]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/volumes.c
Rename superblock flags (MS_xyz -> SB_xyz)
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 return &fs_uuids;
153 }
154
155 /*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
174 INIT_LIST_HEAD(&fs_devs->resized_devices);
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180 return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
191 rcu_string_free(device->name);
192 kfree(device);
193 }
194 kfree(fs_devices);
195 }
196
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 enum kobject_action action)
199 {
200 int ret;
201
202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203 if (ret)
204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205 action,
206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 &disk_to_dev(bdev->bd_disk)->kobj);
208 }
209
210 void btrfs_cleanup_fs_uuids(void)
211 {
212 struct btrfs_fs_devices *fs_devices;
213
214 while (!list_empty(&fs_uuids)) {
215 fs_devices = list_entry(fs_uuids.next,
216 struct btrfs_fs_devices, list);
217 list_del(&fs_devices->list);
218 free_fs_devices(fs_devices);
219 }
220 }
221
222 static struct btrfs_device *__alloc_device(void)
223 {
224 struct btrfs_device *dev;
225
226 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227 if (!dev)
228 return ERR_PTR(-ENOMEM);
229
230 /*
231 * Preallocate a bio that's always going to be used for flushing device
232 * barriers and matches the device lifespan
233 */
234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 if (!dev->flush_bio) {
236 kfree(dev);
237 return ERR_PTR(-ENOMEM);
238 }
239 bio_get(dev->flush_bio);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
257 /*
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259 * return NULL.
260 *
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
263 */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
266 {
267 struct list_head *head = &fs_devices->devices;
268 struct btrfs_device *dev;
269
270 list_for_each_entry(dev, head, dev_list) {
271 if (dev->devid == devid &&
272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273 return dev;
274 }
275 }
276 return NULL;
277 }
278
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281 struct btrfs_fs_devices *fs_devices;
282
283 list_for_each_entry(fs_devices, &fs_uuids, list) {
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 return fs_devices;
286 }
287 return NULL;
288 }
289
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
294 {
295 int ret;
296
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299 if (IS_ERR(*bdev)) {
300 ret = PTR_ERR(*bdev);
301 goto error;
302 }
303
304 if (flush)
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307 if (ret) {
308 blkdev_put(*bdev, flags);
309 goto error;
310 }
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
313 if (IS_ERR(*bh)) {
314 ret = PTR_ERR(*bh);
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318
319 return 0;
320
321 error:
322 *bdev = NULL;
323 *bh = NULL;
324 return ret;
325 }
326
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
329 {
330
331 struct bio *old_head;
332
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
337 else
338 pending_bios->tail = tail;
339 }
340
341 /*
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
345 *
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
351 */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354 struct btrfs_fs_info *fs_info = device->fs_info;
355 struct bio *pending;
356 struct backing_dev_info *bdi;
357 struct btrfs_pending_bios *pending_bios;
358 struct bio *tail;
359 struct bio *cur;
360 int again = 0;
361 unsigned long num_run;
362 unsigned long batch_run = 0;
363 unsigned long last_waited = 0;
364 int force_reg = 0;
365 int sync_pending = 0;
366 struct blk_plug plug;
367
368 /*
369 * this function runs all the bios we've collected for
370 * a particular device. We don't want to wander off to
371 * another device without first sending all of these down.
372 * So, setup a plug here and finish it off before we return
373 */
374 blk_start_plug(&plug);
375
376 bdi = device->bdev->bd_bdi;
377
378 loop:
379 spin_lock(&device->io_lock);
380
381 loop_lock:
382 num_run = 0;
383
384 /* take all the bios off the list at once and process them
385 * later on (without the lock held). But, remember the
386 * tail and other pointers so the bios can be properly reinserted
387 * into the list if we hit congestion
388 */
389 if (!force_reg && device->pending_sync_bios.head) {
390 pending_bios = &device->pending_sync_bios;
391 force_reg = 1;
392 } else {
393 pending_bios = &device->pending_bios;
394 force_reg = 0;
395 }
396
397 pending = pending_bios->head;
398 tail = pending_bios->tail;
399 WARN_ON(pending && !tail);
400
401 /*
402 * if pending was null this time around, no bios need processing
403 * at all and we can stop. Otherwise it'll loop back up again
404 * and do an additional check so no bios are missed.
405 *
406 * device->running_pending is used to synchronize with the
407 * schedule_bio code.
408 */
409 if (device->pending_sync_bios.head == NULL &&
410 device->pending_bios.head == NULL) {
411 again = 0;
412 device->running_pending = 0;
413 } else {
414 again = 1;
415 device->running_pending = 1;
416 }
417
418 pending_bios->head = NULL;
419 pending_bios->tail = NULL;
420
421 spin_unlock(&device->io_lock);
422
423 while (pending) {
424
425 rmb();
426 /* we want to work on both lists, but do more bios on the
427 * sync list than the regular list
428 */
429 if ((num_run > 32 &&
430 pending_bios != &device->pending_sync_bios &&
431 device->pending_sync_bios.head) ||
432 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 device->pending_bios.head)) {
434 spin_lock(&device->io_lock);
435 requeue_list(pending_bios, pending, tail);
436 goto loop_lock;
437 }
438
439 cur = pending;
440 pending = pending->bi_next;
441 cur->bi_next = NULL;
442
443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
444
445 /*
446 * if we're doing the sync list, record that our
447 * plug has some sync requests on it
448 *
449 * If we're doing the regular list and there are
450 * sync requests sitting around, unplug before
451 * we add more
452 */
453 if (pending_bios == &device->pending_sync_bios) {
454 sync_pending = 1;
455 } else if (sync_pending) {
456 blk_finish_plug(&plug);
457 blk_start_plug(&plug);
458 sync_pending = 0;
459 }
460
461 btrfsic_submit_bio(cur);
462 num_run++;
463 batch_run++;
464
465 cond_resched();
466
467 /*
468 * we made progress, there is more work to do and the bdi
469 * is now congested. Back off and let other work structs
470 * run instead
471 */
472 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
473 fs_info->fs_devices->open_devices > 1) {
474 struct io_context *ioc;
475
476 ioc = current->io_context;
477
478 /*
479 * the main goal here is that we don't want to
480 * block if we're going to be able to submit
481 * more requests without blocking.
482 *
483 * This code does two great things, it pokes into
484 * the elevator code from a filesystem _and_
485 * it makes assumptions about how batching works.
486 */
487 if (ioc && ioc->nr_batch_requests > 0 &&
488 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489 (last_waited == 0 ||
490 ioc->last_waited == last_waited)) {
491 /*
492 * we want to go through our batch of
493 * requests and stop. So, we copy out
494 * the ioc->last_waited time and test
495 * against it before looping
496 */
497 last_waited = ioc->last_waited;
498 cond_resched();
499 continue;
500 }
501 spin_lock(&device->io_lock);
502 requeue_list(pending_bios, pending, tail);
503 device->running_pending = 1;
504
505 spin_unlock(&device->io_lock);
506 btrfs_queue_work(fs_info->submit_workers,
507 &device->work);
508 goto done;
509 }
510 }
511
512 cond_resched();
513 if (again)
514 goto loop;
515
516 spin_lock(&device->io_lock);
517 if (device->pending_bios.head || device->pending_sync_bios.head)
518 goto loop_lock;
519 spin_unlock(&device->io_lock);
520
521 done:
522 blk_finish_plug(&plug);
523 }
524
525 static void pending_bios_fn(struct btrfs_work *work)
526 {
527 struct btrfs_device *device;
528
529 device = container_of(work, struct btrfs_device, work);
530 run_scheduled_bios(device);
531 }
532
533
534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
535 {
536 struct btrfs_fs_devices *fs_devs;
537 struct btrfs_device *dev;
538
539 if (!cur_dev->name)
540 return;
541
542 list_for_each_entry(fs_devs, &fs_uuids, list) {
543 int del = 1;
544
545 if (fs_devs->opened)
546 continue;
547 if (fs_devs->seeding)
548 continue;
549
550 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551
552 if (dev == cur_dev)
553 continue;
554 if (!dev->name)
555 continue;
556
557 /*
558 * Todo: This won't be enough. What if the same device
559 * comes back (with new uuid and) with its mapper path?
560 * But for now, this does help as mostly an admin will
561 * either use mapper or non mapper path throughout.
562 */
563 rcu_read_lock();
564 del = strcmp(rcu_str_deref(dev->name),
565 rcu_str_deref(cur_dev->name));
566 rcu_read_unlock();
567 if (!del)
568 break;
569 }
570
571 if (!del) {
572 /* delete the stale device */
573 if (fs_devs->num_devices == 1) {
574 btrfs_sysfs_remove_fsid(fs_devs);
575 list_del(&fs_devs->list);
576 free_fs_devices(fs_devs);
577 } else {
578 fs_devs->num_devices--;
579 list_del(&dev->dev_list);
580 rcu_string_free(dev->name);
581 kfree(dev);
582 }
583 break;
584 }
585 }
586 }
587
588 /*
589 * Add new device to list of registered devices
590 *
591 * Returns:
592 * 1 - first time device is seen
593 * 0 - device already known
594 * < 0 - error
595 */
596 static noinline int device_list_add(const char *path,
597 struct btrfs_super_block *disk_super,
598 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
599 {
600 struct btrfs_device *device;
601 struct btrfs_fs_devices *fs_devices;
602 struct rcu_string *name;
603 int ret = 0;
604 u64 found_transid = btrfs_super_generation(disk_super);
605
606 fs_devices = find_fsid(disk_super->fsid);
607 if (!fs_devices) {
608 fs_devices = alloc_fs_devices(disk_super->fsid);
609 if (IS_ERR(fs_devices))
610 return PTR_ERR(fs_devices);
611
612 list_add(&fs_devices->list, &fs_uuids);
613
614 device = NULL;
615 } else {
616 device = find_device(fs_devices, devid,
617 disk_super->dev_item.uuid);
618 }
619
620 if (!device) {
621 if (fs_devices->opened)
622 return -EBUSY;
623
624 device = btrfs_alloc_device(NULL, &devid,
625 disk_super->dev_item.uuid);
626 if (IS_ERR(device)) {
627 /* we can safely leave the fs_devices entry around */
628 return PTR_ERR(device);
629 }
630
631 name = rcu_string_strdup(path, GFP_NOFS);
632 if (!name) {
633 kfree(device);
634 return -ENOMEM;
635 }
636 rcu_assign_pointer(device->name, name);
637
638 mutex_lock(&fs_devices->device_list_mutex);
639 list_add_rcu(&device->dev_list, &fs_devices->devices);
640 fs_devices->num_devices++;
641 mutex_unlock(&fs_devices->device_list_mutex);
642
643 ret = 1;
644 device->fs_devices = fs_devices;
645 } else if (!device->name || strcmp(device->name->str, path)) {
646 /*
647 * When FS is already mounted.
648 * 1. If you are here and if the device->name is NULL that
649 * means this device was missing at time of FS mount.
650 * 2. If you are here and if the device->name is different
651 * from 'path' that means either
652 * a. The same device disappeared and reappeared with
653 * different name. or
654 * b. The missing-disk-which-was-replaced, has
655 * reappeared now.
656 *
657 * We must allow 1 and 2a above. But 2b would be a spurious
658 * and unintentional.
659 *
660 * Further in case of 1 and 2a above, the disk at 'path'
661 * would have missed some transaction when it was away and
662 * in case of 2a the stale bdev has to be updated as well.
663 * 2b must not be allowed at all time.
664 */
665
666 /*
667 * For now, we do allow update to btrfs_fs_device through the
668 * btrfs dev scan cli after FS has been mounted. We're still
669 * tracking a problem where systems fail mount by subvolume id
670 * when we reject replacement on a mounted FS.
671 */
672 if (!fs_devices->opened && found_transid < device->generation) {
673 /*
674 * That is if the FS is _not_ mounted and if you
675 * are here, that means there is more than one
676 * disk with same uuid and devid.We keep the one
677 * with larger generation number or the last-in if
678 * generation are equal.
679 */
680 return -EEXIST;
681 }
682
683 name = rcu_string_strdup(path, GFP_NOFS);
684 if (!name)
685 return -ENOMEM;
686 rcu_string_free(device->name);
687 rcu_assign_pointer(device->name, name);
688 if (device->missing) {
689 fs_devices->missing_devices--;
690 device->missing = 0;
691 }
692 }
693
694 /*
695 * Unmount does not free the btrfs_device struct but would zero
696 * generation along with most of the other members. So just update
697 * it back. We need it to pick the disk with largest generation
698 * (as above).
699 */
700 if (!fs_devices->opened)
701 device->generation = found_transid;
702
703 /*
704 * if there is new btrfs on an already registered device,
705 * then remove the stale device entry.
706 */
707 if (ret > 0)
708 btrfs_free_stale_device(device);
709
710 *fs_devices_ret = fs_devices;
711
712 return ret;
713 }
714
715 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
716 {
717 struct btrfs_fs_devices *fs_devices;
718 struct btrfs_device *device;
719 struct btrfs_device *orig_dev;
720
721 fs_devices = alloc_fs_devices(orig->fsid);
722 if (IS_ERR(fs_devices))
723 return fs_devices;
724
725 mutex_lock(&orig->device_list_mutex);
726 fs_devices->total_devices = orig->total_devices;
727
728 /* We have held the volume lock, it is safe to get the devices. */
729 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
730 struct rcu_string *name;
731
732 device = btrfs_alloc_device(NULL, &orig_dev->devid,
733 orig_dev->uuid);
734 if (IS_ERR(device))
735 goto error;
736
737 /*
738 * This is ok to do without rcu read locked because we hold the
739 * uuid mutex so nothing we touch in here is going to disappear.
740 */
741 if (orig_dev->name) {
742 name = rcu_string_strdup(orig_dev->name->str,
743 GFP_KERNEL);
744 if (!name) {
745 kfree(device);
746 goto error;
747 }
748 rcu_assign_pointer(device->name, name);
749 }
750
751 list_add(&device->dev_list, &fs_devices->devices);
752 device->fs_devices = fs_devices;
753 fs_devices->num_devices++;
754 }
755 mutex_unlock(&orig->device_list_mutex);
756 return fs_devices;
757 error:
758 mutex_unlock(&orig->device_list_mutex);
759 free_fs_devices(fs_devices);
760 return ERR_PTR(-ENOMEM);
761 }
762
763 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
764 {
765 struct btrfs_device *device, *next;
766 struct btrfs_device *latest_dev = NULL;
767
768 mutex_lock(&uuid_mutex);
769 again:
770 /* This is the initialized path, it is safe to release the devices. */
771 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
772 if (device->in_fs_metadata) {
773 if (!device->is_tgtdev_for_dev_replace &&
774 (!latest_dev ||
775 device->generation > latest_dev->generation)) {
776 latest_dev = device;
777 }
778 continue;
779 }
780
781 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
782 /*
783 * In the first step, keep the device which has
784 * the correct fsid and the devid that is used
785 * for the dev_replace procedure.
786 * In the second step, the dev_replace state is
787 * read from the device tree and it is known
788 * whether the procedure is really active or
789 * not, which means whether this device is
790 * used or whether it should be removed.
791 */
792 if (step == 0 || device->is_tgtdev_for_dev_replace) {
793 continue;
794 }
795 }
796 if (device->bdev) {
797 blkdev_put(device->bdev, device->mode);
798 device->bdev = NULL;
799 fs_devices->open_devices--;
800 }
801 if (device->writeable) {
802 list_del_init(&device->dev_alloc_list);
803 device->writeable = 0;
804 if (!device->is_tgtdev_for_dev_replace)
805 fs_devices->rw_devices--;
806 }
807 list_del_init(&device->dev_list);
808 fs_devices->num_devices--;
809 rcu_string_free(device->name);
810 kfree(device);
811 }
812
813 if (fs_devices->seed) {
814 fs_devices = fs_devices->seed;
815 goto again;
816 }
817
818 fs_devices->latest_bdev = latest_dev->bdev;
819
820 mutex_unlock(&uuid_mutex);
821 }
822
823 static void __free_device(struct work_struct *work)
824 {
825 struct btrfs_device *device;
826
827 device = container_of(work, struct btrfs_device, rcu_work);
828 rcu_string_free(device->name);
829 bio_put(device->flush_bio);
830 kfree(device);
831 }
832
833 static void free_device(struct rcu_head *head)
834 {
835 struct btrfs_device *device;
836
837 device = container_of(head, struct btrfs_device, rcu);
838
839 INIT_WORK(&device->rcu_work, __free_device);
840 schedule_work(&device->rcu_work);
841 }
842
843 static void btrfs_close_bdev(struct btrfs_device *device)
844 {
845 if (device->bdev && device->writeable) {
846 sync_blockdev(device->bdev);
847 invalidate_bdev(device->bdev);
848 }
849
850 if (device->bdev)
851 blkdev_put(device->bdev, device->mode);
852 }
853
854 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
855 {
856 struct btrfs_fs_devices *fs_devices = device->fs_devices;
857 struct btrfs_device *new_device;
858 struct rcu_string *name;
859
860 if (device->bdev)
861 fs_devices->open_devices--;
862
863 if (device->writeable &&
864 device->devid != BTRFS_DEV_REPLACE_DEVID) {
865 list_del_init(&device->dev_alloc_list);
866 fs_devices->rw_devices--;
867 }
868
869 if (device->missing)
870 fs_devices->missing_devices--;
871
872 new_device = btrfs_alloc_device(NULL, &device->devid,
873 device->uuid);
874 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
875
876 /* Safe because we are under uuid_mutex */
877 if (device->name) {
878 name = rcu_string_strdup(device->name->str, GFP_NOFS);
879 BUG_ON(!name); /* -ENOMEM */
880 rcu_assign_pointer(new_device->name, name);
881 }
882
883 list_replace_rcu(&device->dev_list, &new_device->dev_list);
884 new_device->fs_devices = device->fs_devices;
885 }
886
887 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
888 {
889 struct btrfs_device *device, *tmp;
890 struct list_head pending_put;
891
892 INIT_LIST_HEAD(&pending_put);
893
894 if (--fs_devices->opened > 0)
895 return 0;
896
897 mutex_lock(&fs_devices->device_list_mutex);
898 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
899 btrfs_prepare_close_one_device(device);
900 list_add(&device->dev_list, &pending_put);
901 }
902 mutex_unlock(&fs_devices->device_list_mutex);
903
904 /*
905 * btrfs_show_devname() is using the device_list_mutex,
906 * sometimes call to blkdev_put() leads vfs calling
907 * into this func. So do put outside of device_list_mutex,
908 * as of now.
909 */
910 while (!list_empty(&pending_put)) {
911 device = list_first_entry(&pending_put,
912 struct btrfs_device, dev_list);
913 list_del(&device->dev_list);
914 btrfs_close_bdev(device);
915 call_rcu(&device->rcu, free_device);
916 }
917
918 WARN_ON(fs_devices->open_devices);
919 WARN_ON(fs_devices->rw_devices);
920 fs_devices->opened = 0;
921 fs_devices->seeding = 0;
922
923 return 0;
924 }
925
926 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
927 {
928 struct btrfs_fs_devices *seed_devices = NULL;
929 int ret;
930
931 mutex_lock(&uuid_mutex);
932 ret = __btrfs_close_devices(fs_devices);
933 if (!fs_devices->opened) {
934 seed_devices = fs_devices->seed;
935 fs_devices->seed = NULL;
936 }
937 mutex_unlock(&uuid_mutex);
938
939 while (seed_devices) {
940 fs_devices = seed_devices;
941 seed_devices = fs_devices->seed;
942 __btrfs_close_devices(fs_devices);
943 free_fs_devices(fs_devices);
944 }
945 /*
946 * Wait for rcu kworkers under __btrfs_close_devices
947 * to finish all blkdev_puts so device is really
948 * free when umount is done.
949 */
950 rcu_barrier();
951 return ret;
952 }
953
954 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
955 fmode_t flags, void *holder)
956 {
957 struct request_queue *q;
958 struct block_device *bdev;
959 struct list_head *head = &fs_devices->devices;
960 struct btrfs_device *device;
961 struct btrfs_device *latest_dev = NULL;
962 struct buffer_head *bh;
963 struct btrfs_super_block *disk_super;
964 u64 devid;
965 int seeding = 1;
966 int ret = 0;
967
968 flags |= FMODE_EXCL;
969
970 list_for_each_entry(device, head, dev_list) {
971 if (device->bdev)
972 continue;
973 if (!device->name)
974 continue;
975
976 /* Just open everything we can; ignore failures here */
977 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
978 &bdev, &bh))
979 continue;
980
981 disk_super = (struct btrfs_super_block *)bh->b_data;
982 devid = btrfs_stack_device_id(&disk_super->dev_item);
983 if (devid != device->devid)
984 goto error_brelse;
985
986 if (memcmp(device->uuid, disk_super->dev_item.uuid,
987 BTRFS_UUID_SIZE))
988 goto error_brelse;
989
990 device->generation = btrfs_super_generation(disk_super);
991 if (!latest_dev ||
992 device->generation > latest_dev->generation)
993 latest_dev = device;
994
995 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
996 device->writeable = 0;
997 } else {
998 device->writeable = !bdev_read_only(bdev);
999 seeding = 0;
1000 }
1001
1002 q = bdev_get_queue(bdev);
1003 if (blk_queue_discard(q))
1004 device->can_discard = 1;
1005 if (!blk_queue_nonrot(q))
1006 fs_devices->rotating = 1;
1007
1008 device->bdev = bdev;
1009 device->in_fs_metadata = 0;
1010 device->mode = flags;
1011
1012 fs_devices->open_devices++;
1013 if (device->writeable &&
1014 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1015 fs_devices->rw_devices++;
1016 list_add(&device->dev_alloc_list,
1017 &fs_devices->alloc_list);
1018 }
1019 brelse(bh);
1020 continue;
1021
1022 error_brelse:
1023 brelse(bh);
1024 blkdev_put(bdev, flags);
1025 continue;
1026 }
1027 if (fs_devices->open_devices == 0) {
1028 ret = -EINVAL;
1029 goto out;
1030 }
1031 fs_devices->seeding = seeding;
1032 fs_devices->opened = 1;
1033 fs_devices->latest_bdev = latest_dev->bdev;
1034 fs_devices->total_rw_bytes = 0;
1035 out:
1036 return ret;
1037 }
1038
1039 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1040 fmode_t flags, void *holder)
1041 {
1042 int ret;
1043
1044 mutex_lock(&uuid_mutex);
1045 if (fs_devices->opened) {
1046 fs_devices->opened++;
1047 ret = 0;
1048 } else {
1049 ret = __btrfs_open_devices(fs_devices, flags, holder);
1050 }
1051 mutex_unlock(&uuid_mutex);
1052 return ret;
1053 }
1054
1055 static void btrfs_release_disk_super(struct page *page)
1056 {
1057 kunmap(page);
1058 put_page(page);
1059 }
1060
1061 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1062 struct page **page,
1063 struct btrfs_super_block **disk_super)
1064 {
1065 void *p;
1066 pgoff_t index;
1067
1068 /* make sure our super fits in the device */
1069 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1070 return 1;
1071
1072 /* make sure our super fits in the page */
1073 if (sizeof(**disk_super) > PAGE_SIZE)
1074 return 1;
1075
1076 /* make sure our super doesn't straddle pages on disk */
1077 index = bytenr >> PAGE_SHIFT;
1078 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1079 return 1;
1080
1081 /* pull in the page with our super */
1082 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1083 index, GFP_KERNEL);
1084
1085 if (IS_ERR_OR_NULL(*page))
1086 return 1;
1087
1088 p = kmap(*page);
1089
1090 /* align our pointer to the offset of the super block */
1091 *disk_super = p + (bytenr & ~PAGE_MASK);
1092
1093 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1094 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1095 btrfs_release_disk_super(*page);
1096 return 1;
1097 }
1098
1099 if ((*disk_super)->label[0] &&
1100 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1101 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1102
1103 return 0;
1104 }
1105
1106 /*
1107 * Look for a btrfs signature on a device. This may be called out of the mount path
1108 * and we are not allowed to call set_blocksize during the scan. The superblock
1109 * is read via pagecache
1110 */
1111 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1112 struct btrfs_fs_devices **fs_devices_ret)
1113 {
1114 struct btrfs_super_block *disk_super;
1115 struct block_device *bdev;
1116 struct page *page;
1117 int ret = -EINVAL;
1118 u64 devid;
1119 u64 transid;
1120 u64 total_devices;
1121 u64 bytenr;
1122
1123 /*
1124 * we would like to check all the supers, but that would make
1125 * a btrfs mount succeed after a mkfs from a different FS.
1126 * So, we need to add a special mount option to scan for
1127 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1128 */
1129 bytenr = btrfs_sb_offset(0);
1130 flags |= FMODE_EXCL;
1131 mutex_lock(&uuid_mutex);
1132
1133 bdev = blkdev_get_by_path(path, flags, holder);
1134 if (IS_ERR(bdev)) {
1135 ret = PTR_ERR(bdev);
1136 goto error;
1137 }
1138
1139 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1140 goto error_bdev_put;
1141
1142 devid = btrfs_stack_device_id(&disk_super->dev_item);
1143 transid = btrfs_super_generation(disk_super);
1144 total_devices = btrfs_super_num_devices(disk_super);
1145
1146 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1147 if (ret > 0) {
1148 if (disk_super->label[0]) {
1149 pr_info("BTRFS: device label %s ", disk_super->label);
1150 } else {
1151 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1152 }
1153
1154 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1155 ret = 0;
1156 }
1157 if (!ret && fs_devices_ret)
1158 (*fs_devices_ret)->total_devices = total_devices;
1159
1160 btrfs_release_disk_super(page);
1161
1162 error_bdev_put:
1163 blkdev_put(bdev, flags);
1164 error:
1165 mutex_unlock(&uuid_mutex);
1166 return ret;
1167 }
1168
1169 /* helper to account the used device space in the range */
1170 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1171 u64 end, u64 *length)
1172 {
1173 struct btrfs_key key;
1174 struct btrfs_root *root = device->fs_info->dev_root;
1175 struct btrfs_dev_extent *dev_extent;
1176 struct btrfs_path *path;
1177 u64 extent_end;
1178 int ret;
1179 int slot;
1180 struct extent_buffer *l;
1181
1182 *length = 0;
1183
1184 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1185 return 0;
1186
1187 path = btrfs_alloc_path();
1188 if (!path)
1189 return -ENOMEM;
1190 path->reada = READA_FORWARD;
1191
1192 key.objectid = device->devid;
1193 key.offset = start;
1194 key.type = BTRFS_DEV_EXTENT_KEY;
1195
1196 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1197 if (ret < 0)
1198 goto out;
1199 if (ret > 0) {
1200 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1201 if (ret < 0)
1202 goto out;
1203 }
1204
1205 while (1) {
1206 l = path->nodes[0];
1207 slot = path->slots[0];
1208 if (slot >= btrfs_header_nritems(l)) {
1209 ret = btrfs_next_leaf(root, path);
1210 if (ret == 0)
1211 continue;
1212 if (ret < 0)
1213 goto out;
1214
1215 break;
1216 }
1217 btrfs_item_key_to_cpu(l, &key, slot);
1218
1219 if (key.objectid < device->devid)
1220 goto next;
1221
1222 if (key.objectid > device->devid)
1223 break;
1224
1225 if (key.type != BTRFS_DEV_EXTENT_KEY)
1226 goto next;
1227
1228 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1229 extent_end = key.offset + btrfs_dev_extent_length(l,
1230 dev_extent);
1231 if (key.offset <= start && extent_end > end) {
1232 *length = end - start + 1;
1233 break;
1234 } else if (key.offset <= start && extent_end > start)
1235 *length += extent_end - start;
1236 else if (key.offset > start && extent_end <= end)
1237 *length += extent_end - key.offset;
1238 else if (key.offset > start && key.offset <= end) {
1239 *length += end - key.offset + 1;
1240 break;
1241 } else if (key.offset > end)
1242 break;
1243
1244 next:
1245 path->slots[0]++;
1246 }
1247 ret = 0;
1248 out:
1249 btrfs_free_path(path);
1250 return ret;
1251 }
1252
1253 static int contains_pending_extent(struct btrfs_transaction *transaction,
1254 struct btrfs_device *device,
1255 u64 *start, u64 len)
1256 {
1257 struct btrfs_fs_info *fs_info = device->fs_info;
1258 struct extent_map *em;
1259 struct list_head *search_list = &fs_info->pinned_chunks;
1260 int ret = 0;
1261 u64 physical_start = *start;
1262
1263 if (transaction)
1264 search_list = &transaction->pending_chunks;
1265 again:
1266 list_for_each_entry(em, search_list, list) {
1267 struct map_lookup *map;
1268 int i;
1269
1270 map = em->map_lookup;
1271 for (i = 0; i < map->num_stripes; i++) {
1272 u64 end;
1273
1274 if (map->stripes[i].dev != device)
1275 continue;
1276 if (map->stripes[i].physical >= physical_start + len ||
1277 map->stripes[i].physical + em->orig_block_len <=
1278 physical_start)
1279 continue;
1280 /*
1281 * Make sure that while processing the pinned list we do
1282 * not override our *start with a lower value, because
1283 * we can have pinned chunks that fall within this
1284 * device hole and that have lower physical addresses
1285 * than the pending chunks we processed before. If we
1286 * do not take this special care we can end up getting
1287 * 2 pending chunks that start at the same physical
1288 * device offsets because the end offset of a pinned
1289 * chunk can be equal to the start offset of some
1290 * pending chunk.
1291 */
1292 end = map->stripes[i].physical + em->orig_block_len;
1293 if (end > *start) {
1294 *start = end;
1295 ret = 1;
1296 }
1297 }
1298 }
1299 if (search_list != &fs_info->pinned_chunks) {
1300 search_list = &fs_info->pinned_chunks;
1301 goto again;
1302 }
1303
1304 return ret;
1305 }
1306
1307
1308 /*
1309 * find_free_dev_extent_start - find free space in the specified device
1310 * @device: the device which we search the free space in
1311 * @num_bytes: the size of the free space that we need
1312 * @search_start: the position from which to begin the search
1313 * @start: store the start of the free space.
1314 * @len: the size of the free space. that we find, or the size
1315 * of the max free space if we don't find suitable free space
1316 *
1317 * this uses a pretty simple search, the expectation is that it is
1318 * called very infrequently and that a given device has a small number
1319 * of extents
1320 *
1321 * @start is used to store the start of the free space if we find. But if we
1322 * don't find suitable free space, it will be used to store the start position
1323 * of the max free space.
1324 *
1325 * @len is used to store the size of the free space that we find.
1326 * But if we don't find suitable free space, it is used to store the size of
1327 * the max free space.
1328 */
1329 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1330 struct btrfs_device *device, u64 num_bytes,
1331 u64 search_start, u64 *start, u64 *len)
1332 {
1333 struct btrfs_fs_info *fs_info = device->fs_info;
1334 struct btrfs_root *root = fs_info->dev_root;
1335 struct btrfs_key key;
1336 struct btrfs_dev_extent *dev_extent;
1337 struct btrfs_path *path;
1338 u64 hole_size;
1339 u64 max_hole_start;
1340 u64 max_hole_size;
1341 u64 extent_end;
1342 u64 search_end = device->total_bytes;
1343 int ret;
1344 int slot;
1345 struct extent_buffer *l;
1346
1347 /*
1348 * We don't want to overwrite the superblock on the drive nor any area
1349 * used by the boot loader (grub for example), so we make sure to start
1350 * at an offset of at least 1MB.
1351 */
1352 search_start = max_t(u64, search_start, SZ_1M);
1353
1354 path = btrfs_alloc_path();
1355 if (!path)
1356 return -ENOMEM;
1357
1358 max_hole_start = search_start;
1359 max_hole_size = 0;
1360
1361 again:
1362 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1363 ret = -ENOSPC;
1364 goto out;
1365 }
1366
1367 path->reada = READA_FORWARD;
1368 path->search_commit_root = 1;
1369 path->skip_locking = 1;
1370
1371 key.objectid = device->devid;
1372 key.offset = search_start;
1373 key.type = BTRFS_DEV_EXTENT_KEY;
1374
1375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1376 if (ret < 0)
1377 goto out;
1378 if (ret > 0) {
1379 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1380 if (ret < 0)
1381 goto out;
1382 }
1383
1384 while (1) {
1385 l = path->nodes[0];
1386 slot = path->slots[0];
1387 if (slot >= btrfs_header_nritems(l)) {
1388 ret = btrfs_next_leaf(root, path);
1389 if (ret == 0)
1390 continue;
1391 if (ret < 0)
1392 goto out;
1393
1394 break;
1395 }
1396 btrfs_item_key_to_cpu(l, &key, slot);
1397
1398 if (key.objectid < device->devid)
1399 goto next;
1400
1401 if (key.objectid > device->devid)
1402 break;
1403
1404 if (key.type != BTRFS_DEV_EXTENT_KEY)
1405 goto next;
1406
1407 if (key.offset > search_start) {
1408 hole_size = key.offset - search_start;
1409
1410 /*
1411 * Have to check before we set max_hole_start, otherwise
1412 * we could end up sending back this offset anyway.
1413 */
1414 if (contains_pending_extent(transaction, device,
1415 &search_start,
1416 hole_size)) {
1417 if (key.offset >= search_start) {
1418 hole_size = key.offset - search_start;
1419 } else {
1420 WARN_ON_ONCE(1);
1421 hole_size = 0;
1422 }
1423 }
1424
1425 if (hole_size > max_hole_size) {
1426 max_hole_start = search_start;
1427 max_hole_size = hole_size;
1428 }
1429
1430 /*
1431 * If this free space is greater than which we need,
1432 * it must be the max free space that we have found
1433 * until now, so max_hole_start must point to the start
1434 * of this free space and the length of this free space
1435 * is stored in max_hole_size. Thus, we return
1436 * max_hole_start and max_hole_size and go back to the
1437 * caller.
1438 */
1439 if (hole_size >= num_bytes) {
1440 ret = 0;
1441 goto out;
1442 }
1443 }
1444
1445 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1446 extent_end = key.offset + btrfs_dev_extent_length(l,
1447 dev_extent);
1448 if (extent_end > search_start)
1449 search_start = extent_end;
1450 next:
1451 path->slots[0]++;
1452 cond_resched();
1453 }
1454
1455 /*
1456 * At this point, search_start should be the end of
1457 * allocated dev extents, and when shrinking the device,
1458 * search_end may be smaller than search_start.
1459 */
1460 if (search_end > search_start) {
1461 hole_size = search_end - search_start;
1462
1463 if (contains_pending_extent(transaction, device, &search_start,
1464 hole_size)) {
1465 btrfs_release_path(path);
1466 goto again;
1467 }
1468
1469 if (hole_size > max_hole_size) {
1470 max_hole_start = search_start;
1471 max_hole_size = hole_size;
1472 }
1473 }
1474
1475 /* See above. */
1476 if (max_hole_size < num_bytes)
1477 ret = -ENOSPC;
1478 else
1479 ret = 0;
1480
1481 out:
1482 btrfs_free_path(path);
1483 *start = max_hole_start;
1484 if (len)
1485 *len = max_hole_size;
1486 return ret;
1487 }
1488
1489 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1490 struct btrfs_device *device, u64 num_bytes,
1491 u64 *start, u64 *len)
1492 {
1493 /* FIXME use last free of some kind */
1494 return find_free_dev_extent_start(trans->transaction, device,
1495 num_bytes, 0, start, len);
1496 }
1497
1498 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device,
1500 u64 start, u64 *dev_extent_len)
1501 {
1502 struct btrfs_fs_info *fs_info = device->fs_info;
1503 struct btrfs_root *root = fs_info->dev_root;
1504 int ret;
1505 struct btrfs_path *path;
1506 struct btrfs_key key;
1507 struct btrfs_key found_key;
1508 struct extent_buffer *leaf = NULL;
1509 struct btrfs_dev_extent *extent = NULL;
1510
1511 path = btrfs_alloc_path();
1512 if (!path)
1513 return -ENOMEM;
1514
1515 key.objectid = device->devid;
1516 key.offset = start;
1517 key.type = BTRFS_DEV_EXTENT_KEY;
1518 again:
1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 if (ret > 0) {
1521 ret = btrfs_previous_item(root, path, key.objectid,
1522 BTRFS_DEV_EXTENT_KEY);
1523 if (ret)
1524 goto out;
1525 leaf = path->nodes[0];
1526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1527 extent = btrfs_item_ptr(leaf, path->slots[0],
1528 struct btrfs_dev_extent);
1529 BUG_ON(found_key.offset > start || found_key.offset +
1530 btrfs_dev_extent_length(leaf, extent) < start);
1531 key = found_key;
1532 btrfs_release_path(path);
1533 goto again;
1534 } else if (ret == 0) {
1535 leaf = path->nodes[0];
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 } else {
1539 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1540 goto out;
1541 }
1542
1543 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1544
1545 ret = btrfs_del_item(trans, root, path);
1546 if (ret) {
1547 btrfs_handle_fs_error(fs_info, ret,
1548 "Failed to remove dev extent item");
1549 } else {
1550 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1551 }
1552 out:
1553 btrfs_free_path(path);
1554 return ret;
1555 }
1556
1557 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1558 struct btrfs_device *device,
1559 u64 chunk_offset, u64 start, u64 num_bytes)
1560 {
1561 int ret;
1562 struct btrfs_path *path;
1563 struct btrfs_fs_info *fs_info = device->fs_info;
1564 struct btrfs_root *root = fs_info->dev_root;
1565 struct btrfs_dev_extent *extent;
1566 struct extent_buffer *leaf;
1567 struct btrfs_key key;
1568
1569 WARN_ON(!device->in_fs_metadata);
1570 WARN_ON(device->is_tgtdev_for_dev_replace);
1571 path = btrfs_alloc_path();
1572 if (!path)
1573 return -ENOMEM;
1574
1575 key.objectid = device->devid;
1576 key.offset = start;
1577 key.type = BTRFS_DEV_EXTENT_KEY;
1578 ret = btrfs_insert_empty_item(trans, root, path, &key,
1579 sizeof(*extent));
1580 if (ret)
1581 goto out;
1582
1583 leaf = path->nodes[0];
1584 extent = btrfs_item_ptr(leaf, path->slots[0],
1585 struct btrfs_dev_extent);
1586 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1587 BTRFS_CHUNK_TREE_OBJECTID);
1588 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1589 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1590 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1591
1592 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1593 btrfs_mark_buffer_dirty(leaf);
1594 out:
1595 btrfs_free_path(path);
1596 return ret;
1597 }
1598
1599 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1600 {
1601 struct extent_map_tree *em_tree;
1602 struct extent_map *em;
1603 struct rb_node *n;
1604 u64 ret = 0;
1605
1606 em_tree = &fs_info->mapping_tree.map_tree;
1607 read_lock(&em_tree->lock);
1608 n = rb_last(&em_tree->map);
1609 if (n) {
1610 em = rb_entry(n, struct extent_map, rb_node);
1611 ret = em->start + em->len;
1612 }
1613 read_unlock(&em_tree->lock);
1614
1615 return ret;
1616 }
1617
1618 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1619 u64 *devid_ret)
1620 {
1621 int ret;
1622 struct btrfs_key key;
1623 struct btrfs_key found_key;
1624 struct btrfs_path *path;
1625
1626 path = btrfs_alloc_path();
1627 if (!path)
1628 return -ENOMEM;
1629
1630 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1631 key.type = BTRFS_DEV_ITEM_KEY;
1632 key.offset = (u64)-1;
1633
1634 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1635 if (ret < 0)
1636 goto error;
1637
1638 BUG_ON(ret == 0); /* Corruption */
1639
1640 ret = btrfs_previous_item(fs_info->chunk_root, path,
1641 BTRFS_DEV_ITEMS_OBJECTID,
1642 BTRFS_DEV_ITEM_KEY);
1643 if (ret) {
1644 *devid_ret = 1;
1645 } else {
1646 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1647 path->slots[0]);
1648 *devid_ret = found_key.offset + 1;
1649 }
1650 ret = 0;
1651 error:
1652 btrfs_free_path(path);
1653 return ret;
1654 }
1655
1656 /*
1657 * the device information is stored in the chunk root
1658 * the btrfs_device struct should be fully filled in
1659 */
1660 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1661 struct btrfs_fs_info *fs_info,
1662 struct btrfs_device *device)
1663 {
1664 struct btrfs_root *root = fs_info->chunk_root;
1665 int ret;
1666 struct btrfs_path *path;
1667 struct btrfs_dev_item *dev_item;
1668 struct extent_buffer *leaf;
1669 struct btrfs_key key;
1670 unsigned long ptr;
1671
1672 path = btrfs_alloc_path();
1673 if (!path)
1674 return -ENOMEM;
1675
1676 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1677 key.type = BTRFS_DEV_ITEM_KEY;
1678 key.offset = device->devid;
1679
1680 ret = btrfs_insert_empty_item(trans, root, path, &key,
1681 sizeof(*dev_item));
1682 if (ret)
1683 goto out;
1684
1685 leaf = path->nodes[0];
1686 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1687
1688 btrfs_set_device_id(leaf, dev_item, device->devid);
1689 btrfs_set_device_generation(leaf, dev_item, 0);
1690 btrfs_set_device_type(leaf, dev_item, device->type);
1691 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1692 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1693 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1694 btrfs_set_device_total_bytes(leaf, dev_item,
1695 btrfs_device_get_disk_total_bytes(device));
1696 btrfs_set_device_bytes_used(leaf, dev_item,
1697 btrfs_device_get_bytes_used(device));
1698 btrfs_set_device_group(leaf, dev_item, 0);
1699 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1700 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1701 btrfs_set_device_start_offset(leaf, dev_item, 0);
1702
1703 ptr = btrfs_device_uuid(dev_item);
1704 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1705 ptr = btrfs_device_fsid(dev_item);
1706 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1707 btrfs_mark_buffer_dirty(leaf);
1708
1709 ret = 0;
1710 out:
1711 btrfs_free_path(path);
1712 return ret;
1713 }
1714
1715 /*
1716 * Function to update ctime/mtime for a given device path.
1717 * Mainly used for ctime/mtime based probe like libblkid.
1718 */
1719 static void update_dev_time(const char *path_name)
1720 {
1721 struct file *filp;
1722
1723 filp = filp_open(path_name, O_RDWR, 0);
1724 if (IS_ERR(filp))
1725 return;
1726 file_update_time(filp);
1727 filp_close(filp, NULL);
1728 }
1729
1730 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1731 struct btrfs_device *device)
1732 {
1733 struct btrfs_root *root = fs_info->chunk_root;
1734 int ret;
1735 struct btrfs_path *path;
1736 struct btrfs_key key;
1737 struct btrfs_trans_handle *trans;
1738
1739 path = btrfs_alloc_path();
1740 if (!path)
1741 return -ENOMEM;
1742
1743 trans = btrfs_start_transaction(root, 0);
1744 if (IS_ERR(trans)) {
1745 btrfs_free_path(path);
1746 return PTR_ERR(trans);
1747 }
1748 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1749 key.type = BTRFS_DEV_ITEM_KEY;
1750 key.offset = device->devid;
1751
1752 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1753 if (ret < 0)
1754 goto out;
1755
1756 if (ret > 0) {
1757 ret = -ENOENT;
1758 goto out;
1759 }
1760
1761 ret = btrfs_del_item(trans, root, path);
1762 if (ret)
1763 goto out;
1764 out:
1765 btrfs_free_path(path);
1766 btrfs_commit_transaction(trans);
1767 return ret;
1768 }
1769
1770 /*
1771 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1772 * filesystem. It's up to the caller to adjust that number regarding eg. device
1773 * replace.
1774 */
1775 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1776 u64 num_devices)
1777 {
1778 u64 all_avail;
1779 unsigned seq;
1780 int i;
1781
1782 do {
1783 seq = read_seqbegin(&fs_info->profiles_lock);
1784
1785 all_avail = fs_info->avail_data_alloc_bits |
1786 fs_info->avail_system_alloc_bits |
1787 fs_info->avail_metadata_alloc_bits;
1788 } while (read_seqretry(&fs_info->profiles_lock, seq));
1789
1790 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1791 if (!(all_avail & btrfs_raid_group[i]))
1792 continue;
1793
1794 if (num_devices < btrfs_raid_array[i].devs_min) {
1795 int ret = btrfs_raid_mindev_error[i];
1796
1797 if (ret)
1798 return ret;
1799 }
1800 }
1801
1802 return 0;
1803 }
1804
1805 static struct btrfs_device * btrfs_find_next_active_device(
1806 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1807 {
1808 struct btrfs_device *next_device;
1809
1810 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1811 if (next_device != device &&
1812 !next_device->missing && next_device->bdev)
1813 return next_device;
1814 }
1815
1816 return NULL;
1817 }
1818
1819 /*
1820 * Helper function to check if the given device is part of s_bdev / latest_bdev
1821 * and replace it with the provided or the next active device, in the context
1822 * where this function called, there should be always be another device (or
1823 * this_dev) which is active.
1824 */
1825 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1826 struct btrfs_device *device, struct btrfs_device *this_dev)
1827 {
1828 struct btrfs_device *next_device;
1829
1830 if (this_dev)
1831 next_device = this_dev;
1832 else
1833 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1834 device);
1835 ASSERT(next_device);
1836
1837 if (fs_info->sb->s_bdev &&
1838 (fs_info->sb->s_bdev == device->bdev))
1839 fs_info->sb->s_bdev = next_device->bdev;
1840
1841 if (fs_info->fs_devices->latest_bdev == device->bdev)
1842 fs_info->fs_devices->latest_bdev = next_device->bdev;
1843 }
1844
1845 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1846 u64 devid)
1847 {
1848 struct btrfs_device *device;
1849 struct btrfs_fs_devices *cur_devices;
1850 u64 num_devices;
1851 int ret = 0;
1852
1853 mutex_lock(&uuid_mutex);
1854
1855 num_devices = fs_info->fs_devices->num_devices;
1856 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1857 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1858 WARN_ON(num_devices < 1);
1859 num_devices--;
1860 }
1861 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1862
1863 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1864 if (ret)
1865 goto out;
1866
1867 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1868 &device);
1869 if (ret)
1870 goto out;
1871
1872 if (device->is_tgtdev_for_dev_replace) {
1873 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1874 goto out;
1875 }
1876
1877 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1878 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1879 goto out;
1880 }
1881
1882 if (device->writeable) {
1883 mutex_lock(&fs_info->chunk_mutex);
1884 list_del_init(&device->dev_alloc_list);
1885 device->fs_devices->rw_devices--;
1886 mutex_unlock(&fs_info->chunk_mutex);
1887 }
1888
1889 mutex_unlock(&uuid_mutex);
1890 ret = btrfs_shrink_device(device, 0);
1891 mutex_lock(&uuid_mutex);
1892 if (ret)
1893 goto error_undo;
1894
1895 /*
1896 * TODO: the superblock still includes this device in its num_devices
1897 * counter although write_all_supers() is not locked out. This
1898 * could give a filesystem state which requires a degraded mount.
1899 */
1900 ret = btrfs_rm_dev_item(fs_info, device);
1901 if (ret)
1902 goto error_undo;
1903
1904 device->in_fs_metadata = 0;
1905 btrfs_scrub_cancel_dev(fs_info, device);
1906
1907 /*
1908 * the device list mutex makes sure that we don't change
1909 * the device list while someone else is writing out all
1910 * the device supers. Whoever is writing all supers, should
1911 * lock the device list mutex before getting the number of
1912 * devices in the super block (super_copy). Conversely,
1913 * whoever updates the number of devices in the super block
1914 * (super_copy) should hold the device list mutex.
1915 */
1916
1917 cur_devices = device->fs_devices;
1918 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1919 list_del_rcu(&device->dev_list);
1920
1921 device->fs_devices->num_devices--;
1922 device->fs_devices->total_devices--;
1923
1924 if (device->missing)
1925 device->fs_devices->missing_devices--;
1926
1927 btrfs_assign_next_active_device(fs_info, device, NULL);
1928
1929 if (device->bdev) {
1930 device->fs_devices->open_devices--;
1931 /* remove sysfs entry */
1932 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1933 }
1934
1935 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1936 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1937 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1938
1939 /*
1940 * at this point, the device is zero sized and detached from
1941 * the devices list. All that's left is to zero out the old
1942 * supers and free the device.
1943 */
1944 if (device->writeable)
1945 btrfs_scratch_superblocks(device->bdev, device->name->str);
1946
1947 btrfs_close_bdev(device);
1948 call_rcu(&device->rcu, free_device);
1949
1950 if (cur_devices->open_devices == 0) {
1951 struct btrfs_fs_devices *fs_devices;
1952 fs_devices = fs_info->fs_devices;
1953 while (fs_devices) {
1954 if (fs_devices->seed == cur_devices) {
1955 fs_devices->seed = cur_devices->seed;
1956 break;
1957 }
1958 fs_devices = fs_devices->seed;
1959 }
1960 cur_devices->seed = NULL;
1961 __btrfs_close_devices(cur_devices);
1962 free_fs_devices(cur_devices);
1963 }
1964
1965 out:
1966 mutex_unlock(&uuid_mutex);
1967 return ret;
1968
1969 error_undo:
1970 if (device->writeable) {
1971 mutex_lock(&fs_info->chunk_mutex);
1972 list_add(&device->dev_alloc_list,
1973 &fs_info->fs_devices->alloc_list);
1974 device->fs_devices->rw_devices++;
1975 mutex_unlock(&fs_info->chunk_mutex);
1976 }
1977 goto out;
1978 }
1979
1980 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1981 struct btrfs_device *srcdev)
1982 {
1983 struct btrfs_fs_devices *fs_devices;
1984
1985 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1986
1987 /*
1988 * in case of fs with no seed, srcdev->fs_devices will point
1989 * to fs_devices of fs_info. However when the dev being replaced is
1990 * a seed dev it will point to the seed's local fs_devices. In short
1991 * srcdev will have its correct fs_devices in both the cases.
1992 */
1993 fs_devices = srcdev->fs_devices;
1994
1995 list_del_rcu(&srcdev->dev_list);
1996 list_del_rcu(&srcdev->dev_alloc_list);
1997 fs_devices->num_devices--;
1998 if (srcdev->missing)
1999 fs_devices->missing_devices--;
2000
2001 if (srcdev->writeable)
2002 fs_devices->rw_devices--;
2003
2004 if (srcdev->bdev)
2005 fs_devices->open_devices--;
2006 }
2007
2008 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2009 struct btrfs_device *srcdev)
2010 {
2011 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2012
2013 if (srcdev->writeable) {
2014 /* zero out the old super if it is writable */
2015 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2016 }
2017
2018 btrfs_close_bdev(srcdev);
2019 call_rcu(&srcdev->rcu, free_device);
2020
2021 /* if this is no devs we rather delete the fs_devices */
2022 if (!fs_devices->num_devices) {
2023 struct btrfs_fs_devices *tmp_fs_devices;
2024
2025 /*
2026 * On a mounted FS, num_devices can't be zero unless it's a
2027 * seed. In case of a seed device being replaced, the replace
2028 * target added to the sprout FS, so there will be no more
2029 * device left under the seed FS.
2030 */
2031 ASSERT(fs_devices->seeding);
2032
2033 tmp_fs_devices = fs_info->fs_devices;
2034 while (tmp_fs_devices) {
2035 if (tmp_fs_devices->seed == fs_devices) {
2036 tmp_fs_devices->seed = fs_devices->seed;
2037 break;
2038 }
2039 tmp_fs_devices = tmp_fs_devices->seed;
2040 }
2041 fs_devices->seed = NULL;
2042 __btrfs_close_devices(fs_devices);
2043 free_fs_devices(fs_devices);
2044 }
2045 }
2046
2047 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2048 struct btrfs_device *tgtdev)
2049 {
2050 mutex_lock(&uuid_mutex);
2051 WARN_ON(!tgtdev);
2052 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2053
2054 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2055
2056 if (tgtdev->bdev)
2057 fs_info->fs_devices->open_devices--;
2058
2059 fs_info->fs_devices->num_devices--;
2060
2061 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2062
2063 list_del_rcu(&tgtdev->dev_list);
2064
2065 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2066 mutex_unlock(&uuid_mutex);
2067
2068 /*
2069 * The update_dev_time() with in btrfs_scratch_superblocks()
2070 * may lead to a call to btrfs_show_devname() which will try
2071 * to hold device_list_mutex. And here this device
2072 * is already out of device list, so we don't have to hold
2073 * the device_list_mutex lock.
2074 */
2075 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2076
2077 btrfs_close_bdev(tgtdev);
2078 call_rcu(&tgtdev->rcu, free_device);
2079 }
2080
2081 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2082 const char *device_path,
2083 struct btrfs_device **device)
2084 {
2085 int ret = 0;
2086 struct btrfs_super_block *disk_super;
2087 u64 devid;
2088 u8 *dev_uuid;
2089 struct block_device *bdev;
2090 struct buffer_head *bh;
2091
2092 *device = NULL;
2093 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2094 fs_info->bdev_holder, 0, &bdev, &bh);
2095 if (ret)
2096 return ret;
2097 disk_super = (struct btrfs_super_block *)bh->b_data;
2098 devid = btrfs_stack_device_id(&disk_super->dev_item);
2099 dev_uuid = disk_super->dev_item.uuid;
2100 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2101 brelse(bh);
2102 if (!*device)
2103 ret = -ENOENT;
2104 blkdev_put(bdev, FMODE_READ);
2105 return ret;
2106 }
2107
2108 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2109 const char *device_path,
2110 struct btrfs_device **device)
2111 {
2112 *device = NULL;
2113 if (strcmp(device_path, "missing") == 0) {
2114 struct list_head *devices;
2115 struct btrfs_device *tmp;
2116
2117 devices = &fs_info->fs_devices->devices;
2118 /*
2119 * It is safe to read the devices since the volume_mutex
2120 * is held by the caller.
2121 */
2122 list_for_each_entry(tmp, devices, dev_list) {
2123 if (tmp->in_fs_metadata && !tmp->bdev) {
2124 *device = tmp;
2125 break;
2126 }
2127 }
2128
2129 if (!*device)
2130 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2131
2132 return 0;
2133 } else {
2134 return btrfs_find_device_by_path(fs_info, device_path, device);
2135 }
2136 }
2137
2138 /*
2139 * Lookup a device given by device id, or the path if the id is 0.
2140 */
2141 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2142 const char *devpath,
2143 struct btrfs_device **device)
2144 {
2145 int ret;
2146
2147 if (devid) {
2148 ret = 0;
2149 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2150 if (!*device)
2151 ret = -ENOENT;
2152 } else {
2153 if (!devpath || !devpath[0])
2154 return -EINVAL;
2155
2156 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2157 device);
2158 }
2159 return ret;
2160 }
2161
2162 /*
2163 * does all the dirty work required for changing file system's UUID.
2164 */
2165 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2166 {
2167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2168 struct btrfs_fs_devices *old_devices;
2169 struct btrfs_fs_devices *seed_devices;
2170 struct btrfs_super_block *disk_super = fs_info->super_copy;
2171 struct btrfs_device *device;
2172 u64 super_flags;
2173
2174 BUG_ON(!mutex_is_locked(&uuid_mutex));
2175 if (!fs_devices->seeding)
2176 return -EINVAL;
2177
2178 seed_devices = alloc_fs_devices(NULL);
2179 if (IS_ERR(seed_devices))
2180 return PTR_ERR(seed_devices);
2181
2182 old_devices = clone_fs_devices(fs_devices);
2183 if (IS_ERR(old_devices)) {
2184 kfree(seed_devices);
2185 return PTR_ERR(old_devices);
2186 }
2187
2188 list_add(&old_devices->list, &fs_uuids);
2189
2190 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2191 seed_devices->opened = 1;
2192 INIT_LIST_HEAD(&seed_devices->devices);
2193 INIT_LIST_HEAD(&seed_devices->alloc_list);
2194 mutex_init(&seed_devices->device_list_mutex);
2195
2196 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2197 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2198 synchronize_rcu);
2199 list_for_each_entry(device, &seed_devices->devices, dev_list)
2200 device->fs_devices = seed_devices;
2201
2202 mutex_lock(&fs_info->chunk_mutex);
2203 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2204 mutex_unlock(&fs_info->chunk_mutex);
2205
2206 fs_devices->seeding = 0;
2207 fs_devices->num_devices = 0;
2208 fs_devices->open_devices = 0;
2209 fs_devices->missing_devices = 0;
2210 fs_devices->rotating = 0;
2211 fs_devices->seed = seed_devices;
2212
2213 generate_random_uuid(fs_devices->fsid);
2214 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2215 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2216 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2217
2218 super_flags = btrfs_super_flags(disk_super) &
2219 ~BTRFS_SUPER_FLAG_SEEDING;
2220 btrfs_set_super_flags(disk_super, super_flags);
2221
2222 return 0;
2223 }
2224
2225 /*
2226 * Store the expected generation for seed devices in device items.
2227 */
2228 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2229 struct btrfs_fs_info *fs_info)
2230 {
2231 struct btrfs_root *root = fs_info->chunk_root;
2232 struct btrfs_path *path;
2233 struct extent_buffer *leaf;
2234 struct btrfs_dev_item *dev_item;
2235 struct btrfs_device *device;
2236 struct btrfs_key key;
2237 u8 fs_uuid[BTRFS_FSID_SIZE];
2238 u8 dev_uuid[BTRFS_UUID_SIZE];
2239 u64 devid;
2240 int ret;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2247 key.offset = 0;
2248 key.type = BTRFS_DEV_ITEM_KEY;
2249
2250 while (1) {
2251 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2252 if (ret < 0)
2253 goto error;
2254
2255 leaf = path->nodes[0];
2256 next_slot:
2257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2258 ret = btrfs_next_leaf(root, path);
2259 if (ret > 0)
2260 break;
2261 if (ret < 0)
2262 goto error;
2263 leaf = path->nodes[0];
2264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2265 btrfs_release_path(path);
2266 continue;
2267 }
2268
2269 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2270 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2271 key.type != BTRFS_DEV_ITEM_KEY)
2272 break;
2273
2274 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2275 struct btrfs_dev_item);
2276 devid = btrfs_device_id(leaf, dev_item);
2277 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2278 BTRFS_UUID_SIZE);
2279 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2280 BTRFS_FSID_SIZE);
2281 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2282 BUG_ON(!device); /* Logic error */
2283
2284 if (device->fs_devices->seeding) {
2285 btrfs_set_device_generation(leaf, dev_item,
2286 device->generation);
2287 btrfs_mark_buffer_dirty(leaf);
2288 }
2289
2290 path->slots[0]++;
2291 goto next_slot;
2292 }
2293 ret = 0;
2294 error:
2295 btrfs_free_path(path);
2296 return ret;
2297 }
2298
2299 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2300 {
2301 struct btrfs_root *root = fs_info->dev_root;
2302 struct request_queue *q;
2303 struct btrfs_trans_handle *trans;
2304 struct btrfs_device *device;
2305 struct block_device *bdev;
2306 struct list_head *devices;
2307 struct super_block *sb = fs_info->sb;
2308 struct rcu_string *name;
2309 u64 tmp;
2310 int seeding_dev = 0;
2311 int ret = 0;
2312 bool unlocked = false;
2313
2314 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2315 return -EROFS;
2316
2317 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2318 fs_info->bdev_holder);
2319 if (IS_ERR(bdev))
2320 return PTR_ERR(bdev);
2321
2322 if (fs_info->fs_devices->seeding) {
2323 seeding_dev = 1;
2324 down_write(&sb->s_umount);
2325 mutex_lock(&uuid_mutex);
2326 }
2327
2328 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2329
2330 devices = &fs_info->fs_devices->devices;
2331
2332 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2333 list_for_each_entry(device, devices, dev_list) {
2334 if (device->bdev == bdev) {
2335 ret = -EEXIST;
2336 mutex_unlock(
2337 &fs_info->fs_devices->device_list_mutex);
2338 goto error;
2339 }
2340 }
2341 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2342
2343 device = btrfs_alloc_device(fs_info, NULL, NULL);
2344 if (IS_ERR(device)) {
2345 /* we can safely leave the fs_devices entry around */
2346 ret = PTR_ERR(device);
2347 goto error;
2348 }
2349
2350 name = rcu_string_strdup(device_path, GFP_KERNEL);
2351 if (!name) {
2352 kfree(device);
2353 ret = -ENOMEM;
2354 goto error;
2355 }
2356 rcu_assign_pointer(device->name, name);
2357
2358 trans = btrfs_start_transaction(root, 0);
2359 if (IS_ERR(trans)) {
2360 rcu_string_free(device->name);
2361 kfree(device);
2362 ret = PTR_ERR(trans);
2363 goto error;
2364 }
2365
2366 q = bdev_get_queue(bdev);
2367 if (blk_queue_discard(q))
2368 device->can_discard = 1;
2369 device->writeable = 1;
2370 device->generation = trans->transid;
2371 device->io_width = fs_info->sectorsize;
2372 device->io_align = fs_info->sectorsize;
2373 device->sector_size = fs_info->sectorsize;
2374 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2375 fs_info->sectorsize);
2376 device->disk_total_bytes = device->total_bytes;
2377 device->commit_total_bytes = device->total_bytes;
2378 device->fs_info = fs_info;
2379 device->bdev = bdev;
2380 device->in_fs_metadata = 1;
2381 device->is_tgtdev_for_dev_replace = 0;
2382 device->mode = FMODE_EXCL;
2383 device->dev_stats_valid = 1;
2384 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2385
2386 if (seeding_dev) {
2387 sb->s_flags &= ~SB_RDONLY;
2388 ret = btrfs_prepare_sprout(fs_info);
2389 if (ret) {
2390 btrfs_abort_transaction(trans, ret);
2391 goto error_trans;
2392 }
2393 }
2394
2395 device->fs_devices = fs_info->fs_devices;
2396
2397 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2398 mutex_lock(&fs_info->chunk_mutex);
2399 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2400 list_add(&device->dev_alloc_list,
2401 &fs_info->fs_devices->alloc_list);
2402 fs_info->fs_devices->num_devices++;
2403 fs_info->fs_devices->open_devices++;
2404 fs_info->fs_devices->rw_devices++;
2405 fs_info->fs_devices->total_devices++;
2406 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2407
2408 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2409
2410 if (!blk_queue_nonrot(q))
2411 fs_info->fs_devices->rotating = 1;
2412
2413 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2414 btrfs_set_super_total_bytes(fs_info->super_copy,
2415 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2416
2417 tmp = btrfs_super_num_devices(fs_info->super_copy);
2418 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2419
2420 /* add sysfs device entry */
2421 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2422
2423 /*
2424 * we've got more storage, clear any full flags on the space
2425 * infos
2426 */
2427 btrfs_clear_space_info_full(fs_info);
2428
2429 mutex_unlock(&fs_info->chunk_mutex);
2430 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2431
2432 if (seeding_dev) {
2433 mutex_lock(&fs_info->chunk_mutex);
2434 ret = init_first_rw_device(trans, fs_info);
2435 mutex_unlock(&fs_info->chunk_mutex);
2436 if (ret) {
2437 btrfs_abort_transaction(trans, ret);
2438 goto error_sysfs;
2439 }
2440 }
2441
2442 ret = btrfs_add_device(trans, fs_info, device);
2443 if (ret) {
2444 btrfs_abort_transaction(trans, ret);
2445 goto error_sysfs;
2446 }
2447
2448 if (seeding_dev) {
2449 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2450
2451 ret = btrfs_finish_sprout(trans, fs_info);
2452 if (ret) {
2453 btrfs_abort_transaction(trans, ret);
2454 goto error_sysfs;
2455 }
2456
2457 /* Sprouting would change fsid of the mounted root,
2458 * so rename the fsid on the sysfs
2459 */
2460 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2461 fs_info->fsid);
2462 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2463 btrfs_warn(fs_info,
2464 "sysfs: failed to create fsid for sprout");
2465 }
2466
2467 ret = btrfs_commit_transaction(trans);
2468
2469 if (seeding_dev) {
2470 mutex_unlock(&uuid_mutex);
2471 up_write(&sb->s_umount);
2472 unlocked = true;
2473
2474 if (ret) /* transaction commit */
2475 return ret;
2476
2477 ret = btrfs_relocate_sys_chunks(fs_info);
2478 if (ret < 0)
2479 btrfs_handle_fs_error(fs_info, ret,
2480 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2481 trans = btrfs_attach_transaction(root);
2482 if (IS_ERR(trans)) {
2483 if (PTR_ERR(trans) == -ENOENT)
2484 return 0;
2485 ret = PTR_ERR(trans);
2486 trans = NULL;
2487 goto error_sysfs;
2488 }
2489 ret = btrfs_commit_transaction(trans);
2490 }
2491
2492 /* Update ctime/mtime for libblkid */
2493 update_dev_time(device_path);
2494 return ret;
2495
2496 error_sysfs:
2497 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2498 error_trans:
2499 if (seeding_dev)
2500 sb->s_flags |= SB_RDONLY;
2501 if (trans)
2502 btrfs_end_transaction(trans);
2503 rcu_string_free(device->name);
2504 kfree(device);
2505 error:
2506 blkdev_put(bdev, FMODE_EXCL);
2507 if (seeding_dev && !unlocked) {
2508 mutex_unlock(&uuid_mutex);
2509 up_write(&sb->s_umount);
2510 }
2511 return ret;
2512 }
2513
2514 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2515 const char *device_path,
2516 struct btrfs_device *srcdev,
2517 struct btrfs_device **device_out)
2518 {
2519 struct request_queue *q;
2520 struct btrfs_device *device;
2521 struct block_device *bdev;
2522 struct list_head *devices;
2523 struct rcu_string *name;
2524 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2525 int ret = 0;
2526
2527 *device_out = NULL;
2528 if (fs_info->fs_devices->seeding) {
2529 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2530 return -EINVAL;
2531 }
2532
2533 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2534 fs_info->bdev_holder);
2535 if (IS_ERR(bdev)) {
2536 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2537 return PTR_ERR(bdev);
2538 }
2539
2540 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2541
2542 devices = &fs_info->fs_devices->devices;
2543 list_for_each_entry(device, devices, dev_list) {
2544 if (device->bdev == bdev) {
2545 btrfs_err(fs_info,
2546 "target device is in the filesystem!");
2547 ret = -EEXIST;
2548 goto error;
2549 }
2550 }
2551
2552
2553 if (i_size_read(bdev->bd_inode) <
2554 btrfs_device_get_total_bytes(srcdev)) {
2555 btrfs_err(fs_info,
2556 "target device is smaller than source device!");
2557 ret = -EINVAL;
2558 goto error;
2559 }
2560
2561
2562 device = btrfs_alloc_device(NULL, &devid, NULL);
2563 if (IS_ERR(device)) {
2564 ret = PTR_ERR(device);
2565 goto error;
2566 }
2567
2568 name = rcu_string_strdup(device_path, GFP_KERNEL);
2569 if (!name) {
2570 kfree(device);
2571 ret = -ENOMEM;
2572 goto error;
2573 }
2574 rcu_assign_pointer(device->name, name);
2575
2576 q = bdev_get_queue(bdev);
2577 if (blk_queue_discard(q))
2578 device->can_discard = 1;
2579 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2580 device->writeable = 1;
2581 device->generation = 0;
2582 device->io_width = fs_info->sectorsize;
2583 device->io_align = fs_info->sectorsize;
2584 device->sector_size = fs_info->sectorsize;
2585 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2586 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2587 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2588 ASSERT(list_empty(&srcdev->resized_list));
2589 device->commit_total_bytes = srcdev->commit_total_bytes;
2590 device->commit_bytes_used = device->bytes_used;
2591 device->fs_info = fs_info;
2592 device->bdev = bdev;
2593 device->in_fs_metadata = 1;
2594 device->is_tgtdev_for_dev_replace = 1;
2595 device->mode = FMODE_EXCL;
2596 device->dev_stats_valid = 1;
2597 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2598 device->fs_devices = fs_info->fs_devices;
2599 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2600 fs_info->fs_devices->num_devices++;
2601 fs_info->fs_devices->open_devices++;
2602 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2603
2604 *device_out = device;
2605 return ret;
2606
2607 error:
2608 blkdev_put(bdev, FMODE_EXCL);
2609 return ret;
2610 }
2611
2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2613 struct btrfs_device *tgtdev)
2614 {
2615 u32 sectorsize = fs_info->sectorsize;
2616
2617 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2618 tgtdev->io_width = sectorsize;
2619 tgtdev->io_align = sectorsize;
2620 tgtdev->sector_size = sectorsize;
2621 tgtdev->fs_info = fs_info;
2622 tgtdev->in_fs_metadata = 1;
2623 }
2624
2625 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2626 struct btrfs_device *device)
2627 {
2628 int ret;
2629 struct btrfs_path *path;
2630 struct btrfs_root *root = device->fs_info->chunk_root;
2631 struct btrfs_dev_item *dev_item;
2632 struct extent_buffer *leaf;
2633 struct btrfs_key key;
2634
2635 path = btrfs_alloc_path();
2636 if (!path)
2637 return -ENOMEM;
2638
2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640 key.type = BTRFS_DEV_ITEM_KEY;
2641 key.offset = device->devid;
2642
2643 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2644 if (ret < 0)
2645 goto out;
2646
2647 if (ret > 0) {
2648 ret = -ENOENT;
2649 goto out;
2650 }
2651
2652 leaf = path->nodes[0];
2653 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2654
2655 btrfs_set_device_id(leaf, dev_item, device->devid);
2656 btrfs_set_device_type(leaf, dev_item, device->type);
2657 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2658 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2659 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2660 btrfs_set_device_total_bytes(leaf, dev_item,
2661 btrfs_device_get_disk_total_bytes(device));
2662 btrfs_set_device_bytes_used(leaf, dev_item,
2663 btrfs_device_get_bytes_used(device));
2664 btrfs_mark_buffer_dirty(leaf);
2665
2666 out:
2667 btrfs_free_path(path);
2668 return ret;
2669 }
2670
2671 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2672 struct btrfs_device *device, u64 new_size)
2673 {
2674 struct btrfs_fs_info *fs_info = device->fs_info;
2675 struct btrfs_super_block *super_copy = fs_info->super_copy;
2676 struct btrfs_fs_devices *fs_devices;
2677 u64 old_total;
2678 u64 diff;
2679
2680 if (!device->writeable)
2681 return -EACCES;
2682
2683 new_size = round_down(new_size, fs_info->sectorsize);
2684
2685 mutex_lock(&fs_info->chunk_mutex);
2686 old_total = btrfs_super_total_bytes(super_copy);
2687 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2688
2689 if (new_size <= device->total_bytes ||
2690 device->is_tgtdev_for_dev_replace) {
2691 mutex_unlock(&fs_info->chunk_mutex);
2692 return -EINVAL;
2693 }
2694
2695 fs_devices = fs_info->fs_devices;
2696
2697 btrfs_set_super_total_bytes(super_copy,
2698 round_down(old_total + diff, fs_info->sectorsize));
2699 device->fs_devices->total_rw_bytes += diff;
2700
2701 btrfs_device_set_total_bytes(device, new_size);
2702 btrfs_device_set_disk_total_bytes(device, new_size);
2703 btrfs_clear_space_info_full(device->fs_info);
2704 if (list_empty(&device->resized_list))
2705 list_add_tail(&device->resized_list,
2706 &fs_devices->resized_devices);
2707 mutex_unlock(&fs_info->chunk_mutex);
2708
2709 return btrfs_update_device(trans, device);
2710 }
2711
2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2713 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2714 {
2715 struct btrfs_root *root = fs_info->chunk_root;
2716 int ret;
2717 struct btrfs_path *path;
2718 struct btrfs_key key;
2719
2720 path = btrfs_alloc_path();
2721 if (!path)
2722 return -ENOMEM;
2723
2724 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2725 key.offset = chunk_offset;
2726 key.type = BTRFS_CHUNK_ITEM_KEY;
2727
2728 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2729 if (ret < 0)
2730 goto out;
2731 else if (ret > 0) { /* Logic error or corruption */
2732 btrfs_handle_fs_error(fs_info, -ENOENT,
2733 "Failed lookup while freeing chunk.");
2734 ret = -ENOENT;
2735 goto out;
2736 }
2737
2738 ret = btrfs_del_item(trans, root, path);
2739 if (ret < 0)
2740 btrfs_handle_fs_error(fs_info, ret,
2741 "Failed to delete chunk item.");
2742 out:
2743 btrfs_free_path(path);
2744 return ret;
2745 }
2746
2747 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2748 {
2749 struct btrfs_super_block *super_copy = fs_info->super_copy;
2750 struct btrfs_disk_key *disk_key;
2751 struct btrfs_chunk *chunk;
2752 u8 *ptr;
2753 int ret = 0;
2754 u32 num_stripes;
2755 u32 array_size;
2756 u32 len = 0;
2757 u32 cur;
2758 struct btrfs_key key;
2759
2760 mutex_lock(&fs_info->chunk_mutex);
2761 array_size = btrfs_super_sys_array_size(super_copy);
2762
2763 ptr = super_copy->sys_chunk_array;
2764 cur = 0;
2765
2766 while (cur < array_size) {
2767 disk_key = (struct btrfs_disk_key *)ptr;
2768 btrfs_disk_key_to_cpu(&key, disk_key);
2769
2770 len = sizeof(*disk_key);
2771
2772 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2773 chunk = (struct btrfs_chunk *)(ptr + len);
2774 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2775 len += btrfs_chunk_item_size(num_stripes);
2776 } else {
2777 ret = -EIO;
2778 break;
2779 }
2780 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2781 key.offset == chunk_offset) {
2782 memmove(ptr, ptr + len, array_size - (cur + len));
2783 array_size -= len;
2784 btrfs_set_super_sys_array_size(super_copy, array_size);
2785 } else {
2786 ptr += len;
2787 cur += len;
2788 }
2789 }
2790 mutex_unlock(&fs_info->chunk_mutex);
2791 return ret;
2792 }
2793
2794 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2795 u64 logical, u64 length)
2796 {
2797 struct extent_map_tree *em_tree;
2798 struct extent_map *em;
2799
2800 em_tree = &fs_info->mapping_tree.map_tree;
2801 read_lock(&em_tree->lock);
2802 em = lookup_extent_mapping(em_tree, logical, length);
2803 read_unlock(&em_tree->lock);
2804
2805 if (!em) {
2806 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2807 logical, length);
2808 return ERR_PTR(-EINVAL);
2809 }
2810
2811 if (em->start > logical || em->start + em->len < logical) {
2812 btrfs_crit(fs_info,
2813 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2814 logical, length, em->start, em->start + em->len);
2815 free_extent_map(em);
2816 return ERR_PTR(-EINVAL);
2817 }
2818
2819 /* callers are responsible for dropping em's ref. */
2820 return em;
2821 }
2822
2823 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2824 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2825 {
2826 struct extent_map *em;
2827 struct map_lookup *map;
2828 u64 dev_extent_len = 0;
2829 int i, ret = 0;
2830 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2831
2832 em = get_chunk_map(fs_info, chunk_offset, 1);
2833 if (IS_ERR(em)) {
2834 /*
2835 * This is a logic error, but we don't want to just rely on the
2836 * user having built with ASSERT enabled, so if ASSERT doesn't
2837 * do anything we still error out.
2838 */
2839 ASSERT(0);
2840 return PTR_ERR(em);
2841 }
2842 map = em->map_lookup;
2843 mutex_lock(&fs_info->chunk_mutex);
2844 check_system_chunk(trans, fs_info, map->type);
2845 mutex_unlock(&fs_info->chunk_mutex);
2846
2847 /*
2848 * Take the device list mutex to prevent races with the final phase of
2849 * a device replace operation that replaces the device object associated
2850 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2851 */
2852 mutex_lock(&fs_devices->device_list_mutex);
2853 for (i = 0; i < map->num_stripes; i++) {
2854 struct btrfs_device *device = map->stripes[i].dev;
2855 ret = btrfs_free_dev_extent(trans, device,
2856 map->stripes[i].physical,
2857 &dev_extent_len);
2858 if (ret) {
2859 mutex_unlock(&fs_devices->device_list_mutex);
2860 btrfs_abort_transaction(trans, ret);
2861 goto out;
2862 }
2863
2864 if (device->bytes_used > 0) {
2865 mutex_lock(&fs_info->chunk_mutex);
2866 btrfs_device_set_bytes_used(device,
2867 device->bytes_used - dev_extent_len);
2868 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2869 btrfs_clear_space_info_full(fs_info);
2870 mutex_unlock(&fs_info->chunk_mutex);
2871 }
2872
2873 if (map->stripes[i].dev) {
2874 ret = btrfs_update_device(trans, map->stripes[i].dev);
2875 if (ret) {
2876 mutex_unlock(&fs_devices->device_list_mutex);
2877 btrfs_abort_transaction(trans, ret);
2878 goto out;
2879 }
2880 }
2881 }
2882 mutex_unlock(&fs_devices->device_list_mutex);
2883
2884 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2885 if (ret) {
2886 btrfs_abort_transaction(trans, ret);
2887 goto out;
2888 }
2889
2890 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2891
2892 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2893 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2894 if (ret) {
2895 btrfs_abort_transaction(trans, ret);
2896 goto out;
2897 }
2898 }
2899
2900 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2901 if (ret) {
2902 btrfs_abort_transaction(trans, ret);
2903 goto out;
2904 }
2905
2906 out:
2907 /* once for us */
2908 free_extent_map(em);
2909 return ret;
2910 }
2911
2912 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2913 {
2914 struct btrfs_root *root = fs_info->chunk_root;
2915 struct btrfs_trans_handle *trans;
2916 int ret;
2917
2918 /*
2919 * Prevent races with automatic removal of unused block groups.
2920 * After we relocate and before we remove the chunk with offset
2921 * chunk_offset, automatic removal of the block group can kick in,
2922 * resulting in a failure when calling btrfs_remove_chunk() below.
2923 *
2924 * Make sure to acquire this mutex before doing a tree search (dev
2925 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2926 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2927 * we release the path used to search the chunk/dev tree and before
2928 * the current task acquires this mutex and calls us.
2929 */
2930 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2931
2932 ret = btrfs_can_relocate(fs_info, chunk_offset);
2933 if (ret)
2934 return -ENOSPC;
2935
2936 /* step one, relocate all the extents inside this chunk */
2937 btrfs_scrub_pause(fs_info);
2938 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2939 btrfs_scrub_continue(fs_info);
2940 if (ret)
2941 return ret;
2942
2943 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2944 chunk_offset);
2945 if (IS_ERR(trans)) {
2946 ret = PTR_ERR(trans);
2947 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2948 return ret;
2949 }
2950
2951 /*
2952 * step two, delete the device extents and the
2953 * chunk tree entries
2954 */
2955 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2956 btrfs_end_transaction(trans);
2957 return ret;
2958 }
2959
2960 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2961 {
2962 struct btrfs_root *chunk_root = fs_info->chunk_root;
2963 struct btrfs_path *path;
2964 struct extent_buffer *leaf;
2965 struct btrfs_chunk *chunk;
2966 struct btrfs_key key;
2967 struct btrfs_key found_key;
2968 u64 chunk_type;
2969 bool retried = false;
2970 int failed = 0;
2971 int ret;
2972
2973 path = btrfs_alloc_path();
2974 if (!path)
2975 return -ENOMEM;
2976
2977 again:
2978 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2979 key.offset = (u64)-1;
2980 key.type = BTRFS_CHUNK_ITEM_KEY;
2981
2982 while (1) {
2983 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2984 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2985 if (ret < 0) {
2986 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2987 goto error;
2988 }
2989 BUG_ON(ret == 0); /* Corruption */
2990
2991 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2992 key.type);
2993 if (ret)
2994 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2995 if (ret < 0)
2996 goto error;
2997 if (ret > 0)
2998 break;
2999
3000 leaf = path->nodes[0];
3001 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3002
3003 chunk = btrfs_item_ptr(leaf, path->slots[0],
3004 struct btrfs_chunk);
3005 chunk_type = btrfs_chunk_type(leaf, chunk);
3006 btrfs_release_path(path);
3007
3008 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3009 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3010 if (ret == -ENOSPC)
3011 failed++;
3012 else
3013 BUG_ON(ret);
3014 }
3015 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3016
3017 if (found_key.offset == 0)
3018 break;
3019 key.offset = found_key.offset - 1;
3020 }
3021 ret = 0;
3022 if (failed && !retried) {
3023 failed = 0;
3024 retried = true;
3025 goto again;
3026 } else if (WARN_ON(failed && retried)) {
3027 ret = -ENOSPC;
3028 }
3029 error:
3030 btrfs_free_path(path);
3031 return ret;
3032 }
3033
3034 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3035 struct btrfs_balance_control *bctl)
3036 {
3037 struct btrfs_root *root = fs_info->tree_root;
3038 struct btrfs_trans_handle *trans;
3039 struct btrfs_balance_item *item;
3040 struct btrfs_disk_balance_args disk_bargs;
3041 struct btrfs_path *path;
3042 struct extent_buffer *leaf;
3043 struct btrfs_key key;
3044 int ret, err;
3045
3046 path = btrfs_alloc_path();
3047 if (!path)
3048 return -ENOMEM;
3049
3050 trans = btrfs_start_transaction(root, 0);
3051 if (IS_ERR(trans)) {
3052 btrfs_free_path(path);
3053 return PTR_ERR(trans);
3054 }
3055
3056 key.objectid = BTRFS_BALANCE_OBJECTID;
3057 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3058 key.offset = 0;
3059
3060 ret = btrfs_insert_empty_item(trans, root, path, &key,
3061 sizeof(*item));
3062 if (ret)
3063 goto out;
3064
3065 leaf = path->nodes[0];
3066 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3067
3068 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3069
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3071 btrfs_set_balance_data(leaf, item, &disk_bargs);
3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3073 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3074 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3075 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3076
3077 btrfs_set_balance_flags(leaf, item, bctl->flags);
3078
3079 btrfs_mark_buffer_dirty(leaf);
3080 out:
3081 btrfs_free_path(path);
3082 err = btrfs_commit_transaction(trans);
3083 if (err && !ret)
3084 ret = err;
3085 return ret;
3086 }
3087
3088 static int del_balance_item(struct btrfs_fs_info *fs_info)
3089 {
3090 struct btrfs_root *root = fs_info->tree_root;
3091 struct btrfs_trans_handle *trans;
3092 struct btrfs_path *path;
3093 struct btrfs_key key;
3094 int ret, err;
3095
3096 path = btrfs_alloc_path();
3097 if (!path)
3098 return -ENOMEM;
3099
3100 trans = btrfs_start_transaction(root, 0);
3101 if (IS_ERR(trans)) {
3102 btrfs_free_path(path);
3103 return PTR_ERR(trans);
3104 }
3105
3106 key.objectid = BTRFS_BALANCE_OBJECTID;
3107 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3108 key.offset = 0;
3109
3110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3111 if (ret < 0)
3112 goto out;
3113 if (ret > 0) {
3114 ret = -ENOENT;
3115 goto out;
3116 }
3117
3118 ret = btrfs_del_item(trans, root, path);
3119 out:
3120 btrfs_free_path(path);
3121 err = btrfs_commit_transaction(trans);
3122 if (err && !ret)
3123 ret = err;
3124 return ret;
3125 }
3126
3127 /*
3128 * This is a heuristic used to reduce the number of chunks balanced on
3129 * resume after balance was interrupted.
3130 */
3131 static void update_balance_args(struct btrfs_balance_control *bctl)
3132 {
3133 /*
3134 * Turn on soft mode for chunk types that were being converted.
3135 */
3136 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142
3143 /*
3144 * Turn on usage filter if is not already used. The idea is
3145 * that chunks that we have already balanced should be
3146 * reasonably full. Don't do it for chunks that are being
3147 * converted - that will keep us from relocating unconverted
3148 * (albeit full) chunks.
3149 */
3150 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->data.usage = 90;
3155 }
3156 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 bctl->sys.usage = 90;
3161 }
3162 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 bctl->meta.usage = 90;
3167 }
3168 }
3169
3170 /*
3171 * Should be called with both balance and volume mutexes held to
3172 * serialize other volume operations (add_dev/rm_dev/resize) with
3173 * restriper. Same goes for unset_balance_control.
3174 */
3175 static void set_balance_control(struct btrfs_balance_control *bctl)
3176 {
3177 struct btrfs_fs_info *fs_info = bctl->fs_info;
3178
3179 BUG_ON(fs_info->balance_ctl);
3180
3181 spin_lock(&fs_info->balance_lock);
3182 fs_info->balance_ctl = bctl;
3183 spin_unlock(&fs_info->balance_lock);
3184 }
3185
3186 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3187 {
3188 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3189
3190 BUG_ON(!fs_info->balance_ctl);
3191
3192 spin_lock(&fs_info->balance_lock);
3193 fs_info->balance_ctl = NULL;
3194 spin_unlock(&fs_info->balance_lock);
3195
3196 kfree(bctl);
3197 }
3198
3199 /*
3200 * Balance filters. Return 1 if chunk should be filtered out
3201 * (should not be balanced).
3202 */
3203 static int chunk_profiles_filter(u64 chunk_type,
3204 struct btrfs_balance_args *bargs)
3205 {
3206 chunk_type = chunk_to_extended(chunk_type) &
3207 BTRFS_EXTENDED_PROFILE_MASK;
3208
3209 if (bargs->profiles & chunk_type)
3210 return 0;
3211
3212 return 1;
3213 }
3214
3215 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3216 struct btrfs_balance_args *bargs)
3217 {
3218 struct btrfs_block_group_cache *cache;
3219 u64 chunk_used;
3220 u64 user_thresh_min;
3221 u64 user_thresh_max;
3222 int ret = 1;
3223
3224 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3225 chunk_used = btrfs_block_group_used(&cache->item);
3226
3227 if (bargs->usage_min == 0)
3228 user_thresh_min = 0;
3229 else
3230 user_thresh_min = div_factor_fine(cache->key.offset,
3231 bargs->usage_min);
3232
3233 if (bargs->usage_max == 0)
3234 user_thresh_max = 1;
3235 else if (bargs->usage_max > 100)
3236 user_thresh_max = cache->key.offset;
3237 else
3238 user_thresh_max = div_factor_fine(cache->key.offset,
3239 bargs->usage_max);
3240
3241 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3242 ret = 0;
3243
3244 btrfs_put_block_group(cache);
3245 return ret;
3246 }
3247
3248 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3249 u64 chunk_offset, struct btrfs_balance_args *bargs)
3250 {
3251 struct btrfs_block_group_cache *cache;
3252 u64 chunk_used, user_thresh;
3253 int ret = 1;
3254
3255 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256 chunk_used = btrfs_block_group_used(&cache->item);
3257
3258 if (bargs->usage_min == 0)
3259 user_thresh = 1;
3260 else if (bargs->usage > 100)
3261 user_thresh = cache->key.offset;
3262 else
3263 user_thresh = div_factor_fine(cache->key.offset,
3264 bargs->usage);
3265
3266 if (chunk_used < user_thresh)
3267 ret = 0;
3268
3269 btrfs_put_block_group(cache);
3270 return ret;
3271 }
3272
3273 static int chunk_devid_filter(struct extent_buffer *leaf,
3274 struct btrfs_chunk *chunk,
3275 struct btrfs_balance_args *bargs)
3276 {
3277 struct btrfs_stripe *stripe;
3278 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3279 int i;
3280
3281 for (i = 0; i < num_stripes; i++) {
3282 stripe = btrfs_stripe_nr(chunk, i);
3283 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3284 return 0;
3285 }
3286
3287 return 1;
3288 }
3289
3290 /* [pstart, pend) */
3291 static int chunk_drange_filter(struct extent_buffer *leaf,
3292 struct btrfs_chunk *chunk,
3293 struct btrfs_balance_args *bargs)
3294 {
3295 struct btrfs_stripe *stripe;
3296 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3297 u64 stripe_offset;
3298 u64 stripe_length;
3299 int factor;
3300 int i;
3301
3302 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3303 return 0;
3304
3305 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3306 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3307 factor = num_stripes / 2;
3308 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3309 factor = num_stripes - 1;
3310 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3311 factor = num_stripes - 2;
3312 } else {
3313 factor = num_stripes;
3314 }
3315
3316 for (i = 0; i < num_stripes; i++) {
3317 stripe = btrfs_stripe_nr(chunk, i);
3318 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3319 continue;
3320
3321 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3322 stripe_length = btrfs_chunk_length(leaf, chunk);
3323 stripe_length = div_u64(stripe_length, factor);
3324
3325 if (stripe_offset < bargs->pend &&
3326 stripe_offset + stripe_length > bargs->pstart)
3327 return 0;
3328 }
3329
3330 return 1;
3331 }
3332
3333 /* [vstart, vend) */
3334 static int chunk_vrange_filter(struct extent_buffer *leaf,
3335 struct btrfs_chunk *chunk,
3336 u64 chunk_offset,
3337 struct btrfs_balance_args *bargs)
3338 {
3339 if (chunk_offset < bargs->vend &&
3340 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3341 /* at least part of the chunk is inside this vrange */
3342 return 0;
3343
3344 return 1;
3345 }
3346
3347 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3348 struct btrfs_chunk *chunk,
3349 struct btrfs_balance_args *bargs)
3350 {
3351 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3352
3353 if (bargs->stripes_min <= num_stripes
3354 && num_stripes <= bargs->stripes_max)
3355 return 0;
3356
3357 return 1;
3358 }
3359
3360 static int chunk_soft_convert_filter(u64 chunk_type,
3361 struct btrfs_balance_args *bargs)
3362 {
3363 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3364 return 0;
3365
3366 chunk_type = chunk_to_extended(chunk_type) &
3367 BTRFS_EXTENDED_PROFILE_MASK;
3368
3369 if (bargs->target == chunk_type)
3370 return 1;
3371
3372 return 0;
3373 }
3374
3375 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3376 struct extent_buffer *leaf,
3377 struct btrfs_chunk *chunk, u64 chunk_offset)
3378 {
3379 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380 struct btrfs_balance_args *bargs = NULL;
3381 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3382
3383 /* type filter */
3384 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3385 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3386 return 0;
3387 }
3388
3389 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3390 bargs = &bctl->data;
3391 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3392 bargs = &bctl->sys;
3393 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3394 bargs = &bctl->meta;
3395
3396 /* profiles filter */
3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3398 chunk_profiles_filter(chunk_type, bargs)) {
3399 return 0;
3400 }
3401
3402 /* usage filter */
3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3404 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3405 return 0;
3406 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3407 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3408 return 0;
3409 }
3410
3411 /* devid filter */
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3413 chunk_devid_filter(leaf, chunk, bargs)) {
3414 return 0;
3415 }
3416
3417 /* drange filter, makes sense only with devid filter */
3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3419 chunk_drange_filter(leaf, chunk, bargs)) {
3420 return 0;
3421 }
3422
3423 /* vrange filter */
3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3425 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3426 return 0;
3427 }
3428
3429 /* stripes filter */
3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3431 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3432 return 0;
3433 }
3434
3435 /* soft profile changing mode */
3436 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3437 chunk_soft_convert_filter(chunk_type, bargs)) {
3438 return 0;
3439 }
3440
3441 /*
3442 * limited by count, must be the last filter
3443 */
3444 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3445 if (bargs->limit == 0)
3446 return 0;
3447 else
3448 bargs->limit--;
3449 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3450 /*
3451 * Same logic as the 'limit' filter; the minimum cannot be
3452 * determined here because we do not have the global information
3453 * about the count of all chunks that satisfy the filters.
3454 */
3455 if (bargs->limit_max == 0)
3456 return 0;
3457 else
3458 bargs->limit_max--;
3459 }
3460
3461 return 1;
3462 }
3463
3464 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3465 {
3466 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3467 struct btrfs_root *chunk_root = fs_info->chunk_root;
3468 struct btrfs_root *dev_root = fs_info->dev_root;
3469 struct list_head *devices;
3470 struct btrfs_device *device;
3471 u64 old_size;
3472 u64 size_to_free;
3473 u64 chunk_type;
3474 struct btrfs_chunk *chunk;
3475 struct btrfs_path *path = NULL;
3476 struct btrfs_key key;
3477 struct btrfs_key found_key;
3478 struct btrfs_trans_handle *trans;
3479 struct extent_buffer *leaf;
3480 int slot;
3481 int ret;
3482 int enospc_errors = 0;
3483 bool counting = true;
3484 /* The single value limit and min/max limits use the same bytes in the */
3485 u64 limit_data = bctl->data.limit;
3486 u64 limit_meta = bctl->meta.limit;
3487 u64 limit_sys = bctl->sys.limit;
3488 u32 count_data = 0;
3489 u32 count_meta = 0;
3490 u32 count_sys = 0;
3491 int chunk_reserved = 0;
3492 u64 bytes_used = 0;
3493
3494 /* step one make some room on all the devices */
3495 devices = &fs_info->fs_devices->devices;
3496 list_for_each_entry(device, devices, dev_list) {
3497 old_size = btrfs_device_get_total_bytes(device);
3498 size_to_free = div_factor(old_size, 1);
3499 size_to_free = min_t(u64, size_to_free, SZ_1M);
3500 if (!device->writeable ||
3501 btrfs_device_get_total_bytes(device) -
3502 btrfs_device_get_bytes_used(device) > size_to_free ||
3503 device->is_tgtdev_for_dev_replace)
3504 continue;
3505
3506 ret = btrfs_shrink_device(device, old_size - size_to_free);
3507 if (ret == -ENOSPC)
3508 break;
3509 if (ret) {
3510 /* btrfs_shrink_device never returns ret > 0 */
3511 WARN_ON(ret > 0);
3512 goto error;
3513 }
3514
3515 trans = btrfs_start_transaction(dev_root, 0);
3516 if (IS_ERR(trans)) {
3517 ret = PTR_ERR(trans);
3518 btrfs_info_in_rcu(fs_info,
3519 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3520 rcu_str_deref(device->name), ret,
3521 old_size, old_size - size_to_free);
3522 goto error;
3523 }
3524
3525 ret = btrfs_grow_device(trans, device, old_size);
3526 if (ret) {
3527 btrfs_end_transaction(trans);
3528 /* btrfs_grow_device never returns ret > 0 */
3529 WARN_ON(ret > 0);
3530 btrfs_info_in_rcu(fs_info,
3531 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3532 rcu_str_deref(device->name), ret,
3533 old_size, old_size - size_to_free);
3534 goto error;
3535 }
3536
3537 btrfs_end_transaction(trans);
3538 }
3539
3540 /* step two, relocate all the chunks */
3541 path = btrfs_alloc_path();
3542 if (!path) {
3543 ret = -ENOMEM;
3544 goto error;
3545 }
3546
3547 /* zero out stat counters */
3548 spin_lock(&fs_info->balance_lock);
3549 memset(&bctl->stat, 0, sizeof(bctl->stat));
3550 spin_unlock(&fs_info->balance_lock);
3551 again:
3552 if (!counting) {
3553 /*
3554 * The single value limit and min/max limits use the same bytes
3555 * in the
3556 */
3557 bctl->data.limit = limit_data;
3558 bctl->meta.limit = limit_meta;
3559 bctl->sys.limit = limit_sys;
3560 }
3561 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3562 key.offset = (u64)-1;
3563 key.type = BTRFS_CHUNK_ITEM_KEY;
3564
3565 while (1) {
3566 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3567 atomic_read(&fs_info->balance_cancel_req)) {
3568 ret = -ECANCELED;
3569 goto error;
3570 }
3571
3572 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3573 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3574 if (ret < 0) {
3575 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3576 goto error;
3577 }
3578
3579 /*
3580 * this shouldn't happen, it means the last relocate
3581 * failed
3582 */
3583 if (ret == 0)
3584 BUG(); /* FIXME break ? */
3585
3586 ret = btrfs_previous_item(chunk_root, path, 0,
3587 BTRFS_CHUNK_ITEM_KEY);
3588 if (ret) {
3589 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3590 ret = 0;
3591 break;
3592 }
3593
3594 leaf = path->nodes[0];
3595 slot = path->slots[0];
3596 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3597
3598 if (found_key.objectid != key.objectid) {
3599 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3600 break;
3601 }
3602
3603 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3604 chunk_type = btrfs_chunk_type(leaf, chunk);
3605
3606 if (!counting) {
3607 spin_lock(&fs_info->balance_lock);
3608 bctl->stat.considered++;
3609 spin_unlock(&fs_info->balance_lock);
3610 }
3611
3612 ret = should_balance_chunk(fs_info, leaf, chunk,
3613 found_key.offset);
3614
3615 btrfs_release_path(path);
3616 if (!ret) {
3617 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3618 goto loop;
3619 }
3620
3621 if (counting) {
3622 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3623 spin_lock(&fs_info->balance_lock);
3624 bctl->stat.expected++;
3625 spin_unlock(&fs_info->balance_lock);
3626
3627 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3628 count_data++;
3629 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3630 count_sys++;
3631 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3632 count_meta++;
3633
3634 goto loop;
3635 }
3636
3637 /*
3638 * Apply limit_min filter, no need to check if the LIMITS
3639 * filter is used, limit_min is 0 by default
3640 */
3641 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3642 count_data < bctl->data.limit_min)
3643 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3644 count_meta < bctl->meta.limit_min)
3645 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3646 count_sys < bctl->sys.limit_min)) {
3647 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648 goto loop;
3649 }
3650
3651 ASSERT(fs_info->data_sinfo);
3652 spin_lock(&fs_info->data_sinfo->lock);
3653 bytes_used = fs_info->data_sinfo->bytes_used;
3654 spin_unlock(&fs_info->data_sinfo->lock);
3655
3656 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3657 !chunk_reserved && !bytes_used) {
3658 trans = btrfs_start_transaction(chunk_root, 0);
3659 if (IS_ERR(trans)) {
3660 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661 ret = PTR_ERR(trans);
3662 goto error;
3663 }
3664
3665 ret = btrfs_force_chunk_alloc(trans, fs_info,
3666 BTRFS_BLOCK_GROUP_DATA);
3667 btrfs_end_transaction(trans);
3668 if (ret < 0) {
3669 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3670 goto error;
3671 }
3672 chunk_reserved = 1;
3673 }
3674
3675 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3676 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677 if (ret && ret != -ENOSPC)
3678 goto error;
3679 if (ret == -ENOSPC) {
3680 enospc_errors++;
3681 } else {
3682 spin_lock(&fs_info->balance_lock);
3683 bctl->stat.completed++;
3684 spin_unlock(&fs_info->balance_lock);
3685 }
3686 loop:
3687 if (found_key.offset == 0)
3688 break;
3689 key.offset = found_key.offset - 1;
3690 }
3691
3692 if (counting) {
3693 btrfs_release_path(path);
3694 counting = false;
3695 goto again;
3696 }
3697 error:
3698 btrfs_free_path(path);
3699 if (enospc_errors) {
3700 btrfs_info(fs_info, "%d enospc errors during balance",
3701 enospc_errors);
3702 if (!ret)
3703 ret = -ENOSPC;
3704 }
3705
3706 return ret;
3707 }
3708
3709 /**
3710 * alloc_profile_is_valid - see if a given profile is valid and reduced
3711 * @flags: profile to validate
3712 * @extended: if true @flags is treated as an extended profile
3713 */
3714 static int alloc_profile_is_valid(u64 flags, int extended)
3715 {
3716 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3717 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3718
3719 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3720
3721 /* 1) check that all other bits are zeroed */
3722 if (flags & ~mask)
3723 return 0;
3724
3725 /* 2) see if profile is reduced */
3726 if (flags == 0)
3727 return !extended; /* "0" is valid for usual profiles */
3728
3729 /* true if exactly one bit set */
3730 return (flags & (flags - 1)) == 0;
3731 }
3732
3733 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3734 {
3735 /* cancel requested || normal exit path */
3736 return atomic_read(&fs_info->balance_cancel_req) ||
3737 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3738 atomic_read(&fs_info->balance_cancel_req) == 0);
3739 }
3740
3741 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3742 {
3743 int ret;
3744
3745 unset_balance_control(fs_info);
3746 ret = del_balance_item(fs_info);
3747 if (ret)
3748 btrfs_handle_fs_error(fs_info, ret, NULL);
3749
3750 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3751 }
3752
3753 /* Non-zero return value signifies invalidity */
3754 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3755 u64 allowed)
3756 {
3757 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3758 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3759 (bctl_arg->target & ~allowed)));
3760 }
3761
3762 /*
3763 * Should be called with both balance and volume mutexes held
3764 */
3765 int btrfs_balance(struct btrfs_balance_control *bctl,
3766 struct btrfs_ioctl_balance_args *bargs)
3767 {
3768 struct btrfs_fs_info *fs_info = bctl->fs_info;
3769 u64 meta_target, data_target;
3770 u64 allowed;
3771 int mixed = 0;
3772 int ret;
3773 u64 num_devices;
3774 unsigned seq;
3775
3776 if (btrfs_fs_closing(fs_info) ||
3777 atomic_read(&fs_info->balance_pause_req) ||
3778 atomic_read(&fs_info->balance_cancel_req)) {
3779 ret = -EINVAL;
3780 goto out;
3781 }
3782
3783 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3784 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3785 mixed = 1;
3786
3787 /*
3788 * In case of mixed groups both data and meta should be picked,
3789 * and identical options should be given for both of them.
3790 */
3791 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3792 if (mixed && (bctl->flags & allowed)) {
3793 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3794 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3795 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3796 btrfs_err(fs_info,
3797 "with mixed groups data and metadata balance options must be the same");
3798 ret = -EINVAL;
3799 goto out;
3800 }
3801 }
3802
3803 num_devices = fs_info->fs_devices->num_devices;
3804 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3805 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3806 BUG_ON(num_devices < 1);
3807 num_devices--;
3808 }
3809 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3810 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3811 if (num_devices > 1)
3812 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3813 if (num_devices > 2)
3814 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3815 if (num_devices > 3)
3816 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3817 BTRFS_BLOCK_GROUP_RAID6);
3818 if (validate_convert_profile(&bctl->data, allowed)) {
3819 btrfs_err(fs_info,
3820 "unable to start balance with target data profile %llu",
3821 bctl->data.target);
3822 ret = -EINVAL;
3823 goto out;
3824 }
3825 if (validate_convert_profile(&bctl->meta, allowed)) {
3826 btrfs_err(fs_info,
3827 "unable to start balance with target metadata profile %llu",
3828 bctl->meta.target);
3829 ret = -EINVAL;
3830 goto out;
3831 }
3832 if (validate_convert_profile(&bctl->sys, allowed)) {
3833 btrfs_err(fs_info,
3834 "unable to start balance with target system profile %llu",
3835 bctl->sys.target);
3836 ret = -EINVAL;
3837 goto out;
3838 }
3839
3840 /* allow to reduce meta or sys integrity only if force set */
3841 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3842 BTRFS_BLOCK_GROUP_RAID10 |
3843 BTRFS_BLOCK_GROUP_RAID5 |
3844 BTRFS_BLOCK_GROUP_RAID6;
3845 do {
3846 seq = read_seqbegin(&fs_info->profiles_lock);
3847
3848 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 (fs_info->avail_system_alloc_bits & allowed) &&
3850 !(bctl->sys.target & allowed)) ||
3851 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852 (fs_info->avail_metadata_alloc_bits & allowed) &&
3853 !(bctl->meta.target & allowed))) {
3854 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3855 btrfs_info(fs_info,
3856 "force reducing metadata integrity");
3857 } else {
3858 btrfs_err(fs_info,
3859 "balance will reduce metadata integrity, use force if you want this");
3860 ret = -EINVAL;
3861 goto out;
3862 }
3863 }
3864 } while (read_seqretry(&fs_info->profiles_lock, seq));
3865
3866 /* if we're not converting, the target field is uninitialized */
3867 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3868 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3869 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3870 bctl->data.target : fs_info->avail_data_alloc_bits;
3871 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3872 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3873 btrfs_warn(fs_info,
3874 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3875 meta_target, data_target);
3876 }
3877
3878 ret = insert_balance_item(fs_info, bctl);
3879 if (ret && ret != -EEXIST)
3880 goto out;
3881
3882 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3883 BUG_ON(ret == -EEXIST);
3884 set_balance_control(bctl);
3885 } else {
3886 BUG_ON(ret != -EEXIST);
3887 spin_lock(&fs_info->balance_lock);
3888 update_balance_args(bctl);
3889 spin_unlock(&fs_info->balance_lock);
3890 }
3891
3892 atomic_inc(&fs_info->balance_running);
3893 mutex_unlock(&fs_info->balance_mutex);
3894
3895 ret = __btrfs_balance(fs_info);
3896
3897 mutex_lock(&fs_info->balance_mutex);
3898 atomic_dec(&fs_info->balance_running);
3899
3900 if (bargs) {
3901 memset(bargs, 0, sizeof(*bargs));
3902 update_ioctl_balance_args(fs_info, 0, bargs);
3903 }
3904
3905 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3906 balance_need_close(fs_info)) {
3907 __cancel_balance(fs_info);
3908 }
3909
3910 wake_up(&fs_info->balance_wait_q);
3911
3912 return ret;
3913 out:
3914 if (bctl->flags & BTRFS_BALANCE_RESUME)
3915 __cancel_balance(fs_info);
3916 else {
3917 kfree(bctl);
3918 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3919 }
3920 return ret;
3921 }
3922
3923 static int balance_kthread(void *data)
3924 {
3925 struct btrfs_fs_info *fs_info = data;
3926 int ret = 0;
3927
3928 mutex_lock(&fs_info->volume_mutex);
3929 mutex_lock(&fs_info->balance_mutex);
3930
3931 if (fs_info->balance_ctl) {
3932 btrfs_info(fs_info, "continuing balance");
3933 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3934 }
3935
3936 mutex_unlock(&fs_info->balance_mutex);
3937 mutex_unlock(&fs_info->volume_mutex);
3938
3939 return ret;
3940 }
3941
3942 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3943 {
3944 struct task_struct *tsk;
3945
3946 spin_lock(&fs_info->balance_lock);
3947 if (!fs_info->balance_ctl) {
3948 spin_unlock(&fs_info->balance_lock);
3949 return 0;
3950 }
3951 spin_unlock(&fs_info->balance_lock);
3952
3953 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3954 btrfs_info(fs_info, "force skipping balance");
3955 return 0;
3956 }
3957
3958 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3959 return PTR_ERR_OR_ZERO(tsk);
3960 }
3961
3962 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3963 {
3964 struct btrfs_balance_control *bctl;
3965 struct btrfs_balance_item *item;
3966 struct btrfs_disk_balance_args disk_bargs;
3967 struct btrfs_path *path;
3968 struct extent_buffer *leaf;
3969 struct btrfs_key key;
3970 int ret;
3971
3972 path = btrfs_alloc_path();
3973 if (!path)
3974 return -ENOMEM;
3975
3976 key.objectid = BTRFS_BALANCE_OBJECTID;
3977 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3978 key.offset = 0;
3979
3980 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3981 if (ret < 0)
3982 goto out;
3983 if (ret > 0) { /* ret = -ENOENT; */
3984 ret = 0;
3985 goto out;
3986 }
3987
3988 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3989 if (!bctl) {
3990 ret = -ENOMEM;
3991 goto out;
3992 }
3993
3994 leaf = path->nodes[0];
3995 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3996
3997 bctl->fs_info = fs_info;
3998 bctl->flags = btrfs_balance_flags(leaf, item);
3999 bctl->flags |= BTRFS_BALANCE_RESUME;
4000
4001 btrfs_balance_data(leaf, item, &disk_bargs);
4002 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4003 btrfs_balance_meta(leaf, item, &disk_bargs);
4004 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4005 btrfs_balance_sys(leaf, item, &disk_bargs);
4006 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4007
4008 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4009
4010 mutex_lock(&fs_info->volume_mutex);
4011 mutex_lock(&fs_info->balance_mutex);
4012
4013 set_balance_control(bctl);
4014
4015 mutex_unlock(&fs_info->balance_mutex);
4016 mutex_unlock(&fs_info->volume_mutex);
4017 out:
4018 btrfs_free_path(path);
4019 return ret;
4020 }
4021
4022 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4023 {
4024 int ret = 0;
4025
4026 mutex_lock(&fs_info->balance_mutex);
4027 if (!fs_info->balance_ctl) {
4028 mutex_unlock(&fs_info->balance_mutex);
4029 return -ENOTCONN;
4030 }
4031
4032 if (atomic_read(&fs_info->balance_running)) {
4033 atomic_inc(&fs_info->balance_pause_req);
4034 mutex_unlock(&fs_info->balance_mutex);
4035
4036 wait_event(fs_info->balance_wait_q,
4037 atomic_read(&fs_info->balance_running) == 0);
4038
4039 mutex_lock(&fs_info->balance_mutex);
4040 /* we are good with balance_ctl ripped off from under us */
4041 BUG_ON(atomic_read(&fs_info->balance_running));
4042 atomic_dec(&fs_info->balance_pause_req);
4043 } else {
4044 ret = -ENOTCONN;
4045 }
4046
4047 mutex_unlock(&fs_info->balance_mutex);
4048 return ret;
4049 }
4050
4051 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4052 {
4053 if (sb_rdonly(fs_info->sb))
4054 return -EROFS;
4055
4056 mutex_lock(&fs_info->balance_mutex);
4057 if (!fs_info->balance_ctl) {
4058 mutex_unlock(&fs_info->balance_mutex);
4059 return -ENOTCONN;
4060 }
4061
4062 atomic_inc(&fs_info->balance_cancel_req);
4063 /*
4064 * if we are running just wait and return, balance item is
4065 * deleted in btrfs_balance in this case
4066 */
4067 if (atomic_read(&fs_info->balance_running)) {
4068 mutex_unlock(&fs_info->balance_mutex);
4069 wait_event(fs_info->balance_wait_q,
4070 atomic_read(&fs_info->balance_running) == 0);
4071 mutex_lock(&fs_info->balance_mutex);
4072 } else {
4073 /* __cancel_balance needs volume_mutex */
4074 mutex_unlock(&fs_info->balance_mutex);
4075 mutex_lock(&fs_info->volume_mutex);
4076 mutex_lock(&fs_info->balance_mutex);
4077
4078 if (fs_info->balance_ctl)
4079 __cancel_balance(fs_info);
4080
4081 mutex_unlock(&fs_info->volume_mutex);
4082 }
4083
4084 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4085 atomic_dec(&fs_info->balance_cancel_req);
4086 mutex_unlock(&fs_info->balance_mutex);
4087 return 0;
4088 }
4089
4090 static int btrfs_uuid_scan_kthread(void *data)
4091 {
4092 struct btrfs_fs_info *fs_info = data;
4093 struct btrfs_root *root = fs_info->tree_root;
4094 struct btrfs_key key;
4095 struct btrfs_path *path = NULL;
4096 int ret = 0;
4097 struct extent_buffer *eb;
4098 int slot;
4099 struct btrfs_root_item root_item;
4100 u32 item_size;
4101 struct btrfs_trans_handle *trans = NULL;
4102
4103 path = btrfs_alloc_path();
4104 if (!path) {
4105 ret = -ENOMEM;
4106 goto out;
4107 }
4108
4109 key.objectid = 0;
4110 key.type = BTRFS_ROOT_ITEM_KEY;
4111 key.offset = 0;
4112
4113 while (1) {
4114 ret = btrfs_search_forward(root, &key, path, 0);
4115 if (ret) {
4116 if (ret > 0)
4117 ret = 0;
4118 break;
4119 }
4120
4121 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4122 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4123 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4124 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4125 goto skip;
4126
4127 eb = path->nodes[0];
4128 slot = path->slots[0];
4129 item_size = btrfs_item_size_nr(eb, slot);
4130 if (item_size < sizeof(root_item))
4131 goto skip;
4132
4133 read_extent_buffer(eb, &root_item,
4134 btrfs_item_ptr_offset(eb, slot),
4135 (int)sizeof(root_item));
4136 if (btrfs_root_refs(&root_item) == 0)
4137 goto skip;
4138
4139 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4140 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4141 if (trans)
4142 goto update_tree;
4143
4144 btrfs_release_path(path);
4145 /*
4146 * 1 - subvol uuid item
4147 * 1 - received_subvol uuid item
4148 */
4149 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4150 if (IS_ERR(trans)) {
4151 ret = PTR_ERR(trans);
4152 break;
4153 }
4154 continue;
4155 } else {
4156 goto skip;
4157 }
4158 update_tree:
4159 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4160 ret = btrfs_uuid_tree_add(trans, fs_info,
4161 root_item.uuid,
4162 BTRFS_UUID_KEY_SUBVOL,
4163 key.objectid);
4164 if (ret < 0) {
4165 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4166 ret);
4167 break;
4168 }
4169 }
4170
4171 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4172 ret = btrfs_uuid_tree_add(trans, fs_info,
4173 root_item.received_uuid,
4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4175 key.objectid);
4176 if (ret < 0) {
4177 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4178 ret);
4179 break;
4180 }
4181 }
4182
4183 skip:
4184 if (trans) {
4185 ret = btrfs_end_transaction(trans);
4186 trans = NULL;
4187 if (ret)
4188 break;
4189 }
4190
4191 btrfs_release_path(path);
4192 if (key.offset < (u64)-1) {
4193 key.offset++;
4194 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4195 key.offset = 0;
4196 key.type = BTRFS_ROOT_ITEM_KEY;
4197 } else if (key.objectid < (u64)-1) {
4198 key.offset = 0;
4199 key.type = BTRFS_ROOT_ITEM_KEY;
4200 key.objectid++;
4201 } else {
4202 break;
4203 }
4204 cond_resched();
4205 }
4206
4207 out:
4208 btrfs_free_path(path);
4209 if (trans && !IS_ERR(trans))
4210 btrfs_end_transaction(trans);
4211 if (ret)
4212 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4213 else
4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4215 up(&fs_info->uuid_tree_rescan_sem);
4216 return 0;
4217 }
4218
4219 /*
4220 * Callback for btrfs_uuid_tree_iterate().
4221 * returns:
4222 * 0 check succeeded, the entry is not outdated.
4223 * < 0 if an error occurred.
4224 * > 0 if the check failed, which means the caller shall remove the entry.
4225 */
4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227 u8 *uuid, u8 type, u64 subid)
4228 {
4229 struct btrfs_key key;
4230 int ret = 0;
4231 struct btrfs_root *subvol_root;
4232
4233 if (type != BTRFS_UUID_KEY_SUBVOL &&
4234 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4235 goto out;
4236
4237 key.objectid = subid;
4238 key.type = BTRFS_ROOT_ITEM_KEY;
4239 key.offset = (u64)-1;
4240 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241 if (IS_ERR(subvol_root)) {
4242 ret = PTR_ERR(subvol_root);
4243 if (ret == -ENOENT)
4244 ret = 1;
4245 goto out;
4246 }
4247
4248 switch (type) {
4249 case BTRFS_UUID_KEY_SUBVOL:
4250 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4251 ret = 1;
4252 break;
4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4255 BTRFS_UUID_SIZE))
4256 ret = 1;
4257 break;
4258 }
4259
4260 out:
4261 return ret;
4262 }
4263
4264 static int btrfs_uuid_rescan_kthread(void *data)
4265 {
4266 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4267 int ret;
4268
4269 /*
4270 * 1st step is to iterate through the existing UUID tree and
4271 * to delete all entries that contain outdated data.
4272 * 2nd step is to add all missing entries to the UUID tree.
4273 */
4274 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4275 if (ret < 0) {
4276 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4277 up(&fs_info->uuid_tree_rescan_sem);
4278 return ret;
4279 }
4280 return btrfs_uuid_scan_kthread(data);
4281 }
4282
4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4284 {
4285 struct btrfs_trans_handle *trans;
4286 struct btrfs_root *tree_root = fs_info->tree_root;
4287 struct btrfs_root *uuid_root;
4288 struct task_struct *task;
4289 int ret;
4290
4291 /*
4292 * 1 - root node
4293 * 1 - root item
4294 */
4295 trans = btrfs_start_transaction(tree_root, 2);
4296 if (IS_ERR(trans))
4297 return PTR_ERR(trans);
4298
4299 uuid_root = btrfs_create_tree(trans, fs_info,
4300 BTRFS_UUID_TREE_OBJECTID);
4301 if (IS_ERR(uuid_root)) {
4302 ret = PTR_ERR(uuid_root);
4303 btrfs_abort_transaction(trans, ret);
4304 btrfs_end_transaction(trans);
4305 return ret;
4306 }
4307
4308 fs_info->uuid_root = uuid_root;
4309
4310 ret = btrfs_commit_transaction(trans);
4311 if (ret)
4312 return ret;
4313
4314 down(&fs_info->uuid_tree_rescan_sem);
4315 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4316 if (IS_ERR(task)) {
4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4318 btrfs_warn(fs_info, "failed to start uuid_scan task");
4319 up(&fs_info->uuid_tree_rescan_sem);
4320 return PTR_ERR(task);
4321 }
4322
4323 return 0;
4324 }
4325
4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4327 {
4328 struct task_struct *task;
4329
4330 down(&fs_info->uuid_tree_rescan_sem);
4331 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4332 if (IS_ERR(task)) {
4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4335 up(&fs_info->uuid_tree_rescan_sem);
4336 return PTR_ERR(task);
4337 }
4338
4339 return 0;
4340 }
4341
4342 /*
4343 * shrinking a device means finding all of the device extents past
4344 * the new size, and then following the back refs to the chunks.
4345 * The chunk relocation code actually frees the device extent
4346 */
4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4348 {
4349 struct btrfs_fs_info *fs_info = device->fs_info;
4350 struct btrfs_root *root = fs_info->dev_root;
4351 struct btrfs_trans_handle *trans;
4352 struct btrfs_dev_extent *dev_extent = NULL;
4353 struct btrfs_path *path;
4354 u64 length;
4355 u64 chunk_offset;
4356 int ret;
4357 int slot;
4358 int failed = 0;
4359 bool retried = false;
4360 bool checked_pending_chunks = false;
4361 struct extent_buffer *l;
4362 struct btrfs_key key;
4363 struct btrfs_super_block *super_copy = fs_info->super_copy;
4364 u64 old_total = btrfs_super_total_bytes(super_copy);
4365 u64 old_size = btrfs_device_get_total_bytes(device);
4366 u64 diff;
4367
4368 new_size = round_down(new_size, fs_info->sectorsize);
4369 diff = round_down(old_size - new_size, fs_info->sectorsize);
4370
4371 if (device->is_tgtdev_for_dev_replace)
4372 return -EINVAL;
4373
4374 path = btrfs_alloc_path();
4375 if (!path)
4376 return -ENOMEM;
4377
4378 path->reada = READA_FORWARD;
4379
4380 mutex_lock(&fs_info->chunk_mutex);
4381
4382 btrfs_device_set_total_bytes(device, new_size);
4383 if (device->writeable) {
4384 device->fs_devices->total_rw_bytes -= diff;
4385 atomic64_sub(diff, &fs_info->free_chunk_space);
4386 }
4387 mutex_unlock(&fs_info->chunk_mutex);
4388
4389 again:
4390 key.objectid = device->devid;
4391 key.offset = (u64)-1;
4392 key.type = BTRFS_DEV_EXTENT_KEY;
4393
4394 do {
4395 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4397 if (ret < 0) {
4398 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4399 goto done;
4400 }
4401
4402 ret = btrfs_previous_item(root, path, 0, key.type);
4403 if (ret)
4404 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4405 if (ret < 0)
4406 goto done;
4407 if (ret) {
4408 ret = 0;
4409 btrfs_release_path(path);
4410 break;
4411 }
4412
4413 l = path->nodes[0];
4414 slot = path->slots[0];
4415 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4416
4417 if (key.objectid != device->devid) {
4418 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4419 btrfs_release_path(path);
4420 break;
4421 }
4422
4423 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4424 length = btrfs_dev_extent_length(l, dev_extent);
4425
4426 if (key.offset + length <= new_size) {
4427 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4428 btrfs_release_path(path);
4429 break;
4430 }
4431
4432 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4433 btrfs_release_path(path);
4434
4435 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4436 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4437 if (ret && ret != -ENOSPC)
4438 goto done;
4439 if (ret == -ENOSPC)
4440 failed++;
4441 } while (key.offset-- > 0);
4442
4443 if (failed && !retried) {
4444 failed = 0;
4445 retried = true;
4446 goto again;
4447 } else if (failed && retried) {
4448 ret = -ENOSPC;
4449 goto done;
4450 }
4451
4452 /* Shrinking succeeded, else we would be at "done". */
4453 trans = btrfs_start_transaction(root, 0);
4454 if (IS_ERR(trans)) {
4455 ret = PTR_ERR(trans);
4456 goto done;
4457 }
4458
4459 mutex_lock(&fs_info->chunk_mutex);
4460
4461 /*
4462 * We checked in the above loop all device extents that were already in
4463 * the device tree. However before we have updated the device's
4464 * total_bytes to the new size, we might have had chunk allocations that
4465 * have not complete yet (new block groups attached to transaction
4466 * handles), and therefore their device extents were not yet in the
4467 * device tree and we missed them in the loop above. So if we have any
4468 * pending chunk using a device extent that overlaps the device range
4469 * that we can not use anymore, commit the current transaction and
4470 * repeat the search on the device tree - this way we guarantee we will
4471 * not have chunks using device extents that end beyond 'new_size'.
4472 */
4473 if (!checked_pending_chunks) {
4474 u64 start = new_size;
4475 u64 len = old_size - new_size;
4476
4477 if (contains_pending_extent(trans->transaction, device,
4478 &start, len)) {
4479 mutex_unlock(&fs_info->chunk_mutex);
4480 checked_pending_chunks = true;
4481 failed = 0;
4482 retried = false;
4483 ret = btrfs_commit_transaction(trans);
4484 if (ret)
4485 goto done;
4486 goto again;
4487 }
4488 }
4489
4490 btrfs_device_set_disk_total_bytes(device, new_size);
4491 if (list_empty(&device->resized_list))
4492 list_add_tail(&device->resized_list,
4493 &fs_info->fs_devices->resized_devices);
4494
4495 WARN_ON(diff > old_total);
4496 btrfs_set_super_total_bytes(super_copy,
4497 round_down(old_total - diff, fs_info->sectorsize));
4498 mutex_unlock(&fs_info->chunk_mutex);
4499
4500 /* Now btrfs_update_device() will change the on-disk size. */
4501 ret = btrfs_update_device(trans, device);
4502 btrfs_end_transaction(trans);
4503 done:
4504 btrfs_free_path(path);
4505 if (ret) {
4506 mutex_lock(&fs_info->chunk_mutex);
4507 btrfs_device_set_total_bytes(device, old_size);
4508 if (device->writeable)
4509 device->fs_devices->total_rw_bytes += diff;
4510 atomic64_add(diff, &fs_info->free_chunk_space);
4511 mutex_unlock(&fs_info->chunk_mutex);
4512 }
4513 return ret;
4514 }
4515
4516 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4517 struct btrfs_key *key,
4518 struct btrfs_chunk *chunk, int item_size)
4519 {
4520 struct btrfs_super_block *super_copy = fs_info->super_copy;
4521 struct btrfs_disk_key disk_key;
4522 u32 array_size;
4523 u8 *ptr;
4524
4525 mutex_lock(&fs_info->chunk_mutex);
4526 array_size = btrfs_super_sys_array_size(super_copy);
4527 if (array_size + item_size + sizeof(disk_key)
4528 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4529 mutex_unlock(&fs_info->chunk_mutex);
4530 return -EFBIG;
4531 }
4532
4533 ptr = super_copy->sys_chunk_array + array_size;
4534 btrfs_cpu_key_to_disk(&disk_key, key);
4535 memcpy(ptr, &disk_key, sizeof(disk_key));
4536 ptr += sizeof(disk_key);
4537 memcpy(ptr, chunk, item_size);
4538 item_size += sizeof(disk_key);
4539 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4540 mutex_unlock(&fs_info->chunk_mutex);
4541
4542 return 0;
4543 }
4544
4545 /*
4546 * sort the devices in descending order by max_avail, total_avail
4547 */
4548 static int btrfs_cmp_device_info(const void *a, const void *b)
4549 {
4550 const struct btrfs_device_info *di_a = a;
4551 const struct btrfs_device_info *di_b = b;
4552
4553 if (di_a->max_avail > di_b->max_avail)
4554 return -1;
4555 if (di_a->max_avail < di_b->max_avail)
4556 return 1;
4557 if (di_a->total_avail > di_b->total_avail)
4558 return -1;
4559 if (di_a->total_avail < di_b->total_avail)
4560 return 1;
4561 return 0;
4562 }
4563
4564 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4565 {
4566 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4567 return;
4568
4569 btrfs_set_fs_incompat(info, RAID56);
4570 }
4571
4572 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4573 - sizeof(struct btrfs_chunk)) \
4574 / sizeof(struct btrfs_stripe) + 1)
4575
4576 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4577 - 2 * sizeof(struct btrfs_disk_key) \
4578 - 2 * sizeof(struct btrfs_chunk)) \
4579 / sizeof(struct btrfs_stripe) + 1)
4580
4581 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4582 u64 start, u64 type)
4583 {
4584 struct btrfs_fs_info *info = trans->fs_info;
4585 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4586 struct btrfs_device *device;
4587 struct map_lookup *map = NULL;
4588 struct extent_map_tree *em_tree;
4589 struct extent_map *em;
4590 struct btrfs_device_info *devices_info = NULL;
4591 u64 total_avail;
4592 int num_stripes; /* total number of stripes to allocate */
4593 int data_stripes; /* number of stripes that count for
4594 block group size */
4595 int sub_stripes; /* sub_stripes info for map */
4596 int dev_stripes; /* stripes per dev */
4597 int devs_max; /* max devs to use */
4598 int devs_min; /* min devs needed */
4599 int devs_increment; /* ndevs has to be a multiple of this */
4600 int ncopies; /* how many copies to data has */
4601 int ret;
4602 u64 max_stripe_size;
4603 u64 max_chunk_size;
4604 u64 stripe_size;
4605 u64 num_bytes;
4606 int ndevs;
4607 int i;
4608 int j;
4609 int index;
4610
4611 BUG_ON(!alloc_profile_is_valid(type, 0));
4612
4613 if (list_empty(&fs_devices->alloc_list))
4614 return -ENOSPC;
4615
4616 index = __get_raid_index(type);
4617
4618 sub_stripes = btrfs_raid_array[index].sub_stripes;
4619 dev_stripes = btrfs_raid_array[index].dev_stripes;
4620 devs_max = btrfs_raid_array[index].devs_max;
4621 devs_min = btrfs_raid_array[index].devs_min;
4622 devs_increment = btrfs_raid_array[index].devs_increment;
4623 ncopies = btrfs_raid_array[index].ncopies;
4624
4625 if (type & BTRFS_BLOCK_GROUP_DATA) {
4626 max_stripe_size = SZ_1G;
4627 max_chunk_size = 10 * max_stripe_size;
4628 if (!devs_max)
4629 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4630 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4631 /* for larger filesystems, use larger metadata chunks */
4632 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4633 max_stripe_size = SZ_1G;
4634 else
4635 max_stripe_size = SZ_256M;
4636 max_chunk_size = max_stripe_size;
4637 if (!devs_max)
4638 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4639 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4640 max_stripe_size = SZ_32M;
4641 max_chunk_size = 2 * max_stripe_size;
4642 if (!devs_max)
4643 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4644 } else {
4645 btrfs_err(info, "invalid chunk type 0x%llx requested",
4646 type);
4647 BUG_ON(1);
4648 }
4649
4650 /* we don't want a chunk larger than 10% of writeable space */
4651 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4652 max_chunk_size);
4653
4654 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4655 GFP_NOFS);
4656 if (!devices_info)
4657 return -ENOMEM;
4658
4659 /*
4660 * in the first pass through the devices list, we gather information
4661 * about the available holes on each device.
4662 */
4663 ndevs = 0;
4664 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4665 u64 max_avail;
4666 u64 dev_offset;
4667
4668 if (!device->writeable) {
4669 WARN(1, KERN_ERR
4670 "BTRFS: read-only device in alloc_list\n");
4671 continue;
4672 }
4673
4674 if (!device->in_fs_metadata ||
4675 device->is_tgtdev_for_dev_replace)
4676 continue;
4677
4678 if (device->total_bytes > device->bytes_used)
4679 total_avail = device->total_bytes - device->bytes_used;
4680 else
4681 total_avail = 0;
4682
4683 /* If there is no space on this device, skip it. */
4684 if (total_avail == 0)
4685 continue;
4686
4687 ret = find_free_dev_extent(trans, device,
4688 max_stripe_size * dev_stripes,
4689 &dev_offset, &max_avail);
4690 if (ret && ret != -ENOSPC)
4691 goto error;
4692
4693 if (ret == 0)
4694 max_avail = max_stripe_size * dev_stripes;
4695
4696 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4697 continue;
4698
4699 if (ndevs == fs_devices->rw_devices) {
4700 WARN(1, "%s: found more than %llu devices\n",
4701 __func__, fs_devices->rw_devices);
4702 break;
4703 }
4704 devices_info[ndevs].dev_offset = dev_offset;
4705 devices_info[ndevs].max_avail = max_avail;
4706 devices_info[ndevs].total_avail = total_avail;
4707 devices_info[ndevs].dev = device;
4708 ++ndevs;
4709 }
4710
4711 /*
4712 * now sort the devices by hole size / available space
4713 */
4714 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4715 btrfs_cmp_device_info, NULL);
4716
4717 /* round down to number of usable stripes */
4718 ndevs = round_down(ndevs, devs_increment);
4719
4720 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4721 ret = -ENOSPC;
4722 goto error;
4723 }
4724
4725 ndevs = min(ndevs, devs_max);
4726
4727 /*
4728 * the primary goal is to maximize the number of stripes, so use as many
4729 * devices as possible, even if the stripes are not maximum sized.
4730 */
4731 stripe_size = devices_info[ndevs-1].max_avail;
4732 num_stripes = ndevs * dev_stripes;
4733
4734 /*
4735 * this will have to be fixed for RAID1 and RAID10 over
4736 * more drives
4737 */
4738 data_stripes = num_stripes / ncopies;
4739
4740 if (type & BTRFS_BLOCK_GROUP_RAID5)
4741 data_stripes = num_stripes - 1;
4742
4743 if (type & BTRFS_BLOCK_GROUP_RAID6)
4744 data_stripes = num_stripes - 2;
4745
4746 /*
4747 * Use the number of data stripes to figure out how big this chunk
4748 * is really going to be in terms of logical address space,
4749 * and compare that answer with the max chunk size
4750 */
4751 if (stripe_size * data_stripes > max_chunk_size) {
4752 u64 mask = (1ULL << 24) - 1;
4753
4754 stripe_size = div_u64(max_chunk_size, data_stripes);
4755
4756 /* bump the answer up to a 16MB boundary */
4757 stripe_size = (stripe_size + mask) & ~mask;
4758
4759 /* but don't go higher than the limits we found
4760 * while searching for free extents
4761 */
4762 if (stripe_size > devices_info[ndevs-1].max_avail)
4763 stripe_size = devices_info[ndevs-1].max_avail;
4764 }
4765
4766 stripe_size = div_u64(stripe_size, dev_stripes);
4767
4768 /* align to BTRFS_STRIPE_LEN */
4769 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4770
4771 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4772 if (!map) {
4773 ret = -ENOMEM;
4774 goto error;
4775 }
4776 map->num_stripes = num_stripes;
4777
4778 for (i = 0; i < ndevs; ++i) {
4779 for (j = 0; j < dev_stripes; ++j) {
4780 int s = i * dev_stripes + j;
4781 map->stripes[s].dev = devices_info[i].dev;
4782 map->stripes[s].physical = devices_info[i].dev_offset +
4783 j * stripe_size;
4784 }
4785 }
4786 map->stripe_len = BTRFS_STRIPE_LEN;
4787 map->io_align = BTRFS_STRIPE_LEN;
4788 map->io_width = BTRFS_STRIPE_LEN;
4789 map->type = type;
4790 map->sub_stripes = sub_stripes;
4791
4792 num_bytes = stripe_size * data_stripes;
4793
4794 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4795
4796 em = alloc_extent_map();
4797 if (!em) {
4798 kfree(map);
4799 ret = -ENOMEM;
4800 goto error;
4801 }
4802 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4803 em->map_lookup = map;
4804 em->start = start;
4805 em->len = num_bytes;
4806 em->block_start = 0;
4807 em->block_len = em->len;
4808 em->orig_block_len = stripe_size;
4809
4810 em_tree = &info->mapping_tree.map_tree;
4811 write_lock(&em_tree->lock);
4812 ret = add_extent_mapping(em_tree, em, 0);
4813 if (ret) {
4814 write_unlock(&em_tree->lock);
4815 free_extent_map(em);
4816 goto error;
4817 }
4818
4819 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4820 refcount_inc(&em->refs);
4821 write_unlock(&em_tree->lock);
4822
4823 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4824 if (ret)
4825 goto error_del_extent;
4826
4827 for (i = 0; i < map->num_stripes; i++) {
4828 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4829 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4830 }
4831
4832 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4833
4834 free_extent_map(em);
4835 check_raid56_incompat_flag(info, type);
4836
4837 kfree(devices_info);
4838 return 0;
4839
4840 error_del_extent:
4841 write_lock(&em_tree->lock);
4842 remove_extent_mapping(em_tree, em);
4843 write_unlock(&em_tree->lock);
4844
4845 /* One for our allocation */
4846 free_extent_map(em);
4847 /* One for the tree reference */
4848 free_extent_map(em);
4849 /* One for the pending_chunks list reference */
4850 free_extent_map(em);
4851 error:
4852 kfree(devices_info);
4853 return ret;
4854 }
4855
4856 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4857 struct btrfs_fs_info *fs_info,
4858 u64 chunk_offset, u64 chunk_size)
4859 {
4860 struct btrfs_root *extent_root = fs_info->extent_root;
4861 struct btrfs_root *chunk_root = fs_info->chunk_root;
4862 struct btrfs_key key;
4863 struct btrfs_device *device;
4864 struct btrfs_chunk *chunk;
4865 struct btrfs_stripe *stripe;
4866 struct extent_map *em;
4867 struct map_lookup *map;
4868 size_t item_size;
4869 u64 dev_offset;
4870 u64 stripe_size;
4871 int i = 0;
4872 int ret = 0;
4873
4874 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4875 if (IS_ERR(em))
4876 return PTR_ERR(em);
4877
4878 map = em->map_lookup;
4879 item_size = btrfs_chunk_item_size(map->num_stripes);
4880 stripe_size = em->orig_block_len;
4881
4882 chunk = kzalloc(item_size, GFP_NOFS);
4883 if (!chunk) {
4884 ret = -ENOMEM;
4885 goto out;
4886 }
4887
4888 /*
4889 * Take the device list mutex to prevent races with the final phase of
4890 * a device replace operation that replaces the device object associated
4891 * with the map's stripes, because the device object's id can change
4892 * at any time during that final phase of the device replace operation
4893 * (dev-replace.c:btrfs_dev_replace_finishing()).
4894 */
4895 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4896 for (i = 0; i < map->num_stripes; i++) {
4897 device = map->stripes[i].dev;
4898 dev_offset = map->stripes[i].physical;
4899
4900 ret = btrfs_update_device(trans, device);
4901 if (ret)
4902 break;
4903 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4904 dev_offset, stripe_size);
4905 if (ret)
4906 break;
4907 }
4908 if (ret) {
4909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4910 goto out;
4911 }
4912
4913 stripe = &chunk->stripe;
4914 for (i = 0; i < map->num_stripes; i++) {
4915 device = map->stripes[i].dev;
4916 dev_offset = map->stripes[i].physical;
4917
4918 btrfs_set_stack_stripe_devid(stripe, device->devid);
4919 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4920 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4921 stripe++;
4922 }
4923 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4924
4925 btrfs_set_stack_chunk_length(chunk, chunk_size);
4926 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4927 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4928 btrfs_set_stack_chunk_type(chunk, map->type);
4929 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4930 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4931 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4932 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4933 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4934
4935 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4936 key.type = BTRFS_CHUNK_ITEM_KEY;
4937 key.offset = chunk_offset;
4938
4939 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4940 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4941 /*
4942 * TODO: Cleanup of inserted chunk root in case of
4943 * failure.
4944 */
4945 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4946 }
4947
4948 out:
4949 kfree(chunk);
4950 free_extent_map(em);
4951 return ret;
4952 }
4953
4954 /*
4955 * Chunk allocation falls into two parts. The first part does works
4956 * that make the new allocated chunk useable, but not do any operation
4957 * that modifies the chunk tree. The second part does the works that
4958 * require modifying the chunk tree. This division is important for the
4959 * bootstrap process of adding storage to a seed btrfs.
4960 */
4961 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4962 struct btrfs_fs_info *fs_info, u64 type)
4963 {
4964 u64 chunk_offset;
4965
4966 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4967 chunk_offset = find_next_chunk(fs_info);
4968 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4969 }
4970
4971 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4972 struct btrfs_fs_info *fs_info)
4973 {
4974 u64 chunk_offset;
4975 u64 sys_chunk_offset;
4976 u64 alloc_profile;
4977 int ret;
4978
4979 chunk_offset = find_next_chunk(fs_info);
4980 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4981 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4982 if (ret)
4983 return ret;
4984
4985 sys_chunk_offset = find_next_chunk(fs_info);
4986 alloc_profile = btrfs_system_alloc_profile(fs_info);
4987 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4988 return ret;
4989 }
4990
4991 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4992 {
4993 int max_errors;
4994
4995 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4996 BTRFS_BLOCK_GROUP_RAID10 |
4997 BTRFS_BLOCK_GROUP_RAID5 |
4998 BTRFS_BLOCK_GROUP_DUP)) {
4999 max_errors = 1;
5000 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5001 max_errors = 2;
5002 } else {
5003 max_errors = 0;
5004 }
5005
5006 return max_errors;
5007 }
5008
5009 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5010 {
5011 struct extent_map *em;
5012 struct map_lookup *map;
5013 int readonly = 0;
5014 int miss_ndevs = 0;
5015 int i;
5016
5017 em = get_chunk_map(fs_info, chunk_offset, 1);
5018 if (IS_ERR(em))
5019 return 1;
5020
5021 map = em->map_lookup;
5022 for (i = 0; i < map->num_stripes; i++) {
5023 if (map->stripes[i].dev->missing) {
5024 miss_ndevs++;
5025 continue;
5026 }
5027
5028 if (!map->stripes[i].dev->writeable) {
5029 readonly = 1;
5030 goto end;
5031 }
5032 }
5033
5034 /*
5035 * If the number of missing devices is larger than max errors,
5036 * we can not write the data into that chunk successfully, so
5037 * set it readonly.
5038 */
5039 if (miss_ndevs > btrfs_chunk_max_errors(map))
5040 readonly = 1;
5041 end:
5042 free_extent_map(em);
5043 return readonly;
5044 }
5045
5046 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5047 {
5048 extent_map_tree_init(&tree->map_tree);
5049 }
5050
5051 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5052 {
5053 struct extent_map *em;
5054
5055 while (1) {
5056 write_lock(&tree->map_tree.lock);
5057 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5058 if (em)
5059 remove_extent_mapping(&tree->map_tree, em);
5060 write_unlock(&tree->map_tree.lock);
5061 if (!em)
5062 break;
5063 /* once for us */
5064 free_extent_map(em);
5065 /* once for the tree */
5066 free_extent_map(em);
5067 }
5068 }
5069
5070 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5071 {
5072 struct extent_map *em;
5073 struct map_lookup *map;
5074 int ret;
5075
5076 em = get_chunk_map(fs_info, logical, len);
5077 if (IS_ERR(em))
5078 /*
5079 * We could return errors for these cases, but that could get
5080 * ugly and we'd probably do the same thing which is just not do
5081 * anything else and exit, so return 1 so the callers don't try
5082 * to use other copies.
5083 */
5084 return 1;
5085
5086 map = em->map_lookup;
5087 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5088 ret = map->num_stripes;
5089 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5090 ret = map->sub_stripes;
5091 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5092 ret = 2;
5093 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5094 ret = 3;
5095 else
5096 ret = 1;
5097 free_extent_map(em);
5098
5099 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5100 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5101 fs_info->dev_replace.tgtdev)
5102 ret++;
5103 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5104
5105 return ret;
5106 }
5107
5108 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5109 u64 logical)
5110 {
5111 struct extent_map *em;
5112 struct map_lookup *map;
5113 unsigned long len = fs_info->sectorsize;
5114
5115 em = get_chunk_map(fs_info, logical, len);
5116
5117 if (!WARN_ON(IS_ERR(em))) {
5118 map = em->map_lookup;
5119 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5120 len = map->stripe_len * nr_data_stripes(map);
5121 free_extent_map(em);
5122 }
5123 return len;
5124 }
5125
5126 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5127 {
5128 struct extent_map *em;
5129 struct map_lookup *map;
5130 int ret = 0;
5131
5132 em = get_chunk_map(fs_info, logical, len);
5133
5134 if(!WARN_ON(IS_ERR(em))) {
5135 map = em->map_lookup;
5136 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5137 ret = 1;
5138 free_extent_map(em);
5139 }
5140 return ret;
5141 }
5142
5143 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5144 struct map_lookup *map, int first, int num,
5145 int optimal, int dev_replace_is_ongoing)
5146 {
5147 int i;
5148 int tolerance;
5149 struct btrfs_device *srcdev;
5150
5151 if (dev_replace_is_ongoing &&
5152 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5153 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5154 srcdev = fs_info->dev_replace.srcdev;
5155 else
5156 srcdev = NULL;
5157
5158 /*
5159 * try to avoid the drive that is the source drive for a
5160 * dev-replace procedure, only choose it if no other non-missing
5161 * mirror is available
5162 */
5163 for (tolerance = 0; tolerance < 2; tolerance++) {
5164 if (map->stripes[optimal].dev->bdev &&
5165 (tolerance || map->stripes[optimal].dev != srcdev))
5166 return optimal;
5167 for (i = first; i < first + num; i++) {
5168 if (map->stripes[i].dev->bdev &&
5169 (tolerance || map->stripes[i].dev != srcdev))
5170 return i;
5171 }
5172 }
5173
5174 /* we couldn't find one that doesn't fail. Just return something
5175 * and the io error handling code will clean up eventually
5176 */
5177 return optimal;
5178 }
5179
5180 static inline int parity_smaller(u64 a, u64 b)
5181 {
5182 return a > b;
5183 }
5184
5185 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5186 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5187 {
5188 struct btrfs_bio_stripe s;
5189 int i;
5190 u64 l;
5191 int again = 1;
5192
5193 while (again) {
5194 again = 0;
5195 for (i = 0; i < num_stripes - 1; i++) {
5196 if (parity_smaller(bbio->raid_map[i],
5197 bbio->raid_map[i+1])) {
5198 s = bbio->stripes[i];
5199 l = bbio->raid_map[i];
5200 bbio->stripes[i] = bbio->stripes[i+1];
5201 bbio->raid_map[i] = bbio->raid_map[i+1];
5202 bbio->stripes[i+1] = s;
5203 bbio->raid_map[i+1] = l;
5204
5205 again = 1;
5206 }
5207 }
5208 }
5209 }
5210
5211 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5212 {
5213 struct btrfs_bio *bbio = kzalloc(
5214 /* the size of the btrfs_bio */
5215 sizeof(struct btrfs_bio) +
5216 /* plus the variable array for the stripes */
5217 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5218 /* plus the variable array for the tgt dev */
5219 sizeof(int) * (real_stripes) +
5220 /*
5221 * plus the raid_map, which includes both the tgt dev
5222 * and the stripes
5223 */
5224 sizeof(u64) * (total_stripes),
5225 GFP_NOFS|__GFP_NOFAIL);
5226
5227 atomic_set(&bbio->error, 0);
5228 refcount_set(&bbio->refs, 1);
5229
5230 return bbio;
5231 }
5232
5233 void btrfs_get_bbio(struct btrfs_bio *bbio)
5234 {
5235 WARN_ON(!refcount_read(&bbio->refs));
5236 refcount_inc(&bbio->refs);
5237 }
5238
5239 void btrfs_put_bbio(struct btrfs_bio *bbio)
5240 {
5241 if (!bbio)
5242 return;
5243 if (refcount_dec_and_test(&bbio->refs))
5244 kfree(bbio);
5245 }
5246
5247 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5248 /*
5249 * Please note that, discard won't be sent to target device of device
5250 * replace.
5251 */
5252 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5253 u64 logical, u64 length,
5254 struct btrfs_bio **bbio_ret)
5255 {
5256 struct extent_map *em;
5257 struct map_lookup *map;
5258 struct btrfs_bio *bbio;
5259 u64 offset;
5260 u64 stripe_nr;
5261 u64 stripe_nr_end;
5262 u64 stripe_end_offset;
5263 u64 stripe_cnt;
5264 u64 stripe_len;
5265 u64 stripe_offset;
5266 u64 num_stripes;
5267 u32 stripe_index;
5268 u32 factor = 0;
5269 u32 sub_stripes = 0;
5270 u64 stripes_per_dev = 0;
5271 u32 remaining_stripes = 0;
5272 u32 last_stripe = 0;
5273 int ret = 0;
5274 int i;
5275
5276 /* discard always return a bbio */
5277 ASSERT(bbio_ret);
5278
5279 em = get_chunk_map(fs_info, logical, length);
5280 if (IS_ERR(em))
5281 return PTR_ERR(em);
5282
5283 map = em->map_lookup;
5284 /* we don't discard raid56 yet */
5285 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5286 ret = -EOPNOTSUPP;
5287 goto out;
5288 }
5289
5290 offset = logical - em->start;
5291 length = min_t(u64, em->len - offset, length);
5292
5293 stripe_len = map->stripe_len;
5294 /*
5295 * stripe_nr counts the total number of stripes we have to stride
5296 * to get to this block
5297 */
5298 stripe_nr = div64_u64(offset, stripe_len);
5299
5300 /* stripe_offset is the offset of this block in its stripe */
5301 stripe_offset = offset - stripe_nr * stripe_len;
5302
5303 stripe_nr_end = round_up(offset + length, map->stripe_len);
5304 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5305 stripe_cnt = stripe_nr_end - stripe_nr;
5306 stripe_end_offset = stripe_nr_end * map->stripe_len -
5307 (offset + length);
5308 /*
5309 * after this, stripe_nr is the number of stripes on this
5310 * device we have to walk to find the data, and stripe_index is
5311 * the number of our device in the stripe array
5312 */
5313 num_stripes = 1;
5314 stripe_index = 0;
5315 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5316 BTRFS_BLOCK_GROUP_RAID10)) {
5317 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5318 sub_stripes = 1;
5319 else
5320 sub_stripes = map->sub_stripes;
5321
5322 factor = map->num_stripes / sub_stripes;
5323 num_stripes = min_t(u64, map->num_stripes,
5324 sub_stripes * stripe_cnt);
5325 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5326 stripe_index *= sub_stripes;
5327 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5328 &remaining_stripes);
5329 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5330 last_stripe *= sub_stripes;
5331 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5332 BTRFS_BLOCK_GROUP_DUP)) {
5333 num_stripes = map->num_stripes;
5334 } else {
5335 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5336 &stripe_index);
5337 }
5338
5339 bbio = alloc_btrfs_bio(num_stripes, 0);
5340 if (!bbio) {
5341 ret = -ENOMEM;
5342 goto out;
5343 }
5344
5345 for (i = 0; i < num_stripes; i++) {
5346 bbio->stripes[i].physical =
5347 map->stripes[stripe_index].physical +
5348 stripe_offset + stripe_nr * map->stripe_len;
5349 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5350
5351 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5352 BTRFS_BLOCK_GROUP_RAID10)) {
5353 bbio->stripes[i].length = stripes_per_dev *
5354 map->stripe_len;
5355
5356 if (i / sub_stripes < remaining_stripes)
5357 bbio->stripes[i].length +=
5358 map->stripe_len;
5359
5360 /*
5361 * Special for the first stripe and
5362 * the last stripe:
5363 *
5364 * |-------|...|-------|
5365 * |----------|
5366 * off end_off
5367 */
5368 if (i < sub_stripes)
5369 bbio->stripes[i].length -=
5370 stripe_offset;
5371
5372 if (stripe_index >= last_stripe &&
5373 stripe_index <= (last_stripe +
5374 sub_stripes - 1))
5375 bbio->stripes[i].length -=
5376 stripe_end_offset;
5377
5378 if (i == sub_stripes - 1)
5379 stripe_offset = 0;
5380 } else {
5381 bbio->stripes[i].length = length;
5382 }
5383
5384 stripe_index++;
5385 if (stripe_index == map->num_stripes) {
5386 stripe_index = 0;
5387 stripe_nr++;
5388 }
5389 }
5390
5391 *bbio_ret = bbio;
5392 bbio->map_type = map->type;
5393 bbio->num_stripes = num_stripes;
5394 out:
5395 free_extent_map(em);
5396 return ret;
5397 }
5398
5399 /*
5400 * In dev-replace case, for repair case (that's the only case where the mirror
5401 * is selected explicitly when calling btrfs_map_block), blocks left of the
5402 * left cursor can also be read from the target drive.
5403 *
5404 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5405 * array of stripes.
5406 * For READ, it also needs to be supported using the same mirror number.
5407 *
5408 * If the requested block is not left of the left cursor, EIO is returned. This
5409 * can happen because btrfs_num_copies() returns one more in the dev-replace
5410 * case.
5411 */
5412 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5413 u64 logical, u64 length,
5414 u64 srcdev_devid, int *mirror_num,
5415 u64 *physical)
5416 {
5417 struct btrfs_bio *bbio = NULL;
5418 int num_stripes;
5419 int index_srcdev = 0;
5420 int found = 0;
5421 u64 physical_of_found = 0;
5422 int i;
5423 int ret = 0;
5424
5425 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5426 logical, &length, &bbio, 0, 0);
5427 if (ret) {
5428 ASSERT(bbio == NULL);
5429 return ret;
5430 }
5431
5432 num_stripes = bbio->num_stripes;
5433 if (*mirror_num > num_stripes) {
5434 /*
5435 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5436 * that means that the requested area is not left of the left
5437 * cursor
5438 */
5439 btrfs_put_bbio(bbio);
5440 return -EIO;
5441 }
5442
5443 /*
5444 * process the rest of the function using the mirror_num of the source
5445 * drive. Therefore look it up first. At the end, patch the device
5446 * pointer to the one of the target drive.
5447 */
5448 for (i = 0; i < num_stripes; i++) {
5449 if (bbio->stripes[i].dev->devid != srcdev_devid)
5450 continue;
5451
5452 /*
5453 * In case of DUP, in order to keep it simple, only add the
5454 * mirror with the lowest physical address
5455 */
5456 if (found &&
5457 physical_of_found <= bbio->stripes[i].physical)
5458 continue;
5459
5460 index_srcdev = i;
5461 found = 1;
5462 physical_of_found = bbio->stripes[i].physical;
5463 }
5464
5465 btrfs_put_bbio(bbio);
5466
5467 ASSERT(found);
5468 if (!found)
5469 return -EIO;
5470
5471 *mirror_num = index_srcdev + 1;
5472 *physical = physical_of_found;
5473 return ret;
5474 }
5475
5476 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5477 struct btrfs_bio **bbio_ret,
5478 struct btrfs_dev_replace *dev_replace,
5479 int *num_stripes_ret, int *max_errors_ret)
5480 {
5481 struct btrfs_bio *bbio = *bbio_ret;
5482 u64 srcdev_devid = dev_replace->srcdev->devid;
5483 int tgtdev_indexes = 0;
5484 int num_stripes = *num_stripes_ret;
5485 int max_errors = *max_errors_ret;
5486 int i;
5487
5488 if (op == BTRFS_MAP_WRITE) {
5489 int index_where_to_add;
5490
5491 /*
5492 * duplicate the write operations while the dev replace
5493 * procedure is running. Since the copying of the old disk to
5494 * the new disk takes place at run time while the filesystem is
5495 * mounted writable, the regular write operations to the old
5496 * disk have to be duplicated to go to the new disk as well.
5497 *
5498 * Note that device->missing is handled by the caller, and that
5499 * the write to the old disk is already set up in the stripes
5500 * array.
5501 */
5502 index_where_to_add = num_stripes;
5503 for (i = 0; i < num_stripes; i++) {
5504 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5505 /* write to new disk, too */
5506 struct btrfs_bio_stripe *new =
5507 bbio->stripes + index_where_to_add;
5508 struct btrfs_bio_stripe *old =
5509 bbio->stripes + i;
5510
5511 new->physical = old->physical;
5512 new->length = old->length;
5513 new->dev = dev_replace->tgtdev;
5514 bbio->tgtdev_map[i] = index_where_to_add;
5515 index_where_to_add++;
5516 max_errors++;
5517 tgtdev_indexes++;
5518 }
5519 }
5520 num_stripes = index_where_to_add;
5521 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5522 int index_srcdev = 0;
5523 int found = 0;
5524 u64 physical_of_found = 0;
5525
5526 /*
5527 * During the dev-replace procedure, the target drive can also
5528 * be used to read data in case it is needed to repair a corrupt
5529 * block elsewhere. This is possible if the requested area is
5530 * left of the left cursor. In this area, the target drive is a
5531 * full copy of the source drive.
5532 */
5533 for (i = 0; i < num_stripes; i++) {
5534 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5535 /*
5536 * In case of DUP, in order to keep it simple,
5537 * only add the mirror with the lowest physical
5538 * address
5539 */
5540 if (found &&
5541 physical_of_found <=
5542 bbio->stripes[i].physical)
5543 continue;
5544 index_srcdev = i;
5545 found = 1;
5546 physical_of_found = bbio->stripes[i].physical;
5547 }
5548 }
5549 if (found) {
5550 struct btrfs_bio_stripe *tgtdev_stripe =
5551 bbio->stripes + num_stripes;
5552
5553 tgtdev_stripe->physical = physical_of_found;
5554 tgtdev_stripe->length =
5555 bbio->stripes[index_srcdev].length;
5556 tgtdev_stripe->dev = dev_replace->tgtdev;
5557 bbio->tgtdev_map[index_srcdev] = num_stripes;
5558
5559 tgtdev_indexes++;
5560 num_stripes++;
5561 }
5562 }
5563
5564 *num_stripes_ret = num_stripes;
5565 *max_errors_ret = max_errors;
5566 bbio->num_tgtdevs = tgtdev_indexes;
5567 *bbio_ret = bbio;
5568 }
5569
5570 static bool need_full_stripe(enum btrfs_map_op op)
5571 {
5572 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5573 }
5574
5575 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5576 enum btrfs_map_op op,
5577 u64 logical, u64 *length,
5578 struct btrfs_bio **bbio_ret,
5579 int mirror_num, int need_raid_map)
5580 {
5581 struct extent_map *em;
5582 struct map_lookup *map;
5583 u64 offset;
5584 u64 stripe_offset;
5585 u64 stripe_nr;
5586 u64 stripe_len;
5587 u32 stripe_index;
5588 int i;
5589 int ret = 0;
5590 int num_stripes;
5591 int max_errors = 0;
5592 int tgtdev_indexes = 0;
5593 struct btrfs_bio *bbio = NULL;
5594 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5595 int dev_replace_is_ongoing = 0;
5596 int num_alloc_stripes;
5597 int patch_the_first_stripe_for_dev_replace = 0;
5598 u64 physical_to_patch_in_first_stripe = 0;
5599 u64 raid56_full_stripe_start = (u64)-1;
5600
5601 if (op == BTRFS_MAP_DISCARD)
5602 return __btrfs_map_block_for_discard(fs_info, logical,
5603 *length, bbio_ret);
5604
5605 em = get_chunk_map(fs_info, logical, *length);
5606 if (IS_ERR(em))
5607 return PTR_ERR(em);
5608
5609 map = em->map_lookup;
5610 offset = logical - em->start;
5611
5612 stripe_len = map->stripe_len;
5613 stripe_nr = offset;
5614 /*
5615 * stripe_nr counts the total number of stripes we have to stride
5616 * to get to this block
5617 */
5618 stripe_nr = div64_u64(stripe_nr, stripe_len);
5619
5620 stripe_offset = stripe_nr * stripe_len;
5621 if (offset < stripe_offset) {
5622 btrfs_crit(fs_info,
5623 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5624 stripe_offset, offset, em->start, logical,
5625 stripe_len);
5626 free_extent_map(em);
5627 return -EINVAL;
5628 }
5629
5630 /* stripe_offset is the offset of this block in its stripe*/
5631 stripe_offset = offset - stripe_offset;
5632
5633 /* if we're here for raid56, we need to know the stripe aligned start */
5634 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5635 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5636 raid56_full_stripe_start = offset;
5637
5638 /* allow a write of a full stripe, but make sure we don't
5639 * allow straddling of stripes
5640 */
5641 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5642 full_stripe_len);
5643 raid56_full_stripe_start *= full_stripe_len;
5644 }
5645
5646 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5647 u64 max_len;
5648 /* For writes to RAID[56], allow a full stripeset across all disks.
5649 For other RAID types and for RAID[56] reads, just allow a single
5650 stripe (on a single disk). */
5651 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5652 (op == BTRFS_MAP_WRITE)) {
5653 max_len = stripe_len * nr_data_stripes(map) -
5654 (offset - raid56_full_stripe_start);
5655 } else {
5656 /* we limit the length of each bio to what fits in a stripe */
5657 max_len = stripe_len - stripe_offset;
5658 }
5659 *length = min_t(u64, em->len - offset, max_len);
5660 } else {
5661 *length = em->len - offset;
5662 }
5663
5664 /* This is for when we're called from btrfs_merge_bio_hook() and all
5665 it cares about is the length */
5666 if (!bbio_ret)
5667 goto out;
5668
5669 btrfs_dev_replace_lock(dev_replace, 0);
5670 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5671 if (!dev_replace_is_ongoing)
5672 btrfs_dev_replace_unlock(dev_replace, 0);
5673 else
5674 btrfs_dev_replace_set_lock_blocking(dev_replace);
5675
5676 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5677 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5678 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5679 dev_replace->srcdev->devid,
5680 &mirror_num,
5681 &physical_to_patch_in_first_stripe);
5682 if (ret)
5683 goto out;
5684 else
5685 patch_the_first_stripe_for_dev_replace = 1;
5686 } else if (mirror_num > map->num_stripes) {
5687 mirror_num = 0;
5688 }
5689
5690 num_stripes = 1;
5691 stripe_index = 0;
5692 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5693 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5694 &stripe_index);
5695 if (!need_full_stripe(op))
5696 mirror_num = 1;
5697 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5698 if (need_full_stripe(op))
5699 num_stripes = map->num_stripes;
5700 else if (mirror_num)
5701 stripe_index = mirror_num - 1;
5702 else {
5703 stripe_index = find_live_mirror(fs_info, map, 0,
5704 map->num_stripes,
5705 current->pid % map->num_stripes,
5706 dev_replace_is_ongoing);
5707 mirror_num = stripe_index + 1;
5708 }
5709
5710 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5711 if (need_full_stripe(op)) {
5712 num_stripes = map->num_stripes;
5713 } else if (mirror_num) {
5714 stripe_index = mirror_num - 1;
5715 } else {
5716 mirror_num = 1;
5717 }
5718
5719 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5720 u32 factor = map->num_stripes / map->sub_stripes;
5721
5722 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5723 stripe_index *= map->sub_stripes;
5724
5725 if (need_full_stripe(op))
5726 num_stripes = map->sub_stripes;
5727 else if (mirror_num)
5728 stripe_index += mirror_num - 1;
5729 else {
5730 int old_stripe_index = stripe_index;
5731 stripe_index = find_live_mirror(fs_info, map,
5732 stripe_index,
5733 map->sub_stripes, stripe_index +
5734 current->pid % map->sub_stripes,
5735 dev_replace_is_ongoing);
5736 mirror_num = stripe_index - old_stripe_index + 1;
5737 }
5738
5739 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5740 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5741 /* push stripe_nr back to the start of the full stripe */
5742 stripe_nr = div64_u64(raid56_full_stripe_start,
5743 stripe_len * nr_data_stripes(map));
5744
5745 /* RAID[56] write or recovery. Return all stripes */
5746 num_stripes = map->num_stripes;
5747 max_errors = nr_parity_stripes(map);
5748
5749 *length = map->stripe_len;
5750 stripe_index = 0;
5751 stripe_offset = 0;
5752 } else {
5753 /*
5754 * Mirror #0 or #1 means the original data block.
5755 * Mirror #2 is RAID5 parity block.
5756 * Mirror #3 is RAID6 Q block.
5757 */
5758 stripe_nr = div_u64_rem(stripe_nr,
5759 nr_data_stripes(map), &stripe_index);
5760 if (mirror_num > 1)
5761 stripe_index = nr_data_stripes(map) +
5762 mirror_num - 2;
5763
5764 /* We distribute the parity blocks across stripes */
5765 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5766 &stripe_index);
5767 if (!need_full_stripe(op) && mirror_num <= 1)
5768 mirror_num = 1;
5769 }
5770 } else {
5771 /*
5772 * after this, stripe_nr is the number of stripes on this
5773 * device we have to walk to find the data, and stripe_index is
5774 * the number of our device in the stripe array
5775 */
5776 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5777 &stripe_index);
5778 mirror_num = stripe_index + 1;
5779 }
5780 if (stripe_index >= map->num_stripes) {
5781 btrfs_crit(fs_info,
5782 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5783 stripe_index, map->num_stripes);
5784 ret = -EINVAL;
5785 goto out;
5786 }
5787
5788 num_alloc_stripes = num_stripes;
5789 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5790 if (op == BTRFS_MAP_WRITE)
5791 num_alloc_stripes <<= 1;
5792 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5793 num_alloc_stripes++;
5794 tgtdev_indexes = num_stripes;
5795 }
5796
5797 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5798 if (!bbio) {
5799 ret = -ENOMEM;
5800 goto out;
5801 }
5802 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5803 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5804
5805 /* build raid_map */
5806 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5807 (need_full_stripe(op) || mirror_num > 1)) {
5808 u64 tmp;
5809 unsigned rot;
5810
5811 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5812 sizeof(struct btrfs_bio_stripe) *
5813 num_alloc_stripes +
5814 sizeof(int) * tgtdev_indexes);
5815
5816 /* Work out the disk rotation on this stripe-set */
5817 div_u64_rem(stripe_nr, num_stripes, &rot);
5818
5819 /* Fill in the logical address of each stripe */
5820 tmp = stripe_nr * nr_data_stripes(map);
5821 for (i = 0; i < nr_data_stripes(map); i++)
5822 bbio->raid_map[(i+rot) % num_stripes] =
5823 em->start + (tmp + i) * map->stripe_len;
5824
5825 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5826 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5827 bbio->raid_map[(i+rot+1) % num_stripes] =
5828 RAID6_Q_STRIPE;
5829 }
5830
5831
5832 for (i = 0; i < num_stripes; i++) {
5833 bbio->stripes[i].physical =
5834 map->stripes[stripe_index].physical +
5835 stripe_offset +
5836 stripe_nr * map->stripe_len;
5837 bbio->stripes[i].dev =
5838 map->stripes[stripe_index].dev;
5839 stripe_index++;
5840 }
5841
5842 if (need_full_stripe(op))
5843 max_errors = btrfs_chunk_max_errors(map);
5844
5845 if (bbio->raid_map)
5846 sort_parity_stripes(bbio, num_stripes);
5847
5848 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5849 need_full_stripe(op)) {
5850 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5851 &max_errors);
5852 }
5853
5854 *bbio_ret = bbio;
5855 bbio->map_type = map->type;
5856 bbio->num_stripes = num_stripes;
5857 bbio->max_errors = max_errors;
5858 bbio->mirror_num = mirror_num;
5859
5860 /*
5861 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5862 * mirror_num == num_stripes + 1 && dev_replace target drive is
5863 * available as a mirror
5864 */
5865 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5866 WARN_ON(num_stripes > 1);
5867 bbio->stripes[0].dev = dev_replace->tgtdev;
5868 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5869 bbio->mirror_num = map->num_stripes + 1;
5870 }
5871 out:
5872 if (dev_replace_is_ongoing) {
5873 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5874 btrfs_dev_replace_unlock(dev_replace, 0);
5875 }
5876 free_extent_map(em);
5877 return ret;
5878 }
5879
5880 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5881 u64 logical, u64 *length,
5882 struct btrfs_bio **bbio_ret, int mirror_num)
5883 {
5884 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5885 mirror_num, 0);
5886 }
5887
5888 /* For Scrub/replace */
5889 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5890 u64 logical, u64 *length,
5891 struct btrfs_bio **bbio_ret)
5892 {
5893 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5894 }
5895
5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5897 u64 chunk_start, u64 physical, u64 devid,
5898 u64 **logical, int *naddrs, int *stripe_len)
5899 {
5900 struct extent_map *em;
5901 struct map_lookup *map;
5902 u64 *buf;
5903 u64 bytenr;
5904 u64 length;
5905 u64 stripe_nr;
5906 u64 rmap_len;
5907 int i, j, nr = 0;
5908
5909 em = get_chunk_map(fs_info, chunk_start, 1);
5910 if (IS_ERR(em))
5911 return -EIO;
5912
5913 map = em->map_lookup;
5914 length = em->len;
5915 rmap_len = map->stripe_len;
5916
5917 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5918 length = div_u64(length, map->num_stripes / map->sub_stripes);
5919 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5920 length = div_u64(length, map->num_stripes);
5921 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5922 length = div_u64(length, nr_data_stripes(map));
5923 rmap_len = map->stripe_len * nr_data_stripes(map);
5924 }
5925
5926 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5927 BUG_ON(!buf); /* -ENOMEM */
5928
5929 for (i = 0; i < map->num_stripes; i++) {
5930 if (devid && map->stripes[i].dev->devid != devid)
5931 continue;
5932 if (map->stripes[i].physical > physical ||
5933 map->stripes[i].physical + length <= physical)
5934 continue;
5935
5936 stripe_nr = physical - map->stripes[i].physical;
5937 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5938
5939 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5940 stripe_nr = stripe_nr * map->num_stripes + i;
5941 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5942 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5943 stripe_nr = stripe_nr * map->num_stripes + i;
5944 } /* else if RAID[56], multiply by nr_data_stripes().
5945 * Alternatively, just use rmap_len below instead of
5946 * map->stripe_len */
5947
5948 bytenr = chunk_start + stripe_nr * rmap_len;
5949 WARN_ON(nr >= map->num_stripes);
5950 for (j = 0; j < nr; j++) {
5951 if (buf[j] == bytenr)
5952 break;
5953 }
5954 if (j == nr) {
5955 WARN_ON(nr >= map->num_stripes);
5956 buf[nr++] = bytenr;
5957 }
5958 }
5959
5960 *logical = buf;
5961 *naddrs = nr;
5962 *stripe_len = rmap_len;
5963
5964 free_extent_map(em);
5965 return 0;
5966 }
5967
5968 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5969 {
5970 bio->bi_private = bbio->private;
5971 bio->bi_end_io = bbio->end_io;
5972 bio_endio(bio);
5973
5974 btrfs_put_bbio(bbio);
5975 }
5976
5977 static void btrfs_end_bio(struct bio *bio)
5978 {
5979 struct btrfs_bio *bbio = bio->bi_private;
5980 int is_orig_bio = 0;
5981
5982 if (bio->bi_status) {
5983 atomic_inc(&bbio->error);
5984 if (bio->bi_status == BLK_STS_IOERR ||
5985 bio->bi_status == BLK_STS_TARGET) {
5986 unsigned int stripe_index =
5987 btrfs_io_bio(bio)->stripe_index;
5988 struct btrfs_device *dev;
5989
5990 BUG_ON(stripe_index >= bbio->num_stripes);
5991 dev = bbio->stripes[stripe_index].dev;
5992 if (dev->bdev) {
5993 if (bio_op(bio) == REQ_OP_WRITE)
5994 btrfs_dev_stat_inc(dev,
5995 BTRFS_DEV_STAT_WRITE_ERRS);
5996 else
5997 btrfs_dev_stat_inc(dev,
5998 BTRFS_DEV_STAT_READ_ERRS);
5999 if (bio->bi_opf & REQ_PREFLUSH)
6000 btrfs_dev_stat_inc(dev,
6001 BTRFS_DEV_STAT_FLUSH_ERRS);
6002 btrfs_dev_stat_print_on_error(dev);
6003 }
6004 }
6005 }
6006
6007 if (bio == bbio->orig_bio)
6008 is_orig_bio = 1;
6009
6010 btrfs_bio_counter_dec(bbio->fs_info);
6011
6012 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6013 if (!is_orig_bio) {
6014 bio_put(bio);
6015 bio = bbio->orig_bio;
6016 }
6017
6018 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6019 /* only send an error to the higher layers if it is
6020 * beyond the tolerance of the btrfs bio
6021 */
6022 if (atomic_read(&bbio->error) > bbio->max_errors) {
6023 bio->bi_status = BLK_STS_IOERR;
6024 } else {
6025 /*
6026 * this bio is actually up to date, we didn't
6027 * go over the max number of errors
6028 */
6029 bio->bi_status = BLK_STS_OK;
6030 }
6031
6032 btrfs_end_bbio(bbio, bio);
6033 } else if (!is_orig_bio) {
6034 bio_put(bio);
6035 }
6036 }
6037
6038 /*
6039 * see run_scheduled_bios for a description of why bios are collected for
6040 * async submit.
6041 *
6042 * This will add one bio to the pending list for a device and make sure
6043 * the work struct is scheduled.
6044 */
6045 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6046 struct bio *bio)
6047 {
6048 struct btrfs_fs_info *fs_info = device->fs_info;
6049 int should_queue = 1;
6050 struct btrfs_pending_bios *pending_bios;
6051
6052 if (device->missing || !device->bdev) {
6053 bio_io_error(bio);
6054 return;
6055 }
6056
6057 /* don't bother with additional async steps for reads, right now */
6058 if (bio_op(bio) == REQ_OP_READ) {
6059 bio_get(bio);
6060 btrfsic_submit_bio(bio);
6061 bio_put(bio);
6062 return;
6063 }
6064
6065 WARN_ON(bio->bi_next);
6066 bio->bi_next = NULL;
6067
6068 spin_lock(&device->io_lock);
6069 if (op_is_sync(bio->bi_opf))
6070 pending_bios = &device->pending_sync_bios;
6071 else
6072 pending_bios = &device->pending_bios;
6073
6074 if (pending_bios->tail)
6075 pending_bios->tail->bi_next = bio;
6076
6077 pending_bios->tail = bio;
6078 if (!pending_bios->head)
6079 pending_bios->head = bio;
6080 if (device->running_pending)
6081 should_queue = 0;
6082
6083 spin_unlock(&device->io_lock);
6084
6085 if (should_queue)
6086 btrfs_queue_work(fs_info->submit_workers, &device->work);
6087 }
6088
6089 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6090 u64 physical, int dev_nr, int async)
6091 {
6092 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6093 struct btrfs_fs_info *fs_info = bbio->fs_info;
6094
6095 bio->bi_private = bbio;
6096 btrfs_io_bio(bio)->stripe_index = dev_nr;
6097 bio->bi_end_io = btrfs_end_bio;
6098 bio->bi_iter.bi_sector = physical >> 9;
6099 #ifdef DEBUG
6100 {
6101 struct rcu_string *name;
6102
6103 rcu_read_lock();
6104 name = rcu_dereference(dev->name);
6105 btrfs_debug(fs_info,
6106 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6107 bio_op(bio), bio->bi_opf,
6108 (u64)bio->bi_iter.bi_sector,
6109 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6110 bio->bi_iter.bi_size);
6111 rcu_read_unlock();
6112 }
6113 #endif
6114 bio_set_dev(bio, dev->bdev);
6115
6116 btrfs_bio_counter_inc_noblocked(fs_info);
6117
6118 if (async)
6119 btrfs_schedule_bio(dev, bio);
6120 else
6121 btrfsic_submit_bio(bio);
6122 }
6123
6124 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6125 {
6126 atomic_inc(&bbio->error);
6127 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6128 /* Should be the original bio. */
6129 WARN_ON(bio != bbio->orig_bio);
6130
6131 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6132 bio->bi_iter.bi_sector = logical >> 9;
6133 if (atomic_read(&bbio->error) > bbio->max_errors)
6134 bio->bi_status = BLK_STS_IOERR;
6135 else
6136 bio->bi_status = BLK_STS_OK;
6137 btrfs_end_bbio(bbio, bio);
6138 }
6139 }
6140
6141 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6142 int mirror_num, int async_submit)
6143 {
6144 struct btrfs_device *dev;
6145 struct bio *first_bio = bio;
6146 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6147 u64 length = 0;
6148 u64 map_length;
6149 int ret;
6150 int dev_nr;
6151 int total_devs;
6152 struct btrfs_bio *bbio = NULL;
6153
6154 length = bio->bi_iter.bi_size;
6155 map_length = length;
6156
6157 btrfs_bio_counter_inc_blocked(fs_info);
6158 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6159 &map_length, &bbio, mirror_num, 1);
6160 if (ret) {
6161 btrfs_bio_counter_dec(fs_info);
6162 return errno_to_blk_status(ret);
6163 }
6164
6165 total_devs = bbio->num_stripes;
6166 bbio->orig_bio = first_bio;
6167 bbio->private = first_bio->bi_private;
6168 bbio->end_io = first_bio->bi_end_io;
6169 bbio->fs_info = fs_info;
6170 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6171
6172 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6173 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6174 /* In this case, map_length has been set to the length of
6175 a single stripe; not the whole write */
6176 if (bio_op(bio) == REQ_OP_WRITE) {
6177 ret = raid56_parity_write(fs_info, bio, bbio,
6178 map_length);
6179 } else {
6180 ret = raid56_parity_recover(fs_info, bio, bbio,
6181 map_length, mirror_num, 1);
6182 }
6183
6184 btrfs_bio_counter_dec(fs_info);
6185 return errno_to_blk_status(ret);
6186 }
6187
6188 if (map_length < length) {
6189 btrfs_crit(fs_info,
6190 "mapping failed logical %llu bio len %llu len %llu",
6191 logical, length, map_length);
6192 BUG();
6193 }
6194
6195 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6196 dev = bbio->stripes[dev_nr].dev;
6197 if (!dev || !dev->bdev ||
6198 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6199 bbio_error(bbio, first_bio, logical);
6200 continue;
6201 }
6202
6203 if (dev_nr < total_devs - 1)
6204 bio = btrfs_bio_clone(first_bio);
6205 else
6206 bio = first_bio;
6207
6208 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6209 dev_nr, async_submit);
6210 }
6211 btrfs_bio_counter_dec(fs_info);
6212 return BLK_STS_OK;
6213 }
6214
6215 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6216 u8 *uuid, u8 *fsid)
6217 {
6218 struct btrfs_device *device;
6219 struct btrfs_fs_devices *cur_devices;
6220
6221 cur_devices = fs_info->fs_devices;
6222 while (cur_devices) {
6223 if (!fsid ||
6224 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6225 device = find_device(cur_devices, devid, uuid);
6226 if (device)
6227 return device;
6228 }
6229 cur_devices = cur_devices->seed;
6230 }
6231 return NULL;
6232 }
6233
6234 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6235 u64 devid, u8 *dev_uuid)
6236 {
6237 struct btrfs_device *device;
6238
6239 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6240 if (IS_ERR(device))
6241 return device;
6242
6243 list_add(&device->dev_list, &fs_devices->devices);
6244 device->fs_devices = fs_devices;
6245 fs_devices->num_devices++;
6246
6247 device->missing = 1;
6248 fs_devices->missing_devices++;
6249
6250 return device;
6251 }
6252
6253 /**
6254 * btrfs_alloc_device - allocate struct btrfs_device
6255 * @fs_info: used only for generating a new devid, can be NULL if
6256 * devid is provided (i.e. @devid != NULL).
6257 * @devid: a pointer to devid for this device. If NULL a new devid
6258 * is generated.
6259 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6260 * is generated.
6261 *
6262 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6263 * on error. Returned struct is not linked onto any lists and can be
6264 * destroyed with kfree() right away.
6265 */
6266 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6267 const u64 *devid,
6268 const u8 *uuid)
6269 {
6270 struct btrfs_device *dev;
6271 u64 tmp;
6272
6273 if (WARN_ON(!devid && !fs_info))
6274 return ERR_PTR(-EINVAL);
6275
6276 dev = __alloc_device();
6277 if (IS_ERR(dev))
6278 return dev;
6279
6280 if (devid)
6281 tmp = *devid;
6282 else {
6283 int ret;
6284
6285 ret = find_next_devid(fs_info, &tmp);
6286 if (ret) {
6287 kfree(dev);
6288 return ERR_PTR(ret);
6289 }
6290 }
6291 dev->devid = tmp;
6292
6293 if (uuid)
6294 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6295 else
6296 generate_random_uuid(dev->uuid);
6297
6298 btrfs_init_work(&dev->work, btrfs_submit_helper,
6299 pending_bios_fn, NULL, NULL);
6300
6301 return dev;
6302 }
6303
6304 /* Return -EIO if any error, otherwise return 0. */
6305 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6306 struct extent_buffer *leaf,
6307 struct btrfs_chunk *chunk, u64 logical)
6308 {
6309 u64 length;
6310 u64 stripe_len;
6311 u16 num_stripes;
6312 u16 sub_stripes;
6313 u64 type;
6314
6315 length = btrfs_chunk_length(leaf, chunk);
6316 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6317 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6318 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6319 type = btrfs_chunk_type(leaf, chunk);
6320
6321 if (!num_stripes) {
6322 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6323 num_stripes);
6324 return -EIO;
6325 }
6326 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6327 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6328 return -EIO;
6329 }
6330 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6331 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6332 btrfs_chunk_sector_size(leaf, chunk));
6333 return -EIO;
6334 }
6335 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6336 btrfs_err(fs_info, "invalid chunk length %llu", length);
6337 return -EIO;
6338 }
6339 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6340 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6341 stripe_len);
6342 return -EIO;
6343 }
6344 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6345 type) {
6346 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6347 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6348 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6349 btrfs_chunk_type(leaf, chunk));
6350 return -EIO;
6351 }
6352 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6353 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6354 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6355 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6356 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6357 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6358 num_stripes != 1)) {
6359 btrfs_err(fs_info,
6360 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6361 num_stripes, sub_stripes,
6362 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6363 return -EIO;
6364 }
6365
6366 return 0;
6367 }
6368
6369 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6370 u64 devid, u8 *uuid, bool error)
6371 {
6372 if (error)
6373 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6374 devid, uuid);
6375 else
6376 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6377 devid, uuid);
6378 }
6379
6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6381 struct extent_buffer *leaf,
6382 struct btrfs_chunk *chunk)
6383 {
6384 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6385 struct map_lookup *map;
6386 struct extent_map *em;
6387 u64 logical;
6388 u64 length;
6389 u64 devid;
6390 u8 uuid[BTRFS_UUID_SIZE];
6391 int num_stripes;
6392 int ret;
6393 int i;
6394
6395 logical = key->offset;
6396 length = btrfs_chunk_length(leaf, chunk);
6397 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6398
6399 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6400 if (ret)
6401 return ret;
6402
6403 read_lock(&map_tree->map_tree.lock);
6404 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6405 read_unlock(&map_tree->map_tree.lock);
6406
6407 /* already mapped? */
6408 if (em && em->start <= logical && em->start + em->len > logical) {
6409 free_extent_map(em);
6410 return 0;
6411 } else if (em) {
6412 free_extent_map(em);
6413 }
6414
6415 em = alloc_extent_map();
6416 if (!em)
6417 return -ENOMEM;
6418 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6419 if (!map) {
6420 free_extent_map(em);
6421 return -ENOMEM;
6422 }
6423
6424 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6425 em->map_lookup = map;
6426 em->start = logical;
6427 em->len = length;
6428 em->orig_start = 0;
6429 em->block_start = 0;
6430 em->block_len = em->len;
6431
6432 map->num_stripes = num_stripes;
6433 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6434 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6435 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6436 map->type = btrfs_chunk_type(leaf, chunk);
6437 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6438 for (i = 0; i < num_stripes; i++) {
6439 map->stripes[i].physical =
6440 btrfs_stripe_offset_nr(leaf, chunk, i);
6441 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6442 read_extent_buffer(leaf, uuid, (unsigned long)
6443 btrfs_stripe_dev_uuid_nr(chunk, i),
6444 BTRFS_UUID_SIZE);
6445 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6446 uuid, NULL);
6447 if (!map->stripes[i].dev &&
6448 !btrfs_test_opt(fs_info, DEGRADED)) {
6449 free_extent_map(em);
6450 btrfs_report_missing_device(fs_info, devid, uuid, true);
6451 return -ENOENT;
6452 }
6453 if (!map->stripes[i].dev) {
6454 map->stripes[i].dev =
6455 add_missing_dev(fs_info->fs_devices, devid,
6456 uuid);
6457 if (IS_ERR(map->stripes[i].dev)) {
6458 free_extent_map(em);
6459 btrfs_err(fs_info,
6460 "failed to init missing dev %llu: %ld",
6461 devid, PTR_ERR(map->stripes[i].dev));
6462 return PTR_ERR(map->stripes[i].dev);
6463 }
6464 btrfs_report_missing_device(fs_info, devid, uuid, false);
6465 }
6466 map->stripes[i].dev->in_fs_metadata = 1;
6467 }
6468
6469 write_lock(&map_tree->map_tree.lock);
6470 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6471 write_unlock(&map_tree->map_tree.lock);
6472 BUG_ON(ret); /* Tree corruption */
6473 free_extent_map(em);
6474
6475 return 0;
6476 }
6477
6478 static void fill_device_from_item(struct extent_buffer *leaf,
6479 struct btrfs_dev_item *dev_item,
6480 struct btrfs_device *device)
6481 {
6482 unsigned long ptr;
6483
6484 device->devid = btrfs_device_id(leaf, dev_item);
6485 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6486 device->total_bytes = device->disk_total_bytes;
6487 device->commit_total_bytes = device->disk_total_bytes;
6488 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6489 device->commit_bytes_used = device->bytes_used;
6490 device->type = btrfs_device_type(leaf, dev_item);
6491 device->io_align = btrfs_device_io_align(leaf, dev_item);
6492 device->io_width = btrfs_device_io_width(leaf, dev_item);
6493 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6494 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6495 device->is_tgtdev_for_dev_replace = 0;
6496
6497 ptr = btrfs_device_uuid(dev_item);
6498 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6499 }
6500
6501 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6502 u8 *fsid)
6503 {
6504 struct btrfs_fs_devices *fs_devices;
6505 int ret;
6506
6507 BUG_ON(!mutex_is_locked(&uuid_mutex));
6508 ASSERT(fsid);
6509
6510 fs_devices = fs_info->fs_devices->seed;
6511 while (fs_devices) {
6512 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6513 return fs_devices;
6514
6515 fs_devices = fs_devices->seed;
6516 }
6517
6518 fs_devices = find_fsid(fsid);
6519 if (!fs_devices) {
6520 if (!btrfs_test_opt(fs_info, DEGRADED))
6521 return ERR_PTR(-ENOENT);
6522
6523 fs_devices = alloc_fs_devices(fsid);
6524 if (IS_ERR(fs_devices))
6525 return fs_devices;
6526
6527 fs_devices->seeding = 1;
6528 fs_devices->opened = 1;
6529 return fs_devices;
6530 }
6531
6532 fs_devices = clone_fs_devices(fs_devices);
6533 if (IS_ERR(fs_devices))
6534 return fs_devices;
6535
6536 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6537 fs_info->bdev_holder);
6538 if (ret) {
6539 free_fs_devices(fs_devices);
6540 fs_devices = ERR_PTR(ret);
6541 goto out;
6542 }
6543
6544 if (!fs_devices->seeding) {
6545 __btrfs_close_devices(fs_devices);
6546 free_fs_devices(fs_devices);
6547 fs_devices = ERR_PTR(-EINVAL);
6548 goto out;
6549 }
6550
6551 fs_devices->seed = fs_info->fs_devices->seed;
6552 fs_info->fs_devices->seed = fs_devices;
6553 out:
6554 return fs_devices;
6555 }
6556
6557 static int read_one_dev(struct btrfs_fs_info *fs_info,
6558 struct extent_buffer *leaf,
6559 struct btrfs_dev_item *dev_item)
6560 {
6561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562 struct btrfs_device *device;
6563 u64 devid;
6564 int ret;
6565 u8 fs_uuid[BTRFS_FSID_SIZE];
6566 u8 dev_uuid[BTRFS_UUID_SIZE];
6567
6568 devid = btrfs_device_id(leaf, dev_item);
6569 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6570 BTRFS_UUID_SIZE);
6571 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6572 BTRFS_FSID_SIZE);
6573
6574 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6575 fs_devices = open_seed_devices(fs_info, fs_uuid);
6576 if (IS_ERR(fs_devices))
6577 return PTR_ERR(fs_devices);
6578 }
6579
6580 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6581 if (!device) {
6582 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6583 btrfs_report_missing_device(fs_info, devid,
6584 dev_uuid, true);
6585 return -ENOENT;
6586 }
6587
6588 device = add_missing_dev(fs_devices, devid, dev_uuid);
6589 if (IS_ERR(device)) {
6590 btrfs_err(fs_info,
6591 "failed to add missing dev %llu: %ld",
6592 devid, PTR_ERR(device));
6593 return PTR_ERR(device);
6594 }
6595 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6596 } else {
6597 if (!device->bdev) {
6598 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6599 btrfs_report_missing_device(fs_info,
6600 devid, dev_uuid, true);
6601 return -ENOENT;
6602 }
6603 btrfs_report_missing_device(fs_info, devid,
6604 dev_uuid, false);
6605 }
6606
6607 if(!device->bdev && !device->missing) {
6608 /*
6609 * this happens when a device that was properly setup
6610 * in the device info lists suddenly goes bad.
6611 * device->bdev is NULL, and so we have to set
6612 * device->missing to one here
6613 */
6614 device->fs_devices->missing_devices++;
6615 device->missing = 1;
6616 }
6617
6618 /* Move the device to its own fs_devices */
6619 if (device->fs_devices != fs_devices) {
6620 ASSERT(device->missing);
6621
6622 list_move(&device->dev_list, &fs_devices->devices);
6623 device->fs_devices->num_devices--;
6624 fs_devices->num_devices++;
6625
6626 device->fs_devices->missing_devices--;
6627 fs_devices->missing_devices++;
6628
6629 device->fs_devices = fs_devices;
6630 }
6631 }
6632
6633 if (device->fs_devices != fs_info->fs_devices) {
6634 BUG_ON(device->writeable);
6635 if (device->generation !=
6636 btrfs_device_generation(leaf, dev_item))
6637 return -EINVAL;
6638 }
6639
6640 fill_device_from_item(leaf, dev_item, device);
6641 device->in_fs_metadata = 1;
6642 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6643 device->fs_devices->total_rw_bytes += device->total_bytes;
6644 atomic64_add(device->total_bytes - device->bytes_used,
6645 &fs_info->free_chunk_space);
6646 }
6647 ret = 0;
6648 return ret;
6649 }
6650
6651 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6652 {
6653 struct btrfs_root *root = fs_info->tree_root;
6654 struct btrfs_super_block *super_copy = fs_info->super_copy;
6655 struct extent_buffer *sb;
6656 struct btrfs_disk_key *disk_key;
6657 struct btrfs_chunk *chunk;
6658 u8 *array_ptr;
6659 unsigned long sb_array_offset;
6660 int ret = 0;
6661 u32 num_stripes;
6662 u32 array_size;
6663 u32 len = 0;
6664 u32 cur_offset;
6665 u64 type;
6666 struct btrfs_key key;
6667
6668 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6669 /*
6670 * This will create extent buffer of nodesize, superblock size is
6671 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6672 * overallocate but we can keep it as-is, only the first page is used.
6673 */
6674 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6675 if (IS_ERR(sb))
6676 return PTR_ERR(sb);
6677 set_extent_buffer_uptodate(sb);
6678 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6679 /*
6680 * The sb extent buffer is artificial and just used to read the system array.
6681 * set_extent_buffer_uptodate() call does not properly mark all it's
6682 * pages up-to-date when the page is larger: extent does not cover the
6683 * whole page and consequently check_page_uptodate does not find all
6684 * the page's extents up-to-date (the hole beyond sb),
6685 * write_extent_buffer then triggers a WARN_ON.
6686 *
6687 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6688 * but sb spans only this function. Add an explicit SetPageUptodate call
6689 * to silence the warning eg. on PowerPC 64.
6690 */
6691 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6692 SetPageUptodate(sb->pages[0]);
6693
6694 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6695 array_size = btrfs_super_sys_array_size(super_copy);
6696
6697 array_ptr = super_copy->sys_chunk_array;
6698 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6699 cur_offset = 0;
6700
6701 while (cur_offset < array_size) {
6702 disk_key = (struct btrfs_disk_key *)array_ptr;
6703 len = sizeof(*disk_key);
6704 if (cur_offset + len > array_size)
6705 goto out_short_read;
6706
6707 btrfs_disk_key_to_cpu(&key, disk_key);
6708
6709 array_ptr += len;
6710 sb_array_offset += len;
6711 cur_offset += len;
6712
6713 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6714 chunk = (struct btrfs_chunk *)sb_array_offset;
6715 /*
6716 * At least one btrfs_chunk with one stripe must be
6717 * present, exact stripe count check comes afterwards
6718 */
6719 len = btrfs_chunk_item_size(1);
6720 if (cur_offset + len > array_size)
6721 goto out_short_read;
6722
6723 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6724 if (!num_stripes) {
6725 btrfs_err(fs_info,
6726 "invalid number of stripes %u in sys_array at offset %u",
6727 num_stripes, cur_offset);
6728 ret = -EIO;
6729 break;
6730 }
6731
6732 type = btrfs_chunk_type(sb, chunk);
6733 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6734 btrfs_err(fs_info,
6735 "invalid chunk type %llu in sys_array at offset %u",
6736 type, cur_offset);
6737 ret = -EIO;
6738 break;
6739 }
6740
6741 len = btrfs_chunk_item_size(num_stripes);
6742 if (cur_offset + len > array_size)
6743 goto out_short_read;
6744
6745 ret = read_one_chunk(fs_info, &key, sb, chunk);
6746 if (ret)
6747 break;
6748 } else {
6749 btrfs_err(fs_info,
6750 "unexpected item type %u in sys_array at offset %u",
6751 (u32)key.type, cur_offset);
6752 ret = -EIO;
6753 break;
6754 }
6755 array_ptr += len;
6756 sb_array_offset += len;
6757 cur_offset += len;
6758 }
6759 clear_extent_buffer_uptodate(sb);
6760 free_extent_buffer_stale(sb);
6761 return ret;
6762
6763 out_short_read:
6764 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6765 len, cur_offset);
6766 clear_extent_buffer_uptodate(sb);
6767 free_extent_buffer_stale(sb);
6768 return -EIO;
6769 }
6770
6771 /*
6772 * Check if all chunks in the fs are OK for read-write degraded mount
6773 *
6774 * Return true if all chunks meet the minimal RW mount requirements.
6775 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6776 */
6777 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6778 {
6779 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6780 struct extent_map *em;
6781 u64 next_start = 0;
6782 bool ret = true;
6783
6784 read_lock(&map_tree->map_tree.lock);
6785 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6786 read_unlock(&map_tree->map_tree.lock);
6787 /* No chunk at all? Return false anyway */
6788 if (!em) {
6789 ret = false;
6790 goto out;
6791 }
6792 while (em) {
6793 struct map_lookup *map;
6794 int missing = 0;
6795 int max_tolerated;
6796 int i;
6797
6798 map = em->map_lookup;
6799 max_tolerated =
6800 btrfs_get_num_tolerated_disk_barrier_failures(
6801 map->type);
6802 for (i = 0; i < map->num_stripes; i++) {
6803 struct btrfs_device *dev = map->stripes[i].dev;
6804
6805 if (!dev || !dev->bdev || dev->missing ||
6806 dev->last_flush_error)
6807 missing++;
6808 }
6809 if (missing > max_tolerated) {
6810 btrfs_warn(fs_info,
6811 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6812 em->start, missing, max_tolerated);
6813 free_extent_map(em);
6814 ret = false;
6815 goto out;
6816 }
6817 next_start = extent_map_end(em);
6818 free_extent_map(em);
6819
6820 read_lock(&map_tree->map_tree.lock);
6821 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6822 (u64)(-1) - next_start);
6823 read_unlock(&map_tree->map_tree.lock);
6824 }
6825 out:
6826 return ret;
6827 }
6828
6829 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6830 {
6831 struct btrfs_root *root = fs_info->chunk_root;
6832 struct btrfs_path *path;
6833 struct extent_buffer *leaf;
6834 struct btrfs_key key;
6835 struct btrfs_key found_key;
6836 int ret;
6837 int slot;
6838 u64 total_dev = 0;
6839
6840 path = btrfs_alloc_path();
6841 if (!path)
6842 return -ENOMEM;
6843
6844 mutex_lock(&uuid_mutex);
6845 mutex_lock(&fs_info->chunk_mutex);
6846
6847 /*
6848 * Read all device items, and then all the chunk items. All
6849 * device items are found before any chunk item (their object id
6850 * is smaller than the lowest possible object id for a chunk
6851 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6852 */
6853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6854 key.offset = 0;
6855 key.type = 0;
6856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6857 if (ret < 0)
6858 goto error;
6859 while (1) {
6860 leaf = path->nodes[0];
6861 slot = path->slots[0];
6862 if (slot >= btrfs_header_nritems(leaf)) {
6863 ret = btrfs_next_leaf(root, path);
6864 if (ret == 0)
6865 continue;
6866 if (ret < 0)
6867 goto error;
6868 break;
6869 }
6870 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6871 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6872 struct btrfs_dev_item *dev_item;
6873 dev_item = btrfs_item_ptr(leaf, slot,
6874 struct btrfs_dev_item);
6875 ret = read_one_dev(fs_info, leaf, dev_item);
6876 if (ret)
6877 goto error;
6878 total_dev++;
6879 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6880 struct btrfs_chunk *chunk;
6881 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6882 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6883 if (ret)
6884 goto error;
6885 }
6886 path->slots[0]++;
6887 }
6888
6889 /*
6890 * After loading chunk tree, we've got all device information,
6891 * do another round of validation checks.
6892 */
6893 if (total_dev != fs_info->fs_devices->total_devices) {
6894 btrfs_err(fs_info,
6895 "super_num_devices %llu mismatch with num_devices %llu found here",
6896 btrfs_super_num_devices(fs_info->super_copy),
6897 total_dev);
6898 ret = -EINVAL;
6899 goto error;
6900 }
6901 if (btrfs_super_total_bytes(fs_info->super_copy) <
6902 fs_info->fs_devices->total_rw_bytes) {
6903 btrfs_err(fs_info,
6904 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6905 btrfs_super_total_bytes(fs_info->super_copy),
6906 fs_info->fs_devices->total_rw_bytes);
6907 ret = -EINVAL;
6908 goto error;
6909 }
6910 ret = 0;
6911 error:
6912 mutex_unlock(&fs_info->chunk_mutex);
6913 mutex_unlock(&uuid_mutex);
6914
6915 btrfs_free_path(path);
6916 return ret;
6917 }
6918
6919 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6920 {
6921 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6922 struct btrfs_device *device;
6923
6924 while (fs_devices) {
6925 mutex_lock(&fs_devices->device_list_mutex);
6926 list_for_each_entry(device, &fs_devices->devices, dev_list)
6927 device->fs_info = fs_info;
6928 mutex_unlock(&fs_devices->device_list_mutex);
6929
6930 fs_devices = fs_devices->seed;
6931 }
6932 }
6933
6934 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6935 {
6936 int i;
6937
6938 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6939 btrfs_dev_stat_reset(dev, i);
6940 }
6941
6942 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6943 {
6944 struct btrfs_key key;
6945 struct btrfs_key found_key;
6946 struct btrfs_root *dev_root = fs_info->dev_root;
6947 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948 struct extent_buffer *eb;
6949 int slot;
6950 int ret = 0;
6951 struct btrfs_device *device;
6952 struct btrfs_path *path = NULL;
6953 int i;
6954
6955 path = btrfs_alloc_path();
6956 if (!path) {
6957 ret = -ENOMEM;
6958 goto out;
6959 }
6960
6961 mutex_lock(&fs_devices->device_list_mutex);
6962 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6963 int item_size;
6964 struct btrfs_dev_stats_item *ptr;
6965
6966 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6967 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6968 key.offset = device->devid;
6969 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6970 if (ret) {
6971 __btrfs_reset_dev_stats(device);
6972 device->dev_stats_valid = 1;
6973 btrfs_release_path(path);
6974 continue;
6975 }
6976 slot = path->slots[0];
6977 eb = path->nodes[0];
6978 btrfs_item_key_to_cpu(eb, &found_key, slot);
6979 item_size = btrfs_item_size_nr(eb, slot);
6980
6981 ptr = btrfs_item_ptr(eb, slot,
6982 struct btrfs_dev_stats_item);
6983
6984 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6985 if (item_size >= (1 + i) * sizeof(__le64))
6986 btrfs_dev_stat_set(device, i,
6987 btrfs_dev_stats_value(eb, ptr, i));
6988 else
6989 btrfs_dev_stat_reset(device, i);
6990 }
6991
6992 device->dev_stats_valid = 1;
6993 btrfs_dev_stat_print_on_load(device);
6994 btrfs_release_path(path);
6995 }
6996 mutex_unlock(&fs_devices->device_list_mutex);
6997
6998 out:
6999 btrfs_free_path(path);
7000 return ret < 0 ? ret : 0;
7001 }
7002
7003 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7004 struct btrfs_fs_info *fs_info,
7005 struct btrfs_device *device)
7006 {
7007 struct btrfs_root *dev_root = fs_info->dev_root;
7008 struct btrfs_path *path;
7009 struct btrfs_key key;
7010 struct extent_buffer *eb;
7011 struct btrfs_dev_stats_item *ptr;
7012 int ret;
7013 int i;
7014
7015 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7016 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7017 key.offset = device->devid;
7018
7019 path = btrfs_alloc_path();
7020 if (!path)
7021 return -ENOMEM;
7022 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7023 if (ret < 0) {
7024 btrfs_warn_in_rcu(fs_info,
7025 "error %d while searching for dev_stats item for device %s",
7026 ret, rcu_str_deref(device->name));
7027 goto out;
7028 }
7029
7030 if (ret == 0 &&
7031 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7032 /* need to delete old one and insert a new one */
7033 ret = btrfs_del_item(trans, dev_root, path);
7034 if (ret != 0) {
7035 btrfs_warn_in_rcu(fs_info,
7036 "delete too small dev_stats item for device %s failed %d",
7037 rcu_str_deref(device->name), ret);
7038 goto out;
7039 }
7040 ret = 1;
7041 }
7042
7043 if (ret == 1) {
7044 /* need to insert a new item */
7045 btrfs_release_path(path);
7046 ret = btrfs_insert_empty_item(trans, dev_root, path,
7047 &key, sizeof(*ptr));
7048 if (ret < 0) {
7049 btrfs_warn_in_rcu(fs_info,
7050 "insert dev_stats item for device %s failed %d",
7051 rcu_str_deref(device->name), ret);
7052 goto out;
7053 }
7054 }
7055
7056 eb = path->nodes[0];
7057 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7058 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7059 btrfs_set_dev_stats_value(eb, ptr, i,
7060 btrfs_dev_stat_read(device, i));
7061 btrfs_mark_buffer_dirty(eb);
7062
7063 out:
7064 btrfs_free_path(path);
7065 return ret;
7066 }
7067
7068 /*
7069 * called from commit_transaction. Writes all changed device stats to disk.
7070 */
7071 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7072 struct btrfs_fs_info *fs_info)
7073 {
7074 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7075 struct btrfs_device *device;
7076 int stats_cnt;
7077 int ret = 0;
7078
7079 mutex_lock(&fs_devices->device_list_mutex);
7080 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7081 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7082 continue;
7083
7084 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7085 ret = update_dev_stat_item(trans, fs_info, device);
7086 if (!ret)
7087 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7088 }
7089 mutex_unlock(&fs_devices->device_list_mutex);
7090
7091 return ret;
7092 }
7093
7094 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7095 {
7096 btrfs_dev_stat_inc(dev, index);
7097 btrfs_dev_stat_print_on_error(dev);
7098 }
7099
7100 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7101 {
7102 if (!dev->dev_stats_valid)
7103 return;
7104 btrfs_err_rl_in_rcu(dev->fs_info,
7105 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7106 rcu_str_deref(dev->name),
7107 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7108 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7109 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7110 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7111 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7112 }
7113
7114 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7115 {
7116 int i;
7117
7118 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7119 if (btrfs_dev_stat_read(dev, i) != 0)
7120 break;
7121 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7122 return; /* all values == 0, suppress message */
7123
7124 btrfs_info_in_rcu(dev->fs_info,
7125 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7126 rcu_str_deref(dev->name),
7127 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7128 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7129 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7130 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7131 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7132 }
7133
7134 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7135 struct btrfs_ioctl_get_dev_stats *stats)
7136 {
7137 struct btrfs_device *dev;
7138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7139 int i;
7140
7141 mutex_lock(&fs_devices->device_list_mutex);
7142 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7143 mutex_unlock(&fs_devices->device_list_mutex);
7144
7145 if (!dev) {
7146 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7147 return -ENODEV;
7148 } else if (!dev->dev_stats_valid) {
7149 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7150 return -ENODEV;
7151 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7152 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7153 if (stats->nr_items > i)
7154 stats->values[i] =
7155 btrfs_dev_stat_read_and_reset(dev, i);
7156 else
7157 btrfs_dev_stat_reset(dev, i);
7158 }
7159 } else {
7160 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7161 if (stats->nr_items > i)
7162 stats->values[i] = btrfs_dev_stat_read(dev, i);
7163 }
7164 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7165 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7166 return 0;
7167 }
7168
7169 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7170 {
7171 struct buffer_head *bh;
7172 struct btrfs_super_block *disk_super;
7173 int copy_num;
7174
7175 if (!bdev)
7176 return;
7177
7178 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7179 copy_num++) {
7180
7181 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7182 continue;
7183
7184 disk_super = (struct btrfs_super_block *)bh->b_data;
7185
7186 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7187 set_buffer_dirty(bh);
7188 sync_dirty_buffer(bh);
7189 brelse(bh);
7190 }
7191
7192 /* Notify udev that device has changed */
7193 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7194
7195 /* Update ctime/mtime for device path for libblkid */
7196 update_dev_time(device_path);
7197 }
7198
7199 /*
7200 * Update the size of all devices, which is used for writing out the
7201 * super blocks.
7202 */
7203 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7204 {
7205 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7206 struct btrfs_device *curr, *next;
7207
7208 if (list_empty(&fs_devices->resized_devices))
7209 return;
7210
7211 mutex_lock(&fs_devices->device_list_mutex);
7212 mutex_lock(&fs_info->chunk_mutex);
7213 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7214 resized_list) {
7215 list_del_init(&curr->resized_list);
7216 curr->commit_total_bytes = curr->disk_total_bytes;
7217 }
7218 mutex_unlock(&fs_info->chunk_mutex);
7219 mutex_unlock(&fs_devices->device_list_mutex);
7220 }
7221
7222 /* Must be invoked during the transaction commit */
7223 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7224 struct btrfs_transaction *transaction)
7225 {
7226 struct extent_map *em;
7227 struct map_lookup *map;
7228 struct btrfs_device *dev;
7229 int i;
7230
7231 if (list_empty(&transaction->pending_chunks))
7232 return;
7233
7234 /* In order to kick the device replace finish process */
7235 mutex_lock(&fs_info->chunk_mutex);
7236 list_for_each_entry(em, &transaction->pending_chunks, list) {
7237 map = em->map_lookup;
7238
7239 for (i = 0; i < map->num_stripes; i++) {
7240 dev = map->stripes[i].dev;
7241 dev->commit_bytes_used = dev->bytes_used;
7242 }
7243 }
7244 mutex_unlock(&fs_info->chunk_mutex);
7245 }
7246
7247 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7248 {
7249 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7250 while (fs_devices) {
7251 fs_devices->fs_info = fs_info;
7252 fs_devices = fs_devices->seed;
7253 }
7254 }
7255
7256 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7257 {
7258 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7259 while (fs_devices) {
7260 fs_devices->fs_info = NULL;
7261 fs_devices = fs_devices->seed;
7262 }
7263 }