]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/volumes.c
btrfs: convert pr_* to btrfs_* where possible
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 return &fs_uuids;
149 }
150
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 struct btrfs_fs_devices *fs_devs;
154
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167 }
168
169 /**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192 }
193
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
203 kfree(device);
204 }
205 kfree(fs_devices);
206 }
207
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210 {
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
221 void btrfs_cleanup_fs_uuids(void)
222 {
223 struct btrfs_fs_devices *fs_devices;
224
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
230 }
231 }
232
233 static struct btrfs_device *__alloc_device(void)
234 {
235 struct btrfs_device *dev;
236
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
259 {
260 struct btrfs_device *dev;
261
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 return dev;
266 }
267 }
268 return NULL;
269 }
270
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 struct btrfs_fs_devices *fs_devices;
274
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280 }
281
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286 {
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313 error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317 }
318
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321 {
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331 }
332
333 /*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 struct bio *pending;
347 struct backing_dev_info *bdi;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_pending_bios *pending_bios;
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
355 unsigned long limit;
356 unsigned long last_waited = 0;
357 int force_reg = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
368
369 bdi = blk_get_backing_dev_info(device->bdev);
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
373
374 loop:
375 spin_lock(&device->io_lock);
376
377 loop_lock:
378 num_run = 0;
379
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
384 */
385 if (!force_reg && device->pending_sync_bios.head) {
386 pending_bios = &device->pending_sync_bios;
387 force_reg = 1;
388 } else {
389 pending_bios = &device->pending_bios;
390 force_reg = 0;
391 }
392
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
395 WARN_ON(pending && !tail);
396
397 /*
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
401 *
402 * device->running_pending is used to synchronize with the
403 * schedule_bio code.
404 */
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
407 again = 0;
408 device->running_pending = 0;
409 } else {
410 again = 1;
411 device->running_pending = 1;
412 }
413
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
416
417 spin_unlock(&device->io_lock);
418
419 while (pending) {
420
421 rmb();
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
424 */
425 if ((num_run > 32 &&
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
432 goto loop_lock;
433 }
434
435 cur = pending;
436 pending = pending->bi_next;
437 cur->bi_next = NULL;
438
439 /*
440 * atomic_dec_return implies a barrier for waitqueue_active
441 */
442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
445
446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447
448 /*
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
451 *
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
454 * we add more
455 */
456 if (pending_bios == &device->pending_sync_bios) {
457 sync_pending = 1;
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
461 sync_pending = 0;
462 }
463
464 btrfsic_submit_bio(cur);
465 num_run++;
466 batch_run++;
467
468 cond_resched();
469
470 /*
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
473 * run instead
474 */
475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 fs_info->fs_devices->open_devices > 1) {
477 struct io_context *ioc;
478
479 ioc = current->io_context;
480
481 /*
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
485 *
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
489 */
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 (last_waited == 0 ||
493 ioc->last_waited == last_waited)) {
494 /*
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
499 */
500 last_waited = ioc->last_waited;
501 cond_resched();
502 continue;
503 }
504 spin_lock(&device->io_lock);
505 requeue_list(pending_bios, pending, tail);
506 device->running_pending = 1;
507
508 spin_unlock(&device->io_lock);
509 btrfs_queue_work(fs_info->submit_workers,
510 &device->work);
511 goto done;
512 }
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
517 sync_pending = 0;
518 }
519 }
520
521 cond_resched();
522 if (again)
523 goto loop;
524
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
527 goto loop_lock;
528 spin_unlock(&device->io_lock);
529
530 done:
531 blk_finish_plug(&plug);
532 }
533
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536 struct btrfs_device *device;
537
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
540 }
541
542
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
547
548 if (!cur_dev->name)
549 return;
550
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
552 int del = 1;
553
554 if (fs_devs->opened)
555 continue;
556 if (fs_devs->seeding)
557 continue;
558
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561 if (dev == cur_dev)
562 continue;
563 if (!dev->name)
564 continue;
565
566 /*
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
571 */
572 rcu_read_lock();
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
575 rcu_read_unlock();
576 if (!del)
577 break;
578 }
579
580 if (!del) {
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
586 } else {
587 fs_devs->num_devices--;
588 list_del(&dev->dev_list);
589 rcu_string_free(dev->name);
590 kfree(dev);
591 }
592 break;
593 }
594 }
595 }
596
597 /*
598 * Add new device to list of registered devices
599 *
600 * Returns:
601 * 1 - first time device is seen
602 * 0 - device already known
603 * < 0 - error
604 */
605 static noinline int device_list_add(const char *path,
606 struct btrfs_super_block *disk_super,
607 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609 struct btrfs_device *device;
610 struct btrfs_fs_devices *fs_devices;
611 struct rcu_string *name;
612 int ret = 0;
613 u64 found_transid = btrfs_super_generation(disk_super);
614
615 fs_devices = find_fsid(disk_super->fsid);
616 if (!fs_devices) {
617 fs_devices = alloc_fs_devices(disk_super->fsid);
618 if (IS_ERR(fs_devices))
619 return PTR_ERR(fs_devices);
620
621 list_add(&fs_devices->list, &fs_uuids);
622
623 device = NULL;
624 } else {
625 device = __find_device(&fs_devices->devices, devid,
626 disk_super->dev_item.uuid);
627 }
628
629 if (!device) {
630 if (fs_devices->opened)
631 return -EBUSY;
632
633 device = btrfs_alloc_device(NULL, &devid,
634 disk_super->dev_item.uuid);
635 if (IS_ERR(device)) {
636 /* we can safely leave the fs_devices entry around */
637 return PTR_ERR(device);
638 }
639
640 name = rcu_string_strdup(path, GFP_NOFS);
641 if (!name) {
642 kfree(device);
643 return -ENOMEM;
644 }
645 rcu_assign_pointer(device->name, name);
646
647 mutex_lock(&fs_devices->device_list_mutex);
648 list_add_rcu(&device->dev_list, &fs_devices->devices);
649 fs_devices->num_devices++;
650 mutex_unlock(&fs_devices->device_list_mutex);
651
652 ret = 1;
653 device->fs_devices = fs_devices;
654 } else if (!device->name || strcmp(device->name->str, path)) {
655 /*
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
662 * different name. or
663 * b. The missing-disk-which-was-replaced, has
664 * reappeared now.
665 *
666 * We must allow 1 and 2a above. But 2b would be a spurious
667 * and unintentional.
668 *
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
673 */
674
675 /*
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
680 */
681 if (!fs_devices->opened && found_transid < device->generation) {
682 /*
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
688 */
689 return -EEXIST;
690 }
691
692 name = rcu_string_strdup(path, GFP_NOFS);
693 if (!name)
694 return -ENOMEM;
695 rcu_string_free(device->name);
696 rcu_assign_pointer(device->name, name);
697 if (device->missing) {
698 fs_devices->missing_devices--;
699 device->missing = 0;
700 }
701 }
702
703 /*
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
707 * (as above).
708 */
709 if (!fs_devices->opened)
710 device->generation = found_transid;
711
712 /*
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
715 */
716 if (ret > 0)
717 btrfs_free_stale_device(device);
718
719 *fs_devices_ret = fs_devices;
720
721 return ret;
722 }
723
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726 struct btrfs_fs_devices *fs_devices;
727 struct btrfs_device *device;
728 struct btrfs_device *orig_dev;
729
730 fs_devices = alloc_fs_devices(orig->fsid);
731 if (IS_ERR(fs_devices))
732 return fs_devices;
733
734 mutex_lock(&orig->device_list_mutex);
735 fs_devices->total_devices = orig->total_devices;
736
737 /* We have held the volume lock, it is safe to get the devices. */
738 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739 struct rcu_string *name;
740
741 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 orig_dev->uuid);
743 if (IS_ERR(device))
744 goto error;
745
746 /*
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
749 */
750 if (orig_dev->name) {
751 name = rcu_string_strdup(orig_dev->name->str,
752 GFP_KERNEL);
753 if (!name) {
754 kfree(device);
755 goto error;
756 }
757 rcu_assign_pointer(device->name, name);
758 }
759
760 list_add(&device->dev_list, &fs_devices->devices);
761 device->fs_devices = fs_devices;
762 fs_devices->num_devices++;
763 }
764 mutex_unlock(&orig->device_list_mutex);
765 return fs_devices;
766 error:
767 mutex_unlock(&orig->device_list_mutex);
768 free_fs_devices(fs_devices);
769 return ERR_PTR(-ENOMEM);
770 }
771
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774 struct btrfs_device *device, *next;
775 struct btrfs_device *latest_dev = NULL;
776
777 mutex_lock(&uuid_mutex);
778 again:
779 /* This is the initialized path, it is safe to release the devices. */
780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781 if (device->in_fs_metadata) {
782 if (!device->is_tgtdev_for_dev_replace &&
783 (!latest_dev ||
784 device->generation > latest_dev->generation)) {
785 latest_dev = device;
786 }
787 continue;
788 }
789
790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 /*
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
800 */
801 if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 continue;
803 }
804 }
805 if (device->bdev) {
806 blkdev_put(device->bdev, device->mode);
807 device->bdev = NULL;
808 fs_devices->open_devices--;
809 }
810 if (device->writeable) {
811 list_del_init(&device->dev_alloc_list);
812 device->writeable = 0;
813 if (!device->is_tgtdev_for_dev_replace)
814 fs_devices->rw_devices--;
815 }
816 list_del_init(&device->dev_list);
817 fs_devices->num_devices--;
818 rcu_string_free(device->name);
819 kfree(device);
820 }
821
822 if (fs_devices->seed) {
823 fs_devices = fs_devices->seed;
824 goto again;
825 }
826
827 fs_devices->latest_bdev = latest_dev->bdev;
828
829 mutex_unlock(&uuid_mutex);
830 }
831
832 static void __free_device(struct work_struct *work)
833 {
834 struct btrfs_device *device;
835
836 device = container_of(work, struct btrfs_device, rcu_work);
837 rcu_string_free(device->name);
838 kfree(device);
839 }
840
841 static void free_device(struct rcu_head *head)
842 {
843 struct btrfs_device *device;
844
845 device = container_of(head, struct btrfs_device, rcu);
846
847 INIT_WORK(&device->rcu_work, __free_device);
848 schedule_work(&device->rcu_work);
849 }
850
851 static void btrfs_close_bdev(struct btrfs_device *device)
852 {
853 if (device->bdev && device->writeable) {
854 sync_blockdev(device->bdev);
855 invalidate_bdev(device->bdev);
856 }
857
858 if (device->bdev)
859 blkdev_put(device->bdev, device->mode);
860 }
861
862 static void btrfs_close_one_device(struct btrfs_device *device)
863 {
864 struct btrfs_fs_devices *fs_devices = device->fs_devices;
865 struct btrfs_device *new_device;
866 struct rcu_string *name;
867
868 if (device->bdev)
869 fs_devices->open_devices--;
870
871 if (device->writeable &&
872 device->devid != BTRFS_DEV_REPLACE_DEVID) {
873 list_del_init(&device->dev_alloc_list);
874 fs_devices->rw_devices--;
875 }
876
877 if (device->missing)
878 fs_devices->missing_devices--;
879
880 btrfs_close_bdev(device);
881
882 new_device = btrfs_alloc_device(NULL, &device->devid,
883 device->uuid);
884 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885
886 /* Safe because we are under uuid_mutex */
887 if (device->name) {
888 name = rcu_string_strdup(device->name->str, GFP_NOFS);
889 BUG_ON(!name); /* -ENOMEM */
890 rcu_assign_pointer(new_device->name, name);
891 }
892
893 list_replace_rcu(&device->dev_list, &new_device->dev_list);
894 new_device->fs_devices = device->fs_devices;
895
896 call_rcu(&device->rcu, free_device);
897 }
898
899 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
900 {
901 struct btrfs_device *device, *tmp;
902
903 if (--fs_devices->opened > 0)
904 return 0;
905
906 mutex_lock(&fs_devices->device_list_mutex);
907 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
908 btrfs_close_one_device(device);
909 }
910 mutex_unlock(&fs_devices->device_list_mutex);
911
912 WARN_ON(fs_devices->open_devices);
913 WARN_ON(fs_devices->rw_devices);
914 fs_devices->opened = 0;
915 fs_devices->seeding = 0;
916
917 return 0;
918 }
919
920 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921 {
922 struct btrfs_fs_devices *seed_devices = NULL;
923 int ret;
924
925 mutex_lock(&uuid_mutex);
926 ret = __btrfs_close_devices(fs_devices);
927 if (!fs_devices->opened) {
928 seed_devices = fs_devices->seed;
929 fs_devices->seed = NULL;
930 }
931 mutex_unlock(&uuid_mutex);
932
933 while (seed_devices) {
934 fs_devices = seed_devices;
935 seed_devices = fs_devices->seed;
936 __btrfs_close_devices(fs_devices);
937 free_fs_devices(fs_devices);
938 }
939 /*
940 * Wait for rcu kworkers under __btrfs_close_devices
941 * to finish all blkdev_puts so device is really
942 * free when umount is done.
943 */
944 rcu_barrier();
945 return ret;
946 }
947
948 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
949 fmode_t flags, void *holder)
950 {
951 struct request_queue *q;
952 struct block_device *bdev;
953 struct list_head *head = &fs_devices->devices;
954 struct btrfs_device *device;
955 struct btrfs_device *latest_dev = NULL;
956 struct buffer_head *bh;
957 struct btrfs_super_block *disk_super;
958 u64 devid;
959 int seeding = 1;
960 int ret = 0;
961
962 flags |= FMODE_EXCL;
963
964 list_for_each_entry(device, head, dev_list) {
965 if (device->bdev)
966 continue;
967 if (!device->name)
968 continue;
969
970 /* Just open everything we can; ignore failures here */
971 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
972 &bdev, &bh))
973 continue;
974
975 disk_super = (struct btrfs_super_block *)bh->b_data;
976 devid = btrfs_stack_device_id(&disk_super->dev_item);
977 if (devid != device->devid)
978 goto error_brelse;
979
980 if (memcmp(device->uuid, disk_super->dev_item.uuid,
981 BTRFS_UUID_SIZE))
982 goto error_brelse;
983
984 device->generation = btrfs_super_generation(disk_super);
985 if (!latest_dev ||
986 device->generation > latest_dev->generation)
987 latest_dev = device;
988
989 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
990 device->writeable = 0;
991 } else {
992 device->writeable = !bdev_read_only(bdev);
993 seeding = 0;
994 }
995
996 q = bdev_get_queue(bdev);
997 if (blk_queue_discard(q))
998 device->can_discard = 1;
999
1000 device->bdev = bdev;
1001 device->in_fs_metadata = 0;
1002 device->mode = flags;
1003
1004 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1005 fs_devices->rotating = 1;
1006
1007 fs_devices->open_devices++;
1008 if (device->writeable &&
1009 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1010 fs_devices->rw_devices++;
1011 list_add(&device->dev_alloc_list,
1012 &fs_devices->alloc_list);
1013 }
1014 brelse(bh);
1015 continue;
1016
1017 error_brelse:
1018 brelse(bh);
1019 blkdev_put(bdev, flags);
1020 continue;
1021 }
1022 if (fs_devices->open_devices == 0) {
1023 ret = -EINVAL;
1024 goto out;
1025 }
1026 fs_devices->seeding = seeding;
1027 fs_devices->opened = 1;
1028 fs_devices->latest_bdev = latest_dev->bdev;
1029 fs_devices->total_rw_bytes = 0;
1030 out:
1031 return ret;
1032 }
1033
1034 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1035 fmode_t flags, void *holder)
1036 {
1037 int ret;
1038
1039 mutex_lock(&uuid_mutex);
1040 if (fs_devices->opened) {
1041 fs_devices->opened++;
1042 ret = 0;
1043 } else {
1044 ret = __btrfs_open_devices(fs_devices, flags, holder);
1045 }
1046 mutex_unlock(&uuid_mutex);
1047 return ret;
1048 }
1049
1050 void btrfs_release_disk_super(struct page *page)
1051 {
1052 kunmap(page);
1053 put_page(page);
1054 }
1055
1056 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1057 struct page **page, struct btrfs_super_block **disk_super)
1058 {
1059 void *p;
1060 pgoff_t index;
1061
1062 /* make sure our super fits in the device */
1063 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1064 return 1;
1065
1066 /* make sure our super fits in the page */
1067 if (sizeof(**disk_super) > PAGE_SIZE)
1068 return 1;
1069
1070 /* make sure our super doesn't straddle pages on disk */
1071 index = bytenr >> PAGE_SHIFT;
1072 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1073 return 1;
1074
1075 /* pull in the page with our super */
1076 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1077 index, GFP_KERNEL);
1078
1079 if (IS_ERR_OR_NULL(*page))
1080 return 1;
1081
1082 p = kmap(*page);
1083
1084 /* align our pointer to the offset of the super block */
1085 *disk_super = p + (bytenr & ~PAGE_MASK);
1086
1087 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1088 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1089 btrfs_release_disk_super(*page);
1090 return 1;
1091 }
1092
1093 if ((*disk_super)->label[0] &&
1094 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1095 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1096
1097 return 0;
1098 }
1099
1100 /*
1101 * Look for a btrfs signature on a device. This may be called out of the mount path
1102 * and we are not allowed to call set_blocksize during the scan. The superblock
1103 * is read via pagecache
1104 */
1105 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1106 struct btrfs_fs_devices **fs_devices_ret)
1107 {
1108 struct btrfs_super_block *disk_super;
1109 struct block_device *bdev;
1110 struct page *page;
1111 int ret = -EINVAL;
1112 u64 devid;
1113 u64 transid;
1114 u64 total_devices;
1115 u64 bytenr;
1116
1117 /*
1118 * we would like to check all the supers, but that would make
1119 * a btrfs mount succeed after a mkfs from a different FS.
1120 * So, we need to add a special mount option to scan for
1121 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1122 */
1123 bytenr = btrfs_sb_offset(0);
1124 flags |= FMODE_EXCL;
1125 mutex_lock(&uuid_mutex);
1126
1127 bdev = blkdev_get_by_path(path, flags, holder);
1128 if (IS_ERR(bdev)) {
1129 ret = PTR_ERR(bdev);
1130 goto error;
1131 }
1132
1133 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1134 goto error_bdev_put;
1135
1136 devid = btrfs_stack_device_id(&disk_super->dev_item);
1137 transid = btrfs_super_generation(disk_super);
1138 total_devices = btrfs_super_num_devices(disk_super);
1139
1140 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1141 if (ret > 0) {
1142 if (disk_super->label[0]) {
1143 pr_info("BTRFS: device label %s ", disk_super->label);
1144 } else {
1145 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1146 }
1147
1148 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1149 ret = 0;
1150 }
1151 if (!ret && fs_devices_ret)
1152 (*fs_devices_ret)->total_devices = total_devices;
1153
1154 btrfs_release_disk_super(page);
1155
1156 error_bdev_put:
1157 blkdev_put(bdev, flags);
1158 error:
1159 mutex_unlock(&uuid_mutex);
1160 return ret;
1161 }
1162
1163 /* helper to account the used device space in the range */
1164 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1165 u64 end, u64 *length)
1166 {
1167 struct btrfs_key key;
1168 struct btrfs_root *root = device->dev_root;
1169 struct btrfs_dev_extent *dev_extent;
1170 struct btrfs_path *path;
1171 u64 extent_end;
1172 int ret;
1173 int slot;
1174 struct extent_buffer *l;
1175
1176 *length = 0;
1177
1178 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1179 return 0;
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
1184 path->reada = READA_FORWARD;
1185
1186 key.objectid = device->devid;
1187 key.offset = start;
1188 key.type = BTRFS_DEV_EXTENT_KEY;
1189
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto out;
1193 if (ret > 0) {
1194 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1195 if (ret < 0)
1196 goto out;
1197 }
1198
1199 while (1) {
1200 l = path->nodes[0];
1201 slot = path->slots[0];
1202 if (slot >= btrfs_header_nritems(l)) {
1203 ret = btrfs_next_leaf(root, path);
1204 if (ret == 0)
1205 continue;
1206 if (ret < 0)
1207 goto out;
1208
1209 break;
1210 }
1211 btrfs_item_key_to_cpu(l, &key, slot);
1212
1213 if (key.objectid < device->devid)
1214 goto next;
1215
1216 if (key.objectid > device->devid)
1217 break;
1218
1219 if (key.type != BTRFS_DEV_EXTENT_KEY)
1220 goto next;
1221
1222 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1223 extent_end = key.offset + btrfs_dev_extent_length(l,
1224 dev_extent);
1225 if (key.offset <= start && extent_end > end) {
1226 *length = end - start + 1;
1227 break;
1228 } else if (key.offset <= start && extent_end > start)
1229 *length += extent_end - start;
1230 else if (key.offset > start && extent_end <= end)
1231 *length += extent_end - key.offset;
1232 else if (key.offset > start && key.offset <= end) {
1233 *length += end - key.offset + 1;
1234 break;
1235 } else if (key.offset > end)
1236 break;
1237
1238 next:
1239 path->slots[0]++;
1240 }
1241 ret = 0;
1242 out:
1243 btrfs_free_path(path);
1244 return ret;
1245 }
1246
1247 static int contains_pending_extent(struct btrfs_transaction *transaction,
1248 struct btrfs_device *device,
1249 u64 *start, u64 len)
1250 {
1251 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1252 struct extent_map *em;
1253 struct list_head *search_list = &fs_info->pinned_chunks;
1254 int ret = 0;
1255 u64 physical_start = *start;
1256
1257 if (transaction)
1258 search_list = &transaction->pending_chunks;
1259 again:
1260 list_for_each_entry(em, search_list, list) {
1261 struct map_lookup *map;
1262 int i;
1263
1264 map = em->map_lookup;
1265 for (i = 0; i < map->num_stripes; i++) {
1266 u64 end;
1267
1268 if (map->stripes[i].dev != device)
1269 continue;
1270 if (map->stripes[i].physical >= physical_start + len ||
1271 map->stripes[i].physical + em->orig_block_len <=
1272 physical_start)
1273 continue;
1274 /*
1275 * Make sure that while processing the pinned list we do
1276 * not override our *start with a lower value, because
1277 * we can have pinned chunks that fall within this
1278 * device hole and that have lower physical addresses
1279 * than the pending chunks we processed before. If we
1280 * do not take this special care we can end up getting
1281 * 2 pending chunks that start at the same physical
1282 * device offsets because the end offset of a pinned
1283 * chunk can be equal to the start offset of some
1284 * pending chunk.
1285 */
1286 end = map->stripes[i].physical + em->orig_block_len;
1287 if (end > *start) {
1288 *start = end;
1289 ret = 1;
1290 }
1291 }
1292 }
1293 if (search_list != &fs_info->pinned_chunks) {
1294 search_list = &fs_info->pinned_chunks;
1295 goto again;
1296 }
1297
1298 return ret;
1299 }
1300
1301
1302 /*
1303 * find_free_dev_extent_start - find free space in the specified device
1304 * @device: the device which we search the free space in
1305 * @num_bytes: the size of the free space that we need
1306 * @search_start: the position from which to begin the search
1307 * @start: store the start of the free space.
1308 * @len: the size of the free space. that we find, or the size
1309 * of the max free space if we don't find suitable free space
1310 *
1311 * this uses a pretty simple search, the expectation is that it is
1312 * called very infrequently and that a given device has a small number
1313 * of extents
1314 *
1315 * @start is used to store the start of the free space if we find. But if we
1316 * don't find suitable free space, it will be used to store the start position
1317 * of the max free space.
1318 *
1319 * @len is used to store the size of the free space that we find.
1320 * But if we don't find suitable free space, it is used to store the size of
1321 * the max free space.
1322 */
1323 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1324 struct btrfs_device *device, u64 num_bytes,
1325 u64 search_start, u64 *start, u64 *len)
1326 {
1327 struct btrfs_key key;
1328 struct btrfs_root *root = device->dev_root;
1329 struct btrfs_dev_extent *dev_extent;
1330 struct btrfs_path *path;
1331 u64 hole_size;
1332 u64 max_hole_start;
1333 u64 max_hole_size;
1334 u64 extent_end;
1335 u64 search_end = device->total_bytes;
1336 int ret;
1337 int slot;
1338 struct extent_buffer *l;
1339 u64 min_search_start;
1340
1341 /*
1342 * We don't want to overwrite the superblock on the drive nor any area
1343 * used by the boot loader (grub for example), so we make sure to start
1344 * at an offset of at least 1MB.
1345 */
1346 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1347 search_start = max(search_start, min_search_start);
1348
1349 path = btrfs_alloc_path();
1350 if (!path)
1351 return -ENOMEM;
1352
1353 max_hole_start = search_start;
1354 max_hole_size = 0;
1355
1356 again:
1357 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1358 ret = -ENOSPC;
1359 goto out;
1360 }
1361
1362 path->reada = READA_FORWARD;
1363 path->search_commit_root = 1;
1364 path->skip_locking = 1;
1365
1366 key.objectid = device->devid;
1367 key.offset = search_start;
1368 key.type = BTRFS_DEV_EXTENT_KEY;
1369
1370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1371 if (ret < 0)
1372 goto out;
1373 if (ret > 0) {
1374 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1375 if (ret < 0)
1376 goto out;
1377 }
1378
1379 while (1) {
1380 l = path->nodes[0];
1381 slot = path->slots[0];
1382 if (slot >= btrfs_header_nritems(l)) {
1383 ret = btrfs_next_leaf(root, path);
1384 if (ret == 0)
1385 continue;
1386 if (ret < 0)
1387 goto out;
1388
1389 break;
1390 }
1391 btrfs_item_key_to_cpu(l, &key, slot);
1392
1393 if (key.objectid < device->devid)
1394 goto next;
1395
1396 if (key.objectid > device->devid)
1397 break;
1398
1399 if (key.type != BTRFS_DEV_EXTENT_KEY)
1400 goto next;
1401
1402 if (key.offset > search_start) {
1403 hole_size = key.offset - search_start;
1404
1405 /*
1406 * Have to check before we set max_hole_start, otherwise
1407 * we could end up sending back this offset anyway.
1408 */
1409 if (contains_pending_extent(transaction, device,
1410 &search_start,
1411 hole_size)) {
1412 if (key.offset >= search_start) {
1413 hole_size = key.offset - search_start;
1414 } else {
1415 WARN_ON_ONCE(1);
1416 hole_size = 0;
1417 }
1418 }
1419
1420 if (hole_size > max_hole_size) {
1421 max_hole_start = search_start;
1422 max_hole_size = hole_size;
1423 }
1424
1425 /*
1426 * If this free space is greater than which we need,
1427 * it must be the max free space that we have found
1428 * until now, so max_hole_start must point to the start
1429 * of this free space and the length of this free space
1430 * is stored in max_hole_size. Thus, we return
1431 * max_hole_start and max_hole_size and go back to the
1432 * caller.
1433 */
1434 if (hole_size >= num_bytes) {
1435 ret = 0;
1436 goto out;
1437 }
1438 }
1439
1440 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1441 extent_end = key.offset + btrfs_dev_extent_length(l,
1442 dev_extent);
1443 if (extent_end > search_start)
1444 search_start = extent_end;
1445 next:
1446 path->slots[0]++;
1447 cond_resched();
1448 }
1449
1450 /*
1451 * At this point, search_start should be the end of
1452 * allocated dev extents, and when shrinking the device,
1453 * search_end may be smaller than search_start.
1454 */
1455 if (search_end > search_start) {
1456 hole_size = search_end - search_start;
1457
1458 if (contains_pending_extent(transaction, device, &search_start,
1459 hole_size)) {
1460 btrfs_release_path(path);
1461 goto again;
1462 }
1463
1464 if (hole_size > max_hole_size) {
1465 max_hole_start = search_start;
1466 max_hole_size = hole_size;
1467 }
1468 }
1469
1470 /* See above. */
1471 if (max_hole_size < num_bytes)
1472 ret = -ENOSPC;
1473 else
1474 ret = 0;
1475
1476 out:
1477 btrfs_free_path(path);
1478 *start = max_hole_start;
1479 if (len)
1480 *len = max_hole_size;
1481 return ret;
1482 }
1483
1484 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1485 struct btrfs_device *device, u64 num_bytes,
1486 u64 *start, u64 *len)
1487 {
1488 /* FIXME use last free of some kind */
1489 return find_free_dev_extent_start(trans->transaction, device,
1490 num_bytes, 0, start, len);
1491 }
1492
1493 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1494 struct btrfs_device *device,
1495 u64 start, u64 *dev_extent_len)
1496 {
1497 int ret;
1498 struct btrfs_path *path;
1499 struct btrfs_root *root = device->dev_root;
1500 struct btrfs_key key;
1501 struct btrfs_key found_key;
1502 struct extent_buffer *leaf = NULL;
1503 struct btrfs_dev_extent *extent = NULL;
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
1509 key.objectid = device->devid;
1510 key.offset = start;
1511 key.type = BTRFS_DEV_EXTENT_KEY;
1512 again:
1513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1514 if (ret > 0) {
1515 ret = btrfs_previous_item(root, path, key.objectid,
1516 BTRFS_DEV_EXTENT_KEY);
1517 if (ret)
1518 goto out;
1519 leaf = path->nodes[0];
1520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1521 extent = btrfs_item_ptr(leaf, path->slots[0],
1522 struct btrfs_dev_extent);
1523 BUG_ON(found_key.offset > start || found_key.offset +
1524 btrfs_dev_extent_length(leaf, extent) < start);
1525 key = found_key;
1526 btrfs_release_path(path);
1527 goto again;
1528 } else if (ret == 0) {
1529 leaf = path->nodes[0];
1530 extent = btrfs_item_ptr(leaf, path->slots[0],
1531 struct btrfs_dev_extent);
1532 } else {
1533 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1534 goto out;
1535 }
1536
1537 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1538
1539 ret = btrfs_del_item(trans, root, path);
1540 if (ret) {
1541 btrfs_handle_fs_error(root->fs_info, ret,
1542 "Failed to remove dev extent item");
1543 } else {
1544 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1545 }
1546 out:
1547 btrfs_free_path(path);
1548 return ret;
1549 }
1550
1551 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1552 struct btrfs_device *device,
1553 u64 chunk_tree, u64 chunk_objectid,
1554 u64 chunk_offset, u64 start, u64 num_bytes)
1555 {
1556 int ret;
1557 struct btrfs_path *path;
1558 struct btrfs_root *root = device->dev_root;
1559 struct btrfs_dev_extent *extent;
1560 struct extent_buffer *leaf;
1561 struct btrfs_key key;
1562
1563 WARN_ON(!device->in_fs_metadata);
1564 WARN_ON(device->is_tgtdev_for_dev_replace);
1565 path = btrfs_alloc_path();
1566 if (!path)
1567 return -ENOMEM;
1568
1569 key.objectid = device->devid;
1570 key.offset = start;
1571 key.type = BTRFS_DEV_EXTENT_KEY;
1572 ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 sizeof(*extent));
1574 if (ret)
1575 goto out;
1576
1577 leaf = path->nodes[0];
1578 extent = btrfs_item_ptr(leaf, path->slots[0],
1579 struct btrfs_dev_extent);
1580 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1581 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1582 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1583
1584 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1585 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1586
1587 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1588 btrfs_mark_buffer_dirty(leaf);
1589 out:
1590 btrfs_free_path(path);
1591 return ret;
1592 }
1593
1594 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1595 {
1596 struct extent_map_tree *em_tree;
1597 struct extent_map *em;
1598 struct rb_node *n;
1599 u64 ret = 0;
1600
1601 em_tree = &fs_info->mapping_tree.map_tree;
1602 read_lock(&em_tree->lock);
1603 n = rb_last(&em_tree->map);
1604 if (n) {
1605 em = rb_entry(n, struct extent_map, rb_node);
1606 ret = em->start + em->len;
1607 }
1608 read_unlock(&em_tree->lock);
1609
1610 return ret;
1611 }
1612
1613 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1614 u64 *devid_ret)
1615 {
1616 int ret;
1617 struct btrfs_key key;
1618 struct btrfs_key found_key;
1619 struct btrfs_path *path;
1620
1621 path = btrfs_alloc_path();
1622 if (!path)
1623 return -ENOMEM;
1624
1625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626 key.type = BTRFS_DEV_ITEM_KEY;
1627 key.offset = (u64)-1;
1628
1629 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1630 if (ret < 0)
1631 goto error;
1632
1633 BUG_ON(ret == 0); /* Corruption */
1634
1635 ret = btrfs_previous_item(fs_info->chunk_root, path,
1636 BTRFS_DEV_ITEMS_OBJECTID,
1637 BTRFS_DEV_ITEM_KEY);
1638 if (ret) {
1639 *devid_ret = 1;
1640 } else {
1641 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1642 path->slots[0]);
1643 *devid_ret = found_key.offset + 1;
1644 }
1645 ret = 0;
1646 error:
1647 btrfs_free_path(path);
1648 return ret;
1649 }
1650
1651 /*
1652 * the device information is stored in the chunk root
1653 * the btrfs_device struct should be fully filled in
1654 */
1655 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_device *device)
1658 {
1659 int ret;
1660 struct btrfs_path *path;
1661 struct btrfs_dev_item *dev_item;
1662 struct extent_buffer *leaf;
1663 struct btrfs_key key;
1664 unsigned long ptr;
1665
1666 root = root->fs_info->chunk_root;
1667
1668 path = btrfs_alloc_path();
1669 if (!path)
1670 return -ENOMEM;
1671
1672 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1673 key.type = BTRFS_DEV_ITEM_KEY;
1674 key.offset = device->devid;
1675
1676 ret = btrfs_insert_empty_item(trans, root, path, &key,
1677 sizeof(*dev_item));
1678 if (ret)
1679 goto out;
1680
1681 leaf = path->nodes[0];
1682 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1683
1684 btrfs_set_device_id(leaf, dev_item, device->devid);
1685 btrfs_set_device_generation(leaf, dev_item, 0);
1686 btrfs_set_device_type(leaf, dev_item, device->type);
1687 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1688 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1689 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1690 btrfs_set_device_total_bytes(leaf, dev_item,
1691 btrfs_device_get_disk_total_bytes(device));
1692 btrfs_set_device_bytes_used(leaf, dev_item,
1693 btrfs_device_get_bytes_used(device));
1694 btrfs_set_device_group(leaf, dev_item, 0);
1695 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1696 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1697 btrfs_set_device_start_offset(leaf, dev_item, 0);
1698
1699 ptr = btrfs_device_uuid(dev_item);
1700 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1701 ptr = btrfs_device_fsid(dev_item);
1702 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1703 btrfs_mark_buffer_dirty(leaf);
1704
1705 ret = 0;
1706 out:
1707 btrfs_free_path(path);
1708 return ret;
1709 }
1710
1711 /*
1712 * Function to update ctime/mtime for a given device path.
1713 * Mainly used for ctime/mtime based probe like libblkid.
1714 */
1715 static void update_dev_time(char *path_name)
1716 {
1717 struct file *filp;
1718
1719 filp = filp_open(path_name, O_RDWR, 0);
1720 if (IS_ERR(filp))
1721 return;
1722 file_update_time(filp);
1723 filp_close(filp, NULL);
1724 }
1725
1726 static int btrfs_rm_dev_item(struct btrfs_root *root,
1727 struct btrfs_device *device)
1728 {
1729 int ret;
1730 struct btrfs_path *path;
1731 struct btrfs_key key;
1732 struct btrfs_trans_handle *trans;
1733
1734 root = root->fs_info->chunk_root;
1735
1736 path = btrfs_alloc_path();
1737 if (!path)
1738 return -ENOMEM;
1739
1740 trans = btrfs_start_transaction(root, 0);
1741 if (IS_ERR(trans)) {
1742 btrfs_free_path(path);
1743 return PTR_ERR(trans);
1744 }
1745 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1746 key.type = BTRFS_DEV_ITEM_KEY;
1747 key.offset = device->devid;
1748
1749 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1750 if (ret < 0)
1751 goto out;
1752
1753 if (ret > 0) {
1754 ret = -ENOENT;
1755 goto out;
1756 }
1757
1758 ret = btrfs_del_item(trans, root, path);
1759 if (ret)
1760 goto out;
1761 out:
1762 btrfs_free_path(path);
1763 btrfs_commit_transaction(trans, root);
1764 return ret;
1765 }
1766
1767 /*
1768 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1769 * filesystem. It's up to the caller to adjust that number regarding eg. device
1770 * replace.
1771 */
1772 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1773 u64 num_devices)
1774 {
1775 u64 all_avail;
1776 unsigned seq;
1777 int i;
1778
1779 do {
1780 seq = read_seqbegin(&fs_info->profiles_lock);
1781
1782 all_avail = fs_info->avail_data_alloc_bits |
1783 fs_info->avail_system_alloc_bits |
1784 fs_info->avail_metadata_alloc_bits;
1785 } while (read_seqretry(&fs_info->profiles_lock, seq));
1786
1787 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1788 if (!(all_avail & btrfs_raid_group[i]))
1789 continue;
1790
1791 if (num_devices < btrfs_raid_array[i].devs_min) {
1792 int ret = btrfs_raid_mindev_error[i];
1793
1794 if (ret)
1795 return ret;
1796 }
1797 }
1798
1799 return 0;
1800 }
1801
1802 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1803 struct btrfs_device *device)
1804 {
1805 struct btrfs_device *next_device;
1806
1807 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1808 if (next_device != device &&
1809 !next_device->missing && next_device->bdev)
1810 return next_device;
1811 }
1812
1813 return NULL;
1814 }
1815
1816 /*
1817 * Helper function to check if the given device is part of s_bdev / latest_bdev
1818 * and replace it with the provided or the next active device, in the context
1819 * where this function called, there should be always be another device (or
1820 * this_dev) which is active.
1821 */
1822 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1823 struct btrfs_device *device, struct btrfs_device *this_dev)
1824 {
1825 struct btrfs_device *next_device;
1826
1827 if (this_dev)
1828 next_device = this_dev;
1829 else
1830 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1831 device);
1832 ASSERT(next_device);
1833
1834 if (fs_info->sb->s_bdev &&
1835 (fs_info->sb->s_bdev == device->bdev))
1836 fs_info->sb->s_bdev = next_device->bdev;
1837
1838 if (fs_info->fs_devices->latest_bdev == device->bdev)
1839 fs_info->fs_devices->latest_bdev = next_device->bdev;
1840 }
1841
1842 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1843 {
1844 struct btrfs_device *device;
1845 struct btrfs_fs_devices *cur_devices;
1846 u64 num_devices;
1847 int ret = 0;
1848 bool clear_super = false;
1849
1850 mutex_lock(&uuid_mutex);
1851
1852 num_devices = root->fs_info->fs_devices->num_devices;
1853 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1854 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1855 WARN_ON(num_devices < 1);
1856 num_devices--;
1857 }
1858 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1859
1860 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1861 if (ret)
1862 goto out;
1863
1864 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1865 &device);
1866 if (ret)
1867 goto out;
1868
1869 if (device->is_tgtdev_for_dev_replace) {
1870 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1871 goto out;
1872 }
1873
1874 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1875 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1876 goto out;
1877 }
1878
1879 if (device->writeable) {
1880 lock_chunks(root);
1881 list_del_init(&device->dev_alloc_list);
1882 device->fs_devices->rw_devices--;
1883 unlock_chunks(root);
1884 clear_super = true;
1885 }
1886
1887 mutex_unlock(&uuid_mutex);
1888 ret = btrfs_shrink_device(device, 0);
1889 mutex_lock(&uuid_mutex);
1890 if (ret)
1891 goto error_undo;
1892
1893 /*
1894 * TODO: the superblock still includes this device in its num_devices
1895 * counter although write_all_supers() is not locked out. This
1896 * could give a filesystem state which requires a degraded mount.
1897 */
1898 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1899 if (ret)
1900 goto error_undo;
1901
1902 device->in_fs_metadata = 0;
1903 btrfs_scrub_cancel_dev(root->fs_info, device);
1904
1905 /*
1906 * the device list mutex makes sure that we don't change
1907 * the device list while someone else is writing out all
1908 * the device supers. Whoever is writing all supers, should
1909 * lock the device list mutex before getting the number of
1910 * devices in the super block (super_copy). Conversely,
1911 * whoever updates the number of devices in the super block
1912 * (super_copy) should hold the device list mutex.
1913 */
1914
1915 cur_devices = device->fs_devices;
1916 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1917 list_del_rcu(&device->dev_list);
1918
1919 device->fs_devices->num_devices--;
1920 device->fs_devices->total_devices--;
1921
1922 if (device->missing)
1923 device->fs_devices->missing_devices--;
1924
1925 btrfs_assign_next_active_device(root->fs_info, device, NULL);
1926
1927 if (device->bdev) {
1928 device->fs_devices->open_devices--;
1929 /* remove sysfs entry */
1930 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1931 }
1932
1933 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1934 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1935 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1936
1937 /*
1938 * at this point, the device is zero sized and detached from
1939 * the devices list. All that's left is to zero out the old
1940 * supers and free the device.
1941 */
1942 if (device->writeable)
1943 btrfs_scratch_superblocks(device->bdev, device->name->str);
1944
1945 btrfs_close_bdev(device);
1946 call_rcu(&device->rcu, free_device);
1947
1948 if (cur_devices->open_devices == 0) {
1949 struct btrfs_fs_devices *fs_devices;
1950 fs_devices = root->fs_info->fs_devices;
1951 while (fs_devices) {
1952 if (fs_devices->seed == cur_devices) {
1953 fs_devices->seed = cur_devices->seed;
1954 break;
1955 }
1956 fs_devices = fs_devices->seed;
1957 }
1958 cur_devices->seed = NULL;
1959 __btrfs_close_devices(cur_devices);
1960 free_fs_devices(cur_devices);
1961 }
1962
1963 root->fs_info->num_tolerated_disk_barrier_failures =
1964 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1965
1966 out:
1967 mutex_unlock(&uuid_mutex);
1968 return ret;
1969
1970 error_undo:
1971 if (device->writeable) {
1972 lock_chunks(root);
1973 list_add(&device->dev_alloc_list,
1974 &root->fs_info->fs_devices->alloc_list);
1975 device->fs_devices->rw_devices++;
1976 unlock_chunks(root);
1977 }
1978 goto out;
1979 }
1980
1981 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1982 struct btrfs_device *srcdev)
1983 {
1984 struct btrfs_fs_devices *fs_devices;
1985
1986 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1987
1988 /*
1989 * in case of fs with no seed, srcdev->fs_devices will point
1990 * to fs_devices of fs_info. However when the dev being replaced is
1991 * a seed dev it will point to the seed's local fs_devices. In short
1992 * srcdev will have its correct fs_devices in both the cases.
1993 */
1994 fs_devices = srcdev->fs_devices;
1995
1996 list_del_rcu(&srcdev->dev_list);
1997 list_del_rcu(&srcdev->dev_alloc_list);
1998 fs_devices->num_devices--;
1999 if (srcdev->missing)
2000 fs_devices->missing_devices--;
2001
2002 if (srcdev->writeable)
2003 fs_devices->rw_devices--;
2004
2005 if (srcdev->bdev)
2006 fs_devices->open_devices--;
2007 }
2008
2009 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2010 struct btrfs_device *srcdev)
2011 {
2012 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2013
2014 if (srcdev->writeable) {
2015 /* zero out the old super if it is writable */
2016 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2017 }
2018
2019 btrfs_close_bdev(srcdev);
2020
2021 call_rcu(&srcdev->rcu, free_device);
2022
2023 /*
2024 * unless fs_devices is seed fs, num_devices shouldn't go
2025 * zero
2026 */
2027 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2028
2029 /* if this is no devs we rather delete the fs_devices */
2030 if (!fs_devices->num_devices) {
2031 struct btrfs_fs_devices *tmp_fs_devices;
2032
2033 tmp_fs_devices = fs_info->fs_devices;
2034 while (tmp_fs_devices) {
2035 if (tmp_fs_devices->seed == fs_devices) {
2036 tmp_fs_devices->seed = fs_devices->seed;
2037 break;
2038 }
2039 tmp_fs_devices = tmp_fs_devices->seed;
2040 }
2041 fs_devices->seed = NULL;
2042 __btrfs_close_devices(fs_devices);
2043 free_fs_devices(fs_devices);
2044 }
2045 }
2046
2047 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2048 struct btrfs_device *tgtdev)
2049 {
2050 mutex_lock(&uuid_mutex);
2051 WARN_ON(!tgtdev);
2052 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2053
2054 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2055
2056 if (tgtdev->bdev)
2057 fs_info->fs_devices->open_devices--;
2058
2059 fs_info->fs_devices->num_devices--;
2060
2061 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2062
2063 list_del_rcu(&tgtdev->dev_list);
2064
2065 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2066 mutex_unlock(&uuid_mutex);
2067
2068 /*
2069 * The update_dev_time() with in btrfs_scratch_superblocks()
2070 * may lead to a call to btrfs_show_devname() which will try
2071 * to hold device_list_mutex. And here this device
2072 * is already out of device list, so we don't have to hold
2073 * the device_list_mutex lock.
2074 */
2075 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2076
2077 btrfs_close_bdev(tgtdev);
2078 call_rcu(&tgtdev->rcu, free_device);
2079 }
2080
2081 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2082 struct btrfs_device **device)
2083 {
2084 int ret = 0;
2085 struct btrfs_super_block *disk_super;
2086 u64 devid;
2087 u8 *dev_uuid;
2088 struct block_device *bdev;
2089 struct buffer_head *bh;
2090
2091 *device = NULL;
2092 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2093 root->fs_info->bdev_holder, 0, &bdev, &bh);
2094 if (ret)
2095 return ret;
2096 disk_super = (struct btrfs_super_block *)bh->b_data;
2097 devid = btrfs_stack_device_id(&disk_super->dev_item);
2098 dev_uuid = disk_super->dev_item.uuid;
2099 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2100 disk_super->fsid);
2101 brelse(bh);
2102 if (!*device)
2103 ret = -ENOENT;
2104 blkdev_put(bdev, FMODE_READ);
2105 return ret;
2106 }
2107
2108 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2109 char *device_path,
2110 struct btrfs_device **device)
2111 {
2112 *device = NULL;
2113 if (strcmp(device_path, "missing") == 0) {
2114 struct list_head *devices;
2115 struct btrfs_device *tmp;
2116
2117 devices = &root->fs_info->fs_devices->devices;
2118 /*
2119 * It is safe to read the devices since the volume_mutex
2120 * is held by the caller.
2121 */
2122 list_for_each_entry(tmp, devices, dev_list) {
2123 if (tmp->in_fs_metadata && !tmp->bdev) {
2124 *device = tmp;
2125 break;
2126 }
2127 }
2128
2129 if (!*device)
2130 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2131
2132 return 0;
2133 } else {
2134 return btrfs_find_device_by_path(root, device_path, device);
2135 }
2136 }
2137
2138 /*
2139 * Lookup a device given by device id, or the path if the id is 0.
2140 */
2141 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2142 char *devpath,
2143 struct btrfs_device **device)
2144 {
2145 int ret;
2146
2147 if (devid) {
2148 ret = 0;
2149 *device = btrfs_find_device(root->fs_info, devid, NULL,
2150 NULL);
2151 if (!*device)
2152 ret = -ENOENT;
2153 } else {
2154 if (!devpath || !devpath[0])
2155 return -EINVAL;
2156
2157 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2158 device);
2159 }
2160 return ret;
2161 }
2162
2163 /*
2164 * does all the dirty work required for changing file system's UUID.
2165 */
2166 static int btrfs_prepare_sprout(struct btrfs_root *root)
2167 {
2168 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2169 struct btrfs_fs_devices *old_devices;
2170 struct btrfs_fs_devices *seed_devices;
2171 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2172 struct btrfs_device *device;
2173 u64 super_flags;
2174
2175 BUG_ON(!mutex_is_locked(&uuid_mutex));
2176 if (!fs_devices->seeding)
2177 return -EINVAL;
2178
2179 seed_devices = __alloc_fs_devices();
2180 if (IS_ERR(seed_devices))
2181 return PTR_ERR(seed_devices);
2182
2183 old_devices = clone_fs_devices(fs_devices);
2184 if (IS_ERR(old_devices)) {
2185 kfree(seed_devices);
2186 return PTR_ERR(old_devices);
2187 }
2188
2189 list_add(&old_devices->list, &fs_uuids);
2190
2191 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2192 seed_devices->opened = 1;
2193 INIT_LIST_HEAD(&seed_devices->devices);
2194 INIT_LIST_HEAD(&seed_devices->alloc_list);
2195 mutex_init(&seed_devices->device_list_mutex);
2196
2197 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2198 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2199 synchronize_rcu);
2200 list_for_each_entry(device, &seed_devices->devices, dev_list)
2201 device->fs_devices = seed_devices;
2202
2203 lock_chunks(root);
2204 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2205 unlock_chunks(root);
2206
2207 fs_devices->seeding = 0;
2208 fs_devices->num_devices = 0;
2209 fs_devices->open_devices = 0;
2210 fs_devices->missing_devices = 0;
2211 fs_devices->rotating = 0;
2212 fs_devices->seed = seed_devices;
2213
2214 generate_random_uuid(fs_devices->fsid);
2215 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2216 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2217 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2218
2219 super_flags = btrfs_super_flags(disk_super) &
2220 ~BTRFS_SUPER_FLAG_SEEDING;
2221 btrfs_set_super_flags(disk_super, super_flags);
2222
2223 return 0;
2224 }
2225
2226 /*
2227 * Store the expected generation for seed devices in device items.
2228 */
2229 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2230 struct btrfs_root *root)
2231 {
2232 struct btrfs_path *path;
2233 struct extent_buffer *leaf;
2234 struct btrfs_dev_item *dev_item;
2235 struct btrfs_device *device;
2236 struct btrfs_key key;
2237 u8 fs_uuid[BTRFS_UUID_SIZE];
2238 u8 dev_uuid[BTRFS_UUID_SIZE];
2239 u64 devid;
2240 int ret;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 root = root->fs_info->chunk_root;
2247 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2248 key.offset = 0;
2249 key.type = BTRFS_DEV_ITEM_KEY;
2250
2251 while (1) {
2252 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2253 if (ret < 0)
2254 goto error;
2255
2256 leaf = path->nodes[0];
2257 next_slot:
2258 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2259 ret = btrfs_next_leaf(root, path);
2260 if (ret > 0)
2261 break;
2262 if (ret < 0)
2263 goto error;
2264 leaf = path->nodes[0];
2265 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2266 btrfs_release_path(path);
2267 continue;
2268 }
2269
2270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2271 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2272 key.type != BTRFS_DEV_ITEM_KEY)
2273 break;
2274
2275 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2276 struct btrfs_dev_item);
2277 devid = btrfs_device_id(leaf, dev_item);
2278 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2279 BTRFS_UUID_SIZE);
2280 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2281 BTRFS_UUID_SIZE);
2282 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2283 fs_uuid);
2284 BUG_ON(!device); /* Logic error */
2285
2286 if (device->fs_devices->seeding) {
2287 btrfs_set_device_generation(leaf, dev_item,
2288 device->generation);
2289 btrfs_mark_buffer_dirty(leaf);
2290 }
2291
2292 path->slots[0]++;
2293 goto next_slot;
2294 }
2295 ret = 0;
2296 error:
2297 btrfs_free_path(path);
2298 return ret;
2299 }
2300
2301 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2302 {
2303 struct request_queue *q;
2304 struct btrfs_trans_handle *trans;
2305 struct btrfs_device *device;
2306 struct block_device *bdev;
2307 struct list_head *devices;
2308 struct super_block *sb = root->fs_info->sb;
2309 struct rcu_string *name;
2310 u64 tmp;
2311 int seeding_dev = 0;
2312 int ret = 0;
2313
2314 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2315 return -EROFS;
2316
2317 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2318 root->fs_info->bdev_holder);
2319 if (IS_ERR(bdev))
2320 return PTR_ERR(bdev);
2321
2322 if (root->fs_info->fs_devices->seeding) {
2323 seeding_dev = 1;
2324 down_write(&sb->s_umount);
2325 mutex_lock(&uuid_mutex);
2326 }
2327
2328 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2329
2330 devices = &root->fs_info->fs_devices->devices;
2331
2332 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2333 list_for_each_entry(device, devices, dev_list) {
2334 if (device->bdev == bdev) {
2335 ret = -EEXIST;
2336 mutex_unlock(
2337 &root->fs_info->fs_devices->device_list_mutex);
2338 goto error;
2339 }
2340 }
2341 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2342
2343 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2344 if (IS_ERR(device)) {
2345 /* we can safely leave the fs_devices entry around */
2346 ret = PTR_ERR(device);
2347 goto error;
2348 }
2349
2350 name = rcu_string_strdup(device_path, GFP_KERNEL);
2351 if (!name) {
2352 kfree(device);
2353 ret = -ENOMEM;
2354 goto error;
2355 }
2356 rcu_assign_pointer(device->name, name);
2357
2358 trans = btrfs_start_transaction(root, 0);
2359 if (IS_ERR(trans)) {
2360 rcu_string_free(device->name);
2361 kfree(device);
2362 ret = PTR_ERR(trans);
2363 goto error;
2364 }
2365
2366 q = bdev_get_queue(bdev);
2367 if (blk_queue_discard(q))
2368 device->can_discard = 1;
2369 device->writeable = 1;
2370 device->generation = trans->transid;
2371 device->io_width = root->sectorsize;
2372 device->io_align = root->sectorsize;
2373 device->sector_size = root->sectorsize;
2374 device->total_bytes = i_size_read(bdev->bd_inode);
2375 device->disk_total_bytes = device->total_bytes;
2376 device->commit_total_bytes = device->total_bytes;
2377 device->dev_root = root->fs_info->dev_root;
2378 device->bdev = bdev;
2379 device->in_fs_metadata = 1;
2380 device->is_tgtdev_for_dev_replace = 0;
2381 device->mode = FMODE_EXCL;
2382 device->dev_stats_valid = 1;
2383 set_blocksize(device->bdev, 4096);
2384
2385 if (seeding_dev) {
2386 sb->s_flags &= ~MS_RDONLY;
2387 ret = btrfs_prepare_sprout(root);
2388 BUG_ON(ret); /* -ENOMEM */
2389 }
2390
2391 device->fs_devices = root->fs_info->fs_devices;
2392
2393 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2394 lock_chunks(root);
2395 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2396 list_add(&device->dev_alloc_list,
2397 &root->fs_info->fs_devices->alloc_list);
2398 root->fs_info->fs_devices->num_devices++;
2399 root->fs_info->fs_devices->open_devices++;
2400 root->fs_info->fs_devices->rw_devices++;
2401 root->fs_info->fs_devices->total_devices++;
2402 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2403
2404 spin_lock(&root->fs_info->free_chunk_lock);
2405 root->fs_info->free_chunk_space += device->total_bytes;
2406 spin_unlock(&root->fs_info->free_chunk_lock);
2407
2408 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2409 root->fs_info->fs_devices->rotating = 1;
2410
2411 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2412 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2413 tmp + device->total_bytes);
2414
2415 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2416 btrfs_set_super_num_devices(root->fs_info->super_copy,
2417 tmp + 1);
2418
2419 /* add sysfs device entry */
2420 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2421
2422 /*
2423 * we've got more storage, clear any full flags on the space
2424 * infos
2425 */
2426 btrfs_clear_space_info_full(root->fs_info);
2427
2428 unlock_chunks(root);
2429 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2430
2431 if (seeding_dev) {
2432 lock_chunks(root);
2433 ret = init_first_rw_device(trans, root, device);
2434 unlock_chunks(root);
2435 if (ret) {
2436 btrfs_abort_transaction(trans, ret);
2437 goto error_trans;
2438 }
2439 }
2440
2441 ret = btrfs_add_device(trans, root, device);
2442 if (ret) {
2443 btrfs_abort_transaction(trans, ret);
2444 goto error_trans;
2445 }
2446
2447 if (seeding_dev) {
2448 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2449
2450 ret = btrfs_finish_sprout(trans, root);
2451 if (ret) {
2452 btrfs_abort_transaction(trans, ret);
2453 goto error_trans;
2454 }
2455
2456 /* Sprouting would change fsid of the mounted root,
2457 * so rename the fsid on the sysfs
2458 */
2459 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2460 root->fs_info->fsid);
2461 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2462 fsid_buf))
2463 btrfs_warn(root->fs_info,
2464 "sysfs: failed to create fsid for sprout");
2465 }
2466
2467 root->fs_info->num_tolerated_disk_barrier_failures =
2468 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2469 ret = btrfs_commit_transaction(trans, root);
2470
2471 if (seeding_dev) {
2472 mutex_unlock(&uuid_mutex);
2473 up_write(&sb->s_umount);
2474
2475 if (ret) /* transaction commit */
2476 return ret;
2477
2478 ret = btrfs_relocate_sys_chunks(root);
2479 if (ret < 0)
2480 btrfs_handle_fs_error(root->fs_info, ret,
2481 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2482 trans = btrfs_attach_transaction(root);
2483 if (IS_ERR(trans)) {
2484 if (PTR_ERR(trans) == -ENOENT)
2485 return 0;
2486 return PTR_ERR(trans);
2487 }
2488 ret = btrfs_commit_transaction(trans, root);
2489 }
2490
2491 /* Update ctime/mtime for libblkid */
2492 update_dev_time(device_path);
2493 return ret;
2494
2495 error_trans:
2496 btrfs_end_transaction(trans, root);
2497 rcu_string_free(device->name);
2498 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2499 kfree(device);
2500 error:
2501 blkdev_put(bdev, FMODE_EXCL);
2502 if (seeding_dev) {
2503 mutex_unlock(&uuid_mutex);
2504 up_write(&sb->s_umount);
2505 }
2506 return ret;
2507 }
2508
2509 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2510 struct btrfs_device *srcdev,
2511 struct btrfs_device **device_out)
2512 {
2513 struct request_queue *q;
2514 struct btrfs_device *device;
2515 struct block_device *bdev;
2516 struct btrfs_fs_info *fs_info = root->fs_info;
2517 struct list_head *devices;
2518 struct rcu_string *name;
2519 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2520 int ret = 0;
2521
2522 *device_out = NULL;
2523 if (fs_info->fs_devices->seeding) {
2524 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2525 return -EINVAL;
2526 }
2527
2528 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2529 fs_info->bdev_holder);
2530 if (IS_ERR(bdev)) {
2531 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2532 return PTR_ERR(bdev);
2533 }
2534
2535 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2536
2537 devices = &fs_info->fs_devices->devices;
2538 list_for_each_entry(device, devices, dev_list) {
2539 if (device->bdev == bdev) {
2540 btrfs_err(fs_info,
2541 "target device is in the filesystem!");
2542 ret = -EEXIST;
2543 goto error;
2544 }
2545 }
2546
2547
2548 if (i_size_read(bdev->bd_inode) <
2549 btrfs_device_get_total_bytes(srcdev)) {
2550 btrfs_err(fs_info,
2551 "target device is smaller than source device!");
2552 ret = -EINVAL;
2553 goto error;
2554 }
2555
2556
2557 device = btrfs_alloc_device(NULL, &devid, NULL);
2558 if (IS_ERR(device)) {
2559 ret = PTR_ERR(device);
2560 goto error;
2561 }
2562
2563 name = rcu_string_strdup(device_path, GFP_NOFS);
2564 if (!name) {
2565 kfree(device);
2566 ret = -ENOMEM;
2567 goto error;
2568 }
2569 rcu_assign_pointer(device->name, name);
2570
2571 q = bdev_get_queue(bdev);
2572 if (blk_queue_discard(q))
2573 device->can_discard = 1;
2574 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2575 device->writeable = 1;
2576 device->generation = 0;
2577 device->io_width = root->sectorsize;
2578 device->io_align = root->sectorsize;
2579 device->sector_size = root->sectorsize;
2580 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2581 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2582 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2583 ASSERT(list_empty(&srcdev->resized_list));
2584 device->commit_total_bytes = srcdev->commit_total_bytes;
2585 device->commit_bytes_used = device->bytes_used;
2586 device->dev_root = fs_info->dev_root;
2587 device->bdev = bdev;
2588 device->in_fs_metadata = 1;
2589 device->is_tgtdev_for_dev_replace = 1;
2590 device->mode = FMODE_EXCL;
2591 device->dev_stats_valid = 1;
2592 set_blocksize(device->bdev, 4096);
2593 device->fs_devices = fs_info->fs_devices;
2594 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2595 fs_info->fs_devices->num_devices++;
2596 fs_info->fs_devices->open_devices++;
2597 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2598
2599 *device_out = device;
2600 return ret;
2601
2602 error:
2603 blkdev_put(bdev, FMODE_EXCL);
2604 return ret;
2605 }
2606
2607 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2608 struct btrfs_device *tgtdev)
2609 {
2610 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2611 tgtdev->io_width = fs_info->dev_root->sectorsize;
2612 tgtdev->io_align = fs_info->dev_root->sectorsize;
2613 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2614 tgtdev->dev_root = fs_info->dev_root;
2615 tgtdev->in_fs_metadata = 1;
2616 }
2617
2618 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2619 struct btrfs_device *device)
2620 {
2621 int ret;
2622 struct btrfs_path *path;
2623 struct btrfs_root *root;
2624 struct btrfs_dev_item *dev_item;
2625 struct extent_buffer *leaf;
2626 struct btrfs_key key;
2627
2628 root = device->dev_root->fs_info->chunk_root;
2629
2630 path = btrfs_alloc_path();
2631 if (!path)
2632 return -ENOMEM;
2633
2634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2635 key.type = BTRFS_DEV_ITEM_KEY;
2636 key.offset = device->devid;
2637
2638 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2639 if (ret < 0)
2640 goto out;
2641
2642 if (ret > 0) {
2643 ret = -ENOENT;
2644 goto out;
2645 }
2646
2647 leaf = path->nodes[0];
2648 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2649
2650 btrfs_set_device_id(leaf, dev_item, device->devid);
2651 btrfs_set_device_type(leaf, dev_item, device->type);
2652 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2653 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2654 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2655 btrfs_set_device_total_bytes(leaf, dev_item,
2656 btrfs_device_get_disk_total_bytes(device));
2657 btrfs_set_device_bytes_used(leaf, dev_item,
2658 btrfs_device_get_bytes_used(device));
2659 btrfs_mark_buffer_dirty(leaf);
2660
2661 out:
2662 btrfs_free_path(path);
2663 return ret;
2664 }
2665
2666 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2667 struct btrfs_device *device, u64 new_size)
2668 {
2669 struct btrfs_super_block *super_copy =
2670 device->dev_root->fs_info->super_copy;
2671 struct btrfs_fs_devices *fs_devices;
2672 u64 old_total;
2673 u64 diff;
2674
2675 if (!device->writeable)
2676 return -EACCES;
2677
2678 lock_chunks(device->dev_root);
2679 old_total = btrfs_super_total_bytes(super_copy);
2680 diff = new_size - device->total_bytes;
2681
2682 if (new_size <= device->total_bytes ||
2683 device->is_tgtdev_for_dev_replace) {
2684 unlock_chunks(device->dev_root);
2685 return -EINVAL;
2686 }
2687
2688 fs_devices = device->dev_root->fs_info->fs_devices;
2689
2690 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2691 device->fs_devices->total_rw_bytes += diff;
2692
2693 btrfs_device_set_total_bytes(device, new_size);
2694 btrfs_device_set_disk_total_bytes(device, new_size);
2695 btrfs_clear_space_info_full(device->dev_root->fs_info);
2696 if (list_empty(&device->resized_list))
2697 list_add_tail(&device->resized_list,
2698 &fs_devices->resized_devices);
2699 unlock_chunks(device->dev_root);
2700
2701 return btrfs_update_device(trans, device);
2702 }
2703
2704 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *root, u64 chunk_objectid,
2706 u64 chunk_offset)
2707 {
2708 int ret;
2709 struct btrfs_path *path;
2710 struct btrfs_key key;
2711
2712 root = root->fs_info->chunk_root;
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 return -ENOMEM;
2716
2717 key.objectid = chunk_objectid;
2718 key.offset = chunk_offset;
2719 key.type = BTRFS_CHUNK_ITEM_KEY;
2720
2721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2722 if (ret < 0)
2723 goto out;
2724 else if (ret > 0) { /* Logic error or corruption */
2725 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2726 "Failed lookup while freeing chunk.");
2727 ret = -ENOENT;
2728 goto out;
2729 }
2730
2731 ret = btrfs_del_item(trans, root, path);
2732 if (ret < 0)
2733 btrfs_handle_fs_error(root->fs_info, ret,
2734 "Failed to delete chunk item.");
2735 out:
2736 btrfs_free_path(path);
2737 return ret;
2738 }
2739
2740 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2741 chunk_offset)
2742 {
2743 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2744 struct btrfs_disk_key *disk_key;
2745 struct btrfs_chunk *chunk;
2746 u8 *ptr;
2747 int ret = 0;
2748 u32 num_stripes;
2749 u32 array_size;
2750 u32 len = 0;
2751 u32 cur;
2752 struct btrfs_key key;
2753
2754 lock_chunks(root);
2755 array_size = btrfs_super_sys_array_size(super_copy);
2756
2757 ptr = super_copy->sys_chunk_array;
2758 cur = 0;
2759
2760 while (cur < array_size) {
2761 disk_key = (struct btrfs_disk_key *)ptr;
2762 btrfs_disk_key_to_cpu(&key, disk_key);
2763
2764 len = sizeof(*disk_key);
2765
2766 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2767 chunk = (struct btrfs_chunk *)(ptr + len);
2768 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2769 len += btrfs_chunk_item_size(num_stripes);
2770 } else {
2771 ret = -EIO;
2772 break;
2773 }
2774 if (key.objectid == chunk_objectid &&
2775 key.offset == chunk_offset) {
2776 memmove(ptr, ptr + len, array_size - (cur + len));
2777 array_size -= len;
2778 btrfs_set_super_sys_array_size(super_copy, array_size);
2779 } else {
2780 ptr += len;
2781 cur += len;
2782 }
2783 }
2784 unlock_chunks(root);
2785 return ret;
2786 }
2787
2788 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *root, u64 chunk_offset)
2790 {
2791 struct extent_map_tree *em_tree;
2792 struct extent_map *em;
2793 struct btrfs_root *extent_root = root->fs_info->extent_root;
2794 struct map_lookup *map;
2795 u64 dev_extent_len = 0;
2796 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2797 int i, ret = 0;
2798 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2799
2800 /* Just in case */
2801 root = root->fs_info->chunk_root;
2802 em_tree = &root->fs_info->mapping_tree.map_tree;
2803
2804 read_lock(&em_tree->lock);
2805 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2806 read_unlock(&em_tree->lock);
2807
2808 if (!em || em->start > chunk_offset ||
2809 em->start + em->len < chunk_offset) {
2810 /*
2811 * This is a logic error, but we don't want to just rely on the
2812 * user having built with ASSERT enabled, so if ASSERT doesn't
2813 * do anything we still error out.
2814 */
2815 ASSERT(0);
2816 if (em)
2817 free_extent_map(em);
2818 return -EINVAL;
2819 }
2820 map = em->map_lookup;
2821 lock_chunks(root->fs_info->chunk_root);
2822 check_system_chunk(trans, extent_root, map->type);
2823 unlock_chunks(root->fs_info->chunk_root);
2824
2825 /*
2826 * Take the device list mutex to prevent races with the final phase of
2827 * a device replace operation that replaces the device object associated
2828 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2829 */
2830 mutex_lock(&fs_devices->device_list_mutex);
2831 for (i = 0; i < map->num_stripes; i++) {
2832 struct btrfs_device *device = map->stripes[i].dev;
2833 ret = btrfs_free_dev_extent(trans, device,
2834 map->stripes[i].physical,
2835 &dev_extent_len);
2836 if (ret) {
2837 mutex_unlock(&fs_devices->device_list_mutex);
2838 btrfs_abort_transaction(trans, ret);
2839 goto out;
2840 }
2841
2842 if (device->bytes_used > 0) {
2843 lock_chunks(root);
2844 btrfs_device_set_bytes_used(device,
2845 device->bytes_used - dev_extent_len);
2846 spin_lock(&root->fs_info->free_chunk_lock);
2847 root->fs_info->free_chunk_space += dev_extent_len;
2848 spin_unlock(&root->fs_info->free_chunk_lock);
2849 btrfs_clear_space_info_full(root->fs_info);
2850 unlock_chunks(root);
2851 }
2852
2853 if (map->stripes[i].dev) {
2854 ret = btrfs_update_device(trans, map->stripes[i].dev);
2855 if (ret) {
2856 mutex_unlock(&fs_devices->device_list_mutex);
2857 btrfs_abort_transaction(trans, ret);
2858 goto out;
2859 }
2860 }
2861 }
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863
2864 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2865 if (ret) {
2866 btrfs_abort_transaction(trans, ret);
2867 goto out;
2868 }
2869
2870 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2871
2872 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2873 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2874 if (ret) {
2875 btrfs_abort_transaction(trans, ret);
2876 goto out;
2877 }
2878 }
2879
2880 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2881 if (ret) {
2882 btrfs_abort_transaction(trans, ret);
2883 goto out;
2884 }
2885
2886 out:
2887 /* once for us */
2888 free_extent_map(em);
2889 return ret;
2890 }
2891
2892 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2893 {
2894 struct btrfs_root *extent_root;
2895 int ret;
2896 struct btrfs_block_group_cache *block_group;
2897
2898 root = root->fs_info->chunk_root;
2899 extent_root = root->fs_info->extent_root;
2900
2901 /*
2902 * Prevent races with automatic removal of unused block groups.
2903 * After we relocate and before we remove the chunk with offset
2904 * chunk_offset, automatic removal of the block group can kick in,
2905 * resulting in a failure when calling btrfs_remove_chunk() below.
2906 *
2907 * Make sure to acquire this mutex before doing a tree search (dev
2908 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2909 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2910 * we release the path used to search the chunk/dev tree and before
2911 * the current task acquires this mutex and calls us.
2912 */
2913 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2914
2915 ret = btrfs_can_relocate(extent_root, chunk_offset);
2916 if (ret)
2917 return -ENOSPC;
2918
2919 /* step one, relocate all the extents inside this chunk */
2920 btrfs_scrub_pause(root);
2921 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2922 btrfs_scrub_continue(root);
2923 if (ret)
2924 return ret;
2925
2926 /*
2927 * step two, flag the chunk as removed and let
2928 * btrfs_delete_unused_bgs() remove it.
2929 */
2930 block_group = btrfs_lookup_block_group(root->fs_info, chunk_offset);
2931 spin_lock(&block_group->lock);
2932 block_group->removed = 1;
2933 spin_unlock(&block_group->lock);
2934 btrfs_put_block_group(block_group);
2935
2936 return 0;
2937 }
2938
2939 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2940 {
2941 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2942 struct btrfs_path *path;
2943 struct extent_buffer *leaf;
2944 struct btrfs_chunk *chunk;
2945 struct btrfs_key key;
2946 struct btrfs_key found_key;
2947 u64 chunk_type;
2948 bool retried = false;
2949 int failed = 0;
2950 int ret;
2951
2952 path = btrfs_alloc_path();
2953 if (!path)
2954 return -ENOMEM;
2955
2956 again:
2957 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2958 key.offset = (u64)-1;
2959 key.type = BTRFS_CHUNK_ITEM_KEY;
2960
2961 while (1) {
2962 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2963 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2964 if (ret < 0) {
2965 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2966 goto error;
2967 }
2968 BUG_ON(ret == 0); /* Corruption */
2969
2970 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2971 key.type);
2972 if (ret)
2973 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2974 if (ret < 0)
2975 goto error;
2976 if (ret > 0)
2977 break;
2978
2979 leaf = path->nodes[0];
2980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2981
2982 chunk = btrfs_item_ptr(leaf, path->slots[0],
2983 struct btrfs_chunk);
2984 chunk_type = btrfs_chunk_type(leaf, chunk);
2985 btrfs_release_path(path);
2986
2987 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2988 ret = btrfs_relocate_chunk(chunk_root,
2989 found_key.offset);
2990 if (ret == -ENOSPC)
2991 failed++;
2992 else
2993 BUG_ON(ret);
2994 }
2995 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2996
2997 if (found_key.offset == 0)
2998 break;
2999 key.offset = found_key.offset - 1;
3000 }
3001 ret = 0;
3002 if (failed && !retried) {
3003 failed = 0;
3004 retried = true;
3005 goto again;
3006 } else if (WARN_ON(failed && retried)) {
3007 ret = -ENOSPC;
3008 }
3009 error:
3010 btrfs_free_path(path);
3011 return ret;
3012 }
3013
3014 static int insert_balance_item(struct btrfs_root *root,
3015 struct btrfs_balance_control *bctl)
3016 {
3017 struct btrfs_trans_handle *trans;
3018 struct btrfs_balance_item *item;
3019 struct btrfs_disk_balance_args disk_bargs;
3020 struct btrfs_path *path;
3021 struct extent_buffer *leaf;
3022 struct btrfs_key key;
3023 int ret, err;
3024
3025 path = btrfs_alloc_path();
3026 if (!path)
3027 return -ENOMEM;
3028
3029 trans = btrfs_start_transaction(root, 0);
3030 if (IS_ERR(trans)) {
3031 btrfs_free_path(path);
3032 return PTR_ERR(trans);
3033 }
3034
3035 key.objectid = BTRFS_BALANCE_OBJECTID;
3036 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3037 key.offset = 0;
3038
3039 ret = btrfs_insert_empty_item(trans, root, path, &key,
3040 sizeof(*item));
3041 if (ret)
3042 goto out;
3043
3044 leaf = path->nodes[0];
3045 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3046
3047 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3048
3049 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3050 btrfs_set_balance_data(leaf, item, &disk_bargs);
3051 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3052 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3053 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3054 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3055
3056 btrfs_set_balance_flags(leaf, item, bctl->flags);
3057
3058 btrfs_mark_buffer_dirty(leaf);
3059 out:
3060 btrfs_free_path(path);
3061 err = btrfs_commit_transaction(trans, root);
3062 if (err && !ret)
3063 ret = err;
3064 return ret;
3065 }
3066
3067 static int del_balance_item(struct btrfs_root *root)
3068 {
3069 struct btrfs_trans_handle *trans;
3070 struct btrfs_path *path;
3071 struct btrfs_key key;
3072 int ret, err;
3073
3074 path = btrfs_alloc_path();
3075 if (!path)
3076 return -ENOMEM;
3077
3078 trans = btrfs_start_transaction(root, 0);
3079 if (IS_ERR(trans)) {
3080 btrfs_free_path(path);
3081 return PTR_ERR(trans);
3082 }
3083
3084 key.objectid = BTRFS_BALANCE_OBJECTID;
3085 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3086 key.offset = 0;
3087
3088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3089 if (ret < 0)
3090 goto out;
3091 if (ret > 0) {
3092 ret = -ENOENT;
3093 goto out;
3094 }
3095
3096 ret = btrfs_del_item(trans, root, path);
3097 out:
3098 btrfs_free_path(path);
3099 err = btrfs_commit_transaction(trans, root);
3100 if (err && !ret)
3101 ret = err;
3102 return ret;
3103 }
3104
3105 /*
3106 * This is a heuristic used to reduce the number of chunks balanced on
3107 * resume after balance was interrupted.
3108 */
3109 static void update_balance_args(struct btrfs_balance_control *bctl)
3110 {
3111 /*
3112 * Turn on soft mode for chunk types that were being converted.
3113 */
3114 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3115 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3116 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3117 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3118 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3119 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3120
3121 /*
3122 * Turn on usage filter if is not already used. The idea is
3123 * that chunks that we have already balanced should be
3124 * reasonably full. Don't do it for chunks that are being
3125 * converted - that will keep us from relocating unconverted
3126 * (albeit full) chunks.
3127 */
3128 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3129 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3130 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3131 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3132 bctl->data.usage = 90;
3133 }
3134 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3135 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3136 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3137 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3138 bctl->sys.usage = 90;
3139 }
3140 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3141 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3142 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3143 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3144 bctl->meta.usage = 90;
3145 }
3146 }
3147
3148 /*
3149 * Should be called with both balance and volume mutexes held to
3150 * serialize other volume operations (add_dev/rm_dev/resize) with
3151 * restriper. Same goes for unset_balance_control.
3152 */
3153 static void set_balance_control(struct btrfs_balance_control *bctl)
3154 {
3155 struct btrfs_fs_info *fs_info = bctl->fs_info;
3156
3157 BUG_ON(fs_info->balance_ctl);
3158
3159 spin_lock(&fs_info->balance_lock);
3160 fs_info->balance_ctl = bctl;
3161 spin_unlock(&fs_info->balance_lock);
3162 }
3163
3164 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3165 {
3166 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3167
3168 BUG_ON(!fs_info->balance_ctl);
3169
3170 spin_lock(&fs_info->balance_lock);
3171 fs_info->balance_ctl = NULL;
3172 spin_unlock(&fs_info->balance_lock);
3173
3174 kfree(bctl);
3175 }
3176
3177 /*
3178 * Balance filters. Return 1 if chunk should be filtered out
3179 * (should not be balanced).
3180 */
3181 static int chunk_profiles_filter(u64 chunk_type,
3182 struct btrfs_balance_args *bargs)
3183 {
3184 chunk_type = chunk_to_extended(chunk_type) &
3185 BTRFS_EXTENDED_PROFILE_MASK;
3186
3187 if (bargs->profiles & chunk_type)
3188 return 0;
3189
3190 return 1;
3191 }
3192
3193 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3194 struct btrfs_balance_args *bargs)
3195 {
3196 struct btrfs_block_group_cache *cache;
3197 u64 chunk_used;
3198 u64 user_thresh_min;
3199 u64 user_thresh_max;
3200 int ret = 1;
3201
3202 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3203 chunk_used = btrfs_block_group_used(&cache->item);
3204
3205 if (bargs->usage_min == 0)
3206 user_thresh_min = 0;
3207 else
3208 user_thresh_min = div_factor_fine(cache->key.offset,
3209 bargs->usage_min);
3210
3211 if (bargs->usage_max == 0)
3212 user_thresh_max = 1;
3213 else if (bargs->usage_max > 100)
3214 user_thresh_max = cache->key.offset;
3215 else
3216 user_thresh_max = div_factor_fine(cache->key.offset,
3217 bargs->usage_max);
3218
3219 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3220 ret = 0;
3221
3222 btrfs_put_block_group(cache);
3223 return ret;
3224 }
3225
3226 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3227 u64 chunk_offset, struct btrfs_balance_args *bargs)
3228 {
3229 struct btrfs_block_group_cache *cache;
3230 u64 chunk_used, user_thresh;
3231 int ret = 1;
3232
3233 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3234 chunk_used = btrfs_block_group_used(&cache->item);
3235
3236 if (bargs->usage_min == 0)
3237 user_thresh = 1;
3238 else if (bargs->usage > 100)
3239 user_thresh = cache->key.offset;
3240 else
3241 user_thresh = div_factor_fine(cache->key.offset,
3242 bargs->usage);
3243
3244 if (chunk_used < user_thresh)
3245 ret = 0;
3246
3247 btrfs_put_block_group(cache);
3248 return ret;
3249 }
3250
3251 static int chunk_devid_filter(struct extent_buffer *leaf,
3252 struct btrfs_chunk *chunk,
3253 struct btrfs_balance_args *bargs)
3254 {
3255 struct btrfs_stripe *stripe;
3256 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3257 int i;
3258
3259 for (i = 0; i < num_stripes; i++) {
3260 stripe = btrfs_stripe_nr(chunk, i);
3261 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3262 return 0;
3263 }
3264
3265 return 1;
3266 }
3267
3268 /* [pstart, pend) */
3269 static int chunk_drange_filter(struct extent_buffer *leaf,
3270 struct btrfs_chunk *chunk,
3271 u64 chunk_offset,
3272 struct btrfs_balance_args *bargs)
3273 {
3274 struct btrfs_stripe *stripe;
3275 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3276 u64 stripe_offset;
3277 u64 stripe_length;
3278 int factor;
3279 int i;
3280
3281 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3282 return 0;
3283
3284 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3285 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3286 factor = num_stripes / 2;
3287 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3288 factor = num_stripes - 1;
3289 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3290 factor = num_stripes - 2;
3291 } else {
3292 factor = num_stripes;
3293 }
3294
3295 for (i = 0; i < num_stripes; i++) {
3296 stripe = btrfs_stripe_nr(chunk, i);
3297 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3298 continue;
3299
3300 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3301 stripe_length = btrfs_chunk_length(leaf, chunk);
3302 stripe_length = div_u64(stripe_length, factor);
3303
3304 if (stripe_offset < bargs->pend &&
3305 stripe_offset + stripe_length > bargs->pstart)
3306 return 0;
3307 }
3308
3309 return 1;
3310 }
3311
3312 /* [vstart, vend) */
3313 static int chunk_vrange_filter(struct extent_buffer *leaf,
3314 struct btrfs_chunk *chunk,
3315 u64 chunk_offset,
3316 struct btrfs_balance_args *bargs)
3317 {
3318 if (chunk_offset < bargs->vend &&
3319 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3320 /* at least part of the chunk is inside this vrange */
3321 return 0;
3322
3323 return 1;
3324 }
3325
3326 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3327 struct btrfs_chunk *chunk,
3328 struct btrfs_balance_args *bargs)
3329 {
3330 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3331
3332 if (bargs->stripes_min <= num_stripes
3333 && num_stripes <= bargs->stripes_max)
3334 return 0;
3335
3336 return 1;
3337 }
3338
3339 static int chunk_soft_convert_filter(u64 chunk_type,
3340 struct btrfs_balance_args *bargs)
3341 {
3342 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3343 return 0;
3344
3345 chunk_type = chunk_to_extended(chunk_type) &
3346 BTRFS_EXTENDED_PROFILE_MASK;
3347
3348 if (bargs->target == chunk_type)
3349 return 1;
3350
3351 return 0;
3352 }
3353
3354 static int should_balance_chunk(struct btrfs_root *root,
3355 struct extent_buffer *leaf,
3356 struct btrfs_chunk *chunk, u64 chunk_offset)
3357 {
3358 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3359 struct btrfs_balance_args *bargs = NULL;
3360 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3361
3362 /* type filter */
3363 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3364 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3365 return 0;
3366 }
3367
3368 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3369 bargs = &bctl->data;
3370 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3371 bargs = &bctl->sys;
3372 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3373 bargs = &bctl->meta;
3374
3375 /* profiles filter */
3376 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3377 chunk_profiles_filter(chunk_type, bargs)) {
3378 return 0;
3379 }
3380
3381 /* usage filter */
3382 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3383 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3384 return 0;
3385 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3386 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3387 return 0;
3388 }
3389
3390 /* devid filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3392 chunk_devid_filter(leaf, chunk, bargs)) {
3393 return 0;
3394 }
3395
3396 /* drange filter, makes sense only with devid filter */
3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3398 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3399 return 0;
3400 }
3401
3402 /* vrange filter */
3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3404 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3405 return 0;
3406 }
3407
3408 /* stripes filter */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3410 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3411 return 0;
3412 }
3413
3414 /* soft profile changing mode */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3416 chunk_soft_convert_filter(chunk_type, bargs)) {
3417 return 0;
3418 }
3419
3420 /*
3421 * limited by count, must be the last filter
3422 */
3423 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3424 if (bargs->limit == 0)
3425 return 0;
3426 else
3427 bargs->limit--;
3428 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3429 /*
3430 * Same logic as the 'limit' filter; the minimum cannot be
3431 * determined here because we do not have the global information
3432 * about the count of all chunks that satisfy the filters.
3433 */
3434 if (bargs->limit_max == 0)
3435 return 0;
3436 else
3437 bargs->limit_max--;
3438 }
3439
3440 return 1;
3441 }
3442
3443 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3444 {
3445 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3446 struct btrfs_root *chunk_root = fs_info->chunk_root;
3447 struct btrfs_root *dev_root = fs_info->dev_root;
3448 struct list_head *devices;
3449 struct btrfs_device *device;
3450 u64 old_size;
3451 u64 size_to_free;
3452 u64 chunk_type;
3453 struct btrfs_chunk *chunk;
3454 struct btrfs_path *path = NULL;
3455 struct btrfs_key key;
3456 struct btrfs_key found_key;
3457 struct btrfs_trans_handle *trans;
3458 struct extent_buffer *leaf;
3459 int slot;
3460 int ret;
3461 int enospc_errors = 0;
3462 bool counting = true;
3463 /* The single value limit and min/max limits use the same bytes in the */
3464 u64 limit_data = bctl->data.limit;
3465 u64 limit_meta = bctl->meta.limit;
3466 u64 limit_sys = bctl->sys.limit;
3467 u32 count_data = 0;
3468 u32 count_meta = 0;
3469 u32 count_sys = 0;
3470 int chunk_reserved = 0;
3471 u64 bytes_used = 0;
3472
3473 /* step one make some room on all the devices */
3474 devices = &fs_info->fs_devices->devices;
3475 list_for_each_entry(device, devices, dev_list) {
3476 old_size = btrfs_device_get_total_bytes(device);
3477 size_to_free = div_factor(old_size, 1);
3478 size_to_free = min_t(u64, size_to_free, SZ_1M);
3479 if (!device->writeable ||
3480 btrfs_device_get_total_bytes(device) -
3481 btrfs_device_get_bytes_used(device) > size_to_free ||
3482 device->is_tgtdev_for_dev_replace)
3483 continue;
3484
3485 ret = btrfs_shrink_device(device, old_size - size_to_free);
3486 if (ret == -ENOSPC)
3487 break;
3488 if (ret) {
3489 /* btrfs_shrink_device never returns ret > 0 */
3490 WARN_ON(ret > 0);
3491 goto error;
3492 }
3493
3494 trans = btrfs_start_transaction(dev_root, 0);
3495 if (IS_ERR(trans)) {
3496 ret = PTR_ERR(trans);
3497 btrfs_info_in_rcu(fs_info,
3498 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3499 rcu_str_deref(device->name), ret,
3500 old_size, old_size - size_to_free);
3501 goto error;
3502 }
3503
3504 ret = btrfs_grow_device(trans, device, old_size);
3505 if (ret) {
3506 btrfs_end_transaction(trans, dev_root);
3507 /* btrfs_grow_device never returns ret > 0 */
3508 WARN_ON(ret > 0);
3509 btrfs_info_in_rcu(fs_info,
3510 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3511 rcu_str_deref(device->name), ret,
3512 old_size, old_size - size_to_free);
3513 goto error;
3514 }
3515
3516 btrfs_end_transaction(trans, dev_root);
3517 }
3518
3519 /* step two, relocate all the chunks */
3520 path = btrfs_alloc_path();
3521 if (!path) {
3522 ret = -ENOMEM;
3523 goto error;
3524 }
3525
3526 /* zero out stat counters */
3527 spin_lock(&fs_info->balance_lock);
3528 memset(&bctl->stat, 0, sizeof(bctl->stat));
3529 spin_unlock(&fs_info->balance_lock);
3530 again:
3531 if (!counting) {
3532 /*
3533 * The single value limit and min/max limits use the same bytes
3534 * in the
3535 */
3536 bctl->data.limit = limit_data;
3537 bctl->meta.limit = limit_meta;
3538 bctl->sys.limit = limit_sys;
3539 }
3540 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3541 key.offset = (u64)-1;
3542 key.type = BTRFS_CHUNK_ITEM_KEY;
3543
3544 while (1) {
3545 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3546 atomic_read(&fs_info->balance_cancel_req)) {
3547 ret = -ECANCELED;
3548 goto error;
3549 }
3550
3551 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3552 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3553 if (ret < 0) {
3554 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3555 goto error;
3556 }
3557
3558 /*
3559 * this shouldn't happen, it means the last relocate
3560 * failed
3561 */
3562 if (ret == 0)
3563 BUG(); /* FIXME break ? */
3564
3565 ret = btrfs_previous_item(chunk_root, path, 0,
3566 BTRFS_CHUNK_ITEM_KEY);
3567 if (ret) {
3568 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3569 ret = 0;
3570 break;
3571 }
3572
3573 leaf = path->nodes[0];
3574 slot = path->slots[0];
3575 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3576
3577 if (found_key.objectid != key.objectid) {
3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 break;
3580 }
3581
3582 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3583 chunk_type = btrfs_chunk_type(leaf, chunk);
3584
3585 if (!counting) {
3586 spin_lock(&fs_info->balance_lock);
3587 bctl->stat.considered++;
3588 spin_unlock(&fs_info->balance_lock);
3589 }
3590
3591 ret = should_balance_chunk(chunk_root, leaf, chunk,
3592 found_key.offset);
3593
3594 btrfs_release_path(path);
3595 if (!ret) {
3596 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3597 goto loop;
3598 }
3599
3600 if (counting) {
3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3602 spin_lock(&fs_info->balance_lock);
3603 bctl->stat.expected++;
3604 spin_unlock(&fs_info->balance_lock);
3605
3606 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3607 count_data++;
3608 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3609 count_sys++;
3610 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3611 count_meta++;
3612
3613 goto loop;
3614 }
3615
3616 /*
3617 * Apply limit_min filter, no need to check if the LIMITS
3618 * filter is used, limit_min is 0 by default
3619 */
3620 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3621 count_data < bctl->data.limit_min)
3622 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3623 count_meta < bctl->meta.limit_min)
3624 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3625 count_sys < bctl->sys.limit_min)) {
3626 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3627 goto loop;
3628 }
3629
3630 ASSERT(fs_info->data_sinfo);
3631 spin_lock(&fs_info->data_sinfo->lock);
3632 bytes_used = fs_info->data_sinfo->bytes_used;
3633 spin_unlock(&fs_info->data_sinfo->lock);
3634
3635 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3636 !chunk_reserved && !bytes_used) {
3637 trans = btrfs_start_transaction(chunk_root, 0);
3638 if (IS_ERR(trans)) {
3639 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3640 ret = PTR_ERR(trans);
3641 goto error;
3642 }
3643
3644 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3645 BTRFS_BLOCK_GROUP_DATA);
3646 btrfs_end_transaction(trans, chunk_root);
3647 if (ret < 0) {
3648 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3649 goto error;
3650 }
3651 chunk_reserved = 1;
3652 }
3653
3654 ret = btrfs_relocate_chunk(chunk_root,
3655 found_key.offset);
3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 if (ret && ret != -ENOSPC)
3658 goto error;
3659 if (ret == -ENOSPC) {
3660 enospc_errors++;
3661 } else {
3662 spin_lock(&fs_info->balance_lock);
3663 bctl->stat.completed++;
3664 spin_unlock(&fs_info->balance_lock);
3665 }
3666 loop:
3667 if (found_key.offset == 0)
3668 break;
3669 key.offset = found_key.offset - 1;
3670 }
3671
3672 if (counting) {
3673 btrfs_release_path(path);
3674 counting = false;
3675 goto again;
3676 }
3677 error:
3678 btrfs_free_path(path);
3679 if (enospc_errors) {
3680 btrfs_info(fs_info, "%d enospc errors during balance",
3681 enospc_errors);
3682 if (!ret)
3683 ret = -ENOSPC;
3684 }
3685
3686 return ret;
3687 }
3688
3689 /**
3690 * alloc_profile_is_valid - see if a given profile is valid and reduced
3691 * @flags: profile to validate
3692 * @extended: if true @flags is treated as an extended profile
3693 */
3694 static int alloc_profile_is_valid(u64 flags, int extended)
3695 {
3696 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3697 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3698
3699 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3700
3701 /* 1) check that all other bits are zeroed */
3702 if (flags & ~mask)
3703 return 0;
3704
3705 /* 2) see if profile is reduced */
3706 if (flags == 0)
3707 return !extended; /* "0" is valid for usual profiles */
3708
3709 /* true if exactly one bit set */
3710 return (flags & (flags - 1)) == 0;
3711 }
3712
3713 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3714 {
3715 /* cancel requested || normal exit path */
3716 return atomic_read(&fs_info->balance_cancel_req) ||
3717 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3718 atomic_read(&fs_info->balance_cancel_req) == 0);
3719 }
3720
3721 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3722 {
3723 int ret;
3724
3725 unset_balance_control(fs_info);
3726 ret = del_balance_item(fs_info->tree_root);
3727 if (ret)
3728 btrfs_handle_fs_error(fs_info, ret, NULL);
3729
3730 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3731 }
3732
3733 /* Non-zero return value signifies invalidity */
3734 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3735 u64 allowed)
3736 {
3737 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3738 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3739 (bctl_arg->target & ~allowed)));
3740 }
3741
3742 /*
3743 * Should be called with both balance and volume mutexes held
3744 */
3745 int btrfs_balance(struct btrfs_balance_control *bctl,
3746 struct btrfs_ioctl_balance_args *bargs)
3747 {
3748 struct btrfs_fs_info *fs_info = bctl->fs_info;
3749 u64 allowed;
3750 int mixed = 0;
3751 int ret;
3752 u64 num_devices;
3753 unsigned seq;
3754
3755 if (btrfs_fs_closing(fs_info) ||
3756 atomic_read(&fs_info->balance_pause_req) ||
3757 atomic_read(&fs_info->balance_cancel_req)) {
3758 ret = -EINVAL;
3759 goto out;
3760 }
3761
3762 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3763 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3764 mixed = 1;
3765
3766 /*
3767 * In case of mixed groups both data and meta should be picked,
3768 * and identical options should be given for both of them.
3769 */
3770 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3771 if (mixed && (bctl->flags & allowed)) {
3772 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3773 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3774 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3775 btrfs_err(fs_info,
3776 "with mixed groups data and metadata balance options must be the same");
3777 ret = -EINVAL;
3778 goto out;
3779 }
3780 }
3781
3782 num_devices = fs_info->fs_devices->num_devices;
3783 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3784 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3785 BUG_ON(num_devices < 1);
3786 num_devices--;
3787 }
3788 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3789 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3790 if (num_devices > 1)
3791 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3792 if (num_devices > 2)
3793 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3794 if (num_devices > 3)
3795 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3796 BTRFS_BLOCK_GROUP_RAID6);
3797 if (validate_convert_profile(&bctl->data, allowed)) {
3798 btrfs_err(fs_info,
3799 "unable to start balance with target data profile %llu",
3800 bctl->data.target);
3801 ret = -EINVAL;
3802 goto out;
3803 }
3804 if (validate_convert_profile(&bctl->meta, allowed)) {
3805 btrfs_err(fs_info,
3806 "unable to start balance with target metadata profile %llu",
3807 bctl->meta.target);
3808 ret = -EINVAL;
3809 goto out;
3810 }
3811 if (validate_convert_profile(&bctl->sys, allowed)) {
3812 btrfs_err(fs_info,
3813 "unable to start balance with target system profile %llu",
3814 bctl->sys.target);
3815 ret = -EINVAL;
3816 goto out;
3817 }
3818
3819 /* allow to reduce meta or sys integrity only if force set */
3820 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3821 BTRFS_BLOCK_GROUP_RAID10 |
3822 BTRFS_BLOCK_GROUP_RAID5 |
3823 BTRFS_BLOCK_GROUP_RAID6;
3824 do {
3825 seq = read_seqbegin(&fs_info->profiles_lock);
3826
3827 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3828 (fs_info->avail_system_alloc_bits & allowed) &&
3829 !(bctl->sys.target & allowed)) ||
3830 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3831 (fs_info->avail_metadata_alloc_bits & allowed) &&
3832 !(bctl->meta.target & allowed))) {
3833 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3834 btrfs_info(fs_info,
3835 "force reducing metadata integrity");
3836 } else {
3837 btrfs_err(fs_info,
3838 "balance will reduce metadata integrity, use force if you want this");
3839 ret = -EINVAL;
3840 goto out;
3841 }
3842 }
3843 } while (read_seqretry(&fs_info->profiles_lock, seq));
3844
3845 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3846 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3847 btrfs_warn(fs_info,
3848 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3849 bctl->meta.target, bctl->data.target);
3850 }
3851
3852 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3853 fs_info->num_tolerated_disk_barrier_failures = min(
3854 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3855 btrfs_get_num_tolerated_disk_barrier_failures(
3856 bctl->sys.target));
3857 }
3858
3859 ret = insert_balance_item(fs_info->tree_root, bctl);
3860 if (ret && ret != -EEXIST)
3861 goto out;
3862
3863 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3864 BUG_ON(ret == -EEXIST);
3865 set_balance_control(bctl);
3866 } else {
3867 BUG_ON(ret != -EEXIST);
3868 spin_lock(&fs_info->balance_lock);
3869 update_balance_args(bctl);
3870 spin_unlock(&fs_info->balance_lock);
3871 }
3872
3873 atomic_inc(&fs_info->balance_running);
3874 mutex_unlock(&fs_info->balance_mutex);
3875
3876 ret = __btrfs_balance(fs_info);
3877
3878 mutex_lock(&fs_info->balance_mutex);
3879 atomic_dec(&fs_info->balance_running);
3880
3881 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3882 fs_info->num_tolerated_disk_barrier_failures =
3883 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3884 }
3885
3886 if (bargs) {
3887 memset(bargs, 0, sizeof(*bargs));
3888 update_ioctl_balance_args(fs_info, 0, bargs);
3889 }
3890
3891 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3892 balance_need_close(fs_info)) {
3893 __cancel_balance(fs_info);
3894 }
3895
3896 wake_up(&fs_info->balance_wait_q);
3897
3898 return ret;
3899 out:
3900 if (bctl->flags & BTRFS_BALANCE_RESUME)
3901 __cancel_balance(fs_info);
3902 else {
3903 kfree(bctl);
3904 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3905 }
3906 return ret;
3907 }
3908
3909 static int balance_kthread(void *data)
3910 {
3911 struct btrfs_fs_info *fs_info = data;
3912 int ret = 0;
3913
3914 mutex_lock(&fs_info->volume_mutex);
3915 mutex_lock(&fs_info->balance_mutex);
3916
3917 if (fs_info->balance_ctl) {
3918 btrfs_info(fs_info, "continuing balance");
3919 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3920 }
3921
3922 mutex_unlock(&fs_info->balance_mutex);
3923 mutex_unlock(&fs_info->volume_mutex);
3924
3925 return ret;
3926 }
3927
3928 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3929 {
3930 struct task_struct *tsk;
3931
3932 spin_lock(&fs_info->balance_lock);
3933 if (!fs_info->balance_ctl) {
3934 spin_unlock(&fs_info->balance_lock);
3935 return 0;
3936 }
3937 spin_unlock(&fs_info->balance_lock);
3938
3939 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3940 btrfs_info(fs_info, "force skipping balance");
3941 return 0;
3942 }
3943
3944 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3945 return PTR_ERR_OR_ZERO(tsk);
3946 }
3947
3948 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3949 {
3950 struct btrfs_balance_control *bctl;
3951 struct btrfs_balance_item *item;
3952 struct btrfs_disk_balance_args disk_bargs;
3953 struct btrfs_path *path;
3954 struct extent_buffer *leaf;
3955 struct btrfs_key key;
3956 int ret;
3957
3958 path = btrfs_alloc_path();
3959 if (!path)
3960 return -ENOMEM;
3961
3962 key.objectid = BTRFS_BALANCE_OBJECTID;
3963 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3964 key.offset = 0;
3965
3966 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3967 if (ret < 0)
3968 goto out;
3969 if (ret > 0) { /* ret = -ENOENT; */
3970 ret = 0;
3971 goto out;
3972 }
3973
3974 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3975 if (!bctl) {
3976 ret = -ENOMEM;
3977 goto out;
3978 }
3979
3980 leaf = path->nodes[0];
3981 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3982
3983 bctl->fs_info = fs_info;
3984 bctl->flags = btrfs_balance_flags(leaf, item);
3985 bctl->flags |= BTRFS_BALANCE_RESUME;
3986
3987 btrfs_balance_data(leaf, item, &disk_bargs);
3988 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3989 btrfs_balance_meta(leaf, item, &disk_bargs);
3990 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3991 btrfs_balance_sys(leaf, item, &disk_bargs);
3992 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3993
3994 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3995
3996 mutex_lock(&fs_info->volume_mutex);
3997 mutex_lock(&fs_info->balance_mutex);
3998
3999 set_balance_control(bctl);
4000
4001 mutex_unlock(&fs_info->balance_mutex);
4002 mutex_unlock(&fs_info->volume_mutex);
4003 out:
4004 btrfs_free_path(path);
4005 return ret;
4006 }
4007
4008 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4009 {
4010 int ret = 0;
4011
4012 mutex_lock(&fs_info->balance_mutex);
4013 if (!fs_info->balance_ctl) {
4014 mutex_unlock(&fs_info->balance_mutex);
4015 return -ENOTCONN;
4016 }
4017
4018 if (atomic_read(&fs_info->balance_running)) {
4019 atomic_inc(&fs_info->balance_pause_req);
4020 mutex_unlock(&fs_info->balance_mutex);
4021
4022 wait_event(fs_info->balance_wait_q,
4023 atomic_read(&fs_info->balance_running) == 0);
4024
4025 mutex_lock(&fs_info->balance_mutex);
4026 /* we are good with balance_ctl ripped off from under us */
4027 BUG_ON(atomic_read(&fs_info->balance_running));
4028 atomic_dec(&fs_info->balance_pause_req);
4029 } else {
4030 ret = -ENOTCONN;
4031 }
4032
4033 mutex_unlock(&fs_info->balance_mutex);
4034 return ret;
4035 }
4036
4037 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4038 {
4039 if (fs_info->sb->s_flags & MS_RDONLY)
4040 return -EROFS;
4041
4042 mutex_lock(&fs_info->balance_mutex);
4043 if (!fs_info->balance_ctl) {
4044 mutex_unlock(&fs_info->balance_mutex);
4045 return -ENOTCONN;
4046 }
4047
4048 atomic_inc(&fs_info->balance_cancel_req);
4049 /*
4050 * if we are running just wait and return, balance item is
4051 * deleted in btrfs_balance in this case
4052 */
4053 if (atomic_read(&fs_info->balance_running)) {
4054 mutex_unlock(&fs_info->balance_mutex);
4055 wait_event(fs_info->balance_wait_q,
4056 atomic_read(&fs_info->balance_running) == 0);
4057 mutex_lock(&fs_info->balance_mutex);
4058 } else {
4059 /* __cancel_balance needs volume_mutex */
4060 mutex_unlock(&fs_info->balance_mutex);
4061 mutex_lock(&fs_info->volume_mutex);
4062 mutex_lock(&fs_info->balance_mutex);
4063
4064 if (fs_info->balance_ctl)
4065 __cancel_balance(fs_info);
4066
4067 mutex_unlock(&fs_info->volume_mutex);
4068 }
4069
4070 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4071 atomic_dec(&fs_info->balance_cancel_req);
4072 mutex_unlock(&fs_info->balance_mutex);
4073 return 0;
4074 }
4075
4076 static int btrfs_uuid_scan_kthread(void *data)
4077 {
4078 struct btrfs_fs_info *fs_info = data;
4079 struct btrfs_root *root = fs_info->tree_root;
4080 struct btrfs_key key;
4081 struct btrfs_key max_key;
4082 struct btrfs_path *path = NULL;
4083 int ret = 0;
4084 struct extent_buffer *eb;
4085 int slot;
4086 struct btrfs_root_item root_item;
4087 u32 item_size;
4088 struct btrfs_trans_handle *trans = NULL;
4089
4090 path = btrfs_alloc_path();
4091 if (!path) {
4092 ret = -ENOMEM;
4093 goto out;
4094 }
4095
4096 key.objectid = 0;
4097 key.type = BTRFS_ROOT_ITEM_KEY;
4098 key.offset = 0;
4099
4100 max_key.objectid = (u64)-1;
4101 max_key.type = BTRFS_ROOT_ITEM_KEY;
4102 max_key.offset = (u64)-1;
4103
4104 while (1) {
4105 ret = btrfs_search_forward(root, &key, path, 0);
4106 if (ret) {
4107 if (ret > 0)
4108 ret = 0;
4109 break;
4110 }
4111
4112 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4113 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4114 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4115 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4116 goto skip;
4117
4118 eb = path->nodes[0];
4119 slot = path->slots[0];
4120 item_size = btrfs_item_size_nr(eb, slot);
4121 if (item_size < sizeof(root_item))
4122 goto skip;
4123
4124 read_extent_buffer(eb, &root_item,
4125 btrfs_item_ptr_offset(eb, slot),
4126 (int)sizeof(root_item));
4127 if (btrfs_root_refs(&root_item) == 0)
4128 goto skip;
4129
4130 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4131 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4132 if (trans)
4133 goto update_tree;
4134
4135 btrfs_release_path(path);
4136 /*
4137 * 1 - subvol uuid item
4138 * 1 - received_subvol uuid item
4139 */
4140 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4141 if (IS_ERR(trans)) {
4142 ret = PTR_ERR(trans);
4143 break;
4144 }
4145 continue;
4146 } else {
4147 goto skip;
4148 }
4149 update_tree:
4150 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4151 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4152 root_item.uuid,
4153 BTRFS_UUID_KEY_SUBVOL,
4154 key.objectid);
4155 if (ret < 0) {
4156 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4157 ret);
4158 break;
4159 }
4160 }
4161
4162 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4163 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4164 root_item.received_uuid,
4165 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4166 key.objectid);
4167 if (ret < 0) {
4168 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4169 ret);
4170 break;
4171 }
4172 }
4173
4174 skip:
4175 if (trans) {
4176 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4177 trans = NULL;
4178 if (ret)
4179 break;
4180 }
4181
4182 btrfs_release_path(path);
4183 if (key.offset < (u64)-1) {
4184 key.offset++;
4185 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4186 key.offset = 0;
4187 key.type = BTRFS_ROOT_ITEM_KEY;
4188 } else if (key.objectid < (u64)-1) {
4189 key.offset = 0;
4190 key.type = BTRFS_ROOT_ITEM_KEY;
4191 key.objectid++;
4192 } else {
4193 break;
4194 }
4195 cond_resched();
4196 }
4197
4198 out:
4199 btrfs_free_path(path);
4200 if (trans && !IS_ERR(trans))
4201 btrfs_end_transaction(trans, fs_info->uuid_root);
4202 if (ret)
4203 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4204 else
4205 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4206 up(&fs_info->uuid_tree_rescan_sem);
4207 return 0;
4208 }
4209
4210 /*
4211 * Callback for btrfs_uuid_tree_iterate().
4212 * returns:
4213 * 0 check succeeded, the entry is not outdated.
4214 * < 0 if an error occurred.
4215 * > 0 if the check failed, which means the caller shall remove the entry.
4216 */
4217 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4218 u8 *uuid, u8 type, u64 subid)
4219 {
4220 struct btrfs_key key;
4221 int ret = 0;
4222 struct btrfs_root *subvol_root;
4223
4224 if (type != BTRFS_UUID_KEY_SUBVOL &&
4225 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4226 goto out;
4227
4228 key.objectid = subid;
4229 key.type = BTRFS_ROOT_ITEM_KEY;
4230 key.offset = (u64)-1;
4231 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4232 if (IS_ERR(subvol_root)) {
4233 ret = PTR_ERR(subvol_root);
4234 if (ret == -ENOENT)
4235 ret = 1;
4236 goto out;
4237 }
4238
4239 switch (type) {
4240 case BTRFS_UUID_KEY_SUBVOL:
4241 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4242 ret = 1;
4243 break;
4244 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4245 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4246 BTRFS_UUID_SIZE))
4247 ret = 1;
4248 break;
4249 }
4250
4251 out:
4252 return ret;
4253 }
4254
4255 static int btrfs_uuid_rescan_kthread(void *data)
4256 {
4257 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4258 int ret;
4259
4260 /*
4261 * 1st step is to iterate through the existing UUID tree and
4262 * to delete all entries that contain outdated data.
4263 * 2nd step is to add all missing entries to the UUID tree.
4264 */
4265 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4266 if (ret < 0) {
4267 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4268 up(&fs_info->uuid_tree_rescan_sem);
4269 return ret;
4270 }
4271 return btrfs_uuid_scan_kthread(data);
4272 }
4273
4274 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4275 {
4276 struct btrfs_trans_handle *trans;
4277 struct btrfs_root *tree_root = fs_info->tree_root;
4278 struct btrfs_root *uuid_root;
4279 struct task_struct *task;
4280 int ret;
4281
4282 /*
4283 * 1 - root node
4284 * 1 - root item
4285 */
4286 trans = btrfs_start_transaction(tree_root, 2);
4287 if (IS_ERR(trans))
4288 return PTR_ERR(trans);
4289
4290 uuid_root = btrfs_create_tree(trans, fs_info,
4291 BTRFS_UUID_TREE_OBJECTID);
4292 if (IS_ERR(uuid_root)) {
4293 ret = PTR_ERR(uuid_root);
4294 btrfs_abort_transaction(trans, ret);
4295 btrfs_end_transaction(trans, tree_root);
4296 return ret;
4297 }
4298
4299 fs_info->uuid_root = uuid_root;
4300
4301 ret = btrfs_commit_transaction(trans, tree_root);
4302 if (ret)
4303 return ret;
4304
4305 down(&fs_info->uuid_tree_rescan_sem);
4306 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4307 if (IS_ERR(task)) {
4308 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4309 btrfs_warn(fs_info, "failed to start uuid_scan task");
4310 up(&fs_info->uuid_tree_rescan_sem);
4311 return PTR_ERR(task);
4312 }
4313
4314 return 0;
4315 }
4316
4317 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4318 {
4319 struct task_struct *task;
4320
4321 down(&fs_info->uuid_tree_rescan_sem);
4322 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4323 if (IS_ERR(task)) {
4324 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4325 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4326 up(&fs_info->uuid_tree_rescan_sem);
4327 return PTR_ERR(task);
4328 }
4329
4330 return 0;
4331 }
4332
4333 /*
4334 * shrinking a device means finding all of the device extents past
4335 * the new size, and then following the back refs to the chunks.
4336 * The chunk relocation code actually frees the device extent
4337 */
4338 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4339 {
4340 struct btrfs_trans_handle *trans;
4341 struct btrfs_root *root = device->dev_root;
4342 struct btrfs_dev_extent *dev_extent = NULL;
4343 struct btrfs_path *path;
4344 u64 length;
4345 u64 chunk_offset;
4346 int ret;
4347 int slot;
4348 int failed = 0;
4349 bool retried = false;
4350 bool checked_pending_chunks = false;
4351 struct extent_buffer *l;
4352 struct btrfs_key key;
4353 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4354 u64 old_total = btrfs_super_total_bytes(super_copy);
4355 u64 old_size = btrfs_device_get_total_bytes(device);
4356 u64 diff = old_size - new_size;
4357
4358 if (device->is_tgtdev_for_dev_replace)
4359 return -EINVAL;
4360
4361 path = btrfs_alloc_path();
4362 if (!path)
4363 return -ENOMEM;
4364
4365 path->reada = READA_FORWARD;
4366
4367 lock_chunks(root);
4368
4369 btrfs_device_set_total_bytes(device, new_size);
4370 if (device->writeable) {
4371 device->fs_devices->total_rw_bytes -= diff;
4372 spin_lock(&root->fs_info->free_chunk_lock);
4373 root->fs_info->free_chunk_space -= diff;
4374 spin_unlock(&root->fs_info->free_chunk_lock);
4375 }
4376 unlock_chunks(root);
4377
4378 again:
4379 key.objectid = device->devid;
4380 key.offset = (u64)-1;
4381 key.type = BTRFS_DEV_EXTENT_KEY;
4382
4383 do {
4384 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4386 if (ret < 0) {
4387 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4388 goto done;
4389 }
4390
4391 ret = btrfs_previous_item(root, path, 0, key.type);
4392 if (ret)
4393 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4394 if (ret < 0)
4395 goto done;
4396 if (ret) {
4397 ret = 0;
4398 btrfs_release_path(path);
4399 break;
4400 }
4401
4402 l = path->nodes[0];
4403 slot = path->slots[0];
4404 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4405
4406 if (key.objectid != device->devid) {
4407 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4408 btrfs_release_path(path);
4409 break;
4410 }
4411
4412 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4413 length = btrfs_dev_extent_length(l, dev_extent);
4414
4415 if (key.offset + length <= new_size) {
4416 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4417 btrfs_release_path(path);
4418 break;
4419 }
4420
4421 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4422 btrfs_release_path(path);
4423
4424 ret = btrfs_relocate_chunk(root, chunk_offset);
4425 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4426 if (ret && ret != -ENOSPC)
4427 goto done;
4428 if (ret == -ENOSPC)
4429 failed++;
4430 } while (key.offset-- > 0);
4431
4432 if (failed && !retried) {
4433 failed = 0;
4434 retried = true;
4435 goto again;
4436 } else if (failed && retried) {
4437 ret = -ENOSPC;
4438 goto done;
4439 }
4440
4441 /* Shrinking succeeded, else we would be at "done". */
4442 trans = btrfs_start_transaction(root, 0);
4443 if (IS_ERR(trans)) {
4444 ret = PTR_ERR(trans);
4445 goto done;
4446 }
4447
4448 lock_chunks(root);
4449
4450 /*
4451 * We checked in the above loop all device extents that were already in
4452 * the device tree. However before we have updated the device's
4453 * total_bytes to the new size, we might have had chunk allocations that
4454 * have not complete yet (new block groups attached to transaction
4455 * handles), and therefore their device extents were not yet in the
4456 * device tree and we missed them in the loop above. So if we have any
4457 * pending chunk using a device extent that overlaps the device range
4458 * that we can not use anymore, commit the current transaction and
4459 * repeat the search on the device tree - this way we guarantee we will
4460 * not have chunks using device extents that end beyond 'new_size'.
4461 */
4462 if (!checked_pending_chunks) {
4463 u64 start = new_size;
4464 u64 len = old_size - new_size;
4465
4466 if (contains_pending_extent(trans->transaction, device,
4467 &start, len)) {
4468 unlock_chunks(root);
4469 checked_pending_chunks = true;
4470 failed = 0;
4471 retried = false;
4472 ret = btrfs_commit_transaction(trans, root);
4473 if (ret)
4474 goto done;
4475 goto again;
4476 }
4477 }
4478
4479 btrfs_device_set_disk_total_bytes(device, new_size);
4480 if (list_empty(&device->resized_list))
4481 list_add_tail(&device->resized_list,
4482 &root->fs_info->fs_devices->resized_devices);
4483
4484 WARN_ON(diff > old_total);
4485 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4486 unlock_chunks(root);
4487
4488 /* Now btrfs_update_device() will change the on-disk size. */
4489 ret = btrfs_update_device(trans, device);
4490 btrfs_end_transaction(trans, root);
4491 done:
4492 btrfs_free_path(path);
4493 if (ret) {
4494 lock_chunks(root);
4495 btrfs_device_set_total_bytes(device, old_size);
4496 if (device->writeable)
4497 device->fs_devices->total_rw_bytes += diff;
4498 spin_lock(&root->fs_info->free_chunk_lock);
4499 root->fs_info->free_chunk_space += diff;
4500 spin_unlock(&root->fs_info->free_chunk_lock);
4501 unlock_chunks(root);
4502 }
4503 return ret;
4504 }
4505
4506 static int btrfs_add_system_chunk(struct btrfs_root *root,
4507 struct btrfs_key *key,
4508 struct btrfs_chunk *chunk, int item_size)
4509 {
4510 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4511 struct btrfs_disk_key disk_key;
4512 u32 array_size;
4513 u8 *ptr;
4514
4515 lock_chunks(root);
4516 array_size = btrfs_super_sys_array_size(super_copy);
4517 if (array_size + item_size + sizeof(disk_key)
4518 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4519 unlock_chunks(root);
4520 return -EFBIG;
4521 }
4522
4523 ptr = super_copy->sys_chunk_array + array_size;
4524 btrfs_cpu_key_to_disk(&disk_key, key);
4525 memcpy(ptr, &disk_key, sizeof(disk_key));
4526 ptr += sizeof(disk_key);
4527 memcpy(ptr, chunk, item_size);
4528 item_size += sizeof(disk_key);
4529 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4530 unlock_chunks(root);
4531
4532 return 0;
4533 }
4534
4535 /*
4536 * sort the devices in descending order by max_avail, total_avail
4537 */
4538 static int btrfs_cmp_device_info(const void *a, const void *b)
4539 {
4540 const struct btrfs_device_info *di_a = a;
4541 const struct btrfs_device_info *di_b = b;
4542
4543 if (di_a->max_avail > di_b->max_avail)
4544 return -1;
4545 if (di_a->max_avail < di_b->max_avail)
4546 return 1;
4547 if (di_a->total_avail > di_b->total_avail)
4548 return -1;
4549 if (di_a->total_avail < di_b->total_avail)
4550 return 1;
4551 return 0;
4552 }
4553
4554 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4555 {
4556 /* TODO allow them to set a preferred stripe size */
4557 return SZ_64K;
4558 }
4559
4560 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4561 {
4562 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4563 return;
4564
4565 btrfs_set_fs_incompat(info, RAID56);
4566 }
4567
4568 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
4569 - sizeof(struct btrfs_chunk)) \
4570 / sizeof(struct btrfs_stripe) + 1)
4571
4572 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4573 - 2 * sizeof(struct btrfs_disk_key) \
4574 - 2 * sizeof(struct btrfs_chunk)) \
4575 / sizeof(struct btrfs_stripe) + 1)
4576
4577 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4578 struct btrfs_root *extent_root, u64 start,
4579 u64 type)
4580 {
4581 struct btrfs_fs_info *info = extent_root->fs_info;
4582 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4583 struct list_head *cur;
4584 struct map_lookup *map = NULL;
4585 struct extent_map_tree *em_tree;
4586 struct extent_map *em;
4587 struct btrfs_device_info *devices_info = NULL;
4588 u64 total_avail;
4589 int num_stripes; /* total number of stripes to allocate */
4590 int data_stripes; /* number of stripes that count for
4591 block group size */
4592 int sub_stripes; /* sub_stripes info for map */
4593 int dev_stripes; /* stripes per dev */
4594 int devs_max; /* max devs to use */
4595 int devs_min; /* min devs needed */
4596 int devs_increment; /* ndevs has to be a multiple of this */
4597 int ncopies; /* how many copies to data has */
4598 int ret;
4599 u64 max_stripe_size;
4600 u64 max_chunk_size;
4601 u64 stripe_size;
4602 u64 num_bytes;
4603 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4604 int ndevs;
4605 int i;
4606 int j;
4607 int index;
4608
4609 BUG_ON(!alloc_profile_is_valid(type, 0));
4610
4611 if (list_empty(&fs_devices->alloc_list))
4612 return -ENOSPC;
4613
4614 index = __get_raid_index(type);
4615
4616 sub_stripes = btrfs_raid_array[index].sub_stripes;
4617 dev_stripes = btrfs_raid_array[index].dev_stripes;
4618 devs_max = btrfs_raid_array[index].devs_max;
4619 devs_min = btrfs_raid_array[index].devs_min;
4620 devs_increment = btrfs_raid_array[index].devs_increment;
4621 ncopies = btrfs_raid_array[index].ncopies;
4622
4623 if (type & BTRFS_BLOCK_GROUP_DATA) {
4624 max_stripe_size = SZ_1G;
4625 max_chunk_size = 10 * max_stripe_size;
4626 if (!devs_max)
4627 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4628 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4629 /* for larger filesystems, use larger metadata chunks */
4630 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4631 max_stripe_size = SZ_1G;
4632 else
4633 max_stripe_size = SZ_256M;
4634 max_chunk_size = max_stripe_size;
4635 if (!devs_max)
4636 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4637 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4638 max_stripe_size = SZ_32M;
4639 max_chunk_size = 2 * max_stripe_size;
4640 if (!devs_max)
4641 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4642 } else {
4643 btrfs_err(info, "invalid chunk type 0x%llx requested",
4644 type);
4645 BUG_ON(1);
4646 }
4647
4648 /* we don't want a chunk larger than 10% of writeable space */
4649 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4650 max_chunk_size);
4651
4652 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4653 GFP_NOFS);
4654 if (!devices_info)
4655 return -ENOMEM;
4656
4657 cur = fs_devices->alloc_list.next;
4658
4659 /*
4660 * in the first pass through the devices list, we gather information
4661 * about the available holes on each device.
4662 */
4663 ndevs = 0;
4664 while (cur != &fs_devices->alloc_list) {
4665 struct btrfs_device *device;
4666 u64 max_avail;
4667 u64 dev_offset;
4668
4669 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4670
4671 cur = cur->next;
4672
4673 if (!device->writeable) {
4674 WARN(1, KERN_ERR
4675 "BTRFS: read-only device in alloc_list\n");
4676 continue;
4677 }
4678
4679 if (!device->in_fs_metadata ||
4680 device->is_tgtdev_for_dev_replace)
4681 continue;
4682
4683 if (device->total_bytes > device->bytes_used)
4684 total_avail = device->total_bytes - device->bytes_used;
4685 else
4686 total_avail = 0;
4687
4688 /* If there is no space on this device, skip it. */
4689 if (total_avail == 0)
4690 continue;
4691
4692 ret = find_free_dev_extent(trans, device,
4693 max_stripe_size * dev_stripes,
4694 &dev_offset, &max_avail);
4695 if (ret && ret != -ENOSPC)
4696 goto error;
4697
4698 if (ret == 0)
4699 max_avail = max_stripe_size * dev_stripes;
4700
4701 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4702 continue;
4703
4704 if (ndevs == fs_devices->rw_devices) {
4705 WARN(1, "%s: found more than %llu devices\n",
4706 __func__, fs_devices->rw_devices);
4707 break;
4708 }
4709 devices_info[ndevs].dev_offset = dev_offset;
4710 devices_info[ndevs].max_avail = max_avail;
4711 devices_info[ndevs].total_avail = total_avail;
4712 devices_info[ndevs].dev = device;
4713 ++ndevs;
4714 }
4715
4716 /*
4717 * now sort the devices by hole size / available space
4718 */
4719 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4720 btrfs_cmp_device_info, NULL);
4721
4722 /* round down to number of usable stripes */
4723 ndevs -= ndevs % devs_increment;
4724
4725 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4726 ret = -ENOSPC;
4727 goto error;
4728 }
4729
4730 if (devs_max && ndevs > devs_max)
4731 ndevs = devs_max;
4732 /*
4733 * the primary goal is to maximize the number of stripes, so use as many
4734 * devices as possible, even if the stripes are not maximum sized.
4735 */
4736 stripe_size = devices_info[ndevs-1].max_avail;
4737 num_stripes = ndevs * dev_stripes;
4738
4739 /*
4740 * this will have to be fixed for RAID1 and RAID10 over
4741 * more drives
4742 */
4743 data_stripes = num_stripes / ncopies;
4744
4745 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4746 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4747 extent_root->stripesize);
4748 data_stripes = num_stripes - 1;
4749 }
4750 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4751 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4752 extent_root->stripesize);
4753 data_stripes = num_stripes - 2;
4754 }
4755
4756 /*
4757 * Use the number of data stripes to figure out how big this chunk
4758 * is really going to be in terms of logical address space,
4759 * and compare that answer with the max chunk size
4760 */
4761 if (stripe_size * data_stripes > max_chunk_size) {
4762 u64 mask = (1ULL << 24) - 1;
4763
4764 stripe_size = div_u64(max_chunk_size, data_stripes);
4765
4766 /* bump the answer up to a 16MB boundary */
4767 stripe_size = (stripe_size + mask) & ~mask;
4768
4769 /* but don't go higher than the limits we found
4770 * while searching for free extents
4771 */
4772 if (stripe_size > devices_info[ndevs-1].max_avail)
4773 stripe_size = devices_info[ndevs-1].max_avail;
4774 }
4775
4776 stripe_size = div_u64(stripe_size, dev_stripes);
4777
4778 /* align to BTRFS_STRIPE_LEN */
4779 stripe_size = div_u64(stripe_size, raid_stripe_len);
4780 stripe_size *= raid_stripe_len;
4781
4782 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4783 if (!map) {
4784 ret = -ENOMEM;
4785 goto error;
4786 }
4787 map->num_stripes = num_stripes;
4788
4789 for (i = 0; i < ndevs; ++i) {
4790 for (j = 0; j < dev_stripes; ++j) {
4791 int s = i * dev_stripes + j;
4792 map->stripes[s].dev = devices_info[i].dev;
4793 map->stripes[s].physical = devices_info[i].dev_offset +
4794 j * stripe_size;
4795 }
4796 }
4797 map->sector_size = extent_root->sectorsize;
4798 map->stripe_len = raid_stripe_len;
4799 map->io_align = raid_stripe_len;
4800 map->io_width = raid_stripe_len;
4801 map->type = type;
4802 map->sub_stripes = sub_stripes;
4803
4804 num_bytes = stripe_size * data_stripes;
4805
4806 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4807
4808 em = alloc_extent_map();
4809 if (!em) {
4810 kfree(map);
4811 ret = -ENOMEM;
4812 goto error;
4813 }
4814 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4815 em->map_lookup = map;
4816 em->start = start;
4817 em->len = num_bytes;
4818 em->block_start = 0;
4819 em->block_len = em->len;
4820 em->orig_block_len = stripe_size;
4821
4822 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4823 write_lock(&em_tree->lock);
4824 ret = add_extent_mapping(em_tree, em, 0);
4825 if (!ret) {
4826 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4827 atomic_inc(&em->refs);
4828 }
4829 write_unlock(&em_tree->lock);
4830 if (ret) {
4831 free_extent_map(em);
4832 goto error;
4833 }
4834
4835 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4836 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4837 start, num_bytes);
4838 if (ret)
4839 goto error_del_extent;
4840
4841 for (i = 0; i < map->num_stripes; i++) {
4842 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4843 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4844 }
4845
4846 spin_lock(&extent_root->fs_info->free_chunk_lock);
4847 extent_root->fs_info->free_chunk_space -= (stripe_size *
4848 map->num_stripes);
4849 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4850
4851 free_extent_map(em);
4852 check_raid56_incompat_flag(extent_root->fs_info, type);
4853
4854 kfree(devices_info);
4855 return 0;
4856
4857 error_del_extent:
4858 write_lock(&em_tree->lock);
4859 remove_extent_mapping(em_tree, em);
4860 write_unlock(&em_tree->lock);
4861
4862 /* One for our allocation */
4863 free_extent_map(em);
4864 /* One for the tree reference */
4865 free_extent_map(em);
4866 /* One for the pending_chunks list reference */
4867 free_extent_map(em);
4868 error:
4869 kfree(devices_info);
4870 return ret;
4871 }
4872
4873 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4874 struct btrfs_root *extent_root,
4875 u64 chunk_offset, u64 chunk_size)
4876 {
4877 struct btrfs_key key;
4878 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4879 struct btrfs_device *device;
4880 struct btrfs_chunk *chunk;
4881 struct btrfs_stripe *stripe;
4882 struct extent_map_tree *em_tree;
4883 struct extent_map *em;
4884 struct map_lookup *map;
4885 size_t item_size;
4886 u64 dev_offset;
4887 u64 stripe_size;
4888 int i = 0;
4889 int ret = 0;
4890
4891 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4892 read_lock(&em_tree->lock);
4893 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4894 read_unlock(&em_tree->lock);
4895
4896 if (!em) {
4897 btrfs_crit(extent_root->fs_info,
4898 "unable to find logical %Lu len %Lu",
4899 chunk_offset, chunk_size);
4900 return -EINVAL;
4901 }
4902
4903 if (em->start != chunk_offset || em->len != chunk_size) {
4904 btrfs_crit(extent_root->fs_info,
4905 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4906 chunk_offset, chunk_size, em->start, em->len);
4907 free_extent_map(em);
4908 return -EINVAL;
4909 }
4910
4911 map = em->map_lookup;
4912 item_size = btrfs_chunk_item_size(map->num_stripes);
4913 stripe_size = em->orig_block_len;
4914
4915 chunk = kzalloc(item_size, GFP_NOFS);
4916 if (!chunk) {
4917 ret = -ENOMEM;
4918 goto out;
4919 }
4920
4921 /*
4922 * Take the device list mutex to prevent races with the final phase of
4923 * a device replace operation that replaces the device object associated
4924 * with the map's stripes, because the device object's id can change
4925 * at any time during that final phase of the device replace operation
4926 * (dev-replace.c:btrfs_dev_replace_finishing()).
4927 */
4928 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4929 for (i = 0; i < map->num_stripes; i++) {
4930 device = map->stripes[i].dev;
4931 dev_offset = map->stripes[i].physical;
4932
4933 ret = btrfs_update_device(trans, device);
4934 if (ret)
4935 break;
4936 ret = btrfs_alloc_dev_extent(trans, device,
4937 chunk_root->root_key.objectid,
4938 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4939 chunk_offset, dev_offset,
4940 stripe_size);
4941 if (ret)
4942 break;
4943 }
4944 if (ret) {
4945 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4946 goto out;
4947 }
4948
4949 stripe = &chunk->stripe;
4950 for (i = 0; i < map->num_stripes; i++) {
4951 device = map->stripes[i].dev;
4952 dev_offset = map->stripes[i].physical;
4953
4954 btrfs_set_stack_stripe_devid(stripe, device->devid);
4955 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4956 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4957 stripe++;
4958 }
4959 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4960
4961 btrfs_set_stack_chunk_length(chunk, chunk_size);
4962 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4963 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4964 btrfs_set_stack_chunk_type(chunk, map->type);
4965 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4966 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4967 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4968 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4969 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4970
4971 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4972 key.type = BTRFS_CHUNK_ITEM_KEY;
4973 key.offset = chunk_offset;
4974
4975 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4976 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4977 /*
4978 * TODO: Cleanup of inserted chunk root in case of
4979 * failure.
4980 */
4981 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4982 item_size);
4983 }
4984
4985 out:
4986 kfree(chunk);
4987 free_extent_map(em);
4988 return ret;
4989 }
4990
4991 /*
4992 * Chunk allocation falls into two parts. The first part does works
4993 * that make the new allocated chunk useable, but not do any operation
4994 * that modifies the chunk tree. The second part does the works that
4995 * require modifying the chunk tree. This division is important for the
4996 * bootstrap process of adding storage to a seed btrfs.
4997 */
4998 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4999 struct btrfs_root *extent_root, u64 type)
5000 {
5001 u64 chunk_offset;
5002
5003 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5004 chunk_offset = find_next_chunk(extent_root->fs_info);
5005 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5006 }
5007
5008 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5009 struct btrfs_root *root,
5010 struct btrfs_device *device)
5011 {
5012 u64 chunk_offset;
5013 u64 sys_chunk_offset;
5014 u64 alloc_profile;
5015 struct btrfs_fs_info *fs_info = root->fs_info;
5016 struct btrfs_root *extent_root = fs_info->extent_root;
5017 int ret;
5018
5019 chunk_offset = find_next_chunk(fs_info);
5020 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5021 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5022 alloc_profile);
5023 if (ret)
5024 return ret;
5025
5026 sys_chunk_offset = find_next_chunk(root->fs_info);
5027 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5028 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5029 alloc_profile);
5030 return ret;
5031 }
5032
5033 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5034 {
5035 int max_errors;
5036
5037 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5038 BTRFS_BLOCK_GROUP_RAID10 |
5039 BTRFS_BLOCK_GROUP_RAID5 |
5040 BTRFS_BLOCK_GROUP_DUP)) {
5041 max_errors = 1;
5042 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5043 max_errors = 2;
5044 } else {
5045 max_errors = 0;
5046 }
5047
5048 return max_errors;
5049 }
5050
5051 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5052 {
5053 struct extent_map *em;
5054 struct map_lookup *map;
5055 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5056 int readonly = 0;
5057 int miss_ndevs = 0;
5058 int i;
5059
5060 read_lock(&map_tree->map_tree.lock);
5061 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5062 read_unlock(&map_tree->map_tree.lock);
5063 if (!em)
5064 return 1;
5065
5066 map = em->map_lookup;
5067 for (i = 0; i < map->num_stripes; i++) {
5068 if (map->stripes[i].dev->missing) {
5069 miss_ndevs++;
5070 continue;
5071 }
5072
5073 if (!map->stripes[i].dev->writeable) {
5074 readonly = 1;
5075 goto end;
5076 }
5077 }
5078
5079 /*
5080 * If the number of missing devices is larger than max errors,
5081 * we can not write the data into that chunk successfully, so
5082 * set it readonly.
5083 */
5084 if (miss_ndevs > btrfs_chunk_max_errors(map))
5085 readonly = 1;
5086 end:
5087 free_extent_map(em);
5088 return readonly;
5089 }
5090
5091 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5092 {
5093 extent_map_tree_init(&tree->map_tree);
5094 }
5095
5096 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5097 {
5098 struct extent_map *em;
5099
5100 while (1) {
5101 write_lock(&tree->map_tree.lock);
5102 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5103 if (em)
5104 remove_extent_mapping(&tree->map_tree, em);
5105 write_unlock(&tree->map_tree.lock);
5106 if (!em)
5107 break;
5108 /* once for us */
5109 free_extent_map(em);
5110 /* once for the tree */
5111 free_extent_map(em);
5112 }
5113 }
5114
5115 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5116 {
5117 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5118 struct extent_map *em;
5119 struct map_lookup *map;
5120 struct extent_map_tree *em_tree = &map_tree->map_tree;
5121 int ret;
5122
5123 read_lock(&em_tree->lock);
5124 em = lookup_extent_mapping(em_tree, logical, len);
5125 read_unlock(&em_tree->lock);
5126
5127 /*
5128 * We could return errors for these cases, but that could get ugly and
5129 * we'd probably do the same thing which is just not do anything else
5130 * and exit, so return 1 so the callers don't try to use other copies.
5131 */
5132 if (!em) {
5133 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5134 logical+len);
5135 return 1;
5136 }
5137
5138 if (em->start > logical || em->start + em->len < logical) {
5139 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5140 logical, logical+len, em->start,
5141 em->start + em->len);
5142 free_extent_map(em);
5143 return 1;
5144 }
5145
5146 map = em->map_lookup;
5147 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5148 ret = map->num_stripes;
5149 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5150 ret = map->sub_stripes;
5151 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5152 ret = 2;
5153 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5154 ret = 3;
5155 else
5156 ret = 1;
5157 free_extent_map(em);
5158
5159 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5160 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5161 ret++;
5162 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5163
5164 return ret;
5165 }
5166
5167 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5168 struct btrfs_mapping_tree *map_tree,
5169 u64 logical)
5170 {
5171 struct extent_map *em;
5172 struct map_lookup *map;
5173 struct extent_map_tree *em_tree = &map_tree->map_tree;
5174 unsigned long len = root->sectorsize;
5175
5176 read_lock(&em_tree->lock);
5177 em = lookup_extent_mapping(em_tree, logical, len);
5178 read_unlock(&em_tree->lock);
5179 BUG_ON(!em);
5180
5181 BUG_ON(em->start > logical || em->start + em->len < logical);
5182 map = em->map_lookup;
5183 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5184 len = map->stripe_len * nr_data_stripes(map);
5185 free_extent_map(em);
5186 return len;
5187 }
5188
5189 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5190 u64 logical, u64 len, int mirror_num)
5191 {
5192 struct extent_map *em;
5193 struct map_lookup *map;
5194 struct extent_map_tree *em_tree = &map_tree->map_tree;
5195 int ret = 0;
5196
5197 read_lock(&em_tree->lock);
5198 em = lookup_extent_mapping(em_tree, logical, len);
5199 read_unlock(&em_tree->lock);
5200 BUG_ON(!em);
5201
5202 BUG_ON(em->start > logical || em->start + em->len < logical);
5203 map = em->map_lookup;
5204 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5205 ret = 1;
5206 free_extent_map(em);
5207 return ret;
5208 }
5209
5210 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5211 struct map_lookup *map, int first, int num,
5212 int optimal, int dev_replace_is_ongoing)
5213 {
5214 int i;
5215 int tolerance;
5216 struct btrfs_device *srcdev;
5217
5218 if (dev_replace_is_ongoing &&
5219 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5220 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5221 srcdev = fs_info->dev_replace.srcdev;
5222 else
5223 srcdev = NULL;
5224
5225 /*
5226 * try to avoid the drive that is the source drive for a
5227 * dev-replace procedure, only choose it if no other non-missing
5228 * mirror is available
5229 */
5230 for (tolerance = 0; tolerance < 2; tolerance++) {
5231 if (map->stripes[optimal].dev->bdev &&
5232 (tolerance || map->stripes[optimal].dev != srcdev))
5233 return optimal;
5234 for (i = first; i < first + num; i++) {
5235 if (map->stripes[i].dev->bdev &&
5236 (tolerance || map->stripes[i].dev != srcdev))
5237 return i;
5238 }
5239 }
5240
5241 /* we couldn't find one that doesn't fail. Just return something
5242 * and the io error handling code will clean up eventually
5243 */
5244 return optimal;
5245 }
5246
5247 static inline int parity_smaller(u64 a, u64 b)
5248 {
5249 return a > b;
5250 }
5251
5252 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5253 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5254 {
5255 struct btrfs_bio_stripe s;
5256 int i;
5257 u64 l;
5258 int again = 1;
5259
5260 while (again) {
5261 again = 0;
5262 for (i = 0; i < num_stripes - 1; i++) {
5263 if (parity_smaller(bbio->raid_map[i],
5264 bbio->raid_map[i+1])) {
5265 s = bbio->stripes[i];
5266 l = bbio->raid_map[i];
5267 bbio->stripes[i] = bbio->stripes[i+1];
5268 bbio->raid_map[i] = bbio->raid_map[i+1];
5269 bbio->stripes[i+1] = s;
5270 bbio->raid_map[i+1] = l;
5271
5272 again = 1;
5273 }
5274 }
5275 }
5276 }
5277
5278 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5279 {
5280 struct btrfs_bio *bbio = kzalloc(
5281 /* the size of the btrfs_bio */
5282 sizeof(struct btrfs_bio) +
5283 /* plus the variable array for the stripes */
5284 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5285 /* plus the variable array for the tgt dev */
5286 sizeof(int) * (real_stripes) +
5287 /*
5288 * plus the raid_map, which includes both the tgt dev
5289 * and the stripes
5290 */
5291 sizeof(u64) * (total_stripes),
5292 GFP_NOFS|__GFP_NOFAIL);
5293
5294 atomic_set(&bbio->error, 0);
5295 atomic_set(&bbio->refs, 1);
5296
5297 return bbio;
5298 }
5299
5300 void btrfs_get_bbio(struct btrfs_bio *bbio)
5301 {
5302 WARN_ON(!atomic_read(&bbio->refs));
5303 atomic_inc(&bbio->refs);
5304 }
5305
5306 void btrfs_put_bbio(struct btrfs_bio *bbio)
5307 {
5308 if (!bbio)
5309 return;
5310 if (atomic_dec_and_test(&bbio->refs))
5311 kfree(bbio);
5312 }
5313
5314 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5315 u64 logical, u64 *length,
5316 struct btrfs_bio **bbio_ret,
5317 int mirror_num, int need_raid_map)
5318 {
5319 struct extent_map *em;
5320 struct map_lookup *map;
5321 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5322 struct extent_map_tree *em_tree = &map_tree->map_tree;
5323 u64 offset;
5324 u64 stripe_offset;
5325 u64 stripe_end_offset;
5326 u64 stripe_nr;
5327 u64 stripe_nr_orig;
5328 u64 stripe_nr_end;
5329 u64 stripe_len;
5330 u32 stripe_index;
5331 int i;
5332 int ret = 0;
5333 int num_stripes;
5334 int max_errors = 0;
5335 int tgtdev_indexes = 0;
5336 struct btrfs_bio *bbio = NULL;
5337 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5338 int dev_replace_is_ongoing = 0;
5339 int num_alloc_stripes;
5340 int patch_the_first_stripe_for_dev_replace = 0;
5341 u64 physical_to_patch_in_first_stripe = 0;
5342 u64 raid56_full_stripe_start = (u64)-1;
5343
5344 read_lock(&em_tree->lock);
5345 em = lookup_extent_mapping(em_tree, logical, *length);
5346 read_unlock(&em_tree->lock);
5347
5348 if (!em) {
5349 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5350 logical, *length);
5351 return -EINVAL;
5352 }
5353
5354 if (em->start > logical || em->start + em->len < logical) {
5355 btrfs_crit(fs_info,
5356 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5357 logical, em->start, em->start + em->len);
5358 free_extent_map(em);
5359 return -EINVAL;
5360 }
5361
5362 map = em->map_lookup;
5363 offset = logical - em->start;
5364
5365 stripe_len = map->stripe_len;
5366 stripe_nr = offset;
5367 /*
5368 * stripe_nr counts the total number of stripes we have to stride
5369 * to get to this block
5370 */
5371 stripe_nr = div64_u64(stripe_nr, stripe_len);
5372
5373 stripe_offset = stripe_nr * stripe_len;
5374 if (offset < stripe_offset) {
5375 btrfs_crit(fs_info,
5376 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5377 stripe_offset, offset, em->start, logical,
5378 stripe_len);
5379 free_extent_map(em);
5380 return -EINVAL;
5381 }
5382
5383 /* stripe_offset is the offset of this block in its stripe*/
5384 stripe_offset = offset - stripe_offset;
5385
5386 /* if we're here for raid56, we need to know the stripe aligned start */
5387 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5388 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5389 raid56_full_stripe_start = offset;
5390
5391 /* allow a write of a full stripe, but make sure we don't
5392 * allow straddling of stripes
5393 */
5394 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5395 full_stripe_len);
5396 raid56_full_stripe_start *= full_stripe_len;
5397 }
5398
5399 if (op == REQ_OP_DISCARD) {
5400 /* we don't discard raid56 yet */
5401 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5402 ret = -EOPNOTSUPP;
5403 goto out;
5404 }
5405 *length = min_t(u64, em->len - offset, *length);
5406 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5407 u64 max_len;
5408 /* For writes to RAID[56], allow a full stripeset across all disks.
5409 For other RAID types and for RAID[56] reads, just allow a single
5410 stripe (on a single disk). */
5411 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5412 (op == REQ_OP_WRITE)) {
5413 max_len = stripe_len * nr_data_stripes(map) -
5414 (offset - raid56_full_stripe_start);
5415 } else {
5416 /* we limit the length of each bio to what fits in a stripe */
5417 max_len = stripe_len - stripe_offset;
5418 }
5419 *length = min_t(u64, em->len - offset, max_len);
5420 } else {
5421 *length = em->len - offset;
5422 }
5423
5424 /* This is for when we're called from btrfs_merge_bio_hook() and all
5425 it cares about is the length */
5426 if (!bbio_ret)
5427 goto out;
5428
5429 btrfs_dev_replace_lock(dev_replace, 0);
5430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5431 if (!dev_replace_is_ongoing)
5432 btrfs_dev_replace_unlock(dev_replace, 0);
5433 else
5434 btrfs_dev_replace_set_lock_blocking(dev_replace);
5435
5436 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5437 op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5438 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5439 /*
5440 * in dev-replace case, for repair case (that's the only
5441 * case where the mirror is selected explicitly when
5442 * calling btrfs_map_block), blocks left of the left cursor
5443 * can also be read from the target drive.
5444 * For REQ_GET_READ_MIRRORS, the target drive is added as
5445 * the last one to the array of stripes. For READ, it also
5446 * needs to be supported using the same mirror number.
5447 * If the requested block is not left of the left cursor,
5448 * EIO is returned. This can happen because btrfs_num_copies()
5449 * returns one more in the dev-replace case.
5450 */
5451 u64 tmp_length = *length;
5452 struct btrfs_bio *tmp_bbio = NULL;
5453 int tmp_num_stripes;
5454 u64 srcdev_devid = dev_replace->srcdev->devid;
5455 int index_srcdev = 0;
5456 int found = 0;
5457 u64 physical_of_found = 0;
5458
5459 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5460 logical, &tmp_length, &tmp_bbio, 0, 0);
5461 if (ret) {
5462 WARN_ON(tmp_bbio != NULL);
5463 goto out;
5464 }
5465
5466 tmp_num_stripes = tmp_bbio->num_stripes;
5467 if (mirror_num > tmp_num_stripes) {
5468 /*
5469 * REQ_GET_READ_MIRRORS does not contain this
5470 * mirror, that means that the requested area
5471 * is not left of the left cursor
5472 */
5473 ret = -EIO;
5474 btrfs_put_bbio(tmp_bbio);
5475 goto out;
5476 }
5477
5478 /*
5479 * process the rest of the function using the mirror_num
5480 * of the source drive. Therefore look it up first.
5481 * At the end, patch the device pointer to the one of the
5482 * target drive.
5483 */
5484 for (i = 0; i < tmp_num_stripes; i++) {
5485 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5486 continue;
5487
5488 /*
5489 * In case of DUP, in order to keep it simple, only add
5490 * the mirror with the lowest physical address
5491 */
5492 if (found &&
5493 physical_of_found <= tmp_bbio->stripes[i].physical)
5494 continue;
5495
5496 index_srcdev = i;
5497 found = 1;
5498 physical_of_found = tmp_bbio->stripes[i].physical;
5499 }
5500
5501 btrfs_put_bbio(tmp_bbio);
5502
5503 if (!found) {
5504 WARN_ON(1);
5505 ret = -EIO;
5506 goto out;
5507 }
5508
5509 mirror_num = index_srcdev + 1;
5510 patch_the_first_stripe_for_dev_replace = 1;
5511 physical_to_patch_in_first_stripe = physical_of_found;
5512 } else if (mirror_num > map->num_stripes) {
5513 mirror_num = 0;
5514 }
5515
5516 num_stripes = 1;
5517 stripe_index = 0;
5518 stripe_nr_orig = stripe_nr;
5519 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5520 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5521 stripe_end_offset = stripe_nr_end * map->stripe_len -
5522 (offset + *length);
5523
5524 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5525 if (op == REQ_OP_DISCARD)
5526 num_stripes = min_t(u64, map->num_stripes,
5527 stripe_nr_end - stripe_nr_orig);
5528 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5529 &stripe_index);
5530 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5531 op != REQ_GET_READ_MIRRORS)
5532 mirror_num = 1;
5533 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5534 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5535 op == REQ_GET_READ_MIRRORS)
5536 num_stripes = map->num_stripes;
5537 else if (mirror_num)
5538 stripe_index = mirror_num - 1;
5539 else {
5540 stripe_index = find_live_mirror(fs_info, map, 0,
5541 map->num_stripes,
5542 current->pid % map->num_stripes,
5543 dev_replace_is_ongoing);
5544 mirror_num = stripe_index + 1;
5545 }
5546
5547 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5548 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5549 op == REQ_GET_READ_MIRRORS) {
5550 num_stripes = map->num_stripes;
5551 } else if (mirror_num) {
5552 stripe_index = mirror_num - 1;
5553 } else {
5554 mirror_num = 1;
5555 }
5556
5557 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5558 u32 factor = map->num_stripes / map->sub_stripes;
5559
5560 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5561 stripe_index *= map->sub_stripes;
5562
5563 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5564 num_stripes = map->sub_stripes;
5565 else if (op == REQ_OP_DISCARD)
5566 num_stripes = min_t(u64, map->sub_stripes *
5567 (stripe_nr_end - stripe_nr_orig),
5568 map->num_stripes);
5569 else if (mirror_num)
5570 stripe_index += mirror_num - 1;
5571 else {
5572 int old_stripe_index = stripe_index;
5573 stripe_index = find_live_mirror(fs_info, map,
5574 stripe_index,
5575 map->sub_stripes, stripe_index +
5576 current->pid % map->sub_stripes,
5577 dev_replace_is_ongoing);
5578 mirror_num = stripe_index - old_stripe_index + 1;
5579 }
5580
5581 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5582 if (need_raid_map &&
5583 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5584 mirror_num > 1)) {
5585 /* push stripe_nr back to the start of the full stripe */
5586 stripe_nr = div_u64(raid56_full_stripe_start,
5587 stripe_len * nr_data_stripes(map));
5588
5589 /* RAID[56] write or recovery. Return all stripes */
5590 num_stripes = map->num_stripes;
5591 max_errors = nr_parity_stripes(map);
5592
5593 *length = map->stripe_len;
5594 stripe_index = 0;
5595 stripe_offset = 0;
5596 } else {
5597 /*
5598 * Mirror #0 or #1 means the original data block.
5599 * Mirror #2 is RAID5 parity block.
5600 * Mirror #3 is RAID6 Q block.
5601 */
5602 stripe_nr = div_u64_rem(stripe_nr,
5603 nr_data_stripes(map), &stripe_index);
5604 if (mirror_num > 1)
5605 stripe_index = nr_data_stripes(map) +
5606 mirror_num - 2;
5607
5608 /* We distribute the parity blocks across stripes */
5609 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5610 &stripe_index);
5611 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5612 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5613 mirror_num = 1;
5614 }
5615 } else {
5616 /*
5617 * after this, stripe_nr is the number of stripes on this
5618 * device we have to walk to find the data, and stripe_index is
5619 * the number of our device in the stripe array
5620 */
5621 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5622 &stripe_index);
5623 mirror_num = stripe_index + 1;
5624 }
5625 if (stripe_index >= map->num_stripes) {
5626 btrfs_crit(fs_info,
5627 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5628 stripe_index, map->num_stripes);
5629 ret = -EINVAL;
5630 goto out;
5631 }
5632
5633 num_alloc_stripes = num_stripes;
5634 if (dev_replace_is_ongoing) {
5635 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5636 num_alloc_stripes <<= 1;
5637 if (op == REQ_GET_READ_MIRRORS)
5638 num_alloc_stripes++;
5639 tgtdev_indexes = num_stripes;
5640 }
5641
5642 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5643 if (!bbio) {
5644 ret = -ENOMEM;
5645 goto out;
5646 }
5647 if (dev_replace_is_ongoing)
5648 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5649
5650 /* build raid_map */
5651 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5652 need_raid_map &&
5653 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5654 mirror_num > 1)) {
5655 u64 tmp;
5656 unsigned rot;
5657
5658 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5659 sizeof(struct btrfs_bio_stripe) *
5660 num_alloc_stripes +
5661 sizeof(int) * tgtdev_indexes);
5662
5663 /* Work out the disk rotation on this stripe-set */
5664 div_u64_rem(stripe_nr, num_stripes, &rot);
5665
5666 /* Fill in the logical address of each stripe */
5667 tmp = stripe_nr * nr_data_stripes(map);
5668 for (i = 0; i < nr_data_stripes(map); i++)
5669 bbio->raid_map[(i+rot) % num_stripes] =
5670 em->start + (tmp + i) * map->stripe_len;
5671
5672 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5673 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5674 bbio->raid_map[(i+rot+1) % num_stripes] =
5675 RAID6_Q_STRIPE;
5676 }
5677
5678 if (op == REQ_OP_DISCARD) {
5679 u32 factor = 0;
5680 u32 sub_stripes = 0;
5681 u64 stripes_per_dev = 0;
5682 u32 remaining_stripes = 0;
5683 u32 last_stripe = 0;
5684
5685 if (map->type &
5686 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5687 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5688 sub_stripes = 1;
5689 else
5690 sub_stripes = map->sub_stripes;
5691
5692 factor = map->num_stripes / sub_stripes;
5693 stripes_per_dev = div_u64_rem(stripe_nr_end -
5694 stripe_nr_orig,
5695 factor,
5696 &remaining_stripes);
5697 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5698 last_stripe *= sub_stripes;
5699 }
5700
5701 for (i = 0; i < num_stripes; i++) {
5702 bbio->stripes[i].physical =
5703 map->stripes[stripe_index].physical +
5704 stripe_offset + stripe_nr * map->stripe_len;
5705 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5706
5707 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5708 BTRFS_BLOCK_GROUP_RAID10)) {
5709 bbio->stripes[i].length = stripes_per_dev *
5710 map->stripe_len;
5711
5712 if (i / sub_stripes < remaining_stripes)
5713 bbio->stripes[i].length +=
5714 map->stripe_len;
5715
5716 /*
5717 * Special for the first stripe and
5718 * the last stripe:
5719 *
5720 * |-------|...|-------|
5721 * |----------|
5722 * off end_off
5723 */
5724 if (i < sub_stripes)
5725 bbio->stripes[i].length -=
5726 stripe_offset;
5727
5728 if (stripe_index >= last_stripe &&
5729 stripe_index <= (last_stripe +
5730 sub_stripes - 1))
5731 bbio->stripes[i].length -=
5732 stripe_end_offset;
5733
5734 if (i == sub_stripes - 1)
5735 stripe_offset = 0;
5736 } else
5737 bbio->stripes[i].length = *length;
5738
5739 stripe_index++;
5740 if (stripe_index == map->num_stripes) {
5741 /* This could only happen for RAID0/10 */
5742 stripe_index = 0;
5743 stripe_nr++;
5744 }
5745 }
5746 } else {
5747 for (i = 0; i < num_stripes; i++) {
5748 bbio->stripes[i].physical =
5749 map->stripes[stripe_index].physical +
5750 stripe_offset +
5751 stripe_nr * map->stripe_len;
5752 bbio->stripes[i].dev =
5753 map->stripes[stripe_index].dev;
5754 stripe_index++;
5755 }
5756 }
5757
5758 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5759 max_errors = btrfs_chunk_max_errors(map);
5760
5761 if (bbio->raid_map)
5762 sort_parity_stripes(bbio, num_stripes);
5763
5764 tgtdev_indexes = 0;
5765 if (dev_replace_is_ongoing &&
5766 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5767 dev_replace->tgtdev != NULL) {
5768 int index_where_to_add;
5769 u64 srcdev_devid = dev_replace->srcdev->devid;
5770
5771 /*
5772 * duplicate the write operations while the dev replace
5773 * procedure is running. Since the copying of the old disk
5774 * to the new disk takes place at run time while the
5775 * filesystem is mounted writable, the regular write
5776 * operations to the old disk have to be duplicated to go
5777 * to the new disk as well.
5778 * Note that device->missing is handled by the caller, and
5779 * that the write to the old disk is already set up in the
5780 * stripes array.
5781 */
5782 index_where_to_add = num_stripes;
5783 for (i = 0; i < num_stripes; i++) {
5784 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5785 /* write to new disk, too */
5786 struct btrfs_bio_stripe *new =
5787 bbio->stripes + index_where_to_add;
5788 struct btrfs_bio_stripe *old =
5789 bbio->stripes + i;
5790
5791 new->physical = old->physical;
5792 new->length = old->length;
5793 new->dev = dev_replace->tgtdev;
5794 bbio->tgtdev_map[i] = index_where_to_add;
5795 index_where_to_add++;
5796 max_errors++;
5797 tgtdev_indexes++;
5798 }
5799 }
5800 num_stripes = index_where_to_add;
5801 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5802 dev_replace->tgtdev != NULL) {
5803 u64 srcdev_devid = dev_replace->srcdev->devid;
5804 int index_srcdev = 0;
5805 int found = 0;
5806 u64 physical_of_found = 0;
5807
5808 /*
5809 * During the dev-replace procedure, the target drive can
5810 * also be used to read data in case it is needed to repair
5811 * a corrupt block elsewhere. This is possible if the
5812 * requested area is left of the left cursor. In this area,
5813 * the target drive is a full copy of the source drive.
5814 */
5815 for (i = 0; i < num_stripes; i++) {
5816 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5817 /*
5818 * In case of DUP, in order to keep it
5819 * simple, only add the mirror with the
5820 * lowest physical address
5821 */
5822 if (found &&
5823 physical_of_found <=
5824 bbio->stripes[i].physical)
5825 continue;
5826 index_srcdev = i;
5827 found = 1;
5828 physical_of_found = bbio->stripes[i].physical;
5829 }
5830 }
5831 if (found) {
5832 struct btrfs_bio_stripe *tgtdev_stripe =
5833 bbio->stripes + num_stripes;
5834
5835 tgtdev_stripe->physical = physical_of_found;
5836 tgtdev_stripe->length =
5837 bbio->stripes[index_srcdev].length;
5838 tgtdev_stripe->dev = dev_replace->tgtdev;
5839 bbio->tgtdev_map[index_srcdev] = num_stripes;
5840
5841 tgtdev_indexes++;
5842 num_stripes++;
5843 }
5844 }
5845
5846 *bbio_ret = bbio;
5847 bbio->map_type = map->type;
5848 bbio->num_stripes = num_stripes;
5849 bbio->max_errors = max_errors;
5850 bbio->mirror_num = mirror_num;
5851 bbio->num_tgtdevs = tgtdev_indexes;
5852
5853 /*
5854 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5855 * mirror_num == num_stripes + 1 && dev_replace target drive is
5856 * available as a mirror
5857 */
5858 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5859 WARN_ON(num_stripes > 1);
5860 bbio->stripes[0].dev = dev_replace->tgtdev;
5861 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5862 bbio->mirror_num = map->num_stripes + 1;
5863 }
5864 out:
5865 if (dev_replace_is_ongoing) {
5866 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5867 btrfs_dev_replace_unlock(dev_replace, 0);
5868 }
5869 free_extent_map(em);
5870 return ret;
5871 }
5872
5873 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5874 u64 logical, u64 *length,
5875 struct btrfs_bio **bbio_ret, int mirror_num)
5876 {
5877 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5878 mirror_num, 0);
5879 }
5880
5881 /* For Scrub/replace */
5882 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5883 u64 logical, u64 *length,
5884 struct btrfs_bio **bbio_ret, int mirror_num,
5885 int need_raid_map)
5886 {
5887 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5888 mirror_num, need_raid_map);
5889 }
5890
5891 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5892 u64 chunk_start, u64 physical, u64 devid,
5893 u64 **logical, int *naddrs, int *stripe_len)
5894 {
5895 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5896 struct extent_map_tree *em_tree = &map_tree->map_tree;
5897 struct extent_map *em;
5898 struct map_lookup *map;
5899 u64 *buf;
5900 u64 bytenr;
5901 u64 length;
5902 u64 stripe_nr;
5903 u64 rmap_len;
5904 int i, j, nr = 0;
5905
5906 read_lock(&em_tree->lock);
5907 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5908 read_unlock(&em_tree->lock);
5909
5910 if (!em) {
5911 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5912 chunk_start);
5913 return -EIO;
5914 }
5915
5916 if (em->start != chunk_start) {
5917 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5918 em->start, chunk_start);
5919 free_extent_map(em);
5920 return -EIO;
5921 }
5922 map = em->map_lookup;
5923
5924 length = em->len;
5925 rmap_len = map->stripe_len;
5926
5927 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5928 length = div_u64(length, map->num_stripes / map->sub_stripes);
5929 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5930 length = div_u64(length, map->num_stripes);
5931 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5932 length = div_u64(length, nr_data_stripes(map));
5933 rmap_len = map->stripe_len * nr_data_stripes(map);
5934 }
5935
5936 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5937 BUG_ON(!buf); /* -ENOMEM */
5938
5939 for (i = 0; i < map->num_stripes; i++) {
5940 if (devid && map->stripes[i].dev->devid != devid)
5941 continue;
5942 if (map->stripes[i].physical > physical ||
5943 map->stripes[i].physical + length <= physical)
5944 continue;
5945
5946 stripe_nr = physical - map->stripes[i].physical;
5947 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5948
5949 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5950 stripe_nr = stripe_nr * map->num_stripes + i;
5951 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5952 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5953 stripe_nr = stripe_nr * map->num_stripes + i;
5954 } /* else if RAID[56], multiply by nr_data_stripes().
5955 * Alternatively, just use rmap_len below instead of
5956 * map->stripe_len */
5957
5958 bytenr = chunk_start + stripe_nr * rmap_len;
5959 WARN_ON(nr >= map->num_stripes);
5960 for (j = 0; j < nr; j++) {
5961 if (buf[j] == bytenr)
5962 break;
5963 }
5964 if (j == nr) {
5965 WARN_ON(nr >= map->num_stripes);
5966 buf[nr++] = bytenr;
5967 }
5968 }
5969
5970 *logical = buf;
5971 *naddrs = nr;
5972 *stripe_len = rmap_len;
5973
5974 free_extent_map(em);
5975 return 0;
5976 }
5977
5978 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5979 {
5980 bio->bi_private = bbio->private;
5981 bio->bi_end_io = bbio->end_io;
5982 bio_endio(bio);
5983
5984 btrfs_put_bbio(bbio);
5985 }
5986
5987 static void btrfs_end_bio(struct bio *bio)
5988 {
5989 struct btrfs_bio *bbio = bio->bi_private;
5990 int is_orig_bio = 0;
5991
5992 if (bio->bi_error) {
5993 atomic_inc(&bbio->error);
5994 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5995 unsigned int stripe_index =
5996 btrfs_io_bio(bio)->stripe_index;
5997 struct btrfs_device *dev;
5998
5999 BUG_ON(stripe_index >= bbio->num_stripes);
6000 dev = bbio->stripes[stripe_index].dev;
6001 if (dev->bdev) {
6002 if (bio_op(bio) == REQ_OP_WRITE)
6003 btrfs_dev_stat_inc(dev,
6004 BTRFS_DEV_STAT_WRITE_ERRS);
6005 else
6006 btrfs_dev_stat_inc(dev,
6007 BTRFS_DEV_STAT_READ_ERRS);
6008 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6009 btrfs_dev_stat_inc(dev,
6010 BTRFS_DEV_STAT_FLUSH_ERRS);
6011 btrfs_dev_stat_print_on_error(dev);
6012 }
6013 }
6014 }
6015
6016 if (bio == bbio->orig_bio)
6017 is_orig_bio = 1;
6018
6019 btrfs_bio_counter_dec(bbio->fs_info);
6020
6021 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6022 if (!is_orig_bio) {
6023 bio_put(bio);
6024 bio = bbio->orig_bio;
6025 }
6026
6027 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6028 /* only send an error to the higher layers if it is
6029 * beyond the tolerance of the btrfs bio
6030 */
6031 if (atomic_read(&bbio->error) > bbio->max_errors) {
6032 bio->bi_error = -EIO;
6033 } else {
6034 /*
6035 * this bio is actually up to date, we didn't
6036 * go over the max number of errors
6037 */
6038 bio->bi_error = 0;
6039 }
6040
6041 btrfs_end_bbio(bbio, bio);
6042 } else if (!is_orig_bio) {
6043 bio_put(bio);
6044 }
6045 }
6046
6047 /*
6048 * see run_scheduled_bios for a description of why bios are collected for
6049 * async submit.
6050 *
6051 * This will add one bio to the pending list for a device and make sure
6052 * the work struct is scheduled.
6053 */
6054 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6055 struct btrfs_device *device,
6056 struct bio *bio)
6057 {
6058 int should_queue = 1;
6059 struct btrfs_pending_bios *pending_bios;
6060
6061 if (device->missing || !device->bdev) {
6062 bio_io_error(bio);
6063 return;
6064 }
6065
6066 /* don't bother with additional async steps for reads, right now */
6067 if (bio_op(bio) == REQ_OP_READ) {
6068 bio_get(bio);
6069 btrfsic_submit_bio(bio);
6070 bio_put(bio);
6071 return;
6072 }
6073
6074 /*
6075 * nr_async_bios allows us to reliably return congestion to the
6076 * higher layers. Otherwise, the async bio makes it appear we have
6077 * made progress against dirty pages when we've really just put it
6078 * on a queue for later
6079 */
6080 atomic_inc(&root->fs_info->nr_async_bios);
6081 WARN_ON(bio->bi_next);
6082 bio->bi_next = NULL;
6083
6084 spin_lock(&device->io_lock);
6085 if (bio->bi_opf & REQ_SYNC)
6086 pending_bios = &device->pending_sync_bios;
6087 else
6088 pending_bios = &device->pending_bios;
6089
6090 if (pending_bios->tail)
6091 pending_bios->tail->bi_next = bio;
6092
6093 pending_bios->tail = bio;
6094 if (!pending_bios->head)
6095 pending_bios->head = bio;
6096 if (device->running_pending)
6097 should_queue = 0;
6098
6099 spin_unlock(&device->io_lock);
6100
6101 if (should_queue)
6102 btrfs_queue_work(root->fs_info->submit_workers,
6103 &device->work);
6104 }
6105
6106 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6107 struct bio *bio, u64 physical, int dev_nr,
6108 int async)
6109 {
6110 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6111
6112 bio->bi_private = bbio;
6113 btrfs_io_bio(bio)->stripe_index = dev_nr;
6114 bio->bi_end_io = btrfs_end_bio;
6115 bio->bi_iter.bi_sector = physical >> 9;
6116 #ifdef DEBUG
6117 {
6118 struct rcu_string *name;
6119
6120 rcu_read_lock();
6121 name = rcu_dereference(dev->name);
6122 btrfs_debug(fs_info,
6123 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6124 bio_op(bio), bio->bi_opf,
6125 (u64)bio->bi_iter.bi_sector,
6126 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6127 bio->bi_iter.bi_size);
6128 rcu_read_unlock();
6129 }
6130 #endif
6131 bio->bi_bdev = dev->bdev;
6132
6133 btrfs_bio_counter_inc_noblocked(root->fs_info);
6134
6135 if (async)
6136 btrfs_schedule_bio(root, dev, bio);
6137 else
6138 btrfsic_submit_bio(bio);
6139 }
6140
6141 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6142 {
6143 atomic_inc(&bbio->error);
6144 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6145 /* Should be the original bio. */
6146 WARN_ON(bio != bbio->orig_bio);
6147
6148 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6149 bio->bi_iter.bi_sector = logical >> 9;
6150 bio->bi_error = -EIO;
6151 btrfs_end_bbio(bbio, bio);
6152 }
6153 }
6154
6155 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6156 int mirror_num, int async_submit)
6157 {
6158 struct btrfs_device *dev;
6159 struct bio *first_bio = bio;
6160 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6161 u64 length = 0;
6162 u64 map_length;
6163 int ret;
6164 int dev_nr;
6165 int total_devs;
6166 struct btrfs_bio *bbio = NULL;
6167
6168 length = bio->bi_iter.bi_size;
6169 map_length = length;
6170
6171 btrfs_bio_counter_inc_blocked(root->fs_info);
6172 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6173 &map_length, &bbio, mirror_num, 1);
6174 if (ret) {
6175 btrfs_bio_counter_dec(root->fs_info);
6176 return ret;
6177 }
6178
6179 total_devs = bbio->num_stripes;
6180 bbio->orig_bio = first_bio;
6181 bbio->private = first_bio->bi_private;
6182 bbio->end_io = first_bio->bi_end_io;
6183 bbio->fs_info = root->fs_info;
6184 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6185
6186 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6187 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6188 /* In this case, map_length has been set to the length of
6189 a single stripe; not the whole write */
6190 if (bio_op(bio) == REQ_OP_WRITE) {
6191 ret = raid56_parity_write(root, bio, bbio, map_length);
6192 } else {
6193 ret = raid56_parity_recover(root, bio, bbio, map_length,
6194 mirror_num, 1);
6195 }
6196
6197 btrfs_bio_counter_dec(root->fs_info);
6198 return ret;
6199 }
6200
6201 if (map_length < length) {
6202 btrfs_crit(root->fs_info,
6203 "mapping failed logical %llu bio len %llu len %llu",
6204 logical, length, map_length);
6205 BUG();
6206 }
6207
6208 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6209 dev = bbio->stripes[dev_nr].dev;
6210 if (!dev || !dev->bdev ||
6211 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6212 bbio_error(bbio, first_bio, logical);
6213 continue;
6214 }
6215
6216 if (dev_nr < total_devs - 1) {
6217 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6218 BUG_ON(!bio); /* -ENOMEM */
6219 } else
6220 bio = first_bio;
6221
6222 submit_stripe_bio(root, bbio, bio,
6223 bbio->stripes[dev_nr].physical, dev_nr,
6224 async_submit);
6225 }
6226 btrfs_bio_counter_dec(root->fs_info);
6227 return 0;
6228 }
6229
6230 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6231 u8 *uuid, u8 *fsid)
6232 {
6233 struct btrfs_device *device;
6234 struct btrfs_fs_devices *cur_devices;
6235
6236 cur_devices = fs_info->fs_devices;
6237 while (cur_devices) {
6238 if (!fsid ||
6239 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6240 device = __find_device(&cur_devices->devices,
6241 devid, uuid);
6242 if (device)
6243 return device;
6244 }
6245 cur_devices = cur_devices->seed;
6246 }
6247 return NULL;
6248 }
6249
6250 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6251 struct btrfs_fs_devices *fs_devices,
6252 u64 devid, u8 *dev_uuid)
6253 {
6254 struct btrfs_device *device;
6255
6256 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6257 if (IS_ERR(device))
6258 return NULL;
6259
6260 list_add(&device->dev_list, &fs_devices->devices);
6261 device->fs_devices = fs_devices;
6262 fs_devices->num_devices++;
6263
6264 device->missing = 1;
6265 fs_devices->missing_devices++;
6266
6267 return device;
6268 }
6269
6270 /**
6271 * btrfs_alloc_device - allocate struct btrfs_device
6272 * @fs_info: used only for generating a new devid, can be NULL if
6273 * devid is provided (i.e. @devid != NULL).
6274 * @devid: a pointer to devid for this device. If NULL a new devid
6275 * is generated.
6276 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6277 * is generated.
6278 *
6279 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6280 * on error. Returned struct is not linked onto any lists and can be
6281 * destroyed with kfree() right away.
6282 */
6283 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6284 const u64 *devid,
6285 const u8 *uuid)
6286 {
6287 struct btrfs_device *dev;
6288 u64 tmp;
6289
6290 if (WARN_ON(!devid && !fs_info))
6291 return ERR_PTR(-EINVAL);
6292
6293 dev = __alloc_device();
6294 if (IS_ERR(dev))
6295 return dev;
6296
6297 if (devid)
6298 tmp = *devid;
6299 else {
6300 int ret;
6301
6302 ret = find_next_devid(fs_info, &tmp);
6303 if (ret) {
6304 kfree(dev);
6305 return ERR_PTR(ret);
6306 }
6307 }
6308 dev->devid = tmp;
6309
6310 if (uuid)
6311 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6312 else
6313 generate_random_uuid(dev->uuid);
6314
6315 btrfs_init_work(&dev->work, btrfs_submit_helper,
6316 pending_bios_fn, NULL, NULL);
6317
6318 return dev;
6319 }
6320
6321 /* Return -EIO if any error, otherwise return 0. */
6322 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6323 struct extent_buffer *leaf,
6324 struct btrfs_chunk *chunk, u64 logical)
6325 {
6326 u64 length;
6327 u64 stripe_len;
6328 u16 num_stripes;
6329 u16 sub_stripes;
6330 u64 type;
6331
6332 length = btrfs_chunk_length(leaf, chunk);
6333 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6334 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6335 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6336 type = btrfs_chunk_type(leaf, chunk);
6337
6338 if (!num_stripes) {
6339 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6340 num_stripes);
6341 return -EIO;
6342 }
6343 if (!IS_ALIGNED(logical, root->sectorsize)) {
6344 btrfs_err(root->fs_info,
6345 "invalid chunk logical %llu", logical);
6346 return -EIO;
6347 }
6348 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6349 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6350 btrfs_chunk_sector_size(leaf, chunk));
6351 return -EIO;
6352 }
6353 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6354 btrfs_err(root->fs_info,
6355 "invalid chunk length %llu", length);
6356 return -EIO;
6357 }
6358 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6359 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6360 stripe_len);
6361 return -EIO;
6362 }
6363 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6364 type) {
6365 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6366 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6367 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6368 btrfs_chunk_type(leaf, chunk));
6369 return -EIO;
6370 }
6371 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6372 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6373 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6374 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6375 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6376 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6377 num_stripes != 1)) {
6378 btrfs_err(root->fs_info,
6379 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6380 num_stripes, sub_stripes,
6381 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6382 return -EIO;
6383 }
6384
6385 return 0;
6386 }
6387
6388 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6389 struct extent_buffer *leaf,
6390 struct btrfs_chunk *chunk)
6391 {
6392 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6393 struct map_lookup *map;
6394 struct extent_map *em;
6395 u64 logical;
6396 u64 length;
6397 u64 stripe_len;
6398 u64 devid;
6399 u8 uuid[BTRFS_UUID_SIZE];
6400 int num_stripes;
6401 int ret;
6402 int i;
6403
6404 logical = key->offset;
6405 length = btrfs_chunk_length(leaf, chunk);
6406 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6407 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6408
6409 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6410 if (ret)
6411 return ret;
6412
6413 read_lock(&map_tree->map_tree.lock);
6414 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6415 read_unlock(&map_tree->map_tree.lock);
6416
6417 /* already mapped? */
6418 if (em && em->start <= logical && em->start + em->len > logical) {
6419 free_extent_map(em);
6420 return 0;
6421 } else if (em) {
6422 free_extent_map(em);
6423 }
6424
6425 em = alloc_extent_map();
6426 if (!em)
6427 return -ENOMEM;
6428 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6429 if (!map) {
6430 free_extent_map(em);
6431 return -ENOMEM;
6432 }
6433
6434 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6435 em->map_lookup = map;
6436 em->start = logical;
6437 em->len = length;
6438 em->orig_start = 0;
6439 em->block_start = 0;
6440 em->block_len = em->len;
6441
6442 map->num_stripes = num_stripes;
6443 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6444 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6445 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6446 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6447 map->type = btrfs_chunk_type(leaf, chunk);
6448 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6449 for (i = 0; i < num_stripes; i++) {
6450 map->stripes[i].physical =
6451 btrfs_stripe_offset_nr(leaf, chunk, i);
6452 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6453 read_extent_buffer(leaf, uuid, (unsigned long)
6454 btrfs_stripe_dev_uuid_nr(chunk, i),
6455 BTRFS_UUID_SIZE);
6456 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6457 uuid, NULL);
6458 if (!map->stripes[i].dev &&
6459 !btrfs_test_opt(root->fs_info, DEGRADED)) {
6460 free_extent_map(em);
6461 return -EIO;
6462 }
6463 if (!map->stripes[i].dev) {
6464 map->stripes[i].dev =
6465 add_missing_dev(root, root->fs_info->fs_devices,
6466 devid, uuid);
6467 if (!map->stripes[i].dev) {
6468 free_extent_map(em);
6469 return -EIO;
6470 }
6471 btrfs_warn(root->fs_info,
6472 "devid %llu uuid %pU is missing",
6473 devid, uuid);
6474 }
6475 map->stripes[i].dev->in_fs_metadata = 1;
6476 }
6477
6478 write_lock(&map_tree->map_tree.lock);
6479 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6480 write_unlock(&map_tree->map_tree.lock);
6481 BUG_ON(ret); /* Tree corruption */
6482 free_extent_map(em);
6483
6484 return 0;
6485 }
6486
6487 static void fill_device_from_item(struct extent_buffer *leaf,
6488 struct btrfs_dev_item *dev_item,
6489 struct btrfs_device *device)
6490 {
6491 unsigned long ptr;
6492
6493 device->devid = btrfs_device_id(leaf, dev_item);
6494 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6495 device->total_bytes = device->disk_total_bytes;
6496 device->commit_total_bytes = device->disk_total_bytes;
6497 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6498 device->commit_bytes_used = device->bytes_used;
6499 device->type = btrfs_device_type(leaf, dev_item);
6500 device->io_align = btrfs_device_io_align(leaf, dev_item);
6501 device->io_width = btrfs_device_io_width(leaf, dev_item);
6502 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6503 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6504 device->is_tgtdev_for_dev_replace = 0;
6505
6506 ptr = btrfs_device_uuid(dev_item);
6507 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6508 }
6509
6510 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6511 u8 *fsid)
6512 {
6513 struct btrfs_fs_devices *fs_devices;
6514 int ret;
6515
6516 BUG_ON(!mutex_is_locked(&uuid_mutex));
6517
6518 fs_devices = root->fs_info->fs_devices->seed;
6519 while (fs_devices) {
6520 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6521 return fs_devices;
6522
6523 fs_devices = fs_devices->seed;
6524 }
6525
6526 fs_devices = find_fsid(fsid);
6527 if (!fs_devices) {
6528 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6529 return ERR_PTR(-ENOENT);
6530
6531 fs_devices = alloc_fs_devices(fsid);
6532 if (IS_ERR(fs_devices))
6533 return fs_devices;
6534
6535 fs_devices->seeding = 1;
6536 fs_devices->opened = 1;
6537 return fs_devices;
6538 }
6539
6540 fs_devices = clone_fs_devices(fs_devices);
6541 if (IS_ERR(fs_devices))
6542 return fs_devices;
6543
6544 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6545 root->fs_info->bdev_holder);
6546 if (ret) {
6547 free_fs_devices(fs_devices);
6548 fs_devices = ERR_PTR(ret);
6549 goto out;
6550 }
6551
6552 if (!fs_devices->seeding) {
6553 __btrfs_close_devices(fs_devices);
6554 free_fs_devices(fs_devices);
6555 fs_devices = ERR_PTR(-EINVAL);
6556 goto out;
6557 }
6558
6559 fs_devices->seed = root->fs_info->fs_devices->seed;
6560 root->fs_info->fs_devices->seed = fs_devices;
6561 out:
6562 return fs_devices;
6563 }
6564
6565 static int read_one_dev(struct btrfs_root *root,
6566 struct extent_buffer *leaf,
6567 struct btrfs_dev_item *dev_item)
6568 {
6569 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6570 struct btrfs_device *device;
6571 u64 devid;
6572 int ret;
6573 u8 fs_uuid[BTRFS_UUID_SIZE];
6574 u8 dev_uuid[BTRFS_UUID_SIZE];
6575
6576 devid = btrfs_device_id(leaf, dev_item);
6577 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6578 BTRFS_UUID_SIZE);
6579 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6580 BTRFS_UUID_SIZE);
6581
6582 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6583 fs_devices = open_seed_devices(root, fs_uuid);
6584 if (IS_ERR(fs_devices))
6585 return PTR_ERR(fs_devices);
6586 }
6587
6588 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6589 if (!device) {
6590 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6591 return -EIO;
6592
6593 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6594 if (!device)
6595 return -ENOMEM;
6596 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6597 devid, dev_uuid);
6598 } else {
6599 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6600 return -EIO;
6601
6602 if(!device->bdev && !device->missing) {
6603 /*
6604 * this happens when a device that was properly setup
6605 * in the device info lists suddenly goes bad.
6606 * device->bdev is NULL, and so we have to set
6607 * device->missing to one here
6608 */
6609 device->fs_devices->missing_devices++;
6610 device->missing = 1;
6611 }
6612
6613 /* Move the device to its own fs_devices */
6614 if (device->fs_devices != fs_devices) {
6615 ASSERT(device->missing);
6616
6617 list_move(&device->dev_list, &fs_devices->devices);
6618 device->fs_devices->num_devices--;
6619 fs_devices->num_devices++;
6620
6621 device->fs_devices->missing_devices--;
6622 fs_devices->missing_devices++;
6623
6624 device->fs_devices = fs_devices;
6625 }
6626 }
6627
6628 if (device->fs_devices != root->fs_info->fs_devices) {
6629 BUG_ON(device->writeable);
6630 if (device->generation !=
6631 btrfs_device_generation(leaf, dev_item))
6632 return -EINVAL;
6633 }
6634
6635 fill_device_from_item(leaf, dev_item, device);
6636 device->in_fs_metadata = 1;
6637 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6638 device->fs_devices->total_rw_bytes += device->total_bytes;
6639 spin_lock(&root->fs_info->free_chunk_lock);
6640 root->fs_info->free_chunk_space += device->total_bytes -
6641 device->bytes_used;
6642 spin_unlock(&root->fs_info->free_chunk_lock);
6643 }
6644 ret = 0;
6645 return ret;
6646 }
6647
6648 int btrfs_read_sys_array(struct btrfs_root *root)
6649 {
6650 struct btrfs_fs_info *fs_info = root->fs_info;
6651 struct btrfs_super_block *super_copy = fs_info->super_copy;
6652 struct extent_buffer *sb;
6653 struct btrfs_disk_key *disk_key;
6654 struct btrfs_chunk *chunk;
6655 u8 *array_ptr;
6656 unsigned long sb_array_offset;
6657 int ret = 0;
6658 u32 num_stripes;
6659 u32 array_size;
6660 u32 len = 0;
6661 u32 cur_offset;
6662 u64 type;
6663 struct btrfs_key key;
6664
6665 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6666 /*
6667 * This will create extent buffer of nodesize, superblock size is
6668 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6669 * overallocate but we can keep it as-is, only the first page is used.
6670 */
6671 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6672 if (IS_ERR(sb))
6673 return PTR_ERR(sb);
6674 set_extent_buffer_uptodate(sb);
6675 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6676 /*
6677 * The sb extent buffer is artificial and just used to read the system array.
6678 * set_extent_buffer_uptodate() call does not properly mark all it's
6679 * pages up-to-date when the page is larger: extent does not cover the
6680 * whole page and consequently check_page_uptodate does not find all
6681 * the page's extents up-to-date (the hole beyond sb),
6682 * write_extent_buffer then triggers a WARN_ON.
6683 *
6684 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6685 * but sb spans only this function. Add an explicit SetPageUptodate call
6686 * to silence the warning eg. on PowerPC 64.
6687 */
6688 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6689 SetPageUptodate(sb->pages[0]);
6690
6691 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6692 array_size = btrfs_super_sys_array_size(super_copy);
6693
6694 array_ptr = super_copy->sys_chunk_array;
6695 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6696 cur_offset = 0;
6697
6698 while (cur_offset < array_size) {
6699 disk_key = (struct btrfs_disk_key *)array_ptr;
6700 len = sizeof(*disk_key);
6701 if (cur_offset + len > array_size)
6702 goto out_short_read;
6703
6704 btrfs_disk_key_to_cpu(&key, disk_key);
6705
6706 array_ptr += len;
6707 sb_array_offset += len;
6708 cur_offset += len;
6709
6710 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6711 chunk = (struct btrfs_chunk *)sb_array_offset;
6712 /*
6713 * At least one btrfs_chunk with one stripe must be
6714 * present, exact stripe count check comes afterwards
6715 */
6716 len = btrfs_chunk_item_size(1);
6717 if (cur_offset + len > array_size)
6718 goto out_short_read;
6719
6720 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6721 if (!num_stripes) {
6722 btrfs_err(fs_info,
6723 "invalid number of stripes %u in sys_array at offset %u",
6724 num_stripes, cur_offset);
6725 ret = -EIO;
6726 break;
6727 }
6728
6729 type = btrfs_chunk_type(sb, chunk);
6730 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6731 btrfs_err(fs_info,
6732 "invalid chunk type %llu in sys_array at offset %u",
6733 type, cur_offset);
6734 ret = -EIO;
6735 break;
6736 }
6737
6738 len = btrfs_chunk_item_size(num_stripes);
6739 if (cur_offset + len > array_size)
6740 goto out_short_read;
6741
6742 ret = read_one_chunk(root, &key, sb, chunk);
6743 if (ret)
6744 break;
6745 } else {
6746 btrfs_err(fs_info,
6747 "unexpected item type %u in sys_array at offset %u",
6748 (u32)key.type, cur_offset);
6749 ret = -EIO;
6750 break;
6751 }
6752 array_ptr += len;
6753 sb_array_offset += len;
6754 cur_offset += len;
6755 }
6756 clear_extent_buffer_uptodate(sb);
6757 free_extent_buffer_stale(sb);
6758 return ret;
6759
6760 out_short_read:
6761 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6762 len, cur_offset);
6763 clear_extent_buffer_uptodate(sb);
6764 free_extent_buffer_stale(sb);
6765 return -EIO;
6766 }
6767
6768 int btrfs_read_chunk_tree(struct btrfs_root *root)
6769 {
6770 struct btrfs_path *path;
6771 struct extent_buffer *leaf;
6772 struct btrfs_key key;
6773 struct btrfs_key found_key;
6774 int ret;
6775 int slot;
6776 u64 total_dev = 0;
6777
6778 root = root->fs_info->chunk_root;
6779
6780 path = btrfs_alloc_path();
6781 if (!path)
6782 return -ENOMEM;
6783
6784 mutex_lock(&uuid_mutex);
6785 lock_chunks(root);
6786
6787 /*
6788 * Read all device items, and then all the chunk items. All
6789 * device items are found before any chunk item (their object id
6790 * is smaller than the lowest possible object id for a chunk
6791 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6792 */
6793 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6794 key.offset = 0;
6795 key.type = 0;
6796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6797 if (ret < 0)
6798 goto error;
6799 while (1) {
6800 leaf = path->nodes[0];
6801 slot = path->slots[0];
6802 if (slot >= btrfs_header_nritems(leaf)) {
6803 ret = btrfs_next_leaf(root, path);
6804 if (ret == 0)
6805 continue;
6806 if (ret < 0)
6807 goto error;
6808 break;
6809 }
6810 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6811 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6812 struct btrfs_dev_item *dev_item;
6813 dev_item = btrfs_item_ptr(leaf, slot,
6814 struct btrfs_dev_item);
6815 ret = read_one_dev(root, leaf, dev_item);
6816 if (ret)
6817 goto error;
6818 total_dev++;
6819 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6820 struct btrfs_chunk *chunk;
6821 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6822 ret = read_one_chunk(root, &found_key, leaf, chunk);
6823 if (ret)
6824 goto error;
6825 }
6826 path->slots[0]++;
6827 }
6828
6829 /*
6830 * After loading chunk tree, we've got all device information,
6831 * do another round of validation checks.
6832 */
6833 if (total_dev != root->fs_info->fs_devices->total_devices) {
6834 btrfs_err(root->fs_info,
6835 "super_num_devices %llu mismatch with num_devices %llu found here",
6836 btrfs_super_num_devices(root->fs_info->super_copy),
6837 total_dev);
6838 ret = -EINVAL;
6839 goto error;
6840 }
6841 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6842 root->fs_info->fs_devices->total_rw_bytes) {
6843 btrfs_err(root->fs_info,
6844 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6845 btrfs_super_total_bytes(root->fs_info->super_copy),
6846 root->fs_info->fs_devices->total_rw_bytes);
6847 ret = -EINVAL;
6848 goto error;
6849 }
6850 ret = 0;
6851 error:
6852 unlock_chunks(root);
6853 mutex_unlock(&uuid_mutex);
6854
6855 btrfs_free_path(path);
6856 return ret;
6857 }
6858
6859 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6860 {
6861 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6862 struct btrfs_device *device;
6863
6864 while (fs_devices) {
6865 mutex_lock(&fs_devices->device_list_mutex);
6866 list_for_each_entry(device, &fs_devices->devices, dev_list)
6867 device->dev_root = fs_info->dev_root;
6868 mutex_unlock(&fs_devices->device_list_mutex);
6869
6870 fs_devices = fs_devices->seed;
6871 }
6872 }
6873
6874 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6875 {
6876 int i;
6877
6878 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6879 btrfs_dev_stat_reset(dev, i);
6880 }
6881
6882 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6883 {
6884 struct btrfs_key key;
6885 struct btrfs_key found_key;
6886 struct btrfs_root *dev_root = fs_info->dev_root;
6887 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6888 struct extent_buffer *eb;
6889 int slot;
6890 int ret = 0;
6891 struct btrfs_device *device;
6892 struct btrfs_path *path = NULL;
6893 int i;
6894
6895 path = btrfs_alloc_path();
6896 if (!path) {
6897 ret = -ENOMEM;
6898 goto out;
6899 }
6900
6901 mutex_lock(&fs_devices->device_list_mutex);
6902 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6903 int item_size;
6904 struct btrfs_dev_stats_item *ptr;
6905
6906 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6907 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6908 key.offset = device->devid;
6909 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6910 if (ret) {
6911 __btrfs_reset_dev_stats(device);
6912 device->dev_stats_valid = 1;
6913 btrfs_release_path(path);
6914 continue;
6915 }
6916 slot = path->slots[0];
6917 eb = path->nodes[0];
6918 btrfs_item_key_to_cpu(eb, &found_key, slot);
6919 item_size = btrfs_item_size_nr(eb, slot);
6920
6921 ptr = btrfs_item_ptr(eb, slot,
6922 struct btrfs_dev_stats_item);
6923
6924 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6925 if (item_size >= (1 + i) * sizeof(__le64))
6926 btrfs_dev_stat_set(device, i,
6927 btrfs_dev_stats_value(eb, ptr, i));
6928 else
6929 btrfs_dev_stat_reset(device, i);
6930 }
6931
6932 device->dev_stats_valid = 1;
6933 btrfs_dev_stat_print_on_load(device);
6934 btrfs_release_path(path);
6935 }
6936 mutex_unlock(&fs_devices->device_list_mutex);
6937
6938 out:
6939 btrfs_free_path(path);
6940 return ret < 0 ? ret : 0;
6941 }
6942
6943 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6944 struct btrfs_root *dev_root,
6945 struct btrfs_device *device)
6946 {
6947 struct btrfs_path *path;
6948 struct btrfs_key key;
6949 struct extent_buffer *eb;
6950 struct btrfs_dev_stats_item *ptr;
6951 int ret;
6952 int i;
6953
6954 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6956 key.offset = device->devid;
6957
6958 path = btrfs_alloc_path();
6959 BUG_ON(!path);
6960 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6961 if (ret < 0) {
6962 btrfs_warn_in_rcu(dev_root->fs_info,
6963 "error %d while searching for dev_stats item for device %s",
6964 ret, rcu_str_deref(device->name));
6965 goto out;
6966 }
6967
6968 if (ret == 0 &&
6969 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6970 /* need to delete old one and insert a new one */
6971 ret = btrfs_del_item(trans, dev_root, path);
6972 if (ret != 0) {
6973 btrfs_warn_in_rcu(dev_root->fs_info,
6974 "delete too small dev_stats item for device %s failed %d",
6975 rcu_str_deref(device->name), ret);
6976 goto out;
6977 }
6978 ret = 1;
6979 }
6980
6981 if (ret == 1) {
6982 /* need to insert a new item */
6983 btrfs_release_path(path);
6984 ret = btrfs_insert_empty_item(trans, dev_root, path,
6985 &key, sizeof(*ptr));
6986 if (ret < 0) {
6987 btrfs_warn_in_rcu(dev_root->fs_info,
6988 "insert dev_stats item for device %s failed %d",
6989 rcu_str_deref(device->name), ret);
6990 goto out;
6991 }
6992 }
6993
6994 eb = path->nodes[0];
6995 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6996 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6997 btrfs_set_dev_stats_value(eb, ptr, i,
6998 btrfs_dev_stat_read(device, i));
6999 btrfs_mark_buffer_dirty(eb);
7000
7001 out:
7002 btrfs_free_path(path);
7003 return ret;
7004 }
7005
7006 /*
7007 * called from commit_transaction. Writes all changed device stats to disk.
7008 */
7009 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7010 struct btrfs_fs_info *fs_info)
7011 {
7012 struct btrfs_root *dev_root = fs_info->dev_root;
7013 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7014 struct btrfs_device *device;
7015 int stats_cnt;
7016 int ret = 0;
7017
7018 mutex_lock(&fs_devices->device_list_mutex);
7019 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7020 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7021 continue;
7022
7023 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7024 ret = update_dev_stat_item(trans, dev_root, device);
7025 if (!ret)
7026 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7027 }
7028 mutex_unlock(&fs_devices->device_list_mutex);
7029
7030 return ret;
7031 }
7032
7033 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7034 {
7035 btrfs_dev_stat_inc(dev, index);
7036 btrfs_dev_stat_print_on_error(dev);
7037 }
7038
7039 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7040 {
7041 if (!dev->dev_stats_valid)
7042 return;
7043 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7044 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7045 rcu_str_deref(dev->name),
7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7050 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7051 }
7052
7053 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7054 {
7055 int i;
7056
7057 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7058 if (btrfs_dev_stat_read(dev, i) != 0)
7059 break;
7060 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7061 return; /* all values == 0, suppress message */
7062
7063 btrfs_info_in_rcu(dev->dev_root->fs_info,
7064 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7065 rcu_str_deref(dev->name),
7066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7071 }
7072
7073 int btrfs_get_dev_stats(struct btrfs_root *root,
7074 struct btrfs_ioctl_get_dev_stats *stats)
7075 {
7076 struct btrfs_device *dev;
7077 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7078 int i;
7079
7080 mutex_lock(&fs_devices->device_list_mutex);
7081 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7082 mutex_unlock(&fs_devices->device_list_mutex);
7083
7084 if (!dev) {
7085 btrfs_warn(root->fs_info,
7086 "get dev_stats failed, device not found");
7087 return -ENODEV;
7088 } else if (!dev->dev_stats_valid) {
7089 btrfs_warn(root->fs_info,
7090 "get dev_stats failed, not yet valid");
7091 return -ENODEV;
7092 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7093 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7094 if (stats->nr_items > i)
7095 stats->values[i] =
7096 btrfs_dev_stat_read_and_reset(dev, i);
7097 else
7098 btrfs_dev_stat_reset(dev, i);
7099 }
7100 } else {
7101 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7102 if (stats->nr_items > i)
7103 stats->values[i] = btrfs_dev_stat_read(dev, i);
7104 }
7105 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7106 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7107 return 0;
7108 }
7109
7110 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7111 {
7112 struct buffer_head *bh;
7113 struct btrfs_super_block *disk_super;
7114 int copy_num;
7115
7116 if (!bdev)
7117 return;
7118
7119 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7120 copy_num++) {
7121
7122 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7123 continue;
7124
7125 disk_super = (struct btrfs_super_block *)bh->b_data;
7126
7127 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7128 set_buffer_dirty(bh);
7129 sync_dirty_buffer(bh);
7130 brelse(bh);
7131 }
7132
7133 /* Notify udev that device has changed */
7134 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7135
7136 /* Update ctime/mtime for device path for libblkid */
7137 update_dev_time(device_path);
7138 }
7139
7140 /*
7141 * Update the size of all devices, which is used for writing out the
7142 * super blocks.
7143 */
7144 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7145 {
7146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7147 struct btrfs_device *curr, *next;
7148
7149 if (list_empty(&fs_devices->resized_devices))
7150 return;
7151
7152 mutex_lock(&fs_devices->device_list_mutex);
7153 lock_chunks(fs_info->dev_root);
7154 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7155 resized_list) {
7156 list_del_init(&curr->resized_list);
7157 curr->commit_total_bytes = curr->disk_total_bytes;
7158 }
7159 unlock_chunks(fs_info->dev_root);
7160 mutex_unlock(&fs_devices->device_list_mutex);
7161 }
7162
7163 /* Must be invoked during the transaction commit */
7164 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7165 struct btrfs_transaction *transaction)
7166 {
7167 struct extent_map *em;
7168 struct map_lookup *map;
7169 struct btrfs_device *dev;
7170 int i;
7171
7172 if (list_empty(&transaction->pending_chunks))
7173 return;
7174
7175 /* In order to kick the device replace finish process */
7176 lock_chunks(root);
7177 list_for_each_entry(em, &transaction->pending_chunks, list) {
7178 map = em->map_lookup;
7179
7180 for (i = 0; i < map->num_stripes; i++) {
7181 dev = map->stripes[i].dev;
7182 dev->commit_bytes_used = dev->bytes_used;
7183 }
7184 }
7185 unlock_chunks(root);
7186 }
7187
7188 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7189 {
7190 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7191 while (fs_devices) {
7192 fs_devices->fs_info = fs_info;
7193 fs_devices = fs_devices->seed;
7194 }
7195 }
7196
7197 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7198 {
7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200 while (fs_devices) {
7201 fs_devices->fs_info = NULL;
7202 fs_devices = fs_devices->seed;
7203 }
7204 }