2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
30 #include "extent_map.h"
32 #include "transaction.h"
33 #include "print-tree.h"
35 #include "async-thread.h"
36 #include "check-integrity.h"
37 #include "rcu-string.h"
39 #include "dev-replace.h"
41 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 struct btrfs_device
*device
);
44 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
45 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
46 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
48 static DEFINE_MUTEX(uuid_mutex
);
49 static LIST_HEAD(fs_uuids
);
51 static void lock_chunks(struct btrfs_root
*root
)
53 mutex_lock(&root
->fs_info
->chunk_mutex
);
56 static void unlock_chunks(struct btrfs_root
*root
)
58 mutex_unlock(&root
->fs_info
->chunk_mutex
);
61 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
63 struct btrfs_device
*device
;
64 WARN_ON(fs_devices
->opened
);
65 while (!list_empty(&fs_devices
->devices
)) {
66 device
= list_entry(fs_devices
->devices
.next
,
67 struct btrfs_device
, dev_list
);
68 list_del(&device
->dev_list
);
69 rcu_string_free(device
->name
);
75 static void btrfs_kobject_uevent(struct block_device
*bdev
,
76 enum kobject_action action
)
80 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
82 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
84 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
85 &disk_to_dev(bdev
->bd_disk
)->kobj
);
88 void btrfs_cleanup_fs_uuids(void)
90 struct btrfs_fs_devices
*fs_devices
;
92 while (!list_empty(&fs_uuids
)) {
93 fs_devices
= list_entry(fs_uuids
.next
,
94 struct btrfs_fs_devices
, list
);
95 list_del(&fs_devices
->list
);
96 free_fs_devices(fs_devices
);
100 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
103 struct btrfs_device
*dev
;
105 list_for_each_entry(dev
, head
, dev_list
) {
106 if (dev
->devid
== devid
&&
107 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
114 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
116 struct btrfs_fs_devices
*fs_devices
;
118 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
119 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
126 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
127 int flush
, struct block_device
**bdev
,
128 struct buffer_head
**bh
)
132 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
135 ret
= PTR_ERR(*bdev
);
136 printk(KERN_INFO
"btrfs: open %s failed\n", device_path
);
141 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
142 ret
= set_blocksize(*bdev
, 4096);
144 blkdev_put(*bdev
, flags
);
147 invalidate_bdev(*bdev
);
148 *bh
= btrfs_read_dev_super(*bdev
);
151 blkdev_put(*bdev
, flags
);
163 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
164 struct bio
*head
, struct bio
*tail
)
167 struct bio
*old_head
;
169 old_head
= pending_bios
->head
;
170 pending_bios
->head
= head
;
171 if (pending_bios
->tail
)
172 tail
->bi_next
= old_head
;
174 pending_bios
->tail
= tail
;
178 * we try to collect pending bios for a device so we don't get a large
179 * number of procs sending bios down to the same device. This greatly
180 * improves the schedulers ability to collect and merge the bios.
182 * But, it also turns into a long list of bios to process and that is sure
183 * to eventually make the worker thread block. The solution here is to
184 * make some progress and then put this work struct back at the end of
185 * the list if the block device is congested. This way, multiple devices
186 * can make progress from a single worker thread.
188 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
191 struct backing_dev_info
*bdi
;
192 struct btrfs_fs_info
*fs_info
;
193 struct btrfs_pending_bios
*pending_bios
;
197 unsigned long num_run
;
198 unsigned long batch_run
= 0;
200 unsigned long last_waited
= 0;
202 int sync_pending
= 0;
203 struct blk_plug plug
;
206 * this function runs all the bios we've collected for
207 * a particular device. We don't want to wander off to
208 * another device without first sending all of these down.
209 * So, setup a plug here and finish it off before we return
211 blk_start_plug(&plug
);
213 bdi
= blk_get_backing_dev_info(device
->bdev
);
214 fs_info
= device
->dev_root
->fs_info
;
215 limit
= btrfs_async_submit_limit(fs_info
);
216 limit
= limit
* 2 / 3;
219 spin_lock(&device
->io_lock
);
224 /* take all the bios off the list at once and process them
225 * later on (without the lock held). But, remember the
226 * tail and other pointers so the bios can be properly reinserted
227 * into the list if we hit congestion
229 if (!force_reg
&& device
->pending_sync_bios
.head
) {
230 pending_bios
= &device
->pending_sync_bios
;
233 pending_bios
= &device
->pending_bios
;
237 pending
= pending_bios
->head
;
238 tail
= pending_bios
->tail
;
239 WARN_ON(pending
&& !tail
);
242 * if pending was null this time around, no bios need processing
243 * at all and we can stop. Otherwise it'll loop back up again
244 * and do an additional check so no bios are missed.
246 * device->running_pending is used to synchronize with the
249 if (device
->pending_sync_bios
.head
== NULL
&&
250 device
->pending_bios
.head
== NULL
) {
252 device
->running_pending
= 0;
255 device
->running_pending
= 1;
258 pending_bios
->head
= NULL
;
259 pending_bios
->tail
= NULL
;
261 spin_unlock(&device
->io_lock
);
266 /* we want to work on both lists, but do more bios on the
267 * sync list than the regular list
270 pending_bios
!= &device
->pending_sync_bios
&&
271 device
->pending_sync_bios
.head
) ||
272 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
273 device
->pending_bios
.head
)) {
274 spin_lock(&device
->io_lock
);
275 requeue_list(pending_bios
, pending
, tail
);
280 pending
= pending
->bi_next
;
283 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
284 waitqueue_active(&fs_info
->async_submit_wait
))
285 wake_up(&fs_info
->async_submit_wait
);
287 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
290 * if we're doing the sync list, record that our
291 * plug has some sync requests on it
293 * If we're doing the regular list and there are
294 * sync requests sitting around, unplug before
297 if (pending_bios
== &device
->pending_sync_bios
) {
299 } else if (sync_pending
) {
300 blk_finish_plug(&plug
);
301 blk_start_plug(&plug
);
305 btrfsic_submit_bio(cur
->bi_rw
, cur
);
312 * we made progress, there is more work to do and the bdi
313 * is now congested. Back off and let other work structs
316 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
317 fs_info
->fs_devices
->open_devices
> 1) {
318 struct io_context
*ioc
;
320 ioc
= current
->io_context
;
323 * the main goal here is that we don't want to
324 * block if we're going to be able to submit
325 * more requests without blocking.
327 * This code does two great things, it pokes into
328 * the elevator code from a filesystem _and_
329 * it makes assumptions about how batching works.
331 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
332 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
334 ioc
->last_waited
== last_waited
)) {
336 * we want to go through our batch of
337 * requests and stop. So, we copy out
338 * the ioc->last_waited time and test
339 * against it before looping
341 last_waited
= ioc
->last_waited
;
346 spin_lock(&device
->io_lock
);
347 requeue_list(pending_bios
, pending
, tail
);
348 device
->running_pending
= 1;
350 spin_unlock(&device
->io_lock
);
351 btrfs_requeue_work(&device
->work
);
354 /* unplug every 64 requests just for good measure */
355 if (batch_run
% 64 == 0) {
356 blk_finish_plug(&plug
);
357 blk_start_plug(&plug
);
366 spin_lock(&device
->io_lock
);
367 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
369 spin_unlock(&device
->io_lock
);
372 blk_finish_plug(&plug
);
375 static void pending_bios_fn(struct btrfs_work
*work
)
377 struct btrfs_device
*device
;
379 device
= container_of(work
, struct btrfs_device
, work
);
380 run_scheduled_bios(device
);
383 static noinline
int device_list_add(const char *path
,
384 struct btrfs_super_block
*disk_super
,
385 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
387 struct btrfs_device
*device
;
388 struct btrfs_fs_devices
*fs_devices
;
389 struct rcu_string
*name
;
390 u64 found_transid
= btrfs_super_generation(disk_super
);
392 fs_devices
= find_fsid(disk_super
->fsid
);
394 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
397 INIT_LIST_HEAD(&fs_devices
->devices
);
398 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
399 list_add(&fs_devices
->list
, &fs_uuids
);
400 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
401 fs_devices
->latest_devid
= devid
;
402 fs_devices
->latest_trans
= found_transid
;
403 mutex_init(&fs_devices
->device_list_mutex
);
406 device
= __find_device(&fs_devices
->devices
, devid
,
407 disk_super
->dev_item
.uuid
);
410 if (fs_devices
->opened
)
413 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
415 /* we can safely leave the fs_devices entry around */
418 device
->devid
= devid
;
419 device
->dev_stats_valid
= 0;
420 device
->work
.func
= pending_bios_fn
;
421 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
423 spin_lock_init(&device
->io_lock
);
425 name
= rcu_string_strdup(path
, GFP_NOFS
);
430 rcu_assign_pointer(device
->name
, name
);
431 INIT_LIST_HEAD(&device
->dev_alloc_list
);
433 /* init readahead state */
434 spin_lock_init(&device
->reada_lock
);
435 device
->reada_curr_zone
= NULL
;
436 atomic_set(&device
->reada_in_flight
, 0);
437 device
->reada_next
= 0;
438 INIT_RADIX_TREE(&device
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
439 INIT_RADIX_TREE(&device
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
441 mutex_lock(&fs_devices
->device_list_mutex
);
442 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
443 mutex_unlock(&fs_devices
->device_list_mutex
);
445 device
->fs_devices
= fs_devices
;
446 fs_devices
->num_devices
++;
447 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
448 name
= rcu_string_strdup(path
, GFP_NOFS
);
451 rcu_string_free(device
->name
);
452 rcu_assign_pointer(device
->name
, name
);
453 if (device
->missing
) {
454 fs_devices
->missing_devices
--;
459 if (found_transid
> fs_devices
->latest_trans
) {
460 fs_devices
->latest_devid
= devid
;
461 fs_devices
->latest_trans
= found_transid
;
463 *fs_devices_ret
= fs_devices
;
467 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
469 struct btrfs_fs_devices
*fs_devices
;
470 struct btrfs_device
*device
;
471 struct btrfs_device
*orig_dev
;
473 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
475 return ERR_PTR(-ENOMEM
);
477 INIT_LIST_HEAD(&fs_devices
->devices
);
478 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
479 INIT_LIST_HEAD(&fs_devices
->list
);
480 mutex_init(&fs_devices
->device_list_mutex
);
481 fs_devices
->latest_devid
= orig
->latest_devid
;
482 fs_devices
->latest_trans
= orig
->latest_trans
;
483 fs_devices
->total_devices
= orig
->total_devices
;
484 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
486 /* We have held the volume lock, it is safe to get the devices. */
487 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
488 struct rcu_string
*name
;
490 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
495 * This is ok to do without rcu read locked because we hold the
496 * uuid mutex so nothing we touch in here is going to disappear.
498 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
503 rcu_assign_pointer(device
->name
, name
);
505 device
->devid
= orig_dev
->devid
;
506 device
->work
.func
= pending_bios_fn
;
507 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
508 spin_lock_init(&device
->io_lock
);
509 INIT_LIST_HEAD(&device
->dev_list
);
510 INIT_LIST_HEAD(&device
->dev_alloc_list
);
512 list_add(&device
->dev_list
, &fs_devices
->devices
);
513 device
->fs_devices
= fs_devices
;
514 fs_devices
->num_devices
++;
518 free_fs_devices(fs_devices
);
519 return ERR_PTR(-ENOMEM
);
522 void btrfs_close_extra_devices(struct btrfs_fs_info
*fs_info
,
523 struct btrfs_fs_devices
*fs_devices
, int step
)
525 struct btrfs_device
*device
, *next
;
527 struct block_device
*latest_bdev
= NULL
;
528 u64 latest_devid
= 0;
529 u64 latest_transid
= 0;
531 mutex_lock(&uuid_mutex
);
533 /* This is the initialized path, it is safe to release the devices. */
534 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
535 if (device
->in_fs_metadata
) {
536 if (!device
->is_tgtdev_for_dev_replace
&&
538 device
->generation
> latest_transid
)) {
539 latest_devid
= device
->devid
;
540 latest_transid
= device
->generation
;
541 latest_bdev
= device
->bdev
;
546 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
548 * In the first step, keep the device which has
549 * the correct fsid and the devid that is used
550 * for the dev_replace procedure.
551 * In the second step, the dev_replace state is
552 * read from the device tree and it is known
553 * whether the procedure is really active or
554 * not, which means whether this device is
555 * used or whether it should be removed.
557 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
562 blkdev_put(device
->bdev
, device
->mode
);
564 fs_devices
->open_devices
--;
566 if (device
->writeable
) {
567 list_del_init(&device
->dev_alloc_list
);
568 device
->writeable
= 0;
569 if (!device
->is_tgtdev_for_dev_replace
)
570 fs_devices
->rw_devices
--;
572 list_del_init(&device
->dev_list
);
573 fs_devices
->num_devices
--;
574 rcu_string_free(device
->name
);
578 if (fs_devices
->seed
) {
579 fs_devices
= fs_devices
->seed
;
583 fs_devices
->latest_bdev
= latest_bdev
;
584 fs_devices
->latest_devid
= latest_devid
;
585 fs_devices
->latest_trans
= latest_transid
;
587 mutex_unlock(&uuid_mutex
);
590 static void __free_device(struct work_struct
*work
)
592 struct btrfs_device
*device
;
594 device
= container_of(work
, struct btrfs_device
, rcu_work
);
597 blkdev_put(device
->bdev
, device
->mode
);
599 rcu_string_free(device
->name
);
603 static void free_device(struct rcu_head
*head
)
605 struct btrfs_device
*device
;
607 device
= container_of(head
, struct btrfs_device
, rcu
);
609 INIT_WORK(&device
->rcu_work
, __free_device
);
610 schedule_work(&device
->rcu_work
);
613 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
615 struct btrfs_device
*device
;
617 if (--fs_devices
->opened
> 0)
620 mutex_lock(&fs_devices
->device_list_mutex
);
621 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
622 struct btrfs_device
*new_device
;
623 struct rcu_string
*name
;
626 fs_devices
->open_devices
--;
628 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
629 list_del_init(&device
->dev_alloc_list
);
630 fs_devices
->rw_devices
--;
633 if (device
->can_discard
)
634 fs_devices
->num_can_discard
--;
636 new_device
= kmalloc(sizeof(*new_device
), GFP_NOFS
);
637 BUG_ON(!new_device
); /* -ENOMEM */
638 memcpy(new_device
, device
, sizeof(*new_device
));
640 /* Safe because we are under uuid_mutex */
642 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
643 BUG_ON(device
->name
&& !name
); /* -ENOMEM */
644 rcu_assign_pointer(new_device
->name
, name
);
646 new_device
->bdev
= NULL
;
647 new_device
->writeable
= 0;
648 new_device
->in_fs_metadata
= 0;
649 new_device
->can_discard
= 0;
650 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
652 call_rcu(&device
->rcu
, free_device
);
654 mutex_unlock(&fs_devices
->device_list_mutex
);
656 WARN_ON(fs_devices
->open_devices
);
657 WARN_ON(fs_devices
->rw_devices
);
658 fs_devices
->opened
= 0;
659 fs_devices
->seeding
= 0;
664 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
666 struct btrfs_fs_devices
*seed_devices
= NULL
;
669 mutex_lock(&uuid_mutex
);
670 ret
= __btrfs_close_devices(fs_devices
);
671 if (!fs_devices
->opened
) {
672 seed_devices
= fs_devices
->seed
;
673 fs_devices
->seed
= NULL
;
675 mutex_unlock(&uuid_mutex
);
677 while (seed_devices
) {
678 fs_devices
= seed_devices
;
679 seed_devices
= fs_devices
->seed
;
680 __btrfs_close_devices(fs_devices
);
681 free_fs_devices(fs_devices
);
686 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
687 fmode_t flags
, void *holder
)
689 struct request_queue
*q
;
690 struct block_device
*bdev
;
691 struct list_head
*head
= &fs_devices
->devices
;
692 struct btrfs_device
*device
;
693 struct block_device
*latest_bdev
= NULL
;
694 struct buffer_head
*bh
;
695 struct btrfs_super_block
*disk_super
;
696 u64 latest_devid
= 0;
697 u64 latest_transid
= 0;
704 list_for_each_entry(device
, head
, dev_list
) {
710 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
715 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
716 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
717 if (devid
!= device
->devid
)
720 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
724 device
->generation
= btrfs_super_generation(disk_super
);
725 if (!latest_transid
|| device
->generation
> latest_transid
) {
726 latest_devid
= devid
;
727 latest_transid
= device
->generation
;
731 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
732 device
->writeable
= 0;
734 device
->writeable
= !bdev_read_only(bdev
);
738 q
= bdev_get_queue(bdev
);
739 if (blk_queue_discard(q
)) {
740 device
->can_discard
= 1;
741 fs_devices
->num_can_discard
++;
745 device
->in_fs_metadata
= 0;
746 device
->mode
= flags
;
748 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
749 fs_devices
->rotating
= 1;
751 fs_devices
->open_devices
++;
752 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
753 fs_devices
->rw_devices
++;
754 list_add(&device
->dev_alloc_list
,
755 &fs_devices
->alloc_list
);
762 blkdev_put(bdev
, flags
);
765 if (fs_devices
->open_devices
== 0) {
769 fs_devices
->seeding
= seeding
;
770 fs_devices
->opened
= 1;
771 fs_devices
->latest_bdev
= latest_bdev
;
772 fs_devices
->latest_devid
= latest_devid
;
773 fs_devices
->latest_trans
= latest_transid
;
774 fs_devices
->total_rw_bytes
= 0;
779 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
780 fmode_t flags
, void *holder
)
784 mutex_lock(&uuid_mutex
);
785 if (fs_devices
->opened
) {
786 fs_devices
->opened
++;
789 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
791 mutex_unlock(&uuid_mutex
);
795 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
796 struct btrfs_fs_devices
**fs_devices_ret
)
798 struct btrfs_super_block
*disk_super
;
799 struct block_device
*bdev
;
800 struct buffer_head
*bh
;
807 mutex_lock(&uuid_mutex
);
808 ret
= btrfs_get_bdev_and_sb(path
, flags
, holder
, 0, &bdev
, &bh
);
811 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
812 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
813 transid
= btrfs_super_generation(disk_super
);
814 total_devices
= btrfs_super_num_devices(disk_super
);
815 if (disk_super
->label
[0]) {
816 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
817 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
818 printk(KERN_INFO
"device label %s ", disk_super
->label
);
820 printk(KERN_INFO
"device fsid %pU ", disk_super
->fsid
);
822 printk(KERN_CONT
"devid %llu transid %llu %s\n",
823 (unsigned long long)devid
, (unsigned long long)transid
, path
);
824 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
825 if (!ret
&& fs_devices_ret
)
826 (*fs_devices_ret
)->total_devices
= total_devices
;
828 blkdev_put(bdev
, flags
);
830 mutex_unlock(&uuid_mutex
);
834 /* helper to account the used device space in the range */
835 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
836 u64 end
, u64
*length
)
838 struct btrfs_key key
;
839 struct btrfs_root
*root
= device
->dev_root
;
840 struct btrfs_dev_extent
*dev_extent
;
841 struct btrfs_path
*path
;
845 struct extent_buffer
*l
;
849 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
852 path
= btrfs_alloc_path();
857 key
.objectid
= device
->devid
;
859 key
.type
= BTRFS_DEV_EXTENT_KEY
;
861 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
865 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
872 slot
= path
->slots
[0];
873 if (slot
>= btrfs_header_nritems(l
)) {
874 ret
= btrfs_next_leaf(root
, path
);
882 btrfs_item_key_to_cpu(l
, &key
, slot
);
884 if (key
.objectid
< device
->devid
)
887 if (key
.objectid
> device
->devid
)
890 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
893 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
894 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
896 if (key
.offset
<= start
&& extent_end
> end
) {
897 *length
= end
- start
+ 1;
899 } else if (key
.offset
<= start
&& extent_end
> start
)
900 *length
+= extent_end
- start
;
901 else if (key
.offset
> start
&& extent_end
<= end
)
902 *length
+= extent_end
- key
.offset
;
903 else if (key
.offset
> start
&& key
.offset
<= end
) {
904 *length
+= end
- key
.offset
+ 1;
906 } else if (key
.offset
> end
)
914 btrfs_free_path(path
);
919 * find_free_dev_extent - find free space in the specified device
920 * @device: the device which we search the free space in
921 * @num_bytes: the size of the free space that we need
922 * @start: store the start of the free space.
923 * @len: the size of the free space. that we find, or the size of the max
924 * free space if we don't find suitable free space
926 * this uses a pretty simple search, the expectation is that it is
927 * called very infrequently and that a given device has a small number
930 * @start is used to store the start of the free space if we find. But if we
931 * don't find suitable free space, it will be used to store the start position
932 * of the max free space.
934 * @len is used to store the size of the free space that we find.
935 * But if we don't find suitable free space, it is used to store the size of
936 * the max free space.
938 int find_free_dev_extent(struct btrfs_device
*device
, u64 num_bytes
,
939 u64
*start
, u64
*len
)
941 struct btrfs_key key
;
942 struct btrfs_root
*root
= device
->dev_root
;
943 struct btrfs_dev_extent
*dev_extent
;
944 struct btrfs_path
*path
;
950 u64 search_end
= device
->total_bytes
;
953 struct extent_buffer
*l
;
955 /* FIXME use last free of some kind */
957 /* we don't want to overwrite the superblock on the drive,
958 * so we make sure to start at an offset of at least 1MB
960 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
962 max_hole_start
= search_start
;
966 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
971 path
= btrfs_alloc_path();
978 key
.objectid
= device
->devid
;
979 key
.offset
= search_start
;
980 key
.type
= BTRFS_DEV_EXTENT_KEY
;
982 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
986 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
993 slot
= path
->slots
[0];
994 if (slot
>= btrfs_header_nritems(l
)) {
995 ret
= btrfs_next_leaf(root
, path
);
1003 btrfs_item_key_to_cpu(l
, &key
, slot
);
1005 if (key
.objectid
< device
->devid
)
1008 if (key
.objectid
> device
->devid
)
1011 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
1014 if (key
.offset
> search_start
) {
1015 hole_size
= key
.offset
- search_start
;
1017 if (hole_size
> max_hole_size
) {
1018 max_hole_start
= search_start
;
1019 max_hole_size
= hole_size
;
1023 * If this free space is greater than which we need,
1024 * it must be the max free space that we have found
1025 * until now, so max_hole_start must point to the start
1026 * of this free space and the length of this free space
1027 * is stored in max_hole_size. Thus, we return
1028 * max_hole_start and max_hole_size and go back to the
1031 if (hole_size
>= num_bytes
) {
1037 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1038 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1040 if (extent_end
> search_start
)
1041 search_start
= extent_end
;
1048 * At this point, search_start should be the end of
1049 * allocated dev extents, and when shrinking the device,
1050 * search_end may be smaller than search_start.
1052 if (search_end
> search_start
)
1053 hole_size
= search_end
- search_start
;
1055 if (hole_size
> max_hole_size
) {
1056 max_hole_start
= search_start
;
1057 max_hole_size
= hole_size
;
1061 if (hole_size
< num_bytes
)
1067 btrfs_free_path(path
);
1069 *start
= max_hole_start
;
1071 *len
= max_hole_size
;
1075 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1076 struct btrfs_device
*device
,
1080 struct btrfs_path
*path
;
1081 struct btrfs_root
*root
= device
->dev_root
;
1082 struct btrfs_key key
;
1083 struct btrfs_key found_key
;
1084 struct extent_buffer
*leaf
= NULL
;
1085 struct btrfs_dev_extent
*extent
= NULL
;
1087 path
= btrfs_alloc_path();
1091 key
.objectid
= device
->devid
;
1093 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1095 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1097 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1098 BTRFS_DEV_EXTENT_KEY
);
1101 leaf
= path
->nodes
[0];
1102 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1103 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1104 struct btrfs_dev_extent
);
1105 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1106 btrfs_dev_extent_length(leaf
, extent
) < start
);
1108 btrfs_release_path(path
);
1110 } else if (ret
== 0) {
1111 leaf
= path
->nodes
[0];
1112 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1113 struct btrfs_dev_extent
);
1115 btrfs_error(root
->fs_info
, ret
, "Slot search failed");
1119 if (device
->bytes_used
> 0) {
1120 u64 len
= btrfs_dev_extent_length(leaf
, extent
);
1121 device
->bytes_used
-= len
;
1122 spin_lock(&root
->fs_info
->free_chunk_lock
);
1123 root
->fs_info
->free_chunk_space
+= len
;
1124 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1126 ret
= btrfs_del_item(trans
, root
, path
);
1128 btrfs_error(root
->fs_info
, ret
,
1129 "Failed to remove dev extent item");
1132 btrfs_free_path(path
);
1136 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1137 struct btrfs_device
*device
,
1138 u64 chunk_tree
, u64 chunk_objectid
,
1139 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1142 struct btrfs_path
*path
;
1143 struct btrfs_root
*root
= device
->dev_root
;
1144 struct btrfs_dev_extent
*extent
;
1145 struct extent_buffer
*leaf
;
1146 struct btrfs_key key
;
1148 WARN_ON(!device
->in_fs_metadata
);
1149 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1150 path
= btrfs_alloc_path();
1154 key
.objectid
= device
->devid
;
1156 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1157 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1162 leaf
= path
->nodes
[0];
1163 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1164 struct btrfs_dev_extent
);
1165 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1166 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1167 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1169 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1170 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
1173 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1174 btrfs_mark_buffer_dirty(leaf
);
1176 btrfs_free_path(path
);
1180 static noinline
int find_next_chunk(struct btrfs_root
*root
,
1181 u64 objectid
, u64
*offset
)
1183 struct btrfs_path
*path
;
1185 struct btrfs_key key
;
1186 struct btrfs_chunk
*chunk
;
1187 struct btrfs_key found_key
;
1189 path
= btrfs_alloc_path();
1193 key
.objectid
= objectid
;
1194 key
.offset
= (u64
)-1;
1195 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1197 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1201 BUG_ON(ret
== 0); /* Corruption */
1203 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
1207 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1209 if (found_key
.objectid
!= objectid
)
1212 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1213 struct btrfs_chunk
);
1214 *offset
= found_key
.offset
+
1215 btrfs_chunk_length(path
->nodes
[0], chunk
);
1220 btrfs_free_path(path
);
1224 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
1227 struct btrfs_key key
;
1228 struct btrfs_key found_key
;
1229 struct btrfs_path
*path
;
1231 root
= root
->fs_info
->chunk_root
;
1233 path
= btrfs_alloc_path();
1237 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1238 key
.type
= BTRFS_DEV_ITEM_KEY
;
1239 key
.offset
= (u64
)-1;
1241 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1245 BUG_ON(ret
== 0); /* Corruption */
1247 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
1248 BTRFS_DEV_ITEM_KEY
);
1252 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1254 *objectid
= found_key
.offset
+ 1;
1258 btrfs_free_path(path
);
1263 * the device information is stored in the chunk root
1264 * the btrfs_device struct should be fully filled in
1266 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1267 struct btrfs_root
*root
,
1268 struct btrfs_device
*device
)
1271 struct btrfs_path
*path
;
1272 struct btrfs_dev_item
*dev_item
;
1273 struct extent_buffer
*leaf
;
1274 struct btrfs_key key
;
1277 root
= root
->fs_info
->chunk_root
;
1279 path
= btrfs_alloc_path();
1283 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1284 key
.type
= BTRFS_DEV_ITEM_KEY
;
1285 key
.offset
= device
->devid
;
1287 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1292 leaf
= path
->nodes
[0];
1293 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1295 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1296 btrfs_set_device_generation(leaf
, dev_item
, 0);
1297 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1298 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1299 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1300 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1301 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1302 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1303 btrfs_set_device_group(leaf
, dev_item
, 0);
1304 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1305 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1306 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1308 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
1309 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1310 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
1311 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1312 btrfs_mark_buffer_dirty(leaf
);
1316 btrfs_free_path(path
);
1320 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1321 struct btrfs_device
*device
)
1324 struct btrfs_path
*path
;
1325 struct btrfs_key key
;
1326 struct btrfs_trans_handle
*trans
;
1328 root
= root
->fs_info
->chunk_root
;
1330 path
= btrfs_alloc_path();
1334 trans
= btrfs_start_transaction(root
, 0);
1335 if (IS_ERR(trans
)) {
1336 btrfs_free_path(path
);
1337 return PTR_ERR(trans
);
1339 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1340 key
.type
= BTRFS_DEV_ITEM_KEY
;
1341 key
.offset
= device
->devid
;
1344 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1353 ret
= btrfs_del_item(trans
, root
, path
);
1357 btrfs_free_path(path
);
1358 unlock_chunks(root
);
1359 btrfs_commit_transaction(trans
, root
);
1363 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1365 struct btrfs_device
*device
;
1366 struct btrfs_device
*next_device
;
1367 struct block_device
*bdev
;
1368 struct buffer_head
*bh
= NULL
;
1369 struct btrfs_super_block
*disk_super
;
1370 struct btrfs_fs_devices
*cur_devices
;
1376 bool clear_super
= false;
1378 mutex_lock(&uuid_mutex
);
1380 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1381 root
->fs_info
->avail_system_alloc_bits
|
1382 root
->fs_info
->avail_metadata_alloc_bits
;
1384 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1385 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1386 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1387 WARN_ON(num_devices
< 1);
1390 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1392 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1393 printk(KERN_ERR
"btrfs: unable to go below four devices "
1399 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1400 printk(KERN_ERR
"btrfs: unable to go below two "
1401 "devices on raid1\n");
1406 if (strcmp(device_path
, "missing") == 0) {
1407 struct list_head
*devices
;
1408 struct btrfs_device
*tmp
;
1411 devices
= &root
->fs_info
->fs_devices
->devices
;
1413 * It is safe to read the devices since the volume_mutex
1416 list_for_each_entry(tmp
, devices
, dev_list
) {
1417 if (tmp
->in_fs_metadata
&&
1418 !tmp
->is_tgtdev_for_dev_replace
&&
1428 printk(KERN_ERR
"btrfs: no missing devices found to "
1433 ret
= btrfs_get_bdev_and_sb(device_path
,
1434 FMODE_READ
| FMODE_EXCL
,
1435 root
->fs_info
->bdev_holder
, 0,
1439 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1440 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1441 dev_uuid
= disk_super
->dev_item
.uuid
;
1442 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1450 if (device
->is_tgtdev_for_dev_replace
) {
1451 pr_err("btrfs: unable to remove the dev_replace target dev\n");
1456 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1457 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1463 if (device
->writeable
) {
1465 list_del_init(&device
->dev_alloc_list
);
1466 unlock_chunks(root
);
1467 root
->fs_info
->fs_devices
->rw_devices
--;
1471 ret
= btrfs_shrink_device(device
, 0);
1476 * TODO: the superblock still includes this device in its num_devices
1477 * counter although write_all_supers() is not locked out. This
1478 * could give a filesystem state which requires a degraded mount.
1480 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1484 spin_lock(&root
->fs_info
->free_chunk_lock
);
1485 root
->fs_info
->free_chunk_space
= device
->total_bytes
-
1487 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1489 device
->in_fs_metadata
= 0;
1490 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1493 * the device list mutex makes sure that we don't change
1494 * the device list while someone else is writing out all
1495 * the device supers.
1498 cur_devices
= device
->fs_devices
;
1499 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1500 list_del_rcu(&device
->dev_list
);
1502 device
->fs_devices
->num_devices
--;
1503 device
->fs_devices
->total_devices
--;
1505 if (device
->missing
)
1506 root
->fs_info
->fs_devices
->missing_devices
--;
1508 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1509 struct btrfs_device
, dev_list
);
1510 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1511 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1512 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1513 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1516 device
->fs_devices
->open_devices
--;
1518 call_rcu(&device
->rcu
, free_device
);
1519 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1521 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1522 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1524 if (cur_devices
->open_devices
== 0) {
1525 struct btrfs_fs_devices
*fs_devices
;
1526 fs_devices
= root
->fs_info
->fs_devices
;
1527 while (fs_devices
) {
1528 if (fs_devices
->seed
== cur_devices
)
1530 fs_devices
= fs_devices
->seed
;
1532 fs_devices
->seed
= cur_devices
->seed
;
1533 cur_devices
->seed
= NULL
;
1535 __btrfs_close_devices(cur_devices
);
1536 unlock_chunks(root
);
1537 free_fs_devices(cur_devices
);
1540 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1541 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1544 * at this point, the device is zero sized. We want to
1545 * remove it from the devices list and zero out the old super
1547 if (clear_super
&& disk_super
) {
1548 /* make sure this device isn't detected as part of
1551 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1552 set_buffer_dirty(bh
);
1553 sync_dirty_buffer(bh
);
1558 /* Notify udev that device has changed */
1559 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1564 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1566 mutex_unlock(&uuid_mutex
);
1569 if (device
->writeable
) {
1571 list_add(&device
->dev_alloc_list
,
1572 &root
->fs_info
->fs_devices
->alloc_list
);
1573 unlock_chunks(root
);
1574 root
->fs_info
->fs_devices
->rw_devices
++;
1579 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info
*fs_info
,
1580 struct btrfs_device
*srcdev
)
1582 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1583 list_del_rcu(&srcdev
->dev_list
);
1584 list_del_rcu(&srcdev
->dev_alloc_list
);
1585 fs_info
->fs_devices
->num_devices
--;
1586 if (srcdev
->missing
) {
1587 fs_info
->fs_devices
->missing_devices
--;
1588 fs_info
->fs_devices
->rw_devices
++;
1590 if (srcdev
->can_discard
)
1591 fs_info
->fs_devices
->num_can_discard
--;
1593 fs_info
->fs_devices
->open_devices
--;
1595 call_rcu(&srcdev
->rcu
, free_device
);
1598 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
1599 struct btrfs_device
*tgtdev
)
1601 struct btrfs_device
*next_device
;
1604 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1606 btrfs_scratch_superblock(tgtdev
);
1607 fs_info
->fs_devices
->open_devices
--;
1609 fs_info
->fs_devices
->num_devices
--;
1610 if (tgtdev
->can_discard
)
1611 fs_info
->fs_devices
->num_can_discard
++;
1613 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
1614 struct btrfs_device
, dev_list
);
1615 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
1616 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1617 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
1618 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1619 list_del_rcu(&tgtdev
->dev_list
);
1621 call_rcu(&tgtdev
->rcu
, free_device
);
1623 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1626 int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
1627 struct btrfs_device
**device
)
1630 struct btrfs_super_block
*disk_super
;
1633 struct block_device
*bdev
;
1634 struct buffer_head
*bh
;
1637 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
1638 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
1641 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1642 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1643 dev_uuid
= disk_super
->dev_item
.uuid
;
1644 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1649 blkdev_put(bdev
, FMODE_READ
);
1653 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
1655 struct btrfs_device
**device
)
1658 if (strcmp(device_path
, "missing") == 0) {
1659 struct list_head
*devices
;
1660 struct btrfs_device
*tmp
;
1662 devices
= &root
->fs_info
->fs_devices
->devices
;
1664 * It is safe to read the devices since the volume_mutex
1665 * is held by the caller.
1667 list_for_each_entry(tmp
, devices
, dev_list
) {
1668 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1675 pr_err("btrfs: no missing device found\n");
1681 return btrfs_find_device_by_path(root
, device_path
, device
);
1686 * does all the dirty work required for changing file system's UUID.
1688 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
1690 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1691 struct btrfs_fs_devices
*old_devices
;
1692 struct btrfs_fs_devices
*seed_devices
;
1693 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
1694 struct btrfs_device
*device
;
1697 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1698 if (!fs_devices
->seeding
)
1701 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1705 old_devices
= clone_fs_devices(fs_devices
);
1706 if (IS_ERR(old_devices
)) {
1707 kfree(seed_devices
);
1708 return PTR_ERR(old_devices
);
1711 list_add(&old_devices
->list
, &fs_uuids
);
1713 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1714 seed_devices
->opened
= 1;
1715 INIT_LIST_HEAD(&seed_devices
->devices
);
1716 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1717 mutex_init(&seed_devices
->device_list_mutex
);
1719 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1720 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1722 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1724 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1725 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1726 device
->fs_devices
= seed_devices
;
1729 fs_devices
->seeding
= 0;
1730 fs_devices
->num_devices
= 0;
1731 fs_devices
->open_devices
= 0;
1732 fs_devices
->total_devices
= 0;
1733 fs_devices
->seed
= seed_devices
;
1735 generate_random_uuid(fs_devices
->fsid
);
1736 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1737 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1738 super_flags
= btrfs_super_flags(disk_super
) &
1739 ~BTRFS_SUPER_FLAG_SEEDING
;
1740 btrfs_set_super_flags(disk_super
, super_flags
);
1746 * strore the expected generation for seed devices in device items.
1748 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1749 struct btrfs_root
*root
)
1751 struct btrfs_path
*path
;
1752 struct extent_buffer
*leaf
;
1753 struct btrfs_dev_item
*dev_item
;
1754 struct btrfs_device
*device
;
1755 struct btrfs_key key
;
1756 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1757 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1761 path
= btrfs_alloc_path();
1765 root
= root
->fs_info
->chunk_root
;
1766 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1768 key
.type
= BTRFS_DEV_ITEM_KEY
;
1771 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1775 leaf
= path
->nodes
[0];
1777 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1778 ret
= btrfs_next_leaf(root
, path
);
1783 leaf
= path
->nodes
[0];
1784 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1785 btrfs_release_path(path
);
1789 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1790 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1791 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1794 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1795 struct btrfs_dev_item
);
1796 devid
= btrfs_device_id(leaf
, dev_item
);
1797 read_extent_buffer(leaf
, dev_uuid
,
1798 (unsigned long)btrfs_device_uuid(dev_item
),
1800 read_extent_buffer(leaf
, fs_uuid
,
1801 (unsigned long)btrfs_device_fsid(dev_item
),
1803 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1805 BUG_ON(!device
); /* Logic error */
1807 if (device
->fs_devices
->seeding
) {
1808 btrfs_set_device_generation(leaf
, dev_item
,
1809 device
->generation
);
1810 btrfs_mark_buffer_dirty(leaf
);
1818 btrfs_free_path(path
);
1822 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1824 struct request_queue
*q
;
1825 struct btrfs_trans_handle
*trans
;
1826 struct btrfs_device
*device
;
1827 struct block_device
*bdev
;
1828 struct list_head
*devices
;
1829 struct super_block
*sb
= root
->fs_info
->sb
;
1830 struct rcu_string
*name
;
1832 int seeding_dev
= 0;
1835 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1838 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
1839 root
->fs_info
->bdev_holder
);
1841 return PTR_ERR(bdev
);
1843 if (root
->fs_info
->fs_devices
->seeding
) {
1845 down_write(&sb
->s_umount
);
1846 mutex_lock(&uuid_mutex
);
1849 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1851 devices
= &root
->fs_info
->fs_devices
->devices
;
1853 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1854 list_for_each_entry(device
, devices
, dev_list
) {
1855 if (device
->bdev
== bdev
) {
1858 &root
->fs_info
->fs_devices
->device_list_mutex
);
1862 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1864 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1866 /* we can safely leave the fs_devices entry around */
1871 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
1877 rcu_assign_pointer(device
->name
, name
);
1879 ret
= find_next_devid(root
, &device
->devid
);
1881 rcu_string_free(device
->name
);
1886 trans
= btrfs_start_transaction(root
, 0);
1887 if (IS_ERR(trans
)) {
1888 rcu_string_free(device
->name
);
1890 ret
= PTR_ERR(trans
);
1896 q
= bdev_get_queue(bdev
);
1897 if (blk_queue_discard(q
))
1898 device
->can_discard
= 1;
1899 device
->writeable
= 1;
1900 device
->work
.func
= pending_bios_fn
;
1901 generate_random_uuid(device
->uuid
);
1902 spin_lock_init(&device
->io_lock
);
1903 device
->generation
= trans
->transid
;
1904 device
->io_width
= root
->sectorsize
;
1905 device
->io_align
= root
->sectorsize
;
1906 device
->sector_size
= root
->sectorsize
;
1907 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1908 device
->disk_total_bytes
= device
->total_bytes
;
1909 device
->dev_root
= root
->fs_info
->dev_root
;
1910 device
->bdev
= bdev
;
1911 device
->in_fs_metadata
= 1;
1912 device
->is_tgtdev_for_dev_replace
= 0;
1913 device
->mode
= FMODE_EXCL
;
1914 set_blocksize(device
->bdev
, 4096);
1917 sb
->s_flags
&= ~MS_RDONLY
;
1918 ret
= btrfs_prepare_sprout(root
);
1919 BUG_ON(ret
); /* -ENOMEM */
1922 device
->fs_devices
= root
->fs_info
->fs_devices
;
1924 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1925 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1926 list_add(&device
->dev_alloc_list
,
1927 &root
->fs_info
->fs_devices
->alloc_list
);
1928 root
->fs_info
->fs_devices
->num_devices
++;
1929 root
->fs_info
->fs_devices
->open_devices
++;
1930 root
->fs_info
->fs_devices
->rw_devices
++;
1931 root
->fs_info
->fs_devices
->total_devices
++;
1932 if (device
->can_discard
)
1933 root
->fs_info
->fs_devices
->num_can_discard
++;
1934 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1936 spin_lock(&root
->fs_info
->free_chunk_lock
);
1937 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
1938 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1940 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1941 root
->fs_info
->fs_devices
->rotating
= 1;
1943 total_bytes
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
1944 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
1945 total_bytes
+ device
->total_bytes
);
1947 total_bytes
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
1948 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
1950 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1953 ret
= init_first_rw_device(trans
, root
, device
);
1955 btrfs_abort_transaction(trans
, root
, ret
);
1958 ret
= btrfs_finish_sprout(trans
, root
);
1960 btrfs_abort_transaction(trans
, root
, ret
);
1964 ret
= btrfs_add_device(trans
, root
, device
);
1966 btrfs_abort_transaction(trans
, root
, ret
);
1972 * we've got more storage, clear any full flags on the space
1975 btrfs_clear_space_info_full(root
->fs_info
);
1977 unlock_chunks(root
);
1978 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1979 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1980 ret
= btrfs_commit_transaction(trans
, root
);
1983 mutex_unlock(&uuid_mutex
);
1984 up_write(&sb
->s_umount
);
1986 if (ret
) /* transaction commit */
1989 ret
= btrfs_relocate_sys_chunks(root
);
1991 btrfs_error(root
->fs_info
, ret
,
1992 "Failed to relocate sys chunks after "
1993 "device initialization. This can be fixed "
1994 "using the \"btrfs balance\" command.");
1995 trans
= btrfs_attach_transaction(root
);
1996 if (IS_ERR(trans
)) {
1997 if (PTR_ERR(trans
) == -ENOENT
)
1999 return PTR_ERR(trans
);
2001 ret
= btrfs_commit_transaction(trans
, root
);
2007 unlock_chunks(root
);
2008 btrfs_end_transaction(trans
, root
);
2009 rcu_string_free(device
->name
);
2012 blkdev_put(bdev
, FMODE_EXCL
);
2014 mutex_unlock(&uuid_mutex
);
2015 up_write(&sb
->s_umount
);
2020 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2021 struct btrfs_device
**device_out
)
2023 struct request_queue
*q
;
2024 struct btrfs_device
*device
;
2025 struct block_device
*bdev
;
2026 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2027 struct list_head
*devices
;
2028 struct rcu_string
*name
;
2032 if (fs_info
->fs_devices
->seeding
)
2035 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2036 fs_info
->bdev_holder
);
2038 return PTR_ERR(bdev
);
2040 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2042 devices
= &fs_info
->fs_devices
->devices
;
2043 list_for_each_entry(device
, devices
, dev_list
) {
2044 if (device
->bdev
== bdev
) {
2050 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
2056 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2062 rcu_assign_pointer(device
->name
, name
);
2064 q
= bdev_get_queue(bdev
);
2065 if (blk_queue_discard(q
))
2066 device
->can_discard
= 1;
2067 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2068 device
->writeable
= 1;
2069 device
->work
.func
= pending_bios_fn
;
2070 generate_random_uuid(device
->uuid
);
2071 device
->devid
= BTRFS_DEV_REPLACE_DEVID
;
2072 spin_lock_init(&device
->io_lock
);
2073 device
->generation
= 0;
2074 device
->io_width
= root
->sectorsize
;
2075 device
->io_align
= root
->sectorsize
;
2076 device
->sector_size
= root
->sectorsize
;
2077 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2078 device
->disk_total_bytes
= device
->total_bytes
;
2079 device
->dev_root
= fs_info
->dev_root
;
2080 device
->bdev
= bdev
;
2081 device
->in_fs_metadata
= 1;
2082 device
->is_tgtdev_for_dev_replace
= 1;
2083 device
->mode
= FMODE_EXCL
;
2084 set_blocksize(device
->bdev
, 4096);
2085 device
->fs_devices
= fs_info
->fs_devices
;
2086 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2087 fs_info
->fs_devices
->num_devices
++;
2088 fs_info
->fs_devices
->open_devices
++;
2089 if (device
->can_discard
)
2090 fs_info
->fs_devices
->num_can_discard
++;
2091 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2093 *device_out
= device
;
2097 blkdev_put(bdev
, FMODE_EXCL
);
2101 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2102 struct btrfs_device
*tgtdev
)
2104 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2105 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2106 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2107 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2108 tgtdev
->dev_root
= fs_info
->dev_root
;
2109 tgtdev
->in_fs_metadata
= 1;
2112 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2113 struct btrfs_device
*device
)
2116 struct btrfs_path
*path
;
2117 struct btrfs_root
*root
;
2118 struct btrfs_dev_item
*dev_item
;
2119 struct extent_buffer
*leaf
;
2120 struct btrfs_key key
;
2122 root
= device
->dev_root
->fs_info
->chunk_root
;
2124 path
= btrfs_alloc_path();
2128 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2129 key
.type
= BTRFS_DEV_ITEM_KEY
;
2130 key
.offset
= device
->devid
;
2132 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2141 leaf
= path
->nodes
[0];
2142 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2144 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2145 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2146 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2147 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2148 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2149 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
2150 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
2151 btrfs_mark_buffer_dirty(leaf
);
2154 btrfs_free_path(path
);
2158 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2159 struct btrfs_device
*device
, u64 new_size
)
2161 struct btrfs_super_block
*super_copy
=
2162 device
->dev_root
->fs_info
->super_copy
;
2163 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2164 u64 diff
= new_size
- device
->total_bytes
;
2166 if (!device
->writeable
)
2168 if (new_size
<= device
->total_bytes
||
2169 device
->is_tgtdev_for_dev_replace
)
2172 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2173 device
->fs_devices
->total_rw_bytes
+= diff
;
2175 device
->total_bytes
= new_size
;
2176 device
->disk_total_bytes
= new_size
;
2177 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2179 return btrfs_update_device(trans
, device
);
2182 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2183 struct btrfs_device
*device
, u64 new_size
)
2186 lock_chunks(device
->dev_root
);
2187 ret
= __btrfs_grow_device(trans
, device
, new_size
);
2188 unlock_chunks(device
->dev_root
);
2192 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2193 struct btrfs_root
*root
,
2194 u64 chunk_tree
, u64 chunk_objectid
,
2198 struct btrfs_path
*path
;
2199 struct btrfs_key key
;
2201 root
= root
->fs_info
->chunk_root
;
2202 path
= btrfs_alloc_path();
2206 key
.objectid
= chunk_objectid
;
2207 key
.offset
= chunk_offset
;
2208 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2210 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2213 else if (ret
> 0) { /* Logic error or corruption */
2214 btrfs_error(root
->fs_info
, -ENOENT
,
2215 "Failed lookup while freeing chunk.");
2220 ret
= btrfs_del_item(trans
, root
, path
);
2222 btrfs_error(root
->fs_info
, ret
,
2223 "Failed to delete chunk item.");
2225 btrfs_free_path(path
);
2229 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2232 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2233 struct btrfs_disk_key
*disk_key
;
2234 struct btrfs_chunk
*chunk
;
2241 struct btrfs_key key
;
2243 array_size
= btrfs_super_sys_array_size(super_copy
);
2245 ptr
= super_copy
->sys_chunk_array
;
2248 while (cur
< array_size
) {
2249 disk_key
= (struct btrfs_disk_key
*)ptr
;
2250 btrfs_disk_key_to_cpu(&key
, disk_key
);
2252 len
= sizeof(*disk_key
);
2254 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2255 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2256 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2257 len
+= btrfs_chunk_item_size(num_stripes
);
2262 if (key
.objectid
== chunk_objectid
&&
2263 key
.offset
== chunk_offset
) {
2264 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2266 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2275 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
2276 u64 chunk_tree
, u64 chunk_objectid
,
2279 struct extent_map_tree
*em_tree
;
2280 struct btrfs_root
*extent_root
;
2281 struct btrfs_trans_handle
*trans
;
2282 struct extent_map
*em
;
2283 struct map_lookup
*map
;
2287 root
= root
->fs_info
->chunk_root
;
2288 extent_root
= root
->fs_info
->extent_root
;
2289 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2291 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2295 /* step one, relocate all the extents inside this chunk */
2296 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2300 trans
= btrfs_start_transaction(root
, 0);
2301 BUG_ON(IS_ERR(trans
));
2306 * step two, delete the device extents and the
2307 * chunk tree entries
2309 read_lock(&em_tree
->lock
);
2310 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2311 read_unlock(&em_tree
->lock
);
2313 BUG_ON(!em
|| em
->start
> chunk_offset
||
2314 em
->start
+ em
->len
< chunk_offset
);
2315 map
= (struct map_lookup
*)em
->bdev
;
2317 for (i
= 0; i
< map
->num_stripes
; i
++) {
2318 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
2319 map
->stripes
[i
].physical
);
2322 if (map
->stripes
[i
].dev
) {
2323 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2327 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
2332 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2334 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2335 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2339 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
2342 write_lock(&em_tree
->lock
);
2343 remove_extent_mapping(em_tree
, em
);
2344 write_unlock(&em_tree
->lock
);
2349 /* once for the tree */
2350 free_extent_map(em
);
2352 free_extent_map(em
);
2354 unlock_chunks(root
);
2355 btrfs_end_transaction(trans
, root
);
2359 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2361 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2362 struct btrfs_path
*path
;
2363 struct extent_buffer
*leaf
;
2364 struct btrfs_chunk
*chunk
;
2365 struct btrfs_key key
;
2366 struct btrfs_key found_key
;
2367 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
2369 bool retried
= false;
2373 path
= btrfs_alloc_path();
2378 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2379 key
.offset
= (u64
)-1;
2380 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2383 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2386 BUG_ON(ret
== 0); /* Corruption */
2388 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2395 leaf
= path
->nodes
[0];
2396 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2398 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2399 struct btrfs_chunk
);
2400 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2401 btrfs_release_path(path
);
2403 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2404 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
2413 if (found_key
.offset
== 0)
2415 key
.offset
= found_key
.offset
- 1;
2418 if (failed
&& !retried
) {
2422 } else if (failed
&& retried
) {
2427 btrfs_free_path(path
);
2431 static int insert_balance_item(struct btrfs_root
*root
,
2432 struct btrfs_balance_control
*bctl
)
2434 struct btrfs_trans_handle
*trans
;
2435 struct btrfs_balance_item
*item
;
2436 struct btrfs_disk_balance_args disk_bargs
;
2437 struct btrfs_path
*path
;
2438 struct extent_buffer
*leaf
;
2439 struct btrfs_key key
;
2442 path
= btrfs_alloc_path();
2446 trans
= btrfs_start_transaction(root
, 0);
2447 if (IS_ERR(trans
)) {
2448 btrfs_free_path(path
);
2449 return PTR_ERR(trans
);
2452 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2453 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2456 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2461 leaf
= path
->nodes
[0];
2462 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2464 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2466 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2467 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2468 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2469 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2470 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2471 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2473 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2475 btrfs_mark_buffer_dirty(leaf
);
2477 btrfs_free_path(path
);
2478 err
= btrfs_commit_transaction(trans
, root
);
2484 static int del_balance_item(struct btrfs_root
*root
)
2486 struct btrfs_trans_handle
*trans
;
2487 struct btrfs_path
*path
;
2488 struct btrfs_key key
;
2491 path
= btrfs_alloc_path();
2495 trans
= btrfs_start_transaction(root
, 0);
2496 if (IS_ERR(trans
)) {
2497 btrfs_free_path(path
);
2498 return PTR_ERR(trans
);
2501 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2502 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2505 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2513 ret
= btrfs_del_item(trans
, root
, path
);
2515 btrfs_free_path(path
);
2516 err
= btrfs_commit_transaction(trans
, root
);
2523 * This is a heuristic used to reduce the number of chunks balanced on
2524 * resume after balance was interrupted.
2526 static void update_balance_args(struct btrfs_balance_control
*bctl
)
2529 * Turn on soft mode for chunk types that were being converted.
2531 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2532 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2533 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2534 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2535 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2536 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2539 * Turn on usage filter if is not already used. The idea is
2540 * that chunks that we have already balanced should be
2541 * reasonably full. Don't do it for chunks that are being
2542 * converted - that will keep us from relocating unconverted
2543 * (albeit full) chunks.
2545 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2546 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2547 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2548 bctl
->data
.usage
= 90;
2550 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2551 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2552 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2553 bctl
->sys
.usage
= 90;
2555 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2556 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2557 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2558 bctl
->meta
.usage
= 90;
2563 * Should be called with both balance and volume mutexes held to
2564 * serialize other volume operations (add_dev/rm_dev/resize) with
2565 * restriper. Same goes for unset_balance_control.
2567 static void set_balance_control(struct btrfs_balance_control
*bctl
)
2569 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
2571 BUG_ON(fs_info
->balance_ctl
);
2573 spin_lock(&fs_info
->balance_lock
);
2574 fs_info
->balance_ctl
= bctl
;
2575 spin_unlock(&fs_info
->balance_lock
);
2578 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
2580 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2582 BUG_ON(!fs_info
->balance_ctl
);
2584 spin_lock(&fs_info
->balance_lock
);
2585 fs_info
->balance_ctl
= NULL
;
2586 spin_unlock(&fs_info
->balance_lock
);
2592 * Balance filters. Return 1 if chunk should be filtered out
2593 * (should not be balanced).
2595 static int chunk_profiles_filter(u64 chunk_type
,
2596 struct btrfs_balance_args
*bargs
)
2598 chunk_type
= chunk_to_extended(chunk_type
) &
2599 BTRFS_EXTENDED_PROFILE_MASK
;
2601 if (bargs
->profiles
& chunk_type
)
2607 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
2608 struct btrfs_balance_args
*bargs
)
2610 struct btrfs_block_group_cache
*cache
;
2611 u64 chunk_used
, user_thresh
;
2614 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2615 chunk_used
= btrfs_block_group_used(&cache
->item
);
2617 user_thresh
= div_factor_fine(cache
->key
.offset
, bargs
->usage
);
2618 if (chunk_used
< user_thresh
)
2621 btrfs_put_block_group(cache
);
2625 static int chunk_devid_filter(struct extent_buffer
*leaf
,
2626 struct btrfs_chunk
*chunk
,
2627 struct btrfs_balance_args
*bargs
)
2629 struct btrfs_stripe
*stripe
;
2630 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2633 for (i
= 0; i
< num_stripes
; i
++) {
2634 stripe
= btrfs_stripe_nr(chunk
, i
);
2635 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
2642 /* [pstart, pend) */
2643 static int chunk_drange_filter(struct extent_buffer
*leaf
,
2644 struct btrfs_chunk
*chunk
,
2646 struct btrfs_balance_args
*bargs
)
2648 struct btrfs_stripe
*stripe
;
2649 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2655 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
2658 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
2659 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
))
2663 factor
= num_stripes
/ factor
;
2665 for (i
= 0; i
< num_stripes
; i
++) {
2666 stripe
= btrfs_stripe_nr(chunk
, i
);
2667 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
2670 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
2671 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
2672 do_div(stripe_length
, factor
);
2674 if (stripe_offset
< bargs
->pend
&&
2675 stripe_offset
+ stripe_length
> bargs
->pstart
)
2682 /* [vstart, vend) */
2683 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
2684 struct btrfs_chunk
*chunk
,
2686 struct btrfs_balance_args
*bargs
)
2688 if (chunk_offset
< bargs
->vend
&&
2689 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
2690 /* at least part of the chunk is inside this vrange */
2696 static int chunk_soft_convert_filter(u64 chunk_type
,
2697 struct btrfs_balance_args
*bargs
)
2699 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
2702 chunk_type
= chunk_to_extended(chunk_type
) &
2703 BTRFS_EXTENDED_PROFILE_MASK
;
2705 if (bargs
->target
== chunk_type
)
2711 static int should_balance_chunk(struct btrfs_root
*root
,
2712 struct extent_buffer
*leaf
,
2713 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
2715 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
2716 struct btrfs_balance_args
*bargs
= NULL
;
2717 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2720 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
2721 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
2725 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
2726 bargs
= &bctl
->data
;
2727 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
2729 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
2730 bargs
= &bctl
->meta
;
2732 /* profiles filter */
2733 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
2734 chunk_profiles_filter(chunk_type
, bargs
)) {
2739 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2740 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
2745 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
2746 chunk_devid_filter(leaf
, chunk
, bargs
)) {
2750 /* drange filter, makes sense only with devid filter */
2751 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
2752 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2757 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
2758 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2762 /* soft profile changing mode */
2763 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
2764 chunk_soft_convert_filter(chunk_type
, bargs
)) {
2771 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
2773 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2774 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2775 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
2776 struct list_head
*devices
;
2777 struct btrfs_device
*device
;
2780 struct btrfs_chunk
*chunk
;
2781 struct btrfs_path
*path
;
2782 struct btrfs_key key
;
2783 struct btrfs_key found_key
;
2784 struct btrfs_trans_handle
*trans
;
2785 struct extent_buffer
*leaf
;
2788 int enospc_errors
= 0;
2789 bool counting
= true;
2791 /* step one make some room on all the devices */
2792 devices
= &fs_info
->fs_devices
->devices
;
2793 list_for_each_entry(device
, devices
, dev_list
) {
2794 old_size
= device
->total_bytes
;
2795 size_to_free
= div_factor(old_size
, 1);
2796 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
2797 if (!device
->writeable
||
2798 device
->total_bytes
- device
->bytes_used
> size_to_free
||
2799 device
->is_tgtdev_for_dev_replace
)
2802 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
2807 trans
= btrfs_start_transaction(dev_root
, 0);
2808 BUG_ON(IS_ERR(trans
));
2810 ret
= btrfs_grow_device(trans
, device
, old_size
);
2813 btrfs_end_transaction(trans
, dev_root
);
2816 /* step two, relocate all the chunks */
2817 path
= btrfs_alloc_path();
2823 /* zero out stat counters */
2824 spin_lock(&fs_info
->balance_lock
);
2825 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
2826 spin_unlock(&fs_info
->balance_lock
);
2828 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2829 key
.offset
= (u64
)-1;
2830 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2833 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
2834 atomic_read(&fs_info
->balance_cancel_req
)) {
2839 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2844 * this shouldn't happen, it means the last relocate
2848 BUG(); /* FIXME break ? */
2850 ret
= btrfs_previous_item(chunk_root
, path
, 0,
2851 BTRFS_CHUNK_ITEM_KEY
);
2857 leaf
= path
->nodes
[0];
2858 slot
= path
->slots
[0];
2859 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2861 if (found_key
.objectid
!= key
.objectid
)
2864 /* chunk zero is special */
2865 if (found_key
.offset
== 0)
2868 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
2871 spin_lock(&fs_info
->balance_lock
);
2872 bctl
->stat
.considered
++;
2873 spin_unlock(&fs_info
->balance_lock
);
2876 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
2878 btrfs_release_path(path
);
2883 spin_lock(&fs_info
->balance_lock
);
2884 bctl
->stat
.expected
++;
2885 spin_unlock(&fs_info
->balance_lock
);
2889 ret
= btrfs_relocate_chunk(chunk_root
,
2890 chunk_root
->root_key
.objectid
,
2893 if (ret
&& ret
!= -ENOSPC
)
2895 if (ret
== -ENOSPC
) {
2898 spin_lock(&fs_info
->balance_lock
);
2899 bctl
->stat
.completed
++;
2900 spin_unlock(&fs_info
->balance_lock
);
2903 key
.offset
= found_key
.offset
- 1;
2907 btrfs_release_path(path
);
2912 btrfs_free_path(path
);
2913 if (enospc_errors
) {
2914 printk(KERN_INFO
"btrfs: %d enospc errors during balance\n",
2924 * alloc_profile_is_valid - see if a given profile is valid and reduced
2925 * @flags: profile to validate
2926 * @extended: if true @flags is treated as an extended profile
2928 static int alloc_profile_is_valid(u64 flags
, int extended
)
2930 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
2931 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
2933 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
2935 /* 1) check that all other bits are zeroed */
2939 /* 2) see if profile is reduced */
2941 return !extended
; /* "0" is valid for usual profiles */
2943 /* true if exactly one bit set */
2944 return (flags
& (flags
- 1)) == 0;
2947 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
2949 /* cancel requested || normal exit path */
2950 return atomic_read(&fs_info
->balance_cancel_req
) ||
2951 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
2952 atomic_read(&fs_info
->balance_cancel_req
) == 0);
2955 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
2959 unset_balance_control(fs_info
);
2960 ret
= del_balance_item(fs_info
->tree_root
);
2964 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
2965 struct btrfs_ioctl_balance_args
*bargs
);
2968 * Should be called with both balance and volume mutexes held
2970 int btrfs_balance(struct btrfs_balance_control
*bctl
,
2971 struct btrfs_ioctl_balance_args
*bargs
)
2973 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
2979 if (btrfs_fs_closing(fs_info
) ||
2980 atomic_read(&fs_info
->balance_pause_req
) ||
2981 atomic_read(&fs_info
->balance_cancel_req
)) {
2986 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
2987 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
2991 * In case of mixed groups both data and meta should be picked,
2992 * and identical options should be given for both of them.
2994 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
2995 if (mixed
&& (bctl
->flags
& allowed
)) {
2996 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
2997 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
2998 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
2999 printk(KERN_ERR
"btrfs: with mixed groups data and "
3000 "metadata balance options must be the same\n");
3006 num_devices
= fs_info
->fs_devices
->num_devices
;
3007 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3008 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3009 BUG_ON(num_devices
< 1);
3012 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3013 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3014 if (num_devices
== 1)
3015 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3016 else if (num_devices
< 4)
3017 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3019 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
|
3020 BTRFS_BLOCK_GROUP_RAID10
);
3022 if ((bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3023 (!alloc_profile_is_valid(bctl
->data
.target
, 1) ||
3024 (bctl
->data
.target
& ~allowed
))) {
3025 printk(KERN_ERR
"btrfs: unable to start balance with target "
3026 "data profile %llu\n",
3027 (unsigned long long)bctl
->data
.target
);
3031 if ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3032 (!alloc_profile_is_valid(bctl
->meta
.target
, 1) ||
3033 (bctl
->meta
.target
& ~allowed
))) {
3034 printk(KERN_ERR
"btrfs: unable to start balance with target "
3035 "metadata profile %llu\n",
3036 (unsigned long long)bctl
->meta
.target
);
3040 if ((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3041 (!alloc_profile_is_valid(bctl
->sys
.target
, 1) ||
3042 (bctl
->sys
.target
& ~allowed
))) {
3043 printk(KERN_ERR
"btrfs: unable to start balance with target "
3044 "system profile %llu\n",
3045 (unsigned long long)bctl
->sys
.target
);
3050 /* allow dup'ed data chunks only in mixed mode */
3051 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3052 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3053 printk(KERN_ERR
"btrfs: dup for data is not allowed\n");
3058 /* allow to reduce meta or sys integrity only if force set */
3059 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3060 BTRFS_BLOCK_GROUP_RAID10
;
3061 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3062 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3063 !(bctl
->sys
.target
& allowed
)) ||
3064 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3065 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3066 !(bctl
->meta
.target
& allowed
))) {
3067 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3068 printk(KERN_INFO
"btrfs: force reducing metadata "
3071 printk(KERN_ERR
"btrfs: balance will reduce metadata "
3072 "integrity, use force if you want this\n");
3078 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3079 int num_tolerated_disk_barrier_failures
;
3080 u64 target
= bctl
->sys
.target
;
3082 num_tolerated_disk_barrier_failures
=
3083 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3084 if (num_tolerated_disk_barrier_failures
> 0 &&
3086 (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3087 BTRFS_AVAIL_ALLOC_BIT_SINGLE
)))
3088 num_tolerated_disk_barrier_failures
= 0;
3089 else if (num_tolerated_disk_barrier_failures
> 1 &&
3091 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)))
3092 num_tolerated_disk_barrier_failures
= 1;
3094 fs_info
->num_tolerated_disk_barrier_failures
=
3095 num_tolerated_disk_barrier_failures
;
3098 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3099 if (ret
&& ret
!= -EEXIST
)
3102 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3103 BUG_ON(ret
== -EEXIST
);
3104 set_balance_control(bctl
);
3106 BUG_ON(ret
!= -EEXIST
);
3107 spin_lock(&fs_info
->balance_lock
);
3108 update_balance_args(bctl
);
3109 spin_unlock(&fs_info
->balance_lock
);
3112 atomic_inc(&fs_info
->balance_running
);
3113 mutex_unlock(&fs_info
->balance_mutex
);
3115 ret
= __btrfs_balance(fs_info
);
3117 mutex_lock(&fs_info
->balance_mutex
);
3118 atomic_dec(&fs_info
->balance_running
);
3121 memset(bargs
, 0, sizeof(*bargs
));
3122 update_ioctl_balance_args(fs_info
, 0, bargs
);
3125 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3126 balance_need_close(fs_info
)) {
3127 __cancel_balance(fs_info
);
3130 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3131 fs_info
->num_tolerated_disk_barrier_failures
=
3132 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3135 wake_up(&fs_info
->balance_wait_q
);
3139 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3140 __cancel_balance(fs_info
);
3146 static int balance_kthread(void *data
)
3148 struct btrfs_fs_info
*fs_info
= data
;
3151 mutex_lock(&fs_info
->volume_mutex
);
3152 mutex_lock(&fs_info
->balance_mutex
);
3154 if (fs_info
->balance_ctl
) {
3155 printk(KERN_INFO
"btrfs: continuing balance\n");
3156 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3159 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3160 mutex_unlock(&fs_info
->balance_mutex
);
3161 mutex_unlock(&fs_info
->volume_mutex
);
3166 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3168 struct task_struct
*tsk
;
3170 spin_lock(&fs_info
->balance_lock
);
3171 if (!fs_info
->balance_ctl
) {
3172 spin_unlock(&fs_info
->balance_lock
);
3175 spin_unlock(&fs_info
->balance_lock
);
3177 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3178 printk(KERN_INFO
"btrfs: force skipping balance\n");
3182 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3183 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3185 return PTR_ERR(tsk
);
3190 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3192 struct btrfs_balance_control
*bctl
;
3193 struct btrfs_balance_item
*item
;
3194 struct btrfs_disk_balance_args disk_bargs
;
3195 struct btrfs_path
*path
;
3196 struct extent_buffer
*leaf
;
3197 struct btrfs_key key
;
3200 path
= btrfs_alloc_path();
3204 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3205 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3208 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3211 if (ret
> 0) { /* ret = -ENOENT; */
3216 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3222 leaf
= path
->nodes
[0];
3223 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3225 bctl
->fs_info
= fs_info
;
3226 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3227 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3229 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3230 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3231 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3232 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3233 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3234 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3236 mutex_lock(&fs_info
->volume_mutex
);
3237 mutex_lock(&fs_info
->balance_mutex
);
3239 set_balance_control(bctl
);
3241 mutex_unlock(&fs_info
->balance_mutex
);
3242 mutex_unlock(&fs_info
->volume_mutex
);
3244 btrfs_free_path(path
);
3248 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3252 mutex_lock(&fs_info
->balance_mutex
);
3253 if (!fs_info
->balance_ctl
) {
3254 mutex_unlock(&fs_info
->balance_mutex
);
3258 if (atomic_read(&fs_info
->balance_running
)) {
3259 atomic_inc(&fs_info
->balance_pause_req
);
3260 mutex_unlock(&fs_info
->balance_mutex
);
3262 wait_event(fs_info
->balance_wait_q
,
3263 atomic_read(&fs_info
->balance_running
) == 0);
3265 mutex_lock(&fs_info
->balance_mutex
);
3266 /* we are good with balance_ctl ripped off from under us */
3267 BUG_ON(atomic_read(&fs_info
->balance_running
));
3268 atomic_dec(&fs_info
->balance_pause_req
);
3273 mutex_unlock(&fs_info
->balance_mutex
);
3277 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3279 mutex_lock(&fs_info
->balance_mutex
);
3280 if (!fs_info
->balance_ctl
) {
3281 mutex_unlock(&fs_info
->balance_mutex
);
3285 atomic_inc(&fs_info
->balance_cancel_req
);
3287 * if we are running just wait and return, balance item is
3288 * deleted in btrfs_balance in this case
3290 if (atomic_read(&fs_info
->balance_running
)) {
3291 mutex_unlock(&fs_info
->balance_mutex
);
3292 wait_event(fs_info
->balance_wait_q
,
3293 atomic_read(&fs_info
->balance_running
) == 0);
3294 mutex_lock(&fs_info
->balance_mutex
);
3296 /* __cancel_balance needs volume_mutex */
3297 mutex_unlock(&fs_info
->balance_mutex
);
3298 mutex_lock(&fs_info
->volume_mutex
);
3299 mutex_lock(&fs_info
->balance_mutex
);
3301 if (fs_info
->balance_ctl
)
3302 __cancel_balance(fs_info
);
3304 mutex_unlock(&fs_info
->volume_mutex
);
3307 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3308 atomic_dec(&fs_info
->balance_cancel_req
);
3309 mutex_unlock(&fs_info
->balance_mutex
);
3314 * shrinking a device means finding all of the device extents past
3315 * the new size, and then following the back refs to the chunks.
3316 * The chunk relocation code actually frees the device extent
3318 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
3320 struct btrfs_trans_handle
*trans
;
3321 struct btrfs_root
*root
= device
->dev_root
;
3322 struct btrfs_dev_extent
*dev_extent
= NULL
;
3323 struct btrfs_path
*path
;
3331 bool retried
= false;
3332 struct extent_buffer
*l
;
3333 struct btrfs_key key
;
3334 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3335 u64 old_total
= btrfs_super_total_bytes(super_copy
);
3336 u64 old_size
= device
->total_bytes
;
3337 u64 diff
= device
->total_bytes
- new_size
;
3339 if (device
->is_tgtdev_for_dev_replace
)
3342 path
= btrfs_alloc_path();
3350 device
->total_bytes
= new_size
;
3351 if (device
->writeable
) {
3352 device
->fs_devices
->total_rw_bytes
-= diff
;
3353 spin_lock(&root
->fs_info
->free_chunk_lock
);
3354 root
->fs_info
->free_chunk_space
-= diff
;
3355 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3357 unlock_chunks(root
);
3360 key
.objectid
= device
->devid
;
3361 key
.offset
= (u64
)-1;
3362 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3365 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3369 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
3374 btrfs_release_path(path
);
3379 slot
= path
->slots
[0];
3380 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
3382 if (key
.objectid
!= device
->devid
) {
3383 btrfs_release_path(path
);
3387 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3388 length
= btrfs_dev_extent_length(l
, dev_extent
);
3390 if (key
.offset
+ length
<= new_size
) {
3391 btrfs_release_path(path
);
3395 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
3396 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
3397 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3398 btrfs_release_path(path
);
3400 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
3402 if (ret
&& ret
!= -ENOSPC
)
3406 } while (key
.offset
-- > 0);
3408 if (failed
&& !retried
) {
3412 } else if (failed
&& retried
) {
3416 device
->total_bytes
= old_size
;
3417 if (device
->writeable
)
3418 device
->fs_devices
->total_rw_bytes
+= diff
;
3419 spin_lock(&root
->fs_info
->free_chunk_lock
);
3420 root
->fs_info
->free_chunk_space
+= diff
;
3421 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3422 unlock_chunks(root
);
3426 /* Shrinking succeeded, else we would be at "done". */
3427 trans
= btrfs_start_transaction(root
, 0);
3428 if (IS_ERR(trans
)) {
3429 ret
= PTR_ERR(trans
);
3435 device
->disk_total_bytes
= new_size
;
3436 /* Now btrfs_update_device() will change the on-disk size. */
3437 ret
= btrfs_update_device(trans
, device
);
3439 unlock_chunks(root
);
3440 btrfs_end_transaction(trans
, root
);
3443 WARN_ON(diff
> old_total
);
3444 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
3445 unlock_chunks(root
);
3446 btrfs_end_transaction(trans
, root
);
3448 btrfs_free_path(path
);
3452 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
3453 struct btrfs_key
*key
,
3454 struct btrfs_chunk
*chunk
, int item_size
)
3456 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3457 struct btrfs_disk_key disk_key
;
3461 array_size
= btrfs_super_sys_array_size(super_copy
);
3462 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
3465 ptr
= super_copy
->sys_chunk_array
+ array_size
;
3466 btrfs_cpu_key_to_disk(&disk_key
, key
);
3467 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
3468 ptr
+= sizeof(disk_key
);
3469 memcpy(ptr
, chunk
, item_size
);
3470 item_size
+= sizeof(disk_key
);
3471 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
3476 * sort the devices in descending order by max_avail, total_avail
3478 static int btrfs_cmp_device_info(const void *a
, const void *b
)
3480 const struct btrfs_device_info
*di_a
= a
;
3481 const struct btrfs_device_info
*di_b
= b
;
3483 if (di_a
->max_avail
> di_b
->max_avail
)
3485 if (di_a
->max_avail
< di_b
->max_avail
)
3487 if (di_a
->total_avail
> di_b
->total_avail
)
3489 if (di_a
->total_avail
< di_b
->total_avail
)
3494 struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
3495 { 2, 1, 0, 4, 2, 2 /* raid10 */ },
3496 { 1, 1, 2, 2, 2, 2 /* raid1 */ },
3497 { 1, 2, 1, 1, 1, 2 /* dup */ },
3498 { 1, 1, 0, 2, 1, 1 /* raid0 */ },
3499 { 1, 1, 0, 1, 1, 1 /* single */ },
3502 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
3503 struct btrfs_root
*extent_root
,
3504 struct map_lookup
**map_ret
,
3505 u64
*num_bytes_out
, u64
*stripe_size_out
,
3506 u64 start
, u64 type
)
3508 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
3509 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
3510 struct list_head
*cur
;
3511 struct map_lookup
*map
= NULL
;
3512 struct extent_map_tree
*em_tree
;
3513 struct extent_map
*em
;
3514 struct btrfs_device_info
*devices_info
= NULL
;
3516 int num_stripes
; /* total number of stripes to allocate */
3517 int sub_stripes
; /* sub_stripes info for map */
3518 int dev_stripes
; /* stripes per dev */
3519 int devs_max
; /* max devs to use */
3520 int devs_min
; /* min devs needed */
3521 int devs_increment
; /* ndevs has to be a multiple of this */
3522 int ncopies
; /* how many copies to data has */
3524 u64 max_stripe_size
;
3533 BUG_ON(!alloc_profile_is_valid(type
, 0));
3535 if (list_empty(&fs_devices
->alloc_list
))
3538 index
= __get_raid_index(type
);
3540 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
3541 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
3542 devs_max
= btrfs_raid_array
[index
].devs_max
;
3543 devs_min
= btrfs_raid_array
[index
].devs_min
;
3544 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
3545 ncopies
= btrfs_raid_array
[index
].ncopies
;
3547 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
3548 max_stripe_size
= 1024 * 1024 * 1024;
3549 max_chunk_size
= 10 * max_stripe_size
;
3550 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
3551 /* for larger filesystems, use larger metadata chunks */
3552 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
3553 max_stripe_size
= 1024 * 1024 * 1024;
3555 max_stripe_size
= 256 * 1024 * 1024;
3556 max_chunk_size
= max_stripe_size
;
3557 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3558 max_stripe_size
= 32 * 1024 * 1024;
3559 max_chunk_size
= 2 * max_stripe_size
;
3561 printk(KERN_ERR
"btrfs: invalid chunk type 0x%llx requested\n",
3566 /* we don't want a chunk larger than 10% of writeable space */
3567 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
3570 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
3575 cur
= fs_devices
->alloc_list
.next
;
3578 * in the first pass through the devices list, we gather information
3579 * about the available holes on each device.
3582 while (cur
!= &fs_devices
->alloc_list
) {
3583 struct btrfs_device
*device
;
3587 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
3591 if (!device
->writeable
) {
3593 "btrfs: read-only device in alloc_list\n");
3597 if (!device
->in_fs_metadata
||
3598 device
->is_tgtdev_for_dev_replace
)
3601 if (device
->total_bytes
> device
->bytes_used
)
3602 total_avail
= device
->total_bytes
- device
->bytes_used
;
3606 /* If there is no space on this device, skip it. */
3607 if (total_avail
== 0)
3610 ret
= find_free_dev_extent(device
,
3611 max_stripe_size
* dev_stripes
,
3612 &dev_offset
, &max_avail
);
3613 if (ret
&& ret
!= -ENOSPC
)
3617 max_avail
= max_stripe_size
* dev_stripes
;
3619 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
3622 devices_info
[ndevs
].dev_offset
= dev_offset
;
3623 devices_info
[ndevs
].max_avail
= max_avail
;
3624 devices_info
[ndevs
].total_avail
= total_avail
;
3625 devices_info
[ndevs
].dev
= device
;
3627 WARN_ON(ndevs
> fs_devices
->rw_devices
);
3631 * now sort the devices by hole size / available space
3633 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
3634 btrfs_cmp_device_info
, NULL
);
3636 /* round down to number of usable stripes */
3637 ndevs
-= ndevs
% devs_increment
;
3639 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
3644 if (devs_max
&& ndevs
> devs_max
)
3647 * the primary goal is to maximize the number of stripes, so use as many
3648 * devices as possible, even if the stripes are not maximum sized.
3650 stripe_size
= devices_info
[ndevs
-1].max_avail
;
3651 num_stripes
= ndevs
* dev_stripes
;
3653 if (stripe_size
* ndevs
> max_chunk_size
* ncopies
) {
3654 stripe_size
= max_chunk_size
* ncopies
;
3655 do_div(stripe_size
, ndevs
);
3658 do_div(stripe_size
, dev_stripes
);
3660 /* align to BTRFS_STRIPE_LEN */
3661 do_div(stripe_size
, BTRFS_STRIPE_LEN
);
3662 stripe_size
*= BTRFS_STRIPE_LEN
;
3664 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
3669 map
->num_stripes
= num_stripes
;
3671 for (i
= 0; i
< ndevs
; ++i
) {
3672 for (j
= 0; j
< dev_stripes
; ++j
) {
3673 int s
= i
* dev_stripes
+ j
;
3674 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
3675 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
3679 map
->sector_size
= extent_root
->sectorsize
;
3680 map
->stripe_len
= BTRFS_STRIPE_LEN
;
3681 map
->io_align
= BTRFS_STRIPE_LEN
;
3682 map
->io_width
= BTRFS_STRIPE_LEN
;
3684 map
->sub_stripes
= sub_stripes
;
3687 num_bytes
= stripe_size
* (num_stripes
/ ncopies
);
3689 *stripe_size_out
= stripe_size
;
3690 *num_bytes_out
= num_bytes
;
3692 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
3694 em
= alloc_extent_map();
3699 em
->bdev
= (struct block_device
*)map
;
3701 em
->len
= num_bytes
;
3702 em
->block_start
= 0;
3703 em
->block_len
= em
->len
;
3705 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
3706 write_lock(&em_tree
->lock
);
3707 ret
= add_extent_mapping(em_tree
, em
);
3708 write_unlock(&em_tree
->lock
);
3709 free_extent_map(em
);
3713 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
3714 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
3719 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3720 struct btrfs_device
*device
;
3723 device
= map
->stripes
[i
].dev
;
3724 dev_offset
= map
->stripes
[i
].physical
;
3726 ret
= btrfs_alloc_dev_extent(trans
, device
,
3727 info
->chunk_root
->root_key
.objectid
,
3728 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
3729 start
, dev_offset
, stripe_size
);
3731 btrfs_abort_transaction(trans
, extent_root
, ret
);
3736 kfree(devices_info
);
3741 kfree(devices_info
);
3745 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
3746 struct btrfs_root
*extent_root
,
3747 struct map_lookup
*map
, u64 chunk_offset
,
3748 u64 chunk_size
, u64 stripe_size
)
3751 struct btrfs_key key
;
3752 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
3753 struct btrfs_device
*device
;
3754 struct btrfs_chunk
*chunk
;
3755 struct btrfs_stripe
*stripe
;
3756 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
3760 chunk
= kzalloc(item_size
, GFP_NOFS
);
3765 while (index
< map
->num_stripes
) {
3766 device
= map
->stripes
[index
].dev
;
3767 device
->bytes_used
+= stripe_size
;
3768 ret
= btrfs_update_device(trans
, device
);
3774 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
3775 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
3777 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
3780 stripe
= &chunk
->stripe
;
3781 while (index
< map
->num_stripes
) {
3782 device
= map
->stripes
[index
].dev
;
3783 dev_offset
= map
->stripes
[index
].physical
;
3785 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
3786 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
3787 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
3792 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
3793 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
3794 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
3795 btrfs_set_stack_chunk_type(chunk
, map
->type
);
3796 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
3797 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
3798 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
3799 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
3800 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
3802 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3803 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3804 key
.offset
= chunk_offset
;
3806 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
3808 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3810 * TODO: Cleanup of inserted chunk root in case of
3813 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
3823 * Chunk allocation falls into two parts. The first part does works
3824 * that make the new allocated chunk useable, but not do any operation
3825 * that modifies the chunk tree. The second part does the works that
3826 * require modifying the chunk tree. This division is important for the
3827 * bootstrap process of adding storage to a seed btrfs.
3829 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
3830 struct btrfs_root
*extent_root
, u64 type
)
3835 struct map_lookup
*map
;
3836 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
3839 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
3844 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
3845 &stripe_size
, chunk_offset
, type
);
3849 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
3850 chunk_size
, stripe_size
);
3856 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
3857 struct btrfs_root
*root
,
3858 struct btrfs_device
*device
)
3861 u64 sys_chunk_offset
;
3865 u64 sys_stripe_size
;
3867 struct map_lookup
*map
;
3868 struct map_lookup
*sys_map
;
3869 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3870 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3873 ret
= find_next_chunk(fs_info
->chunk_root
,
3874 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
3878 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
3879 fs_info
->avail_metadata_alloc_bits
;
3880 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
3882 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
3883 &stripe_size
, chunk_offset
, alloc_profile
);
3887 sys_chunk_offset
= chunk_offset
+ chunk_size
;
3889 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
3890 fs_info
->avail_system_alloc_bits
;
3891 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
3893 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
3894 &sys_chunk_size
, &sys_stripe_size
,
3895 sys_chunk_offset
, alloc_profile
);
3897 btrfs_abort_transaction(trans
, root
, ret
);
3901 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
3903 btrfs_abort_transaction(trans
, root
, ret
);
3908 * Modifying chunk tree needs allocating new blocks from both
3909 * system block group and metadata block group. So we only can
3910 * do operations require modifying the chunk tree after both
3911 * block groups were created.
3913 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
3914 chunk_size
, stripe_size
);
3916 btrfs_abort_transaction(trans
, root
, ret
);
3920 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
3921 sys_chunk_offset
, sys_chunk_size
,
3924 btrfs_abort_transaction(trans
, root
, ret
);
3931 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
3933 struct extent_map
*em
;
3934 struct map_lookup
*map
;
3935 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
3939 read_lock(&map_tree
->map_tree
.lock
);
3940 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
3941 read_unlock(&map_tree
->map_tree
.lock
);
3945 if (btrfs_test_opt(root
, DEGRADED
)) {
3946 free_extent_map(em
);
3950 map
= (struct map_lookup
*)em
->bdev
;
3951 for (i
= 0; i
< map
->num_stripes
; i
++) {
3952 if (!map
->stripes
[i
].dev
->writeable
) {
3957 free_extent_map(em
);
3961 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
3963 extent_map_tree_init(&tree
->map_tree
);
3966 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
3968 struct extent_map
*em
;
3971 write_lock(&tree
->map_tree
.lock
);
3972 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
3974 remove_extent_mapping(&tree
->map_tree
, em
);
3975 write_unlock(&tree
->map_tree
.lock
);
3980 free_extent_map(em
);
3981 /* once for the tree */
3982 free_extent_map(em
);
3986 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
3988 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
3989 struct extent_map
*em
;
3990 struct map_lookup
*map
;
3991 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
3994 read_lock(&em_tree
->lock
);
3995 em
= lookup_extent_mapping(em_tree
, logical
, len
);
3996 read_unlock(&em_tree
->lock
);
3999 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4000 map
= (struct map_lookup
*)em
->bdev
;
4001 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
4002 ret
= map
->num_stripes
;
4003 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4004 ret
= map
->sub_stripes
;
4007 free_extent_map(em
);
4009 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
4010 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
4012 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
4017 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
4018 struct map_lookup
*map
, int first
, int num
,
4019 int optimal
, int dev_replace_is_ongoing
)
4023 struct btrfs_device
*srcdev
;
4025 if (dev_replace_is_ongoing
&&
4026 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
4027 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
4028 srcdev
= fs_info
->dev_replace
.srcdev
;
4033 * try to avoid the drive that is the source drive for a
4034 * dev-replace procedure, only choose it if no other non-missing
4035 * mirror is available
4037 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
4038 if (map
->stripes
[optimal
].dev
->bdev
&&
4039 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
4041 for (i
= first
; i
< first
+ num
; i
++) {
4042 if (map
->stripes
[i
].dev
->bdev
&&
4043 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
4048 /* we couldn't find one that doesn't fail. Just return something
4049 * and the io error handling code will clean up eventually
4054 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
4055 u64 logical
, u64
*length
,
4056 struct btrfs_bio
**bbio_ret
,
4059 struct extent_map
*em
;
4060 struct map_lookup
*map
;
4061 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4062 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4065 u64 stripe_end_offset
;
4074 struct btrfs_bio
*bbio
= NULL
;
4075 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
4076 int dev_replace_is_ongoing
= 0;
4077 int num_alloc_stripes
;
4078 int patch_the_first_stripe_for_dev_replace
= 0;
4079 u64 physical_to_patch_in_first_stripe
= 0;
4081 read_lock(&em_tree
->lock
);
4082 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
4083 read_unlock(&em_tree
->lock
);
4086 printk(KERN_CRIT
"btrfs: unable to find logical %llu len %llu\n",
4087 (unsigned long long)logical
,
4088 (unsigned long long)*length
);
4092 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4093 map
= (struct map_lookup
*)em
->bdev
;
4094 offset
= logical
- em
->start
;
4098 * stripe_nr counts the total number of stripes we have to stride
4099 * to get to this block
4101 do_div(stripe_nr
, map
->stripe_len
);
4103 stripe_offset
= stripe_nr
* map
->stripe_len
;
4104 BUG_ON(offset
< stripe_offset
);
4106 /* stripe_offset is the offset of this block in its stripe*/
4107 stripe_offset
= offset
- stripe_offset
;
4109 if (rw
& REQ_DISCARD
)
4110 *length
= min_t(u64
, em
->len
- offset
, *length
);
4111 else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
4112 /* we limit the length of each bio to what fits in a stripe */
4113 *length
= min_t(u64
, em
->len
- offset
,
4114 map
->stripe_len
- stripe_offset
);
4116 *length
= em
->len
- offset
;
4122 btrfs_dev_replace_lock(dev_replace
);
4123 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
4124 if (!dev_replace_is_ongoing
)
4125 btrfs_dev_replace_unlock(dev_replace
);
4127 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
4128 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
4129 dev_replace
->tgtdev
!= NULL
) {
4131 * in dev-replace case, for repair case (that's the only
4132 * case where the mirror is selected explicitly when
4133 * calling btrfs_map_block), blocks left of the left cursor
4134 * can also be read from the target drive.
4135 * For REQ_GET_READ_MIRRORS, the target drive is added as
4136 * the last one to the array of stripes. For READ, it also
4137 * needs to be supported using the same mirror number.
4138 * If the requested block is not left of the left cursor,
4139 * EIO is returned. This can happen because btrfs_num_copies()
4140 * returns one more in the dev-replace case.
4142 u64 tmp_length
= *length
;
4143 struct btrfs_bio
*tmp_bbio
= NULL
;
4144 int tmp_num_stripes
;
4145 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
4146 int index_srcdev
= 0;
4148 u64 physical_of_found
= 0;
4150 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
4151 logical
, &tmp_length
, &tmp_bbio
, 0);
4153 WARN_ON(tmp_bbio
!= NULL
);
4157 tmp_num_stripes
= tmp_bbio
->num_stripes
;
4158 if (mirror_num
> tmp_num_stripes
) {
4160 * REQ_GET_READ_MIRRORS does not contain this
4161 * mirror, that means that the requested area
4162 * is not left of the left cursor
4170 * process the rest of the function using the mirror_num
4171 * of the source drive. Therefore look it up first.
4172 * At the end, patch the device pointer to the one of the
4175 for (i
= 0; i
< tmp_num_stripes
; i
++) {
4176 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
4178 * In case of DUP, in order to keep it
4179 * simple, only add the mirror with the
4180 * lowest physical address
4183 physical_of_found
<=
4184 tmp_bbio
->stripes
[i
].physical
)
4189 tmp_bbio
->stripes
[i
].physical
;
4194 mirror_num
= index_srcdev
+ 1;
4195 patch_the_first_stripe_for_dev_replace
= 1;
4196 physical_to_patch_in_first_stripe
= physical_of_found
;
4205 } else if (mirror_num
> map
->num_stripes
) {
4211 stripe_nr_orig
= stripe_nr
;
4212 stripe_nr_end
= (offset
+ *length
+ map
->stripe_len
- 1) &
4213 (~(map
->stripe_len
- 1));
4214 do_div(stripe_nr_end
, map
->stripe_len
);
4215 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
4217 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
4218 if (rw
& REQ_DISCARD
)
4219 num_stripes
= min_t(u64
, map
->num_stripes
,
4220 stripe_nr_end
- stripe_nr_orig
);
4221 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
4222 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
4223 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
4224 num_stripes
= map
->num_stripes
;
4225 else if (mirror_num
)
4226 stripe_index
= mirror_num
- 1;
4228 stripe_index
= find_live_mirror(fs_info
, map
, 0,
4230 current
->pid
% map
->num_stripes
,
4231 dev_replace_is_ongoing
);
4232 mirror_num
= stripe_index
+ 1;
4235 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
4236 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
4237 num_stripes
= map
->num_stripes
;
4238 } else if (mirror_num
) {
4239 stripe_index
= mirror_num
- 1;
4244 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
4245 int factor
= map
->num_stripes
/ map
->sub_stripes
;
4247 stripe_index
= do_div(stripe_nr
, factor
);
4248 stripe_index
*= map
->sub_stripes
;
4250 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
4251 num_stripes
= map
->sub_stripes
;
4252 else if (rw
& REQ_DISCARD
)
4253 num_stripes
= min_t(u64
, map
->sub_stripes
*
4254 (stripe_nr_end
- stripe_nr_orig
),
4256 else if (mirror_num
)
4257 stripe_index
+= mirror_num
- 1;
4259 int old_stripe_index
= stripe_index
;
4260 stripe_index
= find_live_mirror(fs_info
, map
,
4262 map
->sub_stripes
, stripe_index
+
4263 current
->pid
% map
->sub_stripes
,
4264 dev_replace_is_ongoing
);
4265 mirror_num
= stripe_index
- old_stripe_index
+ 1;
4269 * after this do_div call, stripe_nr is the number of stripes
4270 * on this device we have to walk to find the data, and
4271 * stripe_index is the number of our device in the stripe array
4273 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
4274 mirror_num
= stripe_index
+ 1;
4276 BUG_ON(stripe_index
>= map
->num_stripes
);
4278 num_alloc_stripes
= num_stripes
;
4279 if (dev_replace_is_ongoing
) {
4280 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
4281 num_alloc_stripes
<<= 1;
4282 if (rw
& REQ_GET_READ_MIRRORS
)
4283 num_alloc_stripes
++;
4285 bbio
= kzalloc(btrfs_bio_size(num_alloc_stripes
), GFP_NOFS
);
4290 atomic_set(&bbio
->error
, 0);
4292 if (rw
& REQ_DISCARD
) {
4294 int sub_stripes
= 0;
4295 u64 stripes_per_dev
= 0;
4296 u32 remaining_stripes
= 0;
4297 u32 last_stripe
= 0;
4300 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
4301 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
4304 sub_stripes
= map
->sub_stripes
;
4306 factor
= map
->num_stripes
/ sub_stripes
;
4307 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
4310 &remaining_stripes
);
4311 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
4312 last_stripe
*= sub_stripes
;
4315 for (i
= 0; i
< num_stripes
; i
++) {
4316 bbio
->stripes
[i
].physical
=
4317 map
->stripes
[stripe_index
].physical
+
4318 stripe_offset
+ stripe_nr
* map
->stripe_len
;
4319 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
4321 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
4322 BTRFS_BLOCK_GROUP_RAID10
)) {
4323 bbio
->stripes
[i
].length
= stripes_per_dev
*
4326 if (i
/ sub_stripes
< remaining_stripes
)
4327 bbio
->stripes
[i
].length
+=
4331 * Special for the first stripe and
4334 * |-------|...|-------|
4338 if (i
< sub_stripes
)
4339 bbio
->stripes
[i
].length
-=
4342 if (stripe_index
>= last_stripe
&&
4343 stripe_index
<= (last_stripe
+
4345 bbio
->stripes
[i
].length
-=
4348 if (i
== sub_stripes
- 1)
4351 bbio
->stripes
[i
].length
= *length
;
4354 if (stripe_index
== map
->num_stripes
) {
4355 /* This could only happen for RAID0/10 */
4361 for (i
= 0; i
< num_stripes
; i
++) {
4362 bbio
->stripes
[i
].physical
=
4363 map
->stripes
[stripe_index
].physical
+
4365 stripe_nr
* map
->stripe_len
;
4366 bbio
->stripes
[i
].dev
=
4367 map
->stripes
[stripe_index
].dev
;
4372 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) {
4373 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
4374 BTRFS_BLOCK_GROUP_RAID10
|
4375 BTRFS_BLOCK_GROUP_DUP
)) {
4380 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
4381 dev_replace
->tgtdev
!= NULL
) {
4382 int index_where_to_add
;
4383 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
4386 * duplicate the write operations while the dev replace
4387 * procedure is running. Since the copying of the old disk
4388 * to the new disk takes place at run time while the
4389 * filesystem is mounted writable, the regular write
4390 * operations to the old disk have to be duplicated to go
4391 * to the new disk as well.
4392 * Note that device->missing is handled by the caller, and
4393 * that the write to the old disk is already set up in the
4396 index_where_to_add
= num_stripes
;
4397 for (i
= 0; i
< num_stripes
; i
++) {
4398 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
4399 /* write to new disk, too */
4400 struct btrfs_bio_stripe
*new =
4401 bbio
->stripes
+ index_where_to_add
;
4402 struct btrfs_bio_stripe
*old
=
4405 new->physical
= old
->physical
;
4406 new->length
= old
->length
;
4407 new->dev
= dev_replace
->tgtdev
;
4408 index_where_to_add
++;
4412 num_stripes
= index_where_to_add
;
4413 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
4414 dev_replace
->tgtdev
!= NULL
) {
4415 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
4416 int index_srcdev
= 0;
4418 u64 physical_of_found
= 0;
4421 * During the dev-replace procedure, the target drive can
4422 * also be used to read data in case it is needed to repair
4423 * a corrupt block elsewhere. This is possible if the
4424 * requested area is left of the left cursor. In this area,
4425 * the target drive is a full copy of the source drive.
4427 for (i
= 0; i
< num_stripes
; i
++) {
4428 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
4430 * In case of DUP, in order to keep it
4431 * simple, only add the mirror with the
4432 * lowest physical address
4435 physical_of_found
<=
4436 bbio
->stripes
[i
].physical
)
4440 physical_of_found
= bbio
->stripes
[i
].physical
;
4444 u64 length
= map
->stripe_len
;
4446 if (physical_of_found
+ length
<=
4447 dev_replace
->cursor_left
) {
4448 struct btrfs_bio_stripe
*tgtdev_stripe
=
4449 bbio
->stripes
+ num_stripes
;
4451 tgtdev_stripe
->physical
= physical_of_found
;
4452 tgtdev_stripe
->length
=
4453 bbio
->stripes
[index_srcdev
].length
;
4454 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
4462 bbio
->num_stripes
= num_stripes
;
4463 bbio
->max_errors
= max_errors
;
4464 bbio
->mirror_num
= mirror_num
;
4467 * this is the case that REQ_READ && dev_replace_is_ongoing &&
4468 * mirror_num == num_stripes + 1 && dev_replace target drive is
4469 * available as a mirror
4471 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
4472 WARN_ON(num_stripes
> 1);
4473 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
4474 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
4475 bbio
->mirror_num
= map
->num_stripes
+ 1;
4478 if (dev_replace_is_ongoing
)
4479 btrfs_dev_replace_unlock(dev_replace
);
4480 free_extent_map(em
);
4484 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
4485 u64 logical
, u64
*length
,
4486 struct btrfs_bio
**bbio_ret
, int mirror_num
)
4488 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
4492 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
4493 u64 chunk_start
, u64 physical
, u64 devid
,
4494 u64
**logical
, int *naddrs
, int *stripe_len
)
4496 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4497 struct extent_map
*em
;
4498 struct map_lookup
*map
;
4505 read_lock(&em_tree
->lock
);
4506 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
4507 read_unlock(&em_tree
->lock
);
4509 BUG_ON(!em
|| em
->start
!= chunk_start
);
4510 map
= (struct map_lookup
*)em
->bdev
;
4513 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4514 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
4515 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
4516 do_div(length
, map
->num_stripes
);
4518 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
4519 BUG_ON(!buf
); /* -ENOMEM */
4521 for (i
= 0; i
< map
->num_stripes
; i
++) {
4522 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
4524 if (map
->stripes
[i
].physical
> physical
||
4525 map
->stripes
[i
].physical
+ length
<= physical
)
4528 stripe_nr
= physical
- map
->stripes
[i
].physical
;
4529 do_div(stripe_nr
, map
->stripe_len
);
4531 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
4532 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
4533 do_div(stripe_nr
, map
->sub_stripes
);
4534 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
4535 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
4537 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
4538 WARN_ON(nr
>= map
->num_stripes
);
4539 for (j
= 0; j
< nr
; j
++) {
4540 if (buf
[j
] == bytenr
)
4544 WARN_ON(nr
>= map
->num_stripes
);
4551 *stripe_len
= map
->stripe_len
;
4553 free_extent_map(em
);
4557 static void *merge_stripe_index_into_bio_private(void *bi_private
,
4558 unsigned int stripe_index
)
4561 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4563 * The alternative solution (instead of stealing bits from the
4564 * pointer) would be to allocate an intermediate structure
4565 * that contains the old private pointer plus the stripe_index.
4567 BUG_ON((((uintptr_t)bi_private
) & 3) != 0);
4568 BUG_ON(stripe_index
> 3);
4569 return (void *)(((uintptr_t)bi_private
) | stripe_index
);
4572 static struct btrfs_bio
*extract_bbio_from_bio_private(void *bi_private
)
4574 return (struct btrfs_bio
*)(((uintptr_t)bi_private
) & ~((uintptr_t)3));
4577 static unsigned int extract_stripe_index_from_bio_private(void *bi_private
)
4579 return (unsigned int)((uintptr_t)bi_private
) & 3;
4582 static void btrfs_end_bio(struct bio
*bio
, int err
)
4584 struct btrfs_bio
*bbio
= extract_bbio_from_bio_private(bio
->bi_private
);
4585 int is_orig_bio
= 0;
4588 atomic_inc(&bbio
->error
);
4589 if (err
== -EIO
|| err
== -EREMOTEIO
) {
4590 unsigned int stripe_index
=
4591 extract_stripe_index_from_bio_private(
4593 struct btrfs_device
*dev
;
4595 BUG_ON(stripe_index
>= bbio
->num_stripes
);
4596 dev
= bbio
->stripes
[stripe_index
].dev
;
4598 if (bio
->bi_rw
& WRITE
)
4599 btrfs_dev_stat_inc(dev
,
4600 BTRFS_DEV_STAT_WRITE_ERRS
);
4602 btrfs_dev_stat_inc(dev
,
4603 BTRFS_DEV_STAT_READ_ERRS
);
4604 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
4605 btrfs_dev_stat_inc(dev
,
4606 BTRFS_DEV_STAT_FLUSH_ERRS
);
4607 btrfs_dev_stat_print_on_error(dev
);
4612 if (bio
== bbio
->orig_bio
)
4615 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
4618 bio
= bbio
->orig_bio
;
4620 bio
->bi_private
= bbio
->private;
4621 bio
->bi_end_io
= bbio
->end_io
;
4622 bio
->bi_bdev
= (struct block_device
*)
4623 (unsigned long)bbio
->mirror_num
;
4624 /* only send an error to the higher layers if it is
4625 * beyond the tolerance of the multi-bio
4627 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
4631 * this bio is actually up to date, we didn't
4632 * go over the max number of errors
4634 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
4639 bio_endio(bio
, err
);
4640 } else if (!is_orig_bio
) {
4645 struct async_sched
{
4648 struct btrfs_fs_info
*info
;
4649 struct btrfs_work work
;
4653 * see run_scheduled_bios for a description of why bios are collected for
4656 * This will add one bio to the pending list for a device and make sure
4657 * the work struct is scheduled.
4659 static noinline
void schedule_bio(struct btrfs_root
*root
,
4660 struct btrfs_device
*device
,
4661 int rw
, struct bio
*bio
)
4663 int should_queue
= 1;
4664 struct btrfs_pending_bios
*pending_bios
;
4666 /* don't bother with additional async steps for reads, right now */
4667 if (!(rw
& REQ_WRITE
)) {
4669 btrfsic_submit_bio(rw
, bio
);
4675 * nr_async_bios allows us to reliably return congestion to the
4676 * higher layers. Otherwise, the async bio makes it appear we have
4677 * made progress against dirty pages when we've really just put it
4678 * on a queue for later
4680 atomic_inc(&root
->fs_info
->nr_async_bios
);
4681 WARN_ON(bio
->bi_next
);
4682 bio
->bi_next
= NULL
;
4685 spin_lock(&device
->io_lock
);
4686 if (bio
->bi_rw
& REQ_SYNC
)
4687 pending_bios
= &device
->pending_sync_bios
;
4689 pending_bios
= &device
->pending_bios
;
4691 if (pending_bios
->tail
)
4692 pending_bios
->tail
->bi_next
= bio
;
4694 pending_bios
->tail
= bio
;
4695 if (!pending_bios
->head
)
4696 pending_bios
->head
= bio
;
4697 if (device
->running_pending
)
4700 spin_unlock(&device
->io_lock
);
4703 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
4707 static int bio_size_ok(struct block_device
*bdev
, struct bio
*bio
,
4710 struct bio_vec
*prev
;
4711 struct request_queue
*q
= bdev_get_queue(bdev
);
4712 unsigned short max_sectors
= queue_max_sectors(q
);
4713 struct bvec_merge_data bvm
= {
4715 .bi_sector
= sector
,
4716 .bi_rw
= bio
->bi_rw
,
4719 if (bio
->bi_vcnt
== 0) {
4724 prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
4725 if ((bio
->bi_size
>> 9) > max_sectors
)
4728 if (!q
->merge_bvec_fn
)
4731 bvm
.bi_size
= bio
->bi_size
- prev
->bv_len
;
4732 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
)
4737 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
4738 struct bio
*bio
, u64 physical
, int dev_nr
,
4741 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
4743 bio
->bi_private
= bbio
;
4744 bio
->bi_private
= merge_stripe_index_into_bio_private(
4745 bio
->bi_private
, (unsigned int)dev_nr
);
4746 bio
->bi_end_io
= btrfs_end_bio
;
4747 bio
->bi_sector
= physical
>> 9;
4750 struct rcu_string
*name
;
4753 name
= rcu_dereference(dev
->name
);
4754 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
4755 "(%s id %llu), size=%u\n", rw
,
4756 (u64
)bio
->bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
4757 name
->str
, dev
->devid
, bio
->bi_size
);
4761 bio
->bi_bdev
= dev
->bdev
;
4763 schedule_bio(root
, dev
, rw
, bio
);
4765 btrfsic_submit_bio(rw
, bio
);
4768 static int breakup_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
4769 struct bio
*first_bio
, struct btrfs_device
*dev
,
4770 int dev_nr
, int rw
, int async
)
4772 struct bio_vec
*bvec
= first_bio
->bi_io_vec
;
4774 int nr_vecs
= bio_get_nr_vecs(dev
->bdev
);
4775 u64 physical
= bbio
->stripes
[dev_nr
].physical
;
4778 bio
= btrfs_bio_alloc(dev
->bdev
, physical
>> 9, nr_vecs
, GFP_NOFS
);
4782 while (bvec
<= (first_bio
->bi_io_vec
+ first_bio
->bi_vcnt
- 1)) {
4783 if (bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
4784 bvec
->bv_offset
) < bvec
->bv_len
) {
4785 u64 len
= bio
->bi_size
;
4787 atomic_inc(&bbio
->stripes_pending
);
4788 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
,
4796 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
, rw
, async
);
4800 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
4802 atomic_inc(&bbio
->error
);
4803 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
4804 bio
->bi_private
= bbio
->private;
4805 bio
->bi_end_io
= bbio
->end_io
;
4806 bio
->bi_bdev
= (struct block_device
*)
4807 (unsigned long)bbio
->mirror_num
;
4808 bio
->bi_sector
= logical
>> 9;
4810 bio_endio(bio
, -EIO
);
4814 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
4815 int mirror_num
, int async_submit
)
4817 struct btrfs_device
*dev
;
4818 struct bio
*first_bio
= bio
;
4819 u64 logical
= (u64
)bio
->bi_sector
<< 9;
4825 struct btrfs_bio
*bbio
= NULL
;
4827 length
= bio
->bi_size
;
4828 map_length
= length
;
4830 ret
= btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
4835 total_devs
= bbio
->num_stripes
;
4836 if (map_length
< length
) {
4837 printk(KERN_CRIT
"btrfs: mapping failed logical %llu bio len %llu "
4838 "len %llu\n", (unsigned long long)logical
,
4839 (unsigned long long)length
,
4840 (unsigned long long)map_length
);
4844 bbio
->orig_bio
= first_bio
;
4845 bbio
->private = first_bio
->bi_private
;
4846 bbio
->end_io
= first_bio
->bi_end_io
;
4847 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
4849 while (dev_nr
< total_devs
) {
4850 dev
= bbio
->stripes
[dev_nr
].dev
;
4851 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
4852 bbio_error(bbio
, first_bio
, logical
);
4858 * Check and see if we're ok with this bio based on it's size
4859 * and offset with the given device.
4861 if (!bio_size_ok(dev
->bdev
, first_bio
,
4862 bbio
->stripes
[dev_nr
].physical
>> 9)) {
4863 ret
= breakup_stripe_bio(root
, bbio
, first_bio
, dev
,
4864 dev_nr
, rw
, async_submit
);
4870 if (dev_nr
< total_devs
- 1) {
4871 bio
= bio_clone(first_bio
, GFP_NOFS
);
4872 BUG_ON(!bio
); /* -ENOMEM */
4877 submit_stripe_bio(root
, bbio
, bio
,
4878 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
4885 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
4888 struct btrfs_device
*device
;
4889 struct btrfs_fs_devices
*cur_devices
;
4891 cur_devices
= fs_info
->fs_devices
;
4892 while (cur_devices
) {
4894 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
4895 device
= __find_device(&cur_devices
->devices
,
4900 cur_devices
= cur_devices
->seed
;
4905 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
4906 u64 devid
, u8
*dev_uuid
)
4908 struct btrfs_device
*device
;
4909 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
4911 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
4914 list_add(&device
->dev_list
,
4915 &fs_devices
->devices
);
4916 device
->dev_root
= root
->fs_info
->dev_root
;
4917 device
->devid
= devid
;
4918 device
->work
.func
= pending_bios_fn
;
4919 device
->fs_devices
= fs_devices
;
4920 device
->missing
= 1;
4921 fs_devices
->num_devices
++;
4922 fs_devices
->missing_devices
++;
4923 spin_lock_init(&device
->io_lock
);
4924 INIT_LIST_HEAD(&device
->dev_alloc_list
);
4925 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
4929 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
4930 struct extent_buffer
*leaf
,
4931 struct btrfs_chunk
*chunk
)
4933 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4934 struct map_lookup
*map
;
4935 struct extent_map
*em
;
4939 u8 uuid
[BTRFS_UUID_SIZE
];
4944 logical
= key
->offset
;
4945 length
= btrfs_chunk_length(leaf
, chunk
);
4947 read_lock(&map_tree
->map_tree
.lock
);
4948 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
4949 read_unlock(&map_tree
->map_tree
.lock
);
4951 /* already mapped? */
4952 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
4953 free_extent_map(em
);
4956 free_extent_map(em
);
4959 em
= alloc_extent_map();
4962 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
4963 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4965 free_extent_map(em
);
4969 em
->bdev
= (struct block_device
*)map
;
4970 em
->start
= logical
;
4973 em
->block_start
= 0;
4974 em
->block_len
= em
->len
;
4976 map
->num_stripes
= num_stripes
;
4977 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
4978 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
4979 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
4980 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
4981 map
->type
= btrfs_chunk_type(leaf
, chunk
);
4982 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
4983 for (i
= 0; i
< num_stripes
; i
++) {
4984 map
->stripes
[i
].physical
=
4985 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
4986 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
4987 read_extent_buffer(leaf
, uuid
, (unsigned long)
4988 btrfs_stripe_dev_uuid_nr(chunk
, i
),
4990 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
4992 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
4994 free_extent_map(em
);
4997 if (!map
->stripes
[i
].dev
) {
4998 map
->stripes
[i
].dev
=
4999 add_missing_dev(root
, devid
, uuid
);
5000 if (!map
->stripes
[i
].dev
) {
5002 free_extent_map(em
);
5006 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
5009 write_lock(&map_tree
->map_tree
.lock
);
5010 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
5011 write_unlock(&map_tree
->map_tree
.lock
);
5012 BUG_ON(ret
); /* Tree corruption */
5013 free_extent_map(em
);
5018 static void fill_device_from_item(struct extent_buffer
*leaf
,
5019 struct btrfs_dev_item
*dev_item
,
5020 struct btrfs_device
*device
)
5024 device
->devid
= btrfs_device_id(leaf
, dev_item
);
5025 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
5026 device
->total_bytes
= device
->disk_total_bytes
;
5027 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
5028 device
->type
= btrfs_device_type(leaf
, dev_item
);
5029 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
5030 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
5031 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
5032 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
5033 device
->is_tgtdev_for_dev_replace
= 0;
5035 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
5036 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
5039 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
5041 struct btrfs_fs_devices
*fs_devices
;
5044 BUG_ON(!mutex_is_locked(&uuid_mutex
));
5046 fs_devices
= root
->fs_info
->fs_devices
->seed
;
5047 while (fs_devices
) {
5048 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5052 fs_devices
= fs_devices
->seed
;
5055 fs_devices
= find_fsid(fsid
);
5061 fs_devices
= clone_fs_devices(fs_devices
);
5062 if (IS_ERR(fs_devices
)) {
5063 ret
= PTR_ERR(fs_devices
);
5067 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
5068 root
->fs_info
->bdev_holder
);
5070 free_fs_devices(fs_devices
);
5074 if (!fs_devices
->seeding
) {
5075 __btrfs_close_devices(fs_devices
);
5076 free_fs_devices(fs_devices
);
5081 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
5082 root
->fs_info
->fs_devices
->seed
= fs_devices
;
5087 static int read_one_dev(struct btrfs_root
*root
,
5088 struct extent_buffer
*leaf
,
5089 struct btrfs_dev_item
*dev_item
)
5091 struct btrfs_device
*device
;
5094 u8 fs_uuid
[BTRFS_UUID_SIZE
];
5095 u8 dev_uuid
[BTRFS_UUID_SIZE
];
5097 devid
= btrfs_device_id(leaf
, dev_item
);
5098 read_extent_buffer(leaf
, dev_uuid
,
5099 (unsigned long)btrfs_device_uuid(dev_item
),
5101 read_extent_buffer(leaf
, fs_uuid
,
5102 (unsigned long)btrfs_device_fsid(dev_item
),
5105 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
5106 ret
= open_seed_devices(root
, fs_uuid
);
5107 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
5111 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
5112 if (!device
|| !device
->bdev
) {
5113 if (!btrfs_test_opt(root
, DEGRADED
))
5117 printk(KERN_WARNING
"warning devid %llu missing\n",
5118 (unsigned long long)devid
);
5119 device
= add_missing_dev(root
, devid
, dev_uuid
);
5122 } else if (!device
->missing
) {
5124 * this happens when a device that was properly setup
5125 * in the device info lists suddenly goes bad.
5126 * device->bdev is NULL, and so we have to set
5127 * device->missing to one here
5129 root
->fs_info
->fs_devices
->missing_devices
++;
5130 device
->missing
= 1;
5134 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
5135 BUG_ON(device
->writeable
);
5136 if (device
->generation
!=
5137 btrfs_device_generation(leaf
, dev_item
))
5141 fill_device_from_item(leaf
, dev_item
, device
);
5142 device
->dev_root
= root
->fs_info
->dev_root
;
5143 device
->in_fs_metadata
= 1;
5144 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
5145 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
5146 spin_lock(&root
->fs_info
->free_chunk_lock
);
5147 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
5149 spin_unlock(&root
->fs_info
->free_chunk_lock
);
5155 int btrfs_read_sys_array(struct btrfs_root
*root
)
5157 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
5158 struct extent_buffer
*sb
;
5159 struct btrfs_disk_key
*disk_key
;
5160 struct btrfs_chunk
*chunk
;
5162 unsigned long sb_ptr
;
5168 struct btrfs_key key
;
5170 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
5171 BTRFS_SUPER_INFO_SIZE
);
5174 btrfs_set_buffer_uptodate(sb
);
5175 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
5177 * The sb extent buffer is artifical and just used to read the system array.
5178 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5179 * pages up-to-date when the page is larger: extent does not cover the
5180 * whole page and consequently check_page_uptodate does not find all
5181 * the page's extents up-to-date (the hole beyond sb),
5182 * write_extent_buffer then triggers a WARN_ON.
5184 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5185 * but sb spans only this function. Add an explicit SetPageUptodate call
5186 * to silence the warning eg. on PowerPC 64.
5188 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
5189 SetPageUptodate(sb
->pages
[0]);
5191 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
5192 array_size
= btrfs_super_sys_array_size(super_copy
);
5194 ptr
= super_copy
->sys_chunk_array
;
5195 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
5198 while (cur
< array_size
) {
5199 disk_key
= (struct btrfs_disk_key
*)ptr
;
5200 btrfs_disk_key_to_cpu(&key
, disk_key
);
5202 len
= sizeof(*disk_key
); ptr
+= len
;
5206 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
5207 chunk
= (struct btrfs_chunk
*)sb_ptr
;
5208 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
5211 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
5212 len
= btrfs_chunk_item_size(num_stripes
);
5221 free_extent_buffer(sb
);
5225 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
5227 struct btrfs_path
*path
;
5228 struct extent_buffer
*leaf
;
5229 struct btrfs_key key
;
5230 struct btrfs_key found_key
;
5234 root
= root
->fs_info
->chunk_root
;
5236 path
= btrfs_alloc_path();
5240 mutex_lock(&uuid_mutex
);
5243 /* first we search for all of the device items, and then we
5244 * read in all of the chunk items. This way we can create chunk
5245 * mappings that reference all of the devices that are afound
5247 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
5251 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5255 leaf
= path
->nodes
[0];
5256 slot
= path
->slots
[0];
5257 if (slot
>= btrfs_header_nritems(leaf
)) {
5258 ret
= btrfs_next_leaf(root
, path
);
5265 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5266 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
5267 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
5269 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
5270 struct btrfs_dev_item
*dev_item
;
5271 dev_item
= btrfs_item_ptr(leaf
, slot
,
5272 struct btrfs_dev_item
);
5273 ret
= read_one_dev(root
, leaf
, dev_item
);
5277 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
5278 struct btrfs_chunk
*chunk
;
5279 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
5280 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
5286 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
5288 btrfs_release_path(path
);
5293 unlock_chunks(root
);
5294 mutex_unlock(&uuid_mutex
);
5296 btrfs_free_path(path
);
5300 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
5304 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
5305 btrfs_dev_stat_reset(dev
, i
);
5308 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
5310 struct btrfs_key key
;
5311 struct btrfs_key found_key
;
5312 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
5313 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
5314 struct extent_buffer
*eb
;
5317 struct btrfs_device
*device
;
5318 struct btrfs_path
*path
= NULL
;
5321 path
= btrfs_alloc_path();
5327 mutex_lock(&fs_devices
->device_list_mutex
);
5328 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
5330 struct btrfs_dev_stats_item
*ptr
;
5333 key
.type
= BTRFS_DEV_STATS_KEY
;
5334 key
.offset
= device
->devid
;
5335 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
5337 __btrfs_reset_dev_stats(device
);
5338 device
->dev_stats_valid
= 1;
5339 btrfs_release_path(path
);
5342 slot
= path
->slots
[0];
5343 eb
= path
->nodes
[0];
5344 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5345 item_size
= btrfs_item_size_nr(eb
, slot
);
5347 ptr
= btrfs_item_ptr(eb
, slot
,
5348 struct btrfs_dev_stats_item
);
5350 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
5351 if (item_size
>= (1 + i
) * sizeof(__le64
))
5352 btrfs_dev_stat_set(device
, i
,
5353 btrfs_dev_stats_value(eb
, ptr
, i
));
5355 btrfs_dev_stat_reset(device
, i
);
5358 device
->dev_stats_valid
= 1;
5359 btrfs_dev_stat_print_on_load(device
);
5360 btrfs_release_path(path
);
5362 mutex_unlock(&fs_devices
->device_list_mutex
);
5365 btrfs_free_path(path
);
5366 return ret
< 0 ? ret
: 0;
5369 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
5370 struct btrfs_root
*dev_root
,
5371 struct btrfs_device
*device
)
5373 struct btrfs_path
*path
;
5374 struct btrfs_key key
;
5375 struct extent_buffer
*eb
;
5376 struct btrfs_dev_stats_item
*ptr
;
5381 key
.type
= BTRFS_DEV_STATS_KEY
;
5382 key
.offset
= device
->devid
;
5384 path
= btrfs_alloc_path();
5386 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
5388 printk_in_rcu(KERN_WARNING
"btrfs: error %d while searching for dev_stats item for device %s!\n",
5389 ret
, rcu_str_deref(device
->name
));
5394 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
5395 /* need to delete old one and insert a new one */
5396 ret
= btrfs_del_item(trans
, dev_root
, path
);
5398 printk_in_rcu(KERN_WARNING
"btrfs: delete too small dev_stats item for device %s failed %d!\n",
5399 rcu_str_deref(device
->name
), ret
);
5406 /* need to insert a new item */
5407 btrfs_release_path(path
);
5408 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
5409 &key
, sizeof(*ptr
));
5411 printk_in_rcu(KERN_WARNING
"btrfs: insert dev_stats item for device %s failed %d!\n",
5412 rcu_str_deref(device
->name
), ret
);
5417 eb
= path
->nodes
[0];
5418 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
5419 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
5420 btrfs_set_dev_stats_value(eb
, ptr
, i
,
5421 btrfs_dev_stat_read(device
, i
));
5422 btrfs_mark_buffer_dirty(eb
);
5425 btrfs_free_path(path
);
5430 * called from commit_transaction. Writes all changed device stats to disk.
5432 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
5433 struct btrfs_fs_info
*fs_info
)
5435 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
5436 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
5437 struct btrfs_device
*device
;
5440 mutex_lock(&fs_devices
->device_list_mutex
);
5441 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
5442 if (!device
->dev_stats_valid
|| !device
->dev_stats_dirty
)
5445 ret
= update_dev_stat_item(trans
, dev_root
, device
);
5447 device
->dev_stats_dirty
= 0;
5449 mutex_unlock(&fs_devices
->device_list_mutex
);
5454 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
5456 btrfs_dev_stat_inc(dev
, index
);
5457 btrfs_dev_stat_print_on_error(dev
);
5460 void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
5462 if (!dev
->dev_stats_valid
)
5464 printk_ratelimited_in_rcu(KERN_ERR
5465 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5466 rcu_str_deref(dev
->name
),
5467 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
5468 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
5469 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
5470 btrfs_dev_stat_read(dev
,
5471 BTRFS_DEV_STAT_CORRUPTION_ERRS
),
5472 btrfs_dev_stat_read(dev
,
5473 BTRFS_DEV_STAT_GENERATION_ERRS
));
5476 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
5480 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
5481 if (btrfs_dev_stat_read(dev
, i
) != 0)
5483 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
5484 return; /* all values == 0, suppress message */
5486 printk_in_rcu(KERN_INFO
"btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5487 rcu_str_deref(dev
->name
),
5488 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
5489 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
5490 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
5491 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
5492 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
5495 int btrfs_get_dev_stats(struct btrfs_root
*root
,
5496 struct btrfs_ioctl_get_dev_stats
*stats
)
5498 struct btrfs_device
*dev
;
5499 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
5502 mutex_lock(&fs_devices
->device_list_mutex
);
5503 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
5504 mutex_unlock(&fs_devices
->device_list_mutex
);
5508 "btrfs: get dev_stats failed, device not found\n");
5510 } else if (!dev
->dev_stats_valid
) {
5512 "btrfs: get dev_stats failed, not yet valid\n");
5514 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
5515 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
5516 if (stats
->nr_items
> i
)
5518 btrfs_dev_stat_read_and_reset(dev
, i
);
5520 btrfs_dev_stat_reset(dev
, i
);
5523 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
5524 if (stats
->nr_items
> i
)
5525 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
5527 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
5528 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
5532 int btrfs_scratch_superblock(struct btrfs_device
*device
)
5534 struct buffer_head
*bh
;
5535 struct btrfs_super_block
*disk_super
;
5537 bh
= btrfs_read_dev_super(device
->bdev
);
5540 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
5542 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
5543 set_buffer_dirty(bh
);
5544 sync_dirty_buffer(bh
);