open_fs_devices(fs_devices, flags, holder);
1262 }
1263
1264 return ret;
1265 }
1266
1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269 struct page *page = virt_to_page(super);
1270
1271 put_page(page);
1272 }
1273
1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275 u64 bytenr, u64 bytenr_orig)
1276 {
1277 struct btrfs_super_block *disk_super;
1278 struct page *page;
1279 void *p;
1280 pgoff_t index;
1281
1282 /* make sure our super fits in the device */
1283 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1284 return ERR_PTR(-EINVAL);
1285
1286 /* make sure our super fits in the page */
1287 if (sizeof(*disk_super) > PAGE_SIZE)
1288 return ERR_PTR(-EINVAL);
1289
1290 /* make sure our super doesn't straddle pages on disk */
1291 index = bytenr >> PAGE_SHIFT;
1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293 return ERR_PTR(-EINVAL);
1294
1295 /* pull in the page with our super */
1296 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1297
1298 if (IS_ERR(page))
1299 return ERR_CAST(page);
1300
1301 p = page_address(page);
1302
1303 /* align our pointer to the offset of the super block */
1304 disk_super = p + offset_in_page(bytenr);
1305
1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308 btrfs_release_disk_super(p);
1309 return ERR_PTR(-EINVAL);
1310 }
1311
1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314
1315 return disk_super;
1316 }
1317
1318 int btrfs_forget_devices(const char *path)
1319 {
1320 int ret;
1321
1322 mutex_lock(&uuid_mutex);
1323 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1324 mutex_unlock(&uuid_mutex);
1325
1326 return ret;
1327 }
1328
1329 /*
1330 * Look for a btrfs signature on a device. This may be called out of the mount path
1331 * and we are not allowed to call set_blocksize during the scan. The superblock
1332 * is read via pagecache
1333 */
1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1335 void *holder)
1336 {
1337 struct btrfs_super_block *disk_super;
1338 bool new_device_added = false;
1339 struct btrfs_device *device = NULL;
1340 struct block_device *bdev;
1341 u64 bytenr, bytenr_orig;
1342 int ret;
1343
1344 lockdep_assert_held(&uuid_mutex);
1345
1346 /*
1347 * we would like to check all the supers, but that would make
1348 * a btrfs mount succeed after a mkfs from a different FS.
1349 * So, we need to add a special mount option to scan for
1350 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1351 */
1352 flags |= FMODE_EXCL;
1353
1354 bdev = blkdev_get_by_path(path, flags, holder);
1355 if (IS_ERR(bdev))
1356 return ERR_CAST(bdev);
1357
1358 bytenr_orig = btrfs_sb_offset(0);
1359 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1360 if (ret)
1361 return ERR_PTR(ret);
1362
1363 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1364 if (IS_ERR(disk_super)) {
1365 device = ERR_CAST(disk_super);
1366 goto error_bdev_put;
1367 }
1368
1369 device = device_list_add(path, disk_super, &new_device_added);
1370 if (!IS_ERR(device)) {
1371 if (new_device_added)
1372 btrfs_free_stale_devices(path, device);
1373 }
1374
1375 btrfs_release_disk_super(disk_super);
1376
1377 error_bdev_put:
1378 blkdev_put(bdev, flags);
1379
1380 return device;
1381 }
1382
1383 /*
1384 * Try to find a chunk that intersects [start, start + len] range and when one
1385 * such is found, record the end of it in *start
1386 */
1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1388 u64 len)
1389 {
1390 u64 physical_start, physical_end;
1391
1392 lockdep_assert_held(&device->fs_info->chunk_mutex);
1393
1394 if (!find_first_extent_bit(&device->alloc_state, *start,
1395 &physical_start, &physical_end,
1396 CHUNK_ALLOCATED, NULL)) {
1397
1398 if (in_range(physical_start, *start, len) ||
1399 in_range(*start, physical_start,
1400 physical_end - physical_start)) {
1401 *start = physical_end + 1;
1402 return true;
1403 }
1404 }
1405 return false;
1406 }
1407
1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1409 {
1410 switch (device->fs_devices->chunk_alloc_policy) {
1411 case BTRFS_CHUNK_ALLOC_REGULAR:
1412 /*
1413 * We don't want to overwrite the superblock on the drive nor
1414 * any area used by the boot loader (grub for example), so we
1415 * make sure to start at an offset of at least 1MB.
1416 */
1417 return max_t(u64, start, SZ_1M);
1418 case BTRFS_CHUNK_ALLOC_ZONED:
1419 /*
1420 * We don't care about the starting region like regular
1421 * allocator, because we anyway use/reserve the first two zones
1422 * for superblock logging.
1423 */
1424 return ALIGN(start, device->zone_info->zone_size);
1425 default:
1426 BUG();
1427 }
1428 }
1429
1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1431 u64 *hole_start, u64 *hole_size,
1432 u64 num_bytes)
1433 {
1434 u64 zone_size = device->zone_info->zone_size;
1435 u64 pos;
1436 int ret;
1437 bool changed = false;
1438
1439 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1440
1441 while (*hole_size > 0) {
1442 pos = btrfs_find_allocatable_zones(device, *hole_start,
1443 *hole_start + *hole_size,
1444 num_bytes);
1445 if (pos != *hole_start) {
1446 *hole_size = *hole_start + *hole_size - pos;
1447 *hole_start = pos;
1448 changed = true;
1449 if (*hole_size < num_bytes)
1450 break;
1451 }
1452
1453 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1454
1455 /* Range is ensured to be empty */
1456 if (!ret)
1457 return changed;
1458
1459 /* Given hole range was invalid (outside of device) */
1460 if (ret == -ERANGE) {
1461 *hole_start += *hole_size;
1462 *hole_size = 0;
1463 return true;
1464 }
1465
1466 *hole_start += zone_size;
1467 *hole_size -= zone_size;
1468 changed = true;
1469 }
1470
1471 return changed;
1472 }
1473
1474 /**
1475 * dev_extent_hole_check - check if specified hole is suitable for allocation
1476 * @device: the device which we have the hole
1477 * @hole_start: starting position of the hole
1478 * @hole_size: the size of the hole
1479 * @num_bytes: the size of the free space that we need
1480 *
1481 * This function may modify @hole_start and @hole_size to reflect the suitable
1482 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1483 */
1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1485 u64 *hole_size, u64 num_bytes)
1486 {
1487 bool changed = false;
1488 u64 hole_end = *hole_start + *hole_size;
1489
1490 for (;;) {
1491 /*
1492 * Check before we set max_hole_start, otherwise we could end up
1493 * sending back this offset anyway.
1494 */
1495 if (contains_pending_extent(device, hole_start, *hole_size)) {
1496 if (hole_end >= *hole_start)
1497 *hole_size = hole_end - *hole_start;
1498 else
1499 *hole_size = 0;
1500 changed = true;
1501 }
1502
1503 switch (device->fs_devices->chunk_alloc_policy) {
1504 case BTRFS_CHUNK_ALLOC_REGULAR:
1505 /* No extra check */
1506 break;
1507 case BTRFS_CHUNK_ALLOC_ZONED:
1508 if (dev_extent_hole_check_zoned(device, hole_start,
1509 hole_size, num_bytes)) {
1510 changed = true;
1511 /*
1512 * The changed hole can contain pending extent.
1513 * Loop again to check that.
1514 */
1515 continue;
1516 }
1517 break;
1518 default:
1519 BUG();
1520 }
1521
1522 break;
1523 }
1524
1525 return changed;
1526 }
1527
1528 /*
1529 * find_free_dev_extent_start - find free space in the specified device
1530 * @device: the device which we search the free space in
1531 * @num_bytes: the size of the free space that we need
1532 * @search_start: the position from which to begin the search
1533 * @start: store the start of the free space.
1534 * @len: the size of the free space. that we find, or the size
1535 * of the max free space if we don't find suitable free space
1536 *
1537 * this uses a pretty simple search, the expectation is that it is
1538 * called very infrequently and that a given device has a small number
1539 * of extents
1540 *
1541 * @start is used to store the start of the free space if we find. But if we
1542 * don't find suitable free space, it will be used to store the start position
1543 * of the max free space.
1544 *
1545 * @len is used to store the size of the free space that we find.
1546 * But if we don't find suitable free space, it is used to store the size of
1547 * the max free space.
1548 *
1549 * NOTE: This function will search *commit* root of device tree, and does extra
1550 * check to ensure dev extents are not double allocated.
1551 * This makes the function safe to allocate dev extents but may not report
1552 * correct usable device space, as device extent freed in current transaction
1553 * is not reported as avaiable.
1554 */
1555 static int find_free_dev_extent_start(struct btrfs_device *device,
1556 u64 num_bytes, u64 search_start, u64 *start,
1557 u64 *len)
1558 {
1559 struct btrfs_fs_info *fs_info = device->fs_info;
1560 struct btrfs_root *root = fs_info->dev_root;
1561 struct btrfs_key key;
1562 struct btrfs_dev_extent *dev_extent;
1563 struct btrfs_path *path;
1564 u64 hole_size;
1565 u64 max_hole_start;
1566 u64 max_hole_size;
1567 u64 extent_end;
1568 u64 search_end = device->total_bytes;
1569 int ret;
1570 int slot;
1571 struct extent_buffer *l;
1572
1573 search_start = dev_extent_search_start(device, search_start);
1574
1575 WARN_ON(device->zone_info &&
1576 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1577
1578 path = btrfs_alloc_path();
1579 if (!path)
1580 return -ENOMEM;
1581
1582 max_hole_start = search_start;
1583 max_hole_size = 0;
1584
1585 again:
1586 if (search_start >= search_end ||
1587 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1588 ret = -ENOSPC;
1589 goto out;
1590 }
1591
1592 path->reada = READA_FORWARD;
1593 path->search_commit_root = 1;
1594 path->skip_locking = 1;
1595
1596 key.objectid = device->devid;
1597 key.offset = search_start;
1598 key.type = BTRFS_DEV_EXTENT_KEY;
1599
1600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1601 if (ret < 0)
1602 goto out;
1603 if (ret > 0) {
1604 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1605 if (ret < 0)
1606 goto out;
1607 }
1608
1609 while (1) {
1610 l = path->nodes[0];
1611 slot = path->slots[0];
1612 if (slot >= btrfs_header_nritems(l)) {
1613 ret = btrfs_next_leaf(root, path);
1614 if (ret == 0)
1615 continue;
1616 if (ret < 0)
1617 goto out;
1618
1619 break;
1620 }
1621 btrfs_item_key_to_cpu(l, &key, slot);
1622
1623 if (key.objectid < device->devid)
1624 goto next;
1625
1626 if (key.objectid > device->devid)
1627 break;
1628
1629 if (key.type != BTRFS_DEV_EXTENT_KEY)
1630 goto next;
1631
1632 if (key.offset > search_start) {
1633 hole_size = key.offset - search_start;
1634 dev_extent_hole_check(device, &search_start, &hole_size,
1635 num_bytes);
1636
1637 if (hole_size > max_hole_size) {
1638 max_hole_start = search_start;
1639 max_hole_size = hole_size;
1640 }
1641
1642 /*
1643 * If this free space is greater than which we need,
1644 * it must be the max free space that we have found
1645 * until now, so max_hole_start must point to the start
1646 * of this free space and the length of this free space
1647 * is stored in max_hole_size. Thus, we return
1648 * max_hole_start and max_hole_size and go back to the
1649 * caller.
1650 */
1651 if (hole_size >= num_bytes) {
1652 ret = 0;
1653 goto out;
1654 }
1655 }
1656
1657 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1658 extent_end = key.offset + btrfs_dev_extent_length(l,
1659 dev_extent);
1660 if (extent_end > search_start)
1661 search_start = extent_end;
1662 next:
1663 path->slots[0]++;
1664 cond_resched();
1665 }
1666
1667 /*
1668 * At this point, search_start should be the end of
1669 * allocated dev extents, and when shrinking the device,
1670 * search_end may be smaller than search_start.
1671 */
1672 if (search_end > search_start) {
1673 hole_size = search_end - search_start;
1674 if (dev_extent_hole_check(device, &search_start, &hole_size,
1675 num_bytes)) {
1676 btrfs_release_path(path);
1677 goto again;
1678 }
1679
1680 if (hole_size > max_hole_size) {
1681 max_hole_start = search_start;
1682 max_hole_size = hole_size;
1683 }
1684 }
1685
1686 /* See above. */
1687 if (max_hole_size < num_bytes)
1688 ret = -ENOSPC;
1689 else
1690 ret = 0;
1691
1692 out:
1693 btrfs_free_path(path);
1694 *start = max_hole_start;
1695 if (len)
1696 *len = max_hole_size;
1697 return ret;
1698 }
1699
1700 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1701 u64 *start, u64 *len)
1702 {
1703 /* FIXME use last free of some kind */
1704 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1705 }
1706
1707 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1708 struct btrfs_device *device,
1709 u64 start, u64 *dev_extent_len)
1710 {
1711 struct btrfs_fs_info *fs_info = device->fs_info;
1712 struct btrfs_root *root = fs_info->dev_root;
1713 int ret;
1714 struct btrfs_path *path;
1715 struct btrfs_key key;
1716 struct btrfs_key found_key;
1717 struct extent_buffer *leaf = NULL;
1718 struct btrfs_dev_extent *extent = NULL;
1719
1720 path = btrfs_alloc_path();
1721 if (!path)
1722 return -ENOMEM;
1723
1724 key.objectid = device->devid;
1725 key.offset = start;
1726 key.type = BTRFS_DEV_EXTENT_KEY;
1727 again:
1728 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1729 if (ret > 0) {
1730 ret = btrfs_previous_item(root, path, key.objectid,
1731 BTRFS_DEV_EXTENT_KEY);
1732 if (ret)
1733 goto out;
1734 leaf = path->nodes[0];
1735 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1736 extent = btrfs_item_ptr(leaf, path->slots[0],
1737 struct btrfs_dev_extent);
1738 BUG_ON(found_key.offset > start || found_key.offset +
1739 btrfs_dev_extent_length(leaf, extent) < start);
1740 key = found_key;
1741 btrfs_release_path(path);
1742 goto again;
1743 } else if (ret == 0) {
1744 leaf = path->nodes[0];
1745 extent = btrfs_item_ptr(leaf, path->slots[0],
1746 struct btrfs_dev_extent);
1747 } else {
1748 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1749 goto out;
1750 }
1751
1752 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753
1754 ret = btrfs_del_item(trans, root, path);
1755 if (ret) {
1756 btrfs_handle_fs_error(fs_info, ret,
1757 "Failed to remove dev extent item");
1758 } else {
1759 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1760 }
1761 out:
1762 btrfs_free_path(path);
1763 return ret;
1764 }
1765
1766 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1767 struct btrfs_device *device,
1768 u64 chunk_offset, u64 start, u64 num_bytes)
1769 {
1770 int ret;
1771 struct btrfs_path *path;
1772 struct btrfs_fs_info *fs_info = device->fs_info;
1773 struct btrfs_root *root = fs_info->dev_root;
1774 struct btrfs_dev_extent *extent;
1775 struct extent_buffer *leaf;
1776 struct btrfs_key key;
1777
1778 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1779 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1780 path = btrfs_alloc_path();
1781 if (!path)
1782 return -ENOMEM;
1783
1784 key.objectid = device->devid;
1785 key.offset = start;
1786 key.type = BTRFS_DEV_EXTENT_KEY;
1787 ret = btrfs_insert_empty_item(trans, root, path, &key,
1788 sizeof(*extent));
1789 if (ret)
1790 goto out;
1791
1792 leaf = path->nodes[0];
1793 extent = btrfs_item_ptr(leaf, path->slots[0],
1794 struct btrfs_dev_extent);
1795 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1796 BTRFS_CHUNK_TREE_OBJECTID);
1797 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1798 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1799 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1800
1801 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1802 btrfs_mark_buffer_dirty(leaf);
1803 out:
1804 btrfs_free_path(path);
1805 return ret;
1806 }
1807
1808 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1809 {
1810 struct extent_map_tree *em_tree;
1811 struct extent_map *em;
1812 struct rb_node *n;
1813 u64 ret = 0;
1814
1815 em_tree = &fs_info->mapping_tree;
1816 read_lock(&em_tree->lock);
1817 n = rb_last(&em_tree->map.rb_root);
1818 if (n) {
1819 em = rb_entry(n, struct extent_map, rb_node);
1820 ret = em->start + em->len;
1821 }
1822 read_unlock(&em_tree->lock);
1823
1824 return ret;
1825 }
1826
1827 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1828 u64 *devid_ret)
1829 {
1830 int ret;
1831 struct btrfs_key key;
1832 struct btrfs_key found_key;
1833 struct btrfs_path *path;
1834
1835 path = btrfs_alloc_path();
1836 if (!path)
1837 return -ENOMEM;
1838
1839 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1840 key.type = BTRFS_DEV_ITEM_KEY;
1841 key.offset = (u64)-1;
1842
1843 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1844 if (ret < 0)
1845 goto error;
1846
1847 if (ret == 0) {
1848 /* Corruption */
1849 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1850 ret = -EUCLEAN;
1851 goto error;
1852 }
1853
1854 ret = btrfs_previous_item(fs_info->chunk_root, path,
1855 BTRFS_DEV_ITEMS_OBJECTID,
1856 BTRFS_DEV_ITEM_KEY);
1857 if (ret) {
1858 *devid_ret = 1;
1859 } else {
1860 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1861 path->slots[0]);
1862 *devid_ret = found_key.offset + 1;
1863 }
1864 ret = 0;
1865 error:
1866 btrfs_free_path(path);
1867 return ret;
1868 }
1869
1870 /*
1871 * the device information is stored in the chunk root
1872 * the btrfs_device struct should be fully filled in
1873 */
1874 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1875 struct btrfs_device *device)
1876 {
1877 int ret;
1878 struct btrfs_path *path;
1879 struct btrfs_dev_item *dev_item;
1880 struct extent_buffer *leaf;
1881 struct btrfs_key key;
1882 unsigned long ptr;
1883
1884 path = btrfs_alloc_path();
1885 if (!path)
1886 return -ENOMEM;
1887
1888 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1889 key.type = BTRFS_DEV_ITEM_KEY;
1890 key.offset = device->devid;
1891
1892 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1893 &key, sizeof(*dev_item));
1894 if (ret)
1895 goto out;
1896
1897 leaf = path->nodes[0];
1898 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1899
1900 btrfs_set_device_id(leaf, dev_item, device->devid);
1901 btrfs_set_device_generation(leaf, dev_item, 0);
1902 btrfs_set_device_type(leaf, dev_item, device->type);
1903 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1904 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1905 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1906 btrfs_set_device_total_bytes(leaf, dev_item,
1907 btrfs_device_get_disk_total_bytes(device));
1908 btrfs_set_device_bytes_used(leaf, dev_item,
1909 btrfs_device_get_bytes_used(device));
1910 btrfs_set_device_group(leaf, dev_item, 0);
1911 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1912 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1913 btrfs_set_device_start_offset(leaf, dev_item, 0);
1914
1915 ptr = btrfs_device_uuid(dev_item);
1916 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1917 ptr = btrfs_device_fsid(dev_item);
1918 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1919 ptr, BTRFS_FSID_SIZE);
1920 btrfs_mark_buffer_dirty(leaf);
1921
1922 ret = 0;
1923 out:
1924 btrfs_free_path(path);
1925 return ret;
1926 }
1927
1928 /*
1929 * Function to update ctime/mtime for a given device path.
1930 * Mainly used for ctime/mtime based probe like libblkid.
1931 */
1932 static void update_dev_time(const char *path_name)
1933 {
1934 struct file *filp;
1935
1936 filp = filp_open(path_name, O_RDWR, 0);
1937 if (IS_ERR(filp))
1938 return;
1939 file_update_time(filp);
1940 filp_close(filp, NULL);
1941 }
1942
1943 static int btrfs_rm_dev_item(struct btrfs_device *device)
1944 {
1945 struct btrfs_root *root = device->fs_info->chunk_root;
1946 int ret;
1947 struct btrfs_path *path;
1948 struct btrfs_key key;
1949 struct btrfs_trans_handle *trans;
1950
1951 path = btrfs_alloc_path();
1952 if (!path)
1953 return -ENOMEM;
1954
1955 trans = btrfs_start_transaction(root, 0);
1956 if (IS_ERR(trans)) {
1957 btrfs_free_path(path);
1958 return PTR_ERR(trans);
1959 }
1960 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1961 key.type = BTRFS_DEV_ITEM_KEY;
1962 key.offset = device->devid;
1963
1964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1965 if (ret) {
1966 if (ret > 0)
1967 ret = -ENOENT;
1968 btrfs_abort_transaction(trans, ret);
1969 btrfs_end_transaction(trans);
1970 goto out;
1971 }
1972
1973 ret = btrfs_del_item(trans, root, path);
1974 if (ret) {
1975 btrfs_abort_transaction(trans, ret);
1976 btrfs_end_transaction(trans);
1977 }
1978
1979 out:
1980 btrfs_free_path(path);
1981 if (!ret)
1982 ret = btrfs_commit_transaction(trans);
1983 return ret;
1984 }
1985
1986 /*
1987 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1988 * filesystem. It's up to the caller to adjust that number regarding eg. device
1989 * replace.
1990 */
1991 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1992 u64 num_devices)
1993 {
1994 u64 all_avail;
1995 unsigned seq;
1996 int i;
1997
1998 do {
1999 seq = read_seqbegin(&fs_info->profiles_lock);
2000
2001 all_avail = fs_info->avail_data_alloc_bits |
2002 fs_info->avail_system_alloc_bits |
2003 fs_info->avail_metadata_alloc_bits;
2004 } while (read_seqretry(&fs_info->profiles_lock, seq));
2005
2006 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2007 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2008 continue;
2009
2010 if (num_devices < btrfs_raid_array[i].devs_min) {
2011 int ret = btrfs_raid_array[i].mindev_error;
2012
2013 if (ret)
2014 return ret;
2015 }
2016 }
2017
2018 return 0;
2019 }
2020
2021 static struct btrfs_device * btrfs_find_next_active_device(
2022 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2023 {
2024 struct btrfs_device *next_device;
2025
2026 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2027 if (next_device != device &&
2028 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2029 && next_device->bdev)
2030 return next_device;
2031 }
2032
2033 return NULL;
2034 }
2035
2036 /*
2037 * Helper function to check if the given device is part of s_bdev / latest_bdev
2038 * and replace it with the provided or the next active device, in the context
2039 * where this function called, there should be always be another device (or
2040 * this_dev) which is active.
2041 */
2042 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2043 struct btrfs_device *next_device)
2044 {
2045 struct btrfs_fs_info *fs_info = device->fs_info;
2046
2047 if (!next_device)
2048 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2049 device);
2050 ASSERT(next_device);
2051
2052 if (fs_info->sb->s_bdev &&
2053 (fs_info->sb->s_bdev == device->bdev))
2054 fs_info->sb->s_bdev = next_device->bdev;
2055
2056 if (fs_info->fs_devices->latest_bdev == device->bdev)
2057 fs_info->fs_devices->latest_bdev = next_device->bdev;
2058 }
2059
2060 /*
2061 * Return btrfs_fs_devices::num_devices excluding the device that's being
2062 * currently replaced.
2063 */
2064 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2065 {
2066 u64 num_devices = fs_info->fs_devices->num_devices;
2067
2068 down_read(&fs_info->dev_replace.rwsem);
2069 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2070 ASSERT(num_devices > 1);
2071 num_devices--;
2072 }
2073 up_read(&fs_info->dev_replace.rwsem);
2074
2075 return num_devices;
2076 }
2077
2078 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2079 struct block_device *bdev,
2080 const char *device_path)
2081 {
2082 struct btrfs_super_block *disk_super;
2083 int copy_num;
2084
2085 if (!bdev)
2086 return;
2087
2088 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2089 struct page *page;
2090 int ret;
2091
2092 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2093 if (IS_ERR(disk_super))
2094 continue;
2095
2096 if (bdev_is_zoned(bdev)) {
2097 btrfs_reset_sb_log_zones(bdev, copy_num);
2098 continue;
2099 }
2100
2101 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2102
2103 page = virt_to_page(disk_super);
2104 set_page_dirty(page);
2105 lock_page(page);
2106 /* write_on_page() unlocks the page */
2107 ret = write_one_page(page);
2108 if (ret)
2109 btrfs_warn(fs_info,
2110 "error clearing superblock number %d (%d)",
2111 copy_num, ret);
2112 btrfs_release_disk_super(disk_super);
2113
2114 }
2115
2116 /* Notify udev that device has changed */
2117 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2118
2119 /* Update ctime/mtime for device path for libblkid */
2120 update_dev_time(device_path);
2121 }
2122
2123 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2124 u64 devid)
2125 {
2126 struct btrfs_device *device;
2127 struct btrfs_fs_devices *cur_devices;
2128 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2129 u64 num_devices;
2130 int ret = 0;
2131
2132 mutex_lock(&uuid_mutex);
2133
2134 num_devices = btrfs_num_devices(fs_info);
2135
2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137 if (ret)
2138 goto out;
2139
2140 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2141
2142 if (IS_ERR(device)) {
2143 if (PTR_ERR(device) == -ENOENT &&
2144 strcmp(device_path, "missing") == 0)
2145 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146 else
2147 ret = PTR_ERR(device);
2148 goto out;
2149 }
2150
2151 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2152 btrfs_warn_in_rcu(fs_info,
2153 "cannot remove device %s (devid %llu) due to active swapfile",
2154 rcu_str_deref(device->name), device->devid);
2155 ret = -ETXTBSY;
2156 goto out;
2157 }
2158
2159 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2160 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2161 goto out;
2162 }
2163
2164 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2165 fs_info->fs_devices->rw_devices == 1) {
2166 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2167 goto out;
2168 }
2169
2170 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2171 mutex_lock(&fs_info->chunk_mutex);
2172 list_del_init(&device->dev_alloc_list);
2173 device->fs_devices->rw_devices--;
2174 mutex_unlock(&fs_info->chunk_mutex);
2175 }
2176
2177 mutex_unlock(&uuid_mutex);
2178 ret = btrfs_shrink_device(device, 0);
2179 if (!ret)
2180 btrfs_reada_remove_dev(device);
2181 mutex_lock(&uuid_mutex);
2182 if (ret)
2183 goto error_undo;
2184
2185 /*
2186 * TODO: the superblock still includes this device in its num_devices
2187 * counter although write_all_supers() is not locked out. This
2188 * could give a filesystem state which requires a degraded mount.
2189 */
2190 ret = btrfs_rm_dev_item(device);
2191 if (ret)
2192 goto error_undo;
2193
2194 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2195 btrfs_scrub_cancel_dev(device);
2196
2197 /*
2198 * the device list mutex makes sure that we don't change
2199 * the device list while someone else is writing out all
2200 * the device supers. Whoever is writing all supers, should
2201 * lock the device list mutex before getting the number of
2202 * devices in the super block (super_copy). Conversely,
2203 * whoever updates the number of devices in the super block
2204 * (super_copy) should hold the device list mutex.
2205 */
2206
2207 /*
2208 * In normal cases the cur_devices == fs_devices. But in case
2209 * of deleting a seed device, the cur_devices should point to
2210 * its own fs_devices listed under the fs_devices->seed.
2211 */
2212 cur_devices = device->fs_devices;
2213 mutex_lock(&fs_devices->device_list_mutex);
2214 list_del_rcu(&device->dev_list);
2215
2216 cur_devices->num_devices--;
2217 cur_devices->total_devices--;
2218 /* Update total_devices of the parent fs_devices if it's seed */
2219 if (cur_devices != fs_devices)
2220 fs_devices->total_devices--;
2221
2222 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2223 cur_devices->missing_devices--;
2224
2225 btrfs_assign_next_active_device(device, NULL);
2226
2227 if (device->bdev) {
2228 cur_devices->open_devices--;
2229 /* remove sysfs entry */
2230 btrfs_sysfs_remove_device(device);
2231 }
2232
2233 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2234 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2235 mutex_unlock(&fs_devices->device_list_mutex);
2236
2237 /*
2238 * at this point, the device is zero sized and detached from
2239 * the devices list. All that's left is to zero out the old
2240 * supers and free the device.
2241 */
2242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2243 btrfs_scratch_superblocks(fs_info, device->bdev,
2244 device->name->str);
2245
2246 btrfs_close_bdev(device);
2247 synchronize_rcu();
2248 btrfs_free_device(device);
2249
2250 if (cur_devices->open_devices == 0) {
2251 list_del_init(&cur_devices->seed_list);
2252 close_fs_devices(cur_devices);
2253 free_fs_devices(cur_devices);
2254 }
2255
2256 out:
2257 mutex_unlock(&uuid_mutex);
2258 return ret;
2259
2260 error_undo:
2261 btrfs_reada_undo_remove_dev(device);
2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2263 mutex_lock(&fs_info->chunk_mutex);
2264 list_add(&device->dev_alloc_list,
2265 &fs_devices->alloc_list);
2266 device->fs_devices->rw_devices++;
2267 mutex_unlock(&fs_info->chunk_mutex);
2268 }
2269 goto out;
2270 }
2271
2272 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2273 {
2274 struct btrfs_fs_devices *fs_devices;
2275
2276 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2277
2278 /*
2279 * in case of fs with no seed, srcdev->fs_devices will point
2280 * to fs_devices of fs_info. However when the dev being replaced is
2281 * a seed dev it will point to the seed's local fs_devices. In short
2282 * srcdev will have its correct fs_devices in both the cases.
2283 */
2284 fs_devices = srcdev->fs_devices;
2285
2286 list_del_rcu(&srcdev->dev_list);
2287 list_del(&srcdev->dev_alloc_list);
2288 fs_devices->num_devices--;
2289 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2290 fs_devices->missing_devices--;
2291
2292 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2293 fs_devices->rw_devices--;
2294
2295 if (srcdev->bdev)
2296 fs_devices->open_devices--;
2297 }
2298
2299 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2300 {
2301 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2302
2303 mutex_lock(&uuid_mutex);
2304
2305 btrfs_close_bdev(srcdev);
2306 synchronize_rcu();
2307 btrfs_free_device(srcdev);
2308
2309 /* if this is no devs we rather delete the fs_devices */
2310 if (!fs_devices->num_devices) {
2311 /*
2312 * On a mounted FS, num_devices can't be zero unless it's a
2313 * seed. In case of a seed device being replaced, the replace
2314 * target added to the sprout FS, so there will be no more
2315 * device left under the seed FS.
2316 */
2317 ASSERT(fs_devices->seeding);
2318
2319 list_del_init(&fs_devices->seed_list);
2320 close_fs_devices(fs_devices);
2321 free_fs_devices(fs_devices);
2322 }
2323 mutex_unlock(&uuid_mutex);
2324 }
2325
2326 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2327 {
2328 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2329
2330 mutex_lock(&fs_devices->device_list_mutex);
2331
2332 btrfs_sysfs_remove_device(tgtdev);
2333
2334 if (tgtdev->bdev)
2335 fs_devices->open_devices--;
2336
2337 fs_devices->num_devices--;
2338
2339 btrfs_assign_next_active_device(tgtdev, NULL);
2340
2341 list_del_rcu(&tgtdev->dev_list);
2342
2343 mutex_unlock(&fs_devices->device_list_mutex);
2344
2345 /*
2346 * The update_dev_time() with in btrfs_scratch_superblocks()
2347 * may lead to a call to btrfs_show_devname() which will try
2348 * to hold device_list_mutex. And here this device
2349 * is already out of device list, so we don't have to hold
2350 * the device_list_mutex lock.
2351 */
2352 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2353 tgtdev->name->str);
2354
2355 btrfs_close_bdev(tgtdev);
2356 synchronize_rcu();
2357 btrfs_free_device(tgtdev);
2358 }
2359
2360 static struct btrfs_device *btrfs_find_device_by_path(
2361 struct btrfs_fs_info *fs_info, const char *device_path)
2362 {
2363 int ret = 0;
2364 struct btrfs_super_block *disk_super;
2365 u64 devid;
2366 u8 *dev_uuid;
2367 struct block_device *bdev;
2368 struct btrfs_device *device;
2369
2370 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2371 fs_info->bdev_holder, 0, &bdev, &disk_super);
2372 if (ret)
2373 return ERR_PTR(ret);
2374
2375 devid = btrfs_stack_device_id(&disk_super->dev_item);
2376 dev_uuid = disk_super->dev_item.uuid;
2377 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2378 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2379 disk_super->metadata_uuid);
2380 else
2381 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2382 disk_super->fsid);
2383
2384 btrfs_release_disk_super(disk_super);
2385 if (!device)
2386 device = ERR_PTR(-ENOENT);
2387 blkdev_put(bdev, FMODE_READ);
2388 return device;
2389 }
2390
2391 /*
2392 * Lookup a device given by device id, or the path if the id is 0.
2393 */
2394 struct btrfs_device *btrfs_find_device_by_devspec(
2395 struct btrfs_fs_info *fs_info, u64 devid,
2396 const char *device_path)
2397 {
2398 struct btrfs_device *device;
2399
2400 if (devid) {
2401 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2402 NULL);
2403 if (!device)
2404 return ERR_PTR(-ENOENT);
2405 return device;
2406 }
2407
2408 if (!device_path || !device_path[0])
2409 return ERR_PTR(-EINVAL);
2410
2411 if (strcmp(device_path, "missing") == 0) {
2412 /* Find first missing device */
2413 list_for_each_entry(device, &fs_info->fs_devices->devices,
2414 dev_list) {
2415 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2416 &device->dev_state) && !device->bdev)
2417 return device;
2418 }
2419 return ERR_PTR(-ENOENT);
2420 }
2421
2422 return btrfs_find_device_by_path(fs_info, device_path);
2423 }
2424
2425 /*
2426 * does all the dirty work required for changing file system's UUID.
2427 */
2428 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2429 {
2430 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2431 struct btrfs_fs_devices *old_devices;
2432 struct btrfs_fs_devices *seed_devices;
2433 struct btrfs_super_block *disk_super = fs_info->super_copy;
2434 struct btrfs_device *device;
2435 u64 super_flags;
2436
2437 lockdep_assert_held(&uuid_mutex);
2438 if (!fs_devices->seeding)
2439 return -EINVAL;
2440
2441 /*
2442 * Private copy of the seed devices, anchored at
2443 * fs_info->fs_devices->seed_list
2444 */
2445 seed_devices = alloc_fs_devices(NULL, NULL);
2446 if (IS_ERR(seed_devices))
2447 return PTR_ERR(seed_devices);
2448
2449 /*
2450 * It's necessary to retain a copy of the original seed fs_devices in
2451 * fs_uuids so that filesystems which have been seeded can successfully
2452 * reference the seed device from open_seed_devices. This also supports
2453 * multiple fs seed.
2454 */
2455 old_devices = clone_fs_devices(fs_devices);
2456 if (IS_ERR(old_devices)) {
2457 kfree(seed_devices);
2458 return PTR_ERR(old_devices);
2459 }
2460
2461 list_add(&old_devices->fs_list, &fs_uuids);
2462
2463 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2464 seed_devices->opened = 1;
2465 INIT_LIST_HEAD(&seed_devices->devices);
2466 INIT_LIST_HEAD(&seed_devices->alloc_list);
2467 mutex_init(&seed_devices->device_list_mutex);
2468
2469 mutex_lock(&fs_devices->device_list_mutex);
2470 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2471 synchronize_rcu);
2472 list_for_each_entry(device, &seed_devices->devices, dev_list)
2473 device->fs_devices = seed_devices;
2474
2475 fs_devices->seeding = false;
2476 fs_devices->num_devices = 0;
2477 fs_devices->open_devices = 0;
2478 fs_devices->missing_devices = 0;
2479 fs_devices->rotating = false;
2480 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2481
2482 generate_random_uuid(fs_devices->fsid);
2483 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2484 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2485 mutex_unlock(&fs_devices->device_list_mutex);
2486
2487 super_flags = btrfs_super_flags(disk_super) &
2488 ~BTRFS_SUPER_FLAG_SEEDING;
2489 btrfs_set_super_flags(disk_super, super_flags);
2490
2491 return 0;
2492 }
2493
2494 /*
2495 * Store the expected generation for seed devices in device items.
2496 */
2497 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2498 {
2499 struct btrfs_fs_info *fs_info = trans->fs_info;
2500 struct btrfs_root *root = fs_info->chunk_root;
2501 struct btrfs_path *path;
2502 struct extent_buffer *leaf;
2503 struct btrfs_dev_item *dev_item;
2504 struct btrfs_device *device;
2505 struct btrfs_key key;
2506 u8 fs_uuid[BTRFS_FSID_SIZE];
2507 u8 dev_uuid[BTRFS_UUID_SIZE];
2508 u64 devid;
2509 int ret;
2510
2511 path = btrfs_alloc_path();
2512 if (!path)
2513 return -ENOMEM;
2514
2515 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2516 key.offset = 0;
2517 key.type = BTRFS_DEV_ITEM_KEY;
2518
2519 while (1) {
2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2521 if (ret < 0)
2522 goto error;
2523
2524 leaf = path->nodes[0];
2525 next_slot:
2526 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2527 ret = btrfs_next_leaf(root, path);
2528 if (ret > 0)
2529 break;
2530 if (ret < 0)
2531 goto error;
2532 leaf = path->nodes[0];
2533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2534 btrfs_release_path(path);
2535 continue;
2536 }
2537
2538 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2539 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2540 key.type != BTRFS_DEV_ITEM_KEY)
2541 break;
2542
2543 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2544 struct btrfs_dev_item);
2545 devid = btrfs_device_id(leaf, dev_item);
2546 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2547 BTRFS_UUID_SIZE);
2548 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2549 BTRFS_FSID_SIZE);
2550 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2551 fs_uuid);
2552 BUG_ON(!device); /* Logic error */
2553
2554 if (device->fs_devices->seeding) {
2555 btrfs_set_device_generation(leaf, dev_item,
2556 device->generation);
2557 btrfs_mark_buffer_dirty(leaf);
2558 }
2559
2560 path->slots[0]++;
2561 goto next_slot;
2562 }
2563 ret = 0;
2564 error:
2565 btrfs_free_path(path);
2566 return ret;
2567 }
2568
2569 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2570 {
2571 struct btrfs_root *root = fs_info->dev_root;
2572 struct request_queue *q;
2573 struct btrfs_trans_handle *trans;
2574 struct btrfs_device *device;
2575 struct block_device *bdev;
2576 struct super_block *sb = fs_info->sb;
2577 struct rcu_string *name;
2578 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2579 u64 orig_super_total_bytes;
2580 u64 orig_super_num_devices;
2581 int seeding_dev = 0;
2582 int ret = 0;
2583 bool locked = false;
2584
2585 if (sb_rdonly(sb) && !fs_devices->seeding)
2586 return -EROFS;
2587
2588 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2589 fs_info->bdev_holder);
2590 if (IS_ERR(bdev))
2591 return PTR_ERR(bdev);
2592
2593 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2594 ret = -EINVAL;
2595 goto error;
2596 }
2597
2598 if (fs_devices->seeding) {
2599 seeding_dev = 1;
2600 down_write(&sb->s_umount);
2601 mutex_lock(&uuid_mutex);
2602 locked = true;
2603 }
2604
2605 sync_blockdev(bdev);
2606
2607 rcu_read_lock();
2608 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2609 if (device->bdev == bdev) {
2610 ret = -EEXIST;
2611 rcu_read_unlock();
2612 goto error;
2613 }
2614 }
2615 rcu_read_unlock();
2616
2617 device = btrfs_alloc_device(fs_info, NULL, NULL);
2618 if (IS_ERR(device)) {
2619 /* we can safely leave the fs_devices entry around */
2620 ret = PTR_ERR(device);
2621 goto error;
2622 }
2623
2624 name = rcu_string_strdup(device_path, GFP_KERNEL);
2625 if (!name) {
2626 ret = -ENOMEM;
2627 goto error_free_device;
2628 }
2629 rcu_assign_pointer(device->name, name);
2630
2631 device->fs_info = fs_info;
2632 device->bdev = bdev;
2633
2634 ret = btrfs_get_dev_zone_info(device);
2635 if (ret)
2636 goto error_free_device;
2637
2638 trans = btrfs_start_transaction(root, 0);
2639 if (IS_ERR(trans)) {
2640 ret = PTR_ERR(trans);
2641 goto error_free_zone;
2642 }
2643
2644 q = bdev_get_queue(bdev);
2645 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2646 device->generation = trans->transid;
2647 device->io_width = fs_info->sectorsize;
2648 device->io_align = fs_info->sectorsize;
2649 device->sector_size = fs_info->sectorsize;
2650 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2651 fs_info->sectorsize);
2652 device->disk_total_bytes = device->total_bytes;
2653 device->commit_total_bytes = device->total_bytes;
2654 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2655 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2656 device->mode = FMODE_EXCL;
2657 device->dev_stats_valid = 1;
2658 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2659
2660 if (seeding_dev) {
2661 btrfs_clear_sb_rdonly(sb);
2662 ret = btrfs_prepare_sprout(fs_info);
2663 if (ret) {
2664 btrfs_abort_transaction(trans, ret);
2665 goto error_trans;
2666 }
2667 }
2668
2669 device->fs_devices = fs_devices;
2670
2671 mutex_lock(&fs_devices->device_list_mutex);
2672 mutex_lock(&fs_info->chunk_mutex);
2673 list_add_rcu(&device->dev_list, &fs_devices->devices);
2674 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2675 fs_devices->num_devices++;
2676 fs_devices->open_devices++;
2677 fs_devices->rw_devices++;
2678 fs_devices->total_devices++;
2679 fs_devices->total_rw_bytes += device->total_bytes;
2680
2681 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2682
2683 if (!blk_queue_nonrot(q))
2684 fs_devices->rotating = true;
2685
2686 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2687 btrfs_set_super_total_bytes(fs_info->super_copy,
2688 round_down(orig_super_total_bytes + device->total_bytes,
2689 fs_info->sectorsize));
2690
2691 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2692 btrfs_set_super_num_devices(fs_info->super_copy,
2693 orig_super_num_devices + 1);
2694
2695 /*
2696 * we've got more storage, clear any full flags on the space
2697 * infos
2698 */
2699 btrfs_clear_space_info_full(fs_info);
2700
2701 mutex_unlock(&fs_info->chunk_mutex);
2702
2703 /* Add sysfs device entry */
2704 btrfs_sysfs_add_device(device);
2705
2706 mutex_unlock(&fs_devices->device_list_mutex);
2707
2708 if (seeding_dev) {
2709 mutex_lock(&fs_info->chunk_mutex);
2710 ret = init_first_rw_device(trans);
2711 mutex_unlock(&fs_info->chunk_mutex);
2712 if (ret) {
2713 btrfs_abort_transaction(trans, ret);
2714 goto error_sysfs;
2715 }
2716 }
2717
2718 ret = btrfs_add_dev_item(trans, device);
2719 if (ret) {
2720 btrfs_abort_transaction(trans, ret);
2721 goto error_sysfs;
2722 }
2723
2724 if (seeding_dev) {
2725 ret = btrfs_finish_sprout(trans);
2726 if (ret) {
2727 btrfs_abort_transaction(trans, ret);
2728 goto error_sysfs;
2729 }
2730
2731 /*
2732 * fs_devices now represents the newly sprouted filesystem and
2733 * its fsid has been changed by btrfs_prepare_sprout
2734 */
2735 btrfs_sysfs_update_sprout_fsid(fs_devices);
2736 }
2737
2738 ret = btrfs_commit_transaction(trans);
2739
2740 if (seeding_dev) {
2741 mutex_unlock(&uuid_mutex);
2742 up_write(&sb->s_umount);
2743 locked = false;
2744
2745 if (ret) /* transaction commit */
2746 return ret;
2747
2748 ret = btrfs_relocate_sys_chunks(fs_info);
2749 if (ret < 0)
2750 btrfs_handle_fs_error(fs_info, ret,
2751 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2752 trans = btrfs_attach_transaction(root);
2753 if (IS_ERR(trans)) {
2754 if (PTR_ERR(trans) == -ENOENT)
2755 return 0;
2756 ret = PTR_ERR(trans);
2757 trans = NULL;
2758 goto error_sysfs;
2759 }
2760 ret = btrfs_commit_transaction(trans);
2761 }
2762
2763 /*
2764 * Now that we have written a new super block to this device, check all
2765 * other fs_devices list if device_path alienates any other scanned
2766 * device.
2767 * We can ignore the return value as it typically returns -EINVAL and
2768 * only succeeds if the device was an alien.
2769 */
2770 btrfs_forget_devices(device_path);
2771
2772 /* Update ctime/mtime for blkid or udev */
2773 update_dev_time(device_path);
2774
2775 return ret;
2776
2777 error_sysfs:
2778 btrfs_sysfs_remove_device(device);
2779 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2780 mutex_lock(&fs_info->chunk_mutex);
2781 list_del_rcu(&device->dev_list);
2782 list_del(&device->dev_alloc_list);
2783 fs_info->fs_devices->num_devices--;
2784 fs_info->fs_devices->open_devices--;
2785 fs_info->fs_devices->rw_devices--;
2786 fs_info->fs_devices->total_devices--;
2787 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2788 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2789 btrfs_set_super_total_bytes(fs_info->super_copy,
2790 orig_super_total_bytes);
2791 btrfs_set_super_num_devices(fs_info->super_copy,
2792 orig_super_num_devices);
2793 mutex_unlock(&fs_info->chunk_mutex);
2794 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2795 error_trans:
2796 if (seeding_dev)
2797 btrfs_set_sb_rdonly(sb);
2798 if (trans)
2799 btrfs_end_transaction(trans);
2800 error_free_zone:
2801 btrfs_destroy_dev_zone_info(device);
2802 error_free_device:
2803 btrfs_free_device(device);
2804 error:
2805 blkdev_put(bdev, FMODE_EXCL);
2806 if (locked) {
2807 mutex_unlock(&uuid_mutex);
2808 up_write(&sb->s_umount);
2809 }
2810 return ret;
2811 }
2812
2813 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2814 struct btrfs_device *device)
2815 {
2816 int ret;
2817 struct btrfs_path *path;
2818 struct btrfs_root *root = device->fs_info->chunk_root;
2819 struct btrfs_dev_item *dev_item;
2820 struct extent_buffer *leaf;
2821 struct btrfs_key key;
2822
2823 path = btrfs_alloc_path();
2824 if (!path)
2825 return -ENOMEM;
2826
2827 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2828 key.type = BTRFS_DEV_ITEM_KEY;
2829 key.offset = device->devid;
2830
2831 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2832 if (ret < 0)
2833 goto out;
2834
2835 if (ret > 0) {
2836 ret = -ENOENT;
2837 goto out;
2838 }
2839
2840 leaf = path->nodes[0];
2841 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2842
2843 btrfs_set_device_id(leaf, dev_item, device->devid);
2844 btrfs_set_device_type(leaf, dev_item, device->type);
2845 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2846 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2847 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2848 btrfs_set_device_total_bytes(leaf, dev_item,
2849 btrfs_device_get_disk_total_bytes(device));
2850 btrfs_set_device_bytes_used(leaf, dev_item,
2851 btrfs_device_get_bytes_used(device));
2852 btrfs_mark_buffer_dirty(leaf);
2853
2854 out:
2855 btrfs_free_path(path);
2856 return ret;
2857 }
2858
2859 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2860 struct btrfs_device *device, u64 new_size)
2861 {
2862 struct btrfs_fs_info *fs_info = device->fs_info;
2863 struct btrfs_super_block *super_copy = fs_info->super_copy;
2864 u64 old_total;
2865 u64 diff;
2866
2867 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2868 return -EACCES;
2869
2870 new_size = round_down(new_size, fs_info->sectorsize);
2871
2872 mutex_lock(&fs_info->chunk_mutex);
2873 old_total = btrfs_super_total_bytes(super_copy);
2874 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2875
2876 if (new_size <= device->total_bytes ||
2877 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2878 mutex_unlock(&fs_info->chunk_mutex);
2879 return -EINVAL;
2880 }
2881
2882 btrfs_set_super_total_bytes(super_copy,
2883 round_down(old_total + diff, fs_info->sectorsize));
2884 device->fs_devices->total_rw_bytes += diff;
2885
2886 btrfs_device_set_total_bytes(device, new_size);
2887 btrfs_device_set_disk_total_bytes(device, new_size);
2888 btrfs_clear_space_info_full(device->fs_info);
2889 if (list_empty(&device->post_commit_list))
2890 list_add_tail(&device->post_commit_list,
2891 &trans->transaction->dev_update_list);
2892 mutex_unlock(&fs_info->chunk_mutex);
2893
2894 return btrfs_update_device(trans, device);
2895 }
2896
2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2898 {
2899 struct btrfs_fs_info *fs_info = trans->fs_info;
2900 struct btrfs_root *root = fs_info->chunk_root;
2901 int ret;
2902 struct btrfs_path *path;
2903 struct btrfs_key key;
2904
2905 path = btrfs_alloc_path();
2906 if (!path)
2907 return -ENOMEM;
2908
2909 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2910 key.offset = chunk_offset;
2911 key.type = BTRFS_CHUNK_ITEM_KEY;
2912
2913 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2914 if (ret < 0)
2915 goto out;
2916 else if (ret > 0) { /* Logic error or corruption */
2917 btrfs_handle_fs_error(fs_info, -ENOENT,
2918 "Failed lookup while freeing chunk.");
2919 ret = -ENOENT;
2920 goto out;
2921 }
2922
2923 ret = btrfs_del_item(trans, root, path);
2924 if (ret < 0)
2925 btrfs_handle_fs_error(fs_info, ret,
2926 "Failed to delete chunk item.");
2927 out:
2928 btrfs_free_path(path);
2929 return ret;
2930 }
2931
2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2933 {
2934 struct btrfs_super_block *super_copy = fs_info->super_copy;
2935 struct btrfs_disk_key *disk_key;
2936 struct btrfs_chunk *chunk;
2937 u8 *ptr;
2938 int ret = 0;
2939 u32 num_stripes;
2940 u32 array_size;
2941 u32 len = 0;
2942 u32 cur;
2943 struct btrfs_key key;
2944
2945 mutex_lock(&fs_info->chunk_mutex);
2946 array_size = btrfs_super_sys_array_size(super_copy);
2947
2948 ptr = super_copy->sys_chunk_array;
2949 cur = 0;
2950
2951 while (cur < array_size) {
2952 disk_key = (struct btrfs_disk_key *)ptr;
2953 btrfs_disk_key_to_cpu(&key, disk_key);
2954
2955 len = sizeof(*disk_key);
2956
2957 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2958 chunk = (struct btrfs_chunk *)(ptr + len);
2959 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2960 len += btrfs_chunk_item_size(num_stripes);
2961 } else {
2962 ret = -EIO;
2963 break;
2964 }
2965 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2966 key.offset == chunk_offset) {
2967 memmove(ptr, ptr + len, array_size - (cur + len));
2968 array_size -= len;
2969 btrfs_set_super_sys_array_size(super_copy, array_size);
2970 } else {
2971 ptr += len;
2972 cur += len;
2973 }
2974 }
2975 mutex_unlock(&fs_info->chunk_mutex);
2976 return ret;
2977 }
2978
2979 /*
2980 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2981 * @logical: Logical block offset in bytes.
2982 * @length: Length of extent in bytes.
2983 *
2984 * Return: Chunk mapping or ERR_PTR.
2985 */
2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2987 u64 logical, u64 length)
2988 {
2989 struct extent_map_tree *em_tree;
2990 struct extent_map *em;
2991
2992 em_tree = &fs_info->mapping_tree;
2993 read_lock(&em_tree->lock);
2994 em = lookup_extent_mapping(em_tree, logical, length);
2995 read_unlock(&em_tree->lock);
2996
2997 if (!em) {
2998 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2999 logical, length);
3000 return ERR_PTR(-EINVAL);
3001 }
3002
3003 if (em->start > logical || em->start + em->len < logical) {
3004 btrfs_crit(fs_info,
3005 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3006 logical, length, em->start, em->start + em->len);
3007 free_extent_map(em);
3008 return ERR_PTR(-EINVAL);
3009 }
3010
3011 /* callers are responsible for dropping em's ref. */
3012 return em;
3013 }
3014
3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3016 {
3017 struct btrfs_fs_info *fs_info = trans->fs_info;
3018 struct extent_map *em;
3019 struct map_lookup *map;
3020 u64 dev_extent_len = 0;
3021 int i, ret = 0;
3022 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3023
3024 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3025 if (IS_ERR(em)) {
3026 /*
3027 * This is a logic error, but we don't want to just rely on the
3028 * user having built with ASSERT enabled, so if ASSERT doesn't
3029 * do anything we still error out.
3030 */
3031 ASSERT(0);
3032 return PTR_ERR(em);
3033 }
3034 map = em->map_lookup;
3035 mutex_lock(&fs_info->chunk_mutex);
3036 check_system_chunk(trans, map->type);
3037 mutex_unlock(&fs_info->chunk_mutex);
3038
3039 /*
3040 * Take the device list mutex to prevent races with the final phase of
3041 * a device replace operation that replaces the device object associated
3042 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3043 */
3044 mutex_lock(&fs_devices->device_list_mutex);
3045 for (i = 0; i < map->num_stripes; i++) {
3046 struct btrfs_device *device = map->stripes[i].dev;
3047 ret = btrfs_free_dev_extent(trans, device,
3048 map->stripes[i].physical,
3049 &dev_extent_len);
3050 if (ret) {
3051 mutex_unlock(&fs_devices->device_list_mutex);
3052 btrfs_abort_transaction(trans, ret);
3053 goto out;
3054 }
3055
3056 if (device->bytes_used > 0) {
3057 mutex_lock(&fs_info->chunk_mutex);
3058 btrfs_device_set_bytes_used(device,
3059 device->bytes_used - dev_extent_len);
3060 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3061 btrfs_clear_space_info_full(fs_info);
3062 mutex_unlock(&fs_info->chunk_mutex);
3063 }
3064
3065 ret = btrfs_update_device(trans, device);
3066 if (ret) {
3067 mutex_unlock(&fs_devices->device_list_mutex);
3068 btrfs_abort_transaction(trans, ret);
3069 goto out;
3070 }
3071 }
3072 mutex_unlock(&fs_devices->device_list_mutex);
3073
3074 ret = btrfs_free_chunk(trans, chunk_offset);
3075 if (ret) {
3076 btrfs_abort_transaction(trans, ret);
3077 goto out;
3078 }
3079
3080 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3081
3082 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3084 if (ret) {
3085 btrfs_abort_transaction(trans, ret);
3086 goto out;
3087 }
3088 }
3089
3090 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3091 if (ret) {
3092 btrfs_abort_transaction(trans, ret);
3093 goto out;
3094 }
3095
3096 out:
3097 /* once for us */
3098 free_extent_map(em);
3099 return ret;
3100 }
3101
3102 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3103 {
3104 struct btrfs_root *root = fs_info->chunk_root;
3105 struct btrfs_trans_handle *trans;
3106 struct btrfs_block_group *block_group;
3107 u64 length;
3108 int ret;
3109
3110 /*
3111 * Prevent races with automatic removal of unused block groups.
3112 * After we relocate and before we remove the chunk with offset
3113 * chunk_offset, automatic removal of the block group can kick in,
3114 * resulting in a failure when calling btrfs_remove_chunk() below.
3115 *
3116 * Make sure to acquire this mutex before doing a tree search (dev
3117 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3118 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3119 * we release the path used to search the chunk/dev tree and before
3120 * the current task acquires this mutex and calls us.
3121 */
3122 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3123
3124 /* step one, relocate all the extents inside this chunk */
3125 btrfs_scrub_pause(fs_info);
3126 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3127 btrfs_scrub_continue(fs_info);
3128 if (ret)
3129 return ret;
3130
3131 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3132 if (!block_group)
3133 return -ENOENT;
3134 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3135 length = block_group->length;
3136 btrfs_put_block_group(block_group);
3137
3138 /*
3139 * On a zoned file system, discard the whole block group, this will
3140 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3141 * resetting the zone fails, don't treat it as a fatal problem from the
3142 * filesystem's point of view.
3143 */
3144 if (btrfs_is_zoned(fs_info)) {
3145 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3146 if (ret)
3147 btrfs_info(fs_info,
3148 "failed to reset zone %llu after relocation",
3149 chunk_offset);
3150 }
3151
3152 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3153 chunk_offset);
3154 if (IS_ERR(trans)) {
3155 ret = PTR_ERR(trans);
3156 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3157 return ret;
3158 }
3159
3160 /*
3161 * step two, delete the device extents and the
3162 * chunk tree entries
3163 */
3164 ret = btrfs_remove_chunk(trans, chunk_offset);
3165 btrfs_end_transaction(trans);
3166 return ret;
3167 }
3168
3169 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3170 {
3171 struct btrfs_root *chunk_root = fs_info->chunk_root;
3172 struct btrfs_path *path;
3173 struct extent_buffer *leaf;
3174 struct btrfs_chunk *chunk;
3175 struct btrfs_key key;
3176 struct btrfs_key found_key;
3177 u64 chunk_type;
3178 bool retried = false;
3179 int failed = 0;
3180 int ret;
3181
3182 path = btrfs_alloc_path();
3183 if (!path)
3184 return -ENOMEM;
3185
3186 again:
3187 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3188 key.offset = (u64)-1;
3189 key.type = BTRFS_CHUNK_ITEM_KEY;
3190
3191 while (1) {
3192 mutex_lock(&fs_info->reclaim_bgs_lock);
3193 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3194 if (ret < 0) {
3195 mutex_unlock(&fs_info->reclaim_bgs_lock);
3196 goto error;
3197 }
3198 BUG_ON(ret == 0); /* Corruption */
3199
3200 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3201 key.type);
3202 if (ret)
3203 mutex_unlock(&fs_info->reclaim_bgs_lock);
3204 if (ret < 0)
3205 goto error;
3206 if (ret > 0)
3207 break;
3208
3209 leaf = path->nodes[0];
3210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3211
3212 chunk = btrfs_item_ptr(leaf, path->slots[0],
3213 struct btrfs_chunk);
3214 chunk_type = btrfs_chunk_type(leaf, chunk);
3215 btrfs_release_path(path);
3216
3217 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3218 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3219 if (ret == -ENOSPC)
3220 failed++;
3221 else
3222 BUG_ON(ret);
3223 }
3224 mutex_unlock(&fs_info->reclaim_bgs_lock);
3225
3226 if (found_key.offset == 0)
3227 break;
3228 key.offset = found_key.offset - 1;
3229 }
3230 ret = 0;
3231 if (failed && !retried) {
3232 failed = 0;
3233 retried = true;
3234 goto again;
3235 } else if (WARN_ON(failed && retried)) {
3236 ret = -ENOSPC;
3237 }
3238 error:
3239 btrfs_free_path(path);
3240 return ret;
3241 }
3242
3243 /*
3244 * return 1 : allocate a data chunk successfully,
3245 * return <0: errors during allocating a data chunk,
3246 * return 0 : no need to allocate a data chunk.
3247 */
3248 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3249 u64 chunk_offset)
3250 {
3251 struct btrfs_block_group *cache;
3252 u64 bytes_used;
3253 u64 chunk_type;
3254
3255 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256 ASSERT(cache);
3257 chunk_type = cache->flags;
3258 btrfs_put_block_group(cache);
3259
3260 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3261 return 0;
3262
3263 spin_lock(&fs_info->data_sinfo->lock);
3264 bytes_used = fs_info->data_sinfo->bytes_used;
3265 spin_unlock(&fs_info->data_sinfo->lock);
3266
3267 if (!bytes_used) {
3268 struct btrfs_trans_handle *trans;
3269 int ret;
3270
3271 trans = btrfs_join_transaction(fs_info->tree_root);
3272 if (IS_ERR(trans))
3273 return PTR_ERR(trans);
3274
3275 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3276 btrfs_end_transaction(trans);
3277 if (ret < 0)
3278 return ret;
3279 return 1;
3280 }
3281
3282 return 0;
3283 }
3284
3285 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3286 struct btrfs_balance_control *bctl)
3287 {
3288 struct btrfs_root *root = fs_info->tree_root;
3289 struct btrfs_trans_handle *trans;
3290 struct btrfs_balance_item *item;
3291 struct btrfs_disk_balance_args disk_bargs;
3292 struct btrfs_path *path;
3293 struct extent_buffer *leaf;
3294 struct btrfs_key key;
3295 int ret, err;
3296
3297 path = btrfs_alloc_path();
3298 if (!path)
3299 return -ENOMEM;
3300
3301 trans = btrfs_start_transaction(root, 0);
3302 if (IS_ERR(trans)) {
3303 btrfs_free_path(path);
3304 return PTR_ERR(trans);
3305 }
3306
3307 key.objectid = BTRFS_BALANCE_OBJECTID;
3308 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3309 key.offset = 0;
3310
3311 ret = btrfs_insert_empty_item(trans, root, path, &key,
3312 sizeof(*item));
3313 if (ret)
3314 goto out;
3315
3316 leaf = path->nodes[0];
3317 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3318
3319 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3320
3321 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3322 btrfs_set_balance_data(leaf, item, &disk_bargs);
3323 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3324 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3325 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3326 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3327
3328 btrfs_set_balance_flags(leaf, item, bctl->flags);
3329
3330 btrfs_mark_buffer_dirty(leaf);
3331 out:
3332 btrfs_free_path(path);
3333 err = btrfs_commit_transaction(trans);
3334 if (err && !ret)
3335 ret = err;
3336 return ret;
3337 }
3338
3339 static int del_balance_item(struct btrfs_fs_info *fs_info)
3340 {
3341 struct btrfs_root *root = fs_info->tree_root;
3342 struct btrfs_trans_handle *trans;
3343 struct btrfs_path *path;
3344 struct btrfs_key key;
3345 int ret, err;
3346
3347 path = btrfs_alloc_path();
3348 if (!path)
3349 return -ENOMEM;
3350
3351 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3352 if (IS_ERR(trans)) {
3353 btrfs_free_path(path);
3354 return PTR_ERR(trans);
3355 }
3356
3357 key.objectid = BTRFS_BALANCE_OBJECTID;
3358 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3359 key.offset = 0;
3360
3361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3362 if (ret < 0)
3363 goto out;
3364 if (ret > 0) {
3365 ret = -ENOENT;
3366 goto out;
3367 }
3368
3369 ret = btrfs_del_item(trans, root, path);
3370 out:
3371 btrfs_free_path(path);
3372 err = btrfs_commit_transaction(trans);
3373 if (err && !ret)
3374 ret = err;
3375 return ret;
3376 }
3377
3378 /*
3379 * This is a heuristic used to reduce the number of chunks balanced on
3380 * resume after balance was interrupted.
3381 */
3382 static void update_balance_args(struct btrfs_balance_control *bctl)
3383 {
3384 /*
3385 * Turn on soft mode for chunk types that were being converted.
3386 */
3387 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3388 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3389 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3390 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3391 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3392 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3393
3394 /*
3395 * Turn on usage filter if is not already used. The idea is
3396 * that chunks that we have already balanced should be
3397 * reasonably full. Don't do it for chunks that are being
3398 * converted - that will keep us from relocating unconverted
3399 * (albeit full) chunks.
3400 */
3401 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3402 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3403 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3404 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3405 bctl->data.usage = 90;
3406 }
3407 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3408 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3409 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3410 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3411 bctl->sys.usage = 90;
3412 }
3413 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3414 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3415 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3416 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3417 bctl->meta.usage = 90;
3418 }
3419 }
3420
3421 /*
3422 * Clear the balance status in fs_info and delete the balance item from disk.
3423 */
3424 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3425 {
3426 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3427 int ret;
3428
3429 BUG_ON(!fs_info->balance_ctl);
3430
3431 spin_lock(&fs_info->balance_lock);
3432 fs_info->balance_ctl = NULL;
3433 spin_unlock(&fs_info->balance_lock);
3434
3435 kfree(bctl);
3436 ret = del_balance_item(fs_info);
3437 if (ret)
3438 btrfs_handle_fs_error(fs_info, ret, NULL);
3439 }
3440
3441 /*
3442 * Balance filters. Return 1 if chunk should be filtered out
3443 * (should not be balanced).
3444 */
3445 static int chunk_profiles_filter(u64 chunk_type,
3446 struct btrfs_balance_args *bargs)
3447 {
3448 chunk_type = chunk_to_extended(chunk_type) &
3449 BTRFS_EXTENDED_PROFILE_MASK;
3450
3451 if (bargs->profiles & chunk_type)
3452 return 0;
3453
3454 return 1;
3455 }
3456
3457 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3458 struct btrfs_balance_args *bargs)
3459 {
3460 struct btrfs_block_group *cache;
3461 u64 chunk_used;
3462 u64 user_thresh_min;
3463 u64 user_thresh_max;
3464 int ret = 1;
3465
3466 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3467 chunk_used = cache->used;
3468
3469 if (bargs->usage_min == 0)
3470 user_thresh_min = 0;
3471 else
3472 user_thresh_min = div_factor_fine(cache->length,
3473 bargs->usage_min);
3474
3475 if (bargs->usage_max == 0)
3476 user_thresh_max = 1;
3477 else if (bargs->usage_max > 100)
3478 user_thresh_max = cache->length;
3479 else
3480 user_thresh_max = div_factor_fine(cache->length,
3481 bargs->usage_max);
3482
3483 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3484 ret = 0;
3485
3486 btrfs_put_block_group(cache);
3487 return ret;
3488 }
3489
3490 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3491 u64 chunk_offset, struct btrfs_balance_args *bargs)
3492 {
3493 struct btrfs_block_group *cache;
3494 u64 chunk_used, user_thresh;
3495 int ret = 1;
3496
3497 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3498 chunk_used = cache->used;
3499
3500 if (bargs->usage_min == 0)
3501 user_thresh = 1;
3502 else if (bargs->usage > 100)
3503 user_thresh = cache->length;
3504 else
3505 user_thresh = div_factor_fine(cache->length, bargs->usage);
3506
3507 if (chunk_used < user_thresh)
3508 ret = 0;
3509
3510 btrfs_put_block_group(cache);
3511 return ret;
3512 }
3513
3514 static int chunk_devid_filter(struct extent_buffer *leaf,
3515 struct btrfs_chunk *chunk,
3516 struct btrfs_balance_args *bargs)
3517 {
3518 struct btrfs_stripe *stripe;
3519 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3520 int i;
3521
3522 for (i = 0; i < num_stripes; i++) {
3523 stripe = btrfs_stripe_nr(chunk, i);
3524 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3525 return 0;
3526 }
3527
3528 return 1;
3529 }
3530
3531 static u64 calc_data_stripes(u64 type, int num_stripes)
3532 {
3533 const int index = btrfs_bg_flags_to_raid_index(type);
3534 const int ncopies = btrfs_raid_array[index].ncopies;
3535 const int nparity = btrfs_raid_array[index].nparity;
3536
3537 if (nparity)
3538 return num_stripes - nparity;
3539 else
3540 return num_stripes / ncopies;
3541 }
3542
3543 /* [pstart, pend) */
3544 static int chunk_drange_filter(struct extent_buffer *leaf,
3545 struct btrfs_chunk *chunk,
3546 struct btrfs_balance_args *bargs)
3547 {
3548 struct btrfs_stripe *stripe;
3549 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3550 u64 stripe_offset;
3551 u64 stripe_length;
3552 u64 type;
3553 int factor;
3554 int i;
3555
3556 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3557 return 0;
3558
3559 type = btrfs_chunk_type(leaf, chunk);
3560 factor = calc_data_stripes(type, num_stripes);
3561
3562 for (i = 0; i < num_stripes; i++) {
3563 stripe = btrfs_stripe_nr(chunk, i);
3564 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3565 continue;
3566
3567 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3568 stripe_length = btrfs_chunk_length(leaf, chunk);
3569 stripe_length = div_u64(stripe_length, factor);
3570
3571 if (stripe_offset < bargs->pend &&
3572 stripe_offset + stripe_length > bargs->pstart)
3573 return 0;
3574 }
3575
3576 return 1;
3577 }
3578
3579 /* [vstart, vend) */
3580 static int chunk_vrange_filter(struct extent_buffer *leaf,
3581 struct btrfs_chunk *chunk,
3582 u64 chunk_offset,
3583 struct btrfs_balance_args *bargs)
3584 {
3585 if (chunk_offset < bargs->vend &&
3586 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3587 /* at least part of the chunk is inside this vrange */
3588 return 0;
3589
3590 return 1;
3591 }
3592
3593 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3594 struct btrfs_chunk *chunk,
3595 struct btrfs_balance_args *bargs)
3596 {
3597 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3598
3599 if (bargs->stripes_min <= num_stripes
3600 && num_stripes <= bargs->stripes_max)
3601 return 0;
3602
3603 return 1;
3604 }
3605
3606 static int chunk_soft_convert_filter(u64 chunk_type,
3607 struct btrfs_balance_args *bargs)
3608 {
3609 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3610 return 0;
3611
3612 chunk_type = chunk_to_extended(chunk_type) &
3613 BTRFS_EXTENDED_PROFILE_MASK;
3614
3615 if (bargs->target == chunk_type)
3616 return 1;
3617
3618 return 0;
3619 }
3620
3621 static int should_balance_chunk(struct extent_buffer *leaf,
3622 struct btrfs_chunk *chunk, u64 chunk_offset)
3623 {
3624 struct btrfs_fs_info *fs_info = leaf->fs_info;
3625 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3626 struct btrfs_balance_args *bargs = NULL;
3627 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3628
3629 /* type filter */
3630 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3631 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3632 return 0;
3633 }
3634
3635 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3636 bargs = &bctl->data;
3637 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3638 bargs = &bctl->sys;
3639 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3640 bargs = &bctl->meta;
3641
3642 /* profiles filter */
3643 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3644 chunk_profiles_filter(chunk_type, bargs)) {
3645 return 0;
3646 }
3647
3648 /* usage filter */
3649 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3650 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3651 return 0;
3652 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3653 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3654 return 0;
3655 }
3656
3657 /* devid filter */
3658 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3659 chunk_devid_filter(leaf, chunk, bargs)) {
3660 return 0;
3661 }
3662
3663 /* drange filter, makes sense only with devid filter */
3664 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3665 chunk_drange_filter(leaf, chunk, bargs)) {
3666 return 0;
3667 }
3668
3669 /* vrange filter */
3670 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3671 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3672 return 0;
3673 }
3674
3675 /* stripes filter */
3676 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3677 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3678 return 0;
3679 }
3680
3681 /* soft profile changing mode */
3682 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3683 chunk_soft_convert_filter(chunk_type, bargs)) {
3684 return 0;
3685 }
3686
3687 /*
3688 * limited by count, must be the last filter
3689 */
3690 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3691 if (bargs->limit == 0)
3692 return 0;
3693 else
3694 bargs->limit--;
3695 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3696 /*
3697 * Same logic as the 'limit' filter; the minimum cannot be
3698 * determined here because we do not have the global information
3699 * about the count of all chunks that satisfy the filters.
3700 */
3701 if (bargs->limit_max == 0)
3702 return 0;
3703 else
3704 bargs->limit_max--;
3705 }
3706
3707 return 1;
3708 }
3709
3710 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3711 {
3712 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3713 struct btrfs_root *chunk_root = fs_info->chunk_root;
3714 u64 chunk_type;
3715 struct btrfs_chunk *chunk;
3716 struct btrfs_path *path = NULL;
3717 struct btrfs_key key;
3718 struct btrfs_key found_key;
3719 struct extent_buffer *leaf;
3720 int slot;
3721 int ret;
3722 int enospc_errors = 0;
3723 bool counting = true;
3724 /* The single value limit and min/max limits use the same bytes in the */
3725 u64 limit_data = bctl->data.limit;
3726 u64 limit_meta = bctl->meta.limit;
3727 u64 limit_sys = bctl->sys.limit;
3728 u32 count_data = 0;
3729 u32 count_meta = 0;
3730 u32 count_sys = 0;
3731 int chunk_reserved = 0;
3732
3733 path = btrfs_alloc_path();
3734 if (!path) {
3735 ret = -ENOMEM;
3736 goto error;
3737 }
3738
3739 /* zero out stat counters */
3740 spin_lock(&fs_info->balance_lock);
3741 memset(&bctl->stat, 0, sizeof(bctl->stat));
3742 spin_unlock(&fs_info->balance_lock);
3743 again:
3744 if (!counting) {
3745 /*
3746 * The single value limit and min/max limits use the same bytes
3747 * in the
3748 */
3749 bctl->data.limit = limit_data;
3750 bctl->meta.limit = limit_meta;
3751 bctl->sys.limit = limit_sys;
3752 }
3753 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3754 key.offset = (u64)-1;
3755 key.type = BTRFS_CHUNK_ITEM_KEY;
3756
3757 while (1) {
3758 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3759 atomic_read(&fs_info->balance_cancel_req)) {
3760 ret = -ECANCELED;
3761 goto error;
3762 }
3763
3764 mutex_lock(&fs_info->reclaim_bgs_lock);
3765 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3766 if (ret < 0) {
3767 mutex_unlock(&fs_info->reclaim_bgs_lock);
3768 goto error;
3769 }
3770
3771 /*
3772 * this shouldn't happen, it means the last relocate
3773 * failed
3774 */
3775 if (ret == 0)
3776 BUG(); /* FIXME break ? */
3777
3778 ret = btrfs_previous_item(chunk_root, path, 0,
3779 BTRFS_CHUNK_ITEM_KEY);
3780 if (ret) {
3781 mutex_unlock(&fs_info->reclaim_bgs_lock);
3782 ret = 0;
3783 break;
3784 }
3785
3786 leaf = path->nodes[0];
3787 slot = path->slots[0];
3788 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3789
3790 if (found_key.objectid != key.objectid) {
3791 mutex_unlock(&fs_info->reclaim_bgs_lock);
3792 break;
3793 }
3794
3795 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3796 chunk_type = btrfs_chunk_type(leaf, chunk);
3797
3798 if (!counting) {
3799 spin_lock(&fs_info->balance_lock);
3800 bctl->stat.considered++;
3801 spin_unlock(&fs_info->balance_lock);
3802 }
3803
3804 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3805
3806 btrfs_release_path(path);
3807 if (!ret) {
3808 mutex_unlock(&fs_info->reclaim_bgs_lock);
3809 goto loop;
3810 }
3811
3812 if (counting) {
3813 mutex_unlock(&fs_info->reclaim_bgs_lock);
3814 spin_lock(&fs_info->balance_lock);
3815 bctl->stat.expected++;
3816 spin_unlock(&fs_info->balance_lock);
3817
3818 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3819 count_data++;
3820 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3821 count_sys++;
3822 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3823 count_meta++;
3824
3825 goto loop;
3826 }
3827
3828 /*
3829 * Apply limit_min filter, no need to check if the LIMITS
3830 * filter is used, limit_min is 0 by default
3831 */
3832 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3833 count_data < bctl->data.limit_min)
3834 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3835 count_meta < bctl->meta.limit_min)
3836 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3837 count_sys < bctl->sys.limit_min)) {
3838 mutex_unlock(&fs_info->reclaim_bgs_lock);
3839 goto loop;
3840 }
3841
3842 if (!chunk_reserved) {
3843 /*
3844 * We may be relocating the only data chunk we have,
3845 * which could potentially end up with losing data's
3846 * raid profile, so lets allocate an empty one in
3847 * advance.
3848 */
3849 ret = btrfs_may_alloc_data_chunk(fs_info,
3850 found_key.offset);
3851 if (ret < 0) {
3852 mutex_unlock(&fs_info->reclaim_bgs_lock);
3853 goto error;
3854 } else if (ret == 1) {
3855 chunk_reserved = 1;
3856 }
3857 }
3858
3859 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3860 mutex_unlock(&fs_info->reclaim_bgs_lock);
3861 if (ret == -ENOSPC) {
3862 enospc_errors++;
3863 } else if (ret == -ETXTBSY) {
3864 btrfs_info(fs_info,
3865 "skipping relocation of block group %llu due to active swapfile",
3866 found_key.offset);
3867 ret = 0;
3868 } else if (ret) {
3869 goto error;
3870 } else {
3871 spin_lock(&fs_info->balance_lock);
3872 bctl->stat.completed++;
3873 spin_unlock(&fs_info->balance_lock);
3874 }
3875 loop:
3876 if (found_key.offset == 0)
3877 break;
3878 key.offset = found_key.offset - 1;
3879 }
3880
3881 if (counting) {
3882 btrfs_release_path(path);
3883 counting = false;
3884 goto again;
3885 }
3886 error:
3887 btrfs_free_path(path);
3888 if (enospc_errors) {
3889 btrfs_info(fs_info, "%d enospc errors during balance",
3890 enospc_errors);
3891 if (!ret)
3892 ret = -ENOSPC;
3893 }
3894
3895 return ret;
3896 }
3897
3898 /**
3899 * alloc_profile_is_valid - see if a given profile is valid and reduced
3900 * @flags: profile to validate
3901 * @extended: if true @flags is treated as an extended profile
3902 */
3903 static int alloc_profile_is_valid(u64 flags, int extended)
3904 {
3905 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3906 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3907
3908 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3909
3910 /* 1) check that all other bits are zeroed */
3911 if (flags & ~mask)
3912 return 0;
3913
3914 /* 2) see if profile is reduced */
3915 if (flags == 0)
3916 return !extended; /* "0" is valid for usual profiles */
3917
3918 return has_single_bit_set(flags);
3919 }
3920
3921 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3922 {
3923 /* cancel requested || normal exit path */
3924 return atomic_read(&fs_info->balance_cancel_req) ||
3925 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3926 atomic_read(&fs_info->balance_cancel_req) == 0);
3927 }
3928
3929 /*
3930 * Validate target profile against allowed profiles and return true if it's OK.
3931 * Otherwise print the error message and return false.
3932 */
3933 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3934 const struct btrfs_balance_args *bargs,
3935 u64 allowed, const char *type)
3936 {
3937 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3938 return true;
3939
3940 /* Profile is valid and does not have bits outside of the allowed set */
3941 if (alloc_profile_is_valid(bargs->target, 1) &&
3942 (bargs->target & ~allowed) == 0)
3943 return true;
3944
3945 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3946 type, btrfs_bg_type_to_raid_name(bargs->target));
3947 return false;
3948 }
3949
3950 /*
3951 * Fill @buf with textual description of balance filter flags @bargs, up to
3952 * @size_buf including the terminating null. The output may be trimmed if it
3953 * does not fit into the provided buffer.
3954 */
3955 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3956 u32 size_buf)
3957 {
3958 int ret;
3959 u32 size_bp = size_buf;
3960 char *bp = buf;
3961 u64 flags = bargs->flags;
3962 char tmp_buf[128] = {'\0'};
3963
3964 if (!flags)
3965 return;
3966
3967 #define CHECK_APPEND_NOARG(a) \
3968 do { \
3969 ret = snprintf(bp, size_bp, (a)); \
3970 if (ret < 0 || ret >= size_bp) \
3971 goto out_overflow; \
3972 size_bp -= ret; \
3973 bp += ret; \
3974 } while (0)
3975
3976 #define CHECK_APPEND_1ARG(a, v1) \
3977 do { \
3978 ret = snprintf(bp, size_bp, (a), (v1)); \
3979 if (ret < 0 || ret >= size_bp) \
3980 goto out_overflow; \
3981 size_bp -= ret; \
3982 bp += ret; \
3983 } while (0)
3984
3985 #define CHECK_APPEND_2ARG(a, v1, v2) \
3986 do { \
3987 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3988 if (ret < 0 || ret >= size_bp) \
3989 goto out_overflow; \
3990 size_bp -= ret; \
3991 bp += ret; \
3992 } while (0)
3993
3994 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3995 CHECK_APPEND_1ARG("convert=%s,",
3996 btrfs_bg_type_to_raid_name(bargs->target));
3997
3998 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3999 CHECK_APPEND_NOARG("soft,");
4000
4001 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4002 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4003 sizeof(tmp_buf));
4004 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4005 }
4006
4007 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4008 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4009
4010 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4011 CHECK_APPEND_2ARG("usage=%u..%u,",
4012 bargs->usage_min, bargs->usage_max);
4013
4014 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4015 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4016
4017 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4018 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4019 bargs->pstart, bargs->pend);
4020
4021 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4022 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4023 bargs->vstart, bargs->vend);
4024
4025 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4026 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4027
4028 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4029 CHECK_APPEND_2ARG("limit=%u..%u,",
4030 bargs->limit_min, bargs->limit_max);
4031
4032 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4033 CHECK_APPEND_2ARG("stripes=%u..%u,",
4034 bargs->stripes_min, bargs->stripes_max);
4035
4036 #undef CHECK_APPEND_2ARG
4037 #undef CHECK_APPEND_1ARG
4038 #undef CHECK_APPEND_NOARG
4039
4040 out_overflow:
4041
4042 if (size_bp < size_buf)
4043 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4044 else
4045 buf[0] = '\0';
4046 }
4047
4048 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4049 {
4050 u32 size_buf = 1024;
4051 char tmp_buf[192] = {'\0'};
4052 char *buf;
4053 char *bp;
4054 u32 size_bp = size_buf;
4055 int ret;
4056 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4057
4058 buf = kzalloc(size_buf, GFP_KERNEL);
4059 if (!buf)
4060 return;
4061
4062 bp = buf;
4063
4064 #define CHECK_APPEND_1ARG(a, v1) \
4065 do { \
4066 ret = snprintf(bp, size_bp, (a), (v1)); \
4067 if (ret < 0 || ret >= size_bp) \
4068 goto out_overflow; \
4069 size_bp -= ret; \
4070 bp += ret; \
4071 } while (0)
4072
4073 if (bctl->flags & BTRFS_BALANCE_FORCE)
4074 CHECK_APPEND_1ARG("%s", "-f ");
4075
4076 if (bctl->flags & BTRFS_BALANCE_DATA) {
4077 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4078 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4079 }
4080
4081 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4082 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4083 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4084 }
4085
4086 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4087 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4088 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4089 }
4090
4091 #undef CHECK_APPEND_1ARG
4092
4093 out_overflow:
4094
4095 if (size_bp < size_buf)
4096 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4097 btrfs_info(fs_info, "balance: %s %s",
4098 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4099 "resume" : "start", buf);
4100
4101 kfree(buf);
4102 }
4103
4104 /*
4105 * Should be called with balance mutexe held
4106 */
4107 int btrfs_balance(struct btrfs_fs_info *fs_info,
4108 struct btrfs_balance_control *bctl,
4109 struct btrfs_ioctl_balance_args *bargs)
4110 {
4111 u64 meta_target, data_target;
4112 u64 allowed;
4113 int mixed = 0;
4114 int ret;
4115 u64 num_devices;
4116 unsigned seq;
4117 bool reducing_redundancy;
4118 int i;
4119
4120 if (btrfs_fs_closing(fs_info) ||
4121 atomic_read(&fs_info->balance_pause_req) ||
4122 btrfs_should_cancel_balance(fs_info)) {
4123 ret = -EINVAL;
4124 goto out;
4125 }
4126
4127 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4128 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4129 mixed = 1;
4130
4131 /*
4132 * In case of mixed groups both data and meta should be picked,
4133 * and identical options should be given for both of them.
4134 */
4135 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4136 if (mixed && (bctl->flags & allowed)) {
4137 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4138 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4139 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4140 btrfs_err(fs_info,
4141 "balance: mixed groups data and metadata options must be the same");
4142 ret = -EINVAL;
4143 goto out;
4144 }
4145 }
4146
4147 /*
4148 * rw_devices will not change at the moment, device add/delete/replace
4149 * are exclusive
4150 */
4151 num_devices = fs_info->fs_devices->rw_devices;
4152
4153 /*
4154 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4155 * special bit for it, to make it easier to distinguish. Thus we need
4156 * to set it manually, or balance would refuse the profile.
4157 */
4158 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4159 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4160 if (num_devices >= btrfs_raid_array[i].devs_min)
4161 allowed |= btrfs_raid_array[i].bg_flag;
4162
4163 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4164 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4165 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4166 ret = -EINVAL;
4167 goto out;
4168 }
4169
4170 /*
4171 * Allow to reduce metadata or system integrity only if force set for
4172 * profiles with redundancy (copies, parity)
4173 */
4174 allowed = 0;
4175 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4176 if (btrfs_raid_array[i].ncopies >= 2 ||
4177 btrfs_raid_array[i].tolerated_failures >= 1)
4178 allowed |= btrfs_raid_array[i].bg_flag;
4179 }
4180 do {
4181 seq = read_seqbegin(&fs_info->profiles_lock);
4182
4183 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4184 (fs_info->avail_system_alloc_bits & allowed) &&
4185 !(bctl->sys.target & allowed)) ||
4186 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4187 (fs_info->avail_metadata_alloc_bits & allowed) &&
4188 !(bctl->meta.target & allowed)))
4189 reducing_redundancy = true;
4190 else
4191 reducing_redundancy = false;
4192
4193 /* if we're not converting, the target field is uninitialized */
4194 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4195 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4196 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4197 bctl->data.target : fs_info->avail_data_alloc_bits;
4198 } while (read_seqretry(&fs_info->profiles_lock, seq));
4199
4200 if (reducing_redundancy) {
4201 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4202 btrfs_info(fs_info,
4203 "balance: force reducing metadata redundancy");
4204 } else {
4205 btrfs_err(fs_info,
4206 "balance: reduces metadata redundancy, use --force if you want this");
4207 ret = -EINVAL;
4208 goto out;
4209 }
4210 }
4211
4212 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4213 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4214 btrfs_warn(fs_info,
4215 "balance: metadata profile %s has lower redundancy than data profile %s",
4216 btrfs_bg_type_to_raid_name(meta_target),
4217 btrfs_bg_type_to_raid_name(data_target));
4218 }
4219
4220 if (fs_info->send_in_progress) {
4221 btrfs_warn_rl(fs_info,
4222 "cannot run balance while send operations are in progress (%d in progress)",
4223 fs_info->send_in_progress);
4224 ret = -EAGAIN;
4225 goto out;
4226 }
4227
4228 ret = insert_balance_item(fs_info, bctl);
4229 if (ret && ret != -EEXIST)
4230 goto out;
4231
4232 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4233 BUG_ON(ret == -EEXIST);
4234 BUG_ON(fs_info->balance_ctl);
4235 spin_lock(&fs_info->balance_lock);
4236 fs_info->balance_ctl = bctl;
4237 spin_unlock(&fs_info->balance_lock);
4238 } else {
4239 BUG_ON(ret != -EEXIST);
4240 spin_lock(&fs_info->balance_lock);
4241 update_balance_args(bctl);
4242 spin_unlock(&fs_info->balance_lock);
4243 }
4244
4245 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4246 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4247 describe_balance_start_or_resume(fs_info);
4248 mutex_unlock(&fs_info->balance_mutex);
4249
4250 ret = __btrfs_balance(fs_info);
4251
4252 mutex_lock(&fs_info->balance_mutex);
4253 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4254 btrfs_info(fs_info, "balance: paused");
4255 /*
4256 * Balance can be canceled by:
4257 *
4258 * - Regular cancel request
4259 * Then ret == -ECANCELED and balance_cancel_req > 0
4260 *
4261 * - Fatal signal to "btrfs" process
4262 * Either the signal caught by wait_reserve_ticket() and callers
4263 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4264 * got -ECANCELED.
4265 * Either way, in this case balance_cancel_req = 0, and
4266 * ret == -EINTR or ret == -ECANCELED.
4267 *
4268 * So here we only check the return value to catch canceled balance.
4269 */
4270 else if (ret == -ECANCELED || ret == -EINTR)
4271 btrfs_info(fs_info, "balance: canceled");
4272 else
4273 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4274
4275 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4276
4277 if (bargs) {
4278 memset(bargs, 0, sizeof(*bargs));
4279 btrfs_update_ioctl_balance_args(fs_info, bargs);
4280 }
4281
4282 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4283 balance_need_close(fs_info)) {
4284 reset_balance_state(fs_info);
4285 btrfs_exclop_finish(fs_info);
4286 }
4287
4288 wake_up(&fs_info->balance_wait_q);
4289
4290 return ret;
4291 out:
4292 if (bctl->flags & BTRFS_BALANCE_RESUME)
4293 reset_balance_state(fs_info);
4294 else
4295 kfree(bctl);
4296 btrfs_exclop_finish(fs_info);
4297
4298 return ret;
4299 }
4300
4301 static int balance_kthread(void *data)
4302 {
4303 struct btrfs_fs_info *fs_info = data;
4304 int ret = 0;
4305
4306 mutex_lock(&fs_info->balance_mutex);
4307 if (fs_info->balance_ctl)
4308 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4309 mutex_unlock(&fs_info->balance_mutex);
4310
4311 return ret;
4312 }
4313
4314 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4315 {
4316 struct task_struct *tsk;
4317
4318 mutex_lock(&fs_info->balance_mutex);
4319 if (!fs_info->balance_ctl) {
4320 mutex_unlock(&fs_info->balance_mutex);
4321 return 0;
4322 }
4323 mutex_unlock(&fs_info->balance_mutex);
4324
4325 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4326 btrfs_info(fs_info, "balance: resume skipped");
4327 return 0;
4328 }
4329
4330 /*
4331 * A ro->rw remount sequence should continue with the paused balance
4332 * regardless of who pauses it, system or the user as of now, so set
4333 * the resume flag.
4334 */
4335 spin_lock(&fs_info->balance_lock);
4336 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4337 spin_unlock(&fs_info->balance_lock);
4338
4339 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4340 return PTR_ERR_OR_ZERO(tsk);
4341 }
4342
4343 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4344 {
4345 struct btrfs_balance_control *bctl;
4346 struct btrfs_balance_item *item;
4347 struct btrfs_disk_balance_args disk_bargs;
4348 struct btrfs_path *path;
4349 struct extent_buffer *leaf;
4350 struct btrfs_key key;
4351 int ret;
4352
4353 path = btrfs_alloc_path();
4354 if (!path)
4355 return -ENOMEM;
4356
4357 key.objectid = BTRFS_BALANCE_OBJECTID;
4358 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4359 key.offset = 0;
4360
4361 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4362 if (ret < 0)
4363 goto out;
4364 if (ret > 0) { /* ret = -ENOENT; */
4365 ret = 0;
4366 goto out;
4367 }
4368
4369 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4370 if (!bctl) {
4371 ret = -ENOMEM;
4372 goto out;
4373 }
4374
4375 leaf = path->nodes[0];
4376 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4377
4378 bctl->flags = btrfs_balance_flags(leaf, item);
4379 bctl->flags |= BTRFS_BALANCE_RESUME;
4380
4381 btrfs_balance_data(leaf, item, &disk_bargs);
4382 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4383 btrfs_balance_meta(leaf, item, &disk_bargs);
4384 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4385 btrfs_balance_sys(leaf, item, &disk_bargs);
4386 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4387
4388 /*
4389 * This should never happen, as the paused balance state is recovered
4390 * during mount without any chance of other exclusive ops to collide.
4391 *
4392 * This gives the exclusive op status to balance and keeps in paused
4393 * state until user intervention (cancel or umount). If the ownership
4394 * cannot be assigned, show a message but do not fail. The balance
4395 * is in a paused state and must have fs_info::balance_ctl properly
4396 * set up.
4397 */
4398 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4399 btrfs_warn(fs_info,
4400 "balance: cannot set exclusive op status, resume manually");
4401
4402 btrfs_release_path(path);
4403
4404 mutex_lock(&fs_info->balance_mutex);
4405 BUG_ON(fs_info->balance_ctl);
4406 spin_lock(&fs_info->balance_lock);
4407 fs_info->balance_ctl = bctl;
4408 spin_unlock(&fs_info->balance_lock);
4409 mutex_unlock(&fs_info->balance_mutex);
4410 out:
4411 btrfs_free_path(path);
4412 return ret;
4413 }
4414
4415 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4416 {
4417 int ret = 0;
4418
4419 mutex_lock(&fs_info->balance_mutex);
4420 if (!fs_info->balance_ctl) {
4421 mutex_unlock(&fs_info->balance_mutex);
4422 return -ENOTCONN;
4423 }
4424
4425 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4426 atomic_inc(&fs_info->balance_pause_req);
4427 mutex_unlock(&fs_info->balance_mutex);
4428
4429 wait_event(fs_info->balance_wait_q,
4430 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4431
4432 mutex_lock(&fs_info->balance_mutex);
4433 /* we are good with balance_ctl ripped off from under us */
4434 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4435 atomic_dec(&fs_info->balance_pause_req);
4436 } else {
4437 ret = -ENOTCONN;
4438 }
4439
4440 mutex_unlock(&fs_info->balance_mutex);
4441 return ret;
4442 }
4443
4444 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4445 {
4446 mutex_lock(&fs_info->balance_mutex);
4447 if (!fs_info->balance_ctl) {
4448 mutex_unlock(&fs_info->balance_mutex);
4449 return -ENOTCONN;
4450 }
4451
4452 /*
4453 * A paused balance with the item stored on disk can be resumed at
4454 * mount time if the mount is read-write. Otherwise it's still paused
4455 * and we must not allow cancelling as it deletes the item.
4456 */
4457 if (sb_rdonly(fs_info->sb)) {
4458 mutex_unlock(&fs_info->balance_mutex);
4459 return -EROFS;
4460 }
4461
4462 atomic_inc(&fs_info->balance_cancel_req);
4463 /*
4464 * if we are running just wait and return, balance item is
4465 * deleted in btrfs_balance in this case
4466 */
4467 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4468 mutex_unlock(&fs_info->balance_mutex);
4469 wait_event(fs_info->balance_wait_q,
4470 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4471 mutex_lock(&fs_info->balance_mutex);
4472 } else {
4473 mutex_unlock(&fs_info->balance_mutex);
4474 /*
4475 * Lock released to allow other waiters to continue, we'll
4476 * reexamine the status again.
4477 */
4478 mutex_lock(&fs_info->balance_mutex);
4479
4480 if (fs_info->balance_ctl) {
4481 reset_balance_state(fs_info);
4482 btrfs_exclop_finish(fs_info);
4483 btrfs_info(fs_info, "balance: canceled");
4484 }
4485 }
4486
4487 BUG_ON(fs_info->balance_ctl ||
4488 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4489 atomic_dec(&fs_info->balance_cancel_req);
4490 mutex_unlock(&fs_info->balance_mutex);
4491 return 0;
4492 }
4493
4494 int btrfs_uuid_scan_kthread(void *data)
4495 {
4496 struct btrfs_fs_info *fs_info = data;
4497 struct btrfs_root *root = fs_info->tree_root;
4498 struct btrfs_key key;
4499 struct btrfs_path *path = NULL;
4500 int ret = 0;
4501 struct extent_buffer *eb;
4502 int slot;
4503 struct btrfs_root_item root_item;
4504 u32 item_size;
4505 struct btrfs_trans_handle *trans = NULL;
4506 bool closing = false;
4507
4508 path = btrfs_alloc_path();
4509 if (!path) {
4510 ret = -ENOMEM;
4511 goto out;
4512 }
4513
4514 key.objectid = 0;
4515 key.type = BTRFS_ROOT_ITEM_KEY;
4516 key.offset = 0;
4517
4518 while (1) {
4519 if (btrfs_fs_closing(fs_info)) {
4520 closing = true;
4521 break;
4522 }
4523 ret = btrfs_search_forward(root, &key, path,
4524 BTRFS_OLDEST_GENERATION);
4525 if (ret) {
4526 if (ret > 0)
4527 ret = 0;
4528 break;
4529 }
4530
4531 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4532 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4533 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4534 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4535 goto skip;
4536
4537 eb = path->nodes[0];
4538 slot = path->slots[0];
4539 item_size = btrfs_item_size_nr(eb, slot);
4540 if (item_size < sizeof(root_item))
4541 goto skip;
4542
4543 read_extent_buffer(eb, &root_item,
4544 btrfs_item_ptr_offset(eb, slot),
4545 (int)sizeof(root_item));
4546 if (btrfs_root_refs(&root_item) == 0)
4547 goto skip;
4548
4549 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4550 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4551 if (trans)
4552 goto update_tree;
4553
4554 btrfs_release_path(path);
4555 /*
4556 * 1 - subvol uuid item
4557 * 1 - received_subvol uuid item
4558 */
4559 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4560 if (IS_ERR(trans)) {
4561 ret = PTR_ERR(trans);
4562 break;
4563 }
4564 continue;
4565 } else {
4566 goto skip;
4567 }
4568 update_tree:
4569 btrfs_release_path(path);
4570 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4571 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4572 BTRFS_UUID_KEY_SUBVOL,
4573 key.objectid);
4574 if (ret < 0) {
4575 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4576 ret);
4577 break;
4578 }
4579 }
4580
4581 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4582 ret = btrfs_uuid_tree_add(trans,
4583 root_item.received_uuid,
4584 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4585 key.objectid);
4586 if (ret < 0) {
4587 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4588 ret);
4589 break;
4590 }
4591 }
4592
4593 skip:
4594 btrfs_release_path(path);
4595 if (trans) {
4596 ret = btrfs_end_transaction(trans);
4597 trans = NULL;
4598 if (ret)
4599 break;
4600 }
4601
4602 if (key.offset < (u64)-1) {
4603 key.offset++;
4604 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4605 key.offset = 0;
4606 key.type = BTRFS_ROOT_ITEM_KEY;
4607 } else if (key.objectid < (u64)-1) {
4608 key.offset = 0;
4609 key.type = BTRFS_ROOT_ITEM_KEY;
4610 key.objectid++;
4611 } else {
4612 break;
4613 }
4614 cond_resched();
4615 }
4616
4617 out:
4618 btrfs_free_path(path);
4619 if (trans && !IS_ERR(trans))
4620 btrfs_end_transaction(trans);
4621 if (ret)
4622 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4623 else if (!closing)
4624 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4625 up(&fs_info->uuid_tree_rescan_sem);
4626 return 0;
4627 }
4628
4629 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4630 {
4631 struct btrfs_trans_handle *trans;
4632 struct btrfs_root *tree_root = fs_info->tree_root;
4633 struct btrfs_root *uuid_root;
4634 struct task_struct *task;
4635 int ret;
4636
4637 /*
4638 * 1 - root node
4639 * 1 - root item
4640 */
4641 trans = btrfs_start_transaction(tree_root, 2);
4642 if (IS_ERR(trans))
4643 return PTR_ERR(trans);
4644
4645 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4646 if (IS_ERR(uuid_root)) {
4647 ret = PTR_ERR(uuid_root);
4648 btrfs_abort_transaction(trans, ret);
4649 btrfs_end_transaction(trans);
4650 return ret;
4651 }
4652
4653 fs_info->uuid_root = uuid_root;
4654
4655 ret = btrfs_commit_transaction(trans);
4656 if (ret)
4657 return ret;
4658
4659 down(&fs_info->uuid_tree_rescan_sem);
4660 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4661 if (IS_ERR(task)) {
4662 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4663 btrfs_warn(fs_info, "failed to start uuid_scan task");
4664 up(&fs_info->uuid_tree_rescan_sem);
4665 return PTR_ERR(task);
4666 }
4667
4668 return 0;
4669 }
4670
4671 /*
4672 * shrinking a device means finding all of the device extents past
4673 * the new size, and then following the back refs to the chunks.
4674 * The chunk relocation code actually frees the device extent
4675 */
4676 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4677 {
4678 struct btrfs_fs_info *fs_info = device->fs_info;
4679 struct btrfs_root *root = fs_info->dev_root;
4680 struct btrfs_trans_handle *trans;
4681 struct btrfs_dev_extent *dev_extent = NULL;
4682 struct btrfs_path *path;
4683 u64 length;
4684 u64 chunk_offset;
4685 int ret;
4686 int slot;
4687 int failed = 0;
4688 bool retried = false;
4689 struct extent_buffer *l;
4690 struct btrfs_key key;
4691 struct btrfs_super_block *super_copy = fs_info->super_copy;
4692 u64 old_total = btrfs_super_total_bytes(super_copy);
4693 u64 old_size = btrfs_device_get_total_bytes(device);
4694 u64 diff;
4695 u64 start;
4696
4697 new_size = round_down(new_size, fs_info->sectorsize);
4698 start = new_size;
4699 diff = round_down(old_size - new_size, fs_info->sectorsize);
4700
4701 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4702 return -EINVAL;
4703
4704 path = btrfs_alloc_path();
4705 if (!path)
4706 return -ENOMEM;
4707
4708 path->reada = READA_BACK;
4709
4710 trans = btrfs_start_transaction(root, 0);
4711 if (IS_ERR(trans)) {
4712 btrfs_free_path(path);
4713 return PTR_ERR(trans);
4714 }
4715
4716 mutex_lock(&fs_info->chunk_mutex);
4717
4718 btrfs_device_set_total_bytes(device, new_size);
4719 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4720 device->fs_devices->total_rw_bytes -= diff;
4721 atomic64_sub(diff, &fs_info->free_chunk_space);
4722 }
4723
4724 /*
4725 * Once the device's size has been set to the new size, ensure all
4726 * in-memory chunks are synced to disk so that the loop below sees them
4727 * and relocates them accordingly.
4728 */
4729 if (contains_pending_extent(device, &start, diff)) {
4730 mutex_unlock(&fs_info->chunk_mutex);
4731 ret = btrfs_commit_transaction(trans);
4732 if (ret)
4733 goto done;
4734 } else {
4735 mutex_unlock(&fs_info->chunk_mutex);
4736 btrfs_end_transaction(trans);
4737 }
4738
4739 again:
4740 key.objectid = device->devid;
4741 key.offset = (u64)-1;
4742 key.type = BTRFS_DEV_EXTENT_KEY;
4743
4744 do {
4745 mutex_lock(&fs_info->reclaim_bgs_lock);
4746 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4747 if (ret < 0) {
4748 mutex_unlock(&fs_info->reclaim_bgs_lock);
4749 goto done;
4750 }
4751
4752 ret = btrfs_previous_item(root, path, 0, key.type);
4753 if (ret) {
4754 mutex_unlock(&fs_info->reclaim_bgs_lock);
4755 if (ret < 0)
4756 goto done;
4757 ret = 0;
4758 btrfs_release_path(path);
4759 break;
4760 }
4761
4762 l = path->nodes[0];
4763 slot = path->slots[0];
4764 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4765
4766 if (key.objectid != device->devid) {
4767 mutex_unlock(&fs_info->reclaim_bgs_lock);
4768 btrfs_release_path(path);
4769 break;
4770 }
4771
4772 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4773 length = btrfs_dev_extent_length(l, dev_extent);
4774
4775 if (key.offset + length <= new_size) {
4776 mutex_unlock(&fs_info->reclaim_bgs_lock);
4777 btrfs_release_path(path);
4778 break;
4779 }
4780
4781 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4782 btrfs_release_path(path);
4783
4784 /*
4785 * We may be relocating the only data chunk we have,
4786 * which could potentially end up with losing data's
4787 * raid profile, so lets allocate an empty one in
4788 * advance.
4789 */
4790 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4791 if (ret < 0) {
4792 mutex_unlock(&fs_info->reclaim_bgs_lock);
4793 goto done;
4794 }
4795
4796 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4797 mutex_unlock(&fs_info->reclaim_bgs_lock);
4798 if (ret == -ENOSPC) {
4799 failed++;
4800 } else if (ret) {
4801 if (ret == -ETXTBSY) {
4802 btrfs_warn(fs_info,
4803 "could not shrink block group %llu due to active swapfile",
4804 chunk_offset);
4805 }
4806 goto done;
4807 }
4808 } while (key.offset-- > 0);
4809
4810 if (failed && !retried) {
4811 failed = 0;
4812 retried = true;
4813 goto again;
4814 } else if (failed && retried) {
4815 ret = -ENOSPC;
4816 goto done;
4817 }
4818
4819 /* Shrinking succeeded, else we would be at "done". */
4820 trans = btrfs_start_transaction(root, 0);
4821 if (IS_ERR(trans)) {
4822 ret = PTR_ERR(trans);
4823 goto done;
4824 }
4825
4826 mutex_lock(&fs_info->chunk_mutex);
4827 /* Clear all state bits beyond the shrunk device size */
4828 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4829 CHUNK_STATE_MASK);
4830
4831 btrfs_device_set_disk_total_bytes(device, new_size);
4832 if (list_empty(&device->post_commit_list))
4833 list_add_tail(&device->post_commit_list,
4834 &trans->transaction->dev_update_list);
4835
4836 WARN_ON(diff > old_total);
4837 btrfs_set_super_total_bytes(super_copy,
4838 round_down(old_total - diff, fs_info->sectorsize));
4839 mutex_unlock(&fs_info->chunk_mutex);
4840
4841 /* Now btrfs_update_device() will change the on-disk size. */
4842 ret = btrfs_update_device(trans, device);
4843 if (ret < 0) {
4844 btrfs_abort_transaction(trans, ret);
4845 btrfs_end_transaction(trans);
4846 } else {
4847 ret = btrfs_commit_transaction(trans);
4848 }
4849 done:
4850 btrfs_free_path(path);
4851 if (ret) {
4852 mutex_lock(&fs_info->chunk_mutex);
4853 btrfs_device_set_total_bytes(device, old_size);
4854 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4855 device->fs_devices->total_rw_bytes += diff;
4856 atomic64_add(diff, &fs_info->free_chunk_space);
4857 mutex_unlock(&fs_info->chunk_mutex);
4858 }
4859 return ret;
4860 }
4861
4862 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4863 struct btrfs_key *key,
4864 struct btrfs_chunk *chunk, int item_size)
4865 {
4866 struct btrfs_super_block *super_copy = fs_info->super_copy;
4867 struct btrfs_disk_key disk_key;
4868 u32 array_size;
4869 u8 *ptr;
4870
4871 mutex_lock(&fs_info->chunk_mutex);
4872 array_size = btrfs_super_sys_array_size(super_copy);
4873 if (array_size + item_size + sizeof(disk_key)
4874 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4875 mutex_unlock(&fs_info->chunk_mutex);
4876 return -EFBIG;
4877 }
4878
4879 ptr = super_copy->sys_chunk_array + array_size;
4880 btrfs_cpu_key_to_disk(&disk_key, key);
4881 memcpy(ptr, &disk_key, sizeof(disk_key));
4882 ptr += sizeof(disk_key);
4883 memcpy(ptr, chunk, item_size);
4884 item_size += sizeof(disk_key);
4885 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4886 mutex_unlock(&fs_info->chunk_mutex);
4887
4888 return 0;
4889 }
4890
4891 /*
4892 * sort the devices in descending order by max_avail, total_avail
4893 */
4894 static int btrfs_cmp_device_info(const void *a, const void *b)
4895 {
4896 const struct btrfs_device_info *di_a = a;
4897 const struct btrfs_device_info *di_b = b;
4898
4899 if (di_a->max_avail > di_b->max_avail)
4900 return -1;
4901 if (di_a->max_avail < di_b->max_avail)
4902 return 1;
4903 if (di_a->total_avail > di_b->total_avail)
4904 return -1;
4905 if (di_a->total_avail < di_b->total_avail)
4906 return 1;
4907 return 0;
4908 }
4909
4910 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4911 {
4912 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4913 return;
4914
4915 btrfs_set_fs_incompat(info, RAID56);
4916 }
4917
4918 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4919 {
4920 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4921 return;
4922
4923 btrfs_set_fs_incompat(info, RAID1C34);
4924 }
4925
4926 /*
4927 * Structure used internally for __btrfs_alloc_chunk() function.
4928 * Wraps needed parameters.
4929 */
4930 struct alloc_chunk_ctl {
4931 u64 start;
4932 u64 type;
4933 /* Total number of stripes to allocate */
4934 int num_stripes;
4935 /* sub_stripes info for map */
4936 int sub_stripes;
4937 /* Stripes per device */
4938 int dev_stripes;
4939 /* Maximum number of devices to use */
4940 int devs_max;
4941 /* Minimum number of devices to use */
4942 int devs_min;
4943 /* ndevs has to be a multiple of this */
4944 int devs_increment;
4945 /* Number of copies */
4946 int ncopies;
4947 /* Number of stripes worth of bytes to store parity information */
4948 int nparity;
4949 u64 max_stripe_size;
4950 u64 max_chunk_size;
4951 u64 dev_extent_min;
4952 u64 stripe_size;
4953 u64 chunk_size;
4954 int ndevs;
4955 };
4956
4957 static void init_alloc_chunk_ctl_policy_regular(
4958 struct btrfs_fs_devices *fs_devices,
4959 struct alloc_chunk_ctl *ctl)
4960 {
4961 u64 type = ctl->type;
4962
4963 if (type & BTRFS_BLOCK_GROUP_DATA) {
4964 ctl->max_stripe_size = SZ_1G;
4965 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4966 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4967 /* For larger filesystems, use larger metadata chunks */
4968 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4969 ctl->max_stripe_size = SZ_1G;
4970 else
4971 ctl->max_stripe_size = SZ_256M;
4972 ctl->max_chunk_size = ctl->max_stripe_size;
4973 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4974 ctl->max_stripe_size = SZ_32M;
4975 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4976 ctl->devs_max = min_t(int, ctl->devs_max,
4977 BTRFS_MAX_DEVS_SYS_CHUNK);
4978 } else {
4979 BUG();
4980 }
4981
4982 /* We don't want a chunk larger than 10% of writable space */
4983 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4984 ctl->max_chunk_size);
4985 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4986 }
4987
4988 static void init_alloc_chunk_ctl_policy_zoned(
4989 struct btrfs_fs_devices *fs_devices,
4990 struct alloc_chunk_ctl *ctl)
4991 {
4992 u64 zone_size = fs_devices->fs_info->zone_size;
4993 u64 limit;
4994 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
4995 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
4996 u64 min_chunk_size = min_data_stripes * zone_size;
4997 u64 type = ctl->type;
4998
4999 ctl->max_stripe_size = zone_size;
5000 if (type & BTRFS_BLOCK_GROUP_DATA) {
5001 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5002 zone_size);
5003 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5004 ctl->max_chunk_size = ctl->max_stripe_size;
5005 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5006 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5007 ctl->devs_max = min_t(int, ctl->devs_max,
5008 BTRFS_MAX_DEVS_SYS_CHUNK);
5009 } else {
5010 BUG();
5011 }
5012
5013 /* We don't want a chunk larger than 10% of writable space */
5014 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5015 zone_size),
5016 min_chunk_size);
5017 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5018 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5019 }
5020
5021 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5022 struct alloc_chunk_ctl *ctl)
5023 {
5024 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5025
5026 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5027 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5028 ctl->devs_max = btrfs_raid_array[index].devs_max;
5029 if (!ctl->devs_max)
5030 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5031 ctl->devs_min = btrfs_raid_array[index].devs_min;
5032 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5033 ctl->ncopies = btrfs_raid_array[index].ncopies;
5034 ctl->nparity = btrfs_raid_array[index].nparity;
5035 ctl->ndevs = 0;
5036
5037 switch (fs_devices->chunk_alloc_policy) {
5038 case BTRFS_CHUNK_ALLOC_REGULAR:
5039 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5040 break;
5041 case BTRFS_CHUNK_ALLOC_ZONED:
5042 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5043 break;
5044 default:
5045 BUG();
5046 }
5047 }
5048
5049 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5050 struct alloc_chunk_ctl *ctl,
5051 struct btrfs_device_info *devices_info)
5052 {
5053 struct btrfs_fs_info *info = fs_devices->fs_info;
5054 struct btrfs_device *device;
5055 u64 total_avail;
5056 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5057 int ret;
5058 int ndevs = 0;
5059 u64 max_avail;
5060 u64 dev_offset;
5061
5062 /*
5063 * in the first pass through the devices list, we gather information
5064 * about the available holes on each device.
5065 */
5066 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5067 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5068 WARN(1, KERN_ERR
5069 "BTRFS: read-only device in alloc_list\n");
5070 continue;
5071 }
5072
5073 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5074 &device->dev_state) ||
5075 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5076 continue;
5077
5078 if (device->total_bytes > device->bytes_used)
5079 total_avail = device->total_bytes - device->bytes_used;
5080 else
5081 total_avail = 0;
5082
5083 /* If there is no space on this device, skip it. */
5084 if (total_avail < ctl->dev_extent_min)
5085 continue;
5086
5087 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5088 &max_avail);
5089 if (ret && ret != -ENOSPC)
5090 return ret;
5091
5092 if (ret == 0)
5093 max_avail = dev_extent_want;
5094
5095 if (max_avail < ctl->dev_extent_min) {
5096 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5097 btrfs_debug(info,
5098 "%s: devid %llu has no free space, have=%llu want=%llu",
5099 __func__, device->devid, max_avail,
5100 ctl->dev_extent_min);
5101 continue;
5102 }
5103
5104 if (ndevs == fs_devices->rw_devices) {
5105 WARN(1, "%s: found more than %llu devices\n",
5106 __func__, fs_devices->rw_devices);
5107 break;
5108 }
5109 devices_info[ndevs].dev_offset = dev_offset;
5110 devices_info[ndevs].max_avail = max_avail;
5111 devices_info[ndevs].total_avail = total_avail;
5112 devices_info[ndevs].dev = device;
5113 ++ndevs;
5114 }
5115 ctl->ndevs = ndevs;
5116
5117 /*
5118 * now sort the devices by hole size / available space
5119 */
5120 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5121 btrfs_cmp_device_info, NULL);
5122
5123 return 0;
5124 }
5125
5126 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5127 struct btrfs_device_info *devices_info)
5128 {
5129 /* Number of stripes that count for block group size */
5130 int data_stripes;
5131
5132 /*
5133 * The primary goal is to maximize the number of stripes, so use as
5134 * many devices as possible, even if the stripes are not maximum sized.
5135 *
5136 * The DUP profile stores more than one stripe per device, the
5137 * max_avail is the total size so we have to adjust.
5138 */
5139 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5140 ctl->dev_stripes);
5141 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5142
5143 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5144 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5145
5146 /*
5147 * Use the number of data stripes to figure out how big this chunk is
5148 * really going to be in terms of logical address space, and compare
5149 * that answer with the max chunk size. If it's higher, we try to
5150 * reduce stripe_size.
5151 */
5152 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5153 /*
5154 * Reduce stripe_size, round it up to a 16MB boundary again and
5155 * then use it, unless it ends up being even bigger than the
5156 * previous value we had already.
5157 */
5158 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5159 data_stripes), SZ_16M),
5160 ctl->stripe_size);
5161 }
5162
5163 /* Align to BTRFS_STRIPE_LEN */
5164 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5165 ctl->chunk_size = ctl->stripe_size * data_stripes;
5166
5167 return 0;
5168 }
5169
5170 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5171 struct btrfs_device_info *devices_info)
5172 {
5173 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5174 /* Number of stripes that count for block group size */
5175 int data_stripes;
5176
5177 /*
5178 * It should hold because:
5179 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5180 */
5181 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5182
5183 ctl->stripe_size = zone_size;
5184 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5185 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5186
5187 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5188 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5189 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5190 ctl->stripe_size) + ctl->nparity,
5191 ctl->dev_stripes);
5192 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5193 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5194 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5195 }
5196
5197 ctl->chunk_size = ctl->stripe_size * data_stripes;
5198
5199 return 0;
5200 }
5201
5202 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5203 struct alloc_chunk_ctl *ctl,
5204 struct btrfs_device_info *devices_info)
5205 {
5206 struct btrfs_fs_info *info = fs_devices->fs_info;
5207
5208 /*
5209 * Round down to number of usable stripes, devs_increment can be any
5210 * number so we can't use round_down() that requires power of 2, while
5211 * rounddown is safe.
5212 */
5213 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5214
5215 if (ctl->ndevs < ctl->devs_min) {
5216 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5217 btrfs_debug(info,
5218 "%s: not enough devices with free space: have=%d minimum required=%d",
5219 __func__, ctl->ndevs, ctl->devs_min);
5220 }
5221 return -ENOSPC;
5222 }
5223
5224 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5225
5226 switch (fs_devices->chunk_alloc_policy) {
5227 case BTRFS_CHUNK_ALLOC_REGULAR:
5228 return decide_stripe_size_regular(ctl, devices_info);
5229 case BTRFS_CHUNK_ALLOC_ZONED:
5230 return decide_stripe_size_zoned(ctl, devices_info);
5231 default:
5232 BUG();
5233 }
5234 }
5235
5236 static int create_chunk(struct btrfs_trans_handle *trans,
5237 struct alloc_chunk_ctl *ctl,
5238 struct btrfs_device_info *devices_info)
5239 {
5240 struct btrfs_fs_info *info = trans->fs_info;
5241 struct map_lookup *map = NULL;
5242 struct extent_map_tree *em_tree;
5243 struct extent_map *em;
5244 u64 start = ctl->start;
5245 u64 type = ctl->type;
5246 int ret;
5247 int i;
5248 int j;
5249
5250 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5251 if (!map)
5252 return -ENOMEM;
5253 map->num_stripes = ctl->num_stripes;
5254
5255 for (i = 0; i < ctl->ndevs; ++i) {
5256 for (j = 0; j < ctl->dev_stripes; ++j) {
5257 int s = i * ctl->dev_stripes + j;
5258 map->stripes[s].dev = devices_info[i].dev;
5259 map->stripes[s].physical = devices_info[i].dev_offset +
5260 j * ctl->stripe_size;
5261 }
5262 }
5263 map->stripe_len = BTRFS_STRIPE_LEN;
5264 map->io_align = BTRFS_STRIPE_LEN;
5265 map->io_width = BTRFS_STRIPE_LEN;
5266 map->type = type;
5267 map->sub_stripes = ctl->sub_stripes;
5268
5269 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5270
5271 em = alloc_extent_map();
5272 if (!em) {
5273 kfree(map);
5274 return -ENOMEM;
5275 }
5276 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5277 em->map_lookup = map;
5278 em->start = start;
5279 em->len = ctl->chunk_size;
5280 em->block_start = 0;
5281 em->block_len = em->len;
5282 em->orig_block_len = ctl->stripe_size;
5283
5284 em_tree = &info->mapping_tree;
5285 write_lock(&em_tree->lock);
5286 ret = add_extent_mapping(em_tree, em, 0);
5287 if (ret) {
5288 write_unlock(&em_tree->lock);
5289 free_extent_map(em);
5290 return ret;
5291 }
5292 write_unlock(&em_tree->lock);
5293
5294 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5295 if (ret)
5296 goto error_del_extent;
5297
5298 for (i = 0; i < map->num_stripes; i++) {
5299 struct btrfs_device *dev = map->stripes[i].dev;
5300
5301 btrfs_device_set_bytes_used(dev,
5302 dev->bytes_used + ctl->stripe_size);
5303 if (list_empty(&dev->post_commit_list))
5304 list_add_tail(&dev->post_commit_list,
5305 &trans->transaction->dev_update_list);
5306 }
5307
5308 atomic64_sub(ctl->stripe_size * map->num_stripes,
5309 &info->free_chunk_space);
5310
5311 free_extent_map(em);
5312 check_raid56_incompat_flag(info, type);
5313 check_raid1c34_incompat_flag(info, type);
5314
5315 return 0;
5316
5317 error_del_extent:
5318 write_lock(&em_tree->lock);
5319 remove_extent_mapping(em_tree, em);
5320 write_unlock(&em_tree->lock);
5321
5322 /* One for our allocation */
5323 free_extent_map(em);
5324 /* One for the tree reference */
5325 free_extent_map(em);
5326
5327 return ret;
5328 }
5329
5330 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5331 {
5332 struct btrfs_fs_info *info = trans->fs_info;
5333 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5334 struct btrfs_device_info *devices_info = NULL;
5335 struct alloc_chunk_ctl ctl;
5336 int ret;
5337
5338 lockdep_assert_held(&info->chunk_mutex);
5339
5340 if (!alloc_profile_is_valid(type, 0)) {
5341 ASSERT(0);
5342 return -EINVAL;
5343 }
5344
5345 if (list_empty(&fs_devices->alloc_list)) {
5346 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5347 btrfs_debug(info, "%s: no writable device", __func__);
5348 return -ENOSPC;
5349 }
5350
5351 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5352 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5353 ASSERT(0);
5354 return -EINVAL;
5355 }
5356
5357 ctl.start = find_next_chunk(info);
5358 ctl.type = type;
5359 init_alloc_chunk_ctl(fs_devices, &ctl);
5360
5361 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5362 GFP_NOFS);
5363 if (!devices_info)
5364 return -ENOMEM;
5365
5366 ret = gather_device_info(fs_devices, &ctl, devices_info);
5367 if (ret < 0)
5368 goto out;
5369
5370 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5371 if (ret < 0)
5372 goto out;
5373
5374 ret = create_chunk(trans, &ctl, devices_info);
5375
5376 out:
5377 kfree(devices_info);
5378 return ret;
5379 }
5380
5381 /*
5382 * Chunk allocation falls into two parts. The first part does work
5383 * that makes the new allocated chunk usable, but does not do any operation
5384 * that modifies the chunk tree. The second part does the work that
5385 * requires modifying the chunk tree. This division is important for the
5386 * bootstrap process of adding storage to a seed btrfs.
5387 */
5388 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5389 u64 chunk_offset, u64 chunk_size)
5390 {
5391 struct btrfs_fs_info *fs_info = trans->fs_info;
5392 struct btrfs_root *extent_root = fs_info->extent_root;
5393 struct btrfs_root *chunk_root = fs_info->chunk_root;
5394 struct btrfs_key key;
5395 struct btrfs_device *device;
5396 struct btrfs_chunk *chunk;
5397 struct btrfs_stripe *stripe;
5398 struct extent_map *em;
5399 struct map_lookup *map;
5400 size_t item_size;
5401 u64 dev_offset;
5402 u64 stripe_size;
5403 int i = 0;
5404 int ret = 0;
5405
5406 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5407 if (IS_ERR(em))
5408 return PTR_ERR(em);
5409
5410 map = em->map_lookup;
5411 item_size = btrfs_chunk_item_size(map->num_stripes);
5412 stripe_size = em->orig_block_len;
5413
5414 chunk = kzalloc(item_size, GFP_NOFS);
5415 if (!chunk) {
5416 ret = -ENOMEM;
5417 goto out;
5418 }
5419
5420 /*
5421 * Take the device list mutex to prevent races with the final phase of
5422 * a device replace operation that replaces the device object associated
5423 * with the map's stripes, because the device object's id can change
5424 * at any time during that final phase of the device replace operation
5425 * (dev-replace.c:btrfs_dev_replace_finishing()).
5426 */
5427 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5428 for (i = 0; i < map->num_stripes; i++) {
5429 device = map->stripes[i].dev;
5430 dev_offset = map->stripes[i].physical;
5431
5432 ret = btrfs_update_device(trans, device);
5433 if (ret)
5434 break;
5435 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5436 dev_offset, stripe_size);
5437 if (ret)
5438 break;
5439 }
5440 if (ret) {
5441 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5442 goto out;
5443 }
5444
5445 stripe = &chunk->stripe;
5446 for (i = 0; i < map->num_stripes; i++) {
5447 device = map->stripes[i].dev;
5448 dev_offset = map->stripes[i].physical;
5449
5450 btrfs_set_stack_stripe_devid(stripe, device->devid);
5451 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5452 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5453 stripe++;
5454 }
5455 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5456
5457 btrfs_set_stack_chunk_length(chunk, chunk_size);
5458 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5459 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5460 btrfs_set_stack_chunk_type(chunk, map->type);
5461 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5462 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5463 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5464 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5465 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5466
5467 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5468 key.type = BTRFS_CHUNK_ITEM_KEY;
5469 key.offset = chunk_offset;
5470
5471 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5472 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5473 /*
5474 * TODO: Cleanup of inserted chunk root in case of
5475 * failure.
5476 */
5477 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5478 }
5479
5480 out:
5481 kfree(chunk);
5482 free_extent_map(em);
5483 return ret;
5484 }
5485
5486 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5487 {
5488 struct btrfs_fs_info *fs_info = trans->fs_info;
5489 u64 alloc_profile;
5490 int ret;
5491
5492 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5493 ret = btrfs_alloc_chunk(trans, alloc_profile);
5494 if (ret)
5495 return ret;
5496
5497 alloc_profile = btrfs_system_alloc_profile(fs_info);
5498 ret = btrfs_alloc_chunk(trans, alloc_profile);
5499 return ret;
5500 }
5501
5502 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5503 {
5504 const int index = btrfs_bg_flags_to_raid_index(map->type);
5505
5506 return btrfs_raid_array[index].tolerated_failures;
5507 }
5508
5509 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5510 {
5511 struct extent_map *em;
5512 struct map_lookup *map;
5513 int readonly = 0;
5514 int miss_ndevs = 0;
5515 int i;
5516
5517 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5518 if (IS_ERR(em))
5519 return 1;
5520
5521 map = em->map_lookup;
5522 for (i = 0; i < map->num_stripes; i++) {
5523 if (test_bit(BTRFS_DEV_STATE_MISSING,
5524 &map->stripes[i].dev->dev_state)) {
5525 miss_ndevs++;
5526 continue;
5527 }
5528 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5529 &map->stripes[i].dev->dev_state)) {
5530 readonly = 1;
5531 goto end;
5532 }
5533 }
5534
5535 /*
5536 * If the number of missing devices is larger than max errors,
5537 * we can not write the data into that chunk successfully, so
5538 * set it readonly.
5539 */
5540 if (miss_ndevs > btrfs_chunk_max_errors(map))
5541 readonly = 1;
5542 end:
5543 free_extent_map(em);
5544 return readonly;
5545 }
5546
5547 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5548 {
5549 struct extent_map *em;
5550
5551 while (1) {
5552 write_lock(&tree->lock);
5553 em = lookup_extent_mapping(tree, 0, (u64)-1);
5554 if (em)
5555 remove_extent_mapping(tree, em);
5556 write_unlock(&tree->lock);
5557 if (!em)
5558 break;
5559 /* once for us */
5560 free_extent_map(em);
5561 /* once for the tree */
5562 free_extent_map(em);
5563 }
5564 }
5565
5566 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5567 {
5568 struct extent_map *em;
5569 struct map_lookup *map;
5570 int ret;
5571
5572 em = btrfs_get_chunk_map(fs_info, logical, len);
5573 if (IS_ERR(em))
5574 /*
5575 * We could return errors for these cases, but that could get
5576 * ugly and we'd probably do the same thing which is just not do
5577 * anything else and exit, so return 1 so the callers don't try
5578 * to use other copies.
5579 */
5580 return 1;
5581
5582 map = em->map_lookup;
5583 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5584 ret = map->num_stripes;
5585 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5586 ret = map->sub_stripes;
5587 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5588 ret = 2;
5589 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5590 /*
5591 * There could be two corrupted data stripes, we need
5592 * to loop retry in order to rebuild the correct data.
5593 *
5594 * Fail a stripe at a time on every retry except the
5595 * stripe under reconstruction.
5596 */
5597 ret = map->num_stripes;
5598 else
5599 ret = 1;
5600 free_extent_map(em);
5601
5602 down_read(&fs_info->dev_replace.rwsem);
5603 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5604 fs_info->dev_replace.tgtdev)
5605 ret++;
5606 up_read(&fs_info->dev_replace.rwsem);
5607
5608 return ret;
5609 }
5610
5611 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5612 u64 logical)
5613 {
5614 struct extent_map *em;
5615 struct map_lookup *map;
5616 unsigned long len = fs_info->sectorsize;
5617
5618 em = btrfs_get_chunk_map(fs_info, logical, len);
5619
5620 if (!WARN_ON(IS_ERR(em))) {
5621 map = em->map_lookup;
5622 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5623 len = map->stripe_len * nr_data_stripes(map);
5624 free_extent_map(em);
5625 }
5626 return len;
5627 }
5628
5629 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5630 {
5631 struct extent_map *em;
5632 struct map_lookup *map;
5633 int ret = 0;
5634
5635 em = btrfs_get_chunk_map(fs_info, logical, len);
5636
5637 if(!WARN_ON(IS_ERR(em))) {
5638 map = em->map_lookup;
5639 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5640 ret = 1;
5641 free_extent_map(em);
5642 }
5643 return ret;
5644 }
5645
5646 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5647 struct map_lookup *map, int first,
5648 int dev_replace_is_ongoing)
5649 {
5650 int i;
5651 int num_stripes;
5652 int preferred_mirror;
5653 int tolerance;
5654 struct btrfs_device *srcdev;
5655
5656 ASSERT((map->type &
5657 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5658
5659 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5660 num_stripes = map->sub_stripes;
5661 else
5662 num_stripes = map->num_stripes;
5663
5664 switch (fs_info->fs_devices->read_policy) {
5665 default:
5666 /* Shouldn't happen, just warn and use pid instead of failing */
5667 btrfs_warn_rl(fs_info,
5668 "unknown read_policy type %u, reset to pid",
5669 fs_info->fs_devices->read_policy);
5670 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5671 fallthrough;
5672 case BTRFS_READ_POLICY_PID:
5673 preferred_mirror = first + (current->pid % num_stripes);
5674 break;
5675 }
5676
5677 if (dev_replace_is_ongoing &&
5678 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5679 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5680 srcdev = fs_info->dev_replace.srcdev;
5681 else
5682 srcdev = NULL;
5683
5684 /*
5685 * try to avoid the drive that is the source drive for a
5686 * dev-replace procedure, only choose it if no other non-missing
5687 * mirror is available
5688 */
5689 for (tolerance = 0; tolerance < 2; tolerance++) {
5690 if (map->stripes[preferred_mirror].dev->bdev &&
5691 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5692 return preferred_mirror;
5693 for (i = first; i < first + num_stripes; i++) {
5694 if (map->stripes[i].dev->bdev &&
5695 (tolerance || map->stripes[i].dev != srcdev))
5696 return i;
5697 }
5698 }
5699
5700 /* we couldn't find one that doesn't fail. Just return something
5701 * and the io error handling code will clean up eventually
5702 */
5703 return preferred_mirror;
5704 }
5705
5706 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5707 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5708 {
5709 int i;
5710 int again = 1;
5711
5712 while (again) {
5713 again = 0;
5714 for (i = 0; i < num_stripes - 1; i++) {
5715 /* Swap if parity is on a smaller index */
5716 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5717 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5718 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5719 again = 1;
5720 }
5721 }
5722 }
5723 }
5724
5725 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5726 {
5727 struct btrfs_bio *bbio = kzalloc(
5728 /* the size of the btrfs_bio */
5729 sizeof(struct btrfs_bio) +
5730 /* plus the variable array for the stripes */
5731 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5732 /* plus the variable array for the tgt dev */
5733 sizeof(int) * (real_stripes) +
5734 /*
5735 * plus the raid_map, which includes both the tgt dev
5736 * and the stripes
5737 */
5738 sizeof(u64) * (total_stripes),
5739 GFP_NOFS|__GFP_NOFAIL);
5740
5741 atomic_set(&bbio->error, 0);
5742 refcount_set(&bbio->refs, 1);
5743
5744 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5745 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5746
5747 return bbio;
5748 }
5749
5750 void btrfs_get_bbio(struct btrfs_bio *bbio)
5751 {
5752 WARN_ON(!refcount_read(&bbio->refs));
5753 refcount_inc(&bbio->refs);
5754 }
5755
5756 void btrfs_put_bbio(struct btrfs_bio *bbio)
5757 {
5758 if (!bbio)
5759 return;
5760 if (refcount_dec_and_test(&bbio->refs))
5761 kfree(bbio);
5762 }
5763
5764 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5765 /*
5766 * Please note that, discard won't be sent to target device of device
5767 * replace.
5768 */
5769 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5770 u64 logical, u64 *length_ret,
5771 struct btrfs_bio **bbio_ret)
5772 {
5773 struct extent_map *em;
5774 struct map_lookup *map;
5775 struct btrfs_bio *bbio;
5776 u64 length = *length_ret;
5777 u64 offset;
5778 u64 stripe_nr;
5779 u64 stripe_nr_end;
5780 u64 stripe_end_offset;
5781 u64 stripe_cnt;
5782 u64 stripe_len;
5783 u64 stripe_offset;
5784 u64 num_stripes;
5785 u32 stripe_index;
5786 u32 factor = 0;
5787 u32 sub_stripes = 0;
5788 u64 stripes_per_dev = 0;
5789 u32 remaining_stripes = 0;
5790 u32 last_stripe = 0;
5791 int ret = 0;
5792 int i;
5793
5794 /* discard always return a bbio */
5795 ASSERT(bbio_ret);
5796
5797 em = btrfs_get_chunk_map(fs_info, logical, length);
5798 if (IS_ERR(em))
5799 return PTR_ERR(em);
5800
5801 map = em->map_lookup;
5802 /* we don't discard raid56 yet */
5803 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5804 ret = -EOPNOTSUPP;
5805 goto out;
5806 }
5807
5808 offset = logical - em->start;
5809 length = min_t(u64, em->start + em->len - logical, length);
5810 *length_ret = length;
5811
5812 stripe_len = map->stripe_len;
5813 /*
5814 * stripe_nr counts the total number of stripes we have to stride
5815 * to get to this block
5816 */
5817 stripe_nr = div64_u64(offset, stripe_len);
5818
5819 /* stripe_offset is the offset of this block in its stripe */
5820 stripe_offset = offset - stripe_nr * stripe_len;
5821
5822 stripe_nr_end = round_up(offset + length, map->stripe_len);
5823 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5824 stripe_cnt = stripe_nr_end - stripe_nr;
5825 stripe_end_offset = stripe_nr_end * map->stripe_len -
5826 (offset + length);
5827 /*
5828 * after this, stripe_nr is the number of stripes on this
5829 * device we have to walk to find the data, and stripe_index is
5830 * the number of our device in the stripe array
5831 */
5832 num_stripes = 1;
5833 stripe_index = 0;
5834 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5835 BTRFS_BLOCK_GROUP_RAID10)) {
5836 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5837 sub_stripes = 1;
5838 else
5839 sub_stripes = map->sub_stripes;
5840
5841 factor = map->num_stripes / sub_stripes;
5842 num_stripes = min_t(u64, map->num_stripes,
5843 sub_stripes * stripe_cnt);
5844 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5845 stripe_index *= sub_stripes;
5846 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5847 &remaining_stripes);
5848 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5849 last_stripe *= sub_stripes;
5850 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5851 BTRFS_BLOCK_GROUP_DUP)) {
5852 num_stripes = map->num_stripes;
5853 } else {
5854 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5855 &stripe_index);
5856 }
5857
5858 bbio = alloc_btrfs_bio(num_stripes, 0);
5859 if (!bbio) {
5860 ret = -ENOMEM;
5861 goto out;
5862 }
5863
5864 for (i = 0; i < num_stripes; i++) {
5865 bbio->stripes[i].physical =
5866 map->stripes[stripe_index].physical +
5867 stripe_offset + stripe_nr * map->stripe_len;
5868 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5869
5870 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5871 BTRFS_BLOCK_GROUP_RAID10)) {
5872 bbio->stripes[i].length = stripes_per_dev *
5873 map->stripe_len;
5874
5875 if (i / sub_stripes < remaining_stripes)
5876 bbio->stripes[i].length +=
5877 map->stripe_len;
5878
5879 /*
5880 * Special for the first stripe and
5881 * the last stripe:
5882 *
5883 * |-------|...|-------|
5884 * |----------|
5885 * off end_off
5886 */
5887 if (i < sub_stripes)
5888 bbio->stripes[i].length -=
5889 stripe_offset;
5890
5891 if (stripe_index >= last_stripe &&
5892 stripe_index <= (last_stripe +
5893 sub_stripes - 1))
5894 bbio->stripes[i].length -=
5895 stripe_end_offset;
5896
5897 if (i == sub_stripes - 1)
5898 stripe_offset = 0;
5899 } else {
5900 bbio->stripes[i].length = length;
5901 }
5902
5903 stripe_index++;
5904 if (stripe_index == map->num_stripes) {
5905 stripe_index = 0;
5906 stripe_nr++;
5907 }
5908 }
5909
5910 *bbio_ret = bbio;
5911 bbio->map_type = map->type;
5912 bbio->num_stripes = num_stripes;
5913 out:
5914 free_extent_map(em);
5915 return ret;
5916 }
5917
5918 /*
5919 * In dev-replace case, for repair case (that's the only case where the mirror
5920 * is selected explicitly when calling btrfs_map_block), blocks left of the
5921 * left cursor can also be read from the target drive.
5922 *
5923 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5924 * array of stripes.
5925 * For READ, it also needs to be supported using the same mirror number.
5926 *
5927 * If the requested block is not left of the left cursor, EIO is returned. This
5928 * can happen because btrfs_num_copies() returns one more in the dev-replace
5929 * case.
5930 */
5931 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5932 u64 logical, u64 length,
5933 u64 srcdev_devid, int *mirror_num,
5934 u64 *physical)
5935 {
5936 struct btrfs_bio *bbio = NULL;
5937 int num_stripes;
5938 int index_srcdev = 0;
5939 int found = 0;
5940 u64 physical_of_found = 0;
5941 int i;
5942 int ret = 0;
5943
5944 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5945 logical, &length, &bbio, 0, 0);
5946 if (ret) {
5947 ASSERT(bbio == NULL);
5948 return ret;
5949 }
5950
5951 num_stripes = bbio->num_stripes;
5952 if (*mirror_num > num_stripes) {
5953 /*
5954 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5955 * that means that the requested area is not left of the left
5956 * cursor
5957 */
5958 btrfs_put_bbio(bbio);
5959 return -EIO;
5960 }
5961
5962 /*
5963 * process the rest of the function using the mirror_num of the source
5964 * drive. Therefore look it up first. At the end, patch the device
5965 * pointer to the one of the target drive.
5966 */
5967 for (i = 0; i < num_stripes; i++) {
5968 if (bbio->stripes[i].dev->devid != srcdev_devid)
5969 continue;
5970
5971 /*
5972 * In case of DUP, in order to keep it simple, only add the
5973 * mirror with the lowest physical address
5974 */
5975 if (found &&
5976 physical_of_found <= bbio->stripes[i].physical)
5977 continue;
5978
5979 index_srcdev = i;
5980 found = 1;
5981 physical_of_found = bbio->stripes[i].physical;
5982 }
5983
5984 btrfs_put_bbio(bbio);
5985
5986 ASSERT(found);
5987 if (!found)
5988 return -EIO;
5989
5990 *mirror_num = index_srcdev + 1;
5991 *physical = physical_of_found;
5992 return ret;
5993 }
5994
5995 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
5996 {
5997 struct btrfs_block_group *cache;
5998 bool ret;
5999
6000 /* Non zoned filesystem does not use "to_copy" flag */
6001 if (!btrfs_is_zoned(fs_info))
6002 return false;
6003
6004 cache = btrfs_lookup_block_group(fs_info, logical);
6005
6006 spin_lock(&cache->lock);
6007 ret = cache->to_copy;
6008 spin_unlock(&cache->lock);
6009
6010 btrfs_put_block_group(cache);
6011 return ret;
6012 }
6013
6014 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6015 struct btrfs_bio **bbio_ret,
6016 struct btrfs_dev_replace *dev_replace,
6017 u64 logical,
6018 int *num_stripes_ret, int *max_errors_ret)
6019 {
6020 struct btrfs_bio *bbio = *bbio_ret;
6021 u64 srcdev_devid = dev_replace->srcdev->devid;
6022 int tgtdev_indexes = 0;
6023 int num_stripes = *num_stripes_ret;
6024 int max_errors = *max_errors_ret;
6025 int i;
6026
6027 if (op == BTRFS_MAP_WRITE) {
6028 int index_where_to_add;
6029
6030 /*
6031 * A block group which have "to_copy" set will eventually
6032 * copied by dev-replace process. We can avoid cloning IO here.
6033 */
6034 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6035 return;
6036
6037 /*
6038 * duplicate the write operations while the dev replace
6039 * procedure is running. Since the copying of the old disk to
6040 * the new disk takes place at run time while the filesystem is
6041 * mounted writable, the regular write operations to the old
6042 * disk have to be duplicated to go to the new disk as well.
6043 *
6044 * Note that device->missing is handled by the caller, and that
6045 * the write to the old disk is already set up in the stripes
6046 * array.
6047 */
6048 index_where_to_add = num_stripes;
6049 for (i = 0; i < num_stripes; i++) {
6050 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6051 /* write to new disk, too */
6052 struct btrfs_bio_stripe *new =
6053 bbio->stripes + index_where_to_add;
6054 struct btrfs_bio_stripe *old =
6055 bbio->stripes + i;
6056
6057 new->physical = old->physical;
6058 new->length = old->length;
6059 new->dev = dev_replace->tgtdev;
6060 bbio->tgtdev_map[i] = index_where_to_add;
6061 index_where_to_add++;
6062 max_errors++;
6063 tgtdev_indexes++;
6064 }
6065 }
6066 num_stripes = index_where_to_add;
6067 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6068 int index_srcdev = 0;
6069 int found = 0;
6070 u64 physical_of_found = 0;
6071
6072 /*
6073 * During the dev-replace procedure, the target drive can also
6074 * be used to read data in case it is needed to repair a corrupt
6075 * block elsewhere. This is possible if the requested area is
6076 * left of the left cursor. In this area, the target drive is a
6077 * full copy of the source drive.
6078 */
6079 for (i = 0; i < num_stripes; i++) {
6080 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6081 /*
6082 * In case of DUP, in order to keep it simple,
6083 * only add the mirror with the lowest physical
6084 * address
6085 */
6086 if (found &&
6087 physical_of_found <=
6088 bbio->stripes[i].physical)
6089 continue;
6090 index_srcdev = i;
6091 found = 1;
6092 physical_of_found = bbio->stripes[i].physical;
6093 }
6094 }
6095 if (found) {
6096 struct btrfs_bio_stripe *tgtdev_stripe =
6097 bbio->stripes + num_stripes;
6098
6099 tgtdev_stripe->physical = physical_of_found;
6100 tgtdev_stripe->length =
6101 bbio->stripes[index_srcdev].length;
6102 tgtdev_stripe->dev = dev_replace->tgtdev;
6103 bbio->tgtdev_map[index_srcdev] = num_stripes;
6104
6105 tgtdev_indexes++;
6106 num_stripes++;
6107 }
6108 }
6109
6110 *num_stripes_ret = num_stripes;
6111 *max_errors_ret = max_errors;
6112 bbio->num_tgtdevs = tgtdev_indexes;
6113 *bbio_ret = bbio;
6114 }
6115
6116 static bool need_full_stripe(enum btrfs_map_op op)
6117 {
6118 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6119 }
6120
6121 /*
6122 * Calculate the geometry of a particular (address, len) tuple. This
6123 * information is used to calculate how big a particular bio can get before it
6124 * straddles a stripe.
6125 *
6126 * @fs_info: the filesystem
6127 * @em: mapping containing the logical extent
6128 * @op: type of operation - write or read
6129 * @logical: address that we want to figure out the geometry of
6130 * @len: the length of IO we are going to perform, starting at @logical
6131 * @io_geom: pointer used to return values
6132 *
6133 * Returns < 0 in case a chunk for the given logical address cannot be found,
6134 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6135 */
6136 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6137 enum btrfs_map_op op, u64 logical, u64 len,
6138 struct btrfs_io_geometry *io_geom)
6139 {
6140 struct map_lookup *map;
6141 u64 offset;
6142 u64 stripe_offset;
6143 u64 stripe_nr;
6144 u64 stripe_len;
6145 u64 raid56_full_stripe_start = (u64)-1;
6146 int data_stripes;
6147
6148 ASSERT(op != BTRFS_MAP_DISCARD);
6149
6150 map = em->map_lookup;
6151 /* Offset of this logical address in the chunk */
6152 offset = logical - em->start;
6153 /* Len of a stripe in a chunk */
6154 stripe_len = map->stripe_len;
6155 /* Stripe wher this block falls in */
6156 stripe_nr = div64_u64(offset, stripe_len);
6157 /* Offset of stripe in the chunk */
6158 stripe_offset = stripe_nr * stripe_len;
6159 if (offset < stripe_offset) {
6160 btrfs_crit(fs_info,
6161 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6162 stripe_offset, offset, em->start, logical, stripe_len);
6163 return -EINVAL;
6164 }
6165
6166 /* stripe_offset is the offset of this block in its stripe */
6167 stripe_offset = offset - stripe_offset;
6168 data_stripes = nr_data_stripes(map);
6169
6170 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6171 u64 max_len = stripe_len - stripe_offset;
6172
6173 /*
6174 * In case of raid56, we need to know the stripe aligned start
6175 */
6176 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6177 unsigned long full_stripe_len = stripe_len * data_stripes;
6178 raid56_full_stripe_start = offset;
6179
6180 /*
6181 * Allow a write of a full stripe, but make sure we
6182 * don't allow straddling of stripes
6183 */
6184 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6185 full_stripe_len);
6186 raid56_full_stripe_start *= full_stripe_len;
6187
6188 /*
6189 * For writes to RAID[56], allow a full stripeset across
6190 * all disks. For other RAID types and for RAID[56]
6191 * reads, just allow a single stripe (on a single disk).
6192 */
6193 if (op == BTRFS_MAP_WRITE) {
6194 max_len = stripe_len * data_stripes -
6195 (offset - raid56_full_stripe_start);
6196 }
6197 }
6198 len = min_t(u64, em->len - offset, max_len);
6199 } else {
6200 len = em->len - offset;
6201 }
6202
6203 io_geom->len = len;
6204 io_geom->offset = offset;
6205 io_geom->stripe_len = stripe_len;
6206 io_geom->stripe_nr = stripe_nr;
6207 io_geom->stripe_offset = stripe_offset;
6208 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6209
6210 return 0;
6211 }
6212
6213 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6214 enum btrfs_map_op op,
6215 u64 logical, u64 *length,
6216 struct btrfs_bio **bbio_ret,
6217 int mirror_num, int need_raid_map)
6218 {
6219 struct extent_map *em;
6220 struct map_lookup *map;
6221 u64 stripe_offset;
6222 u64 stripe_nr;
6223 u64 stripe_len;
6224 u32 stripe_index;
6225 int data_stripes;
6226 int i;
6227 int ret = 0;
6228 int num_stripes;
6229 int max_errors = 0;
6230 int tgtdev_indexes = 0;
6231 struct btrfs_bio *bbio = NULL;
6232 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6233 int dev_replace_is_ongoing = 0;
6234 int num_alloc_stripes;
6235 int patch_the_first_stripe_for_dev_replace = 0;
6236 u64 physical_to_patch_in_first_stripe = 0;
6237 u64 raid56_full_stripe_start = (u64)-1;
6238 struct btrfs_io_geometry geom;
6239
6240 ASSERT(bbio_ret);
6241 ASSERT(op != BTRFS_MAP_DISCARD);
6242
6243 em = btrfs_get_chunk_map(fs_info, logical, *length);
6244 ASSERT(!IS_ERR(em));
6245
6246 ret = btrfs_get_io_geometry(fs_info, em, op, logical, *length, &geom);
6247 if (ret < 0)
6248 return ret;
6249
6250 map = em->map_lookup;
6251
6252 *length = geom.len;
6253 stripe_len = geom.stripe_len;
6254 stripe_nr = geom.stripe_nr;
6255 stripe_offset = geom.stripe_offset;
6256 raid56_full_stripe_start = geom.raid56_stripe_offset;
6257 data_stripes = nr_data_stripes(map);
6258
6259 down_read(&dev_replace->rwsem);
6260 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6261 /*
6262 * Hold the semaphore for read during the whole operation, write is
6263 * requested at commit time but must wait.
6264 */
6265 if (!dev_replace_is_ongoing)
6266 up_read(&dev_replace->rwsem);
6267
6268 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6269 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6270 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6271 dev_replace->srcdev->devid,
6272 &mirror_num,
6273 &physical_to_patch_in_first_stripe);
6274 if (ret)
6275 goto out;
6276 else
6277 patch_the_first_stripe_for_dev_replace = 1;
6278 } else if (mirror_num > map->num_stripes) {
6279 mirror_num = 0;
6280 }
6281
6282 num_stripes = 1;
6283 stripe_index = 0;
6284 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6285 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6286 &stripe_index);
6287 if (!need_full_stripe(op))
6288 mirror_num = 1;
6289 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6290 if (need_full_stripe(op))
6291 num_stripes = map->num_stripes;
6292 else if (mirror_num)
6293 stripe_index = mirror_num - 1;
6294 else {
6295 stripe_index = find_live_mirror(fs_info, map, 0,
6296 dev_replace_is_ongoing);
6297 mirror_num = stripe_index + 1;
6298 }
6299
6300 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6301 if (need_full_stripe(op)) {
6302 num_stripes = map->num_stripes;
6303 } else if (mirror_num) {
6304 stripe_index = mirror_num - 1;
6305 } else {
6306 mirror_num = 1;
6307 }
6308
6309 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6310 u32 factor = map->num_stripes / map->sub_stripes;
6311
6312 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6313 stripe_index *= map->sub_stripes;
6314
6315 if (need_full_stripe(op))
6316 num_stripes = map->sub_stripes;
6317 else if (mirror_num)
6318 stripe_index += mirror_num - 1;
6319 else {
6320 int old_stripe_index = stripe_index;
6321 stripe_index = find_live_mirror(fs_info, map,
6322 stripe_index,
6323 dev_replace_is_ongoing);
6324 mirror_num = stripe_index - old_stripe_index + 1;
6325 }
6326
6327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6328 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6329 /* push stripe_nr back to the start of the full stripe */
6330 stripe_nr = div64_u64(raid56_full_stripe_start,
6331 stripe_len * data_stripes);
6332
6333 /* RAID[56] write or recovery. Return all stripes */
6334 num_stripes = map->num_stripes;
6335 max_errors = nr_parity_stripes(map);
6336
6337 *length = map->stripe_len;
6338 stripe_index = 0;
6339 stripe_offset = 0;
6340 } else {
6341 /*
6342 * Mirror #0 or #1 means the original data block.
6343 * Mirror #2 is RAID5 parity block.
6344 * Mirror #3 is RAID6 Q block.
6345 */
6346 stripe_nr = div_u64_rem(stripe_nr,
6347 data_stripes, &stripe_index);
6348 if (mirror_num > 1)
6349 stripe_index = data_stripes + mirror_num - 2;
6350
6351 /* We distribute the parity blocks across stripes */
6352 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6353 &stripe_index);
6354 if (!need_full_stripe(op) && mirror_num <= 1)
6355 mirror_num = 1;
6356 }
6357 } else {
6358 /*
6359 * after this, stripe_nr is the number of stripes on this
6360 * device we have to walk to find the data, and stripe_index is
6361 * the number of our device in the stripe array
6362 */
6363 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6364 &stripe_index);
6365 mirror_num = stripe_index + 1;
6366 }
6367 if (stripe_index >= map->num_stripes) {
6368 btrfs_crit(fs_info,
6369 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6370 stripe_index, map->num_stripes);
6371 ret = -EINVAL;
6372 goto out;
6373 }
6374
6375 num_alloc_stripes = num_stripes;
6376 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6377 if (op == BTRFS_MAP_WRITE)
6378 num_alloc_stripes <<= 1;
6379 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6380 num_alloc_stripes++;
6381 tgtdev_indexes = num_stripes;
6382 }
6383
6384 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6385 if (!bbio) {
6386 ret = -ENOMEM;
6387 goto out;
6388 }
6389
6390 for (i = 0; i < num_stripes; i++) {
6391 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6392 stripe_offset + stripe_nr * map->stripe_len;
6393 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6394 stripe_index++;
6395 }
6396
6397 /* build raid_map */
6398 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6399 (need_full_stripe(op) || mirror_num > 1)) {
6400 u64 tmp;
6401 unsigned rot;
6402
6403 /* Work out the disk rotation on this stripe-set */
6404 div_u64_rem(stripe_nr, num_stripes, &rot);
6405
6406 /* Fill in the logical address of each stripe */
6407 tmp = stripe_nr * data_stripes;
6408 for (i = 0; i < data_stripes; i++)
6409 bbio->raid_map[(i+rot) % num_stripes] =
6410 em->start + (tmp + i) * map->stripe_len;
6411
6412 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6413 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6414 bbio->raid_map[(i+rot+1) % num_stripes] =
6415 RAID6_Q_STRIPE;
6416
6417 sort_parity_stripes(bbio, num_stripes);
6418 }
6419
6420 if (need_full_stripe(op))
6421 max_errors = btrfs_chunk_max_errors(map);
6422
6423 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6424 need_full_stripe(op)) {
6425 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6426 &num_stripes, &max_errors);
6427 }
6428
6429 *bbio_ret = bbio;
6430 bbio->map_type = map->type;
6431 bbio->num_stripes = num_stripes;
6432 bbio->max_errors = max_errors;
6433 bbio->mirror_num = mirror_num;
6434
6435 /*
6436 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6437 * mirror_num == num_stripes + 1 && dev_replace target drive is
6438 * available as a mirror
6439 */
6440 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6441 WARN_ON(num_stripes > 1);
6442 bbio->stripes[0].dev = dev_replace->tgtdev;
6443 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6444 bbio->mirror_num = map->num_stripes + 1;
6445 }
6446 out:
6447 if (dev_replace_is_ongoing) {
6448 lockdep_assert_held(&dev_replace->rwsem);
6449 /* Unlock and let waiting writers proceed */
6450 up_read(&dev_replace->rwsem);
6451 }
6452 free_extent_map(em);
6453 return ret;
6454 }
6455
6456 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6457 u64 logical, u64 *length,
6458 struct btrfs_bio **bbio_ret, int mirror_num)
6459 {
6460 if (op == BTRFS_MAP_DISCARD)
6461 return __btrfs_map_block_for_discard(fs_info, logical,
6462 length, bbio_ret);
6463
6464 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6465 mirror_num, 0);
6466 }
6467
6468 /* For Scrub/replace */
6469 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6470 u64 logical, u64 *length,
6471 struct btrfs_bio **bbio_ret)
6472 {
6473 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6474 }
6475
6476 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6477 {
6478 bio->bi_private = bbio->private;
6479 bio->bi_end_io = bbio->end_io;
6480 bio_endio(bio);
6481
6482 btrfs_put_bbio(bbio);
6483 }
6484
6485 static void btrfs_end_bio(struct bio *bio)
6486 {
6487 struct btrfs_bio *bbio = bio->bi_private;
6488 int is_orig_bio = 0;
6489
6490 if (bio->bi_status) {
6491 atomic_inc(&bbio->error);
6492 if (bio->bi_status == BLK_STS_IOERR ||
6493 bio->bi_status == BLK_STS_TARGET) {
6494 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6495
6496 ASSERT(dev->bdev);
6497 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6498 btrfs_dev_stat_inc_and_print(dev,
6499 BTRFS_DEV_STAT_WRITE_ERRS);
6500 else if (!(bio->bi_opf & REQ_RAHEAD))
6501 btrfs_dev_stat_inc_and_print(dev,
6502 BTRFS_DEV_STAT_READ_ERRS);
6503 if (bio->bi_opf & REQ_PREFLUSH)
6504 btrfs_dev_stat_inc_and_print(dev,
6505 BTRFS_DEV_STAT_FLUSH_ERRS);
6506 }
6507 }
6508
6509 if (bio == bbio->orig_bio)
6510 is_orig_bio = 1;
6511
6512 btrfs_bio_counter_dec(bbio->fs_info);
6513
6514 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6515 if (!is_orig_bio) {
6516 bio_put(bio);
6517 bio = bbio->orig_bio;
6518 }
6519
6520 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6521 /* only send an error to the higher layers if it is
6522 * beyond the tolerance of the btrfs bio
6523 */
6524 if (atomic_read(&bbio->error) > bbio->max_errors) {
6525 bio->bi_status = BLK_STS_IOERR;
6526 } else {
6527 /*
6528 * this bio is actually up to date, we didn't
6529 * go over the max number of errors
6530 */
6531 bio->bi_status = BLK_STS_OK;
6532 }
6533
6534 btrfs_end_bbio(bbio, bio);
6535 } else if (!is_orig_bio) {
6536 bio_put(bio);
6537 }
6538 }
6539
6540 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6541 u64 physical, struct btrfs_device *dev)
6542 {
6543 struct btrfs_fs_info *fs_info = bbio->fs_info;
6544
6545 bio->bi_private = bbio;
6546 btrfs_io_bio(bio)->device = dev;
6547 bio->bi_end_io = btrfs_end_bio;
6548 bio->bi_iter.bi_sector = physical >> 9;
6549 /*
6550 * For zone append writing, bi_sector must point the beginning of the
6551 * zone
6552 */
6553 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6554 if (btrfs_dev_is_sequential(dev, physical)) {
6555 u64 zone_start = round_down(physical, fs_info->zone_size);
6556
6557 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6558 } else {
6559 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6560 bio->bi_opf |= REQ_OP_WRITE;
6561 }
6562 }
6563 btrfs_debug_in_rcu(fs_info,
6564 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6565 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6566 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6567 dev->devid, bio->bi_iter.bi_size);
6568 bio_set_dev(bio, dev->bdev);
6569
6570 btrfs_bio_counter_inc_noblocked(fs_info);
6571
6572 btrfsic_submit_bio(bio);
6573 }
6574
6575 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6576 {
6577 atomic_inc(&bbio->error);
6578 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6579 /* Should be the original bio. */
6580 WARN_ON(bio != bbio->orig_bio);
6581
6582 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6583 bio->bi_iter.bi_sector = logical >> 9;
6584 if (atomic_read(&bbio->error) > bbio->max_errors)
6585 bio->bi_status = BLK_STS_IOERR;
6586 else
6587 bio->bi_status = BLK_STS_OK;
6588 btrfs_end_bbio(bbio, bio);
6589 }
6590 }
6591
6592 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6593 int mirror_num)
6594 {
6595 struct btrfs_device *dev;
6596 struct bio *first_bio = bio;
6597 u64 logical = bio->bi_iter.bi_sector << 9;
6598 u64 length = 0;
6599 u64 map_length;
6600 int ret;
6601 int dev_nr;
6602 int total_devs;
6603 struct btrfs_bio *bbio = NULL;
6604
6605 length = bio->bi_iter.bi_size;
6606 map_length = length;
6607
6608 btrfs_bio_counter_inc_blocked(fs_info);
6609 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6610 &map_length, &bbio, mirror_num, 1);
6611 if (ret) {
6612 btrfs_bio_counter_dec(fs_info);
6613 return errno_to_blk_status(ret);
6614 }
6615
6616 total_devs = bbio->num_stripes;
6617 bbio->orig_bio = first_bio;
6618 bbio->private = first_bio->bi_private;
6619 bbio->end_io = first_bio->bi_end_io;
6620 bbio->fs_info = fs_info;
6621 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6622
6623 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6624 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6625 /* In this case, map_length has been set to the length of
6626 a single stripe; not the whole write */
6627 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6628 ret = raid56_parity_write(fs_info, bio, bbio,
6629 map_length);
6630 } else {
6631 ret = raid56_parity_recover(fs_info, bio, bbio,
6632 map_length, mirror_num, 1);
6633 }
6634
6635 btrfs_bio_counter_dec(fs_info);
6636 return errno_to_blk_status(ret);
6637 }
6638
6639 if (map_length < length) {
6640 btrfs_crit(fs_info,
6641 "mapping failed logical %llu bio len %llu len %llu",
6642 logical, length, map_length);
6643 BUG();
6644 }
6645
6646 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6647 dev = bbio->stripes[dev_nr].dev;
6648 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6649 &dev->dev_state) ||
6650 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6651 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6652 bbio_error(bbio, first_bio, logical);
6653 continue;
6654 }
6655
6656 if (dev_nr < total_devs - 1)
6657 bio = btrfs_bio_clone(first_bio);
6658 else
6659 bio = first_bio;
6660
6661 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6662 }
6663 btrfs_bio_counter_dec(fs_info);
6664 return BLK_STS_OK;
6665 }
6666
6667 /*
6668 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6669 * return NULL.
6670 *
6671 * If devid and uuid are both specified, the match must be exact, otherwise
6672 * only devid is used.
6673 *
6674 * If @seed is true, traverse through the seed devices.
6675 */
6676 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6677 u64 devid, u8 *uuid, u8 *fsid)
6678 {
6679 struct btrfs_device *device;
6680 struct btrfs_fs_devices *seed_devs;
6681
6682 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6683 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6684 if (device->devid == devid &&
6685 (!uuid || memcmp(device->uuid, uuid,
6686 BTRFS_UUID_SIZE) == 0))
6687 return device;
6688 }
6689 }
6690
6691 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6692 if (!fsid ||
6693 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6694 list_for_each_entry(device, &seed_devs->devices,
6695 dev_list) {
6696 if (device->devid == devid &&
6697 (!uuid || memcmp(device->uuid, uuid,
6698 BTRFS_UUID_SIZE) == 0))
6699 return device;
6700 }
6701 }
6702 }
6703
6704 return NULL;
6705 }
6706
6707 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6708 u64 devid, u8 *dev_uuid)
6709 {
6710 struct btrfs_device *device;
6711 unsigned int nofs_flag;
6712
6713 /*
6714 * We call this under the chunk_mutex, so we want to use NOFS for this
6715 * allocation, however we don't want to change btrfs_alloc_device() to
6716 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6717 * places.
6718 */
6719 nofs_flag = memalloc_nofs_save();
6720 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6721 memalloc_nofs_restore(nofs_flag);
6722 if (IS_ERR(device))
6723 return device;
6724
6725 list_add(&device->dev_list, &fs_devices->devices);
6726 device->fs_devices = fs_devices;
6727 fs_devices->num_devices++;
6728
6729 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6730 fs_devices->missing_devices++;
6731
6732 return device;
6733 }
6734
6735 /**
6736 * btrfs_alloc_device - allocate struct btrfs_device
6737 * @fs_info: used only for generating a new devid, can be NULL if
6738 * devid is provided (i.e. @devid != NULL).
6739 * @devid: a pointer to devid for this device. If NULL a new devid
6740 * is generated.
6741 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6742 * is generated.
6743 *
6744 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6745 * on error. Returned struct is not linked onto any lists and must be
6746 * destroyed with btrfs_free_device.
6747 */
6748 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6749 const u64 *devid,
6750 const u8 *uuid)
6751 {
6752 struct btrfs_device *dev;
6753 u64 tmp;
6754
6755 if (WARN_ON(!devid && !fs_info))
6756 return ERR_PTR(-EINVAL);
6757
6758 dev = __alloc_device(fs_info);
6759 if (IS_ERR(dev))
6760 return dev;
6761
6762 if (devid)
6763 tmp = *devid;
6764 else {
6765 int ret;
6766
6767 ret = find_next_devid(fs_info, &tmp);
6768 if (ret) {
6769 btrfs_free_device(dev);
6770 return ERR_PTR(ret);
6771 }
6772 }
6773 dev->devid = tmp;
6774
6775 if (uuid)
6776 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6777 else
6778 generate_random_uuid(dev->uuid);
6779
6780 return dev;
6781 }
6782
6783 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6784 u64 devid, u8 *uuid, bool error)
6785 {
6786 if (error)
6787 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6788 devid, uuid);
6789 else
6790 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6791 devid, uuid);
6792 }
6793
6794 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6795 {
6796 int index = btrfs_bg_flags_to_raid_index(type);
6797 int ncopies = btrfs_raid_array[index].ncopies;
6798 const int nparity = btrfs_raid_array[index].nparity;
6799 int data_stripes;
6800
6801 if (nparity)
6802 data_stripes = num_stripes - nparity;
6803 else
6804 data_stripes = num_stripes / ncopies;
6805
6806 return div_u64(chunk_len, data_stripes);
6807 }
6808
6809 #if BITS_PER_LONG == 32
6810 /*
6811 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6812 * can't be accessed on 32bit systems.
6813 *
6814 * This function do mount time check to reject the fs if it already has
6815 * metadata chunk beyond that limit.
6816 */
6817 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6818 u64 logical, u64 length, u64 type)
6819 {
6820 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6821 return 0;
6822
6823 if (logical + length < MAX_LFS_FILESIZE)
6824 return 0;
6825
6826 btrfs_err_32bit_limit(fs_info);
6827 return -EOVERFLOW;
6828 }
6829
6830 /*
6831 * This is to give early warning for any metadata chunk reaching
6832 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6833 * Although we can still access the metadata, it's not going to be possible
6834 * once the limit is reached.
6835 */
6836 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6837 u64 logical, u64 length, u64 type)
6838 {
6839 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6840 return;
6841
6842 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6843 return;
6844
6845 btrfs_warn_32bit_limit(fs_info);
6846 }
6847 #endif
6848
6849 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6850 struct btrfs_chunk *chunk)
6851 {
6852 struct btrfs_fs_info *fs_info = leaf->fs_info;
6853 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6854 struct map_lookup *map;
6855 struct extent_map *em;
6856 u64 logical;
6857 u64 length;
6858 u64 devid;
6859 u64 type;
6860 u8 uuid[BTRFS_UUID_SIZE];
6861 int num_stripes;
6862 int ret;
6863 int i;
6864
6865 logical = key->offset;
6866 length = btrfs_chunk_length(leaf, chunk);
6867 type = btrfs_chunk_type(leaf, chunk);
6868 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6869
6870 #if BITS_PER_LONG == 32
6871 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6872 if (ret < 0)
6873 return ret;
6874 warn_32bit_meta_chunk(fs_info, logical, length, type);
6875 #endif
6876
6877 /*
6878 * Only need to verify chunk item if we're reading from sys chunk array,
6879 * as chunk item in tree block is already verified by tree-checker.
6880 */
6881 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6882 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6883 if (ret)
6884 return ret;
6885 }
6886
6887 read_lock(&map_tree->lock);
6888 em = lookup_extent_mapping(map_tree, logical, 1);
6889 read_unlock(&map_tree->lock);
6890
6891 /* already mapped? */
6892 if (em && em->start <= logical && em->start + em->len > logical) {
6893 free_extent_map(em);
6894 return 0;
6895 } else if (em) {
6896 free_extent_map(em);
6897 }
6898
6899 em = alloc_extent_map();
6900 if (!em)
6901 return -ENOMEM;
6902 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6903 if (!map) {
6904 free_extent_map(em);
6905 return -ENOMEM;
6906 }
6907
6908 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6909 em->map_lookup = map;
6910 em->start = logical;
6911 em->len = length;
6912 em->orig_start = 0;
6913 em->block_start = 0;
6914 em->block_len = em->len;
6915
6916 map->num_stripes = num_stripes;
6917 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6918 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6919 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6920 map->type = type;
6921 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6922 map->verified_stripes = 0;
6923 em->orig_block_len = calc_stripe_length(type, em->len,
6924 map->num_stripes);
6925 for (i = 0; i < num_stripes; i++) {
6926 map->stripes[i].physical =
6927 btrfs_stripe_offset_nr(leaf, chunk, i);
6928 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6929 read_extent_buffer(leaf, uuid, (unsigned long)
6930 btrfs_stripe_dev_uuid_nr(chunk, i),
6931 BTRFS_UUID_SIZE);
6932 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6933 devid, uuid, NULL);
6934 if (!map->stripes[i].dev &&
6935 !btrfs_test_opt(fs_info, DEGRADED)) {
6936 free_extent_map(em);
6937 btrfs_report_missing_device(fs_info, devid, uuid, true);
6938 return -ENOENT;
6939 }
6940 if (!map->stripes[i].dev) {
6941 map->stripes[i].dev =
6942 add_missing_dev(fs_info->fs_devices, devid,
6943 uuid);
6944 if (IS_ERR(map->stripes[i].dev)) {
6945 free_extent_map(em);
6946 btrfs_err(fs_info,
6947 "failed to init missing dev %llu: %ld",
6948 devid, PTR_ERR(map->stripes[i].dev));
6949 return PTR_ERR(map->stripes[i].dev);
6950 }
6951 btrfs_report_missing_device(fs_info, devid, uuid, false);
6952 }
6953 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6954 &(map->stripes[i].dev->dev_state));
6955
6956 }
6957
6958 write_lock(&map_tree->lock);
6959 ret = add_extent_mapping(map_tree, em, 0);
6960 write_unlock(&map_tree->lock);
6961 if (ret < 0) {
6962 btrfs_err(fs_info,
6963 "failed to add chunk map, start=%llu len=%llu: %d",
6964 em->start, em->len, ret);
6965 }
6966 free_extent_map(em);
6967
6968 return ret;
6969 }
6970
6971 static void fill_device_from_item(struct extent_buffer *leaf,
6972 struct btrfs_dev_item *dev_item,
6973 struct btrfs_device *device)
6974 {
6975 unsigned long ptr;
6976
6977 device->devid = btrfs_device_id(leaf, dev_item);
6978 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6979 device->total_bytes = device->disk_total_bytes;
6980 device->commit_total_bytes = device->disk_total_bytes;
6981 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6982 device->commit_bytes_used = device->bytes_used;
6983 device->type = btrfs_device_type(leaf, dev_item);
6984 device->io_align = btrfs_device_io_align(leaf, dev_item);
6985 device->io_width = btrfs_device_io_width(leaf, dev_item);
6986 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6987 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6988 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6989
6990 ptr = btrfs_device_uuid(dev_item);
6991 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6992 }
6993
6994 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6995 u8 *fsid)
6996 {
6997 struct btrfs_fs_devices *fs_devices;
6998 int ret;
6999
7000 lockdep_assert_held(&uuid_mutex);
7001 ASSERT(fsid);
7002
7003 /* This will match only for multi-device seed fs */
7004 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7005 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7006 return fs_devices;
7007
7008
7009 fs_devices = find_fsid(fsid, NULL);
7010 if (!fs_devices) {
7011 if (!btrfs_test_opt(fs_info, DEGRADED))
7012 return ERR_PTR(-ENOENT);
7013
7014 fs_devices = alloc_fs_devices(fsid, NULL);
7015 if (IS_ERR(fs_devices))
7016 return fs_devices;
7017
7018 fs_devices->seeding = true;
7019 fs_devices->opened = 1;
7020 return fs_devices;
7021 }
7022
7023 /*
7024 * Upon first call for a seed fs fsid, just create a private copy of the
7025 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7026 */
7027 fs_devices = clone_fs_devices(fs_devices);
7028 if (IS_ERR(fs_devices))
7029 return fs_devices;
7030
7031 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7032 if (ret) {
7033 free_fs_devices(fs_devices);
7034 return ERR_PTR(ret);
7035 }
7036
7037 if (!fs_devices->seeding) {
7038 close_fs_devices(fs_devices);
7039 free_fs_devices(fs_devices);
7040 return ERR_PTR(-EINVAL);
7041 }
7042
7043 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7044
7045 return fs_devices;
7046 }
7047
7048 static int read_one_dev(struct extent_buffer *leaf,
7049 struct btrfs_dev_item *dev_item)
7050 {
7051 struct btrfs_fs_info *fs_info = leaf->fs_info;
7052 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7053 struct btrfs_device *device;
7054 u64 devid;
7055 int ret;
7056 u8 fs_uuid[BTRFS_FSID_SIZE];
7057 u8 dev_uuid[BTRFS_UUID_SIZE];
7058
7059 devid = btrfs_device_id(leaf, dev_item);
7060 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7061 BTRFS_UUID_SIZE);
7062 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7063 BTRFS_FSID_SIZE);
7064
7065 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7066 fs_devices = open_seed_devices(fs_info, fs_uuid);
7067 if (IS_ERR(fs_devices))
7068 return PTR_ERR(fs_devices);
7069 }
7070
7071 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7072 fs_uuid);
7073 if (!device) {
7074 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7075 btrfs_report_missing_device(fs_info, devid,
7076 dev_uuid, true);
7077 return -ENOENT;
7078 }
7079
7080 device = add_missing_dev(fs_devices, devid, dev_uuid);
7081 if (IS_ERR(device)) {
7082 btrfs_err(fs_info,
7083 "failed to add missing dev %llu: %ld",
7084 devid, PTR_ERR(device));
7085 return PTR_ERR(device);
7086 }
7087 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7088 } else {
7089 if (!device->bdev) {
7090 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7091 btrfs_report_missing_device(fs_info,
7092 devid, dev_uuid, true);
7093 return -ENOENT;
7094 }
7095 btrfs_report_missing_device(fs_info, devid,
7096 dev_uuid, false);
7097 }
7098
7099 if (!device->bdev &&
7100 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7101 /*
7102 * this happens when a device that was properly setup
7103 * in the device info lists suddenly goes bad.
7104 * device->bdev is NULL, and so we have to set
7105 * device->missing to one here
7106 */
7107 device->fs_devices->missing_devices++;
7108 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7109 }
7110
7111 /* Move the device to its own fs_devices */
7112 if (device->fs_devices != fs_devices) {
7113 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7114 &device->dev_state));
7115
7116 list_move(&device->dev_list, &fs_devices->devices);
7117 device->fs_devices->num_devices--;
7118 fs_devices->num_devices++;
7119
7120 device->fs_devices->missing_devices--;
7121 fs_devices->missing_devices++;
7122
7123 device->fs_devices = fs_devices;
7124 }
7125 }
7126
7127 if (device->fs_devices != fs_info->fs_devices) {
7128 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7129 if (device->generation !=
7130 btrfs_device_generation(leaf, dev_item))
7131 return -EINVAL;
7132 }
7133
7134 fill_device_from_item(leaf, dev_item, device);
7135 if (device->bdev) {
7136 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7137
7138 if (device->total_bytes > max_total_bytes) {
7139 btrfs_err(fs_info,
7140 "device total_bytes should be at most %llu but found %llu",
7141 max_total_bytes, device->total_bytes);
7142 return -EINVAL;
7143 }
7144 }
7145 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7146 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7147 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7148 device->fs_devices->total_rw_bytes += device->total_bytes;
7149 atomic64_add(device->total_bytes - device->bytes_used,
7150 &fs_info->free_chunk_space);
7151 }
7152 ret = 0;
7153 return ret;
7154 }
7155
7156 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7157 {
7158 struct btrfs_root *root = fs_info->tree_root;
7159 struct btrfs_super_block *super_copy = fs_info->super_copy;
7160 struct extent_buffer *sb;
7161 struct btrfs_disk_key *disk_key;
7162 struct btrfs_chunk *chunk;
7163 u8 *array_ptr;
7164 unsigned long sb_array_offset;
7165 int ret = 0;
7166 u32 num_stripes;
7167 u32 array_size;
7168 u32 len = 0;
7169 u32 cur_offset;
7170 u64 type;
7171 struct btrfs_key key;
7172
7173 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7174 /*
7175 * This will create extent buffer of nodesize, superblock size is
7176 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7177 * overallocate but we can keep it as-is, only the first page is used.
7178 */
7179 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7180 root->root_key.objectid, 0);
7181 if (IS_ERR(sb))
7182 return PTR_ERR(sb);
7183 set_extent_buffer_uptodate(sb);
7184 /*
7185 * The sb extent buffer is artificial and just used to read the system array.
7186 * set_extent_buffer_uptodate() call does not properly mark all it's
7187 * pages up-to-date when the page is larger: extent does not cover the
7188 * whole page and consequently check_page_uptodate does not find all
7189 * the page's extents up-to-date (the hole beyond sb),
7190 * write_extent_buffer then triggers a WARN_ON.
7191 *
7192 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7193 * but sb spans only this function. Add an explicit SetPageUptodate call
7194 * to silence the warning eg. on PowerPC 64.
7195 */
7196 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7197 SetPageUptodate(sb->pages[0]);
7198
7199 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7200 array_size = btrfs_super_sys_array_size(super_copy);
7201
7202 array_ptr = super_copy->sys_chunk_array;
7203 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7204 cur_offset = 0;
7205
7206 while (cur_offset < array_size) {
7207 disk_key = (struct btrfs_disk_key *)array_ptr;
7208 len = sizeof(*disk_key);
7209 if (cur_offset + len > array_size)
7210 goto out_short_read;
7211
7212 btrfs_disk_key_to_cpu(&key, disk_key);
7213
7214 array_ptr += len;
7215 sb_array_offset += len;
7216 cur_offset += len;
7217
7218 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7219 btrfs_err(fs_info,
7220 "unexpected item type %u in sys_array at offset %u",
7221 (u32)key.type, cur_offset);
7222 ret = -EIO;
7223 break;
7224 }
7225
7226 chunk = (struct btrfs_chunk *)sb_array_offset;
7227 /*
7228 * At least one btrfs_chunk with one stripe must be present,
7229 * exact stripe count check comes afterwards
7230 */
7231 len = btrfs_chunk_item_size(1);
7232 if (cur_offset + len > array_size)
7233 goto out_short_read;
7234
7235 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7236 if (!num_stripes) {
7237 btrfs_err(fs_info,
7238 "invalid number of stripes %u in sys_array at offset %u",
7239 num_stripes, cur_offset);
7240 ret = -EIO;
7241 break;
7242 }
7243
7244 type = btrfs_chunk_type(sb, chunk);
7245 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7246 btrfs_err(fs_info,
7247 "invalid chunk type %llu in sys_array at offset %u",
7248 type, cur_offset);
7249 ret = -EIO;
7250 break;
7251 }
7252
7253 len = btrfs_chunk_item_size(num_stripes);
7254 if (cur_offset + len > array_size)
7255 goto out_short_read;
7256
7257 ret = read_one_chunk(&key, sb, chunk);
7258 if (ret)
7259 break;
7260
7261 array_ptr += len;
7262 sb_array_offset += len;
7263 cur_offset += len;
7264 }
7265 clear_extent_buffer_uptodate(sb);
7266 free_extent_buffer_stale(sb);
7267 return ret;
7268
7269 out_short_read:
7270 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7271 len, cur_offset);
7272 clear_extent_buffer_uptodate(sb);
7273 free_extent_buffer_stale(sb);
7274 return -EIO;
7275 }
7276
7277 /*
7278 * Check if all chunks in the fs are OK for read-write degraded mount
7279 *
7280 * If the @failing_dev is specified, it's accounted as missing.
7281 *
7282 * Return true if all chunks meet the minimal RW mount requirements.
7283 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7284 */
7285 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7286 struct btrfs_device *failing_dev)
7287 {
7288 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7289 struct extent_map *em;
7290 u64 next_start = 0;
7291 bool ret = true;
7292
7293 read_lock(&map_tree->lock);
7294 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7295 read_unlock(&map_tree->lock);
7296 /* No chunk at all? Return false anyway */
7297 if (!em) {
7298 ret = false;
7299 goto out;
7300 }
7301 while (em) {
7302 struct map_lookup *map;
7303 int missing = 0;
7304 int max_tolerated;
7305 int i;
7306
7307 map = em->map_lookup;
7308 max_tolerated =
7309 btrfs_get_num_tolerated_disk_barrier_failures(
7310 map->type);
7311 for (i = 0; i < map->num_stripes; i++) {
7312 struct btrfs_device *dev = map->stripes[i].dev;
7313
7314 if (!dev || !dev->bdev ||
7315 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7316 dev->last_flush_error)
7317 missing++;
7318 else if (failing_dev && failing_dev == dev)
7319 missing++;
7320 }
7321 if (missing > max_tolerated) {
7322 if (!failing_dev)
7323 btrfs_warn(fs_info,
7324 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7325 em->start, missing, max_tolerated);
7326 free_extent_map(em);
7327 ret = false;
7328 goto out;
7329 }
7330 next_start = extent_map_end(em);
7331 free_extent_map(em);
7332
7333 read_lock(&map_tree->lock);
7334 em = lookup_extent_mapping(map_tree, next_start,
7335 (u64)(-1) - next_start);
7336 read_unlock(&map_tree->lock);
7337 }
7338 out:
7339 return ret;
7340 }
7341
7342 static void readahead_tree_node_children(struct extent_buffer *node)
7343 {
7344 int i;
7345 const int nr_items = btrfs_header_nritems(node);
7346
7347 for (i = 0; i < nr_items; i++)
7348 btrfs_readahead_node_child(node, i);
7349 }
7350
7351 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7352 {
7353 struct btrfs_root *root = fs_info->chunk_root;
7354 struct btrfs_path *path;
7355 struct extent_buffer *leaf;
7356 struct btrfs_key key;
7357 struct btrfs_key found_key;
7358 int ret;
7359 int slot;
7360 u64 total_dev = 0;
7361 u64 last_ra_node = 0;
7362
7363 path = btrfs_alloc_path();
7364 if (!path)
7365 return -ENOMEM;
7366
7367 /*
7368 * uuid_mutex is needed only if we are mounting a sprout FS
7369 * otherwise we don't need it.
7370 */
7371 mutex_lock(&uuid_mutex);
7372
7373 /*
7374 * It is possible for mount and umount to race in such a way that
7375 * we execute this code path, but open_fs_devices failed to clear
7376 * total_rw_bytes. We certainly want it cleared before reading the
7377 * device items, so clear it here.
7378 */
7379 fs_info->fs_devices->total_rw_bytes = 0;
7380
7381 /*
7382 * Read all device items, and then all the chunk items. All
7383 * device items are found before any chunk item (their object id
7384 * is smaller than the lowest possible object id for a chunk
7385 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7386 */
7387 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7388 key.offset = 0;
7389 key.type = 0;
7390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7391 if (ret < 0)
7392 goto error;
7393 while (1) {
7394 struct extent_buffer *node;
7395
7396 leaf = path->nodes[0];
7397 slot = path->slots[0];
7398 if (slot >= btrfs_header_nritems(leaf)) {
7399 ret = btrfs_next_leaf(root, path);
7400 if (ret == 0)
7401 continue;
7402 if (ret < 0)
7403 goto error;
7404 break;
7405 }
7406 /*
7407 * The nodes on level 1 are not locked but we don't need to do
7408 * that during mount time as nothing else can access the tree
7409 */
7410 node = path->nodes[1];
7411 if (node) {
7412 if (last_ra_node != node->start) {
7413 readahead_tree_node_children(node);
7414 last_ra_node = node->start;
7415 }
7416 }
7417 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7418 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7419 struct btrfs_dev_item *dev_item;
7420 dev_item = btrfs_item_ptr(leaf, slot,
7421 struct btrfs_dev_item);
7422 ret = read_one_dev(leaf, dev_item);
7423 if (ret)
7424 goto error;
7425 total_dev++;
7426 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7427 struct btrfs_chunk *chunk;
7428 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7429 mutex_lock(&fs_info->chunk_mutex);
7430 ret = read_one_chunk(&found_key, leaf, chunk);
7431 mutex_unlock(&fs_info->chunk_mutex);
7432 if (ret)
7433 goto error;
7434 }
7435 path->slots[0]++;
7436 }
7437
7438 /*
7439 * After loading chunk tree, we've got all device information,
7440 * do another round of validation checks.
7441 */
7442 if (total_dev != fs_info->fs_devices->total_devices) {
7443 btrfs_err(fs_info,
7444 "super_num_devices %llu mismatch with num_devices %llu found here",
7445 btrfs_super_num_devices(fs_info->super_copy),
7446 total_dev);
7447 ret = -EINVAL;
7448 goto error;
7449 }
7450 if (btrfs_super_total_bytes(fs_info->super_copy) <
7451 fs_info->fs_devices->total_rw_bytes) {
7452 btrfs_err(fs_info,
7453 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7454 btrfs_super_total_bytes(fs_info->super_copy),
7455 fs_info->fs_devices->total_rw_bytes);
7456 ret = -EINVAL;
7457 goto error;
7458 }
7459 ret = 0;
7460 error:
7461 mutex_unlock(&uuid_mutex);
7462
7463 btrfs_free_path(path);
7464 return ret;
7465 }
7466
7467 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7468 {
7469 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7470 struct btrfs_device *device;
7471
7472 fs_devices->fs_info = fs_info;
7473
7474 mutex_lock(&fs_devices->device_list_mutex);
7475 list_for_each_entry(device, &fs_devices->devices, dev_list)
7476 device->fs_info = fs_info;
7477
7478 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7479 list_for_each_entry(device, &seed_devs->devices, dev_list)
7480 device->fs_info = fs_info;
7481
7482 seed_devs->fs_info = fs_info;
7483 }
7484 mutex_unlock(&fs_devices->device_list_mutex);
7485 }
7486
7487 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7488 const struct btrfs_dev_stats_item *ptr,
7489 int index)
7490 {
7491 u64 val;
7492
7493 read_extent_buffer(eb, &val,
7494 offsetof(struct btrfs_dev_stats_item, values) +
7495 ((unsigned long)ptr) + (index * sizeof(u64)),
7496 sizeof(val));
7497 return val;
7498 }
7499
7500 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7501 struct btrfs_dev_stats_item *ptr,
7502 int index, u64 val)
7503 {
7504 write_extent_buffer(eb, &val,
7505 offsetof(struct btrfs_dev_stats_item, values) +
7506 ((unsigned long)ptr) + (index * sizeof(u64)),
7507 sizeof(val));
7508 }
7509
7510 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7511 struct btrfs_path *path)
7512 {
7513 struct btrfs_dev_stats_item *ptr;
7514 struct extent_buffer *eb;
7515 struct btrfs_key key;
7516 int item_size;
7517 int i, ret, slot;
7518
7519 if (!device->fs_info->dev_root)
7520 return 0;
7521
7522 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7523 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7524 key.offset = device->devid;
7525 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7526 if (ret) {
7527 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7528 btrfs_dev_stat_set(device, i, 0);
7529 device->dev_stats_valid = 1;
7530 btrfs_release_path(path);
7531 return ret < 0 ? ret : 0;
7532 }
7533 slot = path->slots[0];
7534 eb = path->nodes[0];
7535 item_size = btrfs_item_size_nr(eb, slot);
7536
7537 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7538
7539 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7540 if (item_size >= (1 + i) * sizeof(__le64))
7541 btrfs_dev_stat_set(device, i,
7542 btrfs_dev_stats_value(eb, ptr, i));
7543 else
7544 btrfs_dev_stat_set(device, i, 0);
7545 }
7546
7547 device->dev_stats_valid = 1;
7548 btrfs_dev_stat_print_on_load(device);
7549 btrfs_release_path(path);
7550
7551 return 0;
7552 }
7553
7554 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7555 {
7556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7557 struct btrfs_device *device;
7558 struct btrfs_path *path = NULL;
7559 int ret = 0;
7560
7561 path = btrfs_alloc_path();
7562 if (!path)
7563 return -ENOMEM;
7564
7565 mutex_lock(&fs_devices->device_list_mutex);
7566 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7567 ret = btrfs_device_init_dev_stats(device, path);
7568 if (ret)
7569 goto out;
7570 }
7571 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7572 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7573 ret = btrfs_device_init_dev_stats(device, path);
7574 if (ret)
7575 goto out;
7576 }
7577 }
7578 out:
7579 mutex_unlock(&fs_devices->device_list_mutex);
7580
7581 btrfs_free_path(path);
7582 return ret;
7583 }
7584
7585 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7586 struct btrfs_device *device)
7587 {
7588 struct btrfs_fs_info *fs_info = trans->fs_info;
7589 struct btrfs_root *dev_root = fs_info->dev_root;
7590 struct btrfs_path *path;
7591 struct btrfs_key key;
7592 struct extent_buffer *eb;
7593 struct btrfs_dev_stats_item *ptr;
7594 int ret;
7595 int i;
7596
7597 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7598 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7599 key.offset = device->devid;
7600
7601 path = btrfs_alloc_path();
7602 if (!path)
7603 return -ENOMEM;
7604 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7605 if (ret < 0) {
7606 btrfs_warn_in_rcu(fs_info,
7607 "error %d while searching for dev_stats item for device %s",
7608 ret, rcu_str_deref(device->name));
7609 goto out;
7610 }
7611
7612 if (ret == 0 &&
7613 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7614 /* need to delete old one and insert a new one */
7615 ret = btrfs_del_item(trans, dev_root, path);
7616 if (ret != 0) {
7617 btrfs_warn_in_rcu(fs_info,
7618 "delete too small dev_stats item for device %s failed %d",
7619 rcu_str_deref(device->name), ret);
7620 goto out;
7621 }
7622 ret = 1;
7623 }
7624
7625 if (ret == 1) {
7626 /* need to insert a new item */
7627 btrfs_release_path(path);
7628 ret = btrfs_insert_empty_item(trans, dev_root, path,
7629 &key, sizeof(*ptr));
7630 if (ret < 0) {
7631 btrfs_warn_in_rcu(fs_info,
7632 "insert dev_stats item for device %s failed %d",
7633 rcu_str_deref(device->name), ret);
7634 goto out;
7635 }
7636 }
7637
7638 eb = path->nodes[0];
7639 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7640 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7641 btrfs_set_dev_stats_value(eb, ptr, i,
7642 btrfs_dev_stat_read(device, i));
7643 btrfs_mark_buffer_dirty(eb);
7644
7645 out:
7646 btrfs_free_path(path);
7647 return ret;
7648 }
7649
7650 /*
7651 * called from commit_transaction. Writes all changed device stats to disk.
7652 */
7653 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7654 {
7655 struct btrfs_fs_info *fs_info = trans->fs_info;
7656 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7657 struct btrfs_device *device;
7658 int stats_cnt;
7659 int ret = 0;
7660
7661 mutex_lock(&fs_devices->device_list_mutex);
7662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7663 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7664 if (!device->dev_stats_valid || stats_cnt == 0)
7665 continue;
7666
7667
7668 /*
7669 * There is a LOAD-LOAD control dependency between the value of
7670 * dev_stats_ccnt and updating the on-disk values which requires
7671 * reading the in-memory counters. Such control dependencies
7672 * require explicit read memory barriers.
7673 *
7674 * This memory barriers pairs with smp_mb__before_atomic in
7675 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7676 * barrier implied by atomic_xchg in
7677 * btrfs_dev_stats_read_and_reset
7678 */
7679 smp_rmb();
7680
7681 ret = update_dev_stat_item(trans, device);
7682 if (!ret)
7683 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7684 }
7685 mutex_unlock(&fs_devices->device_list_mutex);
7686
7687 return ret;
7688 }
7689
7690 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7691 {
7692 btrfs_dev_stat_inc(dev, index);
7693 btrfs_dev_stat_print_on_error(dev);
7694 }
7695
7696 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7697 {
7698 if (!dev->dev_stats_valid)
7699 return;
7700 btrfs_err_rl_in_rcu(dev->fs_info,
7701 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7702 rcu_str_deref(dev->name),
7703 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7704 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7705 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7706 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7707 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7708 }
7709
7710 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7711 {
7712 int i;
7713
7714 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7715 if (btrfs_dev_stat_read(dev, i) != 0)
7716 break;
7717 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7718 return; /* all values == 0, suppress message */
7719
7720 btrfs_info_in_rcu(dev->fs_info,
7721 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7722 rcu_str_deref(dev->name),
7723 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7724 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7725 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7726 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7727 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7728 }
7729
7730 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7731 struct btrfs_ioctl_get_dev_stats *stats)
7732 {
7733 struct btrfs_device *dev;
7734 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7735 int i;
7736
7737 mutex_lock(&fs_devices->device_list_mutex);
7738 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7739 mutex_unlock(&fs_devices->device_list_mutex);
7740
7741 if (!dev) {
7742 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7743 return -ENODEV;
7744 } else if (!dev->dev_stats_valid) {
7745 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7746 return -ENODEV;
7747 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7748 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7749 if (stats->nr_items > i)
7750 stats->values[i] =
7751 btrfs_dev_stat_read_and_reset(dev, i);
7752 else
7753 btrfs_dev_stat_set(dev, i, 0);
7754 }
7755 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7756 current->comm, task_pid_nr(current));
7757 } else {
7758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7759 if (stats->nr_items > i)
7760 stats->values[i] = btrfs_dev_stat_read(dev, i);
7761 }
7762 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7763 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7764 return 0;
7765 }
7766
7767 /*
7768 * Update the size and bytes used for each device where it changed. This is
7769 * delayed since we would otherwise get errors while writing out the
7770 * superblocks.
7771 *
7772 * Must be invoked during transaction commit.
7773 */
7774 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7775 {
7776 struct btrfs_device *curr, *next;
7777
7778 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7779
7780 if (list_empty(&trans->dev_update_list))
7781 return;
7782
7783 /*
7784 * We don't need the device_list_mutex here. This list is owned by the
7785 * transaction and the transaction must complete before the device is
7786 * released.
7787 */
7788 mutex_lock(&trans->fs_info->chunk_mutex);
7789 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7790 post_commit_list) {
7791 list_del_init(&curr->post_commit_list);
7792 curr->commit_total_bytes = curr->disk_total_bytes;
7793 curr->commit_bytes_used = curr->bytes_used;
7794 }
7795 mutex_unlock(&trans->fs_info->chunk_mutex);
7796 }
7797
7798 /*
7799 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7800 */
7801 int btrfs_bg_type_to_factor(u64 flags)
7802 {
7803 const int index = btrfs_bg_flags_to_raid_index(flags);
7804
7805 return btrfs_raid_array[index].ncopies;
7806 }
7807
7808
7809
7810 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7811 u64 chunk_offset, u64 devid,
7812 u64 physical_offset, u64 physical_len)
7813 {
7814 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7815 struct extent_map *em;
7816 struct map_lookup *map;
7817 struct btrfs_device *dev;
7818 u64 stripe_len;
7819 bool found = false;
7820 int ret = 0;
7821 int i;
7822
7823 read_lock(&em_tree->lock);
7824 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7825 read_unlock(&em_tree->lock);
7826
7827 if (!em) {
7828 btrfs_err(fs_info,
7829 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7830 physical_offset, devid);
7831 ret = -EUCLEAN;
7832 goto out;
7833 }
7834
7835 map = em->map_lookup;
7836 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7837 if (physical_len != stripe_len) {
7838 btrfs_err(fs_info,
7839 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7840 physical_offset, devid, em->start, physical_len,
7841 stripe_len);
7842 ret = -EUCLEAN;
7843 goto out;
7844 }
7845
7846 for (i = 0; i < map->num_stripes; i++) {
7847 if (map->stripes[i].dev->devid == devid &&
7848 map->stripes[i].physical == physical_offset) {
7849 found = true;
7850 if (map->verified_stripes >= map->num_stripes) {
7851 btrfs_err(fs_info,
7852 "too many dev extents for chunk %llu found",
7853 em->start);
7854 ret = -EUCLEAN;
7855 goto out;
7856 }
7857 map->verified_stripes++;
7858 break;
7859 }
7860 }
7861 if (!found) {
7862 btrfs_err(fs_info,
7863 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7864 physical_offset, devid);
7865 ret = -EUCLEAN;
7866 }
7867
7868 /* Make sure no dev extent is beyond device bondary */
7869 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7870 if (!dev) {
7871 btrfs_err(fs_info, "failed to find devid %llu", devid);
7872 ret = -EUCLEAN;
7873 goto out;
7874 }
7875
7876 if (physical_offset + physical_len > dev->disk_total_bytes) {
7877 btrfs_err(fs_info,
7878 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7879 devid, physical_offset, physical_len,
7880 dev->disk_total_bytes);
7881 ret = -EUCLEAN;
7882 goto out;
7883 }
7884
7885 if (dev->zone_info) {
7886 u64 zone_size = dev->zone_info->zone_size;
7887
7888 if (!IS_ALIGNED(physical_offset, zone_size) ||
7889 !IS_ALIGNED(physical_len, zone_size)) {
7890 btrfs_err(fs_info,
7891 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7892 devid, physical_offset, physical_len);
7893 ret = -EUCLEAN;
7894 goto out;
7895 }
7896 }
7897
7898 out:
7899 free_extent_map(em);
7900 return ret;
7901 }
7902
7903 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7904 {
7905 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7906 struct extent_map *em;
7907 struct rb_node *node;
7908 int ret = 0;
7909
7910 read_lock(&em_tree->lock);
7911 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7912 em = rb_entry(node, struct extent_map, rb_node);
7913 if (em->map_lookup->num_stripes !=
7914 em->map_lookup->verified_stripes) {
7915 btrfs_err(fs_info,
7916 "chunk %llu has missing dev extent, have %d expect %d",
7917 em->start, em->map_lookup->verified_stripes,
7918 em->map_lookup->num_stripes);
7919 ret = -EUCLEAN;
7920 goto out;
7921 }
7922 }
7923 out:
7924 read_unlock(&em_tree->lock);
7925 return ret;
7926 }
7927
7928 /*
7929 * Ensure that all dev extents are mapped to correct chunk, otherwise
7930 * later chunk allocation/free would cause unexpected behavior.
7931 *
7932 * NOTE: This will iterate through the whole device tree, which should be of
7933 * the same size level as the chunk tree. This slightly increases mount time.
7934 */
7935 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7936 {
7937 struct btrfs_path *path;
7938 struct btrfs_root *root = fs_info->dev_root;
7939 struct btrfs_key key;
7940 u64 prev_devid = 0;
7941 u64 prev_dev_ext_end = 0;
7942 int ret = 0;
7943
7944 /*
7945 * We don't have a dev_root because we mounted with ignorebadroots and
7946 * failed to load the root, so we want to skip the verification in this
7947 * case for sure.
7948 *
7949 * However if the dev root is fine, but the tree itself is corrupted
7950 * we'd still fail to mount. This verification is only to make sure
7951 * writes can happen safely, so instead just bypass this check
7952 * completely in the case of IGNOREBADROOTS.
7953 */
7954 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7955 return 0;
7956
7957 key.objectid = 1;
7958 key.type = BTRFS_DEV_EXTENT_KEY;
7959 key.offset = 0;
7960
7961 path = btrfs_alloc_path();
7962 if (!path)
7963 return -ENOMEM;
7964
7965 path->reada = READA_FORWARD;
7966 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7967 if (ret < 0)
7968 goto out;
7969
7970 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7971 ret = btrfs_next_item(root, path);
7972 if (ret < 0)
7973 goto out;
7974 /* No dev extents at all? Not good */
7975 if (ret > 0) {
7976 ret = -EUCLEAN;
7977 goto out;
7978 }
7979 }
7980 while (1) {
7981 struct extent_buffer *leaf = path->nodes[0];
7982 struct btrfs_dev_extent *dext;
7983 int slot = path->slots[0];
7984 u64 chunk_offset;
7985 u64 physical_offset;
7986 u64 physical_len;
7987 u64 devid;
7988
7989 btrfs_item_key_to_cpu(leaf, &key, slot);
7990 if (key.type != BTRFS_DEV_EXTENT_KEY)
7991 break;
7992 devid = key.objectid;
7993 physical_offset = key.offset;
7994
7995 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7996 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7997 physical_len = btrfs_dev_extent_length(leaf, dext);
7998
7999 /* Check if this dev extent overlaps with the previous one */
8000 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8001 btrfs_err(fs_info,
8002 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8003 devid, physical_offset, prev_dev_ext_end);
8004 ret = -EUCLEAN;
8005 goto out;
8006 }
8007
8008 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8009 physical_offset, physical_len);
8010 if (ret < 0)
8011 goto out;
8012 prev_devid = devid;
8013 prev_dev_ext_end = physical_offset + physical_len;
8014
8015 ret = btrfs_next_item(root, path);
8016 if (ret < 0)
8017 goto out;
8018 if (ret > 0) {
8019 ret = 0;
8020 break;
8021 }
8022 }
8023
8024 /* Ensure all chunks have corresponding dev extents */
8025 ret = verify_chunk_dev_extent_mapping(fs_info);
8026 out:
8027 btrfs_free_path(path);
8028 return ret;
8029 }
8030
8031 /*
8032 * Check whether the given block group or device is pinned by any inode being
8033 * used as a swapfile.
8034 */
8035 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8036 {
8037 struct btrfs_swapfile_pin *sp;
8038 struct rb_node *node;
8039
8040 spin_lock(&fs_info->swapfile_pins_lock);
8041 node = fs_info->swapfile_pins.rb_node;
8042 while (node) {
8043 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8044 if (ptr < sp->ptr)
8045 node = node->rb_left;
8046 else if (ptr > sp->ptr)
8047 node = node->rb_right;
8048 else
8049 break;
8050 }
8051 spin_unlock(&fs_info->swapfile_pins_lock);
8052 return node != NULL;
8053 }
8054
8055 static int relocating_repair_kthread(void *data)
8056 {
8057 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8058 struct btrfs_fs_info *fs_info = cache->fs_info;
8059 u64 target;
8060 int ret = 0;
8061
8062 target = cache->start;
8063 btrfs_put_block_group(cache);
8064
8065 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8066 btrfs_info(fs_info,
8067 "zoned: skip relocating block group %llu to repair: EBUSY",
8068 target);
8069 return -EBUSY;
8070 }
8071
8072 mutex_lock(&fs_info->reclaim_bgs_lock);
8073
8074 /* Ensure block group still exists */
8075 cache = btrfs_lookup_block_group(fs_info, target);
8076 if (!cache)
8077 goto out;
8078
8079 if (!cache->relocating_repair)
8080 goto out;
8081
8082 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8083 if (ret < 0)
8084 goto out;
8085
8086 btrfs_info(fs_info,
8087 "zoned: relocating block group %llu to repair IO failure",
8088 target);
8089 ret = btrfs_relocate_chunk(fs_info, target);
8090
8091 out:
8092 if (cache)
8093 btrfs_put_block_group(cache);
8094 mutex_unlock(&fs_info->reclaim_bgs_lock);
8095 btrfs_exclop_finish(fs_info);
8096
8097 return ret;
8098 }
8099
8100 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8101 {
8102 struct btrfs_block_group *cache;
8103
8104 /* Do not attempt to repair in degraded state */
8105 if (btrfs_test_opt(fs_info, DEGRADED))
8106 return 0;
8107
8108 cache = btrfs_lookup_block_group(fs_info, logical);
8109 if (!cache)
8110 return 0;
8111
8112 spin_lock(&cache->lock);
8113 if (cache->relocating_repair) {
8114 spin_unlock(&cache->lock);
8115 btrfs_put_block_group(cache);
8116 return 0;
8117 }
8118 cache->relocating_repair = 1;
8119 spin_unlock(&cache->lock);
8120
8121 kthread_run(relocating_repair_kthread, cache,
8122 "btrfs-relocating-repair");
8123
8124 return 0;
8125 }