]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/volumes.c
909c578506eec42671b7de96327cb2121b2be47e
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 [BTRFS_RAID_RAID10] = {
33 .sub_stripes = 2,
34 .dev_stripes = 1,
35 .devs_max = 0, /* 0 == as many as possible */
36 .devs_min = 4,
37 .tolerated_failures = 1,
38 .devs_increment = 2,
39 .ncopies = 2,
40 .raid_name = "raid10",
41 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
42 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43 },
44 [BTRFS_RAID_RAID1] = {
45 .sub_stripes = 1,
46 .dev_stripes = 1,
47 .devs_max = 2,
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .raid_name = "raid1",
53 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
54 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55 },
56 [BTRFS_RAID_DUP] = {
57 .sub_stripes = 1,
58 .dev_stripes = 2,
59 .devs_max = 1,
60 .devs_min = 1,
61 .tolerated_failures = 0,
62 .devs_increment = 1,
63 .ncopies = 2,
64 .raid_name = "dup",
65 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
66 .mindev_error = 0,
67 },
68 [BTRFS_RAID_RAID0] = {
69 .sub_stripes = 1,
70 .dev_stripes = 1,
71 .devs_max = 0,
72 .devs_min = 2,
73 .tolerated_failures = 0,
74 .devs_increment = 1,
75 .ncopies = 1,
76 .raid_name = "raid0",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
78 .mindev_error = 0,
79 },
80 [BTRFS_RAID_SINGLE] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 1,
84 .devs_min = 1,
85 .tolerated_failures = 0,
86 .devs_increment = 1,
87 .ncopies = 1,
88 .raid_name = "single",
89 .bg_flag = 0,
90 .mindev_error = 0,
91 },
92 [BTRFS_RAID_RAID5] = {
93 .sub_stripes = 1,
94 .dev_stripes = 1,
95 .devs_max = 0,
96 .devs_min = 2,
97 .tolerated_failures = 1,
98 .devs_increment = 1,
99 .ncopies = 2,
100 .raid_name = "raid5",
101 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
102 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103 },
104 [BTRFS_RAID_RAID6] = {
105 .sub_stripes = 1,
106 .dev_stripes = 1,
107 .devs_max = 0,
108 .devs_min = 3,
109 .tolerated_failures = 2,
110 .devs_increment = 1,
111 .ncopies = 3,
112 .raid_name = "raid6",
113 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
114 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115 },
116 };
117
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120 if (type >= BTRFS_NR_RAID_TYPES)
121 return NULL;
122
123 return btrfs_raid_array[type].raid_name;
124 }
125
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133 enum btrfs_map_op op,
134 u64 logical, u64 *length,
135 struct btrfs_bio **bbio_ret,
136 int mirror_num, int need_raid_map);
137
138 /*
139 * Device locking
140 * ==============
141 *
142 * There are several mutexes that protect manipulation of devices and low-level
143 * structures like chunks but not block groups, extents or files
144 *
145 * uuid_mutex (global lock)
146 * ------------------------
147 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149 * device) or requested by the device= mount option
150 *
151 * the mutex can be very coarse and can cover long-running operations
152 *
153 * protects: updates to fs_devices counters like missing devices, rw devices,
154 * seeding, structure cloning, openning/closing devices at mount/umount time
155 *
156 * global::fs_devs - add, remove, updates to the global list
157 *
158 * does not protect: manipulation of the fs_devices::devices list!
159 *
160 * btrfs_device::name - renames (write side), read is RCU
161 *
162 * fs_devices::device_list_mutex (per-fs, with RCU)
163 * ------------------------------------------------
164 * protects updates to fs_devices::devices, ie. adding and deleting
165 *
166 * simple list traversal with read-only actions can be done with RCU protection
167 *
168 * may be used to exclude some operations from running concurrently without any
169 * modifications to the list (see write_all_supers)
170 *
171 * balance_mutex
172 * -------------
173 * protects balance structures (status, state) and context accessed from
174 * several places (internally, ioctl)
175 *
176 * chunk_mutex
177 * -----------
178 * protects chunks, adding or removing during allocation, trim or when a new
179 * device is added/removed
180 *
181 * cleaner_mutex
182 * -------------
183 * a big lock that is held by the cleaner thread and prevents running subvolume
184 * cleaning together with relocation or delayed iputs
185 *
186 *
187 * Lock nesting
188 * ============
189 *
190 * uuid_mutex
191 * volume_mutex
192 * device_list_mutex
193 * chunk_mutex
194 * balance_mutex
195 *
196 *
197 * Exclusive operations, BTRFS_FS_EXCL_OP
198 * ======================================
199 *
200 * Maintains the exclusivity of the following operations that apply to the
201 * whole filesystem and cannot run in parallel.
202 *
203 * - Balance (*)
204 * - Device add
205 * - Device remove
206 * - Device replace (*)
207 * - Resize
208 *
209 * The device operations (as above) can be in one of the following states:
210 *
211 * - Running state
212 * - Paused state
213 * - Completed state
214 *
215 * Only device operations marked with (*) can go into the Paused state for the
216 * following reasons:
217 *
218 * - ioctl (only Balance can be Paused through ioctl)
219 * - filesystem remounted as read-only
220 * - filesystem unmounted and mounted as read-only
221 * - system power-cycle and filesystem mounted as read-only
222 * - filesystem or device errors leading to forced read-only
223 *
224 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226 * A device operation in Paused or Running state can be canceled or resumed
227 * either by ioctl (Balance only) or when remounted as read-write.
228 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229 * completed.
230 */
231
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236 return &fs_uuids;
237 }
238
239 /*
240 * alloc_fs_devices - allocate struct btrfs_fs_devices
241 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
242 *
243 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244 * The returned struct is not linked onto any lists and can be destroyed with
245 * kfree() right away.
246 */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249 struct btrfs_fs_devices *fs_devs;
250
251 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252 if (!fs_devs)
253 return ERR_PTR(-ENOMEM);
254
255 mutex_init(&fs_devs->device_list_mutex);
256
257 INIT_LIST_HEAD(&fs_devs->devices);
258 INIT_LIST_HEAD(&fs_devs->resized_devices);
259 INIT_LIST_HEAD(&fs_devs->alloc_list);
260 INIT_LIST_HEAD(&fs_devs->fs_list);
261 if (fsid)
262 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263
264 return fs_devs;
265 }
266
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269 rcu_string_free(device->name);
270 bio_put(device->flush_bio);
271 kfree(device);
272 }
273
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276 struct btrfs_device *device;
277 WARN_ON(fs_devices->opened);
278 while (!list_empty(&fs_devices->devices)) {
279 device = list_entry(fs_devices->devices.next,
280 struct btrfs_device, dev_list);
281 list_del(&device->dev_list);
282 btrfs_free_device(device);
283 }
284 kfree(fs_devices);
285 }
286
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288 enum kobject_action action)
289 {
290 int ret;
291
292 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293 if (ret)
294 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295 action,
296 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297 &disk_to_dev(bdev->bd_disk)->kobj);
298 }
299
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302 struct btrfs_fs_devices *fs_devices;
303
304 while (!list_empty(&fs_uuids)) {
305 fs_devices = list_entry(fs_uuids.next,
306 struct btrfs_fs_devices, fs_list);
307 list_del(&fs_devices->fs_list);
308 free_fs_devices(fs_devices);
309 }
310 }
311
312 /*
313 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314 * Returned struct is not linked onto any lists and must be destroyed using
315 * btrfs_free_device.
316 */
317 static struct btrfs_device *__alloc_device(void)
318 {
319 struct btrfs_device *dev;
320
321 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322 if (!dev)
323 return ERR_PTR(-ENOMEM);
324
325 /*
326 * Preallocate a bio that's always going to be used for flushing device
327 * barriers and matches the device lifespan
328 */
329 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330 if (!dev->flush_bio) {
331 kfree(dev);
332 return ERR_PTR(-ENOMEM);
333 }
334
335 INIT_LIST_HEAD(&dev->dev_list);
336 INIT_LIST_HEAD(&dev->dev_alloc_list);
337 INIT_LIST_HEAD(&dev->resized_list);
338
339 spin_lock_init(&dev->io_lock);
340
341 atomic_set(&dev->reada_in_flight, 0);
342 atomic_set(&dev->dev_stats_ccnt, 0);
343 btrfs_device_data_ordered_init(dev);
344 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346
347 return dev;
348 }
349
350 /*
351 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352 * return NULL.
353 *
354 * If devid and uuid are both specified, the match must be exact, otherwise
355 * only devid is used.
356 */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358 u64 devid, const u8 *uuid)
359 {
360 struct btrfs_device *dev;
361
362 list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363 if (dev->devid == devid &&
364 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365 return dev;
366 }
367 }
368 return NULL;
369 }
370
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373 struct btrfs_fs_devices *fs_devices;
374
375 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377 return fs_devices;
378 }
379 return NULL;
380 }
381
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384 int flush, struct block_device **bdev,
385 struct buffer_head **bh)
386 {
387 int ret;
388
389 *bdev = blkdev_get_by_path(device_path, flags, holder);
390
391 if (IS_ERR(*bdev)) {
392 ret = PTR_ERR(*bdev);
393 goto error;
394 }
395
396 if (flush)
397 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399 if (ret) {
400 blkdev_put(*bdev, flags);
401 goto error;
402 }
403 invalidate_bdev(*bdev);
404 *bh = btrfs_read_dev_super(*bdev);
405 if (IS_ERR(*bh)) {
406 ret = PTR_ERR(*bh);
407 blkdev_put(*bdev, flags);
408 goto error;
409 }
410
411 return 0;
412
413 error:
414 *bdev = NULL;
415 *bh = NULL;
416 return ret;
417 }
418
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420 struct bio *head, struct bio *tail)
421 {
422
423 struct bio *old_head;
424
425 old_head = pending_bios->head;
426 pending_bios->head = head;
427 if (pending_bios->tail)
428 tail->bi_next = old_head;
429 else
430 pending_bios->tail = tail;
431 }
432
433 /*
434 * we try to collect pending bios for a device so we don't get a large
435 * number of procs sending bios down to the same device. This greatly
436 * improves the schedulers ability to collect and merge the bios.
437 *
438 * But, it also turns into a long list of bios to process and that is sure
439 * to eventually make the worker thread block. The solution here is to
440 * make some progress and then put this work struct back at the end of
441 * the list if the block device is congested. This way, multiple devices
442 * can make progress from a single worker thread.
443 */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446 struct btrfs_fs_info *fs_info = device->fs_info;
447 struct bio *pending;
448 struct backing_dev_info *bdi;
449 struct btrfs_pending_bios *pending_bios;
450 struct bio *tail;
451 struct bio *cur;
452 int again = 0;
453 unsigned long num_run;
454 unsigned long batch_run = 0;
455 unsigned long last_waited = 0;
456 int force_reg = 0;
457 int sync_pending = 0;
458 struct blk_plug plug;
459
460 /*
461 * this function runs all the bios we've collected for
462 * a particular device. We don't want to wander off to
463 * another device without first sending all of these down.
464 * So, setup a plug here and finish it off before we return
465 */
466 blk_start_plug(&plug);
467
468 bdi = device->bdev->bd_bdi;
469
470 loop:
471 spin_lock(&device->io_lock);
472
473 loop_lock:
474 num_run = 0;
475
476 /* take all the bios off the list at once and process them
477 * later on (without the lock held). But, remember the
478 * tail and other pointers so the bios can be properly reinserted
479 * into the list if we hit congestion
480 */
481 if (!force_reg && device->pending_sync_bios.head) {
482 pending_bios = &device->pending_sync_bios;
483 force_reg = 1;
484 } else {
485 pending_bios = &device->pending_bios;
486 force_reg = 0;
487 }
488
489 pending = pending_bios->head;
490 tail = pending_bios->tail;
491 WARN_ON(pending && !tail);
492
493 /*
494 * if pending was null this time around, no bios need processing
495 * at all and we can stop. Otherwise it'll loop back up again
496 * and do an additional check so no bios are missed.
497 *
498 * device->running_pending is used to synchronize with the
499 * schedule_bio code.
500 */
501 if (device->pending_sync_bios.head == NULL &&
502 device->pending_bios.head == NULL) {
503 again = 0;
504 device->running_pending = 0;
505 } else {
506 again = 1;
507 device->running_pending = 1;
508 }
509
510 pending_bios->head = NULL;
511 pending_bios->tail = NULL;
512
513 spin_unlock(&device->io_lock);
514
515 while (pending) {
516
517 rmb();
518 /* we want to work on both lists, but do more bios on the
519 * sync list than the regular list
520 */
521 if ((num_run > 32 &&
522 pending_bios != &device->pending_sync_bios &&
523 device->pending_sync_bios.head) ||
524 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525 device->pending_bios.head)) {
526 spin_lock(&device->io_lock);
527 requeue_list(pending_bios, pending, tail);
528 goto loop_lock;
529 }
530
531 cur = pending;
532 pending = pending->bi_next;
533 cur->bi_next = NULL;
534
535 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536
537 /*
538 * if we're doing the sync list, record that our
539 * plug has some sync requests on it
540 *
541 * If we're doing the regular list and there are
542 * sync requests sitting around, unplug before
543 * we add more
544 */
545 if (pending_bios == &device->pending_sync_bios) {
546 sync_pending = 1;
547 } else if (sync_pending) {
548 blk_finish_plug(&plug);
549 blk_start_plug(&plug);
550 sync_pending = 0;
551 }
552
553 btrfsic_submit_bio(cur);
554 num_run++;
555 batch_run++;
556
557 cond_resched();
558
559 /*
560 * we made progress, there is more work to do and the bdi
561 * is now congested. Back off and let other work structs
562 * run instead
563 */
564 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565 fs_info->fs_devices->open_devices > 1) {
566 struct io_context *ioc;
567
568 ioc = current->io_context;
569
570 /*
571 * the main goal here is that we don't want to
572 * block if we're going to be able to submit
573 * more requests without blocking.
574 *
575 * This code does two great things, it pokes into
576 * the elevator code from a filesystem _and_
577 * it makes assumptions about how batching works.
578 */
579 if (ioc && ioc->nr_batch_requests > 0 &&
580 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581 (last_waited == 0 ||
582 ioc->last_waited == last_waited)) {
583 /*
584 * we want to go through our batch of
585 * requests and stop. So, we copy out
586 * the ioc->last_waited time and test
587 * against it before looping
588 */
589 last_waited = ioc->last_waited;
590 cond_resched();
591 continue;
592 }
593 spin_lock(&device->io_lock);
594 requeue_list(pending_bios, pending, tail);
595 device->running_pending = 1;
596
597 spin_unlock(&device->io_lock);
598 btrfs_queue_work(fs_info->submit_workers,
599 &device->work);
600 goto done;
601 }
602 }
603
604 cond_resched();
605 if (again)
606 goto loop;
607
608 spin_lock(&device->io_lock);
609 if (device->pending_bios.head || device->pending_sync_bios.head)
610 goto loop_lock;
611 spin_unlock(&device->io_lock);
612
613 done:
614 blk_finish_plug(&plug);
615 }
616
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619 struct btrfs_device *device;
620
621 device = container_of(work, struct btrfs_device, work);
622 run_scheduled_bios(device);
623 }
624
625 /*
626 * Search and remove all stale (devices which are not mounted) devices.
627 * When both inputs are NULL, it will search and release all stale devices.
628 * path: Optional. When provided will it release all unmounted devices
629 * matching this path only.
630 * skip_dev: Optional. Will skip this device when searching for the stale
631 * devices.
632 */
633 static void btrfs_free_stale_devices(const char *path,
634 struct btrfs_device *skip_device)
635 {
636 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637 struct btrfs_device *device, *tmp_device;
638
639 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640 mutex_lock(&fs_devices->device_list_mutex);
641 if (fs_devices->opened) {
642 mutex_unlock(&fs_devices->device_list_mutex);
643 continue;
644 }
645
646 list_for_each_entry_safe(device, tmp_device,
647 &fs_devices->devices, dev_list) {
648 int not_found = 0;
649
650 if (skip_device && skip_device == device)
651 continue;
652 if (path && !device->name)
653 continue;
654
655 rcu_read_lock();
656 if (path)
657 not_found = strcmp(rcu_str_deref(device->name),
658 path);
659 rcu_read_unlock();
660 if (not_found)
661 continue;
662
663 /* delete the stale device */
664 fs_devices->num_devices--;
665 list_del(&device->dev_list);
666 btrfs_free_device(device);
667
668 if (fs_devices->num_devices == 0)
669 break;
670 }
671 mutex_unlock(&fs_devices->device_list_mutex);
672 if (fs_devices->num_devices == 0) {
673 btrfs_sysfs_remove_fsid(fs_devices);
674 list_del(&fs_devices->fs_list);
675 free_fs_devices(fs_devices);
676 }
677 }
678 }
679
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681 struct btrfs_device *device, fmode_t flags,
682 void *holder)
683 {
684 struct request_queue *q;
685 struct block_device *bdev;
686 struct buffer_head *bh;
687 struct btrfs_super_block *disk_super;
688 u64 devid;
689 int ret;
690
691 if (device->bdev)
692 return -EINVAL;
693 if (!device->name)
694 return -EINVAL;
695
696 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697 &bdev, &bh);
698 if (ret)
699 return ret;
700
701 disk_super = (struct btrfs_super_block *)bh->b_data;
702 devid = btrfs_stack_device_id(&disk_super->dev_item);
703 if (devid != device->devid)
704 goto error_brelse;
705
706 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707 goto error_brelse;
708
709 device->generation = btrfs_super_generation(disk_super);
710
711 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713 fs_devices->seeding = 1;
714 } else {
715 if (bdev_read_only(bdev))
716 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717 else
718 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719 }
720
721 q = bdev_get_queue(bdev);
722 if (!blk_queue_nonrot(q))
723 fs_devices->rotating = 1;
724
725 device->bdev = bdev;
726 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727 device->mode = flags;
728
729 fs_devices->open_devices++;
730 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731 device->devid != BTRFS_DEV_REPLACE_DEVID) {
732 fs_devices->rw_devices++;
733 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734 }
735 brelse(bh);
736
737 return 0;
738
739 error_brelse:
740 brelse(bh);
741 blkdev_put(bdev, flags);
742
743 return -EINVAL;
744 }
745
746 /*
747 * Add new device to list of registered devices
748 *
749 * Returns:
750 * device pointer which was just added or updated when successful
751 * error pointer when failed
752 */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754 struct btrfs_super_block *disk_super,
755 bool *new_device_added)
756 {
757 struct btrfs_device *device;
758 struct btrfs_fs_devices *fs_devices;
759 struct rcu_string *name;
760 u64 found_transid = btrfs_super_generation(disk_super);
761 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762
763 fs_devices = find_fsid(disk_super->fsid);
764 if (!fs_devices) {
765 fs_devices = alloc_fs_devices(disk_super->fsid);
766 if (IS_ERR(fs_devices))
767 return ERR_CAST(fs_devices);
768
769 mutex_lock(&fs_devices->device_list_mutex);
770 list_add(&fs_devices->fs_list, &fs_uuids);
771
772 device = NULL;
773 } else {
774 mutex_lock(&fs_devices->device_list_mutex);
775 device = find_device(fs_devices, devid,
776 disk_super->dev_item.uuid);
777 }
778
779 if (!device) {
780 if (fs_devices->opened) {
781 mutex_unlock(&fs_devices->device_list_mutex);
782 return ERR_PTR(-EBUSY);
783 }
784
785 device = btrfs_alloc_device(NULL, &devid,
786 disk_super->dev_item.uuid);
787 if (IS_ERR(device)) {
788 mutex_unlock(&fs_devices->device_list_mutex);
789 /* we can safely leave the fs_devices entry around */
790 return device;
791 }
792
793 name = rcu_string_strdup(path, GFP_NOFS);
794 if (!name) {
795 btrfs_free_device(device);
796 mutex_unlock(&fs_devices->device_list_mutex);
797 return ERR_PTR(-ENOMEM);
798 }
799 rcu_assign_pointer(device->name, name);
800
801 list_add_rcu(&device->dev_list, &fs_devices->devices);
802 fs_devices->num_devices++;
803
804 device->fs_devices = fs_devices;
805 *new_device_added = true;
806
807 if (disk_super->label[0])
808 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809 disk_super->label, devid, found_transid, path);
810 else
811 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812 disk_super->fsid, devid, found_transid, path);
813
814 } else if (!device->name || strcmp(device->name->str, path)) {
815 /*
816 * When FS is already mounted.
817 * 1. If you are here and if the device->name is NULL that
818 * means this device was missing at time of FS mount.
819 * 2. If you are here and if the device->name is different
820 * from 'path' that means either
821 * a. The same device disappeared and reappeared with
822 * different name. or
823 * b. The missing-disk-which-was-replaced, has
824 * reappeared now.
825 *
826 * We must allow 1 and 2a above. But 2b would be a spurious
827 * and unintentional.
828 *
829 * Further in case of 1 and 2a above, the disk at 'path'
830 * would have missed some transaction when it was away and
831 * in case of 2a the stale bdev has to be updated as well.
832 * 2b must not be allowed at all time.
833 */
834
835 /*
836 * For now, we do allow update to btrfs_fs_device through the
837 * btrfs dev scan cli after FS has been mounted. We're still
838 * tracking a problem where systems fail mount by subvolume id
839 * when we reject replacement on a mounted FS.
840 */
841 if (!fs_devices->opened && found_transid < device->generation) {
842 /*
843 * That is if the FS is _not_ mounted and if you
844 * are here, that means there is more than one
845 * disk with same uuid and devid.We keep the one
846 * with larger generation number or the last-in if
847 * generation are equal.
848 */
849 mutex_unlock(&fs_devices->device_list_mutex);
850 return ERR_PTR(-EEXIST);
851 }
852
853 name = rcu_string_strdup(path, GFP_NOFS);
854 if (!name) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 return ERR_PTR(-ENOMEM);
857 }
858 rcu_string_free(device->name);
859 rcu_assign_pointer(device->name, name);
860 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861 fs_devices->missing_devices--;
862 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863 }
864 }
865
866 /*
867 * Unmount does not free the btrfs_device struct but would zero
868 * generation along with most of the other members. So just update
869 * it back. We need it to pick the disk with largest generation
870 * (as above).
871 */
872 if (!fs_devices->opened)
873 device->generation = found_transid;
874
875 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876
877 mutex_unlock(&fs_devices->device_list_mutex);
878 return device;
879 }
880
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883 struct btrfs_fs_devices *fs_devices;
884 struct btrfs_device *device;
885 struct btrfs_device *orig_dev;
886
887 fs_devices = alloc_fs_devices(orig->fsid);
888 if (IS_ERR(fs_devices))
889 return fs_devices;
890
891 mutex_lock(&orig->device_list_mutex);
892 fs_devices->total_devices = orig->total_devices;
893
894 /* We have held the volume lock, it is safe to get the devices. */
895 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896 struct rcu_string *name;
897
898 device = btrfs_alloc_device(NULL, &orig_dev->devid,
899 orig_dev->uuid);
900 if (IS_ERR(device))
901 goto error;
902
903 /*
904 * This is ok to do without rcu read locked because we hold the
905 * uuid mutex so nothing we touch in here is going to disappear.
906 */
907 if (orig_dev->name) {
908 name = rcu_string_strdup(orig_dev->name->str,
909 GFP_KERNEL);
910 if (!name) {
911 btrfs_free_device(device);
912 goto error;
913 }
914 rcu_assign_pointer(device->name, name);
915 }
916
917 list_add(&device->dev_list, &fs_devices->devices);
918 device->fs_devices = fs_devices;
919 fs_devices->num_devices++;
920 }
921 mutex_unlock(&orig->device_list_mutex);
922 return fs_devices;
923 error:
924 mutex_unlock(&orig->device_list_mutex);
925 free_fs_devices(fs_devices);
926 return ERR_PTR(-ENOMEM);
927 }
928
929 /*
930 * After we have read the system tree and know devids belonging to
931 * this filesystem, remove the device which does not belong there.
932 */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935 struct btrfs_device *device, *next;
936 struct btrfs_device *latest_dev = NULL;
937
938 mutex_lock(&uuid_mutex);
939 again:
940 /* This is the initialized path, it is safe to release the devices. */
941 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943 &device->dev_state)) {
944 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945 &device->dev_state) &&
946 (!latest_dev ||
947 device->generation > latest_dev->generation)) {
948 latest_dev = device;
949 }
950 continue;
951 }
952
953 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954 /*
955 * In the first step, keep the device which has
956 * the correct fsid and the devid that is used
957 * for the dev_replace procedure.
958 * In the second step, the dev_replace state is
959 * read from the device tree and it is known
960 * whether the procedure is really active or
961 * not, which means whether this device is
962 * used or whether it should be removed.
963 */
964 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965 &device->dev_state)) {
966 continue;
967 }
968 }
969 if (device->bdev) {
970 blkdev_put(device->bdev, device->mode);
971 device->bdev = NULL;
972 fs_devices->open_devices--;
973 }
974 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975 list_del_init(&device->dev_alloc_list);
976 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978 &device->dev_state))
979 fs_devices->rw_devices--;
980 }
981 list_del_init(&device->dev_list);
982 fs_devices->num_devices--;
983 btrfs_free_device(device);
984 }
985
986 if (fs_devices->seed) {
987 fs_devices = fs_devices->seed;
988 goto again;
989 }
990
991 fs_devices->latest_bdev = latest_dev->bdev;
992
993 mutex_unlock(&uuid_mutex);
994 }
995
996 static void free_device_rcu(struct rcu_head *head)
997 {
998 struct btrfs_device *device;
999
1000 device = container_of(head, struct btrfs_device, rcu);
1001 btrfs_free_device(device);
1002 }
1003
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006 if (!device->bdev)
1007 return;
1008
1009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010 sync_blockdev(device->bdev);
1011 invalidate_bdev(device->bdev);
1012 }
1013
1014 blkdev_put(device->bdev, device->mode);
1015 }
1016
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020 struct btrfs_device *new_device;
1021 struct rcu_string *name;
1022
1023 if (device->bdev)
1024 fs_devices->open_devices--;
1025
1026 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028 list_del_init(&device->dev_alloc_list);
1029 fs_devices->rw_devices--;
1030 }
1031
1032 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033 fs_devices->missing_devices--;
1034
1035 btrfs_close_bdev(device);
1036
1037 new_device = btrfs_alloc_device(NULL, &device->devid,
1038 device->uuid);
1039 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040
1041 /* Safe because we are under uuid_mutex */
1042 if (device->name) {
1043 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044 BUG_ON(!name); /* -ENOMEM */
1045 rcu_assign_pointer(new_device->name, name);
1046 }
1047
1048 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049 new_device->fs_devices = device->fs_devices;
1050
1051 call_rcu(&device->rcu, free_device_rcu);
1052 }
1053
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056 struct btrfs_device *device, *tmp;
1057
1058 if (--fs_devices->opened > 0)
1059 return 0;
1060
1061 mutex_lock(&fs_devices->device_list_mutex);
1062 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063 btrfs_close_one_device(device);
1064 }
1065 mutex_unlock(&fs_devices->device_list_mutex);
1066
1067 WARN_ON(fs_devices->open_devices);
1068 WARN_ON(fs_devices->rw_devices);
1069 fs_devices->opened = 0;
1070 fs_devices->seeding = 0;
1071
1072 return 0;
1073 }
1074
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077 struct btrfs_fs_devices *seed_devices = NULL;
1078 int ret;
1079
1080 mutex_lock(&uuid_mutex);
1081 ret = close_fs_devices(fs_devices);
1082 if (!fs_devices->opened) {
1083 seed_devices = fs_devices->seed;
1084 fs_devices->seed = NULL;
1085 }
1086 mutex_unlock(&uuid_mutex);
1087
1088 while (seed_devices) {
1089 fs_devices = seed_devices;
1090 seed_devices = fs_devices->seed;
1091 close_fs_devices(fs_devices);
1092 free_fs_devices(fs_devices);
1093 }
1094 return ret;
1095 }
1096
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098 fmode_t flags, void *holder)
1099 {
1100 struct btrfs_device *device;
1101 struct btrfs_device *latest_dev = NULL;
1102 int ret = 0;
1103
1104 flags |= FMODE_EXCL;
1105
1106 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107 /* Just open everything we can; ignore failures here */
1108 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109 continue;
1110
1111 if (!latest_dev ||
1112 device->generation > latest_dev->generation)
1113 latest_dev = device;
1114 }
1115 if (fs_devices->open_devices == 0) {
1116 ret = -EINVAL;
1117 goto out;
1118 }
1119 fs_devices->opened = 1;
1120 fs_devices->latest_bdev = latest_dev->bdev;
1121 fs_devices->total_rw_bytes = 0;
1122 out:
1123 return ret;
1124 }
1125
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128 struct btrfs_device *dev1, *dev2;
1129
1130 dev1 = list_entry(a, struct btrfs_device, dev_list);
1131 dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133 if (dev1->devid < dev2->devid)
1134 return -1;
1135 else if (dev1->devid > dev2->devid)
1136 return 1;
1137 return 0;
1138 }
1139
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141 fmode_t flags, void *holder)
1142 {
1143 int ret;
1144
1145 lockdep_assert_held(&uuid_mutex);
1146
1147 mutex_lock(&fs_devices->device_list_mutex);
1148 if (fs_devices->opened) {
1149 fs_devices->opened++;
1150 ret = 0;
1151 } else {
1152 list_sort(NULL, &fs_devices->devices, devid_cmp);
1153 ret = open_fs_devices(fs_devices, flags, holder);
1154 }
1155 mutex_unlock(&fs_devices->device_list_mutex);
1156
1157 return ret;
1158 }
1159
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162 kunmap(page);
1163 put_page(page);
1164 }
1165
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167 struct page **page,
1168 struct btrfs_super_block **disk_super)
1169 {
1170 void *p;
1171 pgoff_t index;
1172
1173 /* make sure our super fits in the device */
1174 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175 return 1;
1176
1177 /* make sure our super fits in the page */
1178 if (sizeof(**disk_super) > PAGE_SIZE)
1179 return 1;
1180
1181 /* make sure our super doesn't straddle pages on disk */
1182 index = bytenr >> PAGE_SHIFT;
1183 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184 return 1;
1185
1186 /* pull in the page with our super */
1187 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188 index, GFP_KERNEL);
1189
1190 if (IS_ERR_OR_NULL(*page))
1191 return 1;
1192
1193 p = kmap(*page);
1194
1195 /* align our pointer to the offset of the super block */
1196 *disk_super = p + (bytenr & ~PAGE_MASK);
1197
1198 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200 btrfs_release_disk_super(*page);
1201 return 1;
1202 }
1203
1204 if ((*disk_super)->label[0] &&
1205 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207
1208 return 0;
1209 }
1210
1211 /*
1212 * Look for a btrfs signature on a device. This may be called out of the mount path
1213 * and we are not allowed to call set_blocksize during the scan. The superblock
1214 * is read via pagecache
1215 */
1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217 void *holder)
1218 {
1219 struct btrfs_super_block *disk_super;
1220 bool new_device_added = false;
1221 struct btrfs_device *device = NULL;
1222 struct block_device *bdev;
1223 struct page *page;
1224 u64 bytenr;
1225
1226 lockdep_assert_held(&uuid_mutex);
1227
1228 /*
1229 * we would like to check all the supers, but that would make
1230 * a btrfs mount succeed after a mkfs from a different FS.
1231 * So, we need to add a special mount option to scan for
1232 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233 */
1234 bytenr = btrfs_sb_offset(0);
1235 flags |= FMODE_EXCL;
1236
1237 bdev = blkdev_get_by_path(path, flags, holder);
1238 if (IS_ERR(bdev))
1239 return ERR_CAST(bdev);
1240
1241 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242 device = ERR_PTR(-EINVAL);
1243 goto error_bdev_put;
1244 }
1245
1246 device = device_list_add(path, disk_super, &new_device_added);
1247 if (!IS_ERR(device)) {
1248 if (new_device_added)
1249 btrfs_free_stale_devices(path, device);
1250 }
1251
1252 btrfs_release_disk_super(page);
1253
1254 error_bdev_put:
1255 blkdev_put(bdev, flags);
1256
1257 return device;
1258 }
1259
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261 struct btrfs_device *device,
1262 u64 *start, u64 len)
1263 {
1264 struct btrfs_fs_info *fs_info = device->fs_info;
1265 struct extent_map *em;
1266 struct list_head *search_list = &fs_info->pinned_chunks;
1267 int ret = 0;
1268 u64 physical_start = *start;
1269
1270 if (transaction)
1271 search_list = &transaction->pending_chunks;
1272 again:
1273 list_for_each_entry(em, search_list, list) {
1274 struct map_lookup *map;
1275 int i;
1276
1277 map = em->map_lookup;
1278 for (i = 0; i < map->num_stripes; i++) {
1279 u64 end;
1280
1281 if (map->stripes[i].dev != device)
1282 continue;
1283 if (map->stripes[i].physical >= physical_start + len ||
1284 map->stripes[i].physical + em->orig_block_len <=
1285 physical_start)
1286 continue;
1287 /*
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1297 * pending chunk.
1298 */
1299 end = map->stripes[i].physical + em->orig_block_len;
1300 if (end > *start) {
1301 *start = end;
1302 ret = 1;
1303 }
1304 }
1305 }
1306 if (search_list != &fs_info->pinned_chunks) {
1307 search_list = &fs_info->pinned_chunks;
1308 goto again;
1309 }
1310
1311 return ret;
1312 }
1313
1314
1315 /*
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
1323 *
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1326 * of extents
1327 *
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1331 *
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
1335 */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 struct btrfs_device *device, u64 num_bytes,
1338 u64 search_start, u64 *start, u64 *len)
1339 {
1340 struct btrfs_fs_info *fs_info = device->fs_info;
1341 struct btrfs_root *root = fs_info->dev_root;
1342 struct btrfs_key key;
1343 struct btrfs_dev_extent *dev_extent;
1344 struct btrfs_path *path;
1345 u64 hole_size;
1346 u64 max_hole_start;
1347 u64 max_hole_size;
1348 u64 extent_end;
1349 u64 search_end = device->total_bytes;
1350 int ret;
1351 int slot;
1352 struct extent_buffer *l;
1353
1354 /*
1355 * We don't want to overwrite the superblock on the drive nor any area
1356 * used by the boot loader (grub for example), so we make sure to start
1357 * at an offset of at least 1MB.
1358 */
1359 search_start = max_t(u64, search_start, SZ_1M);
1360
1361 path = btrfs_alloc_path();
1362 if (!path)
1363 return -ENOMEM;
1364
1365 max_hole_start = search_start;
1366 max_hole_size = 0;
1367
1368 again:
1369 if (search_start >= search_end ||
1370 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371 ret = -ENOSPC;
1372 goto out;
1373 }
1374
1375 path->reada = READA_FORWARD;
1376 path->search_commit_root = 1;
1377 path->skip_locking = 1;
1378
1379 key.objectid = device->devid;
1380 key.offset = search_start;
1381 key.type = BTRFS_DEV_EXTENT_KEY;
1382
1383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384 if (ret < 0)
1385 goto out;
1386 if (ret > 0) {
1387 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 if (ret < 0)
1389 goto out;
1390 }
1391
1392 while (1) {
1393 l = path->nodes[0];
1394 slot = path->slots[0];
1395 if (slot >= btrfs_header_nritems(l)) {
1396 ret = btrfs_next_leaf(root, path);
1397 if (ret == 0)
1398 continue;
1399 if (ret < 0)
1400 goto out;
1401
1402 break;
1403 }
1404 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406 if (key.objectid < device->devid)
1407 goto next;
1408
1409 if (key.objectid > device->devid)
1410 break;
1411
1412 if (key.type != BTRFS_DEV_EXTENT_KEY)
1413 goto next;
1414
1415 if (key.offset > search_start) {
1416 hole_size = key.offset - search_start;
1417
1418 /*
1419 * Have to check before we set max_hole_start, otherwise
1420 * we could end up sending back this offset anyway.
1421 */
1422 if (contains_pending_extent(transaction, device,
1423 &search_start,
1424 hole_size)) {
1425 if (key.offset >= search_start) {
1426 hole_size = key.offset - search_start;
1427 } else {
1428 WARN_ON_ONCE(1);
1429 hole_size = 0;
1430 }
1431 }
1432
1433 if (hole_size > max_hole_size) {
1434 max_hole_start = search_start;
1435 max_hole_size = hole_size;
1436 }
1437
1438 /*
1439 * If this free space is greater than which we need,
1440 * it must be the max free space that we have found
1441 * until now, so max_hole_start must point to the start
1442 * of this free space and the length of this free space
1443 * is stored in max_hole_size. Thus, we return
1444 * max_hole_start and max_hole_size and go back to the
1445 * caller.
1446 */
1447 if (hole_size >= num_bytes) {
1448 ret = 0;
1449 goto out;
1450 }
1451 }
1452
1453 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454 extent_end = key.offset + btrfs_dev_extent_length(l,
1455 dev_extent);
1456 if (extent_end > search_start)
1457 search_start = extent_end;
1458 next:
1459 path->slots[0]++;
1460 cond_resched();
1461 }
1462
1463 /*
1464 * At this point, search_start should be the end of
1465 * allocated dev extents, and when shrinking the device,
1466 * search_end may be smaller than search_start.
1467 */
1468 if (search_end > search_start) {
1469 hole_size = search_end - search_start;
1470
1471 if (contains_pending_extent(transaction, device, &search_start,
1472 hole_size)) {
1473 btrfs_release_path(path);
1474 goto again;
1475 }
1476
1477 if (hole_size > max_hole_size) {
1478 max_hole_start = search_start;
1479 max_hole_size = hole_size;
1480 }
1481 }
1482
1483 /* See above. */
1484 if (max_hole_size < num_bytes)
1485 ret = -ENOSPC;
1486 else
1487 ret = 0;
1488
1489 out:
1490 btrfs_free_path(path);
1491 *start = max_hole_start;
1492 if (len)
1493 *len = max_hole_size;
1494 return ret;
1495 }
1496
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 struct btrfs_device *device, u64 num_bytes,
1499 u64 *start, u64 *len)
1500 {
1501 /* FIXME use last free of some kind */
1502 return find_free_dev_extent_start(trans->transaction, device,
1503 num_bytes, 0, start, len);
1504 }
1505
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507 struct btrfs_device *device,
1508 u64 start, u64 *dev_extent_len)
1509 {
1510 struct btrfs_fs_info *fs_info = device->fs_info;
1511 struct btrfs_root *root = fs_info->dev_root;
1512 int ret;
1513 struct btrfs_path *path;
1514 struct btrfs_key key;
1515 struct btrfs_key found_key;
1516 struct extent_buffer *leaf = NULL;
1517 struct btrfs_dev_extent *extent = NULL;
1518
1519 path = btrfs_alloc_path();
1520 if (!path)
1521 return -ENOMEM;
1522
1523 key.objectid = device->devid;
1524 key.offset = start;
1525 key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 if (ret > 0) {
1529 ret = btrfs_previous_item(root, path, key.objectid,
1530 BTRFS_DEV_EXTENT_KEY);
1531 if (ret)
1532 goto out;
1533 leaf = path->nodes[0];
1534 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 extent = btrfs_item_ptr(leaf, path->slots[0],
1536 struct btrfs_dev_extent);
1537 BUG_ON(found_key.offset > start || found_key.offset +
1538 btrfs_dev_extent_length(leaf, extent) < start);
1539 key = found_key;
1540 btrfs_release_path(path);
1541 goto again;
1542 } else if (ret == 0) {
1543 leaf = path->nodes[0];
1544 extent = btrfs_item_ptr(leaf, path->slots[0],
1545 struct btrfs_dev_extent);
1546 } else {
1547 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548 goto out;
1549 }
1550
1551 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553 ret = btrfs_del_item(trans, root, path);
1554 if (ret) {
1555 btrfs_handle_fs_error(fs_info, ret,
1556 "Failed to remove dev extent item");
1557 } else {
1558 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 }
1560 out:
1561 btrfs_free_path(path);
1562 return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 struct btrfs_device *device,
1567 u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569 int ret;
1570 struct btrfs_path *path;
1571 struct btrfs_fs_info *fs_info = device->fs_info;
1572 struct btrfs_root *root = fs_info->dev_root;
1573 struct btrfs_dev_extent *extent;
1574 struct extent_buffer *leaf;
1575 struct btrfs_key key;
1576
1577 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579 path = btrfs_alloc_path();
1580 if (!path)
1581 return -ENOMEM;
1582
1583 key.objectid = device->devid;
1584 key.offset = start;
1585 key.type = BTRFS_DEV_EXTENT_KEY;
1586 ret = btrfs_insert_empty_item(trans, root, path, &key,
1587 sizeof(*extent));
1588 if (ret)
1589 goto out;
1590
1591 leaf = path->nodes[0];
1592 extent = btrfs_item_ptr(leaf, path->slots[0],
1593 struct btrfs_dev_extent);
1594 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595 BTRFS_CHUNK_TREE_OBJECTID);
1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601 btrfs_mark_buffer_dirty(leaf);
1602 out:
1603 btrfs_free_path(path);
1604 return ret;
1605 }
1606
1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609 struct extent_map_tree *em_tree;
1610 struct extent_map *em;
1611 struct rb_node *n;
1612 u64 ret = 0;
1613
1614 em_tree = &fs_info->mapping_tree.map_tree;
1615 read_lock(&em_tree->lock);
1616 n = rb_last(&em_tree->map.rb_root);
1617 if (n) {
1618 em = rb_entry(n, struct extent_map, rb_node);
1619 ret = em->start + em->len;
1620 }
1621 read_unlock(&em_tree->lock);
1622
1623 return ret;
1624 }
1625
1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627 u64 *devid_ret)
1628 {
1629 int ret;
1630 struct btrfs_key key;
1631 struct btrfs_key found_key;
1632 struct btrfs_path *path;
1633
1634 path = btrfs_alloc_path();
1635 if (!path)
1636 return -ENOMEM;
1637
1638 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639 key.type = BTRFS_DEV_ITEM_KEY;
1640 key.offset = (u64)-1;
1641
1642 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643 if (ret < 0)
1644 goto error;
1645
1646 BUG_ON(ret == 0); /* Corruption */
1647
1648 ret = btrfs_previous_item(fs_info->chunk_root, path,
1649 BTRFS_DEV_ITEMS_OBJECTID,
1650 BTRFS_DEV_ITEM_KEY);
1651 if (ret) {
1652 *devid_ret = 1;
1653 } else {
1654 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655 path->slots[0]);
1656 *devid_ret = found_key.offset + 1;
1657 }
1658 ret = 0;
1659 error:
1660 btrfs_free_path(path);
1661 return ret;
1662 }
1663
1664 /*
1665 * the device information is stored in the chunk root
1666 * the btrfs_device struct should be fully filled in
1667 */
1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669 struct btrfs_device *device)
1670 {
1671 int ret;
1672 struct btrfs_path *path;
1673 struct btrfs_dev_item *dev_item;
1674 struct extent_buffer *leaf;
1675 struct btrfs_key key;
1676 unsigned long ptr;
1677
1678 path = btrfs_alloc_path();
1679 if (!path)
1680 return -ENOMEM;
1681
1682 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683 key.type = BTRFS_DEV_ITEM_KEY;
1684 key.offset = device->devid;
1685
1686 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687 &key, sizeof(*dev_item));
1688 if (ret)
1689 goto out;
1690
1691 leaf = path->nodes[0];
1692 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693
1694 btrfs_set_device_id(leaf, dev_item, device->devid);
1695 btrfs_set_device_generation(leaf, dev_item, 0);
1696 btrfs_set_device_type(leaf, dev_item, device->type);
1697 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700 btrfs_set_device_total_bytes(leaf, dev_item,
1701 btrfs_device_get_disk_total_bytes(device));
1702 btrfs_set_device_bytes_used(leaf, dev_item,
1703 btrfs_device_get_bytes_used(device));
1704 btrfs_set_device_group(leaf, dev_item, 0);
1705 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707 btrfs_set_device_start_offset(leaf, dev_item, 0);
1708
1709 ptr = btrfs_device_uuid(dev_item);
1710 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711 ptr = btrfs_device_fsid(dev_item);
1712 write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713 btrfs_mark_buffer_dirty(leaf);
1714
1715 ret = 0;
1716 out:
1717 btrfs_free_path(path);
1718 return ret;
1719 }
1720
1721 /*
1722 * Function to update ctime/mtime for a given device path.
1723 * Mainly used for ctime/mtime based probe like libblkid.
1724 */
1725 static void update_dev_time(const char *path_name)
1726 {
1727 struct file *filp;
1728
1729 filp = filp_open(path_name, O_RDWR, 0);
1730 if (IS_ERR(filp))
1731 return;
1732 file_update_time(filp);
1733 filp_close(filp, NULL);
1734 }
1735
1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737 struct btrfs_device *device)
1738 {
1739 struct btrfs_root *root = fs_info->chunk_root;
1740 int ret;
1741 struct btrfs_path *path;
1742 struct btrfs_key key;
1743 struct btrfs_trans_handle *trans;
1744
1745 path = btrfs_alloc_path();
1746 if (!path)
1747 return -ENOMEM;
1748
1749 trans = btrfs_start_transaction(root, 0);
1750 if (IS_ERR(trans)) {
1751 btrfs_free_path(path);
1752 return PTR_ERR(trans);
1753 }
1754 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755 key.type = BTRFS_DEV_ITEM_KEY;
1756 key.offset = device->devid;
1757
1758 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759 if (ret) {
1760 if (ret > 0)
1761 ret = -ENOENT;
1762 btrfs_abort_transaction(trans, ret);
1763 btrfs_end_transaction(trans);
1764 goto out;
1765 }
1766
1767 ret = btrfs_del_item(trans, root, path);
1768 if (ret) {
1769 btrfs_abort_transaction(trans, ret);
1770 btrfs_end_transaction(trans);
1771 }
1772
1773 out:
1774 btrfs_free_path(path);
1775 if (!ret)
1776 ret = btrfs_commit_transaction(trans);
1777 return ret;
1778 }
1779
1780 /*
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1783 * replace.
1784 */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 u64 num_devices)
1787 {
1788 u64 all_avail;
1789 unsigned seq;
1790 int i;
1791
1792 do {
1793 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795 all_avail = fs_info->avail_data_alloc_bits |
1796 fs_info->avail_system_alloc_bits |
1797 fs_info->avail_metadata_alloc_bits;
1798 } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802 continue;
1803
1804 if (num_devices < btrfs_raid_array[i].devs_min) {
1805 int ret = btrfs_raid_array[i].mindev_error;
1806
1807 if (ret)
1808 return ret;
1809 }
1810 }
1811
1812 return 0;
1813 }
1814
1815 static struct btrfs_device * btrfs_find_next_active_device(
1816 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818 struct btrfs_device *next_device;
1819
1820 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 if (next_device != device &&
1822 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823 && next_device->bdev)
1824 return next_device;
1825 }
1826
1827 return NULL;
1828 }
1829
1830 /*
1831 * Helper function to check if the given device is part of s_bdev / latest_bdev
1832 * and replace it with the provided or the next active device, in the context
1833 * where this function called, there should be always be another device (or
1834 * this_dev) which is active.
1835 */
1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837 struct btrfs_device *this_dev)
1838 {
1839 struct btrfs_fs_info *fs_info = device->fs_info;
1840 struct btrfs_device *next_device;
1841
1842 if (this_dev)
1843 next_device = this_dev;
1844 else
1845 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846 device);
1847 ASSERT(next_device);
1848
1849 if (fs_info->sb->s_bdev &&
1850 (fs_info->sb->s_bdev == device->bdev))
1851 fs_info->sb->s_bdev = next_device->bdev;
1852
1853 if (fs_info->fs_devices->latest_bdev == device->bdev)
1854 fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856
1857 /*
1858 * Return btrfs_fs_devices::num_devices excluding the device that's being
1859 * currently replaced.
1860 */
1861 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1862 {
1863 u64 num_devices = fs_info->fs_devices->num_devices;
1864
1865 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1866 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867 ASSERT(num_devices > 1);
1868 num_devices--;
1869 }
1870 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1871
1872 return num_devices;
1873 }
1874
1875 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1876 u64 devid)
1877 {
1878 struct btrfs_device *device;
1879 struct btrfs_fs_devices *cur_devices;
1880 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1881 u64 num_devices;
1882 int ret = 0;
1883
1884 mutex_lock(&uuid_mutex);
1885
1886 num_devices = btrfs_num_devices(fs_info);
1887
1888 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1889 if (ret)
1890 goto out;
1891
1892 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1893
1894 if (IS_ERR(device)) {
1895 if (PTR_ERR(device) == -ENOENT &&
1896 strcmp(device_path, "missing") == 0)
1897 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1898 else
1899 ret = PTR_ERR(device);
1900 goto out;
1901 }
1902
1903 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1904 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1905 goto out;
1906 }
1907
1908 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1909 fs_info->fs_devices->rw_devices == 1) {
1910 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1911 goto out;
1912 }
1913
1914 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1915 mutex_lock(&fs_info->chunk_mutex);
1916 list_del_init(&device->dev_alloc_list);
1917 device->fs_devices->rw_devices--;
1918 mutex_unlock(&fs_info->chunk_mutex);
1919 }
1920
1921 mutex_unlock(&uuid_mutex);
1922 ret = btrfs_shrink_device(device, 0);
1923 mutex_lock(&uuid_mutex);
1924 if (ret)
1925 goto error_undo;
1926
1927 /*
1928 * TODO: the superblock still includes this device in its num_devices
1929 * counter although write_all_supers() is not locked out. This
1930 * could give a filesystem state which requires a degraded mount.
1931 */
1932 ret = btrfs_rm_dev_item(fs_info, device);
1933 if (ret)
1934 goto error_undo;
1935
1936 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1937 btrfs_scrub_cancel_dev(fs_info, device);
1938
1939 /*
1940 * the device list mutex makes sure that we don't change
1941 * the device list while someone else is writing out all
1942 * the device supers. Whoever is writing all supers, should
1943 * lock the device list mutex before getting the number of
1944 * devices in the super block (super_copy). Conversely,
1945 * whoever updates the number of devices in the super block
1946 * (super_copy) should hold the device list mutex.
1947 */
1948
1949 /*
1950 * In normal cases the cur_devices == fs_devices. But in case
1951 * of deleting a seed device, the cur_devices should point to
1952 * its own fs_devices listed under the fs_devices->seed.
1953 */
1954 cur_devices = device->fs_devices;
1955 mutex_lock(&fs_devices->device_list_mutex);
1956 list_del_rcu(&device->dev_list);
1957
1958 cur_devices->num_devices--;
1959 cur_devices->total_devices--;
1960 /* Update total_devices of the parent fs_devices if it's seed */
1961 if (cur_devices != fs_devices)
1962 fs_devices->total_devices--;
1963
1964 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1965 cur_devices->missing_devices--;
1966
1967 btrfs_assign_next_active_device(device, NULL);
1968
1969 if (device->bdev) {
1970 cur_devices->open_devices--;
1971 /* remove sysfs entry */
1972 btrfs_sysfs_rm_device_link(fs_devices, device);
1973 }
1974
1975 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1976 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1977 mutex_unlock(&fs_devices->device_list_mutex);
1978
1979 /*
1980 * at this point, the device is zero sized and detached from
1981 * the devices list. All that's left is to zero out the old
1982 * supers and free the device.
1983 */
1984 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1985 btrfs_scratch_superblocks(device->bdev, device->name->str);
1986
1987 btrfs_close_bdev(device);
1988 call_rcu(&device->rcu, free_device_rcu);
1989
1990 if (cur_devices->open_devices == 0) {
1991 while (fs_devices) {
1992 if (fs_devices->seed == cur_devices) {
1993 fs_devices->seed = cur_devices->seed;
1994 break;
1995 }
1996 fs_devices = fs_devices->seed;
1997 }
1998 cur_devices->seed = NULL;
1999 close_fs_devices(cur_devices);
2000 free_fs_devices(cur_devices);
2001 }
2002
2003 out:
2004 mutex_unlock(&uuid_mutex);
2005 return ret;
2006
2007 error_undo:
2008 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2009 mutex_lock(&fs_info->chunk_mutex);
2010 list_add(&device->dev_alloc_list,
2011 &fs_devices->alloc_list);
2012 device->fs_devices->rw_devices++;
2013 mutex_unlock(&fs_info->chunk_mutex);
2014 }
2015 goto out;
2016 }
2017
2018 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2019 {
2020 struct btrfs_fs_devices *fs_devices;
2021
2022 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2023
2024 /*
2025 * in case of fs with no seed, srcdev->fs_devices will point
2026 * to fs_devices of fs_info. However when the dev being replaced is
2027 * a seed dev it will point to the seed's local fs_devices. In short
2028 * srcdev will have its correct fs_devices in both the cases.
2029 */
2030 fs_devices = srcdev->fs_devices;
2031
2032 list_del_rcu(&srcdev->dev_list);
2033 list_del(&srcdev->dev_alloc_list);
2034 fs_devices->num_devices--;
2035 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2036 fs_devices->missing_devices--;
2037
2038 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2039 fs_devices->rw_devices--;
2040
2041 if (srcdev->bdev)
2042 fs_devices->open_devices--;
2043 }
2044
2045 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2046 struct btrfs_device *srcdev)
2047 {
2048 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2049
2050 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2051 /* zero out the old super if it is writable */
2052 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2053 }
2054
2055 btrfs_close_bdev(srcdev);
2056 call_rcu(&srcdev->rcu, free_device_rcu);
2057
2058 /* if this is no devs we rather delete the fs_devices */
2059 if (!fs_devices->num_devices) {
2060 struct btrfs_fs_devices *tmp_fs_devices;
2061
2062 /*
2063 * On a mounted FS, num_devices can't be zero unless it's a
2064 * seed. In case of a seed device being replaced, the replace
2065 * target added to the sprout FS, so there will be no more
2066 * device left under the seed FS.
2067 */
2068 ASSERT(fs_devices->seeding);
2069
2070 tmp_fs_devices = fs_info->fs_devices;
2071 while (tmp_fs_devices) {
2072 if (tmp_fs_devices->seed == fs_devices) {
2073 tmp_fs_devices->seed = fs_devices->seed;
2074 break;
2075 }
2076 tmp_fs_devices = tmp_fs_devices->seed;
2077 }
2078 fs_devices->seed = NULL;
2079 close_fs_devices(fs_devices);
2080 free_fs_devices(fs_devices);
2081 }
2082 }
2083
2084 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2085 {
2086 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2087
2088 WARN_ON(!tgtdev);
2089 mutex_lock(&fs_devices->device_list_mutex);
2090
2091 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2092
2093 if (tgtdev->bdev)
2094 fs_devices->open_devices--;
2095
2096 fs_devices->num_devices--;
2097
2098 btrfs_assign_next_active_device(tgtdev, NULL);
2099
2100 list_del_rcu(&tgtdev->dev_list);
2101
2102 mutex_unlock(&fs_devices->device_list_mutex);
2103
2104 /*
2105 * The update_dev_time() with in btrfs_scratch_superblocks()
2106 * may lead to a call to btrfs_show_devname() which will try
2107 * to hold device_list_mutex. And here this device
2108 * is already out of device list, so we don't have to hold
2109 * the device_list_mutex lock.
2110 */
2111 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2112
2113 btrfs_close_bdev(tgtdev);
2114 call_rcu(&tgtdev->rcu, free_device_rcu);
2115 }
2116
2117 static struct btrfs_device *btrfs_find_device_by_path(
2118 struct btrfs_fs_info *fs_info, const char *device_path)
2119 {
2120 int ret = 0;
2121 struct btrfs_super_block *disk_super;
2122 u64 devid;
2123 u8 *dev_uuid;
2124 struct block_device *bdev;
2125 struct buffer_head *bh;
2126 struct btrfs_device *device;
2127
2128 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2129 fs_info->bdev_holder, 0, &bdev, &bh);
2130 if (ret)
2131 return ERR_PTR(ret);
2132 disk_super = (struct btrfs_super_block *)bh->b_data;
2133 devid = btrfs_stack_device_id(&disk_super->dev_item);
2134 dev_uuid = disk_super->dev_item.uuid;
2135 device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2136 brelse(bh);
2137 if (!device)
2138 device = ERR_PTR(-ENOENT);
2139 blkdev_put(bdev, FMODE_READ);
2140 return device;
2141 }
2142
2143 static struct btrfs_device *btrfs_find_device_missing_or_by_path(
2144 struct btrfs_fs_info *fs_info, const char *device_path)
2145 {
2146 struct btrfs_device *device = NULL;
2147 if (strcmp(device_path, "missing") == 0) {
2148 struct list_head *devices;
2149 struct btrfs_device *tmp;
2150
2151 devices = &fs_info->fs_devices->devices;
2152 list_for_each_entry(tmp, devices, dev_list) {
2153 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2154 &tmp->dev_state) && !tmp->bdev) {
2155 device = tmp;
2156 break;
2157 }
2158 }
2159
2160 if (!device)
2161 return ERR_PTR(-ENOENT);
2162 } else {
2163 device = btrfs_find_device_by_path(fs_info, device_path);
2164 }
2165
2166 return device;
2167 }
2168
2169 /*
2170 * Lookup a device given by device id, or the path if the id is 0.
2171 */
2172 struct btrfs_device *btrfs_find_device_by_devspec(
2173 struct btrfs_fs_info *fs_info, u64 devid, const char *devpath)
2174 {
2175 struct btrfs_device *device;
2176
2177 if (devid) {
2178 device = btrfs_find_device(fs_info, devid, NULL, NULL);
2179 if (!device)
2180 return ERR_PTR(-ENOENT);
2181 } else {
2182 if (!devpath || !devpath[0])
2183 return ERR_PTR(-EINVAL);
2184 device = btrfs_find_device_missing_or_by_path(fs_info, devpath);
2185 }
2186 return device;
2187 }
2188
2189 /*
2190 * does all the dirty work required for changing file system's UUID.
2191 */
2192 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2193 {
2194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2195 struct btrfs_fs_devices *old_devices;
2196 struct btrfs_fs_devices *seed_devices;
2197 struct btrfs_super_block *disk_super = fs_info->super_copy;
2198 struct btrfs_device *device;
2199 u64 super_flags;
2200
2201 lockdep_assert_held(&uuid_mutex);
2202 if (!fs_devices->seeding)
2203 return -EINVAL;
2204
2205 seed_devices = alloc_fs_devices(NULL);
2206 if (IS_ERR(seed_devices))
2207 return PTR_ERR(seed_devices);
2208
2209 old_devices = clone_fs_devices(fs_devices);
2210 if (IS_ERR(old_devices)) {
2211 kfree(seed_devices);
2212 return PTR_ERR(old_devices);
2213 }
2214
2215 list_add(&old_devices->fs_list, &fs_uuids);
2216
2217 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2218 seed_devices->opened = 1;
2219 INIT_LIST_HEAD(&seed_devices->devices);
2220 INIT_LIST_HEAD(&seed_devices->alloc_list);
2221 mutex_init(&seed_devices->device_list_mutex);
2222
2223 mutex_lock(&fs_devices->device_list_mutex);
2224 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2225 synchronize_rcu);
2226 list_for_each_entry(device, &seed_devices->devices, dev_list)
2227 device->fs_devices = seed_devices;
2228
2229 mutex_lock(&fs_info->chunk_mutex);
2230 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2231 mutex_unlock(&fs_info->chunk_mutex);
2232
2233 fs_devices->seeding = 0;
2234 fs_devices->num_devices = 0;
2235 fs_devices->open_devices = 0;
2236 fs_devices->missing_devices = 0;
2237 fs_devices->rotating = 0;
2238 fs_devices->seed = seed_devices;
2239
2240 generate_random_uuid(fs_devices->fsid);
2241 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2242 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2243 mutex_unlock(&fs_devices->device_list_mutex);
2244
2245 super_flags = btrfs_super_flags(disk_super) &
2246 ~BTRFS_SUPER_FLAG_SEEDING;
2247 btrfs_set_super_flags(disk_super, super_flags);
2248
2249 return 0;
2250 }
2251
2252 /*
2253 * Store the expected generation for seed devices in device items.
2254 */
2255 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2256 struct btrfs_fs_info *fs_info)
2257 {
2258 struct btrfs_root *root = fs_info->chunk_root;
2259 struct btrfs_path *path;
2260 struct extent_buffer *leaf;
2261 struct btrfs_dev_item *dev_item;
2262 struct btrfs_device *device;
2263 struct btrfs_key key;
2264 u8 fs_uuid[BTRFS_FSID_SIZE];
2265 u8 dev_uuid[BTRFS_UUID_SIZE];
2266 u64 devid;
2267 int ret;
2268
2269 path = btrfs_alloc_path();
2270 if (!path)
2271 return -ENOMEM;
2272
2273 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2274 key.offset = 0;
2275 key.type = BTRFS_DEV_ITEM_KEY;
2276
2277 while (1) {
2278 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2279 if (ret < 0)
2280 goto error;
2281
2282 leaf = path->nodes[0];
2283 next_slot:
2284 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2285 ret = btrfs_next_leaf(root, path);
2286 if (ret > 0)
2287 break;
2288 if (ret < 0)
2289 goto error;
2290 leaf = path->nodes[0];
2291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2292 btrfs_release_path(path);
2293 continue;
2294 }
2295
2296 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2298 key.type != BTRFS_DEV_ITEM_KEY)
2299 break;
2300
2301 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2302 struct btrfs_dev_item);
2303 devid = btrfs_device_id(leaf, dev_item);
2304 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2305 BTRFS_UUID_SIZE);
2306 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2307 BTRFS_FSID_SIZE);
2308 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2309 BUG_ON(!device); /* Logic error */
2310
2311 if (device->fs_devices->seeding) {
2312 btrfs_set_device_generation(leaf, dev_item,
2313 device->generation);
2314 btrfs_mark_buffer_dirty(leaf);
2315 }
2316
2317 path->slots[0]++;
2318 goto next_slot;
2319 }
2320 ret = 0;
2321 error:
2322 btrfs_free_path(path);
2323 return ret;
2324 }
2325
2326 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2327 {
2328 struct btrfs_root *root = fs_info->dev_root;
2329 struct request_queue *q;
2330 struct btrfs_trans_handle *trans;
2331 struct btrfs_device *device;
2332 struct block_device *bdev;
2333 struct super_block *sb = fs_info->sb;
2334 struct rcu_string *name;
2335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2336 u64 orig_super_total_bytes;
2337 u64 orig_super_num_devices;
2338 int seeding_dev = 0;
2339 int ret = 0;
2340 bool unlocked = false;
2341
2342 if (sb_rdonly(sb) && !fs_devices->seeding)
2343 return -EROFS;
2344
2345 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2346 fs_info->bdev_holder);
2347 if (IS_ERR(bdev))
2348 return PTR_ERR(bdev);
2349
2350 if (fs_devices->seeding) {
2351 seeding_dev = 1;
2352 down_write(&sb->s_umount);
2353 mutex_lock(&uuid_mutex);
2354 }
2355
2356 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2357
2358 mutex_lock(&fs_devices->device_list_mutex);
2359 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2360 if (device->bdev == bdev) {
2361 ret = -EEXIST;
2362 mutex_unlock(
2363 &fs_devices->device_list_mutex);
2364 goto error;
2365 }
2366 }
2367 mutex_unlock(&fs_devices->device_list_mutex);
2368
2369 device = btrfs_alloc_device(fs_info, NULL, NULL);
2370 if (IS_ERR(device)) {
2371 /* we can safely leave the fs_devices entry around */
2372 ret = PTR_ERR(device);
2373 goto error;
2374 }
2375
2376 name = rcu_string_strdup(device_path, GFP_KERNEL);
2377 if (!name) {
2378 ret = -ENOMEM;
2379 goto error_free_device;
2380 }
2381 rcu_assign_pointer(device->name, name);
2382
2383 trans = btrfs_start_transaction(root, 0);
2384 if (IS_ERR(trans)) {
2385 ret = PTR_ERR(trans);
2386 goto error_free_device;
2387 }
2388
2389 q = bdev_get_queue(bdev);
2390 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2391 device->generation = trans->transid;
2392 device->io_width = fs_info->sectorsize;
2393 device->io_align = fs_info->sectorsize;
2394 device->sector_size = fs_info->sectorsize;
2395 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2396 fs_info->sectorsize);
2397 device->disk_total_bytes = device->total_bytes;
2398 device->commit_total_bytes = device->total_bytes;
2399 device->fs_info = fs_info;
2400 device->bdev = bdev;
2401 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2402 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2403 device->mode = FMODE_EXCL;
2404 device->dev_stats_valid = 1;
2405 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2406
2407 if (seeding_dev) {
2408 sb->s_flags &= ~SB_RDONLY;
2409 ret = btrfs_prepare_sprout(fs_info);
2410 if (ret) {
2411 btrfs_abort_transaction(trans, ret);
2412 goto error_trans;
2413 }
2414 }
2415
2416 device->fs_devices = fs_devices;
2417
2418 mutex_lock(&fs_devices->device_list_mutex);
2419 mutex_lock(&fs_info->chunk_mutex);
2420 list_add_rcu(&device->dev_list, &fs_devices->devices);
2421 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2422 fs_devices->num_devices++;
2423 fs_devices->open_devices++;
2424 fs_devices->rw_devices++;
2425 fs_devices->total_devices++;
2426 fs_devices->total_rw_bytes += device->total_bytes;
2427
2428 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2429
2430 if (!blk_queue_nonrot(q))
2431 fs_devices->rotating = 1;
2432
2433 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2434 btrfs_set_super_total_bytes(fs_info->super_copy,
2435 round_down(orig_super_total_bytes + device->total_bytes,
2436 fs_info->sectorsize));
2437
2438 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2439 btrfs_set_super_num_devices(fs_info->super_copy,
2440 orig_super_num_devices + 1);
2441
2442 /* add sysfs device entry */
2443 btrfs_sysfs_add_device_link(fs_devices, device);
2444
2445 /*
2446 * we've got more storage, clear any full flags on the space
2447 * infos
2448 */
2449 btrfs_clear_space_info_full(fs_info);
2450
2451 mutex_unlock(&fs_info->chunk_mutex);
2452 mutex_unlock(&fs_devices->device_list_mutex);
2453
2454 if (seeding_dev) {
2455 mutex_lock(&fs_info->chunk_mutex);
2456 ret = init_first_rw_device(trans, fs_info);
2457 mutex_unlock(&fs_info->chunk_mutex);
2458 if (ret) {
2459 btrfs_abort_transaction(trans, ret);
2460 goto error_sysfs;
2461 }
2462 }
2463
2464 ret = btrfs_add_dev_item(trans, device);
2465 if (ret) {
2466 btrfs_abort_transaction(trans, ret);
2467 goto error_sysfs;
2468 }
2469
2470 if (seeding_dev) {
2471 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2472
2473 ret = btrfs_finish_sprout(trans, fs_info);
2474 if (ret) {
2475 btrfs_abort_transaction(trans, ret);
2476 goto error_sysfs;
2477 }
2478
2479 /* Sprouting would change fsid of the mounted root,
2480 * so rename the fsid on the sysfs
2481 */
2482 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2483 fs_info->fsid);
2484 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2485 btrfs_warn(fs_info,
2486 "sysfs: failed to create fsid for sprout");
2487 }
2488
2489 ret = btrfs_commit_transaction(trans);
2490
2491 if (seeding_dev) {
2492 mutex_unlock(&uuid_mutex);
2493 up_write(&sb->s_umount);
2494 unlocked = true;
2495
2496 if (ret) /* transaction commit */
2497 return ret;
2498
2499 ret = btrfs_relocate_sys_chunks(fs_info);
2500 if (ret < 0)
2501 btrfs_handle_fs_error(fs_info, ret,
2502 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2503 trans = btrfs_attach_transaction(root);
2504 if (IS_ERR(trans)) {
2505 if (PTR_ERR(trans) == -ENOENT)
2506 return 0;
2507 ret = PTR_ERR(trans);
2508 trans = NULL;
2509 goto error_sysfs;
2510 }
2511 ret = btrfs_commit_transaction(trans);
2512 }
2513
2514 /* Update ctime/mtime for libblkid */
2515 update_dev_time(device_path);
2516 return ret;
2517
2518 error_sysfs:
2519 btrfs_sysfs_rm_device_link(fs_devices, device);
2520 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2521 mutex_lock(&fs_info->chunk_mutex);
2522 list_del_rcu(&device->dev_list);
2523 list_del(&device->dev_alloc_list);
2524 fs_info->fs_devices->num_devices--;
2525 fs_info->fs_devices->open_devices--;
2526 fs_info->fs_devices->rw_devices--;
2527 fs_info->fs_devices->total_devices--;
2528 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2529 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2530 btrfs_set_super_total_bytes(fs_info->super_copy,
2531 orig_super_total_bytes);
2532 btrfs_set_super_num_devices(fs_info->super_copy,
2533 orig_super_num_devices);
2534 mutex_unlock(&fs_info->chunk_mutex);
2535 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2536 error_trans:
2537 if (seeding_dev)
2538 sb->s_flags |= SB_RDONLY;
2539 if (trans)
2540 btrfs_end_transaction(trans);
2541 error_free_device:
2542 btrfs_free_device(device);
2543 error:
2544 blkdev_put(bdev, FMODE_EXCL);
2545 if (seeding_dev && !unlocked) {
2546 mutex_unlock(&uuid_mutex);
2547 up_write(&sb->s_umount);
2548 }
2549 return ret;
2550 }
2551
2552 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2553 struct btrfs_device *device)
2554 {
2555 int ret;
2556 struct btrfs_path *path;
2557 struct btrfs_root *root = device->fs_info->chunk_root;
2558 struct btrfs_dev_item *dev_item;
2559 struct extent_buffer *leaf;
2560 struct btrfs_key key;
2561
2562 path = btrfs_alloc_path();
2563 if (!path)
2564 return -ENOMEM;
2565
2566 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2567 key.type = BTRFS_DEV_ITEM_KEY;
2568 key.offset = device->devid;
2569
2570 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2571 if (ret < 0)
2572 goto out;
2573
2574 if (ret > 0) {
2575 ret = -ENOENT;
2576 goto out;
2577 }
2578
2579 leaf = path->nodes[0];
2580 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2581
2582 btrfs_set_device_id(leaf, dev_item, device->devid);
2583 btrfs_set_device_type(leaf, dev_item, device->type);
2584 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2585 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2586 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2587 btrfs_set_device_total_bytes(leaf, dev_item,
2588 btrfs_device_get_disk_total_bytes(device));
2589 btrfs_set_device_bytes_used(leaf, dev_item,
2590 btrfs_device_get_bytes_used(device));
2591 btrfs_mark_buffer_dirty(leaf);
2592
2593 out:
2594 btrfs_free_path(path);
2595 return ret;
2596 }
2597
2598 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2599 struct btrfs_device *device, u64 new_size)
2600 {
2601 struct btrfs_fs_info *fs_info = device->fs_info;
2602 struct btrfs_super_block *super_copy = fs_info->super_copy;
2603 struct btrfs_fs_devices *fs_devices;
2604 u64 old_total;
2605 u64 diff;
2606
2607 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2608 return -EACCES;
2609
2610 new_size = round_down(new_size, fs_info->sectorsize);
2611
2612 mutex_lock(&fs_info->chunk_mutex);
2613 old_total = btrfs_super_total_bytes(super_copy);
2614 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2615
2616 if (new_size <= device->total_bytes ||
2617 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2618 mutex_unlock(&fs_info->chunk_mutex);
2619 return -EINVAL;
2620 }
2621
2622 fs_devices = fs_info->fs_devices;
2623
2624 btrfs_set_super_total_bytes(super_copy,
2625 round_down(old_total + diff, fs_info->sectorsize));
2626 device->fs_devices->total_rw_bytes += diff;
2627
2628 btrfs_device_set_total_bytes(device, new_size);
2629 btrfs_device_set_disk_total_bytes(device, new_size);
2630 btrfs_clear_space_info_full(device->fs_info);
2631 if (list_empty(&device->resized_list))
2632 list_add_tail(&device->resized_list,
2633 &fs_devices->resized_devices);
2634 mutex_unlock(&fs_info->chunk_mutex);
2635
2636 return btrfs_update_device(trans, device);
2637 }
2638
2639 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2640 {
2641 struct btrfs_fs_info *fs_info = trans->fs_info;
2642 struct btrfs_root *root = fs_info->chunk_root;
2643 int ret;
2644 struct btrfs_path *path;
2645 struct btrfs_key key;
2646
2647 path = btrfs_alloc_path();
2648 if (!path)
2649 return -ENOMEM;
2650
2651 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2652 key.offset = chunk_offset;
2653 key.type = BTRFS_CHUNK_ITEM_KEY;
2654
2655 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2656 if (ret < 0)
2657 goto out;
2658 else if (ret > 0) { /* Logic error or corruption */
2659 btrfs_handle_fs_error(fs_info, -ENOENT,
2660 "Failed lookup while freeing chunk.");
2661 ret = -ENOENT;
2662 goto out;
2663 }
2664
2665 ret = btrfs_del_item(trans, root, path);
2666 if (ret < 0)
2667 btrfs_handle_fs_error(fs_info, ret,
2668 "Failed to delete chunk item.");
2669 out:
2670 btrfs_free_path(path);
2671 return ret;
2672 }
2673
2674 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2675 {
2676 struct btrfs_super_block *super_copy = fs_info->super_copy;
2677 struct btrfs_disk_key *disk_key;
2678 struct btrfs_chunk *chunk;
2679 u8 *ptr;
2680 int ret = 0;
2681 u32 num_stripes;
2682 u32 array_size;
2683 u32 len = 0;
2684 u32 cur;
2685 struct btrfs_key key;
2686
2687 mutex_lock(&fs_info->chunk_mutex);
2688 array_size = btrfs_super_sys_array_size(super_copy);
2689
2690 ptr = super_copy->sys_chunk_array;
2691 cur = 0;
2692
2693 while (cur < array_size) {
2694 disk_key = (struct btrfs_disk_key *)ptr;
2695 btrfs_disk_key_to_cpu(&key, disk_key);
2696
2697 len = sizeof(*disk_key);
2698
2699 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2700 chunk = (struct btrfs_chunk *)(ptr + len);
2701 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2702 len += btrfs_chunk_item_size(num_stripes);
2703 } else {
2704 ret = -EIO;
2705 break;
2706 }
2707 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2708 key.offset == chunk_offset) {
2709 memmove(ptr, ptr + len, array_size - (cur + len));
2710 array_size -= len;
2711 btrfs_set_super_sys_array_size(super_copy, array_size);
2712 } else {
2713 ptr += len;
2714 cur += len;
2715 }
2716 }
2717 mutex_unlock(&fs_info->chunk_mutex);
2718 return ret;
2719 }
2720
2721 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2722 u64 logical, u64 length)
2723 {
2724 struct extent_map_tree *em_tree;
2725 struct extent_map *em;
2726
2727 em_tree = &fs_info->mapping_tree.map_tree;
2728 read_lock(&em_tree->lock);
2729 em = lookup_extent_mapping(em_tree, logical, length);
2730 read_unlock(&em_tree->lock);
2731
2732 if (!em) {
2733 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2734 logical, length);
2735 return ERR_PTR(-EINVAL);
2736 }
2737
2738 if (em->start > logical || em->start + em->len < logical) {
2739 btrfs_crit(fs_info,
2740 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2741 logical, length, em->start, em->start + em->len);
2742 free_extent_map(em);
2743 return ERR_PTR(-EINVAL);
2744 }
2745
2746 /* callers are responsible for dropping em's ref. */
2747 return em;
2748 }
2749
2750 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2751 {
2752 struct btrfs_fs_info *fs_info = trans->fs_info;
2753 struct extent_map *em;
2754 struct map_lookup *map;
2755 u64 dev_extent_len = 0;
2756 int i, ret = 0;
2757 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2758
2759 em = get_chunk_map(fs_info, chunk_offset, 1);
2760 if (IS_ERR(em)) {
2761 /*
2762 * This is a logic error, but we don't want to just rely on the
2763 * user having built with ASSERT enabled, so if ASSERT doesn't
2764 * do anything we still error out.
2765 */
2766 ASSERT(0);
2767 return PTR_ERR(em);
2768 }
2769 map = em->map_lookup;
2770 mutex_lock(&fs_info->chunk_mutex);
2771 check_system_chunk(trans, map->type);
2772 mutex_unlock(&fs_info->chunk_mutex);
2773
2774 /*
2775 * Take the device list mutex to prevent races with the final phase of
2776 * a device replace operation that replaces the device object associated
2777 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2778 */
2779 mutex_lock(&fs_devices->device_list_mutex);
2780 for (i = 0; i < map->num_stripes; i++) {
2781 struct btrfs_device *device = map->stripes[i].dev;
2782 ret = btrfs_free_dev_extent(trans, device,
2783 map->stripes[i].physical,
2784 &dev_extent_len);
2785 if (ret) {
2786 mutex_unlock(&fs_devices->device_list_mutex);
2787 btrfs_abort_transaction(trans, ret);
2788 goto out;
2789 }
2790
2791 if (device->bytes_used > 0) {
2792 mutex_lock(&fs_info->chunk_mutex);
2793 btrfs_device_set_bytes_used(device,
2794 device->bytes_used - dev_extent_len);
2795 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2796 btrfs_clear_space_info_full(fs_info);
2797 mutex_unlock(&fs_info->chunk_mutex);
2798 }
2799
2800 if (map->stripes[i].dev) {
2801 ret = btrfs_update_device(trans, map->stripes[i].dev);
2802 if (ret) {
2803 mutex_unlock(&fs_devices->device_list_mutex);
2804 btrfs_abort_transaction(trans, ret);
2805 goto out;
2806 }
2807 }
2808 }
2809 mutex_unlock(&fs_devices->device_list_mutex);
2810
2811 ret = btrfs_free_chunk(trans, chunk_offset);
2812 if (ret) {
2813 btrfs_abort_transaction(trans, ret);
2814 goto out;
2815 }
2816
2817 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2818
2819 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2820 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2821 if (ret) {
2822 btrfs_abort_transaction(trans, ret);
2823 goto out;
2824 }
2825 }
2826
2827 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2828 if (ret) {
2829 btrfs_abort_transaction(trans, ret);
2830 goto out;
2831 }
2832
2833 out:
2834 /* once for us */
2835 free_extent_map(em);
2836 return ret;
2837 }
2838
2839 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2840 {
2841 struct btrfs_root *root = fs_info->chunk_root;
2842 struct btrfs_trans_handle *trans;
2843 int ret;
2844
2845 /*
2846 * Prevent races with automatic removal of unused block groups.
2847 * After we relocate and before we remove the chunk with offset
2848 * chunk_offset, automatic removal of the block group can kick in,
2849 * resulting in a failure when calling btrfs_remove_chunk() below.
2850 *
2851 * Make sure to acquire this mutex before doing a tree search (dev
2852 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2853 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2854 * we release the path used to search the chunk/dev tree and before
2855 * the current task acquires this mutex and calls us.
2856 */
2857 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2858
2859 ret = btrfs_can_relocate(fs_info, chunk_offset);
2860 if (ret)
2861 return -ENOSPC;
2862
2863 /* step one, relocate all the extents inside this chunk */
2864 btrfs_scrub_pause(fs_info);
2865 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2866 btrfs_scrub_continue(fs_info);
2867 if (ret)
2868 return ret;
2869
2870 /*
2871 * We add the kobjects here (and after forcing data chunk creation)
2872 * since relocation is the only place we'll create chunks of a new
2873 * type at runtime. The only place where we'll remove the last
2874 * chunk of a type is the call immediately below this one. Even
2875 * so, we're protected against races with the cleaner thread since
2876 * we're covered by the delete_unused_bgs_mutex.
2877 */
2878 btrfs_add_raid_kobjects(fs_info);
2879
2880 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2881 chunk_offset);
2882 if (IS_ERR(trans)) {
2883 ret = PTR_ERR(trans);
2884 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2885 return ret;
2886 }
2887
2888 /*
2889 * step two, delete the device extents and the
2890 * chunk tree entries
2891 */
2892 ret = btrfs_remove_chunk(trans, chunk_offset);
2893 btrfs_end_transaction(trans);
2894 return ret;
2895 }
2896
2897 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2898 {
2899 struct btrfs_root *chunk_root = fs_info->chunk_root;
2900 struct btrfs_path *path;
2901 struct extent_buffer *leaf;
2902 struct btrfs_chunk *chunk;
2903 struct btrfs_key key;
2904 struct btrfs_key found_key;
2905 u64 chunk_type;
2906 bool retried = false;
2907 int failed = 0;
2908 int ret;
2909
2910 path = btrfs_alloc_path();
2911 if (!path)
2912 return -ENOMEM;
2913
2914 again:
2915 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2916 key.offset = (u64)-1;
2917 key.type = BTRFS_CHUNK_ITEM_KEY;
2918
2919 while (1) {
2920 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2921 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2922 if (ret < 0) {
2923 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2924 goto error;
2925 }
2926 BUG_ON(ret == 0); /* Corruption */
2927
2928 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2929 key.type);
2930 if (ret)
2931 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2932 if (ret < 0)
2933 goto error;
2934 if (ret > 0)
2935 break;
2936
2937 leaf = path->nodes[0];
2938 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2939
2940 chunk = btrfs_item_ptr(leaf, path->slots[0],
2941 struct btrfs_chunk);
2942 chunk_type = btrfs_chunk_type(leaf, chunk);
2943 btrfs_release_path(path);
2944
2945 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2946 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2947 if (ret == -ENOSPC)
2948 failed++;
2949 else
2950 BUG_ON(ret);
2951 }
2952 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2953
2954 if (found_key.offset == 0)
2955 break;
2956 key.offset = found_key.offset - 1;
2957 }
2958 ret = 0;
2959 if (failed && !retried) {
2960 failed = 0;
2961 retried = true;
2962 goto again;
2963 } else if (WARN_ON(failed && retried)) {
2964 ret = -ENOSPC;
2965 }
2966 error:
2967 btrfs_free_path(path);
2968 return ret;
2969 }
2970
2971 /*
2972 * return 1 : allocate a data chunk successfully,
2973 * return <0: errors during allocating a data chunk,
2974 * return 0 : no need to allocate a data chunk.
2975 */
2976 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2977 u64 chunk_offset)
2978 {
2979 struct btrfs_block_group_cache *cache;
2980 u64 bytes_used;
2981 u64 chunk_type;
2982
2983 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2984 ASSERT(cache);
2985 chunk_type = cache->flags;
2986 btrfs_put_block_group(cache);
2987
2988 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2989 spin_lock(&fs_info->data_sinfo->lock);
2990 bytes_used = fs_info->data_sinfo->bytes_used;
2991 spin_unlock(&fs_info->data_sinfo->lock);
2992
2993 if (!bytes_used) {
2994 struct btrfs_trans_handle *trans;
2995 int ret;
2996
2997 trans = btrfs_join_transaction(fs_info->tree_root);
2998 if (IS_ERR(trans))
2999 return PTR_ERR(trans);
3000
3001 ret = btrfs_force_chunk_alloc(trans,
3002 BTRFS_BLOCK_GROUP_DATA);
3003 btrfs_end_transaction(trans);
3004 if (ret < 0)
3005 return ret;
3006
3007 btrfs_add_raid_kobjects(fs_info);
3008
3009 return 1;
3010 }
3011 }
3012 return 0;
3013 }
3014
3015 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3016 struct btrfs_balance_control *bctl)
3017 {
3018 struct btrfs_root *root = fs_info->tree_root;
3019 struct btrfs_trans_handle *trans;
3020 struct btrfs_balance_item *item;
3021 struct btrfs_disk_balance_args disk_bargs;
3022 struct btrfs_path *path;
3023 struct extent_buffer *leaf;
3024 struct btrfs_key key;
3025 int ret, err;
3026
3027 path = btrfs_alloc_path();
3028 if (!path)
3029 return -ENOMEM;
3030
3031 trans = btrfs_start_transaction(root, 0);
3032 if (IS_ERR(trans)) {
3033 btrfs_free_path(path);
3034 return PTR_ERR(trans);
3035 }
3036
3037 key.objectid = BTRFS_BALANCE_OBJECTID;
3038 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3039 key.offset = 0;
3040
3041 ret = btrfs_insert_empty_item(trans, root, path, &key,
3042 sizeof(*item));
3043 if (ret)
3044 goto out;
3045
3046 leaf = path->nodes[0];
3047 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3048
3049 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3050
3051 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3052 btrfs_set_balance_data(leaf, item, &disk_bargs);
3053 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3054 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3055 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3056 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3057
3058 btrfs_set_balance_flags(leaf, item, bctl->flags);
3059
3060 btrfs_mark_buffer_dirty(leaf);
3061 out:
3062 btrfs_free_path(path);
3063 err = btrfs_commit_transaction(trans);
3064 if (err && !ret)
3065 ret = err;
3066 return ret;
3067 }
3068
3069 static int del_balance_item(struct btrfs_fs_info *fs_info)
3070 {
3071 struct btrfs_root *root = fs_info->tree_root;
3072 struct btrfs_trans_handle *trans;
3073 struct btrfs_path *path;
3074 struct btrfs_key key;
3075 int ret, err;
3076
3077 path = btrfs_alloc_path();
3078 if (!path)
3079 return -ENOMEM;
3080
3081 trans = btrfs_start_transaction(root, 0);
3082 if (IS_ERR(trans)) {
3083 btrfs_free_path(path);
3084 return PTR_ERR(trans);
3085 }
3086
3087 key.objectid = BTRFS_BALANCE_OBJECTID;
3088 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3089 key.offset = 0;
3090
3091 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3092 if (ret < 0)
3093 goto out;
3094 if (ret > 0) {
3095 ret = -ENOENT;
3096 goto out;
3097 }
3098
3099 ret = btrfs_del_item(trans, root, path);
3100 out:
3101 btrfs_free_path(path);
3102 err = btrfs_commit_transaction(trans);
3103 if (err && !ret)
3104 ret = err;
3105 return ret;
3106 }
3107
3108 /*
3109 * This is a heuristic used to reduce the number of chunks balanced on
3110 * resume after balance was interrupted.
3111 */
3112 static void update_balance_args(struct btrfs_balance_control *bctl)
3113 {
3114 /*
3115 * Turn on soft mode for chunk types that were being converted.
3116 */
3117 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3118 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3119 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3120 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3121 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3122 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3123
3124 /*
3125 * Turn on usage filter if is not already used. The idea is
3126 * that chunks that we have already balanced should be
3127 * reasonably full. Don't do it for chunks that are being
3128 * converted - that will keep us from relocating unconverted
3129 * (albeit full) chunks.
3130 */
3131 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3132 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3133 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3134 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3135 bctl->data.usage = 90;
3136 }
3137 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3138 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3139 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141 bctl->sys.usage = 90;
3142 }
3143 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3144 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3145 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147 bctl->meta.usage = 90;
3148 }
3149 }
3150
3151 /*
3152 * Clear the balance status in fs_info and delete the balance item from disk.
3153 */
3154 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3155 {
3156 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3157 int ret;
3158
3159 BUG_ON(!fs_info->balance_ctl);
3160
3161 spin_lock(&fs_info->balance_lock);
3162 fs_info->balance_ctl = NULL;
3163 spin_unlock(&fs_info->balance_lock);
3164
3165 kfree(bctl);
3166 ret = del_balance_item(fs_info);
3167 if (ret)
3168 btrfs_handle_fs_error(fs_info, ret, NULL);
3169 }
3170
3171 /*
3172 * Balance filters. Return 1 if chunk should be filtered out
3173 * (should not be balanced).
3174 */
3175 static int chunk_profiles_filter(u64 chunk_type,
3176 struct btrfs_balance_args *bargs)
3177 {
3178 chunk_type = chunk_to_extended(chunk_type) &
3179 BTRFS_EXTENDED_PROFILE_MASK;
3180
3181 if (bargs->profiles & chunk_type)
3182 return 0;
3183
3184 return 1;
3185 }
3186
3187 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3188 struct btrfs_balance_args *bargs)
3189 {
3190 struct btrfs_block_group_cache *cache;
3191 u64 chunk_used;
3192 u64 user_thresh_min;
3193 u64 user_thresh_max;
3194 int ret = 1;
3195
3196 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3197 chunk_used = btrfs_block_group_used(&cache->item);
3198
3199 if (bargs->usage_min == 0)
3200 user_thresh_min = 0;
3201 else
3202 user_thresh_min = div_factor_fine(cache->key.offset,
3203 bargs->usage_min);
3204
3205 if (bargs->usage_max == 0)
3206 user_thresh_max = 1;
3207 else if (bargs->usage_max > 100)
3208 user_thresh_max = cache->key.offset;
3209 else
3210 user_thresh_max = div_factor_fine(cache->key.offset,
3211 bargs->usage_max);
3212
3213 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3214 ret = 0;
3215
3216 btrfs_put_block_group(cache);
3217 return ret;
3218 }
3219
3220 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3221 u64 chunk_offset, struct btrfs_balance_args *bargs)
3222 {
3223 struct btrfs_block_group_cache *cache;
3224 u64 chunk_used, user_thresh;
3225 int ret = 1;
3226
3227 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3228 chunk_used = btrfs_block_group_used(&cache->item);
3229
3230 if (bargs->usage_min == 0)
3231 user_thresh = 1;
3232 else if (bargs->usage > 100)
3233 user_thresh = cache->key.offset;
3234 else
3235 user_thresh = div_factor_fine(cache->key.offset,
3236 bargs->usage);
3237
3238 if (chunk_used < user_thresh)
3239 ret = 0;
3240
3241 btrfs_put_block_group(cache);
3242 return ret;
3243 }
3244
3245 static int chunk_devid_filter(struct extent_buffer *leaf,
3246 struct btrfs_chunk *chunk,
3247 struct btrfs_balance_args *bargs)
3248 {
3249 struct btrfs_stripe *stripe;
3250 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3251 int i;
3252
3253 for (i = 0; i < num_stripes; i++) {
3254 stripe = btrfs_stripe_nr(chunk, i);
3255 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3256 return 0;
3257 }
3258
3259 return 1;
3260 }
3261
3262 /* [pstart, pend) */
3263 static int chunk_drange_filter(struct extent_buffer *leaf,
3264 struct btrfs_chunk *chunk,
3265 struct btrfs_balance_args *bargs)
3266 {
3267 struct btrfs_stripe *stripe;
3268 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3269 u64 stripe_offset;
3270 u64 stripe_length;
3271 int factor;
3272 int i;
3273
3274 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3275 return 0;
3276
3277 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3278 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3279 factor = num_stripes / 2;
3280 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3281 factor = num_stripes - 1;
3282 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3283 factor = num_stripes - 2;
3284 } else {
3285 factor = num_stripes;
3286 }
3287
3288 for (i = 0; i < num_stripes; i++) {
3289 stripe = btrfs_stripe_nr(chunk, i);
3290 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3291 continue;
3292
3293 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3294 stripe_length = btrfs_chunk_length(leaf, chunk);
3295 stripe_length = div_u64(stripe_length, factor);
3296
3297 if (stripe_offset < bargs->pend &&
3298 stripe_offset + stripe_length > bargs->pstart)
3299 return 0;
3300 }
3301
3302 return 1;
3303 }
3304
3305 /* [vstart, vend) */
3306 static int chunk_vrange_filter(struct extent_buffer *leaf,
3307 struct btrfs_chunk *chunk,
3308 u64 chunk_offset,
3309 struct btrfs_balance_args *bargs)
3310 {
3311 if (chunk_offset < bargs->vend &&
3312 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3313 /* at least part of the chunk is inside this vrange */
3314 return 0;
3315
3316 return 1;
3317 }
3318
3319 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3320 struct btrfs_chunk *chunk,
3321 struct btrfs_balance_args *bargs)
3322 {
3323 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3324
3325 if (bargs->stripes_min <= num_stripes
3326 && num_stripes <= bargs->stripes_max)
3327 return 0;
3328
3329 return 1;
3330 }
3331
3332 static int chunk_soft_convert_filter(u64 chunk_type,
3333 struct btrfs_balance_args *bargs)
3334 {
3335 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3336 return 0;
3337
3338 chunk_type = chunk_to_extended(chunk_type) &
3339 BTRFS_EXTENDED_PROFILE_MASK;
3340
3341 if (bargs->target == chunk_type)
3342 return 1;
3343
3344 return 0;
3345 }
3346
3347 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3348 struct extent_buffer *leaf,
3349 struct btrfs_chunk *chunk, u64 chunk_offset)
3350 {
3351 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3352 struct btrfs_balance_args *bargs = NULL;
3353 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3354
3355 /* type filter */
3356 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3357 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3358 return 0;
3359 }
3360
3361 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3362 bargs = &bctl->data;
3363 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3364 bargs = &bctl->sys;
3365 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3366 bargs = &bctl->meta;
3367
3368 /* profiles filter */
3369 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3370 chunk_profiles_filter(chunk_type, bargs)) {
3371 return 0;
3372 }
3373
3374 /* usage filter */
3375 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3376 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3377 return 0;
3378 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3379 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3380 return 0;
3381 }
3382
3383 /* devid filter */
3384 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3385 chunk_devid_filter(leaf, chunk, bargs)) {
3386 return 0;
3387 }
3388
3389 /* drange filter, makes sense only with devid filter */
3390 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3391 chunk_drange_filter(leaf, chunk, bargs)) {
3392 return 0;
3393 }
3394
3395 /* vrange filter */
3396 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3397 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3398 return 0;
3399 }
3400
3401 /* stripes filter */
3402 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3403 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3404 return 0;
3405 }
3406
3407 /* soft profile changing mode */
3408 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3409 chunk_soft_convert_filter(chunk_type, bargs)) {
3410 return 0;
3411 }
3412
3413 /*
3414 * limited by count, must be the last filter
3415 */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3417 if (bargs->limit == 0)
3418 return 0;
3419 else
3420 bargs->limit--;
3421 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3422 /*
3423 * Same logic as the 'limit' filter; the minimum cannot be
3424 * determined here because we do not have the global information
3425 * about the count of all chunks that satisfy the filters.
3426 */
3427 if (bargs->limit_max == 0)
3428 return 0;
3429 else
3430 bargs->limit_max--;
3431 }
3432
3433 return 1;
3434 }
3435
3436 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3437 {
3438 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3439 struct btrfs_root *chunk_root = fs_info->chunk_root;
3440 struct btrfs_root *dev_root = fs_info->dev_root;
3441 struct list_head *devices;
3442 struct btrfs_device *device;
3443 u64 old_size;
3444 u64 size_to_free;
3445 u64 chunk_type;
3446 struct btrfs_chunk *chunk;
3447 struct btrfs_path *path = NULL;
3448 struct btrfs_key key;
3449 struct btrfs_key found_key;
3450 struct btrfs_trans_handle *trans;
3451 struct extent_buffer *leaf;
3452 int slot;
3453 int ret;
3454 int enospc_errors = 0;
3455 bool counting = true;
3456 /* The single value limit and min/max limits use the same bytes in the */
3457 u64 limit_data = bctl->data.limit;
3458 u64 limit_meta = bctl->meta.limit;
3459 u64 limit_sys = bctl->sys.limit;
3460 u32 count_data = 0;
3461 u32 count_meta = 0;
3462 u32 count_sys = 0;
3463 int chunk_reserved = 0;
3464
3465 /* step one make some room on all the devices */
3466 devices = &fs_info->fs_devices->devices;
3467 list_for_each_entry(device, devices, dev_list) {
3468 old_size = btrfs_device_get_total_bytes(device);
3469 size_to_free = div_factor(old_size, 1);
3470 size_to_free = min_t(u64, size_to_free, SZ_1M);
3471 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3472 btrfs_device_get_total_bytes(device) -
3473 btrfs_device_get_bytes_used(device) > size_to_free ||
3474 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3475 continue;
3476
3477 ret = btrfs_shrink_device(device, old_size - size_to_free);
3478 if (ret == -ENOSPC)
3479 break;
3480 if (ret) {
3481 /* btrfs_shrink_device never returns ret > 0 */
3482 WARN_ON(ret > 0);
3483 goto error;
3484 }
3485
3486 trans = btrfs_start_transaction(dev_root, 0);
3487 if (IS_ERR(trans)) {
3488 ret = PTR_ERR(trans);
3489 btrfs_info_in_rcu(fs_info,
3490 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3491 rcu_str_deref(device->name), ret,
3492 old_size, old_size - size_to_free);
3493 goto error;
3494 }
3495
3496 ret = btrfs_grow_device(trans, device, old_size);
3497 if (ret) {
3498 btrfs_end_transaction(trans);
3499 /* btrfs_grow_device never returns ret > 0 */
3500 WARN_ON(ret > 0);
3501 btrfs_info_in_rcu(fs_info,
3502 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3503 rcu_str_deref(device->name), ret,
3504 old_size, old_size - size_to_free);
3505 goto error;
3506 }
3507
3508 btrfs_end_transaction(trans);
3509 }
3510
3511 /* step two, relocate all the chunks */
3512 path = btrfs_alloc_path();
3513 if (!path) {
3514 ret = -ENOMEM;
3515 goto error;
3516 }
3517
3518 /* zero out stat counters */
3519 spin_lock(&fs_info->balance_lock);
3520 memset(&bctl->stat, 0, sizeof(bctl->stat));
3521 spin_unlock(&fs_info->balance_lock);
3522 again:
3523 if (!counting) {
3524 /*
3525 * The single value limit and min/max limits use the same bytes
3526 * in the
3527 */
3528 bctl->data.limit = limit_data;
3529 bctl->meta.limit = limit_meta;
3530 bctl->sys.limit = limit_sys;
3531 }
3532 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3533 key.offset = (u64)-1;
3534 key.type = BTRFS_CHUNK_ITEM_KEY;
3535
3536 while (1) {
3537 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3538 atomic_read(&fs_info->balance_cancel_req)) {
3539 ret = -ECANCELED;
3540 goto error;
3541 }
3542
3543 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3544 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3545 if (ret < 0) {
3546 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 goto error;
3548 }
3549
3550 /*
3551 * this shouldn't happen, it means the last relocate
3552 * failed
3553 */
3554 if (ret == 0)
3555 BUG(); /* FIXME break ? */
3556
3557 ret = btrfs_previous_item(chunk_root, path, 0,
3558 BTRFS_CHUNK_ITEM_KEY);
3559 if (ret) {
3560 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3561 ret = 0;
3562 break;
3563 }
3564
3565 leaf = path->nodes[0];
3566 slot = path->slots[0];
3567 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3568
3569 if (found_key.objectid != key.objectid) {
3570 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3571 break;
3572 }
3573
3574 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3575 chunk_type = btrfs_chunk_type(leaf, chunk);
3576
3577 if (!counting) {
3578 spin_lock(&fs_info->balance_lock);
3579 bctl->stat.considered++;
3580 spin_unlock(&fs_info->balance_lock);
3581 }
3582
3583 ret = should_balance_chunk(fs_info, leaf, chunk,
3584 found_key.offset);
3585
3586 btrfs_release_path(path);
3587 if (!ret) {
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 goto loop;
3590 }
3591
3592 if (counting) {
3593 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3594 spin_lock(&fs_info->balance_lock);
3595 bctl->stat.expected++;
3596 spin_unlock(&fs_info->balance_lock);
3597
3598 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3599 count_data++;
3600 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3601 count_sys++;
3602 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3603 count_meta++;
3604
3605 goto loop;
3606 }
3607
3608 /*
3609 * Apply limit_min filter, no need to check if the LIMITS
3610 * filter is used, limit_min is 0 by default
3611 */
3612 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3613 count_data < bctl->data.limit_min)
3614 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3615 count_meta < bctl->meta.limit_min)
3616 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3617 count_sys < bctl->sys.limit_min)) {
3618 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3619 goto loop;
3620 }
3621
3622 if (!chunk_reserved) {
3623 /*
3624 * We may be relocating the only data chunk we have,
3625 * which could potentially end up with losing data's
3626 * raid profile, so lets allocate an empty one in
3627 * advance.
3628 */
3629 ret = btrfs_may_alloc_data_chunk(fs_info,
3630 found_key.offset);
3631 if (ret < 0) {
3632 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3633 goto error;
3634 } else if (ret == 1) {
3635 chunk_reserved = 1;
3636 }
3637 }
3638
3639 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3640 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3641 if (ret && ret != -ENOSPC)
3642 goto error;
3643 if (ret == -ENOSPC) {
3644 enospc_errors++;
3645 } else {
3646 spin_lock(&fs_info->balance_lock);
3647 bctl->stat.completed++;
3648 spin_unlock(&fs_info->balance_lock);
3649 }
3650 loop:
3651 if (found_key.offset == 0)
3652 break;
3653 key.offset = found_key.offset - 1;
3654 }
3655
3656 if (counting) {
3657 btrfs_release_path(path);
3658 counting = false;
3659 goto again;
3660 }
3661 error:
3662 btrfs_free_path(path);
3663 if (enospc_errors) {
3664 btrfs_info(fs_info, "%d enospc errors during balance",
3665 enospc_errors);
3666 if (!ret)
3667 ret = -ENOSPC;
3668 }
3669
3670 return ret;
3671 }
3672
3673 /**
3674 * alloc_profile_is_valid - see if a given profile is valid and reduced
3675 * @flags: profile to validate
3676 * @extended: if true @flags is treated as an extended profile
3677 */
3678 static int alloc_profile_is_valid(u64 flags, int extended)
3679 {
3680 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3681 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3682
3683 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3684
3685 /* 1) check that all other bits are zeroed */
3686 if (flags & ~mask)
3687 return 0;
3688
3689 /* 2) see if profile is reduced */
3690 if (flags == 0)
3691 return !extended; /* "0" is valid for usual profiles */
3692
3693 /* true if exactly one bit set */
3694 return (flags & (flags - 1)) == 0;
3695 }
3696
3697 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3698 {
3699 /* cancel requested || normal exit path */
3700 return atomic_read(&fs_info->balance_cancel_req) ||
3701 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3702 atomic_read(&fs_info->balance_cancel_req) == 0);
3703 }
3704
3705 /* Non-zero return value signifies invalidity */
3706 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3707 u64 allowed)
3708 {
3709 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3710 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3711 (bctl_arg->target & ~allowed)));
3712 }
3713
3714 /*
3715 * Should be called with balance mutexe held
3716 */
3717 int btrfs_balance(struct btrfs_fs_info *fs_info,
3718 struct btrfs_balance_control *bctl,
3719 struct btrfs_ioctl_balance_args *bargs)
3720 {
3721 u64 meta_target, data_target;
3722 u64 allowed;
3723 int mixed = 0;
3724 int ret;
3725 u64 num_devices;
3726 unsigned seq;
3727
3728 if (btrfs_fs_closing(fs_info) ||
3729 atomic_read(&fs_info->balance_pause_req) ||
3730 atomic_read(&fs_info->balance_cancel_req)) {
3731 ret = -EINVAL;
3732 goto out;
3733 }
3734
3735 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3736 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3737 mixed = 1;
3738
3739 /*
3740 * In case of mixed groups both data and meta should be picked,
3741 * and identical options should be given for both of them.
3742 */
3743 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3744 if (mixed && (bctl->flags & allowed)) {
3745 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3746 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3747 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3748 btrfs_err(fs_info,
3749 "balance: mixed groups data and metadata options must be the same");
3750 ret = -EINVAL;
3751 goto out;
3752 }
3753 }
3754
3755 num_devices = btrfs_num_devices(fs_info);
3756
3757 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3758 if (num_devices > 1)
3759 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3760 if (num_devices > 2)
3761 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3762 if (num_devices > 3)
3763 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3764 BTRFS_BLOCK_GROUP_RAID6);
3765 if (validate_convert_profile(&bctl->data, allowed)) {
3766 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3767
3768 btrfs_err(fs_info,
3769 "balance: invalid convert data profile %s",
3770 get_raid_name(index));
3771 ret = -EINVAL;
3772 goto out;
3773 }
3774 if (validate_convert_profile(&bctl->meta, allowed)) {
3775 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3776
3777 btrfs_err(fs_info,
3778 "balance: invalid convert metadata profile %s",
3779 get_raid_name(index));
3780 ret = -EINVAL;
3781 goto out;
3782 }
3783 if (validate_convert_profile(&bctl->sys, allowed)) {
3784 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3785
3786 btrfs_err(fs_info,
3787 "balance: invalid convert system profile %s",
3788 get_raid_name(index));
3789 ret = -EINVAL;
3790 goto out;
3791 }
3792
3793 /* allow to reduce meta or sys integrity only if force set */
3794 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3795 BTRFS_BLOCK_GROUP_RAID10 |
3796 BTRFS_BLOCK_GROUP_RAID5 |
3797 BTRFS_BLOCK_GROUP_RAID6;
3798 do {
3799 seq = read_seqbegin(&fs_info->profiles_lock);
3800
3801 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3802 (fs_info->avail_system_alloc_bits & allowed) &&
3803 !(bctl->sys.target & allowed)) ||
3804 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3805 (fs_info->avail_metadata_alloc_bits & allowed) &&
3806 !(bctl->meta.target & allowed))) {
3807 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3808 btrfs_info(fs_info,
3809 "balance: force reducing metadata integrity");
3810 } else {
3811 btrfs_err(fs_info,
3812 "balance: reduces metadata integrity, use --force if you want this");
3813 ret = -EINVAL;
3814 goto out;
3815 }
3816 }
3817 } while (read_seqretry(&fs_info->profiles_lock, seq));
3818
3819 /* if we're not converting, the target field is uninitialized */
3820 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3821 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3822 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3823 bctl->data.target : fs_info->avail_data_alloc_bits;
3824 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3825 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3826 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3827 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3828
3829 btrfs_warn(fs_info,
3830 "balance: metadata profile %s has lower redundancy than data profile %s",
3831 get_raid_name(meta_index), get_raid_name(data_index));
3832 }
3833
3834 ret = insert_balance_item(fs_info, bctl);
3835 if (ret && ret != -EEXIST)
3836 goto out;
3837
3838 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3839 BUG_ON(ret == -EEXIST);
3840 BUG_ON(fs_info->balance_ctl);
3841 spin_lock(&fs_info->balance_lock);
3842 fs_info->balance_ctl = bctl;
3843 spin_unlock(&fs_info->balance_lock);
3844 } else {
3845 BUG_ON(ret != -EEXIST);
3846 spin_lock(&fs_info->balance_lock);
3847 update_balance_args(bctl);
3848 spin_unlock(&fs_info->balance_lock);
3849 }
3850
3851 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3852 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3853 mutex_unlock(&fs_info->balance_mutex);
3854
3855 ret = __btrfs_balance(fs_info);
3856
3857 mutex_lock(&fs_info->balance_mutex);
3858 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3859
3860 if (bargs) {
3861 memset(bargs, 0, sizeof(*bargs));
3862 btrfs_update_ioctl_balance_args(fs_info, bargs);
3863 }
3864
3865 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3866 balance_need_close(fs_info)) {
3867 reset_balance_state(fs_info);
3868 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3869 }
3870
3871 wake_up(&fs_info->balance_wait_q);
3872
3873 return ret;
3874 out:
3875 if (bctl->flags & BTRFS_BALANCE_RESUME)
3876 reset_balance_state(fs_info);
3877 else
3878 kfree(bctl);
3879 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3880
3881 return ret;
3882 }
3883
3884 static int balance_kthread(void *data)
3885 {
3886 struct btrfs_fs_info *fs_info = data;
3887 int ret = 0;
3888
3889 mutex_lock(&fs_info->balance_mutex);
3890 if (fs_info->balance_ctl) {
3891 btrfs_info(fs_info, "balance: resuming");
3892 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3893 }
3894 mutex_unlock(&fs_info->balance_mutex);
3895
3896 return ret;
3897 }
3898
3899 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3900 {
3901 struct task_struct *tsk;
3902
3903 mutex_lock(&fs_info->balance_mutex);
3904 if (!fs_info->balance_ctl) {
3905 mutex_unlock(&fs_info->balance_mutex);
3906 return 0;
3907 }
3908 mutex_unlock(&fs_info->balance_mutex);
3909
3910 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3911 btrfs_info(fs_info, "balance: resume skipped");
3912 return 0;
3913 }
3914
3915 /*
3916 * A ro->rw remount sequence should continue with the paused balance
3917 * regardless of who pauses it, system or the user as of now, so set
3918 * the resume flag.
3919 */
3920 spin_lock(&fs_info->balance_lock);
3921 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3922 spin_unlock(&fs_info->balance_lock);
3923
3924 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3925 return PTR_ERR_OR_ZERO(tsk);
3926 }
3927
3928 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3929 {
3930 struct btrfs_balance_control *bctl;
3931 struct btrfs_balance_item *item;
3932 struct btrfs_disk_balance_args disk_bargs;
3933 struct btrfs_path *path;
3934 struct extent_buffer *leaf;
3935 struct btrfs_key key;
3936 int ret;
3937
3938 path = btrfs_alloc_path();
3939 if (!path)
3940 return -ENOMEM;
3941
3942 key.objectid = BTRFS_BALANCE_OBJECTID;
3943 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3944 key.offset = 0;
3945
3946 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3947 if (ret < 0)
3948 goto out;
3949 if (ret > 0) { /* ret = -ENOENT; */
3950 ret = 0;
3951 goto out;
3952 }
3953
3954 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3955 if (!bctl) {
3956 ret = -ENOMEM;
3957 goto out;
3958 }
3959
3960 leaf = path->nodes[0];
3961 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3962
3963 bctl->flags = btrfs_balance_flags(leaf, item);
3964 bctl->flags |= BTRFS_BALANCE_RESUME;
3965
3966 btrfs_balance_data(leaf, item, &disk_bargs);
3967 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3968 btrfs_balance_meta(leaf, item, &disk_bargs);
3969 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3970 btrfs_balance_sys(leaf, item, &disk_bargs);
3971 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3972
3973 /*
3974 * This should never happen, as the paused balance state is recovered
3975 * during mount without any chance of other exclusive ops to collide.
3976 *
3977 * This gives the exclusive op status to balance and keeps in paused
3978 * state until user intervention (cancel or umount). If the ownership
3979 * cannot be assigned, show a message but do not fail. The balance
3980 * is in a paused state and must have fs_info::balance_ctl properly
3981 * set up.
3982 */
3983 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3984 btrfs_warn(fs_info,
3985 "balance: cannot set exclusive op status, resume manually");
3986
3987 mutex_lock(&fs_info->balance_mutex);
3988 BUG_ON(fs_info->balance_ctl);
3989 spin_lock(&fs_info->balance_lock);
3990 fs_info->balance_ctl = bctl;
3991 spin_unlock(&fs_info->balance_lock);
3992 mutex_unlock(&fs_info->balance_mutex);
3993 out:
3994 btrfs_free_path(path);
3995 return ret;
3996 }
3997
3998 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3999 {
4000 int ret = 0;
4001
4002 mutex_lock(&fs_info->balance_mutex);
4003 if (!fs_info->balance_ctl) {
4004 mutex_unlock(&fs_info->balance_mutex);
4005 return -ENOTCONN;
4006 }
4007
4008 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4009 atomic_inc(&fs_info->balance_pause_req);
4010 mutex_unlock(&fs_info->balance_mutex);
4011
4012 wait_event(fs_info->balance_wait_q,
4013 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4014
4015 mutex_lock(&fs_info->balance_mutex);
4016 /* we are good with balance_ctl ripped off from under us */
4017 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4018 atomic_dec(&fs_info->balance_pause_req);
4019 } else {
4020 ret = -ENOTCONN;
4021 }
4022
4023 mutex_unlock(&fs_info->balance_mutex);
4024 return ret;
4025 }
4026
4027 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4028 {
4029 mutex_lock(&fs_info->balance_mutex);
4030 if (!fs_info->balance_ctl) {
4031 mutex_unlock(&fs_info->balance_mutex);
4032 return -ENOTCONN;
4033 }
4034
4035 /*
4036 * A paused balance with the item stored on disk can be resumed at
4037 * mount time if the mount is read-write. Otherwise it's still paused
4038 * and we must not allow cancelling as it deletes the item.
4039 */
4040 if (sb_rdonly(fs_info->sb)) {
4041 mutex_unlock(&fs_info->balance_mutex);
4042 return -EROFS;
4043 }
4044
4045 atomic_inc(&fs_info->balance_cancel_req);
4046 /*
4047 * if we are running just wait and return, balance item is
4048 * deleted in btrfs_balance in this case
4049 */
4050 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4051 mutex_unlock(&fs_info->balance_mutex);
4052 wait_event(fs_info->balance_wait_q,
4053 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4054 mutex_lock(&fs_info->balance_mutex);
4055 } else {
4056 mutex_unlock(&fs_info->balance_mutex);
4057 /*
4058 * Lock released to allow other waiters to continue, we'll
4059 * reexamine the status again.
4060 */
4061 mutex_lock(&fs_info->balance_mutex);
4062
4063 if (fs_info->balance_ctl) {
4064 reset_balance_state(fs_info);
4065 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4066 btrfs_info(fs_info, "balance: canceled");
4067 }
4068 }
4069
4070 BUG_ON(fs_info->balance_ctl ||
4071 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4072 atomic_dec(&fs_info->balance_cancel_req);
4073 mutex_unlock(&fs_info->balance_mutex);
4074 return 0;
4075 }
4076
4077 static int btrfs_uuid_scan_kthread(void *data)
4078 {
4079 struct btrfs_fs_info *fs_info = data;
4080 struct btrfs_root *root = fs_info->tree_root;
4081 struct btrfs_key key;
4082 struct btrfs_path *path = NULL;
4083 int ret = 0;
4084 struct extent_buffer *eb;
4085 int slot;
4086 struct btrfs_root_item root_item;
4087 u32 item_size;
4088 struct btrfs_trans_handle *trans = NULL;
4089
4090 path = btrfs_alloc_path();
4091 if (!path) {
4092 ret = -ENOMEM;
4093 goto out;
4094 }
4095
4096 key.objectid = 0;
4097 key.type = BTRFS_ROOT_ITEM_KEY;
4098 key.offset = 0;
4099
4100 while (1) {
4101 ret = btrfs_search_forward(root, &key, path,
4102 BTRFS_OLDEST_GENERATION);
4103 if (ret) {
4104 if (ret > 0)
4105 ret = 0;
4106 break;
4107 }
4108
4109 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4110 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4111 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4112 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4113 goto skip;
4114
4115 eb = path->nodes[0];
4116 slot = path->slots[0];
4117 item_size = btrfs_item_size_nr(eb, slot);
4118 if (item_size < sizeof(root_item))
4119 goto skip;
4120
4121 read_extent_buffer(eb, &root_item,
4122 btrfs_item_ptr_offset(eb, slot),
4123 (int)sizeof(root_item));
4124 if (btrfs_root_refs(&root_item) == 0)
4125 goto skip;
4126
4127 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4128 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4129 if (trans)
4130 goto update_tree;
4131
4132 btrfs_release_path(path);
4133 /*
4134 * 1 - subvol uuid item
4135 * 1 - received_subvol uuid item
4136 */
4137 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4138 if (IS_ERR(trans)) {
4139 ret = PTR_ERR(trans);
4140 break;
4141 }
4142 continue;
4143 } else {
4144 goto skip;
4145 }
4146 update_tree:
4147 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4148 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4149 BTRFS_UUID_KEY_SUBVOL,
4150 key.objectid);
4151 if (ret < 0) {
4152 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4153 ret);
4154 break;
4155 }
4156 }
4157
4158 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4159 ret = btrfs_uuid_tree_add(trans,
4160 root_item.received_uuid,
4161 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4162 key.objectid);
4163 if (ret < 0) {
4164 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4165 ret);
4166 break;
4167 }
4168 }
4169
4170 skip:
4171 if (trans) {
4172 ret = btrfs_end_transaction(trans);
4173 trans = NULL;
4174 if (ret)
4175 break;
4176 }
4177
4178 btrfs_release_path(path);
4179 if (key.offset < (u64)-1) {
4180 key.offset++;
4181 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4182 key.offset = 0;
4183 key.type = BTRFS_ROOT_ITEM_KEY;
4184 } else if (key.objectid < (u64)-1) {
4185 key.offset = 0;
4186 key.type = BTRFS_ROOT_ITEM_KEY;
4187 key.objectid++;
4188 } else {
4189 break;
4190 }
4191 cond_resched();
4192 }
4193
4194 out:
4195 btrfs_free_path(path);
4196 if (trans && !IS_ERR(trans))
4197 btrfs_end_transaction(trans);
4198 if (ret)
4199 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4200 else
4201 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4202 up(&fs_info->uuid_tree_rescan_sem);
4203 return 0;
4204 }
4205
4206 /*
4207 * Callback for btrfs_uuid_tree_iterate().
4208 * returns:
4209 * 0 check succeeded, the entry is not outdated.
4210 * < 0 if an error occurred.
4211 * > 0 if the check failed, which means the caller shall remove the entry.
4212 */
4213 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4214 u8 *uuid, u8 type, u64 subid)
4215 {
4216 struct btrfs_key key;
4217 int ret = 0;
4218 struct btrfs_root *subvol_root;
4219
4220 if (type != BTRFS_UUID_KEY_SUBVOL &&
4221 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4222 goto out;
4223
4224 key.objectid = subid;
4225 key.type = BTRFS_ROOT_ITEM_KEY;
4226 key.offset = (u64)-1;
4227 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4228 if (IS_ERR(subvol_root)) {
4229 ret = PTR_ERR(subvol_root);
4230 if (ret == -ENOENT)
4231 ret = 1;
4232 goto out;
4233 }
4234
4235 switch (type) {
4236 case BTRFS_UUID_KEY_SUBVOL:
4237 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4238 ret = 1;
4239 break;
4240 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4241 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4242 BTRFS_UUID_SIZE))
4243 ret = 1;
4244 break;
4245 }
4246
4247 out:
4248 return ret;
4249 }
4250
4251 static int btrfs_uuid_rescan_kthread(void *data)
4252 {
4253 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4254 int ret;
4255
4256 /*
4257 * 1st step is to iterate through the existing UUID tree and
4258 * to delete all entries that contain outdated data.
4259 * 2nd step is to add all missing entries to the UUID tree.
4260 */
4261 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4262 if (ret < 0) {
4263 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4264 up(&fs_info->uuid_tree_rescan_sem);
4265 return ret;
4266 }
4267 return btrfs_uuid_scan_kthread(data);
4268 }
4269
4270 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4271 {
4272 struct btrfs_trans_handle *trans;
4273 struct btrfs_root *tree_root = fs_info->tree_root;
4274 struct btrfs_root *uuid_root;
4275 struct task_struct *task;
4276 int ret;
4277
4278 /*
4279 * 1 - root node
4280 * 1 - root item
4281 */
4282 trans = btrfs_start_transaction(tree_root, 2);
4283 if (IS_ERR(trans))
4284 return PTR_ERR(trans);
4285
4286 uuid_root = btrfs_create_tree(trans, fs_info,
4287 BTRFS_UUID_TREE_OBJECTID);
4288 if (IS_ERR(uuid_root)) {
4289 ret = PTR_ERR(uuid_root);
4290 btrfs_abort_transaction(trans, ret);
4291 btrfs_end_transaction(trans);
4292 return ret;
4293 }
4294
4295 fs_info->uuid_root = uuid_root;
4296
4297 ret = btrfs_commit_transaction(trans);
4298 if (ret)
4299 return ret;
4300
4301 down(&fs_info->uuid_tree_rescan_sem);
4302 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4303 if (IS_ERR(task)) {
4304 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4305 btrfs_warn(fs_info, "failed to start uuid_scan task");
4306 up(&fs_info->uuid_tree_rescan_sem);
4307 return PTR_ERR(task);
4308 }
4309
4310 return 0;
4311 }
4312
4313 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4314 {
4315 struct task_struct *task;
4316
4317 down(&fs_info->uuid_tree_rescan_sem);
4318 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4319 if (IS_ERR(task)) {
4320 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4321 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4322 up(&fs_info->uuid_tree_rescan_sem);
4323 return PTR_ERR(task);
4324 }
4325
4326 return 0;
4327 }
4328
4329 /*
4330 * shrinking a device means finding all of the device extents past
4331 * the new size, and then following the back refs to the chunks.
4332 * The chunk relocation code actually frees the device extent
4333 */
4334 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4335 {
4336 struct btrfs_fs_info *fs_info = device->fs_info;
4337 struct btrfs_root *root = fs_info->dev_root;
4338 struct btrfs_trans_handle *trans;
4339 struct btrfs_dev_extent *dev_extent = NULL;
4340 struct btrfs_path *path;
4341 u64 length;
4342 u64 chunk_offset;
4343 int ret;
4344 int slot;
4345 int failed = 0;
4346 bool retried = false;
4347 bool checked_pending_chunks = false;
4348 struct extent_buffer *l;
4349 struct btrfs_key key;
4350 struct btrfs_super_block *super_copy = fs_info->super_copy;
4351 u64 old_total = btrfs_super_total_bytes(super_copy);
4352 u64 old_size = btrfs_device_get_total_bytes(device);
4353 u64 diff;
4354
4355 new_size = round_down(new_size, fs_info->sectorsize);
4356 diff = round_down(old_size - new_size, fs_info->sectorsize);
4357
4358 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4359 return -EINVAL;
4360
4361 path = btrfs_alloc_path();
4362 if (!path)
4363 return -ENOMEM;
4364
4365 path->reada = READA_BACK;
4366
4367 mutex_lock(&fs_info->chunk_mutex);
4368
4369 btrfs_device_set_total_bytes(device, new_size);
4370 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4371 device->fs_devices->total_rw_bytes -= diff;
4372 atomic64_sub(diff, &fs_info->free_chunk_space);
4373 }
4374 mutex_unlock(&fs_info->chunk_mutex);
4375
4376 again:
4377 key.objectid = device->devid;
4378 key.offset = (u64)-1;
4379 key.type = BTRFS_DEV_EXTENT_KEY;
4380
4381 do {
4382 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4384 if (ret < 0) {
4385 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4386 goto done;
4387 }
4388
4389 ret = btrfs_previous_item(root, path, 0, key.type);
4390 if (ret)
4391 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4392 if (ret < 0)
4393 goto done;
4394 if (ret) {
4395 ret = 0;
4396 btrfs_release_path(path);
4397 break;
4398 }
4399
4400 l = path->nodes[0];
4401 slot = path->slots[0];
4402 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4403
4404 if (key.objectid != device->devid) {
4405 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4406 btrfs_release_path(path);
4407 break;
4408 }
4409
4410 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4411 length = btrfs_dev_extent_length(l, dev_extent);
4412
4413 if (key.offset + length <= new_size) {
4414 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4415 btrfs_release_path(path);
4416 break;
4417 }
4418
4419 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4420 btrfs_release_path(path);
4421
4422 /*
4423 * We may be relocating the only data chunk we have,
4424 * which could potentially end up with losing data's
4425 * raid profile, so lets allocate an empty one in
4426 * advance.
4427 */
4428 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4429 if (ret < 0) {
4430 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431 goto done;
4432 }
4433
4434 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4435 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4436 if (ret && ret != -ENOSPC)
4437 goto done;
4438 if (ret == -ENOSPC)
4439 failed++;
4440 } while (key.offset-- > 0);
4441
4442 if (failed && !retried) {
4443 failed = 0;
4444 retried = true;
4445 goto again;
4446 } else if (failed && retried) {
4447 ret = -ENOSPC;
4448 goto done;
4449 }
4450
4451 /* Shrinking succeeded, else we would be at "done". */
4452 trans = btrfs_start_transaction(root, 0);
4453 if (IS_ERR(trans)) {
4454 ret = PTR_ERR(trans);
4455 goto done;
4456 }
4457
4458 mutex_lock(&fs_info->chunk_mutex);
4459
4460 /*
4461 * We checked in the above loop all device extents that were already in
4462 * the device tree. However before we have updated the device's
4463 * total_bytes to the new size, we might have had chunk allocations that
4464 * have not complete yet (new block groups attached to transaction
4465 * handles), and therefore their device extents were not yet in the
4466 * device tree and we missed them in the loop above. So if we have any
4467 * pending chunk using a device extent that overlaps the device range
4468 * that we can not use anymore, commit the current transaction and
4469 * repeat the search on the device tree - this way we guarantee we will
4470 * not have chunks using device extents that end beyond 'new_size'.
4471 */
4472 if (!checked_pending_chunks) {
4473 u64 start = new_size;
4474 u64 len = old_size - new_size;
4475
4476 if (contains_pending_extent(trans->transaction, device,
4477 &start, len)) {
4478 mutex_unlock(&fs_info->chunk_mutex);
4479 checked_pending_chunks = true;
4480 failed = 0;
4481 retried = false;
4482 ret = btrfs_commit_transaction(trans);
4483 if (ret)
4484 goto done;
4485 goto again;
4486 }
4487 }
4488
4489 btrfs_device_set_disk_total_bytes(device, new_size);
4490 if (list_empty(&device->resized_list))
4491 list_add_tail(&device->resized_list,
4492 &fs_info->fs_devices->resized_devices);
4493
4494 WARN_ON(diff > old_total);
4495 btrfs_set_super_total_bytes(super_copy,
4496 round_down(old_total - diff, fs_info->sectorsize));
4497 mutex_unlock(&fs_info->chunk_mutex);
4498
4499 /* Now btrfs_update_device() will change the on-disk size. */
4500 ret = btrfs_update_device(trans, device);
4501 if (ret < 0) {
4502 btrfs_abort_transaction(trans, ret);
4503 btrfs_end_transaction(trans);
4504 } else {
4505 ret = btrfs_commit_transaction(trans);
4506 }
4507 done:
4508 btrfs_free_path(path);
4509 if (ret) {
4510 mutex_lock(&fs_info->chunk_mutex);
4511 btrfs_device_set_total_bytes(device, old_size);
4512 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4513 device->fs_devices->total_rw_bytes += diff;
4514 atomic64_add(diff, &fs_info->free_chunk_space);
4515 mutex_unlock(&fs_info->chunk_mutex);
4516 }
4517 return ret;
4518 }
4519
4520 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4521 struct btrfs_key *key,
4522 struct btrfs_chunk *chunk, int item_size)
4523 {
4524 struct btrfs_super_block *super_copy = fs_info->super_copy;
4525 struct btrfs_disk_key disk_key;
4526 u32 array_size;
4527 u8 *ptr;
4528
4529 mutex_lock(&fs_info->chunk_mutex);
4530 array_size = btrfs_super_sys_array_size(super_copy);
4531 if (array_size + item_size + sizeof(disk_key)
4532 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4533 mutex_unlock(&fs_info->chunk_mutex);
4534 return -EFBIG;
4535 }
4536
4537 ptr = super_copy->sys_chunk_array + array_size;
4538 btrfs_cpu_key_to_disk(&disk_key, key);
4539 memcpy(ptr, &disk_key, sizeof(disk_key));
4540 ptr += sizeof(disk_key);
4541 memcpy(ptr, chunk, item_size);
4542 item_size += sizeof(disk_key);
4543 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4544 mutex_unlock(&fs_info->chunk_mutex);
4545
4546 return 0;
4547 }
4548
4549 /*
4550 * sort the devices in descending order by max_avail, total_avail
4551 */
4552 static int btrfs_cmp_device_info(const void *a, const void *b)
4553 {
4554 const struct btrfs_device_info *di_a = a;
4555 const struct btrfs_device_info *di_b = b;
4556
4557 if (di_a->max_avail > di_b->max_avail)
4558 return -1;
4559 if (di_a->max_avail < di_b->max_avail)
4560 return 1;
4561 if (di_a->total_avail > di_b->total_avail)
4562 return -1;
4563 if (di_a->total_avail < di_b->total_avail)
4564 return 1;
4565 return 0;
4566 }
4567
4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4569 {
4570 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4571 return;
4572
4573 btrfs_set_fs_incompat(info, RAID56);
4574 }
4575
4576 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
4577 - sizeof(struct btrfs_chunk)) \
4578 / sizeof(struct btrfs_stripe) + 1)
4579
4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4581 - 2 * sizeof(struct btrfs_disk_key) \
4582 - 2 * sizeof(struct btrfs_chunk)) \
4583 / sizeof(struct btrfs_stripe) + 1)
4584
4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4586 u64 start, u64 type)
4587 {
4588 struct btrfs_fs_info *info = trans->fs_info;
4589 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4590 struct btrfs_device *device;
4591 struct map_lookup *map = NULL;
4592 struct extent_map_tree *em_tree;
4593 struct extent_map *em;
4594 struct btrfs_device_info *devices_info = NULL;
4595 u64 total_avail;
4596 int num_stripes; /* total number of stripes to allocate */
4597 int data_stripes; /* number of stripes that count for
4598 block group size */
4599 int sub_stripes; /* sub_stripes info for map */
4600 int dev_stripes; /* stripes per dev */
4601 int devs_max; /* max devs to use */
4602 int devs_min; /* min devs needed */
4603 int devs_increment; /* ndevs has to be a multiple of this */
4604 int ncopies; /* how many copies to data has */
4605 int ret;
4606 u64 max_stripe_size;
4607 u64 max_chunk_size;
4608 u64 stripe_size;
4609 u64 num_bytes;
4610 int ndevs;
4611 int i;
4612 int j;
4613 int index;
4614
4615 BUG_ON(!alloc_profile_is_valid(type, 0));
4616
4617 if (list_empty(&fs_devices->alloc_list)) {
4618 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4619 btrfs_debug(info, "%s: no writable device", __func__);
4620 return -ENOSPC;
4621 }
4622
4623 index = btrfs_bg_flags_to_raid_index(type);
4624
4625 sub_stripes = btrfs_raid_array[index].sub_stripes;
4626 dev_stripes = btrfs_raid_array[index].dev_stripes;
4627 devs_max = btrfs_raid_array[index].devs_max;
4628 devs_min = btrfs_raid_array[index].devs_min;
4629 devs_increment = btrfs_raid_array[index].devs_increment;
4630 ncopies = btrfs_raid_array[index].ncopies;
4631
4632 if (type & BTRFS_BLOCK_GROUP_DATA) {
4633 max_stripe_size = SZ_1G;
4634 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4635 if (!devs_max)
4636 devs_max = BTRFS_MAX_DEVS(info);
4637 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4638 /* for larger filesystems, use larger metadata chunks */
4639 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4640 max_stripe_size = SZ_1G;
4641 else
4642 max_stripe_size = SZ_256M;
4643 max_chunk_size = max_stripe_size;
4644 if (!devs_max)
4645 devs_max = BTRFS_MAX_DEVS(info);
4646 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4647 max_stripe_size = SZ_32M;
4648 max_chunk_size = 2 * max_stripe_size;
4649 if (!devs_max)
4650 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4651 } else {
4652 btrfs_err(info, "invalid chunk type 0x%llx requested",
4653 type);
4654 BUG_ON(1);
4655 }
4656
4657 /* we don't want a chunk larger than 10% of writeable space */
4658 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4659 max_chunk_size);
4660
4661 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4662 GFP_NOFS);
4663 if (!devices_info)
4664 return -ENOMEM;
4665
4666 /*
4667 * in the first pass through the devices list, we gather information
4668 * about the available holes on each device.
4669 */
4670 ndevs = 0;
4671 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4672 u64 max_avail;
4673 u64 dev_offset;
4674
4675 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4676 WARN(1, KERN_ERR
4677 "BTRFS: read-only device in alloc_list\n");
4678 continue;
4679 }
4680
4681 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4682 &device->dev_state) ||
4683 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4684 continue;
4685
4686 if (device->total_bytes > device->bytes_used)
4687 total_avail = device->total_bytes - device->bytes_used;
4688 else
4689 total_avail = 0;
4690
4691 /* If there is no space on this device, skip it. */
4692 if (total_avail == 0)
4693 continue;
4694
4695 ret = find_free_dev_extent(trans, device,
4696 max_stripe_size * dev_stripes,
4697 &dev_offset, &max_avail);
4698 if (ret && ret != -ENOSPC)
4699 goto error;
4700
4701 if (ret == 0)
4702 max_avail = max_stripe_size * dev_stripes;
4703
4704 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4705 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4706 btrfs_debug(info,
4707 "%s: devid %llu has no free space, have=%llu want=%u",
4708 __func__, device->devid, max_avail,
4709 BTRFS_STRIPE_LEN * dev_stripes);
4710 continue;
4711 }
4712
4713 if (ndevs == fs_devices->rw_devices) {
4714 WARN(1, "%s: found more than %llu devices\n",
4715 __func__, fs_devices->rw_devices);
4716 break;
4717 }
4718 devices_info[ndevs].dev_offset = dev_offset;
4719 devices_info[ndevs].max_avail = max_avail;
4720 devices_info[ndevs].total_avail = total_avail;
4721 devices_info[ndevs].dev = device;
4722 ++ndevs;
4723 }
4724
4725 /*
4726 * now sort the devices by hole size / available space
4727 */
4728 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4729 btrfs_cmp_device_info, NULL);
4730
4731 /* round down to number of usable stripes */
4732 ndevs = round_down(ndevs, devs_increment);
4733
4734 if (ndevs < devs_min) {
4735 ret = -ENOSPC;
4736 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4737 btrfs_debug(info,
4738 "%s: not enough devices with free space: have=%d minimum required=%d",
4739 __func__, ndevs, devs_min);
4740 }
4741 goto error;
4742 }
4743
4744 ndevs = min(ndevs, devs_max);
4745
4746 /*
4747 * The primary goal is to maximize the number of stripes, so use as
4748 * many devices as possible, even if the stripes are not maximum sized.
4749 *
4750 * The DUP profile stores more than one stripe per device, the
4751 * max_avail is the total size so we have to adjust.
4752 */
4753 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4754 num_stripes = ndevs * dev_stripes;
4755
4756 /*
4757 * this will have to be fixed for RAID1 and RAID10 over
4758 * more drives
4759 */
4760 data_stripes = num_stripes / ncopies;
4761
4762 if (type & BTRFS_BLOCK_GROUP_RAID5)
4763 data_stripes = num_stripes - 1;
4764
4765 if (type & BTRFS_BLOCK_GROUP_RAID6)
4766 data_stripes = num_stripes - 2;
4767
4768 /*
4769 * Use the number of data stripes to figure out how big this chunk
4770 * is really going to be in terms of logical address space,
4771 * and compare that answer with the max chunk size
4772 */
4773 if (stripe_size * data_stripes > max_chunk_size) {
4774 stripe_size = div_u64(max_chunk_size, data_stripes);
4775
4776 /* bump the answer up to a 16MB boundary */
4777 stripe_size = round_up(stripe_size, SZ_16M);
4778
4779 /*
4780 * But don't go higher than the limits we found while searching
4781 * for free extents
4782 */
4783 stripe_size = min(devices_info[ndevs - 1].max_avail,
4784 stripe_size);
4785 }
4786
4787 /* align to BTRFS_STRIPE_LEN */
4788 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4789
4790 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4791 if (!map) {
4792 ret = -ENOMEM;
4793 goto error;
4794 }
4795 map->num_stripes = num_stripes;
4796
4797 for (i = 0; i < ndevs; ++i) {
4798 for (j = 0; j < dev_stripes; ++j) {
4799 int s = i * dev_stripes + j;
4800 map->stripes[s].dev = devices_info[i].dev;
4801 map->stripes[s].physical = devices_info[i].dev_offset +
4802 j * stripe_size;
4803 }
4804 }
4805 map->stripe_len = BTRFS_STRIPE_LEN;
4806 map->io_align = BTRFS_STRIPE_LEN;
4807 map->io_width = BTRFS_STRIPE_LEN;
4808 map->type = type;
4809 map->sub_stripes = sub_stripes;
4810
4811 num_bytes = stripe_size * data_stripes;
4812
4813 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4814
4815 em = alloc_extent_map();
4816 if (!em) {
4817 kfree(map);
4818 ret = -ENOMEM;
4819 goto error;
4820 }
4821 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4822 em->map_lookup = map;
4823 em->start = start;
4824 em->len = num_bytes;
4825 em->block_start = 0;
4826 em->block_len = em->len;
4827 em->orig_block_len = stripe_size;
4828
4829 em_tree = &info->mapping_tree.map_tree;
4830 write_lock(&em_tree->lock);
4831 ret = add_extent_mapping(em_tree, em, 0);
4832 if (ret) {
4833 write_unlock(&em_tree->lock);
4834 free_extent_map(em);
4835 goto error;
4836 }
4837
4838 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4839 refcount_inc(&em->refs);
4840 write_unlock(&em_tree->lock);
4841
4842 ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4843 if (ret)
4844 goto error_del_extent;
4845
4846 for (i = 0; i < map->num_stripes; i++) {
4847 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4848 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4849 }
4850
4851 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4852
4853 free_extent_map(em);
4854 check_raid56_incompat_flag(info, type);
4855
4856 kfree(devices_info);
4857 return 0;
4858
4859 error_del_extent:
4860 write_lock(&em_tree->lock);
4861 remove_extent_mapping(em_tree, em);
4862 write_unlock(&em_tree->lock);
4863
4864 /* One for our allocation */
4865 free_extent_map(em);
4866 /* One for the tree reference */
4867 free_extent_map(em);
4868 /* One for the pending_chunks list reference */
4869 free_extent_map(em);
4870 error:
4871 kfree(devices_info);
4872 return ret;
4873 }
4874
4875 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4876 u64 chunk_offset, u64 chunk_size)
4877 {
4878 struct btrfs_fs_info *fs_info = trans->fs_info;
4879 struct btrfs_root *extent_root = fs_info->extent_root;
4880 struct btrfs_root *chunk_root = fs_info->chunk_root;
4881 struct btrfs_key key;
4882 struct btrfs_device *device;
4883 struct btrfs_chunk *chunk;
4884 struct btrfs_stripe *stripe;
4885 struct extent_map *em;
4886 struct map_lookup *map;
4887 size_t item_size;
4888 u64 dev_offset;
4889 u64 stripe_size;
4890 int i = 0;
4891 int ret = 0;
4892
4893 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4894 if (IS_ERR(em))
4895 return PTR_ERR(em);
4896
4897 map = em->map_lookup;
4898 item_size = btrfs_chunk_item_size(map->num_stripes);
4899 stripe_size = em->orig_block_len;
4900
4901 chunk = kzalloc(item_size, GFP_NOFS);
4902 if (!chunk) {
4903 ret = -ENOMEM;
4904 goto out;
4905 }
4906
4907 /*
4908 * Take the device list mutex to prevent races with the final phase of
4909 * a device replace operation that replaces the device object associated
4910 * with the map's stripes, because the device object's id can change
4911 * at any time during that final phase of the device replace operation
4912 * (dev-replace.c:btrfs_dev_replace_finishing()).
4913 */
4914 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4915 for (i = 0; i < map->num_stripes; i++) {
4916 device = map->stripes[i].dev;
4917 dev_offset = map->stripes[i].physical;
4918
4919 ret = btrfs_update_device(trans, device);
4920 if (ret)
4921 break;
4922 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4923 dev_offset, stripe_size);
4924 if (ret)
4925 break;
4926 }
4927 if (ret) {
4928 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4929 goto out;
4930 }
4931
4932 stripe = &chunk->stripe;
4933 for (i = 0; i < map->num_stripes; i++) {
4934 device = map->stripes[i].dev;
4935 dev_offset = map->stripes[i].physical;
4936
4937 btrfs_set_stack_stripe_devid(stripe, device->devid);
4938 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4939 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4940 stripe++;
4941 }
4942 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4943
4944 btrfs_set_stack_chunk_length(chunk, chunk_size);
4945 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4946 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4947 btrfs_set_stack_chunk_type(chunk, map->type);
4948 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4949 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4950 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4951 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4952 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4953
4954 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4955 key.type = BTRFS_CHUNK_ITEM_KEY;
4956 key.offset = chunk_offset;
4957
4958 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4959 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4960 /*
4961 * TODO: Cleanup of inserted chunk root in case of
4962 * failure.
4963 */
4964 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4965 }
4966
4967 out:
4968 kfree(chunk);
4969 free_extent_map(em);
4970 return ret;
4971 }
4972
4973 /*
4974 * Chunk allocation falls into two parts. The first part does works
4975 * that make the new allocated chunk useable, but not do any operation
4976 * that modifies the chunk tree. The second part does the works that
4977 * require modifying the chunk tree. This division is important for the
4978 * bootstrap process of adding storage to a seed btrfs.
4979 */
4980 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4981 {
4982 u64 chunk_offset;
4983
4984 lockdep_assert_held(&trans->fs_info->chunk_mutex);
4985 chunk_offset = find_next_chunk(trans->fs_info);
4986 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4987 }
4988
4989 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4990 struct btrfs_fs_info *fs_info)
4991 {
4992 u64 chunk_offset;
4993 u64 sys_chunk_offset;
4994 u64 alloc_profile;
4995 int ret;
4996
4997 chunk_offset = find_next_chunk(fs_info);
4998 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4999 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5000 if (ret)
5001 return ret;
5002
5003 sys_chunk_offset = find_next_chunk(fs_info);
5004 alloc_profile = btrfs_system_alloc_profile(fs_info);
5005 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5006 return ret;
5007 }
5008
5009 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5010 {
5011 int max_errors;
5012
5013 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5014 BTRFS_BLOCK_GROUP_RAID10 |
5015 BTRFS_BLOCK_GROUP_RAID5 |
5016 BTRFS_BLOCK_GROUP_DUP)) {
5017 max_errors = 1;
5018 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5019 max_errors = 2;
5020 } else {
5021 max_errors = 0;
5022 }
5023
5024 return max_errors;
5025 }
5026
5027 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5028 {
5029 struct extent_map *em;
5030 struct map_lookup *map;
5031 int readonly = 0;
5032 int miss_ndevs = 0;
5033 int i;
5034
5035 em = get_chunk_map(fs_info, chunk_offset, 1);
5036 if (IS_ERR(em))
5037 return 1;
5038
5039 map = em->map_lookup;
5040 for (i = 0; i < map->num_stripes; i++) {
5041 if (test_bit(BTRFS_DEV_STATE_MISSING,
5042 &map->stripes[i].dev->dev_state)) {
5043 miss_ndevs++;
5044 continue;
5045 }
5046 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5047 &map->stripes[i].dev->dev_state)) {
5048 readonly = 1;
5049 goto end;
5050 }
5051 }
5052
5053 /*
5054 * If the number of missing devices is larger than max errors,
5055 * we can not write the data into that chunk successfully, so
5056 * set it readonly.
5057 */
5058 if (miss_ndevs > btrfs_chunk_max_errors(map))
5059 readonly = 1;
5060 end:
5061 free_extent_map(em);
5062 return readonly;
5063 }
5064
5065 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5066 {
5067 extent_map_tree_init(&tree->map_tree);
5068 }
5069
5070 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5071 {
5072 struct extent_map *em;
5073
5074 while (1) {
5075 write_lock(&tree->map_tree.lock);
5076 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5077 if (em)
5078 remove_extent_mapping(&tree->map_tree, em);
5079 write_unlock(&tree->map_tree.lock);
5080 if (!em)
5081 break;
5082 /* once for us */
5083 free_extent_map(em);
5084 /* once for the tree */
5085 free_extent_map(em);
5086 }
5087 }
5088
5089 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5090 {
5091 struct extent_map *em;
5092 struct map_lookup *map;
5093 int ret;
5094
5095 em = get_chunk_map(fs_info, logical, len);
5096 if (IS_ERR(em))
5097 /*
5098 * We could return errors for these cases, but that could get
5099 * ugly and we'd probably do the same thing which is just not do
5100 * anything else and exit, so return 1 so the callers don't try
5101 * to use other copies.
5102 */
5103 return 1;
5104
5105 map = em->map_lookup;
5106 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5107 ret = map->num_stripes;
5108 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5109 ret = map->sub_stripes;
5110 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5111 ret = 2;
5112 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5113 /*
5114 * There could be two corrupted data stripes, we need
5115 * to loop retry in order to rebuild the correct data.
5116 *
5117 * Fail a stripe at a time on every retry except the
5118 * stripe under reconstruction.
5119 */
5120 ret = map->num_stripes;
5121 else
5122 ret = 1;
5123 free_extent_map(em);
5124
5125 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5126 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5127 fs_info->dev_replace.tgtdev)
5128 ret++;
5129 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5130
5131 return ret;
5132 }
5133
5134 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5135 u64 logical)
5136 {
5137 struct extent_map *em;
5138 struct map_lookup *map;
5139 unsigned long len = fs_info->sectorsize;
5140
5141 em = get_chunk_map(fs_info, logical, len);
5142
5143 if (!WARN_ON(IS_ERR(em))) {
5144 map = em->map_lookup;
5145 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5146 len = map->stripe_len * nr_data_stripes(map);
5147 free_extent_map(em);
5148 }
5149 return len;
5150 }
5151
5152 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5153 {
5154 struct extent_map *em;
5155 struct map_lookup *map;
5156 int ret = 0;
5157
5158 em = get_chunk_map(fs_info, logical, len);
5159
5160 if(!WARN_ON(IS_ERR(em))) {
5161 map = em->map_lookup;
5162 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5163 ret = 1;
5164 free_extent_map(em);
5165 }
5166 return ret;
5167 }
5168
5169 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5170 struct map_lookup *map, int first,
5171 int dev_replace_is_ongoing)
5172 {
5173 int i;
5174 int num_stripes;
5175 int preferred_mirror;
5176 int tolerance;
5177 struct btrfs_device *srcdev;
5178
5179 ASSERT((map->type &
5180 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5181
5182 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5183 num_stripes = map->sub_stripes;
5184 else
5185 num_stripes = map->num_stripes;
5186
5187 preferred_mirror = first + current->pid % num_stripes;
5188
5189 if (dev_replace_is_ongoing &&
5190 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5191 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5192 srcdev = fs_info->dev_replace.srcdev;
5193 else
5194 srcdev = NULL;
5195
5196 /*
5197 * try to avoid the drive that is the source drive for a
5198 * dev-replace procedure, only choose it if no other non-missing
5199 * mirror is available
5200 */
5201 for (tolerance = 0; tolerance < 2; tolerance++) {
5202 if (map->stripes[preferred_mirror].dev->bdev &&
5203 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5204 return preferred_mirror;
5205 for (i = first; i < first + num_stripes; i++) {
5206 if (map->stripes[i].dev->bdev &&
5207 (tolerance || map->stripes[i].dev != srcdev))
5208 return i;
5209 }
5210 }
5211
5212 /* we couldn't find one that doesn't fail. Just return something
5213 * and the io error handling code will clean up eventually
5214 */
5215 return preferred_mirror;
5216 }
5217
5218 static inline int parity_smaller(u64 a, u64 b)
5219 {
5220 return a > b;
5221 }
5222
5223 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5224 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5225 {
5226 struct btrfs_bio_stripe s;
5227 int i;
5228 u64 l;
5229 int again = 1;
5230
5231 while (again) {
5232 again = 0;
5233 for (i = 0; i < num_stripes - 1; i++) {
5234 if (parity_smaller(bbio->raid_map[i],
5235 bbio->raid_map[i+1])) {
5236 s = bbio->stripes[i];
5237 l = bbio->raid_map[i];
5238 bbio->stripes[i] = bbio->stripes[i+1];
5239 bbio->raid_map[i] = bbio->raid_map[i+1];
5240 bbio->stripes[i+1] = s;
5241 bbio->raid_map[i+1] = l;
5242
5243 again = 1;
5244 }
5245 }
5246 }
5247 }
5248
5249 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5250 {
5251 struct btrfs_bio *bbio = kzalloc(
5252 /* the size of the btrfs_bio */
5253 sizeof(struct btrfs_bio) +
5254 /* plus the variable array for the stripes */
5255 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5256 /* plus the variable array for the tgt dev */
5257 sizeof(int) * (real_stripes) +
5258 /*
5259 * plus the raid_map, which includes both the tgt dev
5260 * and the stripes
5261 */
5262 sizeof(u64) * (total_stripes),
5263 GFP_NOFS|__GFP_NOFAIL);
5264
5265 atomic_set(&bbio->error, 0);
5266 refcount_set(&bbio->refs, 1);
5267
5268 return bbio;
5269 }
5270
5271 void btrfs_get_bbio(struct btrfs_bio *bbio)
5272 {
5273 WARN_ON(!refcount_read(&bbio->refs));
5274 refcount_inc(&bbio->refs);
5275 }
5276
5277 void btrfs_put_bbio(struct btrfs_bio *bbio)
5278 {
5279 if (!bbio)
5280 return;
5281 if (refcount_dec_and_test(&bbio->refs))
5282 kfree(bbio);
5283 }
5284
5285 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5286 /*
5287 * Please note that, discard won't be sent to target device of device
5288 * replace.
5289 */
5290 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5291 u64 logical, u64 length,
5292 struct btrfs_bio **bbio_ret)
5293 {
5294 struct extent_map *em;
5295 struct map_lookup *map;
5296 struct btrfs_bio *bbio;
5297 u64 offset;
5298 u64 stripe_nr;
5299 u64 stripe_nr_end;
5300 u64 stripe_end_offset;
5301 u64 stripe_cnt;
5302 u64 stripe_len;
5303 u64 stripe_offset;
5304 u64 num_stripes;
5305 u32 stripe_index;
5306 u32 factor = 0;
5307 u32 sub_stripes = 0;
5308 u64 stripes_per_dev = 0;
5309 u32 remaining_stripes = 0;
5310 u32 last_stripe = 0;
5311 int ret = 0;
5312 int i;
5313
5314 /* discard always return a bbio */
5315 ASSERT(bbio_ret);
5316
5317 em = get_chunk_map(fs_info, logical, length);
5318 if (IS_ERR(em))
5319 return PTR_ERR(em);
5320
5321 map = em->map_lookup;
5322 /* we don't discard raid56 yet */
5323 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5324 ret = -EOPNOTSUPP;
5325 goto out;
5326 }
5327
5328 offset = logical - em->start;
5329 length = min_t(u64, em->len - offset, length);
5330
5331 stripe_len = map->stripe_len;
5332 /*
5333 * stripe_nr counts the total number of stripes we have to stride
5334 * to get to this block
5335 */
5336 stripe_nr = div64_u64(offset, stripe_len);
5337
5338 /* stripe_offset is the offset of this block in its stripe */
5339 stripe_offset = offset - stripe_nr * stripe_len;
5340
5341 stripe_nr_end = round_up(offset + length, map->stripe_len);
5342 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5343 stripe_cnt = stripe_nr_end - stripe_nr;
5344 stripe_end_offset = stripe_nr_end * map->stripe_len -
5345 (offset + length);
5346 /*
5347 * after this, stripe_nr is the number of stripes on this
5348 * device we have to walk to find the data, and stripe_index is
5349 * the number of our device in the stripe array
5350 */
5351 num_stripes = 1;
5352 stripe_index = 0;
5353 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5354 BTRFS_BLOCK_GROUP_RAID10)) {
5355 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5356 sub_stripes = 1;
5357 else
5358 sub_stripes = map->sub_stripes;
5359
5360 factor = map->num_stripes / sub_stripes;
5361 num_stripes = min_t(u64, map->num_stripes,
5362 sub_stripes * stripe_cnt);
5363 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5364 stripe_index *= sub_stripes;
5365 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5366 &remaining_stripes);
5367 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5368 last_stripe *= sub_stripes;
5369 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5370 BTRFS_BLOCK_GROUP_DUP)) {
5371 num_stripes = map->num_stripes;
5372 } else {
5373 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5374 &stripe_index);
5375 }
5376
5377 bbio = alloc_btrfs_bio(num_stripes, 0);
5378 if (!bbio) {
5379 ret = -ENOMEM;
5380 goto out;
5381 }
5382
5383 for (i = 0; i < num_stripes; i++) {
5384 bbio->stripes[i].physical =
5385 map->stripes[stripe_index].physical +
5386 stripe_offset + stripe_nr * map->stripe_len;
5387 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5388
5389 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5390 BTRFS_BLOCK_GROUP_RAID10)) {
5391 bbio->stripes[i].length = stripes_per_dev *
5392 map->stripe_len;
5393
5394 if (i / sub_stripes < remaining_stripes)
5395 bbio->stripes[i].length +=
5396 map->stripe_len;
5397
5398 /*
5399 * Special for the first stripe and
5400 * the last stripe:
5401 *
5402 * |-------|...|-------|
5403 * |----------|
5404 * off end_off
5405 */
5406 if (i < sub_stripes)
5407 bbio->stripes[i].length -=
5408 stripe_offset;
5409
5410 if (stripe_index >= last_stripe &&
5411 stripe_index <= (last_stripe +
5412 sub_stripes - 1))
5413 bbio->stripes[i].length -=
5414 stripe_end_offset;
5415
5416 if (i == sub_stripes - 1)
5417 stripe_offset = 0;
5418 } else {
5419 bbio->stripes[i].length = length;
5420 }
5421
5422 stripe_index++;
5423 if (stripe_index == map->num_stripes) {
5424 stripe_index = 0;
5425 stripe_nr++;
5426 }
5427 }
5428
5429 *bbio_ret = bbio;
5430 bbio->map_type = map->type;
5431 bbio->num_stripes = num_stripes;
5432 out:
5433 free_extent_map(em);
5434 return ret;
5435 }
5436
5437 /*
5438 * In dev-replace case, for repair case (that's the only case where the mirror
5439 * is selected explicitly when calling btrfs_map_block), blocks left of the
5440 * left cursor can also be read from the target drive.
5441 *
5442 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5443 * array of stripes.
5444 * For READ, it also needs to be supported using the same mirror number.
5445 *
5446 * If the requested block is not left of the left cursor, EIO is returned. This
5447 * can happen because btrfs_num_copies() returns one more in the dev-replace
5448 * case.
5449 */
5450 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5451 u64 logical, u64 length,
5452 u64 srcdev_devid, int *mirror_num,
5453 u64 *physical)
5454 {
5455 struct btrfs_bio *bbio = NULL;
5456 int num_stripes;
5457 int index_srcdev = 0;
5458 int found = 0;
5459 u64 physical_of_found = 0;
5460 int i;
5461 int ret = 0;
5462
5463 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5464 logical, &length, &bbio, 0, 0);
5465 if (ret) {
5466 ASSERT(bbio == NULL);
5467 return ret;
5468 }
5469
5470 num_stripes = bbio->num_stripes;
5471 if (*mirror_num > num_stripes) {
5472 /*
5473 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5474 * that means that the requested area is not left of the left
5475 * cursor
5476 */
5477 btrfs_put_bbio(bbio);
5478 return -EIO;
5479 }
5480
5481 /*
5482 * process the rest of the function using the mirror_num of the source
5483 * drive. Therefore look it up first. At the end, patch the device
5484 * pointer to the one of the target drive.
5485 */
5486 for (i = 0; i < num_stripes; i++) {
5487 if (bbio->stripes[i].dev->devid != srcdev_devid)
5488 continue;
5489
5490 /*
5491 * In case of DUP, in order to keep it simple, only add the
5492 * mirror with the lowest physical address
5493 */
5494 if (found &&
5495 physical_of_found <= bbio->stripes[i].physical)
5496 continue;
5497
5498 index_srcdev = i;
5499 found = 1;
5500 physical_of_found = bbio->stripes[i].physical;
5501 }
5502
5503 btrfs_put_bbio(bbio);
5504
5505 ASSERT(found);
5506 if (!found)
5507 return -EIO;
5508
5509 *mirror_num = index_srcdev + 1;
5510 *physical = physical_of_found;
5511 return ret;
5512 }
5513
5514 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5515 struct btrfs_bio **bbio_ret,
5516 struct btrfs_dev_replace *dev_replace,
5517 int *num_stripes_ret, int *max_errors_ret)
5518 {
5519 struct btrfs_bio *bbio = *bbio_ret;
5520 u64 srcdev_devid = dev_replace->srcdev->devid;
5521 int tgtdev_indexes = 0;
5522 int num_stripes = *num_stripes_ret;
5523 int max_errors = *max_errors_ret;
5524 int i;
5525
5526 if (op == BTRFS_MAP_WRITE) {
5527 int index_where_to_add;
5528
5529 /*
5530 * duplicate the write operations while the dev replace
5531 * procedure is running. Since the copying of the old disk to
5532 * the new disk takes place at run time while the filesystem is
5533 * mounted writable, the regular write operations to the old
5534 * disk have to be duplicated to go to the new disk as well.
5535 *
5536 * Note that device->missing is handled by the caller, and that
5537 * the write to the old disk is already set up in the stripes
5538 * array.
5539 */
5540 index_where_to_add = num_stripes;
5541 for (i = 0; i < num_stripes; i++) {
5542 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5543 /* write to new disk, too */
5544 struct btrfs_bio_stripe *new =
5545 bbio->stripes + index_where_to_add;
5546 struct btrfs_bio_stripe *old =
5547 bbio->stripes + i;
5548
5549 new->physical = old->physical;
5550 new->length = old->length;
5551 new->dev = dev_replace->tgtdev;
5552 bbio->tgtdev_map[i] = index_where_to_add;
5553 index_where_to_add++;
5554 max_errors++;
5555 tgtdev_indexes++;
5556 }
5557 }
5558 num_stripes = index_where_to_add;
5559 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5560 int index_srcdev = 0;
5561 int found = 0;
5562 u64 physical_of_found = 0;
5563
5564 /*
5565 * During the dev-replace procedure, the target drive can also
5566 * be used to read data in case it is needed to repair a corrupt
5567 * block elsewhere. This is possible if the requested area is
5568 * left of the left cursor. In this area, the target drive is a
5569 * full copy of the source drive.
5570 */
5571 for (i = 0; i < num_stripes; i++) {
5572 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5573 /*
5574 * In case of DUP, in order to keep it simple,
5575 * only add the mirror with the lowest physical
5576 * address
5577 */
5578 if (found &&
5579 physical_of_found <=
5580 bbio->stripes[i].physical)
5581 continue;
5582 index_srcdev = i;
5583 found = 1;
5584 physical_of_found = bbio->stripes[i].physical;
5585 }
5586 }
5587 if (found) {
5588 struct btrfs_bio_stripe *tgtdev_stripe =
5589 bbio->stripes + num_stripes;
5590
5591 tgtdev_stripe->physical = physical_of_found;
5592 tgtdev_stripe->length =
5593 bbio->stripes[index_srcdev].length;
5594 tgtdev_stripe->dev = dev_replace->tgtdev;
5595 bbio->tgtdev_map[index_srcdev] = num_stripes;
5596
5597 tgtdev_indexes++;
5598 num_stripes++;
5599 }
5600 }
5601
5602 *num_stripes_ret = num_stripes;
5603 *max_errors_ret = max_errors;
5604 bbio->num_tgtdevs = tgtdev_indexes;
5605 *bbio_ret = bbio;
5606 }
5607
5608 static bool need_full_stripe(enum btrfs_map_op op)
5609 {
5610 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5611 }
5612
5613 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5614 enum btrfs_map_op op,
5615 u64 logical, u64 *length,
5616 struct btrfs_bio **bbio_ret,
5617 int mirror_num, int need_raid_map)
5618 {
5619 struct extent_map *em;
5620 struct map_lookup *map;
5621 u64 offset;
5622 u64 stripe_offset;
5623 u64 stripe_nr;
5624 u64 stripe_len;
5625 u32 stripe_index;
5626 int i;
5627 int ret = 0;
5628 int num_stripes;
5629 int max_errors = 0;
5630 int tgtdev_indexes = 0;
5631 struct btrfs_bio *bbio = NULL;
5632 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5633 int dev_replace_is_ongoing = 0;
5634 int num_alloc_stripes;
5635 int patch_the_first_stripe_for_dev_replace = 0;
5636 u64 physical_to_patch_in_first_stripe = 0;
5637 u64 raid56_full_stripe_start = (u64)-1;
5638
5639 if (op == BTRFS_MAP_DISCARD)
5640 return __btrfs_map_block_for_discard(fs_info, logical,
5641 *length, bbio_ret);
5642
5643 em = get_chunk_map(fs_info, logical, *length);
5644 if (IS_ERR(em))
5645 return PTR_ERR(em);
5646
5647 map = em->map_lookup;
5648 offset = logical - em->start;
5649
5650 stripe_len = map->stripe_len;
5651 stripe_nr = offset;
5652 /*
5653 * stripe_nr counts the total number of stripes we have to stride
5654 * to get to this block
5655 */
5656 stripe_nr = div64_u64(stripe_nr, stripe_len);
5657
5658 stripe_offset = stripe_nr * stripe_len;
5659 if (offset < stripe_offset) {
5660 btrfs_crit(fs_info,
5661 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5662 stripe_offset, offset, em->start, logical,
5663 stripe_len);
5664 free_extent_map(em);
5665 return -EINVAL;
5666 }
5667
5668 /* stripe_offset is the offset of this block in its stripe*/
5669 stripe_offset = offset - stripe_offset;
5670
5671 /* if we're here for raid56, we need to know the stripe aligned start */
5672 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5673 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5674 raid56_full_stripe_start = offset;
5675
5676 /* allow a write of a full stripe, but make sure we don't
5677 * allow straddling of stripes
5678 */
5679 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5680 full_stripe_len);
5681 raid56_full_stripe_start *= full_stripe_len;
5682 }
5683
5684 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5685 u64 max_len;
5686 /* For writes to RAID[56], allow a full stripeset across all disks.
5687 For other RAID types and for RAID[56] reads, just allow a single
5688 stripe (on a single disk). */
5689 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5690 (op == BTRFS_MAP_WRITE)) {
5691 max_len = stripe_len * nr_data_stripes(map) -
5692 (offset - raid56_full_stripe_start);
5693 } else {
5694 /* we limit the length of each bio to what fits in a stripe */
5695 max_len = stripe_len - stripe_offset;
5696 }
5697 *length = min_t(u64, em->len - offset, max_len);
5698 } else {
5699 *length = em->len - offset;
5700 }
5701
5702 /* This is for when we're called from btrfs_merge_bio_hook() and all
5703 it cares about is the length */
5704 if (!bbio_ret)
5705 goto out;
5706
5707 btrfs_dev_replace_read_lock(dev_replace);
5708 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5709 if (!dev_replace_is_ongoing)
5710 btrfs_dev_replace_read_unlock(dev_replace);
5711 else
5712 btrfs_dev_replace_set_lock_blocking(dev_replace);
5713
5714 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5715 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5716 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5717 dev_replace->srcdev->devid,
5718 &mirror_num,
5719 &physical_to_patch_in_first_stripe);
5720 if (ret)
5721 goto out;
5722 else
5723 patch_the_first_stripe_for_dev_replace = 1;
5724 } else if (mirror_num > map->num_stripes) {
5725 mirror_num = 0;
5726 }
5727
5728 num_stripes = 1;
5729 stripe_index = 0;
5730 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5731 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5732 &stripe_index);
5733 if (!need_full_stripe(op))
5734 mirror_num = 1;
5735 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5736 if (need_full_stripe(op))
5737 num_stripes = map->num_stripes;
5738 else if (mirror_num)
5739 stripe_index = mirror_num - 1;
5740 else {
5741 stripe_index = find_live_mirror(fs_info, map, 0,
5742 dev_replace_is_ongoing);
5743 mirror_num = stripe_index + 1;
5744 }
5745
5746 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5747 if (need_full_stripe(op)) {
5748 num_stripes = map->num_stripes;
5749 } else if (mirror_num) {
5750 stripe_index = mirror_num - 1;
5751 } else {
5752 mirror_num = 1;
5753 }
5754
5755 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5756 u32 factor = map->num_stripes / map->sub_stripes;
5757
5758 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5759 stripe_index *= map->sub_stripes;
5760
5761 if (need_full_stripe(op))
5762 num_stripes = map->sub_stripes;
5763 else if (mirror_num)
5764 stripe_index += mirror_num - 1;
5765 else {
5766 int old_stripe_index = stripe_index;
5767 stripe_index = find_live_mirror(fs_info, map,
5768 stripe_index,
5769 dev_replace_is_ongoing);
5770 mirror_num = stripe_index - old_stripe_index + 1;
5771 }
5772
5773 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5774 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5775 /* push stripe_nr back to the start of the full stripe */
5776 stripe_nr = div64_u64(raid56_full_stripe_start,
5777 stripe_len * nr_data_stripes(map));
5778
5779 /* RAID[56] write or recovery. Return all stripes */
5780 num_stripes = map->num_stripes;
5781 max_errors = nr_parity_stripes(map);
5782
5783 *length = map->stripe_len;
5784 stripe_index = 0;
5785 stripe_offset = 0;
5786 } else {
5787 /*
5788 * Mirror #0 or #1 means the original data block.
5789 * Mirror #2 is RAID5 parity block.
5790 * Mirror #3 is RAID6 Q block.
5791 */
5792 stripe_nr = div_u64_rem(stripe_nr,
5793 nr_data_stripes(map), &stripe_index);
5794 if (mirror_num > 1)
5795 stripe_index = nr_data_stripes(map) +
5796 mirror_num - 2;
5797
5798 /* We distribute the parity blocks across stripes */
5799 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5800 &stripe_index);
5801 if (!need_full_stripe(op) && mirror_num <= 1)
5802 mirror_num = 1;
5803 }
5804 } else {
5805 /*
5806 * after this, stripe_nr is the number of stripes on this
5807 * device we have to walk to find the data, and stripe_index is
5808 * the number of our device in the stripe array
5809 */
5810 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5811 &stripe_index);
5812 mirror_num = stripe_index + 1;
5813 }
5814 if (stripe_index >= map->num_stripes) {
5815 btrfs_crit(fs_info,
5816 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5817 stripe_index, map->num_stripes);
5818 ret = -EINVAL;
5819 goto out;
5820 }
5821
5822 num_alloc_stripes = num_stripes;
5823 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5824 if (op == BTRFS_MAP_WRITE)
5825 num_alloc_stripes <<= 1;
5826 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5827 num_alloc_stripes++;
5828 tgtdev_indexes = num_stripes;
5829 }
5830
5831 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5832 if (!bbio) {
5833 ret = -ENOMEM;
5834 goto out;
5835 }
5836 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5837 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5838
5839 /* build raid_map */
5840 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5841 (need_full_stripe(op) || mirror_num > 1)) {
5842 u64 tmp;
5843 unsigned rot;
5844
5845 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5846 sizeof(struct btrfs_bio_stripe) *
5847 num_alloc_stripes +
5848 sizeof(int) * tgtdev_indexes);
5849
5850 /* Work out the disk rotation on this stripe-set */
5851 div_u64_rem(stripe_nr, num_stripes, &rot);
5852
5853 /* Fill in the logical address of each stripe */
5854 tmp = stripe_nr * nr_data_stripes(map);
5855 for (i = 0; i < nr_data_stripes(map); i++)
5856 bbio->raid_map[(i+rot) % num_stripes] =
5857 em->start + (tmp + i) * map->stripe_len;
5858
5859 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5860 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5861 bbio->raid_map[(i+rot+1) % num_stripes] =
5862 RAID6_Q_STRIPE;
5863 }
5864
5865
5866 for (i = 0; i < num_stripes; i++) {
5867 bbio->stripes[i].physical =
5868 map->stripes[stripe_index].physical +
5869 stripe_offset +
5870 stripe_nr * map->stripe_len;
5871 bbio->stripes[i].dev =
5872 map->stripes[stripe_index].dev;
5873 stripe_index++;
5874 }
5875
5876 if (need_full_stripe(op))
5877 max_errors = btrfs_chunk_max_errors(map);
5878
5879 if (bbio->raid_map)
5880 sort_parity_stripes(bbio, num_stripes);
5881
5882 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5883 need_full_stripe(op)) {
5884 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5885 &max_errors);
5886 }
5887
5888 *bbio_ret = bbio;
5889 bbio->map_type = map->type;
5890 bbio->num_stripes = num_stripes;
5891 bbio->max_errors = max_errors;
5892 bbio->mirror_num = mirror_num;
5893
5894 /*
5895 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5896 * mirror_num == num_stripes + 1 && dev_replace target drive is
5897 * available as a mirror
5898 */
5899 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5900 WARN_ON(num_stripes > 1);
5901 bbio->stripes[0].dev = dev_replace->tgtdev;
5902 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5903 bbio->mirror_num = map->num_stripes + 1;
5904 }
5905 out:
5906 if (dev_replace_is_ongoing) {
5907 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5908 btrfs_dev_replace_read_unlock(dev_replace);
5909 }
5910 free_extent_map(em);
5911 return ret;
5912 }
5913
5914 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5915 u64 logical, u64 *length,
5916 struct btrfs_bio **bbio_ret, int mirror_num)
5917 {
5918 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5919 mirror_num, 0);
5920 }
5921
5922 /* For Scrub/replace */
5923 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5924 u64 logical, u64 *length,
5925 struct btrfs_bio **bbio_ret)
5926 {
5927 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5928 }
5929
5930 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5931 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5932 {
5933 struct extent_map *em;
5934 struct map_lookup *map;
5935 u64 *buf;
5936 u64 bytenr;
5937 u64 length;
5938 u64 stripe_nr;
5939 u64 rmap_len;
5940 int i, j, nr = 0;
5941
5942 em = get_chunk_map(fs_info, chunk_start, 1);
5943 if (IS_ERR(em))
5944 return -EIO;
5945
5946 map = em->map_lookup;
5947 length = em->len;
5948 rmap_len = map->stripe_len;
5949
5950 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5951 length = div_u64(length, map->num_stripes / map->sub_stripes);
5952 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5953 length = div_u64(length, map->num_stripes);
5954 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5955 length = div_u64(length, nr_data_stripes(map));
5956 rmap_len = map->stripe_len * nr_data_stripes(map);
5957 }
5958
5959 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5960 BUG_ON(!buf); /* -ENOMEM */
5961
5962 for (i = 0; i < map->num_stripes; i++) {
5963 if (map->stripes[i].physical > physical ||
5964 map->stripes[i].physical + length <= physical)
5965 continue;
5966
5967 stripe_nr = physical - map->stripes[i].physical;
5968 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5969
5970 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5971 stripe_nr = stripe_nr * map->num_stripes + i;
5972 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5973 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5974 stripe_nr = stripe_nr * map->num_stripes + i;
5975 } /* else if RAID[56], multiply by nr_data_stripes().
5976 * Alternatively, just use rmap_len below instead of
5977 * map->stripe_len */
5978
5979 bytenr = chunk_start + stripe_nr * rmap_len;
5980 WARN_ON(nr >= map->num_stripes);
5981 for (j = 0; j < nr; j++) {
5982 if (buf[j] == bytenr)
5983 break;
5984 }
5985 if (j == nr) {
5986 WARN_ON(nr >= map->num_stripes);
5987 buf[nr++] = bytenr;
5988 }
5989 }
5990
5991 *logical = buf;
5992 *naddrs = nr;
5993 *stripe_len = rmap_len;
5994
5995 free_extent_map(em);
5996 return 0;
5997 }
5998
5999 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6000 {
6001 bio->bi_private = bbio->private;
6002 bio->bi_end_io = bbio->end_io;
6003 bio_endio(bio);
6004
6005 btrfs_put_bbio(bbio);
6006 }
6007
6008 static void btrfs_end_bio(struct bio *bio)
6009 {
6010 struct btrfs_bio *bbio = bio->bi_private;
6011 int is_orig_bio = 0;
6012
6013 if (bio->bi_status) {
6014 atomic_inc(&bbio->error);
6015 if (bio->bi_status == BLK_STS_IOERR ||
6016 bio->bi_status == BLK_STS_TARGET) {
6017 unsigned int stripe_index =
6018 btrfs_io_bio(bio)->stripe_index;
6019 struct btrfs_device *dev;
6020
6021 BUG_ON(stripe_index >= bbio->num_stripes);
6022 dev = bbio->stripes[stripe_index].dev;
6023 if (dev->bdev) {
6024 if (bio_op(bio) == REQ_OP_WRITE)
6025 btrfs_dev_stat_inc_and_print(dev,
6026 BTRFS_DEV_STAT_WRITE_ERRS);
6027 else
6028 btrfs_dev_stat_inc_and_print(dev,
6029 BTRFS_DEV_STAT_READ_ERRS);
6030 if (bio->bi_opf & REQ_PREFLUSH)
6031 btrfs_dev_stat_inc_and_print(dev,
6032 BTRFS_DEV_STAT_FLUSH_ERRS);
6033 }
6034 }
6035 }
6036
6037 if (bio == bbio->orig_bio)
6038 is_orig_bio = 1;
6039
6040 btrfs_bio_counter_dec(bbio->fs_info);
6041
6042 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6043 if (!is_orig_bio) {
6044 bio_put(bio);
6045 bio = bbio->orig_bio;
6046 }
6047
6048 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6049 /* only send an error to the higher layers if it is
6050 * beyond the tolerance of the btrfs bio
6051 */
6052 if (atomic_read(&bbio->error) > bbio->max_errors) {
6053 bio->bi_status = BLK_STS_IOERR;
6054 } else {
6055 /*
6056 * this bio is actually up to date, we didn't
6057 * go over the max number of errors
6058 */
6059 bio->bi_status = BLK_STS_OK;
6060 }
6061
6062 btrfs_end_bbio(bbio, bio);
6063 } else if (!is_orig_bio) {
6064 bio_put(bio);
6065 }
6066 }
6067
6068 /*
6069 * see run_scheduled_bios for a description of why bios are collected for
6070 * async submit.
6071 *
6072 * This will add one bio to the pending list for a device and make sure
6073 * the work struct is scheduled.
6074 */
6075 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6076 struct bio *bio)
6077 {
6078 struct btrfs_fs_info *fs_info = device->fs_info;
6079 int should_queue = 1;
6080 struct btrfs_pending_bios *pending_bios;
6081
6082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6083 !device->bdev) {
6084 bio_io_error(bio);
6085 return;
6086 }
6087
6088 /* don't bother with additional async steps for reads, right now */
6089 if (bio_op(bio) == REQ_OP_READ) {
6090 btrfsic_submit_bio(bio);
6091 return;
6092 }
6093
6094 WARN_ON(bio->bi_next);
6095 bio->bi_next = NULL;
6096
6097 spin_lock(&device->io_lock);
6098 if (op_is_sync(bio->bi_opf))
6099 pending_bios = &device->pending_sync_bios;
6100 else
6101 pending_bios = &device->pending_bios;
6102
6103 if (pending_bios->tail)
6104 pending_bios->tail->bi_next = bio;
6105
6106 pending_bios->tail = bio;
6107 if (!pending_bios->head)
6108 pending_bios->head = bio;
6109 if (device->running_pending)
6110 should_queue = 0;
6111
6112 spin_unlock(&device->io_lock);
6113
6114 if (should_queue)
6115 btrfs_queue_work(fs_info->submit_workers, &device->work);
6116 }
6117
6118 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6119 u64 physical, int dev_nr, int async)
6120 {
6121 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6122 struct btrfs_fs_info *fs_info = bbio->fs_info;
6123
6124 bio->bi_private = bbio;
6125 btrfs_io_bio(bio)->stripe_index = dev_nr;
6126 bio->bi_end_io = btrfs_end_bio;
6127 bio->bi_iter.bi_sector = physical >> 9;
6128 btrfs_debug_in_rcu(fs_info,
6129 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6130 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6131 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6132 bio->bi_iter.bi_size);
6133 bio_set_dev(bio, dev->bdev);
6134
6135 btrfs_bio_counter_inc_noblocked(fs_info);
6136
6137 if (async)
6138 btrfs_schedule_bio(dev, bio);
6139 else
6140 btrfsic_submit_bio(bio);
6141 }
6142
6143 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6144 {
6145 atomic_inc(&bbio->error);
6146 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6147 /* Should be the original bio. */
6148 WARN_ON(bio != bbio->orig_bio);
6149
6150 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6151 bio->bi_iter.bi_sector = logical >> 9;
6152 if (atomic_read(&bbio->error) > bbio->max_errors)
6153 bio->bi_status = BLK_STS_IOERR;
6154 else
6155 bio->bi_status = BLK_STS_OK;
6156 btrfs_end_bbio(bbio, bio);
6157 }
6158 }
6159
6160 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6161 int mirror_num, int async_submit)
6162 {
6163 struct btrfs_device *dev;
6164 struct bio *first_bio = bio;
6165 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6166 u64 length = 0;
6167 u64 map_length;
6168 int ret;
6169 int dev_nr;
6170 int total_devs;
6171 struct btrfs_bio *bbio = NULL;
6172
6173 length = bio->bi_iter.bi_size;
6174 map_length = length;
6175
6176 btrfs_bio_counter_inc_blocked(fs_info);
6177 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6178 &map_length, &bbio, mirror_num, 1);
6179 if (ret) {
6180 btrfs_bio_counter_dec(fs_info);
6181 return errno_to_blk_status(ret);
6182 }
6183
6184 total_devs = bbio->num_stripes;
6185 bbio->orig_bio = first_bio;
6186 bbio->private = first_bio->bi_private;
6187 bbio->end_io = first_bio->bi_end_io;
6188 bbio->fs_info = fs_info;
6189 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6190
6191 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6192 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6193 /* In this case, map_length has been set to the length of
6194 a single stripe; not the whole write */
6195 if (bio_op(bio) == REQ_OP_WRITE) {
6196 ret = raid56_parity_write(fs_info, bio, bbio,
6197 map_length);
6198 } else {
6199 ret = raid56_parity_recover(fs_info, bio, bbio,
6200 map_length, mirror_num, 1);
6201 }
6202
6203 btrfs_bio_counter_dec(fs_info);
6204 return errno_to_blk_status(ret);
6205 }
6206
6207 if (map_length < length) {
6208 btrfs_crit(fs_info,
6209 "mapping failed logical %llu bio len %llu len %llu",
6210 logical, length, map_length);
6211 BUG();
6212 }
6213
6214 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6215 dev = bbio->stripes[dev_nr].dev;
6216 if (!dev || !dev->bdev ||
6217 (bio_op(first_bio) == REQ_OP_WRITE &&
6218 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6219 bbio_error(bbio, first_bio, logical);
6220 continue;
6221 }
6222
6223 if (dev_nr < total_devs - 1)
6224 bio = btrfs_bio_clone(first_bio);
6225 else
6226 bio = first_bio;
6227
6228 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6229 dev_nr, async_submit);
6230 }
6231 btrfs_bio_counter_dec(fs_info);
6232 return BLK_STS_OK;
6233 }
6234
6235 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6236 u8 *uuid, u8 *fsid)
6237 {
6238 struct btrfs_device *device;
6239 struct btrfs_fs_devices *cur_devices;
6240
6241 cur_devices = fs_info->fs_devices;
6242 while (cur_devices) {
6243 if (!fsid ||
6244 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6245 device = find_device(cur_devices, devid, uuid);
6246 if (device)
6247 return device;
6248 }
6249 cur_devices = cur_devices->seed;
6250 }
6251 return NULL;
6252 }
6253
6254 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6255 u64 devid, u8 *dev_uuid)
6256 {
6257 struct btrfs_device *device;
6258
6259 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6260 if (IS_ERR(device))
6261 return device;
6262
6263 list_add(&device->dev_list, &fs_devices->devices);
6264 device->fs_devices = fs_devices;
6265 fs_devices->num_devices++;
6266
6267 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6268 fs_devices->missing_devices++;
6269
6270 return device;
6271 }
6272
6273 /**
6274 * btrfs_alloc_device - allocate struct btrfs_device
6275 * @fs_info: used only for generating a new devid, can be NULL if
6276 * devid is provided (i.e. @devid != NULL).
6277 * @devid: a pointer to devid for this device. If NULL a new devid
6278 * is generated.
6279 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6280 * is generated.
6281 *
6282 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6283 * on error. Returned struct is not linked onto any lists and must be
6284 * destroyed with btrfs_free_device.
6285 */
6286 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6287 const u64 *devid,
6288 const u8 *uuid)
6289 {
6290 struct btrfs_device *dev;
6291 u64 tmp;
6292
6293 if (WARN_ON(!devid && !fs_info))
6294 return ERR_PTR(-EINVAL);
6295
6296 dev = __alloc_device();
6297 if (IS_ERR(dev))
6298 return dev;
6299
6300 if (devid)
6301 tmp = *devid;
6302 else {
6303 int ret;
6304
6305 ret = find_next_devid(fs_info, &tmp);
6306 if (ret) {
6307 btrfs_free_device(dev);
6308 return ERR_PTR(ret);
6309 }
6310 }
6311 dev->devid = tmp;
6312
6313 if (uuid)
6314 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6315 else
6316 generate_random_uuid(dev->uuid);
6317
6318 btrfs_init_work(&dev->work, btrfs_submit_helper,
6319 pending_bios_fn, NULL, NULL);
6320
6321 return dev;
6322 }
6323
6324 /* Return -EIO if any error, otherwise return 0. */
6325 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6326 struct extent_buffer *leaf,
6327 struct btrfs_chunk *chunk, u64 logical)
6328 {
6329 u64 length;
6330 u64 stripe_len;
6331 u16 num_stripes;
6332 u16 sub_stripes;
6333 u64 type;
6334 u64 features;
6335 bool mixed = false;
6336
6337 length = btrfs_chunk_length(leaf, chunk);
6338 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6339 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6340 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6341 type = btrfs_chunk_type(leaf, chunk);
6342
6343 if (!num_stripes) {
6344 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6345 num_stripes);
6346 return -EIO;
6347 }
6348 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6349 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6350 return -EIO;
6351 }
6352 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6353 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6354 btrfs_chunk_sector_size(leaf, chunk));
6355 return -EIO;
6356 }
6357 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6358 btrfs_err(fs_info, "invalid chunk length %llu", length);
6359 return -EIO;
6360 }
6361 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6362 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6363 stripe_len);
6364 return -EIO;
6365 }
6366 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6367 type) {
6368 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6369 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6370 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6371 btrfs_chunk_type(leaf, chunk));
6372 return -EIO;
6373 }
6374
6375 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6376 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6377 return -EIO;
6378 }
6379
6380 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6381 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6382 btrfs_err(fs_info,
6383 "system chunk with data or metadata type: 0x%llx", type);
6384 return -EIO;
6385 }
6386
6387 features = btrfs_super_incompat_flags(fs_info->super_copy);
6388 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6389 mixed = true;
6390
6391 if (!mixed) {
6392 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6393 (type & BTRFS_BLOCK_GROUP_DATA)) {
6394 btrfs_err(fs_info,
6395 "mixed chunk type in non-mixed mode: 0x%llx", type);
6396 return -EIO;
6397 }
6398 }
6399
6400 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6401 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6402 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6403 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6404 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6405 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6406 num_stripes != 1)) {
6407 btrfs_err(fs_info,
6408 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6409 num_stripes, sub_stripes,
6410 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6411 return -EIO;
6412 }
6413
6414 return 0;
6415 }
6416
6417 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6418 u64 devid, u8 *uuid, bool error)
6419 {
6420 if (error)
6421 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6422 devid, uuid);
6423 else
6424 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6425 devid, uuid);
6426 }
6427
6428 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6429 struct extent_buffer *leaf,
6430 struct btrfs_chunk *chunk)
6431 {
6432 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6433 struct map_lookup *map;
6434 struct extent_map *em;
6435 u64 logical;
6436 u64 length;
6437 u64 devid;
6438 u8 uuid[BTRFS_UUID_SIZE];
6439 int num_stripes;
6440 int ret;
6441 int i;
6442
6443 logical = key->offset;
6444 length = btrfs_chunk_length(leaf, chunk);
6445 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6446
6447 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6448 if (ret)
6449 return ret;
6450
6451 read_lock(&map_tree->map_tree.lock);
6452 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6453 read_unlock(&map_tree->map_tree.lock);
6454
6455 /* already mapped? */
6456 if (em && em->start <= logical && em->start + em->len > logical) {
6457 free_extent_map(em);
6458 return 0;
6459 } else if (em) {
6460 free_extent_map(em);
6461 }
6462
6463 em = alloc_extent_map();
6464 if (!em)
6465 return -ENOMEM;
6466 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6467 if (!map) {
6468 free_extent_map(em);
6469 return -ENOMEM;
6470 }
6471
6472 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6473 em->map_lookup = map;
6474 em->start = logical;
6475 em->len = length;
6476 em->orig_start = 0;
6477 em->block_start = 0;
6478 em->block_len = em->len;
6479
6480 map->num_stripes = num_stripes;
6481 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6482 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6483 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6484 map->type = btrfs_chunk_type(leaf, chunk);
6485 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6486 map->verified_stripes = 0;
6487 for (i = 0; i < num_stripes; i++) {
6488 map->stripes[i].physical =
6489 btrfs_stripe_offset_nr(leaf, chunk, i);
6490 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6491 read_extent_buffer(leaf, uuid, (unsigned long)
6492 btrfs_stripe_dev_uuid_nr(chunk, i),
6493 BTRFS_UUID_SIZE);
6494 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6495 uuid, NULL);
6496 if (!map->stripes[i].dev &&
6497 !btrfs_test_opt(fs_info, DEGRADED)) {
6498 free_extent_map(em);
6499 btrfs_report_missing_device(fs_info, devid, uuid, true);
6500 return -ENOENT;
6501 }
6502 if (!map->stripes[i].dev) {
6503 map->stripes[i].dev =
6504 add_missing_dev(fs_info->fs_devices, devid,
6505 uuid);
6506 if (IS_ERR(map->stripes[i].dev)) {
6507 free_extent_map(em);
6508 btrfs_err(fs_info,
6509 "failed to init missing dev %llu: %ld",
6510 devid, PTR_ERR(map->stripes[i].dev));
6511 return PTR_ERR(map->stripes[i].dev);
6512 }
6513 btrfs_report_missing_device(fs_info, devid, uuid, false);
6514 }
6515 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6516 &(map->stripes[i].dev->dev_state));
6517
6518 }
6519
6520 write_lock(&map_tree->map_tree.lock);
6521 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6522 write_unlock(&map_tree->map_tree.lock);
6523 if (ret < 0) {
6524 btrfs_err(fs_info,
6525 "failed to add chunk map, start=%llu len=%llu: %d",
6526 em->start, em->len, ret);
6527 }
6528 free_extent_map(em);
6529
6530 return ret;
6531 }
6532
6533 static void fill_device_from_item(struct extent_buffer *leaf,
6534 struct btrfs_dev_item *dev_item,
6535 struct btrfs_device *device)
6536 {
6537 unsigned long ptr;
6538
6539 device->devid = btrfs_device_id(leaf, dev_item);
6540 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6541 device->total_bytes = device->disk_total_bytes;
6542 device->commit_total_bytes = device->disk_total_bytes;
6543 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6544 device->commit_bytes_used = device->bytes_used;
6545 device->type = btrfs_device_type(leaf, dev_item);
6546 device->io_align = btrfs_device_io_align(leaf, dev_item);
6547 device->io_width = btrfs_device_io_width(leaf, dev_item);
6548 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6549 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6550 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6551
6552 ptr = btrfs_device_uuid(dev_item);
6553 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6554 }
6555
6556 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6557 u8 *fsid)
6558 {
6559 struct btrfs_fs_devices *fs_devices;
6560 int ret;
6561
6562 lockdep_assert_held(&uuid_mutex);
6563 ASSERT(fsid);
6564
6565 fs_devices = fs_info->fs_devices->seed;
6566 while (fs_devices) {
6567 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6568 return fs_devices;
6569
6570 fs_devices = fs_devices->seed;
6571 }
6572
6573 fs_devices = find_fsid(fsid);
6574 if (!fs_devices) {
6575 if (!btrfs_test_opt(fs_info, DEGRADED))
6576 return ERR_PTR(-ENOENT);
6577
6578 fs_devices = alloc_fs_devices(fsid);
6579 if (IS_ERR(fs_devices))
6580 return fs_devices;
6581
6582 fs_devices->seeding = 1;
6583 fs_devices->opened = 1;
6584 return fs_devices;
6585 }
6586
6587 fs_devices = clone_fs_devices(fs_devices);
6588 if (IS_ERR(fs_devices))
6589 return fs_devices;
6590
6591 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6592 if (ret) {
6593 free_fs_devices(fs_devices);
6594 fs_devices = ERR_PTR(ret);
6595 goto out;
6596 }
6597
6598 if (!fs_devices->seeding) {
6599 close_fs_devices(fs_devices);
6600 free_fs_devices(fs_devices);
6601 fs_devices = ERR_PTR(-EINVAL);
6602 goto out;
6603 }
6604
6605 fs_devices->seed = fs_info->fs_devices->seed;
6606 fs_info->fs_devices->seed = fs_devices;
6607 out:
6608 return fs_devices;
6609 }
6610
6611 static int read_one_dev(struct btrfs_fs_info *fs_info,
6612 struct extent_buffer *leaf,
6613 struct btrfs_dev_item *dev_item)
6614 {
6615 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6616 struct btrfs_device *device;
6617 u64 devid;
6618 int ret;
6619 u8 fs_uuid[BTRFS_FSID_SIZE];
6620 u8 dev_uuid[BTRFS_UUID_SIZE];
6621
6622 devid = btrfs_device_id(leaf, dev_item);
6623 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6624 BTRFS_UUID_SIZE);
6625 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6626 BTRFS_FSID_SIZE);
6627
6628 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6629 fs_devices = open_seed_devices(fs_info, fs_uuid);
6630 if (IS_ERR(fs_devices))
6631 return PTR_ERR(fs_devices);
6632 }
6633
6634 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6635 if (!device) {
6636 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6637 btrfs_report_missing_device(fs_info, devid,
6638 dev_uuid, true);
6639 return -ENOENT;
6640 }
6641
6642 device = add_missing_dev(fs_devices, devid, dev_uuid);
6643 if (IS_ERR(device)) {
6644 btrfs_err(fs_info,
6645 "failed to add missing dev %llu: %ld",
6646 devid, PTR_ERR(device));
6647 return PTR_ERR(device);
6648 }
6649 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6650 } else {
6651 if (!device->bdev) {
6652 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6653 btrfs_report_missing_device(fs_info,
6654 devid, dev_uuid, true);
6655 return -ENOENT;
6656 }
6657 btrfs_report_missing_device(fs_info, devid,
6658 dev_uuid, false);
6659 }
6660
6661 if (!device->bdev &&
6662 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6663 /*
6664 * this happens when a device that was properly setup
6665 * in the device info lists suddenly goes bad.
6666 * device->bdev is NULL, and so we have to set
6667 * device->missing to one here
6668 */
6669 device->fs_devices->missing_devices++;
6670 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6671 }
6672
6673 /* Move the device to its own fs_devices */
6674 if (device->fs_devices != fs_devices) {
6675 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6676 &device->dev_state));
6677
6678 list_move(&device->dev_list, &fs_devices->devices);
6679 device->fs_devices->num_devices--;
6680 fs_devices->num_devices++;
6681
6682 device->fs_devices->missing_devices--;
6683 fs_devices->missing_devices++;
6684
6685 device->fs_devices = fs_devices;
6686 }
6687 }
6688
6689 if (device->fs_devices != fs_info->fs_devices) {
6690 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6691 if (device->generation !=
6692 btrfs_device_generation(leaf, dev_item))
6693 return -EINVAL;
6694 }
6695
6696 fill_device_from_item(leaf, dev_item, device);
6697 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6699 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6700 device->fs_devices->total_rw_bytes += device->total_bytes;
6701 atomic64_add(device->total_bytes - device->bytes_used,
6702 &fs_info->free_chunk_space);
6703 }
6704 ret = 0;
6705 return ret;
6706 }
6707
6708 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6709 {
6710 struct btrfs_root *root = fs_info->tree_root;
6711 struct btrfs_super_block *super_copy = fs_info->super_copy;
6712 struct extent_buffer *sb;
6713 struct btrfs_disk_key *disk_key;
6714 struct btrfs_chunk *chunk;
6715 u8 *array_ptr;
6716 unsigned long sb_array_offset;
6717 int ret = 0;
6718 u32 num_stripes;
6719 u32 array_size;
6720 u32 len = 0;
6721 u32 cur_offset;
6722 u64 type;
6723 struct btrfs_key key;
6724
6725 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6726 /*
6727 * This will create extent buffer of nodesize, superblock size is
6728 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6729 * overallocate but we can keep it as-is, only the first page is used.
6730 */
6731 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6732 if (IS_ERR(sb))
6733 return PTR_ERR(sb);
6734 set_extent_buffer_uptodate(sb);
6735 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6736 /*
6737 * The sb extent buffer is artificial and just used to read the system array.
6738 * set_extent_buffer_uptodate() call does not properly mark all it's
6739 * pages up-to-date when the page is larger: extent does not cover the
6740 * whole page and consequently check_page_uptodate does not find all
6741 * the page's extents up-to-date (the hole beyond sb),
6742 * write_extent_buffer then triggers a WARN_ON.
6743 *
6744 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6745 * but sb spans only this function. Add an explicit SetPageUptodate call
6746 * to silence the warning eg. on PowerPC 64.
6747 */
6748 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6749 SetPageUptodate(sb->pages[0]);
6750
6751 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6752 array_size = btrfs_super_sys_array_size(super_copy);
6753
6754 array_ptr = super_copy->sys_chunk_array;
6755 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6756 cur_offset = 0;
6757
6758 while (cur_offset < array_size) {
6759 disk_key = (struct btrfs_disk_key *)array_ptr;
6760 len = sizeof(*disk_key);
6761 if (cur_offset + len > array_size)
6762 goto out_short_read;
6763
6764 btrfs_disk_key_to_cpu(&key, disk_key);
6765
6766 array_ptr += len;
6767 sb_array_offset += len;
6768 cur_offset += len;
6769
6770 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6771 chunk = (struct btrfs_chunk *)sb_array_offset;
6772 /*
6773 * At least one btrfs_chunk with one stripe must be
6774 * present, exact stripe count check comes afterwards
6775 */
6776 len = btrfs_chunk_item_size(1);
6777 if (cur_offset + len > array_size)
6778 goto out_short_read;
6779
6780 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6781 if (!num_stripes) {
6782 btrfs_err(fs_info,
6783 "invalid number of stripes %u in sys_array at offset %u",
6784 num_stripes, cur_offset);
6785 ret = -EIO;
6786 break;
6787 }
6788
6789 type = btrfs_chunk_type(sb, chunk);
6790 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6791 btrfs_err(fs_info,
6792 "invalid chunk type %llu in sys_array at offset %u",
6793 type, cur_offset);
6794 ret = -EIO;
6795 break;
6796 }
6797
6798 len = btrfs_chunk_item_size(num_stripes);
6799 if (cur_offset + len > array_size)
6800 goto out_short_read;
6801
6802 ret = read_one_chunk(fs_info, &key, sb, chunk);
6803 if (ret)
6804 break;
6805 } else {
6806 btrfs_err(fs_info,
6807 "unexpected item type %u in sys_array at offset %u",
6808 (u32)key.type, cur_offset);
6809 ret = -EIO;
6810 break;
6811 }
6812 array_ptr += len;
6813 sb_array_offset += len;
6814 cur_offset += len;
6815 }
6816 clear_extent_buffer_uptodate(sb);
6817 free_extent_buffer_stale(sb);
6818 return ret;
6819
6820 out_short_read:
6821 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6822 len, cur_offset);
6823 clear_extent_buffer_uptodate(sb);
6824 free_extent_buffer_stale(sb);
6825 return -EIO;
6826 }
6827
6828 /*
6829 * Check if all chunks in the fs are OK for read-write degraded mount
6830 *
6831 * If the @failing_dev is specified, it's accounted as missing.
6832 *
6833 * Return true if all chunks meet the minimal RW mount requirements.
6834 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6835 */
6836 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6837 struct btrfs_device *failing_dev)
6838 {
6839 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6840 struct extent_map *em;
6841 u64 next_start = 0;
6842 bool ret = true;
6843
6844 read_lock(&map_tree->map_tree.lock);
6845 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6846 read_unlock(&map_tree->map_tree.lock);
6847 /* No chunk at all? Return false anyway */
6848 if (!em) {
6849 ret = false;
6850 goto out;
6851 }
6852 while (em) {
6853 struct map_lookup *map;
6854 int missing = 0;
6855 int max_tolerated;
6856 int i;
6857
6858 map = em->map_lookup;
6859 max_tolerated =
6860 btrfs_get_num_tolerated_disk_barrier_failures(
6861 map->type);
6862 for (i = 0; i < map->num_stripes; i++) {
6863 struct btrfs_device *dev = map->stripes[i].dev;
6864
6865 if (!dev || !dev->bdev ||
6866 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6867 dev->last_flush_error)
6868 missing++;
6869 else if (failing_dev && failing_dev == dev)
6870 missing++;
6871 }
6872 if (missing > max_tolerated) {
6873 if (!failing_dev)
6874 btrfs_warn(fs_info,
6875 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6876 em->start, missing, max_tolerated);
6877 free_extent_map(em);
6878 ret = false;
6879 goto out;
6880 }
6881 next_start = extent_map_end(em);
6882 free_extent_map(em);
6883
6884 read_lock(&map_tree->map_tree.lock);
6885 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6886 (u64)(-1) - next_start);
6887 read_unlock(&map_tree->map_tree.lock);
6888 }
6889 out:
6890 return ret;
6891 }
6892
6893 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6894 {
6895 struct btrfs_root *root = fs_info->chunk_root;
6896 struct btrfs_path *path;
6897 struct extent_buffer *leaf;
6898 struct btrfs_key key;
6899 struct btrfs_key found_key;
6900 int ret;
6901 int slot;
6902 u64 total_dev = 0;
6903
6904 path = btrfs_alloc_path();
6905 if (!path)
6906 return -ENOMEM;
6907
6908 /*
6909 * uuid_mutex is needed only if we are mounting a sprout FS
6910 * otherwise we don't need it.
6911 */
6912 mutex_lock(&uuid_mutex);
6913 mutex_lock(&fs_info->chunk_mutex);
6914
6915 /*
6916 * Read all device items, and then all the chunk items. All
6917 * device items are found before any chunk item (their object id
6918 * is smaller than the lowest possible object id for a chunk
6919 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6920 */
6921 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6922 key.offset = 0;
6923 key.type = 0;
6924 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6925 if (ret < 0)
6926 goto error;
6927 while (1) {
6928 leaf = path->nodes[0];
6929 slot = path->slots[0];
6930 if (slot >= btrfs_header_nritems(leaf)) {
6931 ret = btrfs_next_leaf(root, path);
6932 if (ret == 0)
6933 continue;
6934 if (ret < 0)
6935 goto error;
6936 break;
6937 }
6938 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6939 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6940 struct btrfs_dev_item *dev_item;
6941 dev_item = btrfs_item_ptr(leaf, slot,
6942 struct btrfs_dev_item);
6943 ret = read_one_dev(fs_info, leaf, dev_item);
6944 if (ret)
6945 goto error;
6946 total_dev++;
6947 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6948 struct btrfs_chunk *chunk;
6949 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6950 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6951 if (ret)
6952 goto error;
6953 }
6954 path->slots[0]++;
6955 }
6956
6957 /*
6958 * After loading chunk tree, we've got all device information,
6959 * do another round of validation checks.
6960 */
6961 if (total_dev != fs_info->fs_devices->total_devices) {
6962 btrfs_err(fs_info,
6963 "super_num_devices %llu mismatch with num_devices %llu found here",
6964 btrfs_super_num_devices(fs_info->super_copy),
6965 total_dev);
6966 ret = -EINVAL;
6967 goto error;
6968 }
6969 if (btrfs_super_total_bytes(fs_info->super_copy) <
6970 fs_info->fs_devices->total_rw_bytes) {
6971 btrfs_err(fs_info,
6972 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6973 btrfs_super_total_bytes(fs_info->super_copy),
6974 fs_info->fs_devices->total_rw_bytes);
6975 ret = -EINVAL;
6976 goto error;
6977 }
6978 ret = 0;
6979 error:
6980 mutex_unlock(&fs_info->chunk_mutex);
6981 mutex_unlock(&uuid_mutex);
6982
6983 btrfs_free_path(path);
6984 return ret;
6985 }
6986
6987 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6988 {
6989 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6990 struct btrfs_device *device;
6991
6992 while (fs_devices) {
6993 mutex_lock(&fs_devices->device_list_mutex);
6994 list_for_each_entry(device, &fs_devices->devices, dev_list)
6995 device->fs_info = fs_info;
6996 mutex_unlock(&fs_devices->device_list_mutex);
6997
6998 fs_devices = fs_devices->seed;
6999 }
7000 }
7001
7002 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7003 {
7004 int i;
7005
7006 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7007 btrfs_dev_stat_reset(dev, i);
7008 }
7009
7010 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7011 {
7012 struct btrfs_key key;
7013 struct btrfs_key found_key;
7014 struct btrfs_root *dev_root = fs_info->dev_root;
7015 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7016 struct extent_buffer *eb;
7017 int slot;
7018 int ret = 0;
7019 struct btrfs_device *device;
7020 struct btrfs_path *path = NULL;
7021 int i;
7022
7023 path = btrfs_alloc_path();
7024 if (!path) {
7025 ret = -ENOMEM;
7026 goto out;
7027 }
7028
7029 mutex_lock(&fs_devices->device_list_mutex);
7030 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7031 int item_size;
7032 struct btrfs_dev_stats_item *ptr;
7033
7034 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7035 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7036 key.offset = device->devid;
7037 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7038 if (ret) {
7039 __btrfs_reset_dev_stats(device);
7040 device->dev_stats_valid = 1;
7041 btrfs_release_path(path);
7042 continue;
7043 }
7044 slot = path->slots[0];
7045 eb = path->nodes[0];
7046 btrfs_item_key_to_cpu(eb, &found_key, slot);
7047 item_size = btrfs_item_size_nr(eb, slot);
7048
7049 ptr = btrfs_item_ptr(eb, slot,
7050 struct btrfs_dev_stats_item);
7051
7052 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7053 if (item_size >= (1 + i) * sizeof(__le64))
7054 btrfs_dev_stat_set(device, i,
7055 btrfs_dev_stats_value(eb, ptr, i));
7056 else
7057 btrfs_dev_stat_reset(device, i);
7058 }
7059
7060 device->dev_stats_valid = 1;
7061 btrfs_dev_stat_print_on_load(device);
7062 btrfs_release_path(path);
7063 }
7064 mutex_unlock(&fs_devices->device_list_mutex);
7065
7066 out:
7067 btrfs_free_path(path);
7068 return ret < 0 ? ret : 0;
7069 }
7070
7071 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7072 struct btrfs_device *device)
7073 {
7074 struct btrfs_fs_info *fs_info = trans->fs_info;
7075 struct btrfs_root *dev_root = fs_info->dev_root;
7076 struct btrfs_path *path;
7077 struct btrfs_key key;
7078 struct extent_buffer *eb;
7079 struct btrfs_dev_stats_item *ptr;
7080 int ret;
7081 int i;
7082
7083 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7084 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7085 key.offset = device->devid;
7086
7087 path = btrfs_alloc_path();
7088 if (!path)
7089 return -ENOMEM;
7090 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7091 if (ret < 0) {
7092 btrfs_warn_in_rcu(fs_info,
7093 "error %d while searching for dev_stats item for device %s",
7094 ret, rcu_str_deref(device->name));
7095 goto out;
7096 }
7097
7098 if (ret == 0 &&
7099 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7100 /* need to delete old one and insert a new one */
7101 ret = btrfs_del_item(trans, dev_root, path);
7102 if (ret != 0) {
7103 btrfs_warn_in_rcu(fs_info,
7104 "delete too small dev_stats item for device %s failed %d",
7105 rcu_str_deref(device->name), ret);
7106 goto out;
7107 }
7108 ret = 1;
7109 }
7110
7111 if (ret == 1) {
7112 /* need to insert a new item */
7113 btrfs_release_path(path);
7114 ret = btrfs_insert_empty_item(trans, dev_root, path,
7115 &key, sizeof(*ptr));
7116 if (ret < 0) {
7117 btrfs_warn_in_rcu(fs_info,
7118 "insert dev_stats item for device %s failed %d",
7119 rcu_str_deref(device->name), ret);
7120 goto out;
7121 }
7122 }
7123
7124 eb = path->nodes[0];
7125 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7126 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7127 btrfs_set_dev_stats_value(eb, ptr, i,
7128 btrfs_dev_stat_read(device, i));
7129 btrfs_mark_buffer_dirty(eb);
7130
7131 out:
7132 btrfs_free_path(path);
7133 return ret;
7134 }
7135
7136 /*
7137 * called from commit_transaction. Writes all changed device stats to disk.
7138 */
7139 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7140 struct btrfs_fs_info *fs_info)
7141 {
7142 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7143 struct btrfs_device *device;
7144 int stats_cnt;
7145 int ret = 0;
7146
7147 mutex_lock(&fs_devices->device_list_mutex);
7148 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7149 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7150 if (!device->dev_stats_valid || stats_cnt == 0)
7151 continue;
7152
7153
7154 /*
7155 * There is a LOAD-LOAD control dependency between the value of
7156 * dev_stats_ccnt and updating the on-disk values which requires
7157 * reading the in-memory counters. Such control dependencies
7158 * require explicit read memory barriers.
7159 *
7160 * This memory barriers pairs with smp_mb__before_atomic in
7161 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7162 * barrier implied by atomic_xchg in
7163 * btrfs_dev_stats_read_and_reset
7164 */
7165 smp_rmb();
7166
7167 ret = update_dev_stat_item(trans, device);
7168 if (!ret)
7169 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7170 }
7171 mutex_unlock(&fs_devices->device_list_mutex);
7172
7173 return ret;
7174 }
7175
7176 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7177 {
7178 btrfs_dev_stat_inc(dev, index);
7179 btrfs_dev_stat_print_on_error(dev);
7180 }
7181
7182 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7183 {
7184 if (!dev->dev_stats_valid)
7185 return;
7186 btrfs_err_rl_in_rcu(dev->fs_info,
7187 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7188 rcu_str_deref(dev->name),
7189 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7190 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7191 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7192 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7193 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7194 }
7195
7196 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7197 {
7198 int i;
7199
7200 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7201 if (btrfs_dev_stat_read(dev, i) != 0)
7202 break;
7203 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7204 return; /* all values == 0, suppress message */
7205
7206 btrfs_info_in_rcu(dev->fs_info,
7207 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7208 rcu_str_deref(dev->name),
7209 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7210 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7211 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7212 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7213 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7214 }
7215
7216 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7217 struct btrfs_ioctl_get_dev_stats *stats)
7218 {
7219 struct btrfs_device *dev;
7220 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7221 int i;
7222
7223 mutex_lock(&fs_devices->device_list_mutex);
7224 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7225 mutex_unlock(&fs_devices->device_list_mutex);
7226
7227 if (!dev) {
7228 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7229 return -ENODEV;
7230 } else if (!dev->dev_stats_valid) {
7231 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7232 return -ENODEV;
7233 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7234 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7235 if (stats->nr_items > i)
7236 stats->values[i] =
7237 btrfs_dev_stat_read_and_reset(dev, i);
7238 else
7239 btrfs_dev_stat_reset(dev, i);
7240 }
7241 } else {
7242 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7243 if (stats->nr_items > i)
7244 stats->values[i] = btrfs_dev_stat_read(dev, i);
7245 }
7246 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7247 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7248 return 0;
7249 }
7250
7251 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7252 {
7253 struct buffer_head *bh;
7254 struct btrfs_super_block *disk_super;
7255 int copy_num;
7256
7257 if (!bdev)
7258 return;
7259
7260 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7261 copy_num++) {
7262
7263 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7264 continue;
7265
7266 disk_super = (struct btrfs_super_block *)bh->b_data;
7267
7268 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7269 set_buffer_dirty(bh);
7270 sync_dirty_buffer(bh);
7271 brelse(bh);
7272 }
7273
7274 /* Notify udev that device has changed */
7275 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7276
7277 /* Update ctime/mtime for device path for libblkid */
7278 update_dev_time(device_path);
7279 }
7280
7281 /*
7282 * Update the size of all devices, which is used for writing out the
7283 * super blocks.
7284 */
7285 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7286 {
7287 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7288 struct btrfs_device *curr, *next;
7289
7290 if (list_empty(&fs_devices->resized_devices))
7291 return;
7292
7293 mutex_lock(&fs_devices->device_list_mutex);
7294 mutex_lock(&fs_info->chunk_mutex);
7295 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7296 resized_list) {
7297 list_del_init(&curr->resized_list);
7298 curr->commit_total_bytes = curr->disk_total_bytes;
7299 }
7300 mutex_unlock(&fs_info->chunk_mutex);
7301 mutex_unlock(&fs_devices->device_list_mutex);
7302 }
7303
7304 /* Must be invoked during the transaction commit */
7305 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7306 {
7307 struct btrfs_fs_info *fs_info = trans->fs_info;
7308 struct extent_map *em;
7309 struct map_lookup *map;
7310 struct btrfs_device *dev;
7311 int i;
7312
7313 if (list_empty(&trans->pending_chunks))
7314 return;
7315
7316 /* In order to kick the device replace finish process */
7317 mutex_lock(&fs_info->chunk_mutex);
7318 list_for_each_entry(em, &trans->pending_chunks, list) {
7319 map = em->map_lookup;
7320
7321 for (i = 0; i < map->num_stripes; i++) {
7322 dev = map->stripes[i].dev;
7323 dev->commit_bytes_used = dev->bytes_used;
7324 }
7325 }
7326 mutex_unlock(&fs_info->chunk_mutex);
7327 }
7328
7329 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7330 {
7331 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7332 while (fs_devices) {
7333 fs_devices->fs_info = fs_info;
7334 fs_devices = fs_devices->seed;
7335 }
7336 }
7337
7338 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7339 {
7340 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7341 while (fs_devices) {
7342 fs_devices->fs_info = NULL;
7343 fs_devices = fs_devices->seed;
7344 }
7345 }
7346
7347 /*
7348 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7349 */
7350 int btrfs_bg_type_to_factor(u64 flags)
7351 {
7352 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7353 BTRFS_BLOCK_GROUP_RAID10))
7354 return 2;
7355 return 1;
7356 }
7357
7358
7359 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7360 {
7361 int index = btrfs_bg_flags_to_raid_index(type);
7362 int ncopies = btrfs_raid_array[index].ncopies;
7363 int data_stripes;
7364
7365 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7366 case BTRFS_BLOCK_GROUP_RAID5:
7367 data_stripes = num_stripes - 1;
7368 break;
7369 case BTRFS_BLOCK_GROUP_RAID6:
7370 data_stripes = num_stripes - 2;
7371 break;
7372 default:
7373 data_stripes = num_stripes / ncopies;
7374 break;
7375 }
7376 return div_u64(chunk_len, data_stripes);
7377 }
7378
7379 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7380 u64 chunk_offset, u64 devid,
7381 u64 physical_offset, u64 physical_len)
7382 {
7383 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7384 struct extent_map *em;
7385 struct map_lookup *map;
7386 u64 stripe_len;
7387 bool found = false;
7388 int ret = 0;
7389 int i;
7390
7391 read_lock(&em_tree->lock);
7392 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7393 read_unlock(&em_tree->lock);
7394
7395 if (!em) {
7396 btrfs_err(fs_info,
7397 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7398 physical_offset, devid);
7399 ret = -EUCLEAN;
7400 goto out;
7401 }
7402
7403 map = em->map_lookup;
7404 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7405 if (physical_len != stripe_len) {
7406 btrfs_err(fs_info,
7407 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7408 physical_offset, devid, em->start, physical_len,
7409 stripe_len);
7410 ret = -EUCLEAN;
7411 goto out;
7412 }
7413
7414 for (i = 0; i < map->num_stripes; i++) {
7415 if (map->stripes[i].dev->devid == devid &&
7416 map->stripes[i].physical == physical_offset) {
7417 found = true;
7418 if (map->verified_stripes >= map->num_stripes) {
7419 btrfs_err(fs_info,
7420 "too many dev extents for chunk %llu found",
7421 em->start);
7422 ret = -EUCLEAN;
7423 goto out;
7424 }
7425 map->verified_stripes++;
7426 break;
7427 }
7428 }
7429 if (!found) {
7430 btrfs_err(fs_info,
7431 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7432 physical_offset, devid);
7433 ret = -EUCLEAN;
7434 }
7435 out:
7436 free_extent_map(em);
7437 return ret;
7438 }
7439
7440 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7441 {
7442 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7443 struct extent_map *em;
7444 struct rb_node *node;
7445 int ret = 0;
7446
7447 read_lock(&em_tree->lock);
7448 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7449 em = rb_entry(node, struct extent_map, rb_node);
7450 if (em->map_lookup->num_stripes !=
7451 em->map_lookup->verified_stripes) {
7452 btrfs_err(fs_info,
7453 "chunk %llu has missing dev extent, have %d expect %d",
7454 em->start, em->map_lookup->verified_stripes,
7455 em->map_lookup->num_stripes);
7456 ret = -EUCLEAN;
7457 goto out;
7458 }
7459 }
7460 out:
7461 read_unlock(&em_tree->lock);
7462 return ret;
7463 }
7464
7465 /*
7466 * Ensure that all dev extents are mapped to correct chunk, otherwise
7467 * later chunk allocation/free would cause unexpected behavior.
7468 *
7469 * NOTE: This will iterate through the whole device tree, which should be of
7470 * the same size level as the chunk tree. This slightly increases mount time.
7471 */
7472 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7473 {
7474 struct btrfs_path *path;
7475 struct btrfs_root *root = fs_info->dev_root;
7476 struct btrfs_key key;
7477 int ret = 0;
7478
7479 key.objectid = 1;
7480 key.type = BTRFS_DEV_EXTENT_KEY;
7481 key.offset = 0;
7482
7483 path = btrfs_alloc_path();
7484 if (!path)
7485 return -ENOMEM;
7486
7487 path->reada = READA_FORWARD;
7488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7489 if (ret < 0)
7490 goto out;
7491
7492 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7493 ret = btrfs_next_item(root, path);
7494 if (ret < 0)
7495 goto out;
7496 /* No dev extents at all? Not good */
7497 if (ret > 0) {
7498 ret = -EUCLEAN;
7499 goto out;
7500 }
7501 }
7502 while (1) {
7503 struct extent_buffer *leaf = path->nodes[0];
7504 struct btrfs_dev_extent *dext;
7505 int slot = path->slots[0];
7506 u64 chunk_offset;
7507 u64 physical_offset;
7508 u64 physical_len;
7509 u64 devid;
7510
7511 btrfs_item_key_to_cpu(leaf, &key, slot);
7512 if (key.type != BTRFS_DEV_EXTENT_KEY)
7513 break;
7514 devid = key.objectid;
7515 physical_offset = key.offset;
7516
7517 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7518 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7519 physical_len = btrfs_dev_extent_length(leaf, dext);
7520
7521 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7522 physical_offset, physical_len);
7523 if (ret < 0)
7524 goto out;
7525 ret = btrfs_next_item(root, path);
7526 if (ret < 0)
7527 goto out;
7528 if (ret > 0) {
7529 ret = 0;
7530 break;
7531 }
7532 }
7533
7534 /* Ensure all chunks have corresponding dev extents */
7535 ret = verify_chunk_dev_extent_mapping(fs_info);
7536 out:
7537 btrfs_free_path(path);
7538 return ret;
7539 }