]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/volumes.c
btrfs: scrub: Don't use inode pages for device replace
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 return &fs_uuids;
153 }
154
155 /*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
174 INIT_LIST_HEAD(&fs_devs->resized_devices);
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180 return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
191 rcu_string_free(device->name);
192 bio_put(device->flush_bio);
193 kfree(device);
194 }
195 kfree(fs_devices);
196 }
197
198 static void btrfs_kobject_uevent(struct block_device *bdev,
199 enum kobject_action action)
200 {
201 int ret;
202
203 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 if (ret)
205 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
206 action,
207 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
208 &disk_to_dev(bdev->bd_disk)->kobj);
209 }
210
211 void btrfs_cleanup_fs_uuids(void)
212 {
213 struct btrfs_fs_devices *fs_devices;
214
215 while (!list_empty(&fs_uuids)) {
216 fs_devices = list_entry(fs_uuids.next,
217 struct btrfs_fs_devices, list);
218 list_del(&fs_devices->list);
219 free_fs_devices(fs_devices);
220 }
221 }
222
223 static struct btrfs_device *__alloc_device(void)
224 {
225 struct btrfs_device *dev;
226
227 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
228 if (!dev)
229 return ERR_PTR(-ENOMEM);
230
231 /*
232 * Preallocate a bio that's always going to be used for flushing device
233 * barriers and matches the device lifespan
234 */
235 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
236 if (!dev->flush_bio) {
237 kfree(dev);
238 return ERR_PTR(-ENOMEM);
239 }
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
257 /*
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259 * return NULL.
260 *
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
263 */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
266 {
267 struct list_head *head = &fs_devices->devices;
268 struct btrfs_device *dev;
269
270 list_for_each_entry(dev, head, dev_list) {
271 if (dev->devid == devid &&
272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273 return dev;
274 }
275 }
276 return NULL;
277 }
278
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281 struct btrfs_fs_devices *fs_devices;
282
283 list_for_each_entry(fs_devices, &fs_uuids, list) {
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 return fs_devices;
286 }
287 return NULL;
288 }
289
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
294 {
295 int ret;
296
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299 if (IS_ERR(*bdev)) {
300 ret = PTR_ERR(*bdev);
301 goto error;
302 }
303
304 if (flush)
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307 if (ret) {
308 blkdev_put(*bdev, flags);
309 goto error;
310 }
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
313 if (IS_ERR(*bh)) {
314 ret = PTR_ERR(*bh);
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318
319 return 0;
320
321 error:
322 *bdev = NULL;
323 *bh = NULL;
324 return ret;
325 }
326
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
329 {
330
331 struct bio *old_head;
332
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
337 else
338 pending_bios->tail = tail;
339 }
340
341 /*
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
345 *
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
351 */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354 struct btrfs_fs_info *fs_info = device->fs_info;
355 struct bio *pending;
356 struct backing_dev_info *bdi;
357 struct btrfs_pending_bios *pending_bios;
358 struct bio *tail;
359 struct bio *cur;
360 int again = 0;
361 unsigned long num_run;
362 unsigned long batch_run = 0;
363 unsigned long last_waited = 0;
364 int force_reg = 0;
365 int sync_pending = 0;
366 struct blk_plug plug;
367
368 /*
369 * this function runs all the bios we've collected for
370 * a particular device. We don't want to wander off to
371 * another device without first sending all of these down.
372 * So, setup a plug here and finish it off before we return
373 */
374 blk_start_plug(&plug);
375
376 bdi = device->bdev->bd_bdi;
377
378 loop:
379 spin_lock(&device->io_lock);
380
381 loop_lock:
382 num_run = 0;
383
384 /* take all the bios off the list at once and process them
385 * later on (without the lock held). But, remember the
386 * tail and other pointers so the bios can be properly reinserted
387 * into the list if we hit congestion
388 */
389 if (!force_reg && device->pending_sync_bios.head) {
390 pending_bios = &device->pending_sync_bios;
391 force_reg = 1;
392 } else {
393 pending_bios = &device->pending_bios;
394 force_reg = 0;
395 }
396
397 pending = pending_bios->head;
398 tail = pending_bios->tail;
399 WARN_ON(pending && !tail);
400
401 /*
402 * if pending was null this time around, no bios need processing
403 * at all and we can stop. Otherwise it'll loop back up again
404 * and do an additional check so no bios are missed.
405 *
406 * device->running_pending is used to synchronize with the
407 * schedule_bio code.
408 */
409 if (device->pending_sync_bios.head == NULL &&
410 device->pending_bios.head == NULL) {
411 again = 0;
412 device->running_pending = 0;
413 } else {
414 again = 1;
415 device->running_pending = 1;
416 }
417
418 pending_bios->head = NULL;
419 pending_bios->tail = NULL;
420
421 spin_unlock(&device->io_lock);
422
423 while (pending) {
424
425 rmb();
426 /* we want to work on both lists, but do more bios on the
427 * sync list than the regular list
428 */
429 if ((num_run > 32 &&
430 pending_bios != &device->pending_sync_bios &&
431 device->pending_sync_bios.head) ||
432 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 device->pending_bios.head)) {
434 spin_lock(&device->io_lock);
435 requeue_list(pending_bios, pending, tail);
436 goto loop_lock;
437 }
438
439 cur = pending;
440 pending = pending->bi_next;
441 cur->bi_next = NULL;
442
443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
444
445 /*
446 * if we're doing the sync list, record that our
447 * plug has some sync requests on it
448 *
449 * If we're doing the regular list and there are
450 * sync requests sitting around, unplug before
451 * we add more
452 */
453 if (pending_bios == &device->pending_sync_bios) {
454 sync_pending = 1;
455 } else if (sync_pending) {
456 blk_finish_plug(&plug);
457 blk_start_plug(&plug);
458 sync_pending = 0;
459 }
460
461 btrfsic_submit_bio(cur);
462 num_run++;
463 batch_run++;
464
465 cond_resched();
466
467 /*
468 * we made progress, there is more work to do and the bdi
469 * is now congested. Back off and let other work structs
470 * run instead
471 */
472 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
473 fs_info->fs_devices->open_devices > 1) {
474 struct io_context *ioc;
475
476 ioc = current->io_context;
477
478 /*
479 * the main goal here is that we don't want to
480 * block if we're going to be able to submit
481 * more requests without blocking.
482 *
483 * This code does two great things, it pokes into
484 * the elevator code from a filesystem _and_
485 * it makes assumptions about how batching works.
486 */
487 if (ioc && ioc->nr_batch_requests > 0 &&
488 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489 (last_waited == 0 ||
490 ioc->last_waited == last_waited)) {
491 /*
492 * we want to go through our batch of
493 * requests and stop. So, we copy out
494 * the ioc->last_waited time and test
495 * against it before looping
496 */
497 last_waited = ioc->last_waited;
498 cond_resched();
499 continue;
500 }
501 spin_lock(&device->io_lock);
502 requeue_list(pending_bios, pending, tail);
503 device->running_pending = 1;
504
505 spin_unlock(&device->io_lock);
506 btrfs_queue_work(fs_info->submit_workers,
507 &device->work);
508 goto done;
509 }
510 }
511
512 cond_resched();
513 if (again)
514 goto loop;
515
516 spin_lock(&device->io_lock);
517 if (device->pending_bios.head || device->pending_sync_bios.head)
518 goto loop_lock;
519 spin_unlock(&device->io_lock);
520
521 done:
522 blk_finish_plug(&plug);
523 }
524
525 static void pending_bios_fn(struct btrfs_work *work)
526 {
527 struct btrfs_device *device;
528
529 device = container_of(work, struct btrfs_device, work);
530 run_scheduled_bios(device);
531 }
532
533
534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
535 {
536 struct btrfs_fs_devices *fs_devs;
537 struct btrfs_device *dev;
538
539 if (!cur_dev->name)
540 return;
541
542 list_for_each_entry(fs_devs, &fs_uuids, list) {
543 int del = 1;
544
545 if (fs_devs->opened)
546 continue;
547 if (fs_devs->seeding)
548 continue;
549
550 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551
552 if (dev == cur_dev)
553 continue;
554 if (!dev->name)
555 continue;
556
557 /*
558 * Todo: This won't be enough. What if the same device
559 * comes back (with new uuid and) with its mapper path?
560 * But for now, this does help as mostly an admin will
561 * either use mapper or non mapper path throughout.
562 */
563 rcu_read_lock();
564 del = strcmp(rcu_str_deref(dev->name),
565 rcu_str_deref(cur_dev->name));
566 rcu_read_unlock();
567 if (!del)
568 break;
569 }
570
571 if (!del) {
572 /* delete the stale device */
573 if (fs_devs->num_devices == 1) {
574 btrfs_sysfs_remove_fsid(fs_devs);
575 list_del(&fs_devs->list);
576 free_fs_devices(fs_devs);
577 break;
578 } else {
579 fs_devs->num_devices--;
580 list_del(&dev->dev_list);
581 rcu_string_free(dev->name);
582 bio_put(dev->flush_bio);
583 kfree(dev);
584 }
585 break;
586 }
587 }
588 }
589
590 /*
591 * Add new device to list of registered devices
592 *
593 * Returns:
594 * 1 - first time device is seen
595 * 0 - device already known
596 * < 0 - error
597 */
598 static noinline int device_list_add(const char *path,
599 struct btrfs_super_block *disk_super,
600 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
601 {
602 struct btrfs_device *device;
603 struct btrfs_fs_devices *fs_devices;
604 struct rcu_string *name;
605 int ret = 0;
606 u64 found_transid = btrfs_super_generation(disk_super);
607
608 fs_devices = find_fsid(disk_super->fsid);
609 if (!fs_devices) {
610 fs_devices = alloc_fs_devices(disk_super->fsid);
611 if (IS_ERR(fs_devices))
612 return PTR_ERR(fs_devices);
613
614 list_add(&fs_devices->list, &fs_uuids);
615
616 device = NULL;
617 } else {
618 device = find_device(fs_devices, devid,
619 disk_super->dev_item.uuid);
620 }
621
622 if (!device) {
623 if (fs_devices->opened)
624 return -EBUSY;
625
626 device = btrfs_alloc_device(NULL, &devid,
627 disk_super->dev_item.uuid);
628 if (IS_ERR(device)) {
629 /* we can safely leave the fs_devices entry around */
630 return PTR_ERR(device);
631 }
632
633 name = rcu_string_strdup(path, GFP_NOFS);
634 if (!name) {
635 bio_put(device->flush_bio);
636 kfree(device);
637 return -ENOMEM;
638 }
639 rcu_assign_pointer(device->name, name);
640
641 mutex_lock(&fs_devices->device_list_mutex);
642 list_add_rcu(&device->dev_list, &fs_devices->devices);
643 fs_devices->num_devices++;
644 mutex_unlock(&fs_devices->device_list_mutex);
645
646 ret = 1;
647 device->fs_devices = fs_devices;
648 } else if (!device->name || strcmp(device->name->str, path)) {
649 /*
650 * When FS is already mounted.
651 * 1. If you are here and if the device->name is NULL that
652 * means this device was missing at time of FS mount.
653 * 2. If you are here and if the device->name is different
654 * from 'path' that means either
655 * a. The same device disappeared and reappeared with
656 * different name. or
657 * b. The missing-disk-which-was-replaced, has
658 * reappeared now.
659 *
660 * We must allow 1 and 2a above. But 2b would be a spurious
661 * and unintentional.
662 *
663 * Further in case of 1 and 2a above, the disk at 'path'
664 * would have missed some transaction when it was away and
665 * in case of 2a the stale bdev has to be updated as well.
666 * 2b must not be allowed at all time.
667 */
668
669 /*
670 * For now, we do allow update to btrfs_fs_device through the
671 * btrfs dev scan cli after FS has been mounted. We're still
672 * tracking a problem where systems fail mount by subvolume id
673 * when we reject replacement on a mounted FS.
674 */
675 if (!fs_devices->opened && found_transid < device->generation) {
676 /*
677 * That is if the FS is _not_ mounted and if you
678 * are here, that means there is more than one
679 * disk with same uuid and devid.We keep the one
680 * with larger generation number or the last-in if
681 * generation are equal.
682 */
683 return -EEXIST;
684 }
685
686 name = rcu_string_strdup(path, GFP_NOFS);
687 if (!name)
688 return -ENOMEM;
689 rcu_string_free(device->name);
690 rcu_assign_pointer(device->name, name);
691 if (device->missing) {
692 fs_devices->missing_devices--;
693 device->missing = 0;
694 }
695 }
696
697 /*
698 * Unmount does not free the btrfs_device struct but would zero
699 * generation along with most of the other members. So just update
700 * it back. We need it to pick the disk with largest generation
701 * (as above).
702 */
703 if (!fs_devices->opened)
704 device->generation = found_transid;
705
706 /*
707 * if there is new btrfs on an already registered device,
708 * then remove the stale device entry.
709 */
710 if (ret > 0)
711 btrfs_free_stale_device(device);
712
713 *fs_devices_ret = fs_devices;
714
715 return ret;
716 }
717
718 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
719 {
720 struct btrfs_fs_devices *fs_devices;
721 struct btrfs_device *device;
722 struct btrfs_device *orig_dev;
723
724 fs_devices = alloc_fs_devices(orig->fsid);
725 if (IS_ERR(fs_devices))
726 return fs_devices;
727
728 mutex_lock(&orig->device_list_mutex);
729 fs_devices->total_devices = orig->total_devices;
730
731 /* We have held the volume lock, it is safe to get the devices. */
732 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
733 struct rcu_string *name;
734
735 device = btrfs_alloc_device(NULL, &orig_dev->devid,
736 orig_dev->uuid);
737 if (IS_ERR(device))
738 goto error;
739
740 /*
741 * This is ok to do without rcu read locked because we hold the
742 * uuid mutex so nothing we touch in here is going to disappear.
743 */
744 if (orig_dev->name) {
745 name = rcu_string_strdup(orig_dev->name->str,
746 GFP_KERNEL);
747 if (!name) {
748 bio_put(device->flush_bio);
749 kfree(device);
750 goto error;
751 }
752 rcu_assign_pointer(device->name, name);
753 }
754
755 list_add(&device->dev_list, &fs_devices->devices);
756 device->fs_devices = fs_devices;
757 fs_devices->num_devices++;
758 }
759 mutex_unlock(&orig->device_list_mutex);
760 return fs_devices;
761 error:
762 mutex_unlock(&orig->device_list_mutex);
763 free_fs_devices(fs_devices);
764 return ERR_PTR(-ENOMEM);
765 }
766
767 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
768 {
769 struct btrfs_device *device, *next;
770 struct btrfs_device *latest_dev = NULL;
771
772 mutex_lock(&uuid_mutex);
773 again:
774 /* This is the initialized path, it is safe to release the devices. */
775 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
776 if (device->in_fs_metadata) {
777 if (!device->is_tgtdev_for_dev_replace &&
778 (!latest_dev ||
779 device->generation > latest_dev->generation)) {
780 latest_dev = device;
781 }
782 continue;
783 }
784
785 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
786 /*
787 * In the first step, keep the device which has
788 * the correct fsid and the devid that is used
789 * for the dev_replace procedure.
790 * In the second step, the dev_replace state is
791 * read from the device tree and it is known
792 * whether the procedure is really active or
793 * not, which means whether this device is
794 * used or whether it should be removed.
795 */
796 if (step == 0 || device->is_tgtdev_for_dev_replace) {
797 continue;
798 }
799 }
800 if (device->bdev) {
801 blkdev_put(device->bdev, device->mode);
802 device->bdev = NULL;
803 fs_devices->open_devices--;
804 }
805 if (device->writeable) {
806 list_del_init(&device->dev_alloc_list);
807 device->writeable = 0;
808 if (!device->is_tgtdev_for_dev_replace)
809 fs_devices->rw_devices--;
810 }
811 list_del_init(&device->dev_list);
812 fs_devices->num_devices--;
813 rcu_string_free(device->name);
814 bio_put(device->flush_bio);
815 kfree(device);
816 }
817
818 if (fs_devices->seed) {
819 fs_devices = fs_devices->seed;
820 goto again;
821 }
822
823 fs_devices->latest_bdev = latest_dev->bdev;
824
825 mutex_unlock(&uuid_mutex);
826 }
827
828 static void __free_device(struct work_struct *work)
829 {
830 struct btrfs_device *device;
831
832 device = container_of(work, struct btrfs_device, rcu_work);
833 rcu_string_free(device->name);
834 bio_put(device->flush_bio);
835 kfree(device);
836 }
837
838 static void free_device(struct rcu_head *head)
839 {
840 struct btrfs_device *device;
841
842 device = container_of(head, struct btrfs_device, rcu);
843
844 INIT_WORK(&device->rcu_work, __free_device);
845 schedule_work(&device->rcu_work);
846 }
847
848 static void btrfs_close_bdev(struct btrfs_device *device)
849 {
850 if (device->bdev && device->writeable) {
851 sync_blockdev(device->bdev);
852 invalidate_bdev(device->bdev);
853 }
854
855 if (device->bdev)
856 blkdev_put(device->bdev, device->mode);
857 }
858
859 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
860 {
861 struct btrfs_fs_devices *fs_devices = device->fs_devices;
862 struct btrfs_device *new_device;
863 struct rcu_string *name;
864
865 if (device->bdev)
866 fs_devices->open_devices--;
867
868 if (device->writeable &&
869 device->devid != BTRFS_DEV_REPLACE_DEVID) {
870 list_del_init(&device->dev_alloc_list);
871 fs_devices->rw_devices--;
872 }
873
874 if (device->missing)
875 fs_devices->missing_devices--;
876
877 new_device = btrfs_alloc_device(NULL, &device->devid,
878 device->uuid);
879 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
880
881 /* Safe because we are under uuid_mutex */
882 if (device->name) {
883 name = rcu_string_strdup(device->name->str, GFP_NOFS);
884 BUG_ON(!name); /* -ENOMEM */
885 rcu_assign_pointer(new_device->name, name);
886 }
887
888 list_replace_rcu(&device->dev_list, &new_device->dev_list);
889 new_device->fs_devices = device->fs_devices;
890 }
891
892 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
893 {
894 struct btrfs_device *device, *tmp;
895 struct list_head pending_put;
896
897 INIT_LIST_HEAD(&pending_put);
898
899 if (--fs_devices->opened > 0)
900 return 0;
901
902 mutex_lock(&fs_devices->device_list_mutex);
903 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
904 btrfs_prepare_close_one_device(device);
905 list_add(&device->dev_list, &pending_put);
906 }
907 mutex_unlock(&fs_devices->device_list_mutex);
908
909 /*
910 * btrfs_show_devname() is using the device_list_mutex,
911 * sometimes call to blkdev_put() leads vfs calling
912 * into this func. So do put outside of device_list_mutex,
913 * as of now.
914 */
915 while (!list_empty(&pending_put)) {
916 device = list_first_entry(&pending_put,
917 struct btrfs_device, dev_list);
918 list_del(&device->dev_list);
919 btrfs_close_bdev(device);
920 call_rcu(&device->rcu, free_device);
921 }
922
923 WARN_ON(fs_devices->open_devices);
924 WARN_ON(fs_devices->rw_devices);
925 fs_devices->opened = 0;
926 fs_devices->seeding = 0;
927
928 return 0;
929 }
930
931 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
932 {
933 struct btrfs_fs_devices *seed_devices = NULL;
934 int ret;
935
936 mutex_lock(&uuid_mutex);
937 ret = __btrfs_close_devices(fs_devices);
938 if (!fs_devices->opened) {
939 seed_devices = fs_devices->seed;
940 fs_devices->seed = NULL;
941 }
942 mutex_unlock(&uuid_mutex);
943
944 while (seed_devices) {
945 fs_devices = seed_devices;
946 seed_devices = fs_devices->seed;
947 __btrfs_close_devices(fs_devices);
948 free_fs_devices(fs_devices);
949 }
950 /*
951 * Wait for rcu kworkers under __btrfs_close_devices
952 * to finish all blkdev_puts so device is really
953 * free when umount is done.
954 */
955 rcu_barrier();
956 return ret;
957 }
958
959 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
960 fmode_t flags, void *holder)
961 {
962 struct request_queue *q;
963 struct block_device *bdev;
964 struct list_head *head = &fs_devices->devices;
965 struct btrfs_device *device;
966 struct btrfs_device *latest_dev = NULL;
967 struct buffer_head *bh;
968 struct btrfs_super_block *disk_super;
969 u64 devid;
970 int seeding = 1;
971 int ret = 0;
972
973 flags |= FMODE_EXCL;
974
975 list_for_each_entry(device, head, dev_list) {
976 if (device->bdev)
977 continue;
978 if (!device->name)
979 continue;
980
981 /* Just open everything we can; ignore failures here */
982 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
983 &bdev, &bh))
984 continue;
985
986 disk_super = (struct btrfs_super_block *)bh->b_data;
987 devid = btrfs_stack_device_id(&disk_super->dev_item);
988 if (devid != device->devid)
989 goto error_brelse;
990
991 if (memcmp(device->uuid, disk_super->dev_item.uuid,
992 BTRFS_UUID_SIZE))
993 goto error_brelse;
994
995 device->generation = btrfs_super_generation(disk_super);
996 if (!latest_dev ||
997 device->generation > latest_dev->generation)
998 latest_dev = device;
999
1000 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1001 device->writeable = 0;
1002 } else {
1003 device->writeable = !bdev_read_only(bdev);
1004 seeding = 0;
1005 }
1006
1007 q = bdev_get_queue(bdev);
1008 if (blk_queue_discard(q))
1009 device->can_discard = 1;
1010 if (!blk_queue_nonrot(q))
1011 fs_devices->rotating = 1;
1012
1013 device->bdev = bdev;
1014 device->in_fs_metadata = 0;
1015 device->mode = flags;
1016
1017 fs_devices->open_devices++;
1018 if (device->writeable &&
1019 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1020 fs_devices->rw_devices++;
1021 list_add(&device->dev_alloc_list,
1022 &fs_devices->alloc_list);
1023 }
1024 brelse(bh);
1025 continue;
1026
1027 error_brelse:
1028 brelse(bh);
1029 blkdev_put(bdev, flags);
1030 continue;
1031 }
1032 if (fs_devices->open_devices == 0) {
1033 ret = -EINVAL;
1034 goto out;
1035 }
1036 fs_devices->seeding = seeding;
1037 fs_devices->opened = 1;
1038 fs_devices->latest_bdev = latest_dev->bdev;
1039 fs_devices->total_rw_bytes = 0;
1040 out:
1041 return ret;
1042 }
1043
1044 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1045 fmode_t flags, void *holder)
1046 {
1047 int ret;
1048
1049 mutex_lock(&uuid_mutex);
1050 if (fs_devices->opened) {
1051 fs_devices->opened++;
1052 ret = 0;
1053 } else {
1054 ret = __btrfs_open_devices(fs_devices, flags, holder);
1055 }
1056 mutex_unlock(&uuid_mutex);
1057 return ret;
1058 }
1059
1060 static void btrfs_release_disk_super(struct page *page)
1061 {
1062 kunmap(page);
1063 put_page(page);
1064 }
1065
1066 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1067 struct page **page,
1068 struct btrfs_super_block **disk_super)
1069 {
1070 void *p;
1071 pgoff_t index;
1072
1073 /* make sure our super fits in the device */
1074 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1075 return 1;
1076
1077 /* make sure our super fits in the page */
1078 if (sizeof(**disk_super) > PAGE_SIZE)
1079 return 1;
1080
1081 /* make sure our super doesn't straddle pages on disk */
1082 index = bytenr >> PAGE_SHIFT;
1083 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1084 return 1;
1085
1086 /* pull in the page with our super */
1087 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1088 index, GFP_KERNEL);
1089
1090 if (IS_ERR_OR_NULL(*page))
1091 return 1;
1092
1093 p = kmap(*page);
1094
1095 /* align our pointer to the offset of the super block */
1096 *disk_super = p + (bytenr & ~PAGE_MASK);
1097
1098 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1099 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1100 btrfs_release_disk_super(*page);
1101 return 1;
1102 }
1103
1104 if ((*disk_super)->label[0] &&
1105 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1106 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1107
1108 return 0;
1109 }
1110
1111 /*
1112 * Look for a btrfs signature on a device. This may be called out of the mount path
1113 * and we are not allowed to call set_blocksize during the scan. The superblock
1114 * is read via pagecache
1115 */
1116 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1117 struct btrfs_fs_devices **fs_devices_ret)
1118 {
1119 struct btrfs_super_block *disk_super;
1120 struct block_device *bdev;
1121 struct page *page;
1122 int ret = -EINVAL;
1123 u64 devid;
1124 u64 transid;
1125 u64 total_devices;
1126 u64 bytenr;
1127
1128 /*
1129 * we would like to check all the supers, but that would make
1130 * a btrfs mount succeed after a mkfs from a different FS.
1131 * So, we need to add a special mount option to scan for
1132 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1133 */
1134 bytenr = btrfs_sb_offset(0);
1135 flags |= FMODE_EXCL;
1136 mutex_lock(&uuid_mutex);
1137
1138 bdev = blkdev_get_by_path(path, flags, holder);
1139 if (IS_ERR(bdev)) {
1140 ret = PTR_ERR(bdev);
1141 goto error;
1142 }
1143
1144 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1145 goto error_bdev_put;
1146
1147 devid = btrfs_stack_device_id(&disk_super->dev_item);
1148 transid = btrfs_super_generation(disk_super);
1149 total_devices = btrfs_super_num_devices(disk_super);
1150
1151 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1152 if (ret > 0) {
1153 if (disk_super->label[0]) {
1154 pr_info("BTRFS: device label %s ", disk_super->label);
1155 } else {
1156 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1157 }
1158
1159 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1160 ret = 0;
1161 }
1162 if (!ret && fs_devices_ret)
1163 (*fs_devices_ret)->total_devices = total_devices;
1164
1165 btrfs_release_disk_super(page);
1166
1167 error_bdev_put:
1168 blkdev_put(bdev, flags);
1169 error:
1170 mutex_unlock(&uuid_mutex);
1171 return ret;
1172 }
1173
1174 /* helper to account the used device space in the range */
1175 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1176 u64 end, u64 *length)
1177 {
1178 struct btrfs_key key;
1179 struct btrfs_root *root = device->fs_info->dev_root;
1180 struct btrfs_dev_extent *dev_extent;
1181 struct btrfs_path *path;
1182 u64 extent_end;
1183 int ret;
1184 int slot;
1185 struct extent_buffer *l;
1186
1187 *length = 0;
1188
1189 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1190 return 0;
1191
1192 path = btrfs_alloc_path();
1193 if (!path)
1194 return -ENOMEM;
1195 path->reada = READA_FORWARD;
1196
1197 key.objectid = device->devid;
1198 key.offset = start;
1199 key.type = BTRFS_DEV_EXTENT_KEY;
1200
1201 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1202 if (ret < 0)
1203 goto out;
1204 if (ret > 0) {
1205 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1206 if (ret < 0)
1207 goto out;
1208 }
1209
1210 while (1) {
1211 l = path->nodes[0];
1212 slot = path->slots[0];
1213 if (slot >= btrfs_header_nritems(l)) {
1214 ret = btrfs_next_leaf(root, path);
1215 if (ret == 0)
1216 continue;
1217 if (ret < 0)
1218 goto out;
1219
1220 break;
1221 }
1222 btrfs_item_key_to_cpu(l, &key, slot);
1223
1224 if (key.objectid < device->devid)
1225 goto next;
1226
1227 if (key.objectid > device->devid)
1228 break;
1229
1230 if (key.type != BTRFS_DEV_EXTENT_KEY)
1231 goto next;
1232
1233 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1234 extent_end = key.offset + btrfs_dev_extent_length(l,
1235 dev_extent);
1236 if (key.offset <= start && extent_end > end) {
1237 *length = end - start + 1;
1238 break;
1239 } else if (key.offset <= start && extent_end > start)
1240 *length += extent_end - start;
1241 else if (key.offset > start && extent_end <= end)
1242 *length += extent_end - key.offset;
1243 else if (key.offset > start && key.offset <= end) {
1244 *length += end - key.offset + 1;
1245 break;
1246 } else if (key.offset > end)
1247 break;
1248
1249 next:
1250 path->slots[0]++;
1251 }
1252 ret = 0;
1253 out:
1254 btrfs_free_path(path);
1255 return ret;
1256 }
1257
1258 static int contains_pending_extent(struct btrfs_transaction *transaction,
1259 struct btrfs_device *device,
1260 u64 *start, u64 len)
1261 {
1262 struct btrfs_fs_info *fs_info = device->fs_info;
1263 struct extent_map *em;
1264 struct list_head *search_list = &fs_info->pinned_chunks;
1265 int ret = 0;
1266 u64 physical_start = *start;
1267
1268 if (transaction)
1269 search_list = &transaction->pending_chunks;
1270 again:
1271 list_for_each_entry(em, search_list, list) {
1272 struct map_lookup *map;
1273 int i;
1274
1275 map = em->map_lookup;
1276 for (i = 0; i < map->num_stripes; i++) {
1277 u64 end;
1278
1279 if (map->stripes[i].dev != device)
1280 continue;
1281 if (map->stripes[i].physical >= physical_start + len ||
1282 map->stripes[i].physical + em->orig_block_len <=
1283 physical_start)
1284 continue;
1285 /*
1286 * Make sure that while processing the pinned list we do
1287 * not override our *start with a lower value, because
1288 * we can have pinned chunks that fall within this
1289 * device hole and that have lower physical addresses
1290 * than the pending chunks we processed before. If we
1291 * do not take this special care we can end up getting
1292 * 2 pending chunks that start at the same physical
1293 * device offsets because the end offset of a pinned
1294 * chunk can be equal to the start offset of some
1295 * pending chunk.
1296 */
1297 end = map->stripes[i].physical + em->orig_block_len;
1298 if (end > *start) {
1299 *start = end;
1300 ret = 1;
1301 }
1302 }
1303 }
1304 if (search_list != &fs_info->pinned_chunks) {
1305 search_list = &fs_info->pinned_chunks;
1306 goto again;
1307 }
1308
1309 return ret;
1310 }
1311
1312
1313 /*
1314 * find_free_dev_extent_start - find free space in the specified device
1315 * @device: the device which we search the free space in
1316 * @num_bytes: the size of the free space that we need
1317 * @search_start: the position from which to begin the search
1318 * @start: store the start of the free space.
1319 * @len: the size of the free space. that we find, or the size
1320 * of the max free space if we don't find suitable free space
1321 *
1322 * this uses a pretty simple search, the expectation is that it is
1323 * called very infrequently and that a given device has a small number
1324 * of extents
1325 *
1326 * @start is used to store the start of the free space if we find. But if we
1327 * don't find suitable free space, it will be used to store the start position
1328 * of the max free space.
1329 *
1330 * @len is used to store the size of the free space that we find.
1331 * But if we don't find suitable free space, it is used to store the size of
1332 * the max free space.
1333 */
1334 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1335 struct btrfs_device *device, u64 num_bytes,
1336 u64 search_start, u64 *start, u64 *len)
1337 {
1338 struct btrfs_fs_info *fs_info = device->fs_info;
1339 struct btrfs_root *root = fs_info->dev_root;
1340 struct btrfs_key key;
1341 struct btrfs_dev_extent *dev_extent;
1342 struct btrfs_path *path;
1343 u64 hole_size;
1344 u64 max_hole_start;
1345 u64 max_hole_size;
1346 u64 extent_end;
1347 u64 search_end = device->total_bytes;
1348 int ret;
1349 int slot;
1350 struct extent_buffer *l;
1351
1352 /*
1353 * We don't want to overwrite the superblock on the drive nor any area
1354 * used by the boot loader (grub for example), so we make sure to start
1355 * at an offset of at least 1MB.
1356 */
1357 search_start = max_t(u64, search_start, SZ_1M);
1358
1359 path = btrfs_alloc_path();
1360 if (!path)
1361 return -ENOMEM;
1362
1363 max_hole_start = search_start;
1364 max_hole_size = 0;
1365
1366 again:
1367 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1368 ret = -ENOSPC;
1369 goto out;
1370 }
1371
1372 path->reada = READA_FORWARD;
1373 path->search_commit_root = 1;
1374 path->skip_locking = 1;
1375
1376 key.objectid = device->devid;
1377 key.offset = search_start;
1378 key.type = BTRFS_DEV_EXTENT_KEY;
1379
1380 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1381 if (ret < 0)
1382 goto out;
1383 if (ret > 0) {
1384 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1385 if (ret < 0)
1386 goto out;
1387 }
1388
1389 while (1) {
1390 l = path->nodes[0];
1391 slot = path->slots[0];
1392 if (slot >= btrfs_header_nritems(l)) {
1393 ret = btrfs_next_leaf(root, path);
1394 if (ret == 0)
1395 continue;
1396 if (ret < 0)
1397 goto out;
1398
1399 break;
1400 }
1401 btrfs_item_key_to_cpu(l, &key, slot);
1402
1403 if (key.objectid < device->devid)
1404 goto next;
1405
1406 if (key.objectid > device->devid)
1407 break;
1408
1409 if (key.type != BTRFS_DEV_EXTENT_KEY)
1410 goto next;
1411
1412 if (key.offset > search_start) {
1413 hole_size = key.offset - search_start;
1414
1415 /*
1416 * Have to check before we set max_hole_start, otherwise
1417 * we could end up sending back this offset anyway.
1418 */
1419 if (contains_pending_extent(transaction, device,
1420 &search_start,
1421 hole_size)) {
1422 if (key.offset >= search_start) {
1423 hole_size = key.offset - search_start;
1424 } else {
1425 WARN_ON_ONCE(1);
1426 hole_size = 0;
1427 }
1428 }
1429
1430 if (hole_size > max_hole_size) {
1431 max_hole_start = search_start;
1432 max_hole_size = hole_size;
1433 }
1434
1435 /*
1436 * If this free space is greater than which we need,
1437 * it must be the max free space that we have found
1438 * until now, so max_hole_start must point to the start
1439 * of this free space and the length of this free space
1440 * is stored in max_hole_size. Thus, we return
1441 * max_hole_start and max_hole_size and go back to the
1442 * caller.
1443 */
1444 if (hole_size >= num_bytes) {
1445 ret = 0;
1446 goto out;
1447 }
1448 }
1449
1450 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1451 extent_end = key.offset + btrfs_dev_extent_length(l,
1452 dev_extent);
1453 if (extent_end > search_start)
1454 search_start = extent_end;
1455 next:
1456 path->slots[0]++;
1457 cond_resched();
1458 }
1459
1460 /*
1461 * At this point, search_start should be the end of
1462 * allocated dev extents, and when shrinking the device,
1463 * search_end may be smaller than search_start.
1464 */
1465 if (search_end > search_start) {
1466 hole_size = search_end - search_start;
1467
1468 if (contains_pending_extent(transaction, device, &search_start,
1469 hole_size)) {
1470 btrfs_release_path(path);
1471 goto again;
1472 }
1473
1474 if (hole_size > max_hole_size) {
1475 max_hole_start = search_start;
1476 max_hole_size = hole_size;
1477 }
1478 }
1479
1480 /* See above. */
1481 if (max_hole_size < num_bytes)
1482 ret = -ENOSPC;
1483 else
1484 ret = 0;
1485
1486 out:
1487 btrfs_free_path(path);
1488 *start = max_hole_start;
1489 if (len)
1490 *len = max_hole_size;
1491 return ret;
1492 }
1493
1494 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1495 struct btrfs_device *device, u64 num_bytes,
1496 u64 *start, u64 *len)
1497 {
1498 /* FIXME use last free of some kind */
1499 return find_free_dev_extent_start(trans->transaction, device,
1500 num_bytes, 0, start, len);
1501 }
1502
1503 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1504 struct btrfs_device *device,
1505 u64 start, u64 *dev_extent_len)
1506 {
1507 struct btrfs_fs_info *fs_info = device->fs_info;
1508 struct btrfs_root *root = fs_info->dev_root;
1509 int ret;
1510 struct btrfs_path *path;
1511 struct btrfs_key key;
1512 struct btrfs_key found_key;
1513 struct extent_buffer *leaf = NULL;
1514 struct btrfs_dev_extent *extent = NULL;
1515
1516 path = btrfs_alloc_path();
1517 if (!path)
1518 return -ENOMEM;
1519
1520 key.objectid = device->devid;
1521 key.offset = start;
1522 key.type = BTRFS_DEV_EXTENT_KEY;
1523 again:
1524 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1525 if (ret > 0) {
1526 ret = btrfs_previous_item(root, path, key.objectid,
1527 BTRFS_DEV_EXTENT_KEY);
1528 if (ret)
1529 goto out;
1530 leaf = path->nodes[0];
1531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1532 extent = btrfs_item_ptr(leaf, path->slots[0],
1533 struct btrfs_dev_extent);
1534 BUG_ON(found_key.offset > start || found_key.offset +
1535 btrfs_dev_extent_length(leaf, extent) < start);
1536 key = found_key;
1537 btrfs_release_path(path);
1538 goto again;
1539 } else if (ret == 0) {
1540 leaf = path->nodes[0];
1541 extent = btrfs_item_ptr(leaf, path->slots[0],
1542 struct btrfs_dev_extent);
1543 } else {
1544 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1545 goto out;
1546 }
1547
1548 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1549
1550 ret = btrfs_del_item(trans, root, path);
1551 if (ret) {
1552 btrfs_handle_fs_error(fs_info, ret,
1553 "Failed to remove dev extent item");
1554 } else {
1555 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1556 }
1557 out:
1558 btrfs_free_path(path);
1559 return ret;
1560 }
1561
1562 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1563 struct btrfs_device *device,
1564 u64 chunk_offset, u64 start, u64 num_bytes)
1565 {
1566 int ret;
1567 struct btrfs_path *path;
1568 struct btrfs_fs_info *fs_info = device->fs_info;
1569 struct btrfs_root *root = fs_info->dev_root;
1570 struct btrfs_dev_extent *extent;
1571 struct extent_buffer *leaf;
1572 struct btrfs_key key;
1573
1574 WARN_ON(!device->in_fs_metadata);
1575 WARN_ON(device->is_tgtdev_for_dev_replace);
1576 path = btrfs_alloc_path();
1577 if (!path)
1578 return -ENOMEM;
1579
1580 key.objectid = device->devid;
1581 key.offset = start;
1582 key.type = BTRFS_DEV_EXTENT_KEY;
1583 ret = btrfs_insert_empty_item(trans, root, path, &key,
1584 sizeof(*extent));
1585 if (ret)
1586 goto out;
1587
1588 leaf = path->nodes[0];
1589 extent = btrfs_item_ptr(leaf, path->slots[0],
1590 struct btrfs_dev_extent);
1591 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1592 BTRFS_CHUNK_TREE_OBJECTID);
1593 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1594 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1595 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1596
1597 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1598 btrfs_mark_buffer_dirty(leaf);
1599 out:
1600 btrfs_free_path(path);
1601 return ret;
1602 }
1603
1604 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1605 {
1606 struct extent_map_tree *em_tree;
1607 struct extent_map *em;
1608 struct rb_node *n;
1609 u64 ret = 0;
1610
1611 em_tree = &fs_info->mapping_tree.map_tree;
1612 read_lock(&em_tree->lock);
1613 n = rb_last(&em_tree->map);
1614 if (n) {
1615 em = rb_entry(n, struct extent_map, rb_node);
1616 ret = em->start + em->len;
1617 }
1618 read_unlock(&em_tree->lock);
1619
1620 return ret;
1621 }
1622
1623 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1624 u64 *devid_ret)
1625 {
1626 int ret;
1627 struct btrfs_key key;
1628 struct btrfs_key found_key;
1629 struct btrfs_path *path;
1630
1631 path = btrfs_alloc_path();
1632 if (!path)
1633 return -ENOMEM;
1634
1635 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1636 key.type = BTRFS_DEV_ITEM_KEY;
1637 key.offset = (u64)-1;
1638
1639 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1640 if (ret < 0)
1641 goto error;
1642
1643 BUG_ON(ret == 0); /* Corruption */
1644
1645 ret = btrfs_previous_item(fs_info->chunk_root, path,
1646 BTRFS_DEV_ITEMS_OBJECTID,
1647 BTRFS_DEV_ITEM_KEY);
1648 if (ret) {
1649 *devid_ret = 1;
1650 } else {
1651 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1652 path->slots[0]);
1653 *devid_ret = found_key.offset + 1;
1654 }
1655 ret = 0;
1656 error:
1657 btrfs_free_path(path);
1658 return ret;
1659 }
1660
1661 /*
1662 * the device information is stored in the chunk root
1663 * the btrfs_device struct should be fully filled in
1664 */
1665 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1666 struct btrfs_fs_info *fs_info,
1667 struct btrfs_device *device)
1668 {
1669 struct btrfs_root *root = fs_info->chunk_root;
1670 int ret;
1671 struct btrfs_path *path;
1672 struct btrfs_dev_item *dev_item;
1673 struct extent_buffer *leaf;
1674 struct btrfs_key key;
1675 unsigned long ptr;
1676
1677 path = btrfs_alloc_path();
1678 if (!path)
1679 return -ENOMEM;
1680
1681 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1682 key.type = BTRFS_DEV_ITEM_KEY;
1683 key.offset = device->devid;
1684
1685 ret = btrfs_insert_empty_item(trans, root, path, &key,
1686 sizeof(*dev_item));
1687 if (ret)
1688 goto out;
1689
1690 leaf = path->nodes[0];
1691 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1692
1693 btrfs_set_device_id(leaf, dev_item, device->devid);
1694 btrfs_set_device_generation(leaf, dev_item, 0);
1695 btrfs_set_device_type(leaf, dev_item, device->type);
1696 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1697 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1698 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1699 btrfs_set_device_total_bytes(leaf, dev_item,
1700 btrfs_device_get_disk_total_bytes(device));
1701 btrfs_set_device_bytes_used(leaf, dev_item,
1702 btrfs_device_get_bytes_used(device));
1703 btrfs_set_device_group(leaf, dev_item, 0);
1704 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1705 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1706 btrfs_set_device_start_offset(leaf, dev_item, 0);
1707
1708 ptr = btrfs_device_uuid(dev_item);
1709 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1710 ptr = btrfs_device_fsid(dev_item);
1711 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1712 btrfs_mark_buffer_dirty(leaf);
1713
1714 ret = 0;
1715 out:
1716 btrfs_free_path(path);
1717 return ret;
1718 }
1719
1720 /*
1721 * Function to update ctime/mtime for a given device path.
1722 * Mainly used for ctime/mtime based probe like libblkid.
1723 */
1724 static void update_dev_time(const char *path_name)
1725 {
1726 struct file *filp;
1727
1728 filp = filp_open(path_name, O_RDWR, 0);
1729 if (IS_ERR(filp))
1730 return;
1731 file_update_time(filp);
1732 filp_close(filp, NULL);
1733 }
1734
1735 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1736 struct btrfs_device *device)
1737 {
1738 struct btrfs_root *root = fs_info->chunk_root;
1739 int ret;
1740 struct btrfs_path *path;
1741 struct btrfs_key key;
1742 struct btrfs_trans_handle *trans;
1743
1744 path = btrfs_alloc_path();
1745 if (!path)
1746 return -ENOMEM;
1747
1748 trans = btrfs_start_transaction(root, 0);
1749 if (IS_ERR(trans)) {
1750 btrfs_free_path(path);
1751 return PTR_ERR(trans);
1752 }
1753 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1754 key.type = BTRFS_DEV_ITEM_KEY;
1755 key.offset = device->devid;
1756
1757 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1758 if (ret) {
1759 if (ret > 0)
1760 ret = -ENOENT;
1761 btrfs_abort_transaction(trans, ret);
1762 btrfs_end_transaction(trans);
1763 goto out;
1764 }
1765
1766 ret = btrfs_del_item(trans, root, path);
1767 if (ret) {
1768 btrfs_abort_transaction(trans, ret);
1769 btrfs_end_transaction(trans);
1770 }
1771
1772 out:
1773 btrfs_free_path(path);
1774 if (!ret)
1775 ret = btrfs_commit_transaction(trans);
1776 return ret;
1777 }
1778
1779 /*
1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781 * filesystem. It's up to the caller to adjust that number regarding eg. device
1782 * replace.
1783 */
1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785 u64 num_devices)
1786 {
1787 u64 all_avail;
1788 unsigned seq;
1789 int i;
1790
1791 do {
1792 seq = read_seqbegin(&fs_info->profiles_lock);
1793
1794 all_avail = fs_info->avail_data_alloc_bits |
1795 fs_info->avail_system_alloc_bits |
1796 fs_info->avail_metadata_alloc_bits;
1797 } while (read_seqretry(&fs_info->profiles_lock, seq));
1798
1799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800 if (!(all_avail & btrfs_raid_group[i]))
1801 continue;
1802
1803 if (num_devices < btrfs_raid_array[i].devs_min) {
1804 int ret = btrfs_raid_mindev_error[i];
1805
1806 if (ret)
1807 return ret;
1808 }
1809 }
1810
1811 return 0;
1812 }
1813
1814 static struct btrfs_device * btrfs_find_next_active_device(
1815 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1816 {
1817 struct btrfs_device *next_device;
1818
1819 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820 if (next_device != device &&
1821 !next_device->missing && next_device->bdev)
1822 return next_device;
1823 }
1824
1825 return NULL;
1826 }
1827
1828 /*
1829 * Helper function to check if the given device is part of s_bdev / latest_bdev
1830 * and replace it with the provided or the next active device, in the context
1831 * where this function called, there should be always be another device (or
1832 * this_dev) which is active.
1833 */
1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835 struct btrfs_device *device, struct btrfs_device *this_dev)
1836 {
1837 struct btrfs_device *next_device;
1838
1839 if (this_dev)
1840 next_device = this_dev;
1841 else
1842 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843 device);
1844 ASSERT(next_device);
1845
1846 if (fs_info->sb->s_bdev &&
1847 (fs_info->sb->s_bdev == device->bdev))
1848 fs_info->sb->s_bdev = next_device->bdev;
1849
1850 if (fs_info->fs_devices->latest_bdev == device->bdev)
1851 fs_info->fs_devices->latest_bdev = next_device->bdev;
1852 }
1853
1854 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1855 u64 devid)
1856 {
1857 struct btrfs_device *device;
1858 struct btrfs_fs_devices *cur_devices;
1859 u64 num_devices;
1860 int ret = 0;
1861
1862 mutex_lock(&uuid_mutex);
1863
1864 num_devices = fs_info->fs_devices->num_devices;
1865 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1866 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867 WARN_ON(num_devices < 1);
1868 num_devices--;
1869 }
1870 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1871
1872 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1873 if (ret)
1874 goto out;
1875
1876 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1877 &device);
1878 if (ret)
1879 goto out;
1880
1881 if (device->is_tgtdev_for_dev_replace) {
1882 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1883 goto out;
1884 }
1885
1886 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1887 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1888 goto out;
1889 }
1890
1891 if (device->writeable) {
1892 mutex_lock(&fs_info->chunk_mutex);
1893 list_del_init(&device->dev_alloc_list);
1894 device->fs_devices->rw_devices--;
1895 mutex_unlock(&fs_info->chunk_mutex);
1896 }
1897
1898 mutex_unlock(&uuid_mutex);
1899 ret = btrfs_shrink_device(device, 0);
1900 mutex_lock(&uuid_mutex);
1901 if (ret)
1902 goto error_undo;
1903
1904 /*
1905 * TODO: the superblock still includes this device in its num_devices
1906 * counter although write_all_supers() is not locked out. This
1907 * could give a filesystem state which requires a degraded mount.
1908 */
1909 ret = btrfs_rm_dev_item(fs_info, device);
1910 if (ret)
1911 goto error_undo;
1912
1913 device->in_fs_metadata = 0;
1914 btrfs_scrub_cancel_dev(fs_info, device);
1915
1916 /*
1917 * the device list mutex makes sure that we don't change
1918 * the device list while someone else is writing out all
1919 * the device supers. Whoever is writing all supers, should
1920 * lock the device list mutex before getting the number of
1921 * devices in the super block (super_copy). Conversely,
1922 * whoever updates the number of devices in the super block
1923 * (super_copy) should hold the device list mutex.
1924 */
1925
1926 cur_devices = device->fs_devices;
1927 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1928 list_del_rcu(&device->dev_list);
1929
1930 device->fs_devices->num_devices--;
1931 device->fs_devices->total_devices--;
1932
1933 if (device->missing)
1934 device->fs_devices->missing_devices--;
1935
1936 btrfs_assign_next_active_device(fs_info, device, NULL);
1937
1938 if (device->bdev) {
1939 device->fs_devices->open_devices--;
1940 /* remove sysfs entry */
1941 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1942 }
1943
1944 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1945 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1946 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1947
1948 /*
1949 * at this point, the device is zero sized and detached from
1950 * the devices list. All that's left is to zero out the old
1951 * supers and free the device.
1952 */
1953 if (device->writeable)
1954 btrfs_scratch_superblocks(device->bdev, device->name->str);
1955
1956 btrfs_close_bdev(device);
1957 call_rcu(&device->rcu, free_device);
1958
1959 if (cur_devices->open_devices == 0) {
1960 struct btrfs_fs_devices *fs_devices;
1961 fs_devices = fs_info->fs_devices;
1962 while (fs_devices) {
1963 if (fs_devices->seed == cur_devices) {
1964 fs_devices->seed = cur_devices->seed;
1965 break;
1966 }
1967 fs_devices = fs_devices->seed;
1968 }
1969 cur_devices->seed = NULL;
1970 __btrfs_close_devices(cur_devices);
1971 free_fs_devices(cur_devices);
1972 }
1973
1974 out:
1975 mutex_unlock(&uuid_mutex);
1976 return ret;
1977
1978 error_undo:
1979 if (device->writeable) {
1980 mutex_lock(&fs_info->chunk_mutex);
1981 list_add(&device->dev_alloc_list,
1982 &fs_info->fs_devices->alloc_list);
1983 device->fs_devices->rw_devices++;
1984 mutex_unlock(&fs_info->chunk_mutex);
1985 }
1986 goto out;
1987 }
1988
1989 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1990 struct btrfs_device *srcdev)
1991 {
1992 struct btrfs_fs_devices *fs_devices;
1993
1994 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1995
1996 /*
1997 * in case of fs with no seed, srcdev->fs_devices will point
1998 * to fs_devices of fs_info. However when the dev being replaced is
1999 * a seed dev it will point to the seed's local fs_devices. In short
2000 * srcdev will have its correct fs_devices in both the cases.
2001 */
2002 fs_devices = srcdev->fs_devices;
2003
2004 list_del_rcu(&srcdev->dev_list);
2005 list_del(&srcdev->dev_alloc_list);
2006 fs_devices->num_devices--;
2007 if (srcdev->missing)
2008 fs_devices->missing_devices--;
2009
2010 if (srcdev->writeable)
2011 fs_devices->rw_devices--;
2012
2013 if (srcdev->bdev)
2014 fs_devices->open_devices--;
2015 }
2016
2017 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2018 struct btrfs_device *srcdev)
2019 {
2020 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2021
2022 if (srcdev->writeable) {
2023 /* zero out the old super if it is writable */
2024 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2025 }
2026
2027 btrfs_close_bdev(srcdev);
2028 call_rcu(&srcdev->rcu, free_device);
2029
2030 /* if this is no devs we rather delete the fs_devices */
2031 if (!fs_devices->num_devices) {
2032 struct btrfs_fs_devices *tmp_fs_devices;
2033
2034 /*
2035 * On a mounted FS, num_devices can't be zero unless it's a
2036 * seed. In case of a seed device being replaced, the replace
2037 * target added to the sprout FS, so there will be no more
2038 * device left under the seed FS.
2039 */
2040 ASSERT(fs_devices->seeding);
2041
2042 tmp_fs_devices = fs_info->fs_devices;
2043 while (tmp_fs_devices) {
2044 if (tmp_fs_devices->seed == fs_devices) {
2045 tmp_fs_devices->seed = fs_devices->seed;
2046 break;
2047 }
2048 tmp_fs_devices = tmp_fs_devices->seed;
2049 }
2050 fs_devices->seed = NULL;
2051 __btrfs_close_devices(fs_devices);
2052 free_fs_devices(fs_devices);
2053 }
2054 }
2055
2056 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2057 struct btrfs_device *tgtdev)
2058 {
2059 mutex_lock(&uuid_mutex);
2060 WARN_ON(!tgtdev);
2061 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2062
2063 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2064
2065 if (tgtdev->bdev)
2066 fs_info->fs_devices->open_devices--;
2067
2068 fs_info->fs_devices->num_devices--;
2069
2070 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2071
2072 list_del_rcu(&tgtdev->dev_list);
2073
2074 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2075 mutex_unlock(&uuid_mutex);
2076
2077 /*
2078 * The update_dev_time() with in btrfs_scratch_superblocks()
2079 * may lead to a call to btrfs_show_devname() which will try
2080 * to hold device_list_mutex. And here this device
2081 * is already out of device list, so we don't have to hold
2082 * the device_list_mutex lock.
2083 */
2084 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2085
2086 btrfs_close_bdev(tgtdev);
2087 call_rcu(&tgtdev->rcu, free_device);
2088 }
2089
2090 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2091 const char *device_path,
2092 struct btrfs_device **device)
2093 {
2094 int ret = 0;
2095 struct btrfs_super_block *disk_super;
2096 u64 devid;
2097 u8 *dev_uuid;
2098 struct block_device *bdev;
2099 struct buffer_head *bh;
2100
2101 *device = NULL;
2102 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2103 fs_info->bdev_holder, 0, &bdev, &bh);
2104 if (ret)
2105 return ret;
2106 disk_super = (struct btrfs_super_block *)bh->b_data;
2107 devid = btrfs_stack_device_id(&disk_super->dev_item);
2108 dev_uuid = disk_super->dev_item.uuid;
2109 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2110 brelse(bh);
2111 if (!*device)
2112 ret = -ENOENT;
2113 blkdev_put(bdev, FMODE_READ);
2114 return ret;
2115 }
2116
2117 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2118 const char *device_path,
2119 struct btrfs_device **device)
2120 {
2121 *device = NULL;
2122 if (strcmp(device_path, "missing") == 0) {
2123 struct list_head *devices;
2124 struct btrfs_device *tmp;
2125
2126 devices = &fs_info->fs_devices->devices;
2127 /*
2128 * It is safe to read the devices since the volume_mutex
2129 * is held by the caller.
2130 */
2131 list_for_each_entry(tmp, devices, dev_list) {
2132 if (tmp->in_fs_metadata && !tmp->bdev) {
2133 *device = tmp;
2134 break;
2135 }
2136 }
2137
2138 if (!*device)
2139 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2140
2141 return 0;
2142 } else {
2143 return btrfs_find_device_by_path(fs_info, device_path, device);
2144 }
2145 }
2146
2147 /*
2148 * Lookup a device given by device id, or the path if the id is 0.
2149 */
2150 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2151 const char *devpath,
2152 struct btrfs_device **device)
2153 {
2154 int ret;
2155
2156 if (devid) {
2157 ret = 0;
2158 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2159 if (!*device)
2160 ret = -ENOENT;
2161 } else {
2162 if (!devpath || !devpath[0])
2163 return -EINVAL;
2164
2165 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2166 device);
2167 }
2168 return ret;
2169 }
2170
2171 /*
2172 * does all the dirty work required for changing file system's UUID.
2173 */
2174 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2175 {
2176 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2177 struct btrfs_fs_devices *old_devices;
2178 struct btrfs_fs_devices *seed_devices;
2179 struct btrfs_super_block *disk_super = fs_info->super_copy;
2180 struct btrfs_device *device;
2181 u64 super_flags;
2182
2183 BUG_ON(!mutex_is_locked(&uuid_mutex));
2184 if (!fs_devices->seeding)
2185 return -EINVAL;
2186
2187 seed_devices = alloc_fs_devices(NULL);
2188 if (IS_ERR(seed_devices))
2189 return PTR_ERR(seed_devices);
2190
2191 old_devices = clone_fs_devices(fs_devices);
2192 if (IS_ERR(old_devices)) {
2193 kfree(seed_devices);
2194 return PTR_ERR(old_devices);
2195 }
2196
2197 list_add(&old_devices->list, &fs_uuids);
2198
2199 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2200 seed_devices->opened = 1;
2201 INIT_LIST_HEAD(&seed_devices->devices);
2202 INIT_LIST_HEAD(&seed_devices->alloc_list);
2203 mutex_init(&seed_devices->device_list_mutex);
2204
2205 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2206 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2207 synchronize_rcu);
2208 list_for_each_entry(device, &seed_devices->devices, dev_list)
2209 device->fs_devices = seed_devices;
2210
2211 mutex_lock(&fs_info->chunk_mutex);
2212 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2213 mutex_unlock(&fs_info->chunk_mutex);
2214
2215 fs_devices->seeding = 0;
2216 fs_devices->num_devices = 0;
2217 fs_devices->open_devices = 0;
2218 fs_devices->missing_devices = 0;
2219 fs_devices->rotating = 0;
2220 fs_devices->seed = seed_devices;
2221
2222 generate_random_uuid(fs_devices->fsid);
2223 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2224 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2225 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2226
2227 super_flags = btrfs_super_flags(disk_super) &
2228 ~BTRFS_SUPER_FLAG_SEEDING;
2229 btrfs_set_super_flags(disk_super, super_flags);
2230
2231 return 0;
2232 }
2233
2234 /*
2235 * Store the expected generation for seed devices in device items.
2236 */
2237 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2238 struct btrfs_fs_info *fs_info)
2239 {
2240 struct btrfs_root *root = fs_info->chunk_root;
2241 struct btrfs_path *path;
2242 struct extent_buffer *leaf;
2243 struct btrfs_dev_item *dev_item;
2244 struct btrfs_device *device;
2245 struct btrfs_key key;
2246 u8 fs_uuid[BTRFS_FSID_SIZE];
2247 u8 dev_uuid[BTRFS_UUID_SIZE];
2248 u64 devid;
2249 int ret;
2250
2251 path = btrfs_alloc_path();
2252 if (!path)
2253 return -ENOMEM;
2254
2255 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2256 key.offset = 0;
2257 key.type = BTRFS_DEV_ITEM_KEY;
2258
2259 while (1) {
2260 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2261 if (ret < 0)
2262 goto error;
2263
2264 leaf = path->nodes[0];
2265 next_slot:
2266 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2267 ret = btrfs_next_leaf(root, path);
2268 if (ret > 0)
2269 break;
2270 if (ret < 0)
2271 goto error;
2272 leaf = path->nodes[0];
2273 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2274 btrfs_release_path(path);
2275 continue;
2276 }
2277
2278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2280 key.type != BTRFS_DEV_ITEM_KEY)
2281 break;
2282
2283 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2284 struct btrfs_dev_item);
2285 devid = btrfs_device_id(leaf, dev_item);
2286 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2287 BTRFS_UUID_SIZE);
2288 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2289 BTRFS_FSID_SIZE);
2290 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2291 BUG_ON(!device); /* Logic error */
2292
2293 if (device->fs_devices->seeding) {
2294 btrfs_set_device_generation(leaf, dev_item,
2295 device->generation);
2296 btrfs_mark_buffer_dirty(leaf);
2297 }
2298
2299 path->slots[0]++;
2300 goto next_slot;
2301 }
2302 ret = 0;
2303 error:
2304 btrfs_free_path(path);
2305 return ret;
2306 }
2307
2308 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2309 {
2310 struct btrfs_root *root = fs_info->dev_root;
2311 struct request_queue *q;
2312 struct btrfs_trans_handle *trans;
2313 struct btrfs_device *device;
2314 struct block_device *bdev;
2315 struct list_head *devices;
2316 struct super_block *sb = fs_info->sb;
2317 struct rcu_string *name;
2318 u64 tmp;
2319 int seeding_dev = 0;
2320 int ret = 0;
2321 bool unlocked = false;
2322
2323 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2324 return -EROFS;
2325
2326 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2327 fs_info->bdev_holder);
2328 if (IS_ERR(bdev))
2329 return PTR_ERR(bdev);
2330
2331 if (fs_info->fs_devices->seeding) {
2332 seeding_dev = 1;
2333 down_write(&sb->s_umount);
2334 mutex_lock(&uuid_mutex);
2335 }
2336
2337 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2338
2339 devices = &fs_info->fs_devices->devices;
2340
2341 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2342 list_for_each_entry(device, devices, dev_list) {
2343 if (device->bdev == bdev) {
2344 ret = -EEXIST;
2345 mutex_unlock(
2346 &fs_info->fs_devices->device_list_mutex);
2347 goto error;
2348 }
2349 }
2350 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2351
2352 device = btrfs_alloc_device(fs_info, NULL, NULL);
2353 if (IS_ERR(device)) {
2354 /* we can safely leave the fs_devices entry around */
2355 ret = PTR_ERR(device);
2356 goto error;
2357 }
2358
2359 name = rcu_string_strdup(device_path, GFP_KERNEL);
2360 if (!name) {
2361 bio_put(device->flush_bio);
2362 kfree(device);
2363 ret = -ENOMEM;
2364 goto error;
2365 }
2366 rcu_assign_pointer(device->name, name);
2367
2368 trans = btrfs_start_transaction(root, 0);
2369 if (IS_ERR(trans)) {
2370 rcu_string_free(device->name);
2371 bio_put(device->flush_bio);
2372 kfree(device);
2373 ret = PTR_ERR(trans);
2374 goto error;
2375 }
2376
2377 q = bdev_get_queue(bdev);
2378 if (blk_queue_discard(q))
2379 device->can_discard = 1;
2380 device->writeable = 1;
2381 device->generation = trans->transid;
2382 device->io_width = fs_info->sectorsize;
2383 device->io_align = fs_info->sectorsize;
2384 device->sector_size = fs_info->sectorsize;
2385 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2386 fs_info->sectorsize);
2387 device->disk_total_bytes = device->total_bytes;
2388 device->commit_total_bytes = device->total_bytes;
2389 device->fs_info = fs_info;
2390 device->bdev = bdev;
2391 device->in_fs_metadata = 1;
2392 device->is_tgtdev_for_dev_replace = 0;
2393 device->mode = FMODE_EXCL;
2394 device->dev_stats_valid = 1;
2395 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2396
2397 if (seeding_dev) {
2398 sb->s_flags &= ~SB_RDONLY;
2399 ret = btrfs_prepare_sprout(fs_info);
2400 if (ret) {
2401 btrfs_abort_transaction(trans, ret);
2402 goto error_trans;
2403 }
2404 }
2405
2406 device->fs_devices = fs_info->fs_devices;
2407
2408 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2409 mutex_lock(&fs_info->chunk_mutex);
2410 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2411 list_add(&device->dev_alloc_list,
2412 &fs_info->fs_devices->alloc_list);
2413 fs_info->fs_devices->num_devices++;
2414 fs_info->fs_devices->open_devices++;
2415 fs_info->fs_devices->rw_devices++;
2416 fs_info->fs_devices->total_devices++;
2417 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2418
2419 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2420
2421 if (!blk_queue_nonrot(q))
2422 fs_info->fs_devices->rotating = 1;
2423
2424 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2425 btrfs_set_super_total_bytes(fs_info->super_copy,
2426 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2427
2428 tmp = btrfs_super_num_devices(fs_info->super_copy);
2429 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2430
2431 /* add sysfs device entry */
2432 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2433
2434 /*
2435 * we've got more storage, clear any full flags on the space
2436 * infos
2437 */
2438 btrfs_clear_space_info_full(fs_info);
2439
2440 mutex_unlock(&fs_info->chunk_mutex);
2441 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2442
2443 if (seeding_dev) {
2444 mutex_lock(&fs_info->chunk_mutex);
2445 ret = init_first_rw_device(trans, fs_info);
2446 mutex_unlock(&fs_info->chunk_mutex);
2447 if (ret) {
2448 btrfs_abort_transaction(trans, ret);
2449 goto error_sysfs;
2450 }
2451 }
2452
2453 ret = btrfs_add_device(trans, fs_info, device);
2454 if (ret) {
2455 btrfs_abort_transaction(trans, ret);
2456 goto error_sysfs;
2457 }
2458
2459 if (seeding_dev) {
2460 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2461
2462 ret = btrfs_finish_sprout(trans, fs_info);
2463 if (ret) {
2464 btrfs_abort_transaction(trans, ret);
2465 goto error_sysfs;
2466 }
2467
2468 /* Sprouting would change fsid of the mounted root,
2469 * so rename the fsid on the sysfs
2470 */
2471 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2472 fs_info->fsid);
2473 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2474 btrfs_warn(fs_info,
2475 "sysfs: failed to create fsid for sprout");
2476 }
2477
2478 ret = btrfs_commit_transaction(trans);
2479
2480 if (seeding_dev) {
2481 mutex_unlock(&uuid_mutex);
2482 up_write(&sb->s_umount);
2483 unlocked = true;
2484
2485 if (ret) /* transaction commit */
2486 return ret;
2487
2488 ret = btrfs_relocate_sys_chunks(fs_info);
2489 if (ret < 0)
2490 btrfs_handle_fs_error(fs_info, ret,
2491 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2492 trans = btrfs_attach_transaction(root);
2493 if (IS_ERR(trans)) {
2494 if (PTR_ERR(trans) == -ENOENT)
2495 return 0;
2496 ret = PTR_ERR(trans);
2497 trans = NULL;
2498 goto error_sysfs;
2499 }
2500 ret = btrfs_commit_transaction(trans);
2501 }
2502
2503 /* Update ctime/mtime for libblkid */
2504 update_dev_time(device_path);
2505 return ret;
2506
2507 error_sysfs:
2508 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2509 error_trans:
2510 if (seeding_dev)
2511 sb->s_flags |= SB_RDONLY;
2512 if (trans)
2513 btrfs_end_transaction(trans);
2514 rcu_string_free(device->name);
2515 bio_put(device->flush_bio);
2516 kfree(device);
2517 error:
2518 blkdev_put(bdev, FMODE_EXCL);
2519 if (seeding_dev && !unlocked) {
2520 mutex_unlock(&uuid_mutex);
2521 up_write(&sb->s_umount);
2522 }
2523 return ret;
2524 }
2525
2526 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2527 const char *device_path,
2528 struct btrfs_device *srcdev,
2529 struct btrfs_device **device_out)
2530 {
2531 struct request_queue *q;
2532 struct btrfs_device *device;
2533 struct block_device *bdev;
2534 struct list_head *devices;
2535 struct rcu_string *name;
2536 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2537 int ret = 0;
2538
2539 *device_out = NULL;
2540 if (fs_info->fs_devices->seeding) {
2541 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2542 return -EINVAL;
2543 }
2544
2545 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2546 fs_info->bdev_holder);
2547 if (IS_ERR(bdev)) {
2548 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2549 return PTR_ERR(bdev);
2550 }
2551
2552 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2553
2554 devices = &fs_info->fs_devices->devices;
2555 list_for_each_entry(device, devices, dev_list) {
2556 if (device->bdev == bdev) {
2557 btrfs_err(fs_info,
2558 "target device is in the filesystem!");
2559 ret = -EEXIST;
2560 goto error;
2561 }
2562 }
2563
2564
2565 if (i_size_read(bdev->bd_inode) <
2566 btrfs_device_get_total_bytes(srcdev)) {
2567 btrfs_err(fs_info,
2568 "target device is smaller than source device!");
2569 ret = -EINVAL;
2570 goto error;
2571 }
2572
2573
2574 device = btrfs_alloc_device(NULL, &devid, NULL);
2575 if (IS_ERR(device)) {
2576 ret = PTR_ERR(device);
2577 goto error;
2578 }
2579
2580 name = rcu_string_strdup(device_path, GFP_KERNEL);
2581 if (!name) {
2582 bio_put(device->flush_bio);
2583 kfree(device);
2584 ret = -ENOMEM;
2585 goto error;
2586 }
2587 rcu_assign_pointer(device->name, name);
2588
2589 q = bdev_get_queue(bdev);
2590 if (blk_queue_discard(q))
2591 device->can_discard = 1;
2592 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2593 device->writeable = 1;
2594 device->generation = 0;
2595 device->io_width = fs_info->sectorsize;
2596 device->io_align = fs_info->sectorsize;
2597 device->sector_size = fs_info->sectorsize;
2598 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2599 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2600 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2601 ASSERT(list_empty(&srcdev->resized_list));
2602 device->commit_total_bytes = srcdev->commit_total_bytes;
2603 device->commit_bytes_used = device->bytes_used;
2604 device->fs_info = fs_info;
2605 device->bdev = bdev;
2606 device->in_fs_metadata = 1;
2607 device->is_tgtdev_for_dev_replace = 1;
2608 device->mode = FMODE_EXCL;
2609 device->dev_stats_valid = 1;
2610 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2611 device->fs_devices = fs_info->fs_devices;
2612 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2613 fs_info->fs_devices->num_devices++;
2614 fs_info->fs_devices->open_devices++;
2615 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2616
2617 *device_out = device;
2618 return ret;
2619
2620 error:
2621 blkdev_put(bdev, FMODE_EXCL);
2622 return ret;
2623 }
2624
2625 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2626 struct btrfs_device *tgtdev)
2627 {
2628 u32 sectorsize = fs_info->sectorsize;
2629
2630 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2631 tgtdev->io_width = sectorsize;
2632 tgtdev->io_align = sectorsize;
2633 tgtdev->sector_size = sectorsize;
2634 tgtdev->fs_info = fs_info;
2635 tgtdev->in_fs_metadata = 1;
2636 }
2637
2638 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2639 struct btrfs_device *device)
2640 {
2641 int ret;
2642 struct btrfs_path *path;
2643 struct btrfs_root *root = device->fs_info->chunk_root;
2644 struct btrfs_dev_item *dev_item;
2645 struct extent_buffer *leaf;
2646 struct btrfs_key key;
2647
2648 path = btrfs_alloc_path();
2649 if (!path)
2650 return -ENOMEM;
2651
2652 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2653 key.type = BTRFS_DEV_ITEM_KEY;
2654 key.offset = device->devid;
2655
2656 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2657 if (ret < 0)
2658 goto out;
2659
2660 if (ret > 0) {
2661 ret = -ENOENT;
2662 goto out;
2663 }
2664
2665 leaf = path->nodes[0];
2666 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2667
2668 btrfs_set_device_id(leaf, dev_item, device->devid);
2669 btrfs_set_device_type(leaf, dev_item, device->type);
2670 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2671 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2672 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2673 btrfs_set_device_total_bytes(leaf, dev_item,
2674 btrfs_device_get_disk_total_bytes(device));
2675 btrfs_set_device_bytes_used(leaf, dev_item,
2676 btrfs_device_get_bytes_used(device));
2677 btrfs_mark_buffer_dirty(leaf);
2678
2679 out:
2680 btrfs_free_path(path);
2681 return ret;
2682 }
2683
2684 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2685 struct btrfs_device *device, u64 new_size)
2686 {
2687 struct btrfs_fs_info *fs_info = device->fs_info;
2688 struct btrfs_super_block *super_copy = fs_info->super_copy;
2689 struct btrfs_fs_devices *fs_devices;
2690 u64 old_total;
2691 u64 diff;
2692
2693 if (!device->writeable)
2694 return -EACCES;
2695
2696 new_size = round_down(new_size, fs_info->sectorsize);
2697
2698 mutex_lock(&fs_info->chunk_mutex);
2699 old_total = btrfs_super_total_bytes(super_copy);
2700 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2701
2702 if (new_size <= device->total_bytes ||
2703 device->is_tgtdev_for_dev_replace) {
2704 mutex_unlock(&fs_info->chunk_mutex);
2705 return -EINVAL;
2706 }
2707
2708 fs_devices = fs_info->fs_devices;
2709
2710 btrfs_set_super_total_bytes(super_copy,
2711 round_down(old_total + diff, fs_info->sectorsize));
2712 device->fs_devices->total_rw_bytes += diff;
2713
2714 btrfs_device_set_total_bytes(device, new_size);
2715 btrfs_device_set_disk_total_bytes(device, new_size);
2716 btrfs_clear_space_info_full(device->fs_info);
2717 if (list_empty(&device->resized_list))
2718 list_add_tail(&device->resized_list,
2719 &fs_devices->resized_devices);
2720 mutex_unlock(&fs_info->chunk_mutex);
2721
2722 return btrfs_update_device(trans, device);
2723 }
2724
2725 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2726 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2727 {
2728 struct btrfs_root *root = fs_info->chunk_root;
2729 int ret;
2730 struct btrfs_path *path;
2731 struct btrfs_key key;
2732
2733 path = btrfs_alloc_path();
2734 if (!path)
2735 return -ENOMEM;
2736
2737 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2738 key.offset = chunk_offset;
2739 key.type = BTRFS_CHUNK_ITEM_KEY;
2740
2741 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2742 if (ret < 0)
2743 goto out;
2744 else if (ret > 0) { /* Logic error or corruption */
2745 btrfs_handle_fs_error(fs_info, -ENOENT,
2746 "Failed lookup while freeing chunk.");
2747 ret = -ENOENT;
2748 goto out;
2749 }
2750
2751 ret = btrfs_del_item(trans, root, path);
2752 if (ret < 0)
2753 btrfs_handle_fs_error(fs_info, ret,
2754 "Failed to delete chunk item.");
2755 out:
2756 btrfs_free_path(path);
2757 return ret;
2758 }
2759
2760 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2761 {
2762 struct btrfs_super_block *super_copy = fs_info->super_copy;
2763 struct btrfs_disk_key *disk_key;
2764 struct btrfs_chunk *chunk;
2765 u8 *ptr;
2766 int ret = 0;
2767 u32 num_stripes;
2768 u32 array_size;
2769 u32 len = 0;
2770 u32 cur;
2771 struct btrfs_key key;
2772
2773 mutex_lock(&fs_info->chunk_mutex);
2774 array_size = btrfs_super_sys_array_size(super_copy);
2775
2776 ptr = super_copy->sys_chunk_array;
2777 cur = 0;
2778
2779 while (cur < array_size) {
2780 disk_key = (struct btrfs_disk_key *)ptr;
2781 btrfs_disk_key_to_cpu(&key, disk_key);
2782
2783 len = sizeof(*disk_key);
2784
2785 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2786 chunk = (struct btrfs_chunk *)(ptr + len);
2787 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2788 len += btrfs_chunk_item_size(num_stripes);
2789 } else {
2790 ret = -EIO;
2791 break;
2792 }
2793 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2794 key.offset == chunk_offset) {
2795 memmove(ptr, ptr + len, array_size - (cur + len));
2796 array_size -= len;
2797 btrfs_set_super_sys_array_size(super_copy, array_size);
2798 } else {
2799 ptr += len;
2800 cur += len;
2801 }
2802 }
2803 mutex_unlock(&fs_info->chunk_mutex);
2804 return ret;
2805 }
2806
2807 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2808 u64 logical, u64 length)
2809 {
2810 struct extent_map_tree *em_tree;
2811 struct extent_map *em;
2812
2813 em_tree = &fs_info->mapping_tree.map_tree;
2814 read_lock(&em_tree->lock);
2815 em = lookup_extent_mapping(em_tree, logical, length);
2816 read_unlock(&em_tree->lock);
2817
2818 if (!em) {
2819 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2820 logical, length);
2821 return ERR_PTR(-EINVAL);
2822 }
2823
2824 if (em->start > logical || em->start + em->len < logical) {
2825 btrfs_crit(fs_info,
2826 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2827 logical, length, em->start, em->start + em->len);
2828 free_extent_map(em);
2829 return ERR_PTR(-EINVAL);
2830 }
2831
2832 /* callers are responsible for dropping em's ref. */
2833 return em;
2834 }
2835
2836 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2837 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2838 {
2839 struct extent_map *em;
2840 struct map_lookup *map;
2841 u64 dev_extent_len = 0;
2842 int i, ret = 0;
2843 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2844
2845 em = get_chunk_map(fs_info, chunk_offset, 1);
2846 if (IS_ERR(em)) {
2847 /*
2848 * This is a logic error, but we don't want to just rely on the
2849 * user having built with ASSERT enabled, so if ASSERT doesn't
2850 * do anything we still error out.
2851 */
2852 ASSERT(0);
2853 return PTR_ERR(em);
2854 }
2855 map = em->map_lookup;
2856 mutex_lock(&fs_info->chunk_mutex);
2857 check_system_chunk(trans, fs_info, map->type);
2858 mutex_unlock(&fs_info->chunk_mutex);
2859
2860 /*
2861 * Take the device list mutex to prevent races with the final phase of
2862 * a device replace operation that replaces the device object associated
2863 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2864 */
2865 mutex_lock(&fs_devices->device_list_mutex);
2866 for (i = 0; i < map->num_stripes; i++) {
2867 struct btrfs_device *device = map->stripes[i].dev;
2868 ret = btrfs_free_dev_extent(trans, device,
2869 map->stripes[i].physical,
2870 &dev_extent_len);
2871 if (ret) {
2872 mutex_unlock(&fs_devices->device_list_mutex);
2873 btrfs_abort_transaction(trans, ret);
2874 goto out;
2875 }
2876
2877 if (device->bytes_used > 0) {
2878 mutex_lock(&fs_info->chunk_mutex);
2879 btrfs_device_set_bytes_used(device,
2880 device->bytes_used - dev_extent_len);
2881 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2882 btrfs_clear_space_info_full(fs_info);
2883 mutex_unlock(&fs_info->chunk_mutex);
2884 }
2885
2886 if (map->stripes[i].dev) {
2887 ret = btrfs_update_device(trans, map->stripes[i].dev);
2888 if (ret) {
2889 mutex_unlock(&fs_devices->device_list_mutex);
2890 btrfs_abort_transaction(trans, ret);
2891 goto out;
2892 }
2893 }
2894 }
2895 mutex_unlock(&fs_devices->device_list_mutex);
2896
2897 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2898 if (ret) {
2899 btrfs_abort_transaction(trans, ret);
2900 goto out;
2901 }
2902
2903 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2904
2905 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2906 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2907 if (ret) {
2908 btrfs_abort_transaction(trans, ret);
2909 goto out;
2910 }
2911 }
2912
2913 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2914 if (ret) {
2915 btrfs_abort_transaction(trans, ret);
2916 goto out;
2917 }
2918
2919 out:
2920 /* once for us */
2921 free_extent_map(em);
2922 return ret;
2923 }
2924
2925 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2926 {
2927 struct btrfs_root *root = fs_info->chunk_root;
2928 struct btrfs_trans_handle *trans;
2929 int ret;
2930
2931 /*
2932 * Prevent races with automatic removal of unused block groups.
2933 * After we relocate and before we remove the chunk with offset
2934 * chunk_offset, automatic removal of the block group can kick in,
2935 * resulting in a failure when calling btrfs_remove_chunk() below.
2936 *
2937 * Make sure to acquire this mutex before doing a tree search (dev
2938 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2939 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2940 * we release the path used to search the chunk/dev tree and before
2941 * the current task acquires this mutex and calls us.
2942 */
2943 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2944
2945 ret = btrfs_can_relocate(fs_info, chunk_offset);
2946 if (ret)
2947 return -ENOSPC;
2948
2949 /* step one, relocate all the extents inside this chunk */
2950 btrfs_scrub_pause(fs_info);
2951 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2952 btrfs_scrub_continue(fs_info);
2953 if (ret)
2954 return ret;
2955
2956 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2957 chunk_offset);
2958 if (IS_ERR(trans)) {
2959 ret = PTR_ERR(trans);
2960 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2961 return ret;
2962 }
2963
2964 /*
2965 * step two, delete the device extents and the
2966 * chunk tree entries
2967 */
2968 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2969 btrfs_end_transaction(trans);
2970 return ret;
2971 }
2972
2973 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2974 {
2975 struct btrfs_root *chunk_root = fs_info->chunk_root;
2976 struct btrfs_path *path;
2977 struct extent_buffer *leaf;
2978 struct btrfs_chunk *chunk;
2979 struct btrfs_key key;
2980 struct btrfs_key found_key;
2981 u64 chunk_type;
2982 bool retried = false;
2983 int failed = 0;
2984 int ret;
2985
2986 path = btrfs_alloc_path();
2987 if (!path)
2988 return -ENOMEM;
2989
2990 again:
2991 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2992 key.offset = (u64)-1;
2993 key.type = BTRFS_CHUNK_ITEM_KEY;
2994
2995 while (1) {
2996 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2997 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2998 if (ret < 0) {
2999 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3000 goto error;
3001 }
3002 BUG_ON(ret == 0); /* Corruption */
3003
3004 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3005 key.type);
3006 if (ret)
3007 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3008 if (ret < 0)
3009 goto error;
3010 if (ret > 0)
3011 break;
3012
3013 leaf = path->nodes[0];
3014 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3015
3016 chunk = btrfs_item_ptr(leaf, path->slots[0],
3017 struct btrfs_chunk);
3018 chunk_type = btrfs_chunk_type(leaf, chunk);
3019 btrfs_release_path(path);
3020
3021 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3022 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3023 if (ret == -ENOSPC)
3024 failed++;
3025 else
3026 BUG_ON(ret);
3027 }
3028 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3029
3030 if (found_key.offset == 0)
3031 break;
3032 key.offset = found_key.offset - 1;
3033 }
3034 ret = 0;
3035 if (failed && !retried) {
3036 failed = 0;
3037 retried = true;
3038 goto again;
3039 } else if (WARN_ON(failed && retried)) {
3040 ret = -ENOSPC;
3041 }
3042 error:
3043 btrfs_free_path(path);
3044 return ret;
3045 }
3046
3047 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3048 struct btrfs_balance_control *bctl)
3049 {
3050 struct btrfs_root *root = fs_info->tree_root;
3051 struct btrfs_trans_handle *trans;
3052 struct btrfs_balance_item *item;
3053 struct btrfs_disk_balance_args disk_bargs;
3054 struct btrfs_path *path;
3055 struct extent_buffer *leaf;
3056 struct btrfs_key key;
3057 int ret, err;
3058
3059 path = btrfs_alloc_path();
3060 if (!path)
3061 return -ENOMEM;
3062
3063 trans = btrfs_start_transaction(root, 0);
3064 if (IS_ERR(trans)) {
3065 btrfs_free_path(path);
3066 return PTR_ERR(trans);
3067 }
3068
3069 key.objectid = BTRFS_BALANCE_OBJECTID;
3070 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3071 key.offset = 0;
3072
3073 ret = btrfs_insert_empty_item(trans, root, path, &key,
3074 sizeof(*item));
3075 if (ret)
3076 goto out;
3077
3078 leaf = path->nodes[0];
3079 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3080
3081 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3082
3083 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3084 btrfs_set_balance_data(leaf, item, &disk_bargs);
3085 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3086 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3087 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3088 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3089
3090 btrfs_set_balance_flags(leaf, item, bctl->flags);
3091
3092 btrfs_mark_buffer_dirty(leaf);
3093 out:
3094 btrfs_free_path(path);
3095 err = btrfs_commit_transaction(trans);
3096 if (err && !ret)
3097 ret = err;
3098 return ret;
3099 }
3100
3101 static int del_balance_item(struct btrfs_fs_info *fs_info)
3102 {
3103 struct btrfs_root *root = fs_info->tree_root;
3104 struct btrfs_trans_handle *trans;
3105 struct btrfs_path *path;
3106 struct btrfs_key key;
3107 int ret, err;
3108
3109 path = btrfs_alloc_path();
3110 if (!path)
3111 return -ENOMEM;
3112
3113 trans = btrfs_start_transaction(root, 0);
3114 if (IS_ERR(trans)) {
3115 btrfs_free_path(path);
3116 return PTR_ERR(trans);
3117 }
3118
3119 key.objectid = BTRFS_BALANCE_OBJECTID;
3120 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3121 key.offset = 0;
3122
3123 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3124 if (ret < 0)
3125 goto out;
3126 if (ret > 0) {
3127 ret = -ENOENT;
3128 goto out;
3129 }
3130
3131 ret = btrfs_del_item(trans, root, path);
3132 out:
3133 btrfs_free_path(path);
3134 err = btrfs_commit_transaction(trans);
3135 if (err && !ret)
3136 ret = err;
3137 return ret;
3138 }
3139
3140 /*
3141 * This is a heuristic used to reduce the number of chunks balanced on
3142 * resume after balance was interrupted.
3143 */
3144 static void update_balance_args(struct btrfs_balance_control *bctl)
3145 {
3146 /*
3147 * Turn on soft mode for chunk types that were being converted.
3148 */
3149 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3150 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3151 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3152 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3153 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3154 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3155
3156 /*
3157 * Turn on usage filter if is not already used. The idea is
3158 * that chunks that we have already balanced should be
3159 * reasonably full. Don't do it for chunks that are being
3160 * converted - that will keep us from relocating unconverted
3161 * (albeit full) chunks.
3162 */
3163 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3164 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3165 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3166 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3167 bctl->data.usage = 90;
3168 }
3169 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3170 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3171 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3172 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3173 bctl->sys.usage = 90;
3174 }
3175 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3176 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3177 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3178 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3179 bctl->meta.usage = 90;
3180 }
3181 }
3182
3183 /*
3184 * Should be called with both balance and volume mutexes held to
3185 * serialize other volume operations (add_dev/rm_dev/resize) with
3186 * restriper. Same goes for unset_balance_control.
3187 */
3188 static void set_balance_control(struct btrfs_balance_control *bctl)
3189 {
3190 struct btrfs_fs_info *fs_info = bctl->fs_info;
3191
3192 BUG_ON(fs_info->balance_ctl);
3193
3194 spin_lock(&fs_info->balance_lock);
3195 fs_info->balance_ctl = bctl;
3196 spin_unlock(&fs_info->balance_lock);
3197 }
3198
3199 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3200 {
3201 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3202
3203 BUG_ON(!fs_info->balance_ctl);
3204
3205 spin_lock(&fs_info->balance_lock);
3206 fs_info->balance_ctl = NULL;
3207 spin_unlock(&fs_info->balance_lock);
3208
3209 kfree(bctl);
3210 }
3211
3212 /*
3213 * Balance filters. Return 1 if chunk should be filtered out
3214 * (should not be balanced).
3215 */
3216 static int chunk_profiles_filter(u64 chunk_type,
3217 struct btrfs_balance_args *bargs)
3218 {
3219 chunk_type = chunk_to_extended(chunk_type) &
3220 BTRFS_EXTENDED_PROFILE_MASK;
3221
3222 if (bargs->profiles & chunk_type)
3223 return 0;
3224
3225 return 1;
3226 }
3227
3228 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3229 struct btrfs_balance_args *bargs)
3230 {
3231 struct btrfs_block_group_cache *cache;
3232 u64 chunk_used;
3233 u64 user_thresh_min;
3234 u64 user_thresh_max;
3235 int ret = 1;
3236
3237 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3238 chunk_used = btrfs_block_group_used(&cache->item);
3239
3240 if (bargs->usage_min == 0)
3241 user_thresh_min = 0;
3242 else
3243 user_thresh_min = div_factor_fine(cache->key.offset,
3244 bargs->usage_min);
3245
3246 if (bargs->usage_max == 0)
3247 user_thresh_max = 1;
3248 else if (bargs->usage_max > 100)
3249 user_thresh_max = cache->key.offset;
3250 else
3251 user_thresh_max = div_factor_fine(cache->key.offset,
3252 bargs->usage_max);
3253
3254 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3255 ret = 0;
3256
3257 btrfs_put_block_group(cache);
3258 return ret;
3259 }
3260
3261 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3262 u64 chunk_offset, struct btrfs_balance_args *bargs)
3263 {
3264 struct btrfs_block_group_cache *cache;
3265 u64 chunk_used, user_thresh;
3266 int ret = 1;
3267
3268 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3269 chunk_used = btrfs_block_group_used(&cache->item);
3270
3271 if (bargs->usage_min == 0)
3272 user_thresh = 1;
3273 else if (bargs->usage > 100)
3274 user_thresh = cache->key.offset;
3275 else
3276 user_thresh = div_factor_fine(cache->key.offset,
3277 bargs->usage);
3278
3279 if (chunk_used < user_thresh)
3280 ret = 0;
3281
3282 btrfs_put_block_group(cache);
3283 return ret;
3284 }
3285
3286 static int chunk_devid_filter(struct extent_buffer *leaf,
3287 struct btrfs_chunk *chunk,
3288 struct btrfs_balance_args *bargs)
3289 {
3290 struct btrfs_stripe *stripe;
3291 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3292 int i;
3293
3294 for (i = 0; i < num_stripes; i++) {
3295 stripe = btrfs_stripe_nr(chunk, i);
3296 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3297 return 0;
3298 }
3299
3300 return 1;
3301 }
3302
3303 /* [pstart, pend) */
3304 static int chunk_drange_filter(struct extent_buffer *leaf,
3305 struct btrfs_chunk *chunk,
3306 struct btrfs_balance_args *bargs)
3307 {
3308 struct btrfs_stripe *stripe;
3309 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3310 u64 stripe_offset;
3311 u64 stripe_length;
3312 int factor;
3313 int i;
3314
3315 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3316 return 0;
3317
3318 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3319 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3320 factor = num_stripes / 2;
3321 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3322 factor = num_stripes - 1;
3323 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3324 factor = num_stripes - 2;
3325 } else {
3326 factor = num_stripes;
3327 }
3328
3329 for (i = 0; i < num_stripes; i++) {
3330 stripe = btrfs_stripe_nr(chunk, i);
3331 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3332 continue;
3333
3334 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3335 stripe_length = btrfs_chunk_length(leaf, chunk);
3336 stripe_length = div_u64(stripe_length, factor);
3337
3338 if (stripe_offset < bargs->pend &&
3339 stripe_offset + stripe_length > bargs->pstart)
3340 return 0;
3341 }
3342
3343 return 1;
3344 }
3345
3346 /* [vstart, vend) */
3347 static int chunk_vrange_filter(struct extent_buffer *leaf,
3348 struct btrfs_chunk *chunk,
3349 u64 chunk_offset,
3350 struct btrfs_balance_args *bargs)
3351 {
3352 if (chunk_offset < bargs->vend &&
3353 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3354 /* at least part of the chunk is inside this vrange */
3355 return 0;
3356
3357 return 1;
3358 }
3359
3360 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3361 struct btrfs_chunk *chunk,
3362 struct btrfs_balance_args *bargs)
3363 {
3364 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3365
3366 if (bargs->stripes_min <= num_stripes
3367 && num_stripes <= bargs->stripes_max)
3368 return 0;
3369
3370 return 1;
3371 }
3372
3373 static int chunk_soft_convert_filter(u64 chunk_type,
3374 struct btrfs_balance_args *bargs)
3375 {
3376 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3377 return 0;
3378
3379 chunk_type = chunk_to_extended(chunk_type) &
3380 BTRFS_EXTENDED_PROFILE_MASK;
3381
3382 if (bargs->target == chunk_type)
3383 return 1;
3384
3385 return 0;
3386 }
3387
3388 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3389 struct extent_buffer *leaf,
3390 struct btrfs_chunk *chunk, u64 chunk_offset)
3391 {
3392 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3393 struct btrfs_balance_args *bargs = NULL;
3394 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3395
3396 /* type filter */
3397 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3398 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3399 return 0;
3400 }
3401
3402 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3403 bargs = &bctl->data;
3404 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3405 bargs = &bctl->sys;
3406 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3407 bargs = &bctl->meta;
3408
3409 /* profiles filter */
3410 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3411 chunk_profiles_filter(chunk_type, bargs)) {
3412 return 0;
3413 }
3414
3415 /* usage filter */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3417 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3418 return 0;
3419 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3420 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3421 return 0;
3422 }
3423
3424 /* devid filter */
3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3426 chunk_devid_filter(leaf, chunk, bargs)) {
3427 return 0;
3428 }
3429
3430 /* drange filter, makes sense only with devid filter */
3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3432 chunk_drange_filter(leaf, chunk, bargs)) {
3433 return 0;
3434 }
3435
3436 /* vrange filter */
3437 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3438 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3439 return 0;
3440 }
3441
3442 /* stripes filter */
3443 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3444 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3445 return 0;
3446 }
3447
3448 /* soft profile changing mode */
3449 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3450 chunk_soft_convert_filter(chunk_type, bargs)) {
3451 return 0;
3452 }
3453
3454 /*
3455 * limited by count, must be the last filter
3456 */
3457 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3458 if (bargs->limit == 0)
3459 return 0;
3460 else
3461 bargs->limit--;
3462 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3463 /*
3464 * Same logic as the 'limit' filter; the minimum cannot be
3465 * determined here because we do not have the global information
3466 * about the count of all chunks that satisfy the filters.
3467 */
3468 if (bargs->limit_max == 0)
3469 return 0;
3470 else
3471 bargs->limit_max--;
3472 }
3473
3474 return 1;
3475 }
3476
3477 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3478 {
3479 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3480 struct btrfs_root *chunk_root = fs_info->chunk_root;
3481 struct btrfs_root *dev_root = fs_info->dev_root;
3482 struct list_head *devices;
3483 struct btrfs_device *device;
3484 u64 old_size;
3485 u64 size_to_free;
3486 u64 chunk_type;
3487 struct btrfs_chunk *chunk;
3488 struct btrfs_path *path = NULL;
3489 struct btrfs_key key;
3490 struct btrfs_key found_key;
3491 struct btrfs_trans_handle *trans;
3492 struct extent_buffer *leaf;
3493 int slot;
3494 int ret;
3495 int enospc_errors = 0;
3496 bool counting = true;
3497 /* The single value limit and min/max limits use the same bytes in the */
3498 u64 limit_data = bctl->data.limit;
3499 u64 limit_meta = bctl->meta.limit;
3500 u64 limit_sys = bctl->sys.limit;
3501 u32 count_data = 0;
3502 u32 count_meta = 0;
3503 u32 count_sys = 0;
3504 int chunk_reserved = 0;
3505 u64 bytes_used = 0;
3506
3507 /* step one make some room on all the devices */
3508 devices = &fs_info->fs_devices->devices;
3509 list_for_each_entry(device, devices, dev_list) {
3510 old_size = btrfs_device_get_total_bytes(device);
3511 size_to_free = div_factor(old_size, 1);
3512 size_to_free = min_t(u64, size_to_free, SZ_1M);
3513 if (!device->writeable ||
3514 btrfs_device_get_total_bytes(device) -
3515 btrfs_device_get_bytes_used(device) > size_to_free ||
3516 device->is_tgtdev_for_dev_replace)
3517 continue;
3518
3519 ret = btrfs_shrink_device(device, old_size - size_to_free);
3520 if (ret == -ENOSPC)
3521 break;
3522 if (ret) {
3523 /* btrfs_shrink_device never returns ret > 0 */
3524 WARN_ON(ret > 0);
3525 goto error;
3526 }
3527
3528 trans = btrfs_start_transaction(dev_root, 0);
3529 if (IS_ERR(trans)) {
3530 ret = PTR_ERR(trans);
3531 btrfs_info_in_rcu(fs_info,
3532 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3533 rcu_str_deref(device->name), ret,
3534 old_size, old_size - size_to_free);
3535 goto error;
3536 }
3537
3538 ret = btrfs_grow_device(trans, device, old_size);
3539 if (ret) {
3540 btrfs_end_transaction(trans);
3541 /* btrfs_grow_device never returns ret > 0 */
3542 WARN_ON(ret > 0);
3543 btrfs_info_in_rcu(fs_info,
3544 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3545 rcu_str_deref(device->name), ret,
3546 old_size, old_size - size_to_free);
3547 goto error;
3548 }
3549
3550 btrfs_end_transaction(trans);
3551 }
3552
3553 /* step two, relocate all the chunks */
3554 path = btrfs_alloc_path();
3555 if (!path) {
3556 ret = -ENOMEM;
3557 goto error;
3558 }
3559
3560 /* zero out stat counters */
3561 spin_lock(&fs_info->balance_lock);
3562 memset(&bctl->stat, 0, sizeof(bctl->stat));
3563 spin_unlock(&fs_info->balance_lock);
3564 again:
3565 if (!counting) {
3566 /*
3567 * The single value limit and min/max limits use the same bytes
3568 * in the
3569 */
3570 bctl->data.limit = limit_data;
3571 bctl->meta.limit = limit_meta;
3572 bctl->sys.limit = limit_sys;
3573 }
3574 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3575 key.offset = (u64)-1;
3576 key.type = BTRFS_CHUNK_ITEM_KEY;
3577
3578 while (1) {
3579 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3580 atomic_read(&fs_info->balance_cancel_req)) {
3581 ret = -ECANCELED;
3582 goto error;
3583 }
3584
3585 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3586 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3587 if (ret < 0) {
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 goto error;
3590 }
3591
3592 /*
3593 * this shouldn't happen, it means the last relocate
3594 * failed
3595 */
3596 if (ret == 0)
3597 BUG(); /* FIXME break ? */
3598
3599 ret = btrfs_previous_item(chunk_root, path, 0,
3600 BTRFS_CHUNK_ITEM_KEY);
3601 if (ret) {
3602 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3603 ret = 0;
3604 break;
3605 }
3606
3607 leaf = path->nodes[0];
3608 slot = path->slots[0];
3609 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610
3611 if (found_key.objectid != key.objectid) {
3612 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3613 break;
3614 }
3615
3616 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3617 chunk_type = btrfs_chunk_type(leaf, chunk);
3618
3619 if (!counting) {
3620 spin_lock(&fs_info->balance_lock);
3621 bctl->stat.considered++;
3622 spin_unlock(&fs_info->balance_lock);
3623 }
3624
3625 ret = should_balance_chunk(fs_info, leaf, chunk,
3626 found_key.offset);
3627
3628 btrfs_release_path(path);
3629 if (!ret) {
3630 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3631 goto loop;
3632 }
3633
3634 if (counting) {
3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 spin_lock(&fs_info->balance_lock);
3637 bctl->stat.expected++;
3638 spin_unlock(&fs_info->balance_lock);
3639
3640 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3641 count_data++;
3642 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3643 count_sys++;
3644 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3645 count_meta++;
3646
3647 goto loop;
3648 }
3649
3650 /*
3651 * Apply limit_min filter, no need to check if the LIMITS
3652 * filter is used, limit_min is 0 by default
3653 */
3654 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 count_data < bctl->data.limit_min)
3656 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3657 count_meta < bctl->meta.limit_min)
3658 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3659 count_sys < bctl->sys.limit_min)) {
3660 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661 goto loop;
3662 }
3663
3664 ASSERT(fs_info->data_sinfo);
3665 spin_lock(&fs_info->data_sinfo->lock);
3666 bytes_used = fs_info->data_sinfo->bytes_used;
3667 spin_unlock(&fs_info->data_sinfo->lock);
3668
3669 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3670 !chunk_reserved && !bytes_used) {
3671 trans = btrfs_start_transaction(chunk_root, 0);
3672 if (IS_ERR(trans)) {
3673 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 ret = PTR_ERR(trans);
3675 goto error;
3676 }
3677
3678 ret = btrfs_force_chunk_alloc(trans, fs_info,
3679 BTRFS_BLOCK_GROUP_DATA);
3680 btrfs_end_transaction(trans);
3681 if (ret < 0) {
3682 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3683 goto error;
3684 }
3685 chunk_reserved = 1;
3686 }
3687
3688 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3689 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3690 if (ret && ret != -ENOSPC)
3691 goto error;
3692 if (ret == -ENOSPC) {
3693 enospc_errors++;
3694 } else {
3695 spin_lock(&fs_info->balance_lock);
3696 bctl->stat.completed++;
3697 spin_unlock(&fs_info->balance_lock);
3698 }
3699 loop:
3700 if (found_key.offset == 0)
3701 break;
3702 key.offset = found_key.offset - 1;
3703 }
3704
3705 if (counting) {
3706 btrfs_release_path(path);
3707 counting = false;
3708 goto again;
3709 }
3710 error:
3711 btrfs_free_path(path);
3712 if (enospc_errors) {
3713 btrfs_info(fs_info, "%d enospc errors during balance",
3714 enospc_errors);
3715 if (!ret)
3716 ret = -ENOSPC;
3717 }
3718
3719 return ret;
3720 }
3721
3722 /**
3723 * alloc_profile_is_valid - see if a given profile is valid and reduced
3724 * @flags: profile to validate
3725 * @extended: if true @flags is treated as an extended profile
3726 */
3727 static int alloc_profile_is_valid(u64 flags, int extended)
3728 {
3729 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3730 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3731
3732 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3733
3734 /* 1) check that all other bits are zeroed */
3735 if (flags & ~mask)
3736 return 0;
3737
3738 /* 2) see if profile is reduced */
3739 if (flags == 0)
3740 return !extended; /* "0" is valid for usual profiles */
3741
3742 /* true if exactly one bit set */
3743 return (flags & (flags - 1)) == 0;
3744 }
3745
3746 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3747 {
3748 /* cancel requested || normal exit path */
3749 return atomic_read(&fs_info->balance_cancel_req) ||
3750 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3751 atomic_read(&fs_info->balance_cancel_req) == 0);
3752 }
3753
3754 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3755 {
3756 int ret;
3757
3758 unset_balance_control(fs_info);
3759 ret = del_balance_item(fs_info);
3760 if (ret)
3761 btrfs_handle_fs_error(fs_info, ret, NULL);
3762
3763 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3764 }
3765
3766 /* Non-zero return value signifies invalidity */
3767 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3768 u64 allowed)
3769 {
3770 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3771 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3772 (bctl_arg->target & ~allowed)));
3773 }
3774
3775 /*
3776 * Should be called with both balance and volume mutexes held
3777 */
3778 int btrfs_balance(struct btrfs_balance_control *bctl,
3779 struct btrfs_ioctl_balance_args *bargs)
3780 {
3781 struct btrfs_fs_info *fs_info = bctl->fs_info;
3782 u64 meta_target, data_target;
3783 u64 allowed;
3784 int mixed = 0;
3785 int ret;
3786 u64 num_devices;
3787 unsigned seq;
3788
3789 if (btrfs_fs_closing(fs_info) ||
3790 atomic_read(&fs_info->balance_pause_req) ||
3791 atomic_read(&fs_info->balance_cancel_req)) {
3792 ret = -EINVAL;
3793 goto out;
3794 }
3795
3796 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3797 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3798 mixed = 1;
3799
3800 /*
3801 * In case of mixed groups both data and meta should be picked,
3802 * and identical options should be given for both of them.
3803 */
3804 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3805 if (mixed && (bctl->flags & allowed)) {
3806 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3807 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3808 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3809 btrfs_err(fs_info,
3810 "with mixed groups data and metadata balance options must be the same");
3811 ret = -EINVAL;
3812 goto out;
3813 }
3814 }
3815
3816 num_devices = fs_info->fs_devices->num_devices;
3817 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3818 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3819 BUG_ON(num_devices < 1);
3820 num_devices--;
3821 }
3822 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3823 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3824 if (num_devices > 1)
3825 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3826 if (num_devices > 2)
3827 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3828 if (num_devices > 3)
3829 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3830 BTRFS_BLOCK_GROUP_RAID6);
3831 if (validate_convert_profile(&bctl->data, allowed)) {
3832 btrfs_err(fs_info,
3833 "unable to start balance with target data profile %llu",
3834 bctl->data.target);
3835 ret = -EINVAL;
3836 goto out;
3837 }
3838 if (validate_convert_profile(&bctl->meta, allowed)) {
3839 btrfs_err(fs_info,
3840 "unable to start balance with target metadata profile %llu",
3841 bctl->meta.target);
3842 ret = -EINVAL;
3843 goto out;
3844 }
3845 if (validate_convert_profile(&bctl->sys, allowed)) {
3846 btrfs_err(fs_info,
3847 "unable to start balance with target system profile %llu",
3848 bctl->sys.target);
3849 ret = -EINVAL;
3850 goto out;
3851 }
3852
3853 /* allow to reduce meta or sys integrity only if force set */
3854 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3855 BTRFS_BLOCK_GROUP_RAID10 |
3856 BTRFS_BLOCK_GROUP_RAID5 |
3857 BTRFS_BLOCK_GROUP_RAID6;
3858 do {
3859 seq = read_seqbegin(&fs_info->profiles_lock);
3860
3861 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3862 (fs_info->avail_system_alloc_bits & allowed) &&
3863 !(bctl->sys.target & allowed)) ||
3864 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3865 (fs_info->avail_metadata_alloc_bits & allowed) &&
3866 !(bctl->meta.target & allowed))) {
3867 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3868 btrfs_info(fs_info,
3869 "force reducing metadata integrity");
3870 } else {
3871 btrfs_err(fs_info,
3872 "balance will reduce metadata integrity, use force if you want this");
3873 ret = -EINVAL;
3874 goto out;
3875 }
3876 }
3877 } while (read_seqretry(&fs_info->profiles_lock, seq));
3878
3879 /* if we're not converting, the target field is uninitialized */
3880 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3881 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3882 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3883 bctl->data.target : fs_info->avail_data_alloc_bits;
3884 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3885 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3886 btrfs_warn(fs_info,
3887 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3888 meta_target, data_target);
3889 }
3890
3891 ret = insert_balance_item(fs_info, bctl);
3892 if (ret && ret != -EEXIST)
3893 goto out;
3894
3895 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3896 BUG_ON(ret == -EEXIST);
3897 set_balance_control(bctl);
3898 } else {
3899 BUG_ON(ret != -EEXIST);
3900 spin_lock(&fs_info->balance_lock);
3901 update_balance_args(bctl);
3902 spin_unlock(&fs_info->balance_lock);
3903 }
3904
3905 atomic_inc(&fs_info->balance_running);
3906 mutex_unlock(&fs_info->balance_mutex);
3907
3908 ret = __btrfs_balance(fs_info);
3909
3910 mutex_lock(&fs_info->balance_mutex);
3911 atomic_dec(&fs_info->balance_running);
3912
3913 if (bargs) {
3914 memset(bargs, 0, sizeof(*bargs));
3915 update_ioctl_balance_args(fs_info, 0, bargs);
3916 }
3917
3918 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3919 balance_need_close(fs_info)) {
3920 __cancel_balance(fs_info);
3921 }
3922
3923 wake_up(&fs_info->balance_wait_q);
3924
3925 return ret;
3926 out:
3927 if (bctl->flags & BTRFS_BALANCE_RESUME)
3928 __cancel_balance(fs_info);
3929 else {
3930 kfree(bctl);
3931 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3932 }
3933 return ret;
3934 }
3935
3936 static int balance_kthread(void *data)
3937 {
3938 struct btrfs_fs_info *fs_info = data;
3939 int ret = 0;
3940
3941 mutex_lock(&fs_info->volume_mutex);
3942 mutex_lock(&fs_info->balance_mutex);
3943
3944 if (fs_info->balance_ctl) {
3945 btrfs_info(fs_info, "continuing balance");
3946 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3947 }
3948
3949 mutex_unlock(&fs_info->balance_mutex);
3950 mutex_unlock(&fs_info->volume_mutex);
3951
3952 return ret;
3953 }
3954
3955 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3956 {
3957 struct task_struct *tsk;
3958
3959 spin_lock(&fs_info->balance_lock);
3960 if (!fs_info->balance_ctl) {
3961 spin_unlock(&fs_info->balance_lock);
3962 return 0;
3963 }
3964 spin_unlock(&fs_info->balance_lock);
3965
3966 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3967 btrfs_info(fs_info, "force skipping balance");
3968 return 0;
3969 }
3970
3971 /*
3972 * A ro->rw remount sequence should continue with the paused balance
3973 * regardless of who pauses it, system or the user as of now, so set
3974 * the resume flag.
3975 */
3976 spin_lock(&fs_info->balance_lock);
3977 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3978 spin_unlock(&fs_info->balance_lock);
3979
3980 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3981 return PTR_ERR_OR_ZERO(tsk);
3982 }
3983
3984 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3985 {
3986 struct btrfs_balance_control *bctl;
3987 struct btrfs_balance_item *item;
3988 struct btrfs_disk_balance_args disk_bargs;
3989 struct btrfs_path *path;
3990 struct extent_buffer *leaf;
3991 struct btrfs_key key;
3992 int ret;
3993
3994 path = btrfs_alloc_path();
3995 if (!path)
3996 return -ENOMEM;
3997
3998 key.objectid = BTRFS_BALANCE_OBJECTID;
3999 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4000 key.offset = 0;
4001
4002 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4003 if (ret < 0)
4004 goto out;
4005 if (ret > 0) { /* ret = -ENOENT; */
4006 ret = 0;
4007 goto out;
4008 }
4009
4010 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4011 if (!bctl) {
4012 ret = -ENOMEM;
4013 goto out;
4014 }
4015
4016 leaf = path->nodes[0];
4017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4018
4019 bctl->fs_info = fs_info;
4020 bctl->flags = btrfs_balance_flags(leaf, item);
4021 bctl->flags |= BTRFS_BALANCE_RESUME;
4022
4023 btrfs_balance_data(leaf, item, &disk_bargs);
4024 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4025 btrfs_balance_meta(leaf, item, &disk_bargs);
4026 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4027 btrfs_balance_sys(leaf, item, &disk_bargs);
4028 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4029
4030 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4031
4032 mutex_lock(&fs_info->volume_mutex);
4033 mutex_lock(&fs_info->balance_mutex);
4034
4035 set_balance_control(bctl);
4036
4037 mutex_unlock(&fs_info->balance_mutex);
4038 mutex_unlock(&fs_info->volume_mutex);
4039 out:
4040 btrfs_free_path(path);
4041 return ret;
4042 }
4043
4044 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4045 {
4046 int ret = 0;
4047
4048 mutex_lock(&fs_info->balance_mutex);
4049 if (!fs_info->balance_ctl) {
4050 mutex_unlock(&fs_info->balance_mutex);
4051 return -ENOTCONN;
4052 }
4053
4054 if (atomic_read(&fs_info->balance_running)) {
4055 atomic_inc(&fs_info->balance_pause_req);
4056 mutex_unlock(&fs_info->balance_mutex);
4057
4058 wait_event(fs_info->balance_wait_q,
4059 atomic_read(&fs_info->balance_running) == 0);
4060
4061 mutex_lock(&fs_info->balance_mutex);
4062 /* we are good with balance_ctl ripped off from under us */
4063 BUG_ON(atomic_read(&fs_info->balance_running));
4064 atomic_dec(&fs_info->balance_pause_req);
4065 } else {
4066 ret = -ENOTCONN;
4067 }
4068
4069 mutex_unlock(&fs_info->balance_mutex);
4070 return ret;
4071 }
4072
4073 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4074 {
4075 if (sb_rdonly(fs_info->sb))
4076 return -EROFS;
4077
4078 mutex_lock(&fs_info->balance_mutex);
4079 if (!fs_info->balance_ctl) {
4080 mutex_unlock(&fs_info->balance_mutex);
4081 return -ENOTCONN;
4082 }
4083
4084 atomic_inc(&fs_info->balance_cancel_req);
4085 /*
4086 * if we are running just wait and return, balance item is
4087 * deleted in btrfs_balance in this case
4088 */
4089 if (atomic_read(&fs_info->balance_running)) {
4090 mutex_unlock(&fs_info->balance_mutex);
4091 wait_event(fs_info->balance_wait_q,
4092 atomic_read(&fs_info->balance_running) == 0);
4093 mutex_lock(&fs_info->balance_mutex);
4094 } else {
4095 /* __cancel_balance needs volume_mutex */
4096 mutex_unlock(&fs_info->balance_mutex);
4097 mutex_lock(&fs_info->volume_mutex);
4098 mutex_lock(&fs_info->balance_mutex);
4099
4100 if (fs_info->balance_ctl)
4101 __cancel_balance(fs_info);
4102
4103 mutex_unlock(&fs_info->volume_mutex);
4104 }
4105
4106 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4107 atomic_dec(&fs_info->balance_cancel_req);
4108 mutex_unlock(&fs_info->balance_mutex);
4109 return 0;
4110 }
4111
4112 static int btrfs_uuid_scan_kthread(void *data)
4113 {
4114 struct btrfs_fs_info *fs_info = data;
4115 struct btrfs_root *root = fs_info->tree_root;
4116 struct btrfs_key key;
4117 struct btrfs_path *path = NULL;
4118 int ret = 0;
4119 struct extent_buffer *eb;
4120 int slot;
4121 struct btrfs_root_item root_item;
4122 u32 item_size;
4123 struct btrfs_trans_handle *trans = NULL;
4124
4125 path = btrfs_alloc_path();
4126 if (!path) {
4127 ret = -ENOMEM;
4128 goto out;
4129 }
4130
4131 key.objectid = 0;
4132 key.type = BTRFS_ROOT_ITEM_KEY;
4133 key.offset = 0;
4134
4135 while (1) {
4136 ret = btrfs_search_forward(root, &key, path, 0);
4137 if (ret) {
4138 if (ret > 0)
4139 ret = 0;
4140 break;
4141 }
4142
4143 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4144 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4145 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4146 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4147 goto skip;
4148
4149 eb = path->nodes[0];
4150 slot = path->slots[0];
4151 item_size = btrfs_item_size_nr(eb, slot);
4152 if (item_size < sizeof(root_item))
4153 goto skip;
4154
4155 read_extent_buffer(eb, &root_item,
4156 btrfs_item_ptr_offset(eb, slot),
4157 (int)sizeof(root_item));
4158 if (btrfs_root_refs(&root_item) == 0)
4159 goto skip;
4160
4161 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4162 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4163 if (trans)
4164 goto update_tree;
4165
4166 btrfs_release_path(path);
4167 /*
4168 * 1 - subvol uuid item
4169 * 1 - received_subvol uuid item
4170 */
4171 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4172 if (IS_ERR(trans)) {
4173 ret = PTR_ERR(trans);
4174 break;
4175 }
4176 continue;
4177 } else {
4178 goto skip;
4179 }
4180 update_tree:
4181 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4182 ret = btrfs_uuid_tree_add(trans, fs_info,
4183 root_item.uuid,
4184 BTRFS_UUID_KEY_SUBVOL,
4185 key.objectid);
4186 if (ret < 0) {
4187 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4188 ret);
4189 break;
4190 }
4191 }
4192
4193 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4194 ret = btrfs_uuid_tree_add(trans, fs_info,
4195 root_item.received_uuid,
4196 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4197 key.objectid);
4198 if (ret < 0) {
4199 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4200 ret);
4201 break;
4202 }
4203 }
4204
4205 skip:
4206 if (trans) {
4207 ret = btrfs_end_transaction(trans);
4208 trans = NULL;
4209 if (ret)
4210 break;
4211 }
4212
4213 btrfs_release_path(path);
4214 if (key.offset < (u64)-1) {
4215 key.offset++;
4216 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4217 key.offset = 0;
4218 key.type = BTRFS_ROOT_ITEM_KEY;
4219 } else if (key.objectid < (u64)-1) {
4220 key.offset = 0;
4221 key.type = BTRFS_ROOT_ITEM_KEY;
4222 key.objectid++;
4223 } else {
4224 break;
4225 }
4226 cond_resched();
4227 }
4228
4229 out:
4230 btrfs_free_path(path);
4231 if (trans && !IS_ERR(trans))
4232 btrfs_end_transaction(trans);
4233 if (ret)
4234 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4235 else
4236 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4237 up(&fs_info->uuid_tree_rescan_sem);
4238 return 0;
4239 }
4240
4241 /*
4242 * Callback for btrfs_uuid_tree_iterate().
4243 * returns:
4244 * 0 check succeeded, the entry is not outdated.
4245 * < 0 if an error occurred.
4246 * > 0 if the check failed, which means the caller shall remove the entry.
4247 */
4248 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4249 u8 *uuid, u8 type, u64 subid)
4250 {
4251 struct btrfs_key key;
4252 int ret = 0;
4253 struct btrfs_root *subvol_root;
4254
4255 if (type != BTRFS_UUID_KEY_SUBVOL &&
4256 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4257 goto out;
4258
4259 key.objectid = subid;
4260 key.type = BTRFS_ROOT_ITEM_KEY;
4261 key.offset = (u64)-1;
4262 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4263 if (IS_ERR(subvol_root)) {
4264 ret = PTR_ERR(subvol_root);
4265 if (ret == -ENOENT)
4266 ret = 1;
4267 goto out;
4268 }
4269
4270 switch (type) {
4271 case BTRFS_UUID_KEY_SUBVOL:
4272 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4273 ret = 1;
4274 break;
4275 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4276 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4277 BTRFS_UUID_SIZE))
4278 ret = 1;
4279 break;
4280 }
4281
4282 out:
4283 return ret;
4284 }
4285
4286 static int btrfs_uuid_rescan_kthread(void *data)
4287 {
4288 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4289 int ret;
4290
4291 /*
4292 * 1st step is to iterate through the existing UUID tree and
4293 * to delete all entries that contain outdated data.
4294 * 2nd step is to add all missing entries to the UUID tree.
4295 */
4296 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4297 if (ret < 0) {
4298 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4299 up(&fs_info->uuid_tree_rescan_sem);
4300 return ret;
4301 }
4302 return btrfs_uuid_scan_kthread(data);
4303 }
4304
4305 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4306 {
4307 struct btrfs_trans_handle *trans;
4308 struct btrfs_root *tree_root = fs_info->tree_root;
4309 struct btrfs_root *uuid_root;
4310 struct task_struct *task;
4311 int ret;
4312
4313 /*
4314 * 1 - root node
4315 * 1 - root item
4316 */
4317 trans = btrfs_start_transaction(tree_root, 2);
4318 if (IS_ERR(trans))
4319 return PTR_ERR(trans);
4320
4321 uuid_root = btrfs_create_tree(trans, fs_info,
4322 BTRFS_UUID_TREE_OBJECTID);
4323 if (IS_ERR(uuid_root)) {
4324 ret = PTR_ERR(uuid_root);
4325 btrfs_abort_transaction(trans, ret);
4326 btrfs_end_transaction(trans);
4327 return ret;
4328 }
4329
4330 fs_info->uuid_root = uuid_root;
4331
4332 ret = btrfs_commit_transaction(trans);
4333 if (ret)
4334 return ret;
4335
4336 down(&fs_info->uuid_tree_rescan_sem);
4337 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4338 if (IS_ERR(task)) {
4339 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4340 btrfs_warn(fs_info, "failed to start uuid_scan task");
4341 up(&fs_info->uuid_tree_rescan_sem);
4342 return PTR_ERR(task);
4343 }
4344
4345 return 0;
4346 }
4347
4348 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4349 {
4350 struct task_struct *task;
4351
4352 down(&fs_info->uuid_tree_rescan_sem);
4353 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4354 if (IS_ERR(task)) {
4355 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4356 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4357 up(&fs_info->uuid_tree_rescan_sem);
4358 return PTR_ERR(task);
4359 }
4360
4361 return 0;
4362 }
4363
4364 /*
4365 * shrinking a device means finding all of the device extents past
4366 * the new size, and then following the back refs to the chunks.
4367 * The chunk relocation code actually frees the device extent
4368 */
4369 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4370 {
4371 struct btrfs_fs_info *fs_info = device->fs_info;
4372 struct btrfs_root *root = fs_info->dev_root;
4373 struct btrfs_trans_handle *trans;
4374 struct btrfs_dev_extent *dev_extent = NULL;
4375 struct btrfs_path *path;
4376 u64 length;
4377 u64 chunk_offset;
4378 int ret;
4379 int slot;
4380 int failed = 0;
4381 bool retried = false;
4382 bool checked_pending_chunks = false;
4383 struct extent_buffer *l;
4384 struct btrfs_key key;
4385 struct btrfs_super_block *super_copy = fs_info->super_copy;
4386 u64 old_total = btrfs_super_total_bytes(super_copy);
4387 u64 old_size = btrfs_device_get_total_bytes(device);
4388 u64 diff;
4389
4390 new_size = round_down(new_size, fs_info->sectorsize);
4391 diff = round_down(old_size - new_size, fs_info->sectorsize);
4392
4393 if (device->is_tgtdev_for_dev_replace)
4394 return -EINVAL;
4395
4396 path = btrfs_alloc_path();
4397 if (!path)
4398 return -ENOMEM;
4399
4400 path->reada = READA_FORWARD;
4401
4402 mutex_lock(&fs_info->chunk_mutex);
4403
4404 btrfs_device_set_total_bytes(device, new_size);
4405 if (device->writeable) {
4406 device->fs_devices->total_rw_bytes -= diff;
4407 atomic64_sub(diff, &fs_info->free_chunk_space);
4408 }
4409 mutex_unlock(&fs_info->chunk_mutex);
4410
4411 again:
4412 key.objectid = device->devid;
4413 key.offset = (u64)-1;
4414 key.type = BTRFS_DEV_EXTENT_KEY;
4415
4416 do {
4417 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 if (ret < 0) {
4420 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4421 goto done;
4422 }
4423
4424 ret = btrfs_previous_item(root, path, 0, key.type);
4425 if (ret)
4426 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4427 if (ret < 0)
4428 goto done;
4429 if (ret) {
4430 ret = 0;
4431 btrfs_release_path(path);
4432 break;
4433 }
4434
4435 l = path->nodes[0];
4436 slot = path->slots[0];
4437 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4438
4439 if (key.objectid != device->devid) {
4440 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4441 btrfs_release_path(path);
4442 break;
4443 }
4444
4445 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4446 length = btrfs_dev_extent_length(l, dev_extent);
4447
4448 if (key.offset + length <= new_size) {
4449 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4450 btrfs_release_path(path);
4451 break;
4452 }
4453
4454 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4455 btrfs_release_path(path);
4456
4457 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4458 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4459 if (ret && ret != -ENOSPC)
4460 goto done;
4461 if (ret == -ENOSPC)
4462 failed++;
4463 } while (key.offset-- > 0);
4464
4465 if (failed && !retried) {
4466 failed = 0;
4467 retried = true;
4468 goto again;
4469 } else if (failed && retried) {
4470 ret = -ENOSPC;
4471 goto done;
4472 }
4473
4474 /* Shrinking succeeded, else we would be at "done". */
4475 trans = btrfs_start_transaction(root, 0);
4476 if (IS_ERR(trans)) {
4477 ret = PTR_ERR(trans);
4478 goto done;
4479 }
4480
4481 mutex_lock(&fs_info->chunk_mutex);
4482
4483 /*
4484 * We checked in the above loop all device extents that were already in
4485 * the device tree. However before we have updated the device's
4486 * total_bytes to the new size, we might have had chunk allocations that
4487 * have not complete yet (new block groups attached to transaction
4488 * handles), and therefore their device extents were not yet in the
4489 * device tree and we missed them in the loop above. So if we have any
4490 * pending chunk using a device extent that overlaps the device range
4491 * that we can not use anymore, commit the current transaction and
4492 * repeat the search on the device tree - this way we guarantee we will
4493 * not have chunks using device extents that end beyond 'new_size'.
4494 */
4495 if (!checked_pending_chunks) {
4496 u64 start = new_size;
4497 u64 len = old_size - new_size;
4498
4499 if (contains_pending_extent(trans->transaction, device,
4500 &start, len)) {
4501 mutex_unlock(&fs_info->chunk_mutex);
4502 checked_pending_chunks = true;
4503 failed = 0;
4504 retried = false;
4505 ret = btrfs_commit_transaction(trans);
4506 if (ret)
4507 goto done;
4508 goto again;
4509 }
4510 }
4511
4512 btrfs_device_set_disk_total_bytes(device, new_size);
4513 if (list_empty(&device->resized_list))
4514 list_add_tail(&device->resized_list,
4515 &fs_info->fs_devices->resized_devices);
4516
4517 WARN_ON(diff > old_total);
4518 btrfs_set_super_total_bytes(super_copy,
4519 round_down(old_total - diff, fs_info->sectorsize));
4520 mutex_unlock(&fs_info->chunk_mutex);
4521
4522 /* Now btrfs_update_device() will change the on-disk size. */
4523 ret = btrfs_update_device(trans, device);
4524 btrfs_end_transaction(trans);
4525 done:
4526 btrfs_free_path(path);
4527 if (ret) {
4528 mutex_lock(&fs_info->chunk_mutex);
4529 btrfs_device_set_total_bytes(device, old_size);
4530 if (device->writeable)
4531 device->fs_devices->total_rw_bytes += diff;
4532 atomic64_add(diff, &fs_info->free_chunk_space);
4533 mutex_unlock(&fs_info->chunk_mutex);
4534 }
4535 return ret;
4536 }
4537
4538 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4539 struct btrfs_key *key,
4540 struct btrfs_chunk *chunk, int item_size)
4541 {
4542 struct btrfs_super_block *super_copy = fs_info->super_copy;
4543 struct btrfs_disk_key disk_key;
4544 u32 array_size;
4545 u8 *ptr;
4546
4547 mutex_lock(&fs_info->chunk_mutex);
4548 array_size = btrfs_super_sys_array_size(super_copy);
4549 if (array_size + item_size + sizeof(disk_key)
4550 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4551 mutex_unlock(&fs_info->chunk_mutex);
4552 return -EFBIG;
4553 }
4554
4555 ptr = super_copy->sys_chunk_array + array_size;
4556 btrfs_cpu_key_to_disk(&disk_key, key);
4557 memcpy(ptr, &disk_key, sizeof(disk_key));
4558 ptr += sizeof(disk_key);
4559 memcpy(ptr, chunk, item_size);
4560 item_size += sizeof(disk_key);
4561 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4562 mutex_unlock(&fs_info->chunk_mutex);
4563
4564 return 0;
4565 }
4566
4567 /*
4568 * sort the devices in descending order by max_avail, total_avail
4569 */
4570 static int btrfs_cmp_device_info(const void *a, const void *b)
4571 {
4572 const struct btrfs_device_info *di_a = a;
4573 const struct btrfs_device_info *di_b = b;
4574
4575 if (di_a->max_avail > di_b->max_avail)
4576 return -1;
4577 if (di_a->max_avail < di_b->max_avail)
4578 return 1;
4579 if (di_a->total_avail > di_b->total_avail)
4580 return -1;
4581 if (di_a->total_avail < di_b->total_avail)
4582 return 1;
4583 return 0;
4584 }
4585
4586 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4587 {
4588 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4589 return;
4590
4591 btrfs_set_fs_incompat(info, RAID56);
4592 }
4593
4594 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4595 - sizeof(struct btrfs_chunk)) \
4596 / sizeof(struct btrfs_stripe) + 1)
4597
4598 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4599 - 2 * sizeof(struct btrfs_disk_key) \
4600 - 2 * sizeof(struct btrfs_chunk)) \
4601 / sizeof(struct btrfs_stripe) + 1)
4602
4603 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4604 u64 start, u64 type)
4605 {
4606 struct btrfs_fs_info *info = trans->fs_info;
4607 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4608 struct btrfs_device *device;
4609 struct map_lookup *map = NULL;
4610 struct extent_map_tree *em_tree;
4611 struct extent_map *em;
4612 struct btrfs_device_info *devices_info = NULL;
4613 u64 total_avail;
4614 int num_stripes; /* total number of stripes to allocate */
4615 int data_stripes; /* number of stripes that count for
4616 block group size */
4617 int sub_stripes; /* sub_stripes info for map */
4618 int dev_stripes; /* stripes per dev */
4619 int devs_max; /* max devs to use */
4620 int devs_min; /* min devs needed */
4621 int devs_increment; /* ndevs has to be a multiple of this */
4622 int ncopies; /* how many copies to data has */
4623 int ret;
4624 u64 max_stripe_size;
4625 u64 max_chunk_size;
4626 u64 stripe_size;
4627 u64 num_bytes;
4628 int ndevs;
4629 int i;
4630 int j;
4631 int index;
4632
4633 BUG_ON(!alloc_profile_is_valid(type, 0));
4634
4635 if (list_empty(&fs_devices->alloc_list))
4636 return -ENOSPC;
4637
4638 index = __get_raid_index(type);
4639
4640 sub_stripes = btrfs_raid_array[index].sub_stripes;
4641 dev_stripes = btrfs_raid_array[index].dev_stripes;
4642 devs_max = btrfs_raid_array[index].devs_max;
4643 devs_min = btrfs_raid_array[index].devs_min;
4644 devs_increment = btrfs_raid_array[index].devs_increment;
4645 ncopies = btrfs_raid_array[index].ncopies;
4646
4647 if (type & BTRFS_BLOCK_GROUP_DATA) {
4648 max_stripe_size = SZ_1G;
4649 max_chunk_size = 10 * max_stripe_size;
4650 if (!devs_max)
4651 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4652 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4653 /* for larger filesystems, use larger metadata chunks */
4654 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4655 max_stripe_size = SZ_1G;
4656 else
4657 max_stripe_size = SZ_256M;
4658 max_chunk_size = max_stripe_size;
4659 if (!devs_max)
4660 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4661 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4662 max_stripe_size = SZ_32M;
4663 max_chunk_size = 2 * max_stripe_size;
4664 if (!devs_max)
4665 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4666 } else {
4667 btrfs_err(info, "invalid chunk type 0x%llx requested",
4668 type);
4669 BUG_ON(1);
4670 }
4671
4672 /* we don't want a chunk larger than 10% of writeable space */
4673 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4674 max_chunk_size);
4675
4676 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4677 GFP_NOFS);
4678 if (!devices_info)
4679 return -ENOMEM;
4680
4681 /*
4682 * in the first pass through the devices list, we gather information
4683 * about the available holes on each device.
4684 */
4685 ndevs = 0;
4686 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4687 u64 max_avail;
4688 u64 dev_offset;
4689
4690 if (!device->writeable) {
4691 WARN(1, KERN_ERR
4692 "BTRFS: read-only device in alloc_list\n");
4693 continue;
4694 }
4695
4696 if (!device->in_fs_metadata ||
4697 device->is_tgtdev_for_dev_replace)
4698 continue;
4699
4700 if (device->total_bytes > device->bytes_used)
4701 total_avail = device->total_bytes - device->bytes_used;
4702 else
4703 total_avail = 0;
4704
4705 /* If there is no space on this device, skip it. */
4706 if (total_avail == 0)
4707 continue;
4708
4709 ret = find_free_dev_extent(trans, device,
4710 max_stripe_size * dev_stripes,
4711 &dev_offset, &max_avail);
4712 if (ret && ret != -ENOSPC)
4713 goto error;
4714
4715 if (ret == 0)
4716 max_avail = max_stripe_size * dev_stripes;
4717
4718 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4719 continue;
4720
4721 if (ndevs == fs_devices->rw_devices) {
4722 WARN(1, "%s: found more than %llu devices\n",
4723 __func__, fs_devices->rw_devices);
4724 break;
4725 }
4726 devices_info[ndevs].dev_offset = dev_offset;
4727 devices_info[ndevs].max_avail = max_avail;
4728 devices_info[ndevs].total_avail = total_avail;
4729 devices_info[ndevs].dev = device;
4730 ++ndevs;
4731 }
4732
4733 /*
4734 * now sort the devices by hole size / available space
4735 */
4736 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4737 btrfs_cmp_device_info, NULL);
4738
4739 /* round down to number of usable stripes */
4740 ndevs = round_down(ndevs, devs_increment);
4741
4742 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4743 ret = -ENOSPC;
4744 goto error;
4745 }
4746
4747 ndevs = min(ndevs, devs_max);
4748
4749 /*
4750 * The primary goal is to maximize the number of stripes, so use as
4751 * many devices as possible, even if the stripes are not maximum sized.
4752 *
4753 * The DUP profile stores more than one stripe per device, the
4754 * max_avail is the total size so we have to adjust.
4755 */
4756 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4757 num_stripes = ndevs * dev_stripes;
4758
4759 /*
4760 * this will have to be fixed for RAID1 and RAID10 over
4761 * more drives
4762 */
4763 data_stripes = num_stripes / ncopies;
4764
4765 if (type & BTRFS_BLOCK_GROUP_RAID5)
4766 data_stripes = num_stripes - 1;
4767
4768 if (type & BTRFS_BLOCK_GROUP_RAID6)
4769 data_stripes = num_stripes - 2;
4770
4771 /*
4772 * Use the number of data stripes to figure out how big this chunk
4773 * is really going to be in terms of logical address space,
4774 * and compare that answer with the max chunk size
4775 */
4776 if (stripe_size * data_stripes > max_chunk_size) {
4777 u64 mask = (1ULL << 24) - 1;
4778
4779 stripe_size = div_u64(max_chunk_size, data_stripes);
4780
4781 /* bump the answer up to a 16MB boundary */
4782 stripe_size = (stripe_size + mask) & ~mask;
4783
4784 /* but don't go higher than the limits we found
4785 * while searching for free extents
4786 */
4787 if (stripe_size > devices_info[ndevs-1].max_avail)
4788 stripe_size = devices_info[ndevs-1].max_avail;
4789 }
4790
4791 /* align to BTRFS_STRIPE_LEN */
4792 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4793
4794 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4795 if (!map) {
4796 ret = -ENOMEM;
4797 goto error;
4798 }
4799 map->num_stripes = num_stripes;
4800
4801 for (i = 0; i < ndevs; ++i) {
4802 for (j = 0; j < dev_stripes; ++j) {
4803 int s = i * dev_stripes + j;
4804 map->stripes[s].dev = devices_info[i].dev;
4805 map->stripes[s].physical = devices_info[i].dev_offset +
4806 j * stripe_size;
4807 }
4808 }
4809 map->stripe_len = BTRFS_STRIPE_LEN;
4810 map->io_align = BTRFS_STRIPE_LEN;
4811 map->io_width = BTRFS_STRIPE_LEN;
4812 map->type = type;
4813 map->sub_stripes = sub_stripes;
4814
4815 num_bytes = stripe_size * data_stripes;
4816
4817 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4818
4819 em = alloc_extent_map();
4820 if (!em) {
4821 kfree(map);
4822 ret = -ENOMEM;
4823 goto error;
4824 }
4825 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4826 em->map_lookup = map;
4827 em->start = start;
4828 em->len = num_bytes;
4829 em->block_start = 0;
4830 em->block_len = em->len;
4831 em->orig_block_len = stripe_size;
4832
4833 em_tree = &info->mapping_tree.map_tree;
4834 write_lock(&em_tree->lock);
4835 ret = add_extent_mapping(em_tree, em, 0);
4836 if (ret) {
4837 write_unlock(&em_tree->lock);
4838 free_extent_map(em);
4839 goto error;
4840 }
4841
4842 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4843 refcount_inc(&em->refs);
4844 write_unlock(&em_tree->lock);
4845
4846 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4847 if (ret)
4848 goto error_del_extent;
4849
4850 for (i = 0; i < map->num_stripes; i++) {
4851 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4852 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4853 }
4854
4855 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4856
4857 free_extent_map(em);
4858 check_raid56_incompat_flag(info, type);
4859
4860 kfree(devices_info);
4861 return 0;
4862
4863 error_del_extent:
4864 write_lock(&em_tree->lock);
4865 remove_extent_mapping(em_tree, em);
4866 write_unlock(&em_tree->lock);
4867
4868 /* One for our allocation */
4869 free_extent_map(em);
4870 /* One for the tree reference */
4871 free_extent_map(em);
4872 /* One for the pending_chunks list reference */
4873 free_extent_map(em);
4874 error:
4875 kfree(devices_info);
4876 return ret;
4877 }
4878
4879 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4880 struct btrfs_fs_info *fs_info,
4881 u64 chunk_offset, u64 chunk_size)
4882 {
4883 struct btrfs_root *extent_root = fs_info->extent_root;
4884 struct btrfs_root *chunk_root = fs_info->chunk_root;
4885 struct btrfs_key key;
4886 struct btrfs_device *device;
4887 struct btrfs_chunk *chunk;
4888 struct btrfs_stripe *stripe;
4889 struct extent_map *em;
4890 struct map_lookup *map;
4891 size_t item_size;
4892 u64 dev_offset;
4893 u64 stripe_size;
4894 int i = 0;
4895 int ret = 0;
4896
4897 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4898 if (IS_ERR(em))
4899 return PTR_ERR(em);
4900
4901 map = em->map_lookup;
4902 item_size = btrfs_chunk_item_size(map->num_stripes);
4903 stripe_size = em->orig_block_len;
4904
4905 chunk = kzalloc(item_size, GFP_NOFS);
4906 if (!chunk) {
4907 ret = -ENOMEM;
4908 goto out;
4909 }
4910
4911 /*
4912 * Take the device list mutex to prevent races with the final phase of
4913 * a device replace operation that replaces the device object associated
4914 * with the map's stripes, because the device object's id can change
4915 * at any time during that final phase of the device replace operation
4916 * (dev-replace.c:btrfs_dev_replace_finishing()).
4917 */
4918 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4919 for (i = 0; i < map->num_stripes; i++) {
4920 device = map->stripes[i].dev;
4921 dev_offset = map->stripes[i].physical;
4922
4923 ret = btrfs_update_device(trans, device);
4924 if (ret)
4925 break;
4926 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4927 dev_offset, stripe_size);
4928 if (ret)
4929 break;
4930 }
4931 if (ret) {
4932 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4933 goto out;
4934 }
4935
4936 stripe = &chunk->stripe;
4937 for (i = 0; i < map->num_stripes; i++) {
4938 device = map->stripes[i].dev;
4939 dev_offset = map->stripes[i].physical;
4940
4941 btrfs_set_stack_stripe_devid(stripe, device->devid);
4942 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4943 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4944 stripe++;
4945 }
4946 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4947
4948 btrfs_set_stack_chunk_length(chunk, chunk_size);
4949 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4950 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4951 btrfs_set_stack_chunk_type(chunk, map->type);
4952 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4953 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4954 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4955 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4956 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4957
4958 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4959 key.type = BTRFS_CHUNK_ITEM_KEY;
4960 key.offset = chunk_offset;
4961
4962 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4963 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4964 /*
4965 * TODO: Cleanup of inserted chunk root in case of
4966 * failure.
4967 */
4968 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4969 }
4970
4971 out:
4972 kfree(chunk);
4973 free_extent_map(em);
4974 return ret;
4975 }
4976
4977 /*
4978 * Chunk allocation falls into two parts. The first part does works
4979 * that make the new allocated chunk useable, but not do any operation
4980 * that modifies the chunk tree. The second part does the works that
4981 * require modifying the chunk tree. This division is important for the
4982 * bootstrap process of adding storage to a seed btrfs.
4983 */
4984 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4985 struct btrfs_fs_info *fs_info, u64 type)
4986 {
4987 u64 chunk_offset;
4988
4989 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4990 chunk_offset = find_next_chunk(fs_info);
4991 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4992 }
4993
4994 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4995 struct btrfs_fs_info *fs_info)
4996 {
4997 u64 chunk_offset;
4998 u64 sys_chunk_offset;
4999 u64 alloc_profile;
5000 int ret;
5001
5002 chunk_offset = find_next_chunk(fs_info);
5003 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5004 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5005 if (ret)
5006 return ret;
5007
5008 sys_chunk_offset = find_next_chunk(fs_info);
5009 alloc_profile = btrfs_system_alloc_profile(fs_info);
5010 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5011 return ret;
5012 }
5013
5014 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5015 {
5016 int max_errors;
5017
5018 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5019 BTRFS_BLOCK_GROUP_RAID10 |
5020 BTRFS_BLOCK_GROUP_RAID5 |
5021 BTRFS_BLOCK_GROUP_DUP)) {
5022 max_errors = 1;
5023 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5024 max_errors = 2;
5025 } else {
5026 max_errors = 0;
5027 }
5028
5029 return max_errors;
5030 }
5031
5032 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5033 {
5034 struct extent_map *em;
5035 struct map_lookup *map;
5036 int readonly = 0;
5037 int miss_ndevs = 0;
5038 int i;
5039
5040 em = get_chunk_map(fs_info, chunk_offset, 1);
5041 if (IS_ERR(em))
5042 return 1;
5043
5044 map = em->map_lookup;
5045 for (i = 0; i < map->num_stripes; i++) {
5046 if (map->stripes[i].dev->missing) {
5047 miss_ndevs++;
5048 continue;
5049 }
5050
5051 if (!map->stripes[i].dev->writeable) {
5052 readonly = 1;
5053 goto end;
5054 }
5055 }
5056
5057 /*
5058 * If the number of missing devices is larger than max errors,
5059 * we can not write the data into that chunk successfully, so
5060 * set it readonly.
5061 */
5062 if (miss_ndevs > btrfs_chunk_max_errors(map))
5063 readonly = 1;
5064 end:
5065 free_extent_map(em);
5066 return readonly;
5067 }
5068
5069 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5070 {
5071 extent_map_tree_init(&tree->map_tree);
5072 }
5073
5074 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5075 {
5076 struct extent_map *em;
5077
5078 while (1) {
5079 write_lock(&tree->map_tree.lock);
5080 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5081 if (em)
5082 remove_extent_mapping(&tree->map_tree, em);
5083 write_unlock(&tree->map_tree.lock);
5084 if (!em)
5085 break;
5086 /* once for us */
5087 free_extent_map(em);
5088 /* once for the tree */
5089 free_extent_map(em);
5090 }
5091 }
5092
5093 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5094 {
5095 struct extent_map *em;
5096 struct map_lookup *map;
5097 int ret;
5098
5099 em = get_chunk_map(fs_info, logical, len);
5100 if (IS_ERR(em))
5101 /*
5102 * We could return errors for these cases, but that could get
5103 * ugly and we'd probably do the same thing which is just not do
5104 * anything else and exit, so return 1 so the callers don't try
5105 * to use other copies.
5106 */
5107 return 1;
5108
5109 map = em->map_lookup;
5110 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5111 ret = map->num_stripes;
5112 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5113 ret = map->sub_stripes;
5114 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5115 ret = 2;
5116 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5117 /*
5118 * There could be two corrupted data stripes, we need
5119 * to loop retry in order to rebuild the correct data.
5120 *
5121 * Fail a stripe at a time on every retry except the
5122 * stripe under reconstruction.
5123 */
5124 ret = map->num_stripes;
5125 else
5126 ret = 1;
5127 free_extent_map(em);
5128
5129 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5130 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5131 fs_info->dev_replace.tgtdev)
5132 ret++;
5133 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5134
5135 return ret;
5136 }
5137
5138 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5139 u64 logical)
5140 {
5141 struct extent_map *em;
5142 struct map_lookup *map;
5143 unsigned long len = fs_info->sectorsize;
5144
5145 em = get_chunk_map(fs_info, logical, len);
5146
5147 if (!WARN_ON(IS_ERR(em))) {
5148 map = em->map_lookup;
5149 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5150 len = map->stripe_len * nr_data_stripes(map);
5151 free_extent_map(em);
5152 }
5153 return len;
5154 }
5155
5156 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5157 {
5158 struct extent_map *em;
5159 struct map_lookup *map;
5160 int ret = 0;
5161
5162 em = get_chunk_map(fs_info, logical, len);
5163
5164 if(!WARN_ON(IS_ERR(em))) {
5165 map = em->map_lookup;
5166 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5167 ret = 1;
5168 free_extent_map(em);
5169 }
5170 return ret;
5171 }
5172
5173 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5174 struct map_lookup *map, int first, int num,
5175 int optimal, int dev_replace_is_ongoing)
5176 {
5177 int i;
5178 int tolerance;
5179 struct btrfs_device *srcdev;
5180
5181 if (dev_replace_is_ongoing &&
5182 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5183 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5184 srcdev = fs_info->dev_replace.srcdev;
5185 else
5186 srcdev = NULL;
5187
5188 /*
5189 * try to avoid the drive that is the source drive for a
5190 * dev-replace procedure, only choose it if no other non-missing
5191 * mirror is available
5192 */
5193 for (tolerance = 0; tolerance < 2; tolerance++) {
5194 if (map->stripes[optimal].dev->bdev &&
5195 (tolerance || map->stripes[optimal].dev != srcdev))
5196 return optimal;
5197 for (i = first; i < first + num; i++) {
5198 if (map->stripes[i].dev->bdev &&
5199 (tolerance || map->stripes[i].dev != srcdev))
5200 return i;
5201 }
5202 }
5203
5204 /* we couldn't find one that doesn't fail. Just return something
5205 * and the io error handling code will clean up eventually
5206 */
5207 return optimal;
5208 }
5209
5210 static inline int parity_smaller(u64 a, u64 b)
5211 {
5212 return a > b;
5213 }
5214
5215 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5216 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5217 {
5218 struct btrfs_bio_stripe s;
5219 int i;
5220 u64 l;
5221 int again = 1;
5222
5223 while (again) {
5224 again = 0;
5225 for (i = 0; i < num_stripes - 1; i++) {
5226 if (parity_smaller(bbio->raid_map[i],
5227 bbio->raid_map[i+1])) {
5228 s = bbio->stripes[i];
5229 l = bbio->raid_map[i];
5230 bbio->stripes[i] = bbio->stripes[i+1];
5231 bbio->raid_map[i] = bbio->raid_map[i+1];
5232 bbio->stripes[i+1] = s;
5233 bbio->raid_map[i+1] = l;
5234
5235 again = 1;
5236 }
5237 }
5238 }
5239 }
5240
5241 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5242 {
5243 struct btrfs_bio *bbio = kzalloc(
5244 /* the size of the btrfs_bio */
5245 sizeof(struct btrfs_bio) +
5246 /* plus the variable array for the stripes */
5247 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5248 /* plus the variable array for the tgt dev */
5249 sizeof(int) * (real_stripes) +
5250 /*
5251 * plus the raid_map, which includes both the tgt dev
5252 * and the stripes
5253 */
5254 sizeof(u64) * (total_stripes),
5255 GFP_NOFS|__GFP_NOFAIL);
5256
5257 atomic_set(&bbio->error, 0);
5258 refcount_set(&bbio->refs, 1);
5259
5260 return bbio;
5261 }
5262
5263 void btrfs_get_bbio(struct btrfs_bio *bbio)
5264 {
5265 WARN_ON(!refcount_read(&bbio->refs));
5266 refcount_inc(&bbio->refs);
5267 }
5268
5269 void btrfs_put_bbio(struct btrfs_bio *bbio)
5270 {
5271 if (!bbio)
5272 return;
5273 if (refcount_dec_and_test(&bbio->refs))
5274 kfree(bbio);
5275 }
5276
5277 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5278 /*
5279 * Please note that, discard won't be sent to target device of device
5280 * replace.
5281 */
5282 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5283 u64 logical, u64 length,
5284 struct btrfs_bio **bbio_ret)
5285 {
5286 struct extent_map *em;
5287 struct map_lookup *map;
5288 struct btrfs_bio *bbio;
5289 u64 offset;
5290 u64 stripe_nr;
5291 u64 stripe_nr_end;
5292 u64 stripe_end_offset;
5293 u64 stripe_cnt;
5294 u64 stripe_len;
5295 u64 stripe_offset;
5296 u64 num_stripes;
5297 u32 stripe_index;
5298 u32 factor = 0;
5299 u32 sub_stripes = 0;
5300 u64 stripes_per_dev = 0;
5301 u32 remaining_stripes = 0;
5302 u32 last_stripe = 0;
5303 int ret = 0;
5304 int i;
5305
5306 /* discard always return a bbio */
5307 ASSERT(bbio_ret);
5308
5309 em = get_chunk_map(fs_info, logical, length);
5310 if (IS_ERR(em))
5311 return PTR_ERR(em);
5312
5313 map = em->map_lookup;
5314 /* we don't discard raid56 yet */
5315 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5316 ret = -EOPNOTSUPP;
5317 goto out;
5318 }
5319
5320 offset = logical - em->start;
5321 length = min_t(u64, em->len - offset, length);
5322
5323 stripe_len = map->stripe_len;
5324 /*
5325 * stripe_nr counts the total number of stripes we have to stride
5326 * to get to this block
5327 */
5328 stripe_nr = div64_u64(offset, stripe_len);
5329
5330 /* stripe_offset is the offset of this block in its stripe */
5331 stripe_offset = offset - stripe_nr * stripe_len;
5332
5333 stripe_nr_end = round_up(offset + length, map->stripe_len);
5334 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5335 stripe_cnt = stripe_nr_end - stripe_nr;
5336 stripe_end_offset = stripe_nr_end * map->stripe_len -
5337 (offset + length);
5338 /*
5339 * after this, stripe_nr is the number of stripes on this
5340 * device we have to walk to find the data, and stripe_index is
5341 * the number of our device in the stripe array
5342 */
5343 num_stripes = 1;
5344 stripe_index = 0;
5345 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5346 BTRFS_BLOCK_GROUP_RAID10)) {
5347 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5348 sub_stripes = 1;
5349 else
5350 sub_stripes = map->sub_stripes;
5351
5352 factor = map->num_stripes / sub_stripes;
5353 num_stripes = min_t(u64, map->num_stripes,
5354 sub_stripes * stripe_cnt);
5355 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5356 stripe_index *= sub_stripes;
5357 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5358 &remaining_stripes);
5359 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5360 last_stripe *= sub_stripes;
5361 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5362 BTRFS_BLOCK_GROUP_DUP)) {
5363 num_stripes = map->num_stripes;
5364 } else {
5365 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5366 &stripe_index);
5367 }
5368
5369 bbio = alloc_btrfs_bio(num_stripes, 0);
5370 if (!bbio) {
5371 ret = -ENOMEM;
5372 goto out;
5373 }
5374
5375 for (i = 0; i < num_stripes; i++) {
5376 bbio->stripes[i].physical =
5377 map->stripes[stripe_index].physical +
5378 stripe_offset + stripe_nr * map->stripe_len;
5379 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5380
5381 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5382 BTRFS_BLOCK_GROUP_RAID10)) {
5383 bbio->stripes[i].length = stripes_per_dev *
5384 map->stripe_len;
5385
5386 if (i / sub_stripes < remaining_stripes)
5387 bbio->stripes[i].length +=
5388 map->stripe_len;
5389
5390 /*
5391 * Special for the first stripe and
5392 * the last stripe:
5393 *
5394 * |-------|...|-------|
5395 * |----------|
5396 * off end_off
5397 */
5398 if (i < sub_stripes)
5399 bbio->stripes[i].length -=
5400 stripe_offset;
5401
5402 if (stripe_index >= last_stripe &&
5403 stripe_index <= (last_stripe +
5404 sub_stripes - 1))
5405 bbio->stripes[i].length -=
5406 stripe_end_offset;
5407
5408 if (i == sub_stripes - 1)
5409 stripe_offset = 0;
5410 } else {
5411 bbio->stripes[i].length = length;
5412 }
5413
5414 stripe_index++;
5415 if (stripe_index == map->num_stripes) {
5416 stripe_index = 0;
5417 stripe_nr++;
5418 }
5419 }
5420
5421 *bbio_ret = bbio;
5422 bbio->map_type = map->type;
5423 bbio->num_stripes = num_stripes;
5424 out:
5425 free_extent_map(em);
5426 return ret;
5427 }
5428
5429 /*
5430 * In dev-replace case, for repair case (that's the only case where the mirror
5431 * is selected explicitly when calling btrfs_map_block), blocks left of the
5432 * left cursor can also be read from the target drive.
5433 *
5434 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5435 * array of stripes.
5436 * For READ, it also needs to be supported using the same mirror number.
5437 *
5438 * If the requested block is not left of the left cursor, EIO is returned. This
5439 * can happen because btrfs_num_copies() returns one more in the dev-replace
5440 * case.
5441 */
5442 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5443 u64 logical, u64 length,
5444 u64 srcdev_devid, int *mirror_num,
5445 u64 *physical)
5446 {
5447 struct btrfs_bio *bbio = NULL;
5448 int num_stripes;
5449 int index_srcdev = 0;
5450 int found = 0;
5451 u64 physical_of_found = 0;
5452 int i;
5453 int ret = 0;
5454
5455 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5456 logical, &length, &bbio, 0, 0);
5457 if (ret) {
5458 ASSERT(bbio == NULL);
5459 return ret;
5460 }
5461
5462 num_stripes = bbio->num_stripes;
5463 if (*mirror_num > num_stripes) {
5464 /*
5465 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5466 * that means that the requested area is not left of the left
5467 * cursor
5468 */
5469 btrfs_put_bbio(bbio);
5470 return -EIO;
5471 }
5472
5473 /*
5474 * process the rest of the function using the mirror_num of the source
5475 * drive. Therefore look it up first. At the end, patch the device
5476 * pointer to the one of the target drive.
5477 */
5478 for (i = 0; i < num_stripes; i++) {
5479 if (bbio->stripes[i].dev->devid != srcdev_devid)
5480 continue;
5481
5482 /*
5483 * In case of DUP, in order to keep it simple, only add the
5484 * mirror with the lowest physical address
5485 */
5486 if (found &&
5487 physical_of_found <= bbio->stripes[i].physical)
5488 continue;
5489
5490 index_srcdev = i;
5491 found = 1;
5492 physical_of_found = bbio->stripes[i].physical;
5493 }
5494
5495 btrfs_put_bbio(bbio);
5496
5497 ASSERT(found);
5498 if (!found)
5499 return -EIO;
5500
5501 *mirror_num = index_srcdev + 1;
5502 *physical = physical_of_found;
5503 return ret;
5504 }
5505
5506 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5507 struct btrfs_bio **bbio_ret,
5508 struct btrfs_dev_replace *dev_replace,
5509 int *num_stripes_ret, int *max_errors_ret)
5510 {
5511 struct btrfs_bio *bbio = *bbio_ret;
5512 u64 srcdev_devid = dev_replace->srcdev->devid;
5513 int tgtdev_indexes = 0;
5514 int num_stripes = *num_stripes_ret;
5515 int max_errors = *max_errors_ret;
5516 int i;
5517
5518 if (op == BTRFS_MAP_WRITE) {
5519 int index_where_to_add;
5520
5521 /*
5522 * duplicate the write operations while the dev replace
5523 * procedure is running. Since the copying of the old disk to
5524 * the new disk takes place at run time while the filesystem is
5525 * mounted writable, the regular write operations to the old
5526 * disk have to be duplicated to go to the new disk as well.
5527 *
5528 * Note that device->missing is handled by the caller, and that
5529 * the write to the old disk is already set up in the stripes
5530 * array.
5531 */
5532 index_where_to_add = num_stripes;
5533 for (i = 0; i < num_stripes; i++) {
5534 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5535 /* write to new disk, too */
5536 struct btrfs_bio_stripe *new =
5537 bbio->stripes + index_where_to_add;
5538 struct btrfs_bio_stripe *old =
5539 bbio->stripes + i;
5540
5541 new->physical = old->physical;
5542 new->length = old->length;
5543 new->dev = dev_replace->tgtdev;
5544 bbio->tgtdev_map[i] = index_where_to_add;
5545 index_where_to_add++;
5546 max_errors++;
5547 tgtdev_indexes++;
5548 }
5549 }
5550 num_stripes = index_where_to_add;
5551 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5552 int index_srcdev = 0;
5553 int found = 0;
5554 u64 physical_of_found = 0;
5555
5556 /*
5557 * During the dev-replace procedure, the target drive can also
5558 * be used to read data in case it is needed to repair a corrupt
5559 * block elsewhere. This is possible if the requested area is
5560 * left of the left cursor. In this area, the target drive is a
5561 * full copy of the source drive.
5562 */
5563 for (i = 0; i < num_stripes; i++) {
5564 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5565 /*
5566 * In case of DUP, in order to keep it simple,
5567 * only add the mirror with the lowest physical
5568 * address
5569 */
5570 if (found &&
5571 physical_of_found <=
5572 bbio->stripes[i].physical)
5573 continue;
5574 index_srcdev = i;
5575 found = 1;
5576 physical_of_found = bbio->stripes[i].physical;
5577 }
5578 }
5579 if (found) {
5580 struct btrfs_bio_stripe *tgtdev_stripe =
5581 bbio->stripes + num_stripes;
5582
5583 tgtdev_stripe->physical = physical_of_found;
5584 tgtdev_stripe->length =
5585 bbio->stripes[index_srcdev].length;
5586 tgtdev_stripe->dev = dev_replace->tgtdev;
5587 bbio->tgtdev_map[index_srcdev] = num_stripes;
5588
5589 tgtdev_indexes++;
5590 num_stripes++;
5591 }
5592 }
5593
5594 *num_stripes_ret = num_stripes;
5595 *max_errors_ret = max_errors;
5596 bbio->num_tgtdevs = tgtdev_indexes;
5597 *bbio_ret = bbio;
5598 }
5599
5600 static bool need_full_stripe(enum btrfs_map_op op)
5601 {
5602 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5603 }
5604
5605 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5606 enum btrfs_map_op op,
5607 u64 logical, u64 *length,
5608 struct btrfs_bio **bbio_ret,
5609 int mirror_num, int need_raid_map)
5610 {
5611 struct extent_map *em;
5612 struct map_lookup *map;
5613 u64 offset;
5614 u64 stripe_offset;
5615 u64 stripe_nr;
5616 u64 stripe_len;
5617 u32 stripe_index;
5618 int i;
5619 int ret = 0;
5620 int num_stripes;
5621 int max_errors = 0;
5622 int tgtdev_indexes = 0;
5623 struct btrfs_bio *bbio = NULL;
5624 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5625 int dev_replace_is_ongoing = 0;
5626 int num_alloc_stripes;
5627 int patch_the_first_stripe_for_dev_replace = 0;
5628 u64 physical_to_patch_in_first_stripe = 0;
5629 u64 raid56_full_stripe_start = (u64)-1;
5630
5631 if (op == BTRFS_MAP_DISCARD)
5632 return __btrfs_map_block_for_discard(fs_info, logical,
5633 *length, bbio_ret);
5634
5635 em = get_chunk_map(fs_info, logical, *length);
5636 if (IS_ERR(em))
5637 return PTR_ERR(em);
5638
5639 map = em->map_lookup;
5640 offset = logical - em->start;
5641
5642 stripe_len = map->stripe_len;
5643 stripe_nr = offset;
5644 /*
5645 * stripe_nr counts the total number of stripes we have to stride
5646 * to get to this block
5647 */
5648 stripe_nr = div64_u64(stripe_nr, stripe_len);
5649
5650 stripe_offset = stripe_nr * stripe_len;
5651 if (offset < stripe_offset) {
5652 btrfs_crit(fs_info,
5653 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5654 stripe_offset, offset, em->start, logical,
5655 stripe_len);
5656 free_extent_map(em);
5657 return -EINVAL;
5658 }
5659
5660 /* stripe_offset is the offset of this block in its stripe*/
5661 stripe_offset = offset - stripe_offset;
5662
5663 /* if we're here for raid56, we need to know the stripe aligned start */
5664 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5665 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5666 raid56_full_stripe_start = offset;
5667
5668 /* allow a write of a full stripe, but make sure we don't
5669 * allow straddling of stripes
5670 */
5671 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5672 full_stripe_len);
5673 raid56_full_stripe_start *= full_stripe_len;
5674 }
5675
5676 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5677 u64 max_len;
5678 /* For writes to RAID[56], allow a full stripeset across all disks.
5679 For other RAID types and for RAID[56] reads, just allow a single
5680 stripe (on a single disk). */
5681 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5682 (op == BTRFS_MAP_WRITE)) {
5683 max_len = stripe_len * nr_data_stripes(map) -
5684 (offset - raid56_full_stripe_start);
5685 } else {
5686 /* we limit the length of each bio to what fits in a stripe */
5687 max_len = stripe_len - stripe_offset;
5688 }
5689 *length = min_t(u64, em->len - offset, max_len);
5690 } else {
5691 *length = em->len - offset;
5692 }
5693
5694 /* This is for when we're called from btrfs_merge_bio_hook() and all
5695 it cares about is the length */
5696 if (!bbio_ret)
5697 goto out;
5698
5699 btrfs_dev_replace_lock(dev_replace, 0);
5700 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5701 if (!dev_replace_is_ongoing)
5702 btrfs_dev_replace_unlock(dev_replace, 0);
5703 else
5704 btrfs_dev_replace_set_lock_blocking(dev_replace);
5705
5706 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5707 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5708 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5709 dev_replace->srcdev->devid,
5710 &mirror_num,
5711 &physical_to_patch_in_first_stripe);
5712 if (ret)
5713 goto out;
5714 else
5715 patch_the_first_stripe_for_dev_replace = 1;
5716 } else if (mirror_num > map->num_stripes) {
5717 mirror_num = 0;
5718 }
5719
5720 num_stripes = 1;
5721 stripe_index = 0;
5722 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5723 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5724 &stripe_index);
5725 if (!need_full_stripe(op))
5726 mirror_num = 1;
5727 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5728 if (need_full_stripe(op))
5729 num_stripes = map->num_stripes;
5730 else if (mirror_num)
5731 stripe_index = mirror_num - 1;
5732 else {
5733 stripe_index = find_live_mirror(fs_info, map, 0,
5734 map->num_stripes,
5735 current->pid % map->num_stripes,
5736 dev_replace_is_ongoing);
5737 mirror_num = stripe_index + 1;
5738 }
5739
5740 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5741 if (need_full_stripe(op)) {
5742 num_stripes = map->num_stripes;
5743 } else if (mirror_num) {
5744 stripe_index = mirror_num - 1;
5745 } else {
5746 mirror_num = 1;
5747 }
5748
5749 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5750 u32 factor = map->num_stripes / map->sub_stripes;
5751
5752 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5753 stripe_index *= map->sub_stripes;
5754
5755 if (need_full_stripe(op))
5756 num_stripes = map->sub_stripes;
5757 else if (mirror_num)
5758 stripe_index += mirror_num - 1;
5759 else {
5760 int old_stripe_index = stripe_index;
5761 stripe_index = find_live_mirror(fs_info, map,
5762 stripe_index,
5763 map->sub_stripes, stripe_index +
5764 current->pid % map->sub_stripes,
5765 dev_replace_is_ongoing);
5766 mirror_num = stripe_index - old_stripe_index + 1;
5767 }
5768
5769 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5770 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5771 /* push stripe_nr back to the start of the full stripe */
5772 stripe_nr = div64_u64(raid56_full_stripe_start,
5773 stripe_len * nr_data_stripes(map));
5774
5775 /* RAID[56] write or recovery. Return all stripes */
5776 num_stripes = map->num_stripes;
5777 max_errors = nr_parity_stripes(map);
5778
5779 *length = map->stripe_len;
5780 stripe_index = 0;
5781 stripe_offset = 0;
5782 } else {
5783 /*
5784 * Mirror #0 or #1 means the original data block.
5785 * Mirror #2 is RAID5 parity block.
5786 * Mirror #3 is RAID6 Q block.
5787 */
5788 stripe_nr = div_u64_rem(stripe_nr,
5789 nr_data_stripes(map), &stripe_index);
5790 if (mirror_num > 1)
5791 stripe_index = nr_data_stripes(map) +
5792 mirror_num - 2;
5793
5794 /* We distribute the parity blocks across stripes */
5795 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5796 &stripe_index);
5797 if (!need_full_stripe(op) && mirror_num <= 1)
5798 mirror_num = 1;
5799 }
5800 } else {
5801 /*
5802 * after this, stripe_nr is the number of stripes on this
5803 * device we have to walk to find the data, and stripe_index is
5804 * the number of our device in the stripe array
5805 */
5806 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5807 &stripe_index);
5808 mirror_num = stripe_index + 1;
5809 }
5810 if (stripe_index >= map->num_stripes) {
5811 btrfs_crit(fs_info,
5812 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5813 stripe_index, map->num_stripes);
5814 ret = -EINVAL;
5815 goto out;
5816 }
5817
5818 num_alloc_stripes = num_stripes;
5819 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5820 if (op == BTRFS_MAP_WRITE)
5821 num_alloc_stripes <<= 1;
5822 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5823 num_alloc_stripes++;
5824 tgtdev_indexes = num_stripes;
5825 }
5826
5827 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5828 if (!bbio) {
5829 ret = -ENOMEM;
5830 goto out;
5831 }
5832 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5833 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5834
5835 /* build raid_map */
5836 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5837 (need_full_stripe(op) || mirror_num > 1)) {
5838 u64 tmp;
5839 unsigned rot;
5840
5841 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5842 sizeof(struct btrfs_bio_stripe) *
5843 num_alloc_stripes +
5844 sizeof(int) * tgtdev_indexes);
5845
5846 /* Work out the disk rotation on this stripe-set */
5847 div_u64_rem(stripe_nr, num_stripes, &rot);
5848
5849 /* Fill in the logical address of each stripe */
5850 tmp = stripe_nr * nr_data_stripes(map);
5851 for (i = 0; i < nr_data_stripes(map); i++)
5852 bbio->raid_map[(i+rot) % num_stripes] =
5853 em->start + (tmp + i) * map->stripe_len;
5854
5855 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5856 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5857 bbio->raid_map[(i+rot+1) % num_stripes] =
5858 RAID6_Q_STRIPE;
5859 }
5860
5861
5862 for (i = 0; i < num_stripes; i++) {
5863 bbio->stripes[i].physical =
5864 map->stripes[stripe_index].physical +
5865 stripe_offset +
5866 stripe_nr * map->stripe_len;
5867 bbio->stripes[i].dev =
5868 map->stripes[stripe_index].dev;
5869 stripe_index++;
5870 }
5871
5872 if (need_full_stripe(op))
5873 max_errors = btrfs_chunk_max_errors(map);
5874
5875 if (bbio->raid_map)
5876 sort_parity_stripes(bbio, num_stripes);
5877
5878 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5879 need_full_stripe(op)) {
5880 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5881 &max_errors);
5882 }
5883
5884 *bbio_ret = bbio;
5885 bbio->map_type = map->type;
5886 bbio->num_stripes = num_stripes;
5887 bbio->max_errors = max_errors;
5888 bbio->mirror_num = mirror_num;
5889
5890 /*
5891 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5892 * mirror_num == num_stripes + 1 && dev_replace target drive is
5893 * available as a mirror
5894 */
5895 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5896 WARN_ON(num_stripes > 1);
5897 bbio->stripes[0].dev = dev_replace->tgtdev;
5898 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5899 bbio->mirror_num = map->num_stripes + 1;
5900 }
5901 out:
5902 if (dev_replace_is_ongoing) {
5903 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5904 btrfs_dev_replace_unlock(dev_replace, 0);
5905 }
5906 free_extent_map(em);
5907 return ret;
5908 }
5909
5910 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5911 u64 logical, u64 *length,
5912 struct btrfs_bio **bbio_ret, int mirror_num)
5913 {
5914 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5915 mirror_num, 0);
5916 }
5917
5918 /* For Scrub/replace */
5919 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5920 u64 logical, u64 *length,
5921 struct btrfs_bio **bbio_ret)
5922 {
5923 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5924 }
5925
5926 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5927 u64 chunk_start, u64 physical, u64 devid,
5928 u64 **logical, int *naddrs, int *stripe_len)
5929 {
5930 struct extent_map *em;
5931 struct map_lookup *map;
5932 u64 *buf;
5933 u64 bytenr;
5934 u64 length;
5935 u64 stripe_nr;
5936 u64 rmap_len;
5937 int i, j, nr = 0;
5938
5939 em = get_chunk_map(fs_info, chunk_start, 1);
5940 if (IS_ERR(em))
5941 return -EIO;
5942
5943 map = em->map_lookup;
5944 length = em->len;
5945 rmap_len = map->stripe_len;
5946
5947 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5948 length = div_u64(length, map->num_stripes / map->sub_stripes);
5949 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5950 length = div_u64(length, map->num_stripes);
5951 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5952 length = div_u64(length, nr_data_stripes(map));
5953 rmap_len = map->stripe_len * nr_data_stripes(map);
5954 }
5955
5956 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5957 BUG_ON(!buf); /* -ENOMEM */
5958
5959 for (i = 0; i < map->num_stripes; i++) {
5960 if (devid && map->stripes[i].dev->devid != devid)
5961 continue;
5962 if (map->stripes[i].physical > physical ||
5963 map->stripes[i].physical + length <= physical)
5964 continue;
5965
5966 stripe_nr = physical - map->stripes[i].physical;
5967 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5968
5969 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5970 stripe_nr = stripe_nr * map->num_stripes + i;
5971 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5972 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5973 stripe_nr = stripe_nr * map->num_stripes + i;
5974 } /* else if RAID[56], multiply by nr_data_stripes().
5975 * Alternatively, just use rmap_len below instead of
5976 * map->stripe_len */
5977
5978 bytenr = chunk_start + stripe_nr * rmap_len;
5979 WARN_ON(nr >= map->num_stripes);
5980 for (j = 0; j < nr; j++) {
5981 if (buf[j] == bytenr)
5982 break;
5983 }
5984 if (j == nr) {
5985 WARN_ON(nr >= map->num_stripes);
5986 buf[nr++] = bytenr;
5987 }
5988 }
5989
5990 *logical = buf;
5991 *naddrs = nr;
5992 *stripe_len = rmap_len;
5993
5994 free_extent_map(em);
5995 return 0;
5996 }
5997
5998 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5999 {
6000 bio->bi_private = bbio->private;
6001 bio->bi_end_io = bbio->end_io;
6002 bio_endio(bio);
6003
6004 btrfs_put_bbio(bbio);
6005 }
6006
6007 static void btrfs_end_bio(struct bio *bio)
6008 {
6009 struct btrfs_bio *bbio = bio->bi_private;
6010 int is_orig_bio = 0;
6011
6012 if (bio->bi_status) {
6013 atomic_inc(&bbio->error);
6014 if (bio->bi_status == BLK_STS_IOERR ||
6015 bio->bi_status == BLK_STS_TARGET) {
6016 unsigned int stripe_index =
6017 btrfs_io_bio(bio)->stripe_index;
6018 struct btrfs_device *dev;
6019
6020 BUG_ON(stripe_index >= bbio->num_stripes);
6021 dev = bbio->stripes[stripe_index].dev;
6022 if (dev->bdev) {
6023 if (bio_op(bio) == REQ_OP_WRITE)
6024 btrfs_dev_stat_inc(dev,
6025 BTRFS_DEV_STAT_WRITE_ERRS);
6026 else
6027 btrfs_dev_stat_inc(dev,
6028 BTRFS_DEV_STAT_READ_ERRS);
6029 if (bio->bi_opf & REQ_PREFLUSH)
6030 btrfs_dev_stat_inc(dev,
6031 BTRFS_DEV_STAT_FLUSH_ERRS);
6032 btrfs_dev_stat_print_on_error(dev);
6033 }
6034 }
6035 }
6036
6037 if (bio == bbio->orig_bio)
6038 is_orig_bio = 1;
6039
6040 btrfs_bio_counter_dec(bbio->fs_info);
6041
6042 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6043 if (!is_orig_bio) {
6044 bio_put(bio);
6045 bio = bbio->orig_bio;
6046 }
6047
6048 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6049 /* only send an error to the higher layers if it is
6050 * beyond the tolerance of the btrfs bio
6051 */
6052 if (atomic_read(&bbio->error) > bbio->max_errors) {
6053 bio->bi_status = BLK_STS_IOERR;
6054 } else {
6055 /*
6056 * this bio is actually up to date, we didn't
6057 * go over the max number of errors
6058 */
6059 bio->bi_status = BLK_STS_OK;
6060 }
6061
6062 btrfs_end_bbio(bbio, bio);
6063 } else if (!is_orig_bio) {
6064 bio_put(bio);
6065 }
6066 }
6067
6068 /*
6069 * see run_scheduled_bios for a description of why bios are collected for
6070 * async submit.
6071 *
6072 * This will add one bio to the pending list for a device and make sure
6073 * the work struct is scheduled.
6074 */
6075 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6076 struct bio *bio)
6077 {
6078 struct btrfs_fs_info *fs_info = device->fs_info;
6079 int should_queue = 1;
6080 struct btrfs_pending_bios *pending_bios;
6081
6082 if (device->missing || !device->bdev) {
6083 bio_io_error(bio);
6084 return;
6085 }
6086
6087 /* don't bother with additional async steps for reads, right now */
6088 if (bio_op(bio) == REQ_OP_READ) {
6089 bio_get(bio);
6090 btrfsic_submit_bio(bio);
6091 bio_put(bio);
6092 return;
6093 }
6094
6095 WARN_ON(bio->bi_next);
6096 bio->bi_next = NULL;
6097
6098 spin_lock(&device->io_lock);
6099 if (op_is_sync(bio->bi_opf))
6100 pending_bios = &device->pending_sync_bios;
6101 else
6102 pending_bios = &device->pending_bios;
6103
6104 if (pending_bios->tail)
6105 pending_bios->tail->bi_next = bio;
6106
6107 pending_bios->tail = bio;
6108 if (!pending_bios->head)
6109 pending_bios->head = bio;
6110 if (device->running_pending)
6111 should_queue = 0;
6112
6113 spin_unlock(&device->io_lock);
6114
6115 if (should_queue)
6116 btrfs_queue_work(fs_info->submit_workers, &device->work);
6117 }
6118
6119 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6120 u64 physical, int dev_nr, int async)
6121 {
6122 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6123 struct btrfs_fs_info *fs_info = bbio->fs_info;
6124
6125 bio->bi_private = bbio;
6126 btrfs_io_bio(bio)->stripe_index = dev_nr;
6127 bio->bi_end_io = btrfs_end_bio;
6128 bio->bi_iter.bi_sector = physical >> 9;
6129 #ifdef DEBUG
6130 {
6131 struct rcu_string *name;
6132
6133 rcu_read_lock();
6134 name = rcu_dereference(dev->name);
6135 btrfs_debug(fs_info,
6136 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6137 bio_op(bio), bio->bi_opf,
6138 (u64)bio->bi_iter.bi_sector,
6139 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6140 bio->bi_iter.bi_size);
6141 rcu_read_unlock();
6142 }
6143 #endif
6144 bio_set_dev(bio, dev->bdev);
6145
6146 btrfs_bio_counter_inc_noblocked(fs_info);
6147
6148 if (async)
6149 btrfs_schedule_bio(dev, bio);
6150 else
6151 btrfsic_submit_bio(bio);
6152 }
6153
6154 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6155 {
6156 atomic_inc(&bbio->error);
6157 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6158 /* Should be the original bio. */
6159 WARN_ON(bio != bbio->orig_bio);
6160
6161 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6162 bio->bi_iter.bi_sector = logical >> 9;
6163 if (atomic_read(&bbio->error) > bbio->max_errors)
6164 bio->bi_status = BLK_STS_IOERR;
6165 else
6166 bio->bi_status = BLK_STS_OK;
6167 btrfs_end_bbio(bbio, bio);
6168 }
6169 }
6170
6171 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6172 int mirror_num, int async_submit)
6173 {
6174 struct btrfs_device *dev;
6175 struct bio *first_bio = bio;
6176 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6177 u64 length = 0;
6178 u64 map_length;
6179 int ret;
6180 int dev_nr;
6181 int total_devs;
6182 struct btrfs_bio *bbio = NULL;
6183
6184 length = bio->bi_iter.bi_size;
6185 map_length = length;
6186
6187 btrfs_bio_counter_inc_blocked(fs_info);
6188 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6189 &map_length, &bbio, mirror_num, 1);
6190 if (ret) {
6191 btrfs_bio_counter_dec(fs_info);
6192 return errno_to_blk_status(ret);
6193 }
6194
6195 total_devs = bbio->num_stripes;
6196 bbio->orig_bio = first_bio;
6197 bbio->private = first_bio->bi_private;
6198 bbio->end_io = first_bio->bi_end_io;
6199 bbio->fs_info = fs_info;
6200 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6201
6202 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6203 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6204 /* In this case, map_length has been set to the length of
6205 a single stripe; not the whole write */
6206 if (bio_op(bio) == REQ_OP_WRITE) {
6207 ret = raid56_parity_write(fs_info, bio, bbio,
6208 map_length);
6209 } else {
6210 ret = raid56_parity_recover(fs_info, bio, bbio,
6211 map_length, mirror_num, 1);
6212 }
6213
6214 btrfs_bio_counter_dec(fs_info);
6215 return errno_to_blk_status(ret);
6216 }
6217
6218 if (map_length < length) {
6219 btrfs_crit(fs_info,
6220 "mapping failed logical %llu bio len %llu len %llu",
6221 logical, length, map_length);
6222 BUG();
6223 }
6224
6225 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6226 dev = bbio->stripes[dev_nr].dev;
6227 if (!dev || !dev->bdev ||
6228 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6229 bbio_error(bbio, first_bio, logical);
6230 continue;
6231 }
6232
6233 if (dev_nr < total_devs - 1)
6234 bio = btrfs_bio_clone(first_bio);
6235 else
6236 bio = first_bio;
6237
6238 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6239 dev_nr, async_submit);
6240 }
6241 btrfs_bio_counter_dec(fs_info);
6242 return BLK_STS_OK;
6243 }
6244
6245 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6246 u8 *uuid, u8 *fsid)
6247 {
6248 struct btrfs_device *device;
6249 struct btrfs_fs_devices *cur_devices;
6250
6251 cur_devices = fs_info->fs_devices;
6252 while (cur_devices) {
6253 if (!fsid ||
6254 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6255 device = find_device(cur_devices, devid, uuid);
6256 if (device)
6257 return device;
6258 }
6259 cur_devices = cur_devices->seed;
6260 }
6261 return NULL;
6262 }
6263
6264 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6265 u64 devid, u8 *dev_uuid)
6266 {
6267 struct btrfs_device *device;
6268
6269 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6270 if (IS_ERR(device))
6271 return device;
6272
6273 list_add(&device->dev_list, &fs_devices->devices);
6274 device->fs_devices = fs_devices;
6275 fs_devices->num_devices++;
6276
6277 device->missing = 1;
6278 fs_devices->missing_devices++;
6279
6280 return device;
6281 }
6282
6283 /**
6284 * btrfs_alloc_device - allocate struct btrfs_device
6285 * @fs_info: used only for generating a new devid, can be NULL if
6286 * devid is provided (i.e. @devid != NULL).
6287 * @devid: a pointer to devid for this device. If NULL a new devid
6288 * is generated.
6289 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6290 * is generated.
6291 *
6292 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6293 * on error. Returned struct is not linked onto any lists and can be
6294 * destroyed with kfree() right away.
6295 */
6296 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6297 const u64 *devid,
6298 const u8 *uuid)
6299 {
6300 struct btrfs_device *dev;
6301 u64 tmp;
6302
6303 if (WARN_ON(!devid && !fs_info))
6304 return ERR_PTR(-EINVAL);
6305
6306 dev = __alloc_device();
6307 if (IS_ERR(dev))
6308 return dev;
6309
6310 if (devid)
6311 tmp = *devid;
6312 else {
6313 int ret;
6314
6315 ret = find_next_devid(fs_info, &tmp);
6316 if (ret) {
6317 bio_put(dev->flush_bio);
6318 kfree(dev);
6319 return ERR_PTR(ret);
6320 }
6321 }
6322 dev->devid = tmp;
6323
6324 if (uuid)
6325 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6326 else
6327 generate_random_uuid(dev->uuid);
6328
6329 btrfs_init_work(&dev->work, btrfs_submit_helper,
6330 pending_bios_fn, NULL, NULL);
6331
6332 return dev;
6333 }
6334
6335 /* Return -EIO if any error, otherwise return 0. */
6336 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6337 struct extent_buffer *leaf,
6338 struct btrfs_chunk *chunk, u64 logical)
6339 {
6340 u64 length;
6341 u64 stripe_len;
6342 u16 num_stripes;
6343 u16 sub_stripes;
6344 u64 type;
6345
6346 length = btrfs_chunk_length(leaf, chunk);
6347 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6348 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6349 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6350 type = btrfs_chunk_type(leaf, chunk);
6351
6352 if (!num_stripes) {
6353 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6354 num_stripes);
6355 return -EIO;
6356 }
6357 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6358 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6359 return -EIO;
6360 }
6361 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6362 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6363 btrfs_chunk_sector_size(leaf, chunk));
6364 return -EIO;
6365 }
6366 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6367 btrfs_err(fs_info, "invalid chunk length %llu", length);
6368 return -EIO;
6369 }
6370 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6371 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6372 stripe_len);
6373 return -EIO;
6374 }
6375 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6376 type) {
6377 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6378 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6379 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6380 btrfs_chunk_type(leaf, chunk));
6381 return -EIO;
6382 }
6383 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6384 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6385 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6386 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6387 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6388 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6389 num_stripes != 1)) {
6390 btrfs_err(fs_info,
6391 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6392 num_stripes, sub_stripes,
6393 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6394 return -EIO;
6395 }
6396
6397 return 0;
6398 }
6399
6400 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6401 u64 devid, u8 *uuid, bool error)
6402 {
6403 if (error)
6404 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6405 devid, uuid);
6406 else
6407 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6408 devid, uuid);
6409 }
6410
6411 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6412 struct extent_buffer *leaf,
6413 struct btrfs_chunk *chunk)
6414 {
6415 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6416 struct map_lookup *map;
6417 struct extent_map *em;
6418 u64 logical;
6419 u64 length;
6420 u64 devid;
6421 u8 uuid[BTRFS_UUID_SIZE];
6422 int num_stripes;
6423 int ret;
6424 int i;
6425
6426 logical = key->offset;
6427 length = btrfs_chunk_length(leaf, chunk);
6428 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6429
6430 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6431 if (ret)
6432 return ret;
6433
6434 read_lock(&map_tree->map_tree.lock);
6435 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6436 read_unlock(&map_tree->map_tree.lock);
6437
6438 /* already mapped? */
6439 if (em && em->start <= logical && em->start + em->len > logical) {
6440 free_extent_map(em);
6441 return 0;
6442 } else if (em) {
6443 free_extent_map(em);
6444 }
6445
6446 em = alloc_extent_map();
6447 if (!em)
6448 return -ENOMEM;
6449 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6450 if (!map) {
6451 free_extent_map(em);
6452 return -ENOMEM;
6453 }
6454
6455 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6456 em->map_lookup = map;
6457 em->start = logical;
6458 em->len = length;
6459 em->orig_start = 0;
6460 em->block_start = 0;
6461 em->block_len = em->len;
6462
6463 map->num_stripes = num_stripes;
6464 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6465 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6466 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6467 map->type = btrfs_chunk_type(leaf, chunk);
6468 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6469 for (i = 0; i < num_stripes; i++) {
6470 map->stripes[i].physical =
6471 btrfs_stripe_offset_nr(leaf, chunk, i);
6472 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6473 read_extent_buffer(leaf, uuid, (unsigned long)
6474 btrfs_stripe_dev_uuid_nr(chunk, i),
6475 BTRFS_UUID_SIZE);
6476 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6477 uuid, NULL);
6478 if (!map->stripes[i].dev &&
6479 !btrfs_test_opt(fs_info, DEGRADED)) {
6480 free_extent_map(em);
6481 btrfs_report_missing_device(fs_info, devid, uuid, true);
6482 return -ENOENT;
6483 }
6484 if (!map->stripes[i].dev) {
6485 map->stripes[i].dev =
6486 add_missing_dev(fs_info->fs_devices, devid,
6487 uuid);
6488 if (IS_ERR(map->stripes[i].dev)) {
6489 free_extent_map(em);
6490 btrfs_err(fs_info,
6491 "failed to init missing dev %llu: %ld",
6492 devid, PTR_ERR(map->stripes[i].dev));
6493 return PTR_ERR(map->stripes[i].dev);
6494 }
6495 btrfs_report_missing_device(fs_info, devid, uuid, false);
6496 }
6497 map->stripes[i].dev->in_fs_metadata = 1;
6498 }
6499
6500 write_lock(&map_tree->map_tree.lock);
6501 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6502 write_unlock(&map_tree->map_tree.lock);
6503 BUG_ON(ret); /* Tree corruption */
6504 free_extent_map(em);
6505
6506 return 0;
6507 }
6508
6509 static void fill_device_from_item(struct extent_buffer *leaf,
6510 struct btrfs_dev_item *dev_item,
6511 struct btrfs_device *device)
6512 {
6513 unsigned long ptr;
6514
6515 device->devid = btrfs_device_id(leaf, dev_item);
6516 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6517 device->total_bytes = device->disk_total_bytes;
6518 device->commit_total_bytes = device->disk_total_bytes;
6519 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6520 device->commit_bytes_used = device->bytes_used;
6521 device->type = btrfs_device_type(leaf, dev_item);
6522 device->io_align = btrfs_device_io_align(leaf, dev_item);
6523 device->io_width = btrfs_device_io_width(leaf, dev_item);
6524 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6525 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6526 device->is_tgtdev_for_dev_replace = 0;
6527
6528 ptr = btrfs_device_uuid(dev_item);
6529 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6530 }
6531
6532 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6533 u8 *fsid)
6534 {
6535 struct btrfs_fs_devices *fs_devices;
6536 int ret;
6537
6538 BUG_ON(!mutex_is_locked(&uuid_mutex));
6539 ASSERT(fsid);
6540
6541 fs_devices = fs_info->fs_devices->seed;
6542 while (fs_devices) {
6543 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6544 return fs_devices;
6545
6546 fs_devices = fs_devices->seed;
6547 }
6548
6549 fs_devices = find_fsid(fsid);
6550 if (!fs_devices) {
6551 if (!btrfs_test_opt(fs_info, DEGRADED))
6552 return ERR_PTR(-ENOENT);
6553
6554 fs_devices = alloc_fs_devices(fsid);
6555 if (IS_ERR(fs_devices))
6556 return fs_devices;
6557
6558 fs_devices->seeding = 1;
6559 fs_devices->opened = 1;
6560 return fs_devices;
6561 }
6562
6563 fs_devices = clone_fs_devices(fs_devices);
6564 if (IS_ERR(fs_devices))
6565 return fs_devices;
6566
6567 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6568 fs_info->bdev_holder);
6569 if (ret) {
6570 free_fs_devices(fs_devices);
6571 fs_devices = ERR_PTR(ret);
6572 goto out;
6573 }
6574
6575 if (!fs_devices->seeding) {
6576 __btrfs_close_devices(fs_devices);
6577 free_fs_devices(fs_devices);
6578 fs_devices = ERR_PTR(-EINVAL);
6579 goto out;
6580 }
6581
6582 fs_devices->seed = fs_info->fs_devices->seed;
6583 fs_info->fs_devices->seed = fs_devices;
6584 out:
6585 return fs_devices;
6586 }
6587
6588 static int read_one_dev(struct btrfs_fs_info *fs_info,
6589 struct extent_buffer *leaf,
6590 struct btrfs_dev_item *dev_item)
6591 {
6592 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6593 struct btrfs_device *device;
6594 u64 devid;
6595 int ret;
6596 u8 fs_uuid[BTRFS_FSID_SIZE];
6597 u8 dev_uuid[BTRFS_UUID_SIZE];
6598
6599 devid = btrfs_device_id(leaf, dev_item);
6600 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6601 BTRFS_UUID_SIZE);
6602 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6603 BTRFS_FSID_SIZE);
6604
6605 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6606 fs_devices = open_seed_devices(fs_info, fs_uuid);
6607 if (IS_ERR(fs_devices))
6608 return PTR_ERR(fs_devices);
6609 }
6610
6611 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6612 if (!device) {
6613 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6614 btrfs_report_missing_device(fs_info, devid,
6615 dev_uuid, true);
6616 return -ENOENT;
6617 }
6618
6619 device = add_missing_dev(fs_devices, devid, dev_uuid);
6620 if (IS_ERR(device)) {
6621 btrfs_err(fs_info,
6622 "failed to add missing dev %llu: %ld",
6623 devid, PTR_ERR(device));
6624 return PTR_ERR(device);
6625 }
6626 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6627 } else {
6628 if (!device->bdev) {
6629 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6630 btrfs_report_missing_device(fs_info,
6631 devid, dev_uuid, true);
6632 return -ENOENT;
6633 }
6634 btrfs_report_missing_device(fs_info, devid,
6635 dev_uuid, false);
6636 }
6637
6638 if(!device->bdev && !device->missing) {
6639 /*
6640 * this happens when a device that was properly setup
6641 * in the device info lists suddenly goes bad.
6642 * device->bdev is NULL, and so we have to set
6643 * device->missing to one here
6644 */
6645 device->fs_devices->missing_devices++;
6646 device->missing = 1;
6647 }
6648
6649 /* Move the device to its own fs_devices */
6650 if (device->fs_devices != fs_devices) {
6651 ASSERT(device->missing);
6652
6653 list_move(&device->dev_list, &fs_devices->devices);
6654 device->fs_devices->num_devices--;
6655 fs_devices->num_devices++;
6656
6657 device->fs_devices->missing_devices--;
6658 fs_devices->missing_devices++;
6659
6660 device->fs_devices = fs_devices;
6661 }
6662 }
6663
6664 if (device->fs_devices != fs_info->fs_devices) {
6665 BUG_ON(device->writeable);
6666 if (device->generation !=
6667 btrfs_device_generation(leaf, dev_item))
6668 return -EINVAL;
6669 }
6670
6671 fill_device_from_item(leaf, dev_item, device);
6672 device->in_fs_metadata = 1;
6673 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6674 device->fs_devices->total_rw_bytes += device->total_bytes;
6675 atomic64_add(device->total_bytes - device->bytes_used,
6676 &fs_info->free_chunk_space);
6677 }
6678 ret = 0;
6679 return ret;
6680 }
6681
6682 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6683 {
6684 struct btrfs_root *root = fs_info->tree_root;
6685 struct btrfs_super_block *super_copy = fs_info->super_copy;
6686 struct extent_buffer *sb;
6687 struct btrfs_disk_key *disk_key;
6688 struct btrfs_chunk *chunk;
6689 u8 *array_ptr;
6690 unsigned long sb_array_offset;
6691 int ret = 0;
6692 u32 num_stripes;
6693 u32 array_size;
6694 u32 len = 0;
6695 u32 cur_offset;
6696 u64 type;
6697 struct btrfs_key key;
6698
6699 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6700 /*
6701 * This will create extent buffer of nodesize, superblock size is
6702 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6703 * overallocate but we can keep it as-is, only the first page is used.
6704 */
6705 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6706 if (IS_ERR(sb))
6707 return PTR_ERR(sb);
6708 set_extent_buffer_uptodate(sb);
6709 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6710 /*
6711 * The sb extent buffer is artificial and just used to read the system array.
6712 * set_extent_buffer_uptodate() call does not properly mark all it's
6713 * pages up-to-date when the page is larger: extent does not cover the
6714 * whole page and consequently check_page_uptodate does not find all
6715 * the page's extents up-to-date (the hole beyond sb),
6716 * write_extent_buffer then triggers a WARN_ON.
6717 *
6718 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6719 * but sb spans only this function. Add an explicit SetPageUptodate call
6720 * to silence the warning eg. on PowerPC 64.
6721 */
6722 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6723 SetPageUptodate(sb->pages[0]);
6724
6725 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6726 array_size = btrfs_super_sys_array_size(super_copy);
6727
6728 array_ptr = super_copy->sys_chunk_array;
6729 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6730 cur_offset = 0;
6731
6732 while (cur_offset < array_size) {
6733 disk_key = (struct btrfs_disk_key *)array_ptr;
6734 len = sizeof(*disk_key);
6735 if (cur_offset + len > array_size)
6736 goto out_short_read;
6737
6738 btrfs_disk_key_to_cpu(&key, disk_key);
6739
6740 array_ptr += len;
6741 sb_array_offset += len;
6742 cur_offset += len;
6743
6744 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6745 chunk = (struct btrfs_chunk *)sb_array_offset;
6746 /*
6747 * At least one btrfs_chunk with one stripe must be
6748 * present, exact stripe count check comes afterwards
6749 */
6750 len = btrfs_chunk_item_size(1);
6751 if (cur_offset + len > array_size)
6752 goto out_short_read;
6753
6754 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6755 if (!num_stripes) {
6756 btrfs_err(fs_info,
6757 "invalid number of stripes %u in sys_array at offset %u",
6758 num_stripes, cur_offset);
6759 ret = -EIO;
6760 break;
6761 }
6762
6763 type = btrfs_chunk_type(sb, chunk);
6764 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6765 btrfs_err(fs_info,
6766 "invalid chunk type %llu in sys_array at offset %u",
6767 type, cur_offset);
6768 ret = -EIO;
6769 break;
6770 }
6771
6772 len = btrfs_chunk_item_size(num_stripes);
6773 if (cur_offset + len > array_size)
6774 goto out_short_read;
6775
6776 ret = read_one_chunk(fs_info, &key, sb, chunk);
6777 if (ret)
6778 break;
6779 } else {
6780 btrfs_err(fs_info,
6781 "unexpected item type %u in sys_array at offset %u",
6782 (u32)key.type, cur_offset);
6783 ret = -EIO;
6784 break;
6785 }
6786 array_ptr += len;
6787 sb_array_offset += len;
6788 cur_offset += len;
6789 }
6790 clear_extent_buffer_uptodate(sb);
6791 free_extent_buffer_stale(sb);
6792 return ret;
6793
6794 out_short_read:
6795 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6796 len, cur_offset);
6797 clear_extent_buffer_uptodate(sb);
6798 free_extent_buffer_stale(sb);
6799 return -EIO;
6800 }
6801
6802 /*
6803 * Check if all chunks in the fs are OK for read-write degraded mount
6804 *
6805 * Return true if all chunks meet the minimal RW mount requirements.
6806 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6807 */
6808 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6809 {
6810 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6811 struct extent_map *em;
6812 u64 next_start = 0;
6813 bool ret = true;
6814
6815 read_lock(&map_tree->map_tree.lock);
6816 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6817 read_unlock(&map_tree->map_tree.lock);
6818 /* No chunk at all? Return false anyway */
6819 if (!em) {
6820 ret = false;
6821 goto out;
6822 }
6823 while (em) {
6824 struct map_lookup *map;
6825 int missing = 0;
6826 int max_tolerated;
6827 int i;
6828
6829 map = em->map_lookup;
6830 max_tolerated =
6831 btrfs_get_num_tolerated_disk_barrier_failures(
6832 map->type);
6833 for (i = 0; i < map->num_stripes; i++) {
6834 struct btrfs_device *dev = map->stripes[i].dev;
6835
6836 if (!dev || !dev->bdev || dev->missing ||
6837 dev->last_flush_error)
6838 missing++;
6839 }
6840 if (missing > max_tolerated) {
6841 btrfs_warn(fs_info,
6842 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6843 em->start, missing, max_tolerated);
6844 free_extent_map(em);
6845 ret = false;
6846 goto out;
6847 }
6848 next_start = extent_map_end(em);
6849 free_extent_map(em);
6850
6851 read_lock(&map_tree->map_tree.lock);
6852 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6853 (u64)(-1) - next_start);
6854 read_unlock(&map_tree->map_tree.lock);
6855 }
6856 out:
6857 return ret;
6858 }
6859
6860 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6861 {
6862 struct btrfs_root *root = fs_info->chunk_root;
6863 struct btrfs_path *path;
6864 struct extent_buffer *leaf;
6865 struct btrfs_key key;
6866 struct btrfs_key found_key;
6867 int ret;
6868 int slot;
6869 u64 total_dev = 0;
6870
6871 path = btrfs_alloc_path();
6872 if (!path)
6873 return -ENOMEM;
6874
6875 mutex_lock(&uuid_mutex);
6876 mutex_lock(&fs_info->chunk_mutex);
6877
6878 /*
6879 * Read all device items, and then all the chunk items. All
6880 * device items are found before any chunk item (their object id
6881 * is smaller than the lowest possible object id for a chunk
6882 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6883 */
6884 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6885 key.offset = 0;
6886 key.type = 0;
6887 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6888 if (ret < 0)
6889 goto error;
6890 while (1) {
6891 leaf = path->nodes[0];
6892 slot = path->slots[0];
6893 if (slot >= btrfs_header_nritems(leaf)) {
6894 ret = btrfs_next_leaf(root, path);
6895 if (ret == 0)
6896 continue;
6897 if (ret < 0)
6898 goto error;
6899 break;
6900 }
6901 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6902 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6903 struct btrfs_dev_item *dev_item;
6904 dev_item = btrfs_item_ptr(leaf, slot,
6905 struct btrfs_dev_item);
6906 ret = read_one_dev(fs_info, leaf, dev_item);
6907 if (ret)
6908 goto error;
6909 total_dev++;
6910 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6911 struct btrfs_chunk *chunk;
6912 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6913 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6914 if (ret)
6915 goto error;
6916 }
6917 path->slots[0]++;
6918 }
6919
6920 /*
6921 * After loading chunk tree, we've got all device information,
6922 * do another round of validation checks.
6923 */
6924 if (total_dev != fs_info->fs_devices->total_devices) {
6925 btrfs_err(fs_info,
6926 "super_num_devices %llu mismatch with num_devices %llu found here",
6927 btrfs_super_num_devices(fs_info->super_copy),
6928 total_dev);
6929 ret = -EINVAL;
6930 goto error;
6931 }
6932 if (btrfs_super_total_bytes(fs_info->super_copy) <
6933 fs_info->fs_devices->total_rw_bytes) {
6934 btrfs_err(fs_info,
6935 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6936 btrfs_super_total_bytes(fs_info->super_copy),
6937 fs_info->fs_devices->total_rw_bytes);
6938 ret = -EINVAL;
6939 goto error;
6940 }
6941 ret = 0;
6942 error:
6943 mutex_unlock(&fs_info->chunk_mutex);
6944 mutex_unlock(&uuid_mutex);
6945
6946 btrfs_free_path(path);
6947 return ret;
6948 }
6949
6950 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6951 {
6952 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6953 struct btrfs_device *device;
6954
6955 while (fs_devices) {
6956 mutex_lock(&fs_devices->device_list_mutex);
6957 list_for_each_entry(device, &fs_devices->devices, dev_list)
6958 device->fs_info = fs_info;
6959 mutex_unlock(&fs_devices->device_list_mutex);
6960
6961 fs_devices = fs_devices->seed;
6962 }
6963 }
6964
6965 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6966 {
6967 int i;
6968
6969 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6970 btrfs_dev_stat_reset(dev, i);
6971 }
6972
6973 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6974 {
6975 struct btrfs_key key;
6976 struct btrfs_key found_key;
6977 struct btrfs_root *dev_root = fs_info->dev_root;
6978 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6979 struct extent_buffer *eb;
6980 int slot;
6981 int ret = 0;
6982 struct btrfs_device *device;
6983 struct btrfs_path *path = NULL;
6984 int i;
6985
6986 path = btrfs_alloc_path();
6987 if (!path) {
6988 ret = -ENOMEM;
6989 goto out;
6990 }
6991
6992 mutex_lock(&fs_devices->device_list_mutex);
6993 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6994 int item_size;
6995 struct btrfs_dev_stats_item *ptr;
6996
6997 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6998 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6999 key.offset = device->devid;
7000 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7001 if (ret) {
7002 __btrfs_reset_dev_stats(device);
7003 device->dev_stats_valid = 1;
7004 btrfs_release_path(path);
7005 continue;
7006 }
7007 slot = path->slots[0];
7008 eb = path->nodes[0];
7009 btrfs_item_key_to_cpu(eb, &found_key, slot);
7010 item_size = btrfs_item_size_nr(eb, slot);
7011
7012 ptr = btrfs_item_ptr(eb, slot,
7013 struct btrfs_dev_stats_item);
7014
7015 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7016 if (item_size >= (1 + i) * sizeof(__le64))
7017 btrfs_dev_stat_set(device, i,
7018 btrfs_dev_stats_value(eb, ptr, i));
7019 else
7020 btrfs_dev_stat_reset(device, i);
7021 }
7022
7023 device->dev_stats_valid = 1;
7024 btrfs_dev_stat_print_on_load(device);
7025 btrfs_release_path(path);
7026 }
7027 mutex_unlock(&fs_devices->device_list_mutex);
7028
7029 out:
7030 btrfs_free_path(path);
7031 return ret < 0 ? ret : 0;
7032 }
7033
7034 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7035 struct btrfs_fs_info *fs_info,
7036 struct btrfs_device *device)
7037 {
7038 struct btrfs_root *dev_root = fs_info->dev_root;
7039 struct btrfs_path *path;
7040 struct btrfs_key key;
7041 struct extent_buffer *eb;
7042 struct btrfs_dev_stats_item *ptr;
7043 int ret;
7044 int i;
7045
7046 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7047 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7048 key.offset = device->devid;
7049
7050 path = btrfs_alloc_path();
7051 if (!path)
7052 return -ENOMEM;
7053 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7054 if (ret < 0) {
7055 btrfs_warn_in_rcu(fs_info,
7056 "error %d while searching for dev_stats item for device %s",
7057 ret, rcu_str_deref(device->name));
7058 goto out;
7059 }
7060
7061 if (ret == 0 &&
7062 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7063 /* need to delete old one and insert a new one */
7064 ret = btrfs_del_item(trans, dev_root, path);
7065 if (ret != 0) {
7066 btrfs_warn_in_rcu(fs_info,
7067 "delete too small dev_stats item for device %s failed %d",
7068 rcu_str_deref(device->name), ret);
7069 goto out;
7070 }
7071 ret = 1;
7072 }
7073
7074 if (ret == 1) {
7075 /* need to insert a new item */
7076 btrfs_release_path(path);
7077 ret = btrfs_insert_empty_item(trans, dev_root, path,
7078 &key, sizeof(*ptr));
7079 if (ret < 0) {
7080 btrfs_warn_in_rcu(fs_info,
7081 "insert dev_stats item for device %s failed %d",
7082 rcu_str_deref(device->name), ret);
7083 goto out;
7084 }
7085 }
7086
7087 eb = path->nodes[0];
7088 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7089 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7090 btrfs_set_dev_stats_value(eb, ptr, i,
7091 btrfs_dev_stat_read(device, i));
7092 btrfs_mark_buffer_dirty(eb);
7093
7094 out:
7095 btrfs_free_path(path);
7096 return ret;
7097 }
7098
7099 /*
7100 * called from commit_transaction. Writes all changed device stats to disk.
7101 */
7102 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7103 struct btrfs_fs_info *fs_info)
7104 {
7105 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7106 struct btrfs_device *device;
7107 int stats_cnt;
7108 int ret = 0;
7109
7110 mutex_lock(&fs_devices->device_list_mutex);
7111 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7112 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7113 if (!device->dev_stats_valid || stats_cnt == 0)
7114 continue;
7115
7116
7117 /*
7118 * There is a LOAD-LOAD control dependency between the value of
7119 * dev_stats_ccnt and updating the on-disk values which requires
7120 * reading the in-memory counters. Such control dependencies
7121 * require explicit read memory barriers.
7122 *
7123 * This memory barriers pairs with smp_mb__before_atomic in
7124 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7125 * barrier implied by atomic_xchg in
7126 * btrfs_dev_stats_read_and_reset
7127 */
7128 smp_rmb();
7129
7130 ret = update_dev_stat_item(trans, fs_info, device);
7131 if (!ret)
7132 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7133 }
7134 mutex_unlock(&fs_devices->device_list_mutex);
7135
7136 return ret;
7137 }
7138
7139 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7140 {
7141 btrfs_dev_stat_inc(dev, index);
7142 btrfs_dev_stat_print_on_error(dev);
7143 }
7144
7145 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7146 {
7147 if (!dev->dev_stats_valid)
7148 return;
7149 btrfs_err_rl_in_rcu(dev->fs_info,
7150 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7151 rcu_str_deref(dev->name),
7152 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7153 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7154 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7155 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7156 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7157 }
7158
7159 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7160 {
7161 int i;
7162
7163 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7164 if (btrfs_dev_stat_read(dev, i) != 0)
7165 break;
7166 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7167 return; /* all values == 0, suppress message */
7168
7169 btrfs_info_in_rcu(dev->fs_info,
7170 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7171 rcu_str_deref(dev->name),
7172 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7173 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7174 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7175 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7176 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7177 }
7178
7179 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7180 struct btrfs_ioctl_get_dev_stats *stats)
7181 {
7182 struct btrfs_device *dev;
7183 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7184 int i;
7185
7186 mutex_lock(&fs_devices->device_list_mutex);
7187 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7188 mutex_unlock(&fs_devices->device_list_mutex);
7189
7190 if (!dev) {
7191 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7192 return -ENODEV;
7193 } else if (!dev->dev_stats_valid) {
7194 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7195 return -ENODEV;
7196 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7197 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7198 if (stats->nr_items > i)
7199 stats->values[i] =
7200 btrfs_dev_stat_read_and_reset(dev, i);
7201 else
7202 btrfs_dev_stat_reset(dev, i);
7203 }
7204 } else {
7205 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7206 if (stats->nr_items > i)
7207 stats->values[i] = btrfs_dev_stat_read(dev, i);
7208 }
7209 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7210 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7211 return 0;
7212 }
7213
7214 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7215 {
7216 struct buffer_head *bh;
7217 struct btrfs_super_block *disk_super;
7218 int copy_num;
7219
7220 if (!bdev)
7221 return;
7222
7223 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7224 copy_num++) {
7225
7226 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7227 continue;
7228
7229 disk_super = (struct btrfs_super_block *)bh->b_data;
7230
7231 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7232 set_buffer_dirty(bh);
7233 sync_dirty_buffer(bh);
7234 brelse(bh);
7235 }
7236
7237 /* Notify udev that device has changed */
7238 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7239
7240 /* Update ctime/mtime for device path for libblkid */
7241 update_dev_time(device_path);
7242 }
7243
7244 /*
7245 * Update the size of all devices, which is used for writing out the
7246 * super blocks.
7247 */
7248 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7249 {
7250 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7251 struct btrfs_device *curr, *next;
7252
7253 if (list_empty(&fs_devices->resized_devices))
7254 return;
7255
7256 mutex_lock(&fs_devices->device_list_mutex);
7257 mutex_lock(&fs_info->chunk_mutex);
7258 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7259 resized_list) {
7260 list_del_init(&curr->resized_list);
7261 curr->commit_total_bytes = curr->disk_total_bytes;
7262 }
7263 mutex_unlock(&fs_info->chunk_mutex);
7264 mutex_unlock(&fs_devices->device_list_mutex);
7265 }
7266
7267 /* Must be invoked during the transaction commit */
7268 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7269 struct btrfs_transaction *transaction)
7270 {
7271 struct extent_map *em;
7272 struct map_lookup *map;
7273 struct btrfs_device *dev;
7274 int i;
7275
7276 if (list_empty(&transaction->pending_chunks))
7277 return;
7278
7279 /* In order to kick the device replace finish process */
7280 mutex_lock(&fs_info->chunk_mutex);
7281 list_for_each_entry(em, &transaction->pending_chunks, list) {
7282 map = em->map_lookup;
7283
7284 for (i = 0; i < map->num_stripes; i++) {
7285 dev = map->stripes[i].dev;
7286 dev->commit_bytes_used = dev->bytes_used;
7287 }
7288 }
7289 mutex_unlock(&fs_info->chunk_mutex);
7290 }
7291
7292 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7293 {
7294 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7295 while (fs_devices) {
7296 fs_devices->fs_info = fs_info;
7297 fs_devices = fs_devices->seed;
7298 }
7299 }
7300
7301 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7302 {
7303 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7304 while (fs_devices) {
7305 fs_devices->fs_info = NULL;
7306 fs_devices = fs_devices->seed;
7307 }
7308 }