]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/volumes.c
Merge branch 'for-chris-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanan...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128 static void btrfs_close_one_device(struct btrfs_device *device);
129
130 DEFINE_MUTEX(uuid_mutex);
131 static LIST_HEAD(fs_uuids);
132 struct list_head *btrfs_get_fs_uuids(void)
133 {
134 return &fs_uuids;
135 }
136
137 static struct btrfs_fs_devices *__alloc_fs_devices(void)
138 {
139 struct btrfs_fs_devices *fs_devs;
140
141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
148 INIT_LIST_HEAD(&fs_devs->resized_devices);
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153 }
154
155 /**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165 {
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178 }
179
180 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181 {
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
188 rcu_string_free(device->name);
189 kfree(device);
190 }
191 kfree(fs_devices);
192 }
193
194 static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196 {
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205 }
206
207 void btrfs_cleanup_fs_uuids(void)
208 {
209 struct btrfs_fs_devices *fs_devices;
210
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
215 free_fs_devices(fs_devices);
216 }
217 }
218
219 static struct btrfs_device *__alloc_device(void)
220 {
221 struct btrfs_device *dev;
222
223 dev = kzalloc(sizeof(*dev), GFP_NOFS);
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
229 INIT_LIST_HEAD(&dev->resized_list);
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
235 atomic_set(&dev->dev_stats_ccnt, 0);
236 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
237 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238
239 return dev;
240 }
241
242 static noinline struct btrfs_device *__find_device(struct list_head *head,
243 u64 devid, u8 *uuid)
244 {
245 struct btrfs_device *dev;
246
247 list_for_each_entry(dev, head, dev_list) {
248 if (dev->devid == devid &&
249 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
250 return dev;
251 }
252 }
253 return NULL;
254 }
255
256 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
257 {
258 struct btrfs_fs_devices *fs_devices;
259
260 list_for_each_entry(fs_devices, &fs_uuids, list) {
261 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
262 return fs_devices;
263 }
264 return NULL;
265 }
266
267 static int
268 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
269 int flush, struct block_device **bdev,
270 struct buffer_head **bh)
271 {
272 int ret;
273
274 *bdev = blkdev_get_by_path(device_path, flags, holder);
275
276 if (IS_ERR(*bdev)) {
277 ret = PTR_ERR(*bdev);
278 goto error;
279 }
280
281 if (flush)
282 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
283 ret = set_blocksize(*bdev, 4096);
284 if (ret) {
285 blkdev_put(*bdev, flags);
286 goto error;
287 }
288 invalidate_bdev(*bdev);
289 *bh = btrfs_read_dev_super(*bdev);
290 if (IS_ERR(*bh)) {
291 ret = PTR_ERR(*bh);
292 blkdev_put(*bdev, flags);
293 goto error;
294 }
295
296 return 0;
297
298 error:
299 *bdev = NULL;
300 *bh = NULL;
301 return ret;
302 }
303
304 static void requeue_list(struct btrfs_pending_bios *pending_bios,
305 struct bio *head, struct bio *tail)
306 {
307
308 struct bio *old_head;
309
310 old_head = pending_bios->head;
311 pending_bios->head = head;
312 if (pending_bios->tail)
313 tail->bi_next = old_head;
314 else
315 pending_bios->tail = tail;
316 }
317
318 /*
319 * we try to collect pending bios for a device so we don't get a large
320 * number of procs sending bios down to the same device. This greatly
321 * improves the schedulers ability to collect and merge the bios.
322 *
323 * But, it also turns into a long list of bios to process and that is sure
324 * to eventually make the worker thread block. The solution here is to
325 * make some progress and then put this work struct back at the end of
326 * the list if the block device is congested. This way, multiple devices
327 * can make progress from a single worker thread.
328 */
329 static noinline void run_scheduled_bios(struct btrfs_device *device)
330 {
331 struct bio *pending;
332 struct backing_dev_info *bdi;
333 struct btrfs_fs_info *fs_info;
334 struct btrfs_pending_bios *pending_bios;
335 struct bio *tail;
336 struct bio *cur;
337 int again = 0;
338 unsigned long num_run;
339 unsigned long batch_run = 0;
340 unsigned long limit;
341 unsigned long last_waited = 0;
342 int force_reg = 0;
343 int sync_pending = 0;
344 struct blk_plug plug;
345
346 /*
347 * this function runs all the bios we've collected for
348 * a particular device. We don't want to wander off to
349 * another device without first sending all of these down.
350 * So, setup a plug here and finish it off before we return
351 */
352 blk_start_plug(&plug);
353
354 bdi = blk_get_backing_dev_info(device->bdev);
355 fs_info = device->dev_root->fs_info;
356 limit = btrfs_async_submit_limit(fs_info);
357 limit = limit * 2 / 3;
358
359 loop:
360 spin_lock(&device->io_lock);
361
362 loop_lock:
363 num_run = 0;
364
365 /* take all the bios off the list at once and process them
366 * later on (without the lock held). But, remember the
367 * tail and other pointers so the bios can be properly reinserted
368 * into the list if we hit congestion
369 */
370 if (!force_reg && device->pending_sync_bios.head) {
371 pending_bios = &device->pending_sync_bios;
372 force_reg = 1;
373 } else {
374 pending_bios = &device->pending_bios;
375 force_reg = 0;
376 }
377
378 pending = pending_bios->head;
379 tail = pending_bios->tail;
380 WARN_ON(pending && !tail);
381
382 /*
383 * if pending was null this time around, no bios need processing
384 * at all and we can stop. Otherwise it'll loop back up again
385 * and do an additional check so no bios are missed.
386 *
387 * device->running_pending is used to synchronize with the
388 * schedule_bio code.
389 */
390 if (device->pending_sync_bios.head == NULL &&
391 device->pending_bios.head == NULL) {
392 again = 0;
393 device->running_pending = 0;
394 } else {
395 again = 1;
396 device->running_pending = 1;
397 }
398
399 pending_bios->head = NULL;
400 pending_bios->tail = NULL;
401
402 spin_unlock(&device->io_lock);
403
404 while (pending) {
405
406 rmb();
407 /* we want to work on both lists, but do more bios on the
408 * sync list than the regular list
409 */
410 if ((num_run > 32 &&
411 pending_bios != &device->pending_sync_bios &&
412 device->pending_sync_bios.head) ||
413 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
414 device->pending_bios.head)) {
415 spin_lock(&device->io_lock);
416 requeue_list(pending_bios, pending, tail);
417 goto loop_lock;
418 }
419
420 cur = pending;
421 pending = pending->bi_next;
422 cur->bi_next = NULL;
423
424 /*
425 * atomic_dec_return implies a barrier for waitqueue_active
426 */
427 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
428 waitqueue_active(&fs_info->async_submit_wait))
429 wake_up(&fs_info->async_submit_wait);
430
431 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
432
433 /*
434 * if we're doing the sync list, record that our
435 * plug has some sync requests on it
436 *
437 * If we're doing the regular list and there are
438 * sync requests sitting around, unplug before
439 * we add more
440 */
441 if (pending_bios == &device->pending_sync_bios) {
442 sync_pending = 1;
443 } else if (sync_pending) {
444 blk_finish_plug(&plug);
445 blk_start_plug(&plug);
446 sync_pending = 0;
447 }
448
449 btrfsic_submit_bio(cur->bi_rw, cur);
450 num_run++;
451 batch_run++;
452
453 cond_resched();
454
455 /*
456 * we made progress, there is more work to do and the bdi
457 * is now congested. Back off and let other work structs
458 * run instead
459 */
460 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
461 fs_info->fs_devices->open_devices > 1) {
462 struct io_context *ioc;
463
464 ioc = current->io_context;
465
466 /*
467 * the main goal here is that we don't want to
468 * block if we're going to be able to submit
469 * more requests without blocking.
470 *
471 * This code does two great things, it pokes into
472 * the elevator code from a filesystem _and_
473 * it makes assumptions about how batching works.
474 */
475 if (ioc && ioc->nr_batch_requests > 0 &&
476 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
477 (last_waited == 0 ||
478 ioc->last_waited == last_waited)) {
479 /*
480 * we want to go through our batch of
481 * requests and stop. So, we copy out
482 * the ioc->last_waited time and test
483 * against it before looping
484 */
485 last_waited = ioc->last_waited;
486 cond_resched();
487 continue;
488 }
489 spin_lock(&device->io_lock);
490 requeue_list(pending_bios, pending, tail);
491 device->running_pending = 1;
492
493 spin_unlock(&device->io_lock);
494 btrfs_queue_work(fs_info->submit_workers,
495 &device->work);
496 goto done;
497 }
498 /* unplug every 64 requests just for good measure */
499 if (batch_run % 64 == 0) {
500 blk_finish_plug(&plug);
501 blk_start_plug(&plug);
502 sync_pending = 0;
503 }
504 }
505
506 cond_resched();
507 if (again)
508 goto loop;
509
510 spin_lock(&device->io_lock);
511 if (device->pending_bios.head || device->pending_sync_bios.head)
512 goto loop_lock;
513 spin_unlock(&device->io_lock);
514
515 done:
516 blk_finish_plug(&plug);
517 }
518
519 static void pending_bios_fn(struct btrfs_work *work)
520 {
521 struct btrfs_device *device;
522
523 device = container_of(work, struct btrfs_device, work);
524 run_scheduled_bios(device);
525 }
526
527
528 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
529 {
530 struct btrfs_fs_devices *fs_devs;
531 struct btrfs_device *dev;
532
533 if (!cur_dev->name)
534 return;
535
536 list_for_each_entry(fs_devs, &fs_uuids, list) {
537 int del = 1;
538
539 if (fs_devs->opened)
540 continue;
541 if (fs_devs->seeding)
542 continue;
543
544 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
545
546 if (dev == cur_dev)
547 continue;
548 if (!dev->name)
549 continue;
550
551 /*
552 * Todo: This won't be enough. What if the same device
553 * comes back (with new uuid and) with its mapper path?
554 * But for now, this does help as mostly an admin will
555 * either use mapper or non mapper path throughout.
556 */
557 rcu_read_lock();
558 del = strcmp(rcu_str_deref(dev->name),
559 rcu_str_deref(cur_dev->name));
560 rcu_read_unlock();
561 if (!del)
562 break;
563 }
564
565 if (!del) {
566 /* delete the stale device */
567 if (fs_devs->num_devices == 1) {
568 btrfs_sysfs_remove_fsid(fs_devs);
569 list_del(&fs_devs->list);
570 free_fs_devices(fs_devs);
571 } else {
572 fs_devs->num_devices--;
573 list_del(&dev->dev_list);
574 rcu_string_free(dev->name);
575 kfree(dev);
576 }
577 break;
578 }
579 }
580 }
581
582 /*
583 * Add new device to list of registered devices
584 *
585 * Returns:
586 * 1 - first time device is seen
587 * 0 - device already known
588 * < 0 - error
589 */
590 static noinline int device_list_add(const char *path,
591 struct btrfs_super_block *disk_super,
592 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
593 {
594 struct btrfs_device *device;
595 struct btrfs_fs_devices *fs_devices;
596 struct rcu_string *name;
597 int ret = 0;
598 u64 found_transid = btrfs_super_generation(disk_super);
599
600 fs_devices = find_fsid(disk_super->fsid);
601 if (!fs_devices) {
602 fs_devices = alloc_fs_devices(disk_super->fsid);
603 if (IS_ERR(fs_devices))
604 return PTR_ERR(fs_devices);
605
606 list_add(&fs_devices->list, &fs_uuids);
607
608 device = NULL;
609 } else {
610 device = __find_device(&fs_devices->devices, devid,
611 disk_super->dev_item.uuid);
612 }
613
614 if (!device) {
615 if (fs_devices->opened)
616 return -EBUSY;
617
618 device = btrfs_alloc_device(NULL, &devid,
619 disk_super->dev_item.uuid);
620 if (IS_ERR(device)) {
621 /* we can safely leave the fs_devices entry around */
622 return PTR_ERR(device);
623 }
624
625 name = rcu_string_strdup(path, GFP_NOFS);
626 if (!name) {
627 kfree(device);
628 return -ENOMEM;
629 }
630 rcu_assign_pointer(device->name, name);
631
632 mutex_lock(&fs_devices->device_list_mutex);
633 list_add_rcu(&device->dev_list, &fs_devices->devices);
634 fs_devices->num_devices++;
635 mutex_unlock(&fs_devices->device_list_mutex);
636
637 ret = 1;
638 device->fs_devices = fs_devices;
639 } else if (!device->name || strcmp(device->name->str, path)) {
640 /*
641 * When FS is already mounted.
642 * 1. If you are here and if the device->name is NULL that
643 * means this device was missing at time of FS mount.
644 * 2. If you are here and if the device->name is different
645 * from 'path' that means either
646 * a. The same device disappeared and reappeared with
647 * different name. or
648 * b. The missing-disk-which-was-replaced, has
649 * reappeared now.
650 *
651 * We must allow 1 and 2a above. But 2b would be a spurious
652 * and unintentional.
653 *
654 * Further in case of 1 and 2a above, the disk at 'path'
655 * would have missed some transaction when it was away and
656 * in case of 2a the stale bdev has to be updated as well.
657 * 2b must not be allowed at all time.
658 */
659
660 /*
661 * For now, we do allow update to btrfs_fs_device through the
662 * btrfs dev scan cli after FS has been mounted. We're still
663 * tracking a problem where systems fail mount by subvolume id
664 * when we reject replacement on a mounted FS.
665 */
666 if (!fs_devices->opened && found_transid < device->generation) {
667 /*
668 * That is if the FS is _not_ mounted and if you
669 * are here, that means there is more than one
670 * disk with same uuid and devid.We keep the one
671 * with larger generation number or the last-in if
672 * generation are equal.
673 */
674 return -EEXIST;
675 }
676
677 name = rcu_string_strdup(path, GFP_NOFS);
678 if (!name)
679 return -ENOMEM;
680 rcu_string_free(device->name);
681 rcu_assign_pointer(device->name, name);
682 if (device->missing) {
683 fs_devices->missing_devices--;
684 device->missing = 0;
685 }
686 }
687
688 /*
689 * Unmount does not free the btrfs_device struct but would zero
690 * generation along with most of the other members. So just update
691 * it back. We need it to pick the disk with largest generation
692 * (as above).
693 */
694 if (!fs_devices->opened)
695 device->generation = found_transid;
696
697 /*
698 * if there is new btrfs on an already registered device,
699 * then remove the stale device entry.
700 */
701 btrfs_free_stale_device(device);
702
703 *fs_devices_ret = fs_devices;
704
705 return ret;
706 }
707
708 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
709 {
710 struct btrfs_fs_devices *fs_devices;
711 struct btrfs_device *device;
712 struct btrfs_device *orig_dev;
713
714 fs_devices = alloc_fs_devices(orig->fsid);
715 if (IS_ERR(fs_devices))
716 return fs_devices;
717
718 mutex_lock(&orig->device_list_mutex);
719 fs_devices->total_devices = orig->total_devices;
720
721 /* We have held the volume lock, it is safe to get the devices. */
722 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
723 struct rcu_string *name;
724
725 device = btrfs_alloc_device(NULL, &orig_dev->devid,
726 orig_dev->uuid);
727 if (IS_ERR(device))
728 goto error;
729
730 /*
731 * This is ok to do without rcu read locked because we hold the
732 * uuid mutex so nothing we touch in here is going to disappear.
733 */
734 if (orig_dev->name) {
735 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
736 if (!name) {
737 kfree(device);
738 goto error;
739 }
740 rcu_assign_pointer(device->name, name);
741 }
742
743 list_add(&device->dev_list, &fs_devices->devices);
744 device->fs_devices = fs_devices;
745 fs_devices->num_devices++;
746 }
747 mutex_unlock(&orig->device_list_mutex);
748 return fs_devices;
749 error:
750 mutex_unlock(&orig->device_list_mutex);
751 free_fs_devices(fs_devices);
752 return ERR_PTR(-ENOMEM);
753 }
754
755 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
756 {
757 struct btrfs_device *device, *next;
758 struct btrfs_device *latest_dev = NULL;
759
760 mutex_lock(&uuid_mutex);
761 again:
762 /* This is the initialized path, it is safe to release the devices. */
763 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
764 if (device->in_fs_metadata) {
765 if (!device->is_tgtdev_for_dev_replace &&
766 (!latest_dev ||
767 device->generation > latest_dev->generation)) {
768 latest_dev = device;
769 }
770 continue;
771 }
772
773 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
774 /*
775 * In the first step, keep the device which has
776 * the correct fsid and the devid that is used
777 * for the dev_replace procedure.
778 * In the second step, the dev_replace state is
779 * read from the device tree and it is known
780 * whether the procedure is really active or
781 * not, which means whether this device is
782 * used or whether it should be removed.
783 */
784 if (step == 0 || device->is_tgtdev_for_dev_replace) {
785 continue;
786 }
787 }
788 if (device->bdev) {
789 blkdev_put(device->bdev, device->mode);
790 device->bdev = NULL;
791 fs_devices->open_devices--;
792 }
793 if (device->writeable) {
794 list_del_init(&device->dev_alloc_list);
795 device->writeable = 0;
796 if (!device->is_tgtdev_for_dev_replace)
797 fs_devices->rw_devices--;
798 }
799 list_del_init(&device->dev_list);
800 fs_devices->num_devices--;
801 rcu_string_free(device->name);
802 kfree(device);
803 }
804
805 if (fs_devices->seed) {
806 fs_devices = fs_devices->seed;
807 goto again;
808 }
809
810 fs_devices->latest_bdev = latest_dev->bdev;
811
812 mutex_unlock(&uuid_mutex);
813 }
814
815 static void __free_device(struct work_struct *work)
816 {
817 struct btrfs_device *device;
818
819 device = container_of(work, struct btrfs_device, rcu_work);
820
821 if (device->bdev)
822 blkdev_put(device->bdev, device->mode);
823
824 rcu_string_free(device->name);
825 kfree(device);
826 }
827
828 static void free_device(struct rcu_head *head)
829 {
830 struct btrfs_device *device;
831
832 device = container_of(head, struct btrfs_device, rcu);
833
834 INIT_WORK(&device->rcu_work, __free_device);
835 schedule_work(&device->rcu_work);
836 }
837
838 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
839 {
840 struct btrfs_device *device, *tmp;
841
842 if (--fs_devices->opened > 0)
843 return 0;
844
845 mutex_lock(&fs_devices->device_list_mutex);
846 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
847 btrfs_close_one_device(device);
848 }
849 mutex_unlock(&fs_devices->device_list_mutex);
850
851 WARN_ON(fs_devices->open_devices);
852 WARN_ON(fs_devices->rw_devices);
853 fs_devices->opened = 0;
854 fs_devices->seeding = 0;
855
856 return 0;
857 }
858
859 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
860 {
861 struct btrfs_fs_devices *seed_devices = NULL;
862 int ret;
863
864 mutex_lock(&uuid_mutex);
865 ret = __btrfs_close_devices(fs_devices);
866 if (!fs_devices->opened) {
867 seed_devices = fs_devices->seed;
868 fs_devices->seed = NULL;
869 }
870 mutex_unlock(&uuid_mutex);
871
872 while (seed_devices) {
873 fs_devices = seed_devices;
874 seed_devices = fs_devices->seed;
875 __btrfs_close_devices(fs_devices);
876 free_fs_devices(fs_devices);
877 }
878 /*
879 * Wait for rcu kworkers under __btrfs_close_devices
880 * to finish all blkdev_puts so device is really
881 * free when umount is done.
882 */
883 rcu_barrier();
884 return ret;
885 }
886
887 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
888 fmode_t flags, void *holder)
889 {
890 struct request_queue *q;
891 struct block_device *bdev;
892 struct list_head *head = &fs_devices->devices;
893 struct btrfs_device *device;
894 struct btrfs_device *latest_dev = NULL;
895 struct buffer_head *bh;
896 struct btrfs_super_block *disk_super;
897 u64 devid;
898 int seeding = 1;
899 int ret = 0;
900
901 flags |= FMODE_EXCL;
902
903 list_for_each_entry(device, head, dev_list) {
904 if (device->bdev)
905 continue;
906 if (!device->name)
907 continue;
908
909 /* Just open everything we can; ignore failures here */
910 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
911 &bdev, &bh))
912 continue;
913
914 disk_super = (struct btrfs_super_block *)bh->b_data;
915 devid = btrfs_stack_device_id(&disk_super->dev_item);
916 if (devid != device->devid)
917 goto error_brelse;
918
919 if (memcmp(device->uuid, disk_super->dev_item.uuid,
920 BTRFS_UUID_SIZE))
921 goto error_brelse;
922
923 device->generation = btrfs_super_generation(disk_super);
924 if (!latest_dev ||
925 device->generation > latest_dev->generation)
926 latest_dev = device;
927
928 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
929 device->writeable = 0;
930 } else {
931 device->writeable = !bdev_read_only(bdev);
932 seeding = 0;
933 }
934
935 q = bdev_get_queue(bdev);
936 if (blk_queue_discard(q))
937 device->can_discard = 1;
938
939 device->bdev = bdev;
940 device->in_fs_metadata = 0;
941 device->mode = flags;
942
943 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
944 fs_devices->rotating = 1;
945
946 fs_devices->open_devices++;
947 if (device->writeable &&
948 device->devid != BTRFS_DEV_REPLACE_DEVID) {
949 fs_devices->rw_devices++;
950 list_add(&device->dev_alloc_list,
951 &fs_devices->alloc_list);
952 }
953 brelse(bh);
954 continue;
955
956 error_brelse:
957 brelse(bh);
958 blkdev_put(bdev, flags);
959 continue;
960 }
961 if (fs_devices->open_devices == 0) {
962 ret = -EINVAL;
963 goto out;
964 }
965 fs_devices->seeding = seeding;
966 fs_devices->opened = 1;
967 fs_devices->latest_bdev = latest_dev->bdev;
968 fs_devices->total_rw_bytes = 0;
969 out:
970 return ret;
971 }
972
973 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
974 fmode_t flags, void *holder)
975 {
976 int ret;
977
978 mutex_lock(&uuid_mutex);
979 if (fs_devices->opened) {
980 fs_devices->opened++;
981 ret = 0;
982 } else {
983 ret = __btrfs_open_devices(fs_devices, flags, holder);
984 }
985 mutex_unlock(&uuid_mutex);
986 return ret;
987 }
988
989 /*
990 * Look for a btrfs signature on a device. This may be called out of the mount path
991 * and we are not allowed to call set_blocksize during the scan. The superblock
992 * is read via pagecache
993 */
994 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
995 struct btrfs_fs_devices **fs_devices_ret)
996 {
997 struct btrfs_super_block *disk_super;
998 struct block_device *bdev;
999 struct page *page;
1000 void *p;
1001 int ret = -EINVAL;
1002 u64 devid;
1003 u64 transid;
1004 u64 total_devices;
1005 u64 bytenr;
1006 pgoff_t index;
1007
1008 /*
1009 * we would like to check all the supers, but that would make
1010 * a btrfs mount succeed after a mkfs from a different FS.
1011 * So, we need to add a special mount option to scan for
1012 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1013 */
1014 bytenr = btrfs_sb_offset(0);
1015 flags |= FMODE_EXCL;
1016 mutex_lock(&uuid_mutex);
1017
1018 bdev = blkdev_get_by_path(path, flags, holder);
1019
1020 if (IS_ERR(bdev)) {
1021 ret = PTR_ERR(bdev);
1022 goto error;
1023 }
1024
1025 /* make sure our super fits in the device */
1026 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1027 goto error_bdev_put;
1028
1029 /* make sure our super fits in the page */
1030 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1031 goto error_bdev_put;
1032
1033 /* make sure our super doesn't straddle pages on disk */
1034 index = bytenr >> PAGE_CACHE_SHIFT;
1035 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1036 goto error_bdev_put;
1037
1038 /* pull in the page with our super */
1039 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1040 index, GFP_NOFS);
1041
1042 if (IS_ERR_OR_NULL(page))
1043 goto error_bdev_put;
1044
1045 p = kmap(page);
1046
1047 /* align our pointer to the offset of the super block */
1048 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1049
1050 if (btrfs_super_bytenr(disk_super) != bytenr ||
1051 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1052 goto error_unmap;
1053
1054 devid = btrfs_stack_device_id(&disk_super->dev_item);
1055 transid = btrfs_super_generation(disk_super);
1056 total_devices = btrfs_super_num_devices(disk_super);
1057
1058 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1059 if (ret > 0) {
1060 if (disk_super->label[0]) {
1061 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1062 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1063 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1064 } else {
1065 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1066 }
1067
1068 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1069 ret = 0;
1070 }
1071 if (!ret && fs_devices_ret)
1072 (*fs_devices_ret)->total_devices = total_devices;
1073
1074 error_unmap:
1075 kunmap(page);
1076 page_cache_release(page);
1077
1078 error_bdev_put:
1079 blkdev_put(bdev, flags);
1080 error:
1081 mutex_unlock(&uuid_mutex);
1082 return ret;
1083 }
1084
1085 /* helper to account the used device space in the range */
1086 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1087 u64 end, u64 *length)
1088 {
1089 struct btrfs_key key;
1090 struct btrfs_root *root = device->dev_root;
1091 struct btrfs_dev_extent *dev_extent;
1092 struct btrfs_path *path;
1093 u64 extent_end;
1094 int ret;
1095 int slot;
1096 struct extent_buffer *l;
1097
1098 *length = 0;
1099
1100 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1101 return 0;
1102
1103 path = btrfs_alloc_path();
1104 if (!path)
1105 return -ENOMEM;
1106 path->reada = 2;
1107
1108 key.objectid = device->devid;
1109 key.offset = start;
1110 key.type = BTRFS_DEV_EXTENT_KEY;
1111
1112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1113 if (ret < 0)
1114 goto out;
1115 if (ret > 0) {
1116 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1117 if (ret < 0)
1118 goto out;
1119 }
1120
1121 while (1) {
1122 l = path->nodes[0];
1123 slot = path->slots[0];
1124 if (slot >= btrfs_header_nritems(l)) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret == 0)
1127 continue;
1128 if (ret < 0)
1129 goto out;
1130
1131 break;
1132 }
1133 btrfs_item_key_to_cpu(l, &key, slot);
1134
1135 if (key.objectid < device->devid)
1136 goto next;
1137
1138 if (key.objectid > device->devid)
1139 break;
1140
1141 if (key.type != BTRFS_DEV_EXTENT_KEY)
1142 goto next;
1143
1144 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1145 extent_end = key.offset + btrfs_dev_extent_length(l,
1146 dev_extent);
1147 if (key.offset <= start && extent_end > end) {
1148 *length = end - start + 1;
1149 break;
1150 } else if (key.offset <= start && extent_end > start)
1151 *length += extent_end - start;
1152 else if (key.offset > start && extent_end <= end)
1153 *length += extent_end - key.offset;
1154 else if (key.offset > start && key.offset <= end) {
1155 *length += end - key.offset + 1;
1156 break;
1157 } else if (key.offset > end)
1158 break;
1159
1160 next:
1161 path->slots[0]++;
1162 }
1163 ret = 0;
1164 out:
1165 btrfs_free_path(path);
1166 return ret;
1167 }
1168
1169 static int contains_pending_extent(struct btrfs_transaction *transaction,
1170 struct btrfs_device *device,
1171 u64 *start, u64 len)
1172 {
1173 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1174 struct extent_map *em;
1175 struct list_head *search_list = &fs_info->pinned_chunks;
1176 int ret = 0;
1177 u64 physical_start = *start;
1178
1179 if (transaction)
1180 search_list = &transaction->pending_chunks;
1181 again:
1182 list_for_each_entry(em, search_list, list) {
1183 struct map_lookup *map;
1184 int i;
1185
1186 map = (struct map_lookup *)em->bdev;
1187 for (i = 0; i < map->num_stripes; i++) {
1188 u64 end;
1189
1190 if (map->stripes[i].dev != device)
1191 continue;
1192 if (map->stripes[i].physical >= physical_start + len ||
1193 map->stripes[i].physical + em->orig_block_len <=
1194 physical_start)
1195 continue;
1196 /*
1197 * Make sure that while processing the pinned list we do
1198 * not override our *start with a lower value, because
1199 * we can have pinned chunks that fall within this
1200 * device hole and that have lower physical addresses
1201 * than the pending chunks we processed before. If we
1202 * do not take this special care we can end up getting
1203 * 2 pending chunks that start at the same physical
1204 * device offsets because the end offset of a pinned
1205 * chunk can be equal to the start offset of some
1206 * pending chunk.
1207 */
1208 end = map->stripes[i].physical + em->orig_block_len;
1209 if (end > *start) {
1210 *start = end;
1211 ret = 1;
1212 }
1213 }
1214 }
1215 if (search_list != &fs_info->pinned_chunks) {
1216 search_list = &fs_info->pinned_chunks;
1217 goto again;
1218 }
1219
1220 return ret;
1221 }
1222
1223
1224 /*
1225 * find_free_dev_extent_start - find free space in the specified device
1226 * @device: the device which we search the free space in
1227 * @num_bytes: the size of the free space that we need
1228 * @search_start: the position from which to begin the search
1229 * @start: store the start of the free space.
1230 * @len: the size of the free space. that we find, or the size
1231 * of the max free space if we don't find suitable free space
1232 *
1233 * this uses a pretty simple search, the expectation is that it is
1234 * called very infrequently and that a given device has a small number
1235 * of extents
1236 *
1237 * @start is used to store the start of the free space if we find. But if we
1238 * don't find suitable free space, it will be used to store the start position
1239 * of the max free space.
1240 *
1241 * @len is used to store the size of the free space that we find.
1242 * But if we don't find suitable free space, it is used to store the size of
1243 * the max free space.
1244 */
1245 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1246 struct btrfs_device *device, u64 num_bytes,
1247 u64 search_start, u64 *start, u64 *len)
1248 {
1249 struct btrfs_key key;
1250 struct btrfs_root *root = device->dev_root;
1251 struct btrfs_dev_extent *dev_extent;
1252 struct btrfs_path *path;
1253 u64 hole_size;
1254 u64 max_hole_start;
1255 u64 max_hole_size;
1256 u64 extent_end;
1257 u64 search_end = device->total_bytes;
1258 int ret;
1259 int slot;
1260 struct extent_buffer *l;
1261
1262 path = btrfs_alloc_path();
1263 if (!path)
1264 return -ENOMEM;
1265
1266 max_hole_start = search_start;
1267 max_hole_size = 0;
1268
1269 again:
1270 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1271 ret = -ENOSPC;
1272 goto out;
1273 }
1274
1275 path->reada = 2;
1276 path->search_commit_root = 1;
1277 path->skip_locking = 1;
1278
1279 key.objectid = device->devid;
1280 key.offset = search_start;
1281 key.type = BTRFS_DEV_EXTENT_KEY;
1282
1283 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1284 if (ret < 0)
1285 goto out;
1286 if (ret > 0) {
1287 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1288 if (ret < 0)
1289 goto out;
1290 }
1291
1292 while (1) {
1293 l = path->nodes[0];
1294 slot = path->slots[0];
1295 if (slot >= btrfs_header_nritems(l)) {
1296 ret = btrfs_next_leaf(root, path);
1297 if (ret == 0)
1298 continue;
1299 if (ret < 0)
1300 goto out;
1301
1302 break;
1303 }
1304 btrfs_item_key_to_cpu(l, &key, slot);
1305
1306 if (key.objectid < device->devid)
1307 goto next;
1308
1309 if (key.objectid > device->devid)
1310 break;
1311
1312 if (key.type != BTRFS_DEV_EXTENT_KEY)
1313 goto next;
1314
1315 if (key.offset > search_start) {
1316 hole_size = key.offset - search_start;
1317
1318 /*
1319 * Have to check before we set max_hole_start, otherwise
1320 * we could end up sending back this offset anyway.
1321 */
1322 if (contains_pending_extent(transaction, device,
1323 &search_start,
1324 hole_size)) {
1325 if (key.offset >= search_start) {
1326 hole_size = key.offset - search_start;
1327 } else {
1328 WARN_ON_ONCE(1);
1329 hole_size = 0;
1330 }
1331 }
1332
1333 if (hole_size > max_hole_size) {
1334 max_hole_start = search_start;
1335 max_hole_size = hole_size;
1336 }
1337
1338 /*
1339 * If this free space is greater than which we need,
1340 * it must be the max free space that we have found
1341 * until now, so max_hole_start must point to the start
1342 * of this free space and the length of this free space
1343 * is stored in max_hole_size. Thus, we return
1344 * max_hole_start and max_hole_size and go back to the
1345 * caller.
1346 */
1347 if (hole_size >= num_bytes) {
1348 ret = 0;
1349 goto out;
1350 }
1351 }
1352
1353 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1354 extent_end = key.offset + btrfs_dev_extent_length(l,
1355 dev_extent);
1356 if (extent_end > search_start)
1357 search_start = extent_end;
1358 next:
1359 path->slots[0]++;
1360 cond_resched();
1361 }
1362
1363 /*
1364 * At this point, search_start should be the end of
1365 * allocated dev extents, and when shrinking the device,
1366 * search_end may be smaller than search_start.
1367 */
1368 if (search_end > search_start) {
1369 hole_size = search_end - search_start;
1370
1371 if (contains_pending_extent(transaction, device, &search_start,
1372 hole_size)) {
1373 btrfs_release_path(path);
1374 goto again;
1375 }
1376
1377 if (hole_size > max_hole_size) {
1378 max_hole_start = search_start;
1379 max_hole_size = hole_size;
1380 }
1381 }
1382
1383 /* See above. */
1384 if (max_hole_size < num_bytes)
1385 ret = -ENOSPC;
1386 else
1387 ret = 0;
1388
1389 out:
1390 btrfs_free_path(path);
1391 *start = max_hole_start;
1392 if (len)
1393 *len = max_hole_size;
1394 return ret;
1395 }
1396
1397 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1398 struct btrfs_device *device, u64 num_bytes,
1399 u64 *start, u64 *len)
1400 {
1401 struct btrfs_root *root = device->dev_root;
1402 u64 search_start;
1403
1404 /* FIXME use last free of some kind */
1405
1406 /*
1407 * we don't want to overwrite the superblock on the drive,
1408 * so we make sure to start at an offset of at least 1MB
1409 */
1410 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1411 return find_free_dev_extent_start(trans->transaction, device,
1412 num_bytes, search_start, start, len);
1413 }
1414
1415 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1416 struct btrfs_device *device,
1417 u64 start, u64 *dev_extent_len)
1418 {
1419 int ret;
1420 struct btrfs_path *path;
1421 struct btrfs_root *root = device->dev_root;
1422 struct btrfs_key key;
1423 struct btrfs_key found_key;
1424 struct extent_buffer *leaf = NULL;
1425 struct btrfs_dev_extent *extent = NULL;
1426
1427 path = btrfs_alloc_path();
1428 if (!path)
1429 return -ENOMEM;
1430
1431 key.objectid = device->devid;
1432 key.offset = start;
1433 key.type = BTRFS_DEV_EXTENT_KEY;
1434 again:
1435 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1436 if (ret > 0) {
1437 ret = btrfs_previous_item(root, path, key.objectid,
1438 BTRFS_DEV_EXTENT_KEY);
1439 if (ret)
1440 goto out;
1441 leaf = path->nodes[0];
1442 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1443 extent = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_dev_extent);
1445 BUG_ON(found_key.offset > start || found_key.offset +
1446 btrfs_dev_extent_length(leaf, extent) < start);
1447 key = found_key;
1448 btrfs_release_path(path);
1449 goto again;
1450 } else if (ret == 0) {
1451 leaf = path->nodes[0];
1452 extent = btrfs_item_ptr(leaf, path->slots[0],
1453 struct btrfs_dev_extent);
1454 } else {
1455 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1456 goto out;
1457 }
1458
1459 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1460
1461 ret = btrfs_del_item(trans, root, path);
1462 if (ret) {
1463 btrfs_std_error(root->fs_info, ret,
1464 "Failed to remove dev extent item");
1465 } else {
1466 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1467 }
1468 out:
1469 btrfs_free_path(path);
1470 return ret;
1471 }
1472
1473 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1474 struct btrfs_device *device,
1475 u64 chunk_tree, u64 chunk_objectid,
1476 u64 chunk_offset, u64 start, u64 num_bytes)
1477 {
1478 int ret;
1479 struct btrfs_path *path;
1480 struct btrfs_root *root = device->dev_root;
1481 struct btrfs_dev_extent *extent;
1482 struct extent_buffer *leaf;
1483 struct btrfs_key key;
1484
1485 WARN_ON(!device->in_fs_metadata);
1486 WARN_ON(device->is_tgtdev_for_dev_replace);
1487 path = btrfs_alloc_path();
1488 if (!path)
1489 return -ENOMEM;
1490
1491 key.objectid = device->devid;
1492 key.offset = start;
1493 key.type = BTRFS_DEV_EXTENT_KEY;
1494 ret = btrfs_insert_empty_item(trans, root, path, &key,
1495 sizeof(*extent));
1496 if (ret)
1497 goto out;
1498
1499 leaf = path->nodes[0];
1500 extent = btrfs_item_ptr(leaf, path->slots[0],
1501 struct btrfs_dev_extent);
1502 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1503 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1504 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1505
1506 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1507 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1508
1509 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1510 btrfs_mark_buffer_dirty(leaf);
1511 out:
1512 btrfs_free_path(path);
1513 return ret;
1514 }
1515
1516 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1517 {
1518 struct extent_map_tree *em_tree;
1519 struct extent_map *em;
1520 struct rb_node *n;
1521 u64 ret = 0;
1522
1523 em_tree = &fs_info->mapping_tree.map_tree;
1524 read_lock(&em_tree->lock);
1525 n = rb_last(&em_tree->map);
1526 if (n) {
1527 em = rb_entry(n, struct extent_map, rb_node);
1528 ret = em->start + em->len;
1529 }
1530 read_unlock(&em_tree->lock);
1531
1532 return ret;
1533 }
1534
1535 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1536 u64 *devid_ret)
1537 {
1538 int ret;
1539 struct btrfs_key key;
1540 struct btrfs_key found_key;
1541 struct btrfs_path *path;
1542
1543 path = btrfs_alloc_path();
1544 if (!path)
1545 return -ENOMEM;
1546
1547 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1548 key.type = BTRFS_DEV_ITEM_KEY;
1549 key.offset = (u64)-1;
1550
1551 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1552 if (ret < 0)
1553 goto error;
1554
1555 BUG_ON(ret == 0); /* Corruption */
1556
1557 ret = btrfs_previous_item(fs_info->chunk_root, path,
1558 BTRFS_DEV_ITEMS_OBJECTID,
1559 BTRFS_DEV_ITEM_KEY);
1560 if (ret) {
1561 *devid_ret = 1;
1562 } else {
1563 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1564 path->slots[0]);
1565 *devid_ret = found_key.offset + 1;
1566 }
1567 ret = 0;
1568 error:
1569 btrfs_free_path(path);
1570 return ret;
1571 }
1572
1573 /*
1574 * the device information is stored in the chunk root
1575 * the btrfs_device struct should be fully filled in
1576 */
1577 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1578 struct btrfs_root *root,
1579 struct btrfs_device *device)
1580 {
1581 int ret;
1582 struct btrfs_path *path;
1583 struct btrfs_dev_item *dev_item;
1584 struct extent_buffer *leaf;
1585 struct btrfs_key key;
1586 unsigned long ptr;
1587
1588 root = root->fs_info->chunk_root;
1589
1590 path = btrfs_alloc_path();
1591 if (!path)
1592 return -ENOMEM;
1593
1594 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1595 key.type = BTRFS_DEV_ITEM_KEY;
1596 key.offset = device->devid;
1597
1598 ret = btrfs_insert_empty_item(trans, root, path, &key,
1599 sizeof(*dev_item));
1600 if (ret)
1601 goto out;
1602
1603 leaf = path->nodes[0];
1604 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1605
1606 btrfs_set_device_id(leaf, dev_item, device->devid);
1607 btrfs_set_device_generation(leaf, dev_item, 0);
1608 btrfs_set_device_type(leaf, dev_item, device->type);
1609 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1610 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1611 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1612 btrfs_set_device_total_bytes(leaf, dev_item,
1613 btrfs_device_get_disk_total_bytes(device));
1614 btrfs_set_device_bytes_used(leaf, dev_item,
1615 btrfs_device_get_bytes_used(device));
1616 btrfs_set_device_group(leaf, dev_item, 0);
1617 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1618 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1619 btrfs_set_device_start_offset(leaf, dev_item, 0);
1620
1621 ptr = btrfs_device_uuid(dev_item);
1622 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1623 ptr = btrfs_device_fsid(dev_item);
1624 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1625 btrfs_mark_buffer_dirty(leaf);
1626
1627 ret = 0;
1628 out:
1629 btrfs_free_path(path);
1630 return ret;
1631 }
1632
1633 /*
1634 * Function to update ctime/mtime for a given device path.
1635 * Mainly used for ctime/mtime based probe like libblkid.
1636 */
1637 static void update_dev_time(char *path_name)
1638 {
1639 struct file *filp;
1640
1641 filp = filp_open(path_name, O_RDWR, 0);
1642 if (IS_ERR(filp))
1643 return;
1644 file_update_time(filp);
1645 filp_close(filp, NULL);
1646 return;
1647 }
1648
1649 static int btrfs_rm_dev_item(struct btrfs_root *root,
1650 struct btrfs_device *device)
1651 {
1652 int ret;
1653 struct btrfs_path *path;
1654 struct btrfs_key key;
1655 struct btrfs_trans_handle *trans;
1656
1657 root = root->fs_info->chunk_root;
1658
1659 path = btrfs_alloc_path();
1660 if (!path)
1661 return -ENOMEM;
1662
1663 trans = btrfs_start_transaction(root, 0);
1664 if (IS_ERR(trans)) {
1665 btrfs_free_path(path);
1666 return PTR_ERR(trans);
1667 }
1668 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1669 key.type = BTRFS_DEV_ITEM_KEY;
1670 key.offset = device->devid;
1671
1672 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1673 if (ret < 0)
1674 goto out;
1675
1676 if (ret > 0) {
1677 ret = -ENOENT;
1678 goto out;
1679 }
1680
1681 ret = btrfs_del_item(trans, root, path);
1682 if (ret)
1683 goto out;
1684 out:
1685 btrfs_free_path(path);
1686 btrfs_commit_transaction(trans, root);
1687 return ret;
1688 }
1689
1690 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1691 {
1692 struct btrfs_device *device;
1693 struct btrfs_device *next_device;
1694 struct block_device *bdev;
1695 struct buffer_head *bh = NULL;
1696 struct btrfs_super_block *disk_super;
1697 struct btrfs_fs_devices *cur_devices;
1698 u64 all_avail;
1699 u64 devid;
1700 u64 num_devices;
1701 u8 *dev_uuid;
1702 unsigned seq;
1703 int ret = 0;
1704 bool clear_super = false;
1705
1706 mutex_lock(&uuid_mutex);
1707
1708 do {
1709 seq = read_seqbegin(&root->fs_info->profiles_lock);
1710
1711 all_avail = root->fs_info->avail_data_alloc_bits |
1712 root->fs_info->avail_system_alloc_bits |
1713 root->fs_info->avail_metadata_alloc_bits;
1714 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1715
1716 num_devices = root->fs_info->fs_devices->num_devices;
1717 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1718 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1719 WARN_ON(num_devices < 1);
1720 num_devices--;
1721 }
1722 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1723
1724 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1725 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1726 goto out;
1727 }
1728
1729 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1730 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1731 goto out;
1732 }
1733
1734 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1735 root->fs_info->fs_devices->rw_devices <= 2) {
1736 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1737 goto out;
1738 }
1739 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1740 root->fs_info->fs_devices->rw_devices <= 3) {
1741 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1742 goto out;
1743 }
1744
1745 if (strcmp(device_path, "missing") == 0) {
1746 struct list_head *devices;
1747 struct btrfs_device *tmp;
1748
1749 device = NULL;
1750 devices = &root->fs_info->fs_devices->devices;
1751 /*
1752 * It is safe to read the devices since the volume_mutex
1753 * is held.
1754 */
1755 list_for_each_entry(tmp, devices, dev_list) {
1756 if (tmp->in_fs_metadata &&
1757 !tmp->is_tgtdev_for_dev_replace &&
1758 !tmp->bdev) {
1759 device = tmp;
1760 break;
1761 }
1762 }
1763 bdev = NULL;
1764 bh = NULL;
1765 disk_super = NULL;
1766 if (!device) {
1767 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1768 goto out;
1769 }
1770 } else {
1771 ret = btrfs_get_bdev_and_sb(device_path,
1772 FMODE_WRITE | FMODE_EXCL,
1773 root->fs_info->bdev_holder, 0,
1774 &bdev, &bh);
1775 if (ret)
1776 goto out;
1777 disk_super = (struct btrfs_super_block *)bh->b_data;
1778 devid = btrfs_stack_device_id(&disk_super->dev_item);
1779 dev_uuid = disk_super->dev_item.uuid;
1780 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1781 disk_super->fsid);
1782 if (!device) {
1783 ret = -ENOENT;
1784 goto error_brelse;
1785 }
1786 }
1787
1788 if (device->is_tgtdev_for_dev_replace) {
1789 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1790 goto error_brelse;
1791 }
1792
1793 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1794 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1795 goto error_brelse;
1796 }
1797
1798 if (device->writeable) {
1799 lock_chunks(root);
1800 list_del_init(&device->dev_alloc_list);
1801 device->fs_devices->rw_devices--;
1802 unlock_chunks(root);
1803 clear_super = true;
1804 }
1805
1806 mutex_unlock(&uuid_mutex);
1807 ret = btrfs_shrink_device(device, 0);
1808 mutex_lock(&uuid_mutex);
1809 if (ret)
1810 goto error_undo;
1811
1812 /*
1813 * TODO: the superblock still includes this device in its num_devices
1814 * counter although write_all_supers() is not locked out. This
1815 * could give a filesystem state which requires a degraded mount.
1816 */
1817 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1818 if (ret)
1819 goto error_undo;
1820
1821 device->in_fs_metadata = 0;
1822 btrfs_scrub_cancel_dev(root->fs_info, device);
1823
1824 /*
1825 * the device list mutex makes sure that we don't change
1826 * the device list while someone else is writing out all
1827 * the device supers. Whoever is writing all supers, should
1828 * lock the device list mutex before getting the number of
1829 * devices in the super block (super_copy). Conversely,
1830 * whoever updates the number of devices in the super block
1831 * (super_copy) should hold the device list mutex.
1832 */
1833
1834 cur_devices = device->fs_devices;
1835 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1836 list_del_rcu(&device->dev_list);
1837
1838 device->fs_devices->num_devices--;
1839 device->fs_devices->total_devices--;
1840
1841 if (device->missing)
1842 device->fs_devices->missing_devices--;
1843
1844 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1845 struct btrfs_device, dev_list);
1846 if (device->bdev == root->fs_info->sb->s_bdev)
1847 root->fs_info->sb->s_bdev = next_device->bdev;
1848 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1849 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1850
1851 if (device->bdev) {
1852 device->fs_devices->open_devices--;
1853 /* remove sysfs entry */
1854 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1855 }
1856
1857 call_rcu(&device->rcu, free_device);
1858
1859 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1860 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1861 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1862
1863 if (cur_devices->open_devices == 0) {
1864 struct btrfs_fs_devices *fs_devices;
1865 fs_devices = root->fs_info->fs_devices;
1866 while (fs_devices) {
1867 if (fs_devices->seed == cur_devices) {
1868 fs_devices->seed = cur_devices->seed;
1869 break;
1870 }
1871 fs_devices = fs_devices->seed;
1872 }
1873 cur_devices->seed = NULL;
1874 __btrfs_close_devices(cur_devices);
1875 free_fs_devices(cur_devices);
1876 }
1877
1878 root->fs_info->num_tolerated_disk_barrier_failures =
1879 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1880
1881 /*
1882 * at this point, the device is zero sized. We want to
1883 * remove it from the devices list and zero out the old super
1884 */
1885 if (clear_super && disk_super) {
1886 u64 bytenr;
1887 int i;
1888
1889 /* make sure this device isn't detected as part of
1890 * the FS anymore
1891 */
1892 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1893 set_buffer_dirty(bh);
1894 sync_dirty_buffer(bh);
1895
1896 /* clear the mirror copies of super block on the disk
1897 * being removed, 0th copy is been taken care above and
1898 * the below would take of the rest
1899 */
1900 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1901 bytenr = btrfs_sb_offset(i);
1902 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1903 i_size_read(bdev->bd_inode))
1904 break;
1905
1906 brelse(bh);
1907 bh = __bread(bdev, bytenr / 4096,
1908 BTRFS_SUPER_INFO_SIZE);
1909 if (!bh)
1910 continue;
1911
1912 disk_super = (struct btrfs_super_block *)bh->b_data;
1913
1914 if (btrfs_super_bytenr(disk_super) != bytenr ||
1915 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1916 continue;
1917 }
1918 memset(&disk_super->magic, 0,
1919 sizeof(disk_super->magic));
1920 set_buffer_dirty(bh);
1921 sync_dirty_buffer(bh);
1922 }
1923 }
1924
1925 ret = 0;
1926
1927 if (bdev) {
1928 /* Notify udev that device has changed */
1929 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1930
1931 /* Update ctime/mtime for device path for libblkid */
1932 update_dev_time(device_path);
1933 }
1934
1935 error_brelse:
1936 brelse(bh);
1937 if (bdev)
1938 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1939 out:
1940 mutex_unlock(&uuid_mutex);
1941 return ret;
1942 error_undo:
1943 if (device->writeable) {
1944 lock_chunks(root);
1945 list_add(&device->dev_alloc_list,
1946 &root->fs_info->fs_devices->alloc_list);
1947 device->fs_devices->rw_devices++;
1948 unlock_chunks(root);
1949 }
1950 goto error_brelse;
1951 }
1952
1953 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1954 struct btrfs_device *srcdev)
1955 {
1956 struct btrfs_fs_devices *fs_devices;
1957
1958 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1959
1960 /*
1961 * in case of fs with no seed, srcdev->fs_devices will point
1962 * to fs_devices of fs_info. However when the dev being replaced is
1963 * a seed dev it will point to the seed's local fs_devices. In short
1964 * srcdev will have its correct fs_devices in both the cases.
1965 */
1966 fs_devices = srcdev->fs_devices;
1967
1968 list_del_rcu(&srcdev->dev_list);
1969 list_del_rcu(&srcdev->dev_alloc_list);
1970 fs_devices->num_devices--;
1971 if (srcdev->missing)
1972 fs_devices->missing_devices--;
1973
1974 if (srcdev->writeable) {
1975 fs_devices->rw_devices--;
1976 /* zero out the old super if it is writable */
1977 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1978 }
1979
1980 if (srcdev->bdev)
1981 fs_devices->open_devices--;
1982 }
1983
1984 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1985 struct btrfs_device *srcdev)
1986 {
1987 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1988
1989 call_rcu(&srcdev->rcu, free_device);
1990
1991 /*
1992 * unless fs_devices is seed fs, num_devices shouldn't go
1993 * zero
1994 */
1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1996
1997 /* if this is no devs we rather delete the fs_devices */
1998 if (!fs_devices->num_devices) {
1999 struct btrfs_fs_devices *tmp_fs_devices;
2000
2001 tmp_fs_devices = fs_info->fs_devices;
2002 while (tmp_fs_devices) {
2003 if (tmp_fs_devices->seed == fs_devices) {
2004 tmp_fs_devices->seed = fs_devices->seed;
2005 break;
2006 }
2007 tmp_fs_devices = tmp_fs_devices->seed;
2008 }
2009 fs_devices->seed = NULL;
2010 __btrfs_close_devices(fs_devices);
2011 free_fs_devices(fs_devices);
2012 }
2013 }
2014
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 struct btrfs_device *tgtdev)
2017 {
2018 struct btrfs_device *next_device;
2019
2020 mutex_lock(&uuid_mutex);
2021 WARN_ON(!tgtdev);
2022 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2023
2024 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2025
2026 if (tgtdev->bdev) {
2027 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2028 fs_info->fs_devices->open_devices--;
2029 }
2030 fs_info->fs_devices->num_devices--;
2031
2032 next_device = list_entry(fs_info->fs_devices->devices.next,
2033 struct btrfs_device, dev_list);
2034 if (tgtdev->bdev == fs_info->sb->s_bdev)
2035 fs_info->sb->s_bdev = next_device->bdev;
2036 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2037 fs_info->fs_devices->latest_bdev = next_device->bdev;
2038 list_del_rcu(&tgtdev->dev_list);
2039
2040 call_rcu(&tgtdev->rcu, free_device);
2041
2042 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2043 mutex_unlock(&uuid_mutex);
2044 }
2045
2046 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2047 struct btrfs_device **device)
2048 {
2049 int ret = 0;
2050 struct btrfs_super_block *disk_super;
2051 u64 devid;
2052 u8 *dev_uuid;
2053 struct block_device *bdev;
2054 struct buffer_head *bh;
2055
2056 *device = NULL;
2057 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2058 root->fs_info->bdev_holder, 0, &bdev, &bh);
2059 if (ret)
2060 return ret;
2061 disk_super = (struct btrfs_super_block *)bh->b_data;
2062 devid = btrfs_stack_device_id(&disk_super->dev_item);
2063 dev_uuid = disk_super->dev_item.uuid;
2064 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2065 disk_super->fsid);
2066 brelse(bh);
2067 if (!*device)
2068 ret = -ENOENT;
2069 blkdev_put(bdev, FMODE_READ);
2070 return ret;
2071 }
2072
2073 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2074 char *device_path,
2075 struct btrfs_device **device)
2076 {
2077 *device = NULL;
2078 if (strcmp(device_path, "missing") == 0) {
2079 struct list_head *devices;
2080 struct btrfs_device *tmp;
2081
2082 devices = &root->fs_info->fs_devices->devices;
2083 /*
2084 * It is safe to read the devices since the volume_mutex
2085 * is held by the caller.
2086 */
2087 list_for_each_entry(tmp, devices, dev_list) {
2088 if (tmp->in_fs_metadata && !tmp->bdev) {
2089 *device = tmp;
2090 break;
2091 }
2092 }
2093
2094 if (!*device)
2095 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2096
2097 return 0;
2098 } else {
2099 return btrfs_find_device_by_path(root, device_path, device);
2100 }
2101 }
2102
2103 /*
2104 * does all the dirty work required for changing file system's UUID.
2105 */
2106 static int btrfs_prepare_sprout(struct btrfs_root *root)
2107 {
2108 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2109 struct btrfs_fs_devices *old_devices;
2110 struct btrfs_fs_devices *seed_devices;
2111 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2112 struct btrfs_device *device;
2113 u64 super_flags;
2114
2115 BUG_ON(!mutex_is_locked(&uuid_mutex));
2116 if (!fs_devices->seeding)
2117 return -EINVAL;
2118
2119 seed_devices = __alloc_fs_devices();
2120 if (IS_ERR(seed_devices))
2121 return PTR_ERR(seed_devices);
2122
2123 old_devices = clone_fs_devices(fs_devices);
2124 if (IS_ERR(old_devices)) {
2125 kfree(seed_devices);
2126 return PTR_ERR(old_devices);
2127 }
2128
2129 list_add(&old_devices->list, &fs_uuids);
2130
2131 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2132 seed_devices->opened = 1;
2133 INIT_LIST_HEAD(&seed_devices->devices);
2134 INIT_LIST_HEAD(&seed_devices->alloc_list);
2135 mutex_init(&seed_devices->device_list_mutex);
2136
2137 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2138 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2139 synchronize_rcu);
2140 list_for_each_entry(device, &seed_devices->devices, dev_list)
2141 device->fs_devices = seed_devices;
2142
2143 lock_chunks(root);
2144 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2145 unlock_chunks(root);
2146
2147 fs_devices->seeding = 0;
2148 fs_devices->num_devices = 0;
2149 fs_devices->open_devices = 0;
2150 fs_devices->missing_devices = 0;
2151 fs_devices->rotating = 0;
2152 fs_devices->seed = seed_devices;
2153
2154 generate_random_uuid(fs_devices->fsid);
2155 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2156 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2158
2159 super_flags = btrfs_super_flags(disk_super) &
2160 ~BTRFS_SUPER_FLAG_SEEDING;
2161 btrfs_set_super_flags(disk_super, super_flags);
2162
2163 return 0;
2164 }
2165
2166 /*
2167 * strore the expected generation for seed devices in device items.
2168 */
2169 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2170 struct btrfs_root *root)
2171 {
2172 struct btrfs_path *path;
2173 struct extent_buffer *leaf;
2174 struct btrfs_dev_item *dev_item;
2175 struct btrfs_device *device;
2176 struct btrfs_key key;
2177 u8 fs_uuid[BTRFS_UUID_SIZE];
2178 u8 dev_uuid[BTRFS_UUID_SIZE];
2179 u64 devid;
2180 int ret;
2181
2182 path = btrfs_alloc_path();
2183 if (!path)
2184 return -ENOMEM;
2185
2186 root = root->fs_info->chunk_root;
2187 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2188 key.offset = 0;
2189 key.type = BTRFS_DEV_ITEM_KEY;
2190
2191 while (1) {
2192 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2193 if (ret < 0)
2194 goto error;
2195
2196 leaf = path->nodes[0];
2197 next_slot:
2198 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2199 ret = btrfs_next_leaf(root, path);
2200 if (ret > 0)
2201 break;
2202 if (ret < 0)
2203 goto error;
2204 leaf = path->nodes[0];
2205 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2206 btrfs_release_path(path);
2207 continue;
2208 }
2209
2210 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2211 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2212 key.type != BTRFS_DEV_ITEM_KEY)
2213 break;
2214
2215 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2216 struct btrfs_dev_item);
2217 devid = btrfs_device_id(leaf, dev_item);
2218 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2219 BTRFS_UUID_SIZE);
2220 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2221 BTRFS_UUID_SIZE);
2222 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2223 fs_uuid);
2224 BUG_ON(!device); /* Logic error */
2225
2226 if (device->fs_devices->seeding) {
2227 btrfs_set_device_generation(leaf, dev_item,
2228 device->generation);
2229 btrfs_mark_buffer_dirty(leaf);
2230 }
2231
2232 path->slots[0]++;
2233 goto next_slot;
2234 }
2235 ret = 0;
2236 error:
2237 btrfs_free_path(path);
2238 return ret;
2239 }
2240
2241 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2242 {
2243 struct request_queue *q;
2244 struct btrfs_trans_handle *trans;
2245 struct btrfs_device *device;
2246 struct block_device *bdev;
2247 struct list_head *devices;
2248 struct super_block *sb = root->fs_info->sb;
2249 struct rcu_string *name;
2250 u64 tmp;
2251 int seeding_dev = 0;
2252 int ret = 0;
2253
2254 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2255 return -EROFS;
2256
2257 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2258 root->fs_info->bdev_holder);
2259 if (IS_ERR(bdev))
2260 return PTR_ERR(bdev);
2261
2262 if (root->fs_info->fs_devices->seeding) {
2263 seeding_dev = 1;
2264 down_write(&sb->s_umount);
2265 mutex_lock(&uuid_mutex);
2266 }
2267
2268 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2269
2270 devices = &root->fs_info->fs_devices->devices;
2271
2272 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2273 list_for_each_entry(device, devices, dev_list) {
2274 if (device->bdev == bdev) {
2275 ret = -EEXIST;
2276 mutex_unlock(
2277 &root->fs_info->fs_devices->device_list_mutex);
2278 goto error;
2279 }
2280 }
2281 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2282
2283 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2284 if (IS_ERR(device)) {
2285 /* we can safely leave the fs_devices entry around */
2286 ret = PTR_ERR(device);
2287 goto error;
2288 }
2289
2290 name = rcu_string_strdup(device_path, GFP_NOFS);
2291 if (!name) {
2292 kfree(device);
2293 ret = -ENOMEM;
2294 goto error;
2295 }
2296 rcu_assign_pointer(device->name, name);
2297
2298 trans = btrfs_start_transaction(root, 0);
2299 if (IS_ERR(trans)) {
2300 rcu_string_free(device->name);
2301 kfree(device);
2302 ret = PTR_ERR(trans);
2303 goto error;
2304 }
2305
2306 q = bdev_get_queue(bdev);
2307 if (blk_queue_discard(q))
2308 device->can_discard = 1;
2309 device->writeable = 1;
2310 device->generation = trans->transid;
2311 device->io_width = root->sectorsize;
2312 device->io_align = root->sectorsize;
2313 device->sector_size = root->sectorsize;
2314 device->total_bytes = i_size_read(bdev->bd_inode);
2315 device->disk_total_bytes = device->total_bytes;
2316 device->commit_total_bytes = device->total_bytes;
2317 device->dev_root = root->fs_info->dev_root;
2318 device->bdev = bdev;
2319 device->in_fs_metadata = 1;
2320 device->is_tgtdev_for_dev_replace = 0;
2321 device->mode = FMODE_EXCL;
2322 device->dev_stats_valid = 1;
2323 set_blocksize(device->bdev, 4096);
2324
2325 if (seeding_dev) {
2326 sb->s_flags &= ~MS_RDONLY;
2327 ret = btrfs_prepare_sprout(root);
2328 BUG_ON(ret); /* -ENOMEM */
2329 }
2330
2331 device->fs_devices = root->fs_info->fs_devices;
2332
2333 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2334 lock_chunks(root);
2335 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2336 list_add(&device->dev_alloc_list,
2337 &root->fs_info->fs_devices->alloc_list);
2338 root->fs_info->fs_devices->num_devices++;
2339 root->fs_info->fs_devices->open_devices++;
2340 root->fs_info->fs_devices->rw_devices++;
2341 root->fs_info->fs_devices->total_devices++;
2342 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2343
2344 spin_lock(&root->fs_info->free_chunk_lock);
2345 root->fs_info->free_chunk_space += device->total_bytes;
2346 spin_unlock(&root->fs_info->free_chunk_lock);
2347
2348 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2349 root->fs_info->fs_devices->rotating = 1;
2350
2351 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2352 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2353 tmp + device->total_bytes);
2354
2355 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2356 btrfs_set_super_num_devices(root->fs_info->super_copy,
2357 tmp + 1);
2358
2359 /* add sysfs device entry */
2360 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2361
2362 /*
2363 * we've got more storage, clear any full flags on the space
2364 * infos
2365 */
2366 btrfs_clear_space_info_full(root->fs_info);
2367
2368 unlock_chunks(root);
2369 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2370
2371 if (seeding_dev) {
2372 lock_chunks(root);
2373 ret = init_first_rw_device(trans, root, device);
2374 unlock_chunks(root);
2375 if (ret) {
2376 btrfs_abort_transaction(trans, root, ret);
2377 goto error_trans;
2378 }
2379 }
2380
2381 ret = btrfs_add_device(trans, root, device);
2382 if (ret) {
2383 btrfs_abort_transaction(trans, root, ret);
2384 goto error_trans;
2385 }
2386
2387 if (seeding_dev) {
2388 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2389
2390 ret = btrfs_finish_sprout(trans, root);
2391 if (ret) {
2392 btrfs_abort_transaction(trans, root, ret);
2393 goto error_trans;
2394 }
2395
2396 /* Sprouting would change fsid of the mounted root,
2397 * so rename the fsid on the sysfs
2398 */
2399 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2400 root->fs_info->fsid);
2401 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2402 fsid_buf))
2403 btrfs_warn(root->fs_info,
2404 "sysfs: failed to create fsid for sprout");
2405 }
2406
2407 root->fs_info->num_tolerated_disk_barrier_failures =
2408 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2409 ret = btrfs_commit_transaction(trans, root);
2410
2411 if (seeding_dev) {
2412 mutex_unlock(&uuid_mutex);
2413 up_write(&sb->s_umount);
2414
2415 if (ret) /* transaction commit */
2416 return ret;
2417
2418 ret = btrfs_relocate_sys_chunks(root);
2419 if (ret < 0)
2420 btrfs_std_error(root->fs_info, ret,
2421 "Failed to relocate sys chunks after "
2422 "device initialization. This can be fixed "
2423 "using the \"btrfs balance\" command.");
2424 trans = btrfs_attach_transaction(root);
2425 if (IS_ERR(trans)) {
2426 if (PTR_ERR(trans) == -ENOENT)
2427 return 0;
2428 return PTR_ERR(trans);
2429 }
2430 ret = btrfs_commit_transaction(trans, root);
2431 }
2432
2433 /* Update ctime/mtime for libblkid */
2434 update_dev_time(device_path);
2435 return ret;
2436
2437 error_trans:
2438 btrfs_end_transaction(trans, root);
2439 rcu_string_free(device->name);
2440 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2441 kfree(device);
2442 error:
2443 blkdev_put(bdev, FMODE_EXCL);
2444 if (seeding_dev) {
2445 mutex_unlock(&uuid_mutex);
2446 up_write(&sb->s_umount);
2447 }
2448 return ret;
2449 }
2450
2451 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2452 struct btrfs_device *srcdev,
2453 struct btrfs_device **device_out)
2454 {
2455 struct request_queue *q;
2456 struct btrfs_device *device;
2457 struct block_device *bdev;
2458 struct btrfs_fs_info *fs_info = root->fs_info;
2459 struct list_head *devices;
2460 struct rcu_string *name;
2461 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2462 int ret = 0;
2463
2464 *device_out = NULL;
2465 if (fs_info->fs_devices->seeding) {
2466 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2467 return -EINVAL;
2468 }
2469
2470 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2471 fs_info->bdev_holder);
2472 if (IS_ERR(bdev)) {
2473 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2474 return PTR_ERR(bdev);
2475 }
2476
2477 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2478
2479 devices = &fs_info->fs_devices->devices;
2480 list_for_each_entry(device, devices, dev_list) {
2481 if (device->bdev == bdev) {
2482 btrfs_err(fs_info, "target device is in the filesystem!");
2483 ret = -EEXIST;
2484 goto error;
2485 }
2486 }
2487
2488
2489 if (i_size_read(bdev->bd_inode) <
2490 btrfs_device_get_total_bytes(srcdev)) {
2491 btrfs_err(fs_info, "target device is smaller than source device!");
2492 ret = -EINVAL;
2493 goto error;
2494 }
2495
2496
2497 device = btrfs_alloc_device(NULL, &devid, NULL);
2498 if (IS_ERR(device)) {
2499 ret = PTR_ERR(device);
2500 goto error;
2501 }
2502
2503 name = rcu_string_strdup(device_path, GFP_NOFS);
2504 if (!name) {
2505 kfree(device);
2506 ret = -ENOMEM;
2507 goto error;
2508 }
2509 rcu_assign_pointer(device->name, name);
2510
2511 q = bdev_get_queue(bdev);
2512 if (blk_queue_discard(q))
2513 device->can_discard = 1;
2514 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2515 device->writeable = 1;
2516 device->generation = 0;
2517 device->io_width = root->sectorsize;
2518 device->io_align = root->sectorsize;
2519 device->sector_size = root->sectorsize;
2520 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2521 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2522 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2523 ASSERT(list_empty(&srcdev->resized_list));
2524 device->commit_total_bytes = srcdev->commit_total_bytes;
2525 device->commit_bytes_used = device->bytes_used;
2526 device->dev_root = fs_info->dev_root;
2527 device->bdev = bdev;
2528 device->in_fs_metadata = 1;
2529 device->is_tgtdev_for_dev_replace = 1;
2530 device->mode = FMODE_EXCL;
2531 device->dev_stats_valid = 1;
2532 set_blocksize(device->bdev, 4096);
2533 device->fs_devices = fs_info->fs_devices;
2534 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2535 fs_info->fs_devices->num_devices++;
2536 fs_info->fs_devices->open_devices++;
2537 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2538
2539 *device_out = device;
2540 return ret;
2541
2542 error:
2543 blkdev_put(bdev, FMODE_EXCL);
2544 return ret;
2545 }
2546
2547 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2548 struct btrfs_device *tgtdev)
2549 {
2550 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2551 tgtdev->io_width = fs_info->dev_root->sectorsize;
2552 tgtdev->io_align = fs_info->dev_root->sectorsize;
2553 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2554 tgtdev->dev_root = fs_info->dev_root;
2555 tgtdev->in_fs_metadata = 1;
2556 }
2557
2558 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2559 struct btrfs_device *device)
2560 {
2561 int ret;
2562 struct btrfs_path *path;
2563 struct btrfs_root *root;
2564 struct btrfs_dev_item *dev_item;
2565 struct extent_buffer *leaf;
2566 struct btrfs_key key;
2567
2568 root = device->dev_root->fs_info->chunk_root;
2569
2570 path = btrfs_alloc_path();
2571 if (!path)
2572 return -ENOMEM;
2573
2574 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2575 key.type = BTRFS_DEV_ITEM_KEY;
2576 key.offset = device->devid;
2577
2578 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2579 if (ret < 0)
2580 goto out;
2581
2582 if (ret > 0) {
2583 ret = -ENOENT;
2584 goto out;
2585 }
2586
2587 leaf = path->nodes[0];
2588 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2589
2590 btrfs_set_device_id(leaf, dev_item, device->devid);
2591 btrfs_set_device_type(leaf, dev_item, device->type);
2592 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2593 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2594 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2595 btrfs_set_device_total_bytes(leaf, dev_item,
2596 btrfs_device_get_disk_total_bytes(device));
2597 btrfs_set_device_bytes_used(leaf, dev_item,
2598 btrfs_device_get_bytes_used(device));
2599 btrfs_mark_buffer_dirty(leaf);
2600
2601 out:
2602 btrfs_free_path(path);
2603 return ret;
2604 }
2605
2606 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2607 struct btrfs_device *device, u64 new_size)
2608 {
2609 struct btrfs_super_block *super_copy =
2610 device->dev_root->fs_info->super_copy;
2611 struct btrfs_fs_devices *fs_devices;
2612 u64 old_total;
2613 u64 diff;
2614
2615 if (!device->writeable)
2616 return -EACCES;
2617
2618 lock_chunks(device->dev_root);
2619 old_total = btrfs_super_total_bytes(super_copy);
2620 diff = new_size - device->total_bytes;
2621
2622 if (new_size <= device->total_bytes ||
2623 device->is_tgtdev_for_dev_replace) {
2624 unlock_chunks(device->dev_root);
2625 return -EINVAL;
2626 }
2627
2628 fs_devices = device->dev_root->fs_info->fs_devices;
2629
2630 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2631 device->fs_devices->total_rw_bytes += diff;
2632
2633 btrfs_device_set_total_bytes(device, new_size);
2634 btrfs_device_set_disk_total_bytes(device, new_size);
2635 btrfs_clear_space_info_full(device->dev_root->fs_info);
2636 if (list_empty(&device->resized_list))
2637 list_add_tail(&device->resized_list,
2638 &fs_devices->resized_devices);
2639 unlock_chunks(device->dev_root);
2640
2641 return btrfs_update_device(trans, device);
2642 }
2643
2644 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root, u64 chunk_objectid,
2646 u64 chunk_offset)
2647 {
2648 int ret;
2649 struct btrfs_path *path;
2650 struct btrfs_key key;
2651
2652 root = root->fs_info->chunk_root;
2653 path = btrfs_alloc_path();
2654 if (!path)
2655 return -ENOMEM;
2656
2657 key.objectid = chunk_objectid;
2658 key.offset = chunk_offset;
2659 key.type = BTRFS_CHUNK_ITEM_KEY;
2660
2661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2662 if (ret < 0)
2663 goto out;
2664 else if (ret > 0) { /* Logic error or corruption */
2665 btrfs_std_error(root->fs_info, -ENOENT,
2666 "Failed lookup while freeing chunk.");
2667 ret = -ENOENT;
2668 goto out;
2669 }
2670
2671 ret = btrfs_del_item(trans, root, path);
2672 if (ret < 0)
2673 btrfs_std_error(root->fs_info, ret,
2674 "Failed to delete chunk item.");
2675 out:
2676 btrfs_free_path(path);
2677 return ret;
2678 }
2679
2680 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2681 chunk_offset)
2682 {
2683 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2684 struct btrfs_disk_key *disk_key;
2685 struct btrfs_chunk *chunk;
2686 u8 *ptr;
2687 int ret = 0;
2688 u32 num_stripes;
2689 u32 array_size;
2690 u32 len = 0;
2691 u32 cur;
2692 struct btrfs_key key;
2693
2694 lock_chunks(root);
2695 array_size = btrfs_super_sys_array_size(super_copy);
2696
2697 ptr = super_copy->sys_chunk_array;
2698 cur = 0;
2699
2700 while (cur < array_size) {
2701 disk_key = (struct btrfs_disk_key *)ptr;
2702 btrfs_disk_key_to_cpu(&key, disk_key);
2703
2704 len = sizeof(*disk_key);
2705
2706 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2707 chunk = (struct btrfs_chunk *)(ptr + len);
2708 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2709 len += btrfs_chunk_item_size(num_stripes);
2710 } else {
2711 ret = -EIO;
2712 break;
2713 }
2714 if (key.objectid == chunk_objectid &&
2715 key.offset == chunk_offset) {
2716 memmove(ptr, ptr + len, array_size - (cur + len));
2717 array_size -= len;
2718 btrfs_set_super_sys_array_size(super_copy, array_size);
2719 } else {
2720 ptr += len;
2721 cur += len;
2722 }
2723 }
2724 unlock_chunks(root);
2725 return ret;
2726 }
2727
2728 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2729 struct btrfs_root *root, u64 chunk_offset)
2730 {
2731 struct extent_map_tree *em_tree;
2732 struct extent_map *em;
2733 struct btrfs_root *extent_root = root->fs_info->extent_root;
2734 struct map_lookup *map;
2735 u64 dev_extent_len = 0;
2736 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2737 int i, ret = 0;
2738
2739 /* Just in case */
2740 root = root->fs_info->chunk_root;
2741 em_tree = &root->fs_info->mapping_tree.map_tree;
2742
2743 read_lock(&em_tree->lock);
2744 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2745 read_unlock(&em_tree->lock);
2746
2747 if (!em || em->start > chunk_offset ||
2748 em->start + em->len < chunk_offset) {
2749 /*
2750 * This is a logic error, but we don't want to just rely on the
2751 * user having built with ASSERT enabled, so if ASSERT doens't
2752 * do anything we still error out.
2753 */
2754 ASSERT(0);
2755 if (em)
2756 free_extent_map(em);
2757 return -EINVAL;
2758 }
2759 map = (struct map_lookup *)em->bdev;
2760 lock_chunks(root->fs_info->chunk_root);
2761 check_system_chunk(trans, extent_root, map->type);
2762 unlock_chunks(root->fs_info->chunk_root);
2763
2764 for (i = 0; i < map->num_stripes; i++) {
2765 struct btrfs_device *device = map->stripes[i].dev;
2766 ret = btrfs_free_dev_extent(trans, device,
2767 map->stripes[i].physical,
2768 &dev_extent_len);
2769 if (ret) {
2770 btrfs_abort_transaction(trans, root, ret);
2771 goto out;
2772 }
2773
2774 if (device->bytes_used > 0) {
2775 lock_chunks(root);
2776 btrfs_device_set_bytes_used(device,
2777 device->bytes_used - dev_extent_len);
2778 spin_lock(&root->fs_info->free_chunk_lock);
2779 root->fs_info->free_chunk_space += dev_extent_len;
2780 spin_unlock(&root->fs_info->free_chunk_lock);
2781 btrfs_clear_space_info_full(root->fs_info);
2782 unlock_chunks(root);
2783 }
2784
2785 if (map->stripes[i].dev) {
2786 ret = btrfs_update_device(trans, map->stripes[i].dev);
2787 if (ret) {
2788 btrfs_abort_transaction(trans, root, ret);
2789 goto out;
2790 }
2791 }
2792 }
2793 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2794 if (ret) {
2795 btrfs_abort_transaction(trans, root, ret);
2796 goto out;
2797 }
2798
2799 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2800
2801 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2802 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2803 if (ret) {
2804 btrfs_abort_transaction(trans, root, ret);
2805 goto out;
2806 }
2807 }
2808
2809 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2810 if (ret) {
2811 btrfs_abort_transaction(trans, extent_root, ret);
2812 goto out;
2813 }
2814
2815 out:
2816 /* once for us */
2817 free_extent_map(em);
2818 return ret;
2819 }
2820
2821 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2822 {
2823 struct btrfs_root *extent_root;
2824 struct btrfs_trans_handle *trans;
2825 int ret;
2826
2827 root = root->fs_info->chunk_root;
2828 extent_root = root->fs_info->extent_root;
2829
2830 /*
2831 * Prevent races with automatic removal of unused block groups.
2832 * After we relocate and before we remove the chunk with offset
2833 * chunk_offset, automatic removal of the block group can kick in,
2834 * resulting in a failure when calling btrfs_remove_chunk() below.
2835 *
2836 * Make sure to acquire this mutex before doing a tree search (dev
2837 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2838 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2839 * we release the path used to search the chunk/dev tree and before
2840 * the current task acquires this mutex and calls us.
2841 */
2842 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2843
2844 ret = btrfs_can_relocate(extent_root, chunk_offset);
2845 if (ret)
2846 return -ENOSPC;
2847
2848 /* step one, relocate all the extents inside this chunk */
2849 btrfs_scrub_pause(root);
2850 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2851 btrfs_scrub_continue(root);
2852 if (ret)
2853 return ret;
2854
2855 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2856 chunk_offset);
2857 if (IS_ERR(trans)) {
2858 ret = PTR_ERR(trans);
2859 btrfs_std_error(root->fs_info, ret, NULL);
2860 return ret;
2861 }
2862
2863 /*
2864 * step two, delete the device extents and the
2865 * chunk tree entries
2866 */
2867 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2868 btrfs_end_transaction(trans, root);
2869 return ret;
2870 }
2871
2872 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2873 {
2874 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2875 struct btrfs_path *path;
2876 struct extent_buffer *leaf;
2877 struct btrfs_chunk *chunk;
2878 struct btrfs_key key;
2879 struct btrfs_key found_key;
2880 u64 chunk_type;
2881 bool retried = false;
2882 int failed = 0;
2883 int ret;
2884
2885 path = btrfs_alloc_path();
2886 if (!path)
2887 return -ENOMEM;
2888
2889 again:
2890 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2891 key.offset = (u64)-1;
2892 key.type = BTRFS_CHUNK_ITEM_KEY;
2893
2894 while (1) {
2895 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2896 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2897 if (ret < 0) {
2898 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2899 goto error;
2900 }
2901 BUG_ON(ret == 0); /* Corruption */
2902
2903 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2904 key.type);
2905 if (ret)
2906 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2907 if (ret < 0)
2908 goto error;
2909 if (ret > 0)
2910 break;
2911
2912 leaf = path->nodes[0];
2913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2914
2915 chunk = btrfs_item_ptr(leaf, path->slots[0],
2916 struct btrfs_chunk);
2917 chunk_type = btrfs_chunk_type(leaf, chunk);
2918 btrfs_release_path(path);
2919
2920 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2921 ret = btrfs_relocate_chunk(chunk_root,
2922 found_key.offset);
2923 if (ret == -ENOSPC)
2924 failed++;
2925 else
2926 BUG_ON(ret);
2927 }
2928 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2929
2930 if (found_key.offset == 0)
2931 break;
2932 key.offset = found_key.offset - 1;
2933 }
2934 ret = 0;
2935 if (failed && !retried) {
2936 failed = 0;
2937 retried = true;
2938 goto again;
2939 } else if (WARN_ON(failed && retried)) {
2940 ret = -ENOSPC;
2941 }
2942 error:
2943 btrfs_free_path(path);
2944 return ret;
2945 }
2946
2947 static int insert_balance_item(struct btrfs_root *root,
2948 struct btrfs_balance_control *bctl)
2949 {
2950 struct btrfs_trans_handle *trans;
2951 struct btrfs_balance_item *item;
2952 struct btrfs_disk_balance_args disk_bargs;
2953 struct btrfs_path *path;
2954 struct extent_buffer *leaf;
2955 struct btrfs_key key;
2956 int ret, err;
2957
2958 path = btrfs_alloc_path();
2959 if (!path)
2960 return -ENOMEM;
2961
2962 trans = btrfs_start_transaction(root, 0);
2963 if (IS_ERR(trans)) {
2964 btrfs_free_path(path);
2965 return PTR_ERR(trans);
2966 }
2967
2968 key.objectid = BTRFS_BALANCE_OBJECTID;
2969 key.type = BTRFS_BALANCE_ITEM_KEY;
2970 key.offset = 0;
2971
2972 ret = btrfs_insert_empty_item(trans, root, path, &key,
2973 sizeof(*item));
2974 if (ret)
2975 goto out;
2976
2977 leaf = path->nodes[0];
2978 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2979
2980 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2981
2982 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2983 btrfs_set_balance_data(leaf, item, &disk_bargs);
2984 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2985 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2986 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2987 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2988
2989 btrfs_set_balance_flags(leaf, item, bctl->flags);
2990
2991 btrfs_mark_buffer_dirty(leaf);
2992 out:
2993 btrfs_free_path(path);
2994 err = btrfs_commit_transaction(trans, root);
2995 if (err && !ret)
2996 ret = err;
2997 return ret;
2998 }
2999
3000 static int del_balance_item(struct btrfs_root *root)
3001 {
3002 struct btrfs_trans_handle *trans;
3003 struct btrfs_path *path;
3004 struct btrfs_key key;
3005 int ret, err;
3006
3007 path = btrfs_alloc_path();
3008 if (!path)
3009 return -ENOMEM;
3010
3011 trans = btrfs_start_transaction(root, 0);
3012 if (IS_ERR(trans)) {
3013 btrfs_free_path(path);
3014 return PTR_ERR(trans);
3015 }
3016
3017 key.objectid = BTRFS_BALANCE_OBJECTID;
3018 key.type = BTRFS_BALANCE_ITEM_KEY;
3019 key.offset = 0;
3020
3021 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3022 if (ret < 0)
3023 goto out;
3024 if (ret > 0) {
3025 ret = -ENOENT;
3026 goto out;
3027 }
3028
3029 ret = btrfs_del_item(trans, root, path);
3030 out:
3031 btrfs_free_path(path);
3032 err = btrfs_commit_transaction(trans, root);
3033 if (err && !ret)
3034 ret = err;
3035 return ret;
3036 }
3037
3038 /*
3039 * This is a heuristic used to reduce the number of chunks balanced on
3040 * resume after balance was interrupted.
3041 */
3042 static void update_balance_args(struct btrfs_balance_control *bctl)
3043 {
3044 /*
3045 * Turn on soft mode for chunk types that were being converted.
3046 */
3047 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3048 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3049 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3052 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3053
3054 /*
3055 * Turn on usage filter if is not already used. The idea is
3056 * that chunks that we have already balanced should be
3057 * reasonably full. Don't do it for chunks that are being
3058 * converted - that will keep us from relocating unconverted
3059 * (albeit full) chunks.
3060 */
3061 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3064 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3065 bctl->data.usage = 90;
3066 }
3067 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3068 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3070 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3071 bctl->sys.usage = 90;
3072 }
3073 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3074 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3076 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3077 bctl->meta.usage = 90;
3078 }
3079 }
3080
3081 /*
3082 * Should be called with both balance and volume mutexes held to
3083 * serialize other volume operations (add_dev/rm_dev/resize) with
3084 * restriper. Same goes for unset_balance_control.
3085 */
3086 static void set_balance_control(struct btrfs_balance_control *bctl)
3087 {
3088 struct btrfs_fs_info *fs_info = bctl->fs_info;
3089
3090 BUG_ON(fs_info->balance_ctl);
3091
3092 spin_lock(&fs_info->balance_lock);
3093 fs_info->balance_ctl = bctl;
3094 spin_unlock(&fs_info->balance_lock);
3095 }
3096
3097 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3098 {
3099 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3100
3101 BUG_ON(!fs_info->balance_ctl);
3102
3103 spin_lock(&fs_info->balance_lock);
3104 fs_info->balance_ctl = NULL;
3105 spin_unlock(&fs_info->balance_lock);
3106
3107 kfree(bctl);
3108 }
3109
3110 /*
3111 * Balance filters. Return 1 if chunk should be filtered out
3112 * (should not be balanced).
3113 */
3114 static int chunk_profiles_filter(u64 chunk_type,
3115 struct btrfs_balance_args *bargs)
3116 {
3117 chunk_type = chunk_to_extended(chunk_type) &
3118 BTRFS_EXTENDED_PROFILE_MASK;
3119
3120 if (bargs->profiles & chunk_type)
3121 return 0;
3122
3123 return 1;
3124 }
3125
3126 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3127 struct btrfs_balance_args *bargs)
3128 {
3129 struct btrfs_block_group_cache *cache;
3130 u64 chunk_used;
3131 u64 user_thresh_min;
3132 u64 user_thresh_max;
3133 int ret = 1;
3134
3135 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3136 chunk_used = btrfs_block_group_used(&cache->item);
3137
3138 if (bargs->usage_min == 0)
3139 user_thresh_min = 0;
3140 else
3141 user_thresh_min = div_factor_fine(cache->key.offset,
3142 bargs->usage_min);
3143
3144 if (bargs->usage_max == 0)
3145 user_thresh_max = 1;
3146 else if (bargs->usage_max > 100)
3147 user_thresh_max = cache->key.offset;
3148 else
3149 user_thresh_max = div_factor_fine(cache->key.offset,
3150 bargs->usage_max);
3151
3152 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3153 ret = 0;
3154
3155 btrfs_put_block_group(cache);
3156 return ret;
3157 }
3158
3159 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3160 u64 chunk_offset, struct btrfs_balance_args *bargs)
3161 {
3162 struct btrfs_block_group_cache *cache;
3163 u64 chunk_used, user_thresh;
3164 int ret = 1;
3165
3166 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3167 chunk_used = btrfs_block_group_used(&cache->item);
3168
3169 if (bargs->usage_min == 0)
3170 user_thresh = 1;
3171 else if (bargs->usage > 100)
3172 user_thresh = cache->key.offset;
3173 else
3174 user_thresh = div_factor_fine(cache->key.offset,
3175 bargs->usage);
3176
3177 if (chunk_used < user_thresh)
3178 ret = 0;
3179
3180 btrfs_put_block_group(cache);
3181 return ret;
3182 }
3183
3184 static int chunk_devid_filter(struct extent_buffer *leaf,
3185 struct btrfs_chunk *chunk,
3186 struct btrfs_balance_args *bargs)
3187 {
3188 struct btrfs_stripe *stripe;
3189 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3190 int i;
3191
3192 for (i = 0; i < num_stripes; i++) {
3193 stripe = btrfs_stripe_nr(chunk, i);
3194 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3195 return 0;
3196 }
3197
3198 return 1;
3199 }
3200
3201 /* [pstart, pend) */
3202 static int chunk_drange_filter(struct extent_buffer *leaf,
3203 struct btrfs_chunk *chunk,
3204 u64 chunk_offset,
3205 struct btrfs_balance_args *bargs)
3206 {
3207 struct btrfs_stripe *stripe;
3208 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3209 u64 stripe_offset;
3210 u64 stripe_length;
3211 int factor;
3212 int i;
3213
3214 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3215 return 0;
3216
3217 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3218 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3219 factor = num_stripes / 2;
3220 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3221 factor = num_stripes - 1;
3222 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3223 factor = num_stripes - 2;
3224 } else {
3225 factor = num_stripes;
3226 }
3227
3228 for (i = 0; i < num_stripes; i++) {
3229 stripe = btrfs_stripe_nr(chunk, i);
3230 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3231 continue;
3232
3233 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3234 stripe_length = btrfs_chunk_length(leaf, chunk);
3235 stripe_length = div_u64(stripe_length, factor);
3236
3237 if (stripe_offset < bargs->pend &&
3238 stripe_offset + stripe_length > bargs->pstart)
3239 return 0;
3240 }
3241
3242 return 1;
3243 }
3244
3245 /* [vstart, vend) */
3246 static int chunk_vrange_filter(struct extent_buffer *leaf,
3247 struct btrfs_chunk *chunk,
3248 u64 chunk_offset,
3249 struct btrfs_balance_args *bargs)
3250 {
3251 if (chunk_offset < bargs->vend &&
3252 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3253 /* at least part of the chunk is inside this vrange */
3254 return 0;
3255
3256 return 1;
3257 }
3258
3259 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3260 struct btrfs_chunk *chunk,
3261 struct btrfs_balance_args *bargs)
3262 {
3263 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3264
3265 if (bargs->stripes_min <= num_stripes
3266 && num_stripes <= bargs->stripes_max)
3267 return 0;
3268
3269 return 1;
3270 }
3271
3272 static int chunk_soft_convert_filter(u64 chunk_type,
3273 struct btrfs_balance_args *bargs)
3274 {
3275 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3276 return 0;
3277
3278 chunk_type = chunk_to_extended(chunk_type) &
3279 BTRFS_EXTENDED_PROFILE_MASK;
3280
3281 if (bargs->target == chunk_type)
3282 return 1;
3283
3284 return 0;
3285 }
3286
3287 static int should_balance_chunk(struct btrfs_root *root,
3288 struct extent_buffer *leaf,
3289 struct btrfs_chunk *chunk, u64 chunk_offset)
3290 {
3291 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3292 struct btrfs_balance_args *bargs = NULL;
3293 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3294
3295 /* type filter */
3296 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3297 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3298 return 0;
3299 }
3300
3301 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3302 bargs = &bctl->data;
3303 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3304 bargs = &bctl->sys;
3305 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3306 bargs = &bctl->meta;
3307
3308 /* profiles filter */
3309 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3310 chunk_profiles_filter(chunk_type, bargs)) {
3311 return 0;
3312 }
3313
3314 /* usage filter */
3315 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3316 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3317 return 0;
3318 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3319 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3320 return 0;
3321 }
3322
3323 /* devid filter */
3324 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3325 chunk_devid_filter(leaf, chunk, bargs)) {
3326 return 0;
3327 }
3328
3329 /* drange filter, makes sense only with devid filter */
3330 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3331 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3332 return 0;
3333 }
3334
3335 /* vrange filter */
3336 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3337 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3338 return 0;
3339 }
3340
3341 /* stripes filter */
3342 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3343 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3344 return 0;
3345 }
3346
3347 /* soft profile changing mode */
3348 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3349 chunk_soft_convert_filter(chunk_type, bargs)) {
3350 return 0;
3351 }
3352
3353 /*
3354 * limited by count, must be the last filter
3355 */
3356 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3357 if (bargs->limit == 0)
3358 return 0;
3359 else
3360 bargs->limit--;
3361 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3362 /*
3363 * Same logic as the 'limit' filter; the minimum cannot be
3364 * determined here because we do not have the global informatoin
3365 * about the count of all chunks that satisfy the filters.
3366 */
3367 if (bargs->limit_max == 0)
3368 return 0;
3369 else
3370 bargs->limit_max--;
3371 }
3372
3373 return 1;
3374 }
3375
3376 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3377 {
3378 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3379 struct btrfs_root *chunk_root = fs_info->chunk_root;
3380 struct btrfs_root *dev_root = fs_info->dev_root;
3381 struct list_head *devices;
3382 struct btrfs_device *device;
3383 u64 old_size;
3384 u64 size_to_free;
3385 u64 chunk_type;
3386 struct btrfs_chunk *chunk;
3387 struct btrfs_path *path;
3388 struct btrfs_key key;
3389 struct btrfs_key found_key;
3390 struct btrfs_trans_handle *trans;
3391 struct extent_buffer *leaf;
3392 int slot;
3393 int ret;
3394 int enospc_errors = 0;
3395 bool counting = true;
3396 /* The single value limit and min/max limits use the same bytes in the */
3397 u64 limit_data = bctl->data.limit;
3398 u64 limit_meta = bctl->meta.limit;
3399 u64 limit_sys = bctl->sys.limit;
3400 u32 count_data = 0;
3401 u32 count_meta = 0;
3402 u32 count_sys = 0;
3403 int chunk_reserved = 0;
3404
3405 /* step one make some room on all the devices */
3406 devices = &fs_info->fs_devices->devices;
3407 list_for_each_entry(device, devices, dev_list) {
3408 old_size = btrfs_device_get_total_bytes(device);
3409 size_to_free = div_factor(old_size, 1);
3410 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3411 if (!device->writeable ||
3412 btrfs_device_get_total_bytes(device) -
3413 btrfs_device_get_bytes_used(device) > size_to_free ||
3414 device->is_tgtdev_for_dev_replace)
3415 continue;
3416
3417 ret = btrfs_shrink_device(device, old_size - size_to_free);
3418 if (ret == -ENOSPC)
3419 break;
3420 BUG_ON(ret);
3421
3422 trans = btrfs_start_transaction(dev_root, 0);
3423 BUG_ON(IS_ERR(trans));
3424
3425 ret = btrfs_grow_device(trans, device, old_size);
3426 BUG_ON(ret);
3427
3428 btrfs_end_transaction(trans, dev_root);
3429 }
3430
3431 /* step two, relocate all the chunks */
3432 path = btrfs_alloc_path();
3433 if (!path) {
3434 ret = -ENOMEM;
3435 goto error;
3436 }
3437
3438 /* zero out stat counters */
3439 spin_lock(&fs_info->balance_lock);
3440 memset(&bctl->stat, 0, sizeof(bctl->stat));
3441 spin_unlock(&fs_info->balance_lock);
3442 again:
3443 if (!counting) {
3444 /*
3445 * The single value limit and min/max limits use the same bytes
3446 * in the
3447 */
3448 bctl->data.limit = limit_data;
3449 bctl->meta.limit = limit_meta;
3450 bctl->sys.limit = limit_sys;
3451 }
3452 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3453 key.offset = (u64)-1;
3454 key.type = BTRFS_CHUNK_ITEM_KEY;
3455
3456 while (1) {
3457 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3458 atomic_read(&fs_info->balance_cancel_req)) {
3459 ret = -ECANCELED;
3460 goto error;
3461 }
3462
3463 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3464 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3465 if (ret < 0) {
3466 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3467 goto error;
3468 }
3469
3470 /*
3471 * this shouldn't happen, it means the last relocate
3472 * failed
3473 */
3474 if (ret == 0)
3475 BUG(); /* FIXME break ? */
3476
3477 ret = btrfs_previous_item(chunk_root, path, 0,
3478 BTRFS_CHUNK_ITEM_KEY);
3479 if (ret) {
3480 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3481 ret = 0;
3482 break;
3483 }
3484
3485 leaf = path->nodes[0];
3486 slot = path->slots[0];
3487 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3488
3489 if (found_key.objectid != key.objectid) {
3490 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3491 break;
3492 }
3493
3494 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3495 chunk_type = btrfs_chunk_type(leaf, chunk);
3496
3497 if (!counting) {
3498 spin_lock(&fs_info->balance_lock);
3499 bctl->stat.considered++;
3500 spin_unlock(&fs_info->balance_lock);
3501 }
3502
3503 ret = should_balance_chunk(chunk_root, leaf, chunk,
3504 found_key.offset);
3505
3506 btrfs_release_path(path);
3507 if (!ret) {
3508 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3509 goto loop;
3510 }
3511
3512 if (counting) {
3513 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3514 spin_lock(&fs_info->balance_lock);
3515 bctl->stat.expected++;
3516 spin_unlock(&fs_info->balance_lock);
3517
3518 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3519 count_data++;
3520 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3521 count_sys++;
3522 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3523 count_meta++;
3524
3525 goto loop;
3526 }
3527
3528 /*
3529 * Apply limit_min filter, no need to check if the LIMITS
3530 * filter is used, limit_min is 0 by default
3531 */
3532 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3533 count_data < bctl->data.limit_min)
3534 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3535 count_meta < bctl->meta.limit_min)
3536 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3537 count_sys < bctl->sys.limit_min)) {
3538 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3539 goto loop;
3540 }
3541
3542 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3543 trans = btrfs_start_transaction(chunk_root, 0);
3544 if (IS_ERR(trans)) {
3545 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3546 ret = PTR_ERR(trans);
3547 goto error;
3548 }
3549
3550 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3551 BTRFS_BLOCK_GROUP_DATA);
3552 btrfs_end_transaction(trans, chunk_root);
3553 if (ret < 0) {
3554 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3555 goto error;
3556 }
3557 chunk_reserved = 1;
3558 }
3559
3560 ret = btrfs_relocate_chunk(chunk_root,
3561 found_key.offset);
3562 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3563 if (ret && ret != -ENOSPC)
3564 goto error;
3565 if (ret == -ENOSPC) {
3566 enospc_errors++;
3567 } else {
3568 spin_lock(&fs_info->balance_lock);
3569 bctl->stat.completed++;
3570 spin_unlock(&fs_info->balance_lock);
3571 }
3572 loop:
3573 if (found_key.offset == 0)
3574 break;
3575 key.offset = found_key.offset - 1;
3576 }
3577
3578 if (counting) {
3579 btrfs_release_path(path);
3580 counting = false;
3581 goto again;
3582 }
3583 error:
3584 btrfs_free_path(path);
3585 if (enospc_errors) {
3586 btrfs_info(fs_info, "%d enospc errors during balance",
3587 enospc_errors);
3588 if (!ret)
3589 ret = -ENOSPC;
3590 }
3591
3592 return ret;
3593 }
3594
3595 /**
3596 * alloc_profile_is_valid - see if a given profile is valid and reduced
3597 * @flags: profile to validate
3598 * @extended: if true @flags is treated as an extended profile
3599 */
3600 static int alloc_profile_is_valid(u64 flags, int extended)
3601 {
3602 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3603 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3604
3605 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3606
3607 /* 1) check that all other bits are zeroed */
3608 if (flags & ~mask)
3609 return 0;
3610
3611 /* 2) see if profile is reduced */
3612 if (flags == 0)
3613 return !extended; /* "0" is valid for usual profiles */
3614
3615 /* true if exactly one bit set */
3616 return (flags & (flags - 1)) == 0;
3617 }
3618
3619 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3620 {
3621 /* cancel requested || normal exit path */
3622 return atomic_read(&fs_info->balance_cancel_req) ||
3623 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3624 atomic_read(&fs_info->balance_cancel_req) == 0);
3625 }
3626
3627 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3628 {
3629 int ret;
3630
3631 unset_balance_control(fs_info);
3632 ret = del_balance_item(fs_info->tree_root);
3633 if (ret)
3634 btrfs_std_error(fs_info, ret, NULL);
3635
3636 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3637 }
3638
3639 /* Non-zero return value signifies invalidity */
3640 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3641 u64 allowed)
3642 {
3643 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3644 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3645 (bctl_arg->target & ~allowed)));
3646 }
3647
3648 /*
3649 * Should be called with both balance and volume mutexes held
3650 */
3651 int btrfs_balance(struct btrfs_balance_control *bctl,
3652 struct btrfs_ioctl_balance_args *bargs)
3653 {
3654 struct btrfs_fs_info *fs_info = bctl->fs_info;
3655 u64 allowed;
3656 int mixed = 0;
3657 int ret;
3658 u64 num_devices;
3659 unsigned seq;
3660
3661 if (btrfs_fs_closing(fs_info) ||
3662 atomic_read(&fs_info->balance_pause_req) ||
3663 atomic_read(&fs_info->balance_cancel_req)) {
3664 ret = -EINVAL;
3665 goto out;
3666 }
3667
3668 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3669 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3670 mixed = 1;
3671
3672 /*
3673 * In case of mixed groups both data and meta should be picked,
3674 * and identical options should be given for both of them.
3675 */
3676 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3677 if (mixed && (bctl->flags & allowed)) {
3678 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3679 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3680 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3681 btrfs_err(fs_info, "with mixed groups data and "
3682 "metadata balance options must be the same");
3683 ret = -EINVAL;
3684 goto out;
3685 }
3686 }
3687
3688 num_devices = fs_info->fs_devices->num_devices;
3689 btrfs_dev_replace_lock(&fs_info->dev_replace);
3690 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3691 BUG_ON(num_devices < 1);
3692 num_devices--;
3693 }
3694 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3695 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3696 if (num_devices == 1)
3697 allowed |= BTRFS_BLOCK_GROUP_DUP;
3698 else if (num_devices > 1)
3699 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3700 if (num_devices > 2)
3701 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3702 if (num_devices > 3)
3703 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3704 BTRFS_BLOCK_GROUP_RAID6);
3705 if (validate_convert_profile(&bctl->data, allowed)) {
3706 btrfs_err(fs_info, "unable to start balance with target "
3707 "data profile %llu",
3708 bctl->data.target);
3709 ret = -EINVAL;
3710 goto out;
3711 }
3712 if (validate_convert_profile(&bctl->meta, allowed)) {
3713 btrfs_err(fs_info,
3714 "unable to start balance with target metadata profile %llu",
3715 bctl->meta.target);
3716 ret = -EINVAL;
3717 goto out;
3718 }
3719 if (validate_convert_profile(&bctl->sys, allowed)) {
3720 btrfs_err(fs_info,
3721 "unable to start balance with target system profile %llu",
3722 bctl->sys.target);
3723 ret = -EINVAL;
3724 goto out;
3725 }
3726
3727 /* allow dup'ed data chunks only in mixed mode */
3728 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3729 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3730 btrfs_err(fs_info, "dup for data is not allowed");
3731 ret = -EINVAL;
3732 goto out;
3733 }
3734
3735 /* allow to reduce meta or sys integrity only if force set */
3736 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3737 BTRFS_BLOCK_GROUP_RAID10 |
3738 BTRFS_BLOCK_GROUP_RAID5 |
3739 BTRFS_BLOCK_GROUP_RAID6;
3740 do {
3741 seq = read_seqbegin(&fs_info->profiles_lock);
3742
3743 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3744 (fs_info->avail_system_alloc_bits & allowed) &&
3745 !(bctl->sys.target & allowed)) ||
3746 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3747 (fs_info->avail_metadata_alloc_bits & allowed) &&
3748 !(bctl->meta.target & allowed))) {
3749 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3750 btrfs_info(fs_info, "force reducing metadata integrity");
3751 } else {
3752 btrfs_err(fs_info, "balance will reduce metadata "
3753 "integrity, use force if you want this");
3754 ret = -EINVAL;
3755 goto out;
3756 }
3757 }
3758 } while (read_seqretry(&fs_info->profiles_lock, seq));
3759
3760 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 fs_info->num_tolerated_disk_barrier_failures = min(
3762 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3763 btrfs_get_num_tolerated_disk_barrier_failures(
3764 bctl->sys.target));
3765 }
3766
3767 ret = insert_balance_item(fs_info->tree_root, bctl);
3768 if (ret && ret != -EEXIST)
3769 goto out;
3770
3771 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3772 BUG_ON(ret == -EEXIST);
3773 set_balance_control(bctl);
3774 } else {
3775 BUG_ON(ret != -EEXIST);
3776 spin_lock(&fs_info->balance_lock);
3777 update_balance_args(bctl);
3778 spin_unlock(&fs_info->balance_lock);
3779 }
3780
3781 atomic_inc(&fs_info->balance_running);
3782 mutex_unlock(&fs_info->balance_mutex);
3783
3784 ret = __btrfs_balance(fs_info);
3785
3786 mutex_lock(&fs_info->balance_mutex);
3787 atomic_dec(&fs_info->balance_running);
3788
3789 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3790 fs_info->num_tolerated_disk_barrier_failures =
3791 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3792 }
3793
3794 if (bargs) {
3795 memset(bargs, 0, sizeof(*bargs));
3796 update_ioctl_balance_args(fs_info, 0, bargs);
3797 }
3798
3799 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3800 balance_need_close(fs_info)) {
3801 __cancel_balance(fs_info);
3802 }
3803
3804 wake_up(&fs_info->balance_wait_q);
3805
3806 return ret;
3807 out:
3808 if (bctl->flags & BTRFS_BALANCE_RESUME)
3809 __cancel_balance(fs_info);
3810 else {
3811 kfree(bctl);
3812 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3813 }
3814 return ret;
3815 }
3816
3817 static int balance_kthread(void *data)
3818 {
3819 struct btrfs_fs_info *fs_info = data;
3820 int ret = 0;
3821
3822 mutex_lock(&fs_info->volume_mutex);
3823 mutex_lock(&fs_info->balance_mutex);
3824
3825 if (fs_info->balance_ctl) {
3826 btrfs_info(fs_info, "continuing balance");
3827 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3828 }
3829
3830 mutex_unlock(&fs_info->balance_mutex);
3831 mutex_unlock(&fs_info->volume_mutex);
3832
3833 return ret;
3834 }
3835
3836 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3837 {
3838 struct task_struct *tsk;
3839
3840 spin_lock(&fs_info->balance_lock);
3841 if (!fs_info->balance_ctl) {
3842 spin_unlock(&fs_info->balance_lock);
3843 return 0;
3844 }
3845 spin_unlock(&fs_info->balance_lock);
3846
3847 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3848 btrfs_info(fs_info, "force skipping balance");
3849 return 0;
3850 }
3851
3852 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3853 return PTR_ERR_OR_ZERO(tsk);
3854 }
3855
3856 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3857 {
3858 struct btrfs_balance_control *bctl;
3859 struct btrfs_balance_item *item;
3860 struct btrfs_disk_balance_args disk_bargs;
3861 struct btrfs_path *path;
3862 struct extent_buffer *leaf;
3863 struct btrfs_key key;
3864 int ret;
3865
3866 path = btrfs_alloc_path();
3867 if (!path)
3868 return -ENOMEM;
3869
3870 key.objectid = BTRFS_BALANCE_OBJECTID;
3871 key.type = BTRFS_BALANCE_ITEM_KEY;
3872 key.offset = 0;
3873
3874 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3875 if (ret < 0)
3876 goto out;
3877 if (ret > 0) { /* ret = -ENOENT; */
3878 ret = 0;
3879 goto out;
3880 }
3881
3882 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3883 if (!bctl) {
3884 ret = -ENOMEM;
3885 goto out;
3886 }
3887
3888 leaf = path->nodes[0];
3889 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3890
3891 bctl->fs_info = fs_info;
3892 bctl->flags = btrfs_balance_flags(leaf, item);
3893 bctl->flags |= BTRFS_BALANCE_RESUME;
3894
3895 btrfs_balance_data(leaf, item, &disk_bargs);
3896 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3897 btrfs_balance_meta(leaf, item, &disk_bargs);
3898 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3899 btrfs_balance_sys(leaf, item, &disk_bargs);
3900 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3901
3902 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3903
3904 mutex_lock(&fs_info->volume_mutex);
3905 mutex_lock(&fs_info->balance_mutex);
3906
3907 set_balance_control(bctl);
3908
3909 mutex_unlock(&fs_info->balance_mutex);
3910 mutex_unlock(&fs_info->volume_mutex);
3911 out:
3912 btrfs_free_path(path);
3913 return ret;
3914 }
3915
3916 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3917 {
3918 int ret = 0;
3919
3920 mutex_lock(&fs_info->balance_mutex);
3921 if (!fs_info->balance_ctl) {
3922 mutex_unlock(&fs_info->balance_mutex);
3923 return -ENOTCONN;
3924 }
3925
3926 if (atomic_read(&fs_info->balance_running)) {
3927 atomic_inc(&fs_info->balance_pause_req);
3928 mutex_unlock(&fs_info->balance_mutex);
3929
3930 wait_event(fs_info->balance_wait_q,
3931 atomic_read(&fs_info->balance_running) == 0);
3932
3933 mutex_lock(&fs_info->balance_mutex);
3934 /* we are good with balance_ctl ripped off from under us */
3935 BUG_ON(atomic_read(&fs_info->balance_running));
3936 atomic_dec(&fs_info->balance_pause_req);
3937 } else {
3938 ret = -ENOTCONN;
3939 }
3940
3941 mutex_unlock(&fs_info->balance_mutex);
3942 return ret;
3943 }
3944
3945 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3946 {
3947 if (fs_info->sb->s_flags & MS_RDONLY)
3948 return -EROFS;
3949
3950 mutex_lock(&fs_info->balance_mutex);
3951 if (!fs_info->balance_ctl) {
3952 mutex_unlock(&fs_info->balance_mutex);
3953 return -ENOTCONN;
3954 }
3955
3956 atomic_inc(&fs_info->balance_cancel_req);
3957 /*
3958 * if we are running just wait and return, balance item is
3959 * deleted in btrfs_balance in this case
3960 */
3961 if (atomic_read(&fs_info->balance_running)) {
3962 mutex_unlock(&fs_info->balance_mutex);
3963 wait_event(fs_info->balance_wait_q,
3964 atomic_read(&fs_info->balance_running) == 0);
3965 mutex_lock(&fs_info->balance_mutex);
3966 } else {
3967 /* __cancel_balance needs volume_mutex */
3968 mutex_unlock(&fs_info->balance_mutex);
3969 mutex_lock(&fs_info->volume_mutex);
3970 mutex_lock(&fs_info->balance_mutex);
3971
3972 if (fs_info->balance_ctl)
3973 __cancel_balance(fs_info);
3974
3975 mutex_unlock(&fs_info->volume_mutex);
3976 }
3977
3978 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3979 atomic_dec(&fs_info->balance_cancel_req);
3980 mutex_unlock(&fs_info->balance_mutex);
3981 return 0;
3982 }
3983
3984 static int btrfs_uuid_scan_kthread(void *data)
3985 {
3986 struct btrfs_fs_info *fs_info = data;
3987 struct btrfs_root *root = fs_info->tree_root;
3988 struct btrfs_key key;
3989 struct btrfs_key max_key;
3990 struct btrfs_path *path = NULL;
3991 int ret = 0;
3992 struct extent_buffer *eb;
3993 int slot;
3994 struct btrfs_root_item root_item;
3995 u32 item_size;
3996 struct btrfs_trans_handle *trans = NULL;
3997
3998 path = btrfs_alloc_path();
3999 if (!path) {
4000 ret = -ENOMEM;
4001 goto out;
4002 }
4003
4004 key.objectid = 0;
4005 key.type = BTRFS_ROOT_ITEM_KEY;
4006 key.offset = 0;
4007
4008 max_key.objectid = (u64)-1;
4009 max_key.type = BTRFS_ROOT_ITEM_KEY;
4010 max_key.offset = (u64)-1;
4011
4012 while (1) {
4013 ret = btrfs_search_forward(root, &key, path, 0);
4014 if (ret) {
4015 if (ret > 0)
4016 ret = 0;
4017 break;
4018 }
4019
4020 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4021 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4022 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4023 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4024 goto skip;
4025
4026 eb = path->nodes[0];
4027 slot = path->slots[0];
4028 item_size = btrfs_item_size_nr(eb, slot);
4029 if (item_size < sizeof(root_item))
4030 goto skip;
4031
4032 read_extent_buffer(eb, &root_item,
4033 btrfs_item_ptr_offset(eb, slot),
4034 (int)sizeof(root_item));
4035 if (btrfs_root_refs(&root_item) == 0)
4036 goto skip;
4037
4038 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4039 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4040 if (trans)
4041 goto update_tree;
4042
4043 btrfs_release_path(path);
4044 /*
4045 * 1 - subvol uuid item
4046 * 1 - received_subvol uuid item
4047 */
4048 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4049 if (IS_ERR(trans)) {
4050 ret = PTR_ERR(trans);
4051 break;
4052 }
4053 continue;
4054 } else {
4055 goto skip;
4056 }
4057 update_tree:
4058 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4059 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4060 root_item.uuid,
4061 BTRFS_UUID_KEY_SUBVOL,
4062 key.objectid);
4063 if (ret < 0) {
4064 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4065 ret);
4066 break;
4067 }
4068 }
4069
4070 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4071 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072 root_item.received_uuid,
4073 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4074 key.objectid);
4075 if (ret < 0) {
4076 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077 ret);
4078 break;
4079 }
4080 }
4081
4082 skip:
4083 if (trans) {
4084 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4085 trans = NULL;
4086 if (ret)
4087 break;
4088 }
4089
4090 btrfs_release_path(path);
4091 if (key.offset < (u64)-1) {
4092 key.offset++;
4093 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4094 key.offset = 0;
4095 key.type = BTRFS_ROOT_ITEM_KEY;
4096 } else if (key.objectid < (u64)-1) {
4097 key.offset = 0;
4098 key.type = BTRFS_ROOT_ITEM_KEY;
4099 key.objectid++;
4100 } else {
4101 break;
4102 }
4103 cond_resched();
4104 }
4105
4106 out:
4107 btrfs_free_path(path);
4108 if (trans && !IS_ERR(trans))
4109 btrfs_end_transaction(trans, fs_info->uuid_root);
4110 if (ret)
4111 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4112 else
4113 fs_info->update_uuid_tree_gen = 1;
4114 up(&fs_info->uuid_tree_rescan_sem);
4115 return 0;
4116 }
4117
4118 /*
4119 * Callback for btrfs_uuid_tree_iterate().
4120 * returns:
4121 * 0 check succeeded, the entry is not outdated.
4122 * < 0 if an error occured.
4123 * > 0 if the check failed, which means the caller shall remove the entry.
4124 */
4125 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4126 u8 *uuid, u8 type, u64 subid)
4127 {
4128 struct btrfs_key key;
4129 int ret = 0;
4130 struct btrfs_root *subvol_root;
4131
4132 if (type != BTRFS_UUID_KEY_SUBVOL &&
4133 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4134 goto out;
4135
4136 key.objectid = subid;
4137 key.type = BTRFS_ROOT_ITEM_KEY;
4138 key.offset = (u64)-1;
4139 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4140 if (IS_ERR(subvol_root)) {
4141 ret = PTR_ERR(subvol_root);
4142 if (ret == -ENOENT)
4143 ret = 1;
4144 goto out;
4145 }
4146
4147 switch (type) {
4148 case BTRFS_UUID_KEY_SUBVOL:
4149 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4150 ret = 1;
4151 break;
4152 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4153 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4154 BTRFS_UUID_SIZE))
4155 ret = 1;
4156 break;
4157 }
4158
4159 out:
4160 return ret;
4161 }
4162
4163 static int btrfs_uuid_rescan_kthread(void *data)
4164 {
4165 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4166 int ret;
4167
4168 /*
4169 * 1st step is to iterate through the existing UUID tree and
4170 * to delete all entries that contain outdated data.
4171 * 2nd step is to add all missing entries to the UUID tree.
4172 */
4173 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4174 if (ret < 0) {
4175 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4176 up(&fs_info->uuid_tree_rescan_sem);
4177 return ret;
4178 }
4179 return btrfs_uuid_scan_kthread(data);
4180 }
4181
4182 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4183 {
4184 struct btrfs_trans_handle *trans;
4185 struct btrfs_root *tree_root = fs_info->tree_root;
4186 struct btrfs_root *uuid_root;
4187 struct task_struct *task;
4188 int ret;
4189
4190 /*
4191 * 1 - root node
4192 * 1 - root item
4193 */
4194 trans = btrfs_start_transaction(tree_root, 2);
4195 if (IS_ERR(trans))
4196 return PTR_ERR(trans);
4197
4198 uuid_root = btrfs_create_tree(trans, fs_info,
4199 BTRFS_UUID_TREE_OBJECTID);
4200 if (IS_ERR(uuid_root)) {
4201 ret = PTR_ERR(uuid_root);
4202 btrfs_abort_transaction(trans, tree_root, ret);
4203 return ret;
4204 }
4205
4206 fs_info->uuid_root = uuid_root;
4207
4208 ret = btrfs_commit_transaction(trans, tree_root);
4209 if (ret)
4210 return ret;
4211
4212 down(&fs_info->uuid_tree_rescan_sem);
4213 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4214 if (IS_ERR(task)) {
4215 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4216 btrfs_warn(fs_info, "failed to start uuid_scan task");
4217 up(&fs_info->uuid_tree_rescan_sem);
4218 return PTR_ERR(task);
4219 }
4220
4221 return 0;
4222 }
4223
4224 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4225 {
4226 struct task_struct *task;
4227
4228 down(&fs_info->uuid_tree_rescan_sem);
4229 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4230 if (IS_ERR(task)) {
4231 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4232 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4233 up(&fs_info->uuid_tree_rescan_sem);
4234 return PTR_ERR(task);
4235 }
4236
4237 return 0;
4238 }
4239
4240 /*
4241 * shrinking a device means finding all of the device extents past
4242 * the new size, and then following the back refs to the chunks.
4243 * The chunk relocation code actually frees the device extent
4244 */
4245 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4246 {
4247 struct btrfs_trans_handle *trans;
4248 struct btrfs_root *root = device->dev_root;
4249 struct btrfs_dev_extent *dev_extent = NULL;
4250 struct btrfs_path *path;
4251 u64 length;
4252 u64 chunk_offset;
4253 int ret;
4254 int slot;
4255 int failed = 0;
4256 bool retried = false;
4257 bool checked_pending_chunks = false;
4258 struct extent_buffer *l;
4259 struct btrfs_key key;
4260 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4261 u64 old_total = btrfs_super_total_bytes(super_copy);
4262 u64 old_size = btrfs_device_get_total_bytes(device);
4263 u64 diff = old_size - new_size;
4264
4265 if (device->is_tgtdev_for_dev_replace)
4266 return -EINVAL;
4267
4268 path = btrfs_alloc_path();
4269 if (!path)
4270 return -ENOMEM;
4271
4272 path->reada = 2;
4273
4274 lock_chunks(root);
4275
4276 btrfs_device_set_total_bytes(device, new_size);
4277 if (device->writeable) {
4278 device->fs_devices->total_rw_bytes -= diff;
4279 spin_lock(&root->fs_info->free_chunk_lock);
4280 root->fs_info->free_chunk_space -= diff;
4281 spin_unlock(&root->fs_info->free_chunk_lock);
4282 }
4283 unlock_chunks(root);
4284
4285 again:
4286 key.objectid = device->devid;
4287 key.offset = (u64)-1;
4288 key.type = BTRFS_DEV_EXTENT_KEY;
4289
4290 do {
4291 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4293 if (ret < 0) {
4294 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4295 goto done;
4296 }
4297
4298 ret = btrfs_previous_item(root, path, 0, key.type);
4299 if (ret)
4300 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4301 if (ret < 0)
4302 goto done;
4303 if (ret) {
4304 ret = 0;
4305 btrfs_release_path(path);
4306 break;
4307 }
4308
4309 l = path->nodes[0];
4310 slot = path->slots[0];
4311 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4312
4313 if (key.objectid != device->devid) {
4314 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4315 btrfs_release_path(path);
4316 break;
4317 }
4318
4319 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4320 length = btrfs_dev_extent_length(l, dev_extent);
4321
4322 if (key.offset + length <= new_size) {
4323 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4324 btrfs_release_path(path);
4325 break;
4326 }
4327
4328 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4329 btrfs_release_path(path);
4330
4331 ret = btrfs_relocate_chunk(root, chunk_offset);
4332 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4333 if (ret && ret != -ENOSPC)
4334 goto done;
4335 if (ret == -ENOSPC)
4336 failed++;
4337 } while (key.offset-- > 0);
4338
4339 if (failed && !retried) {
4340 failed = 0;
4341 retried = true;
4342 goto again;
4343 } else if (failed && retried) {
4344 ret = -ENOSPC;
4345 goto done;
4346 }
4347
4348 /* Shrinking succeeded, else we would be at "done". */
4349 trans = btrfs_start_transaction(root, 0);
4350 if (IS_ERR(trans)) {
4351 ret = PTR_ERR(trans);
4352 goto done;
4353 }
4354
4355 lock_chunks(root);
4356
4357 /*
4358 * We checked in the above loop all device extents that were already in
4359 * the device tree. However before we have updated the device's
4360 * total_bytes to the new size, we might have had chunk allocations that
4361 * have not complete yet (new block groups attached to transaction
4362 * handles), and therefore their device extents were not yet in the
4363 * device tree and we missed them in the loop above. So if we have any
4364 * pending chunk using a device extent that overlaps the device range
4365 * that we can not use anymore, commit the current transaction and
4366 * repeat the search on the device tree - this way we guarantee we will
4367 * not have chunks using device extents that end beyond 'new_size'.
4368 */
4369 if (!checked_pending_chunks) {
4370 u64 start = new_size;
4371 u64 len = old_size - new_size;
4372
4373 if (contains_pending_extent(trans->transaction, device,
4374 &start, len)) {
4375 unlock_chunks(root);
4376 checked_pending_chunks = true;
4377 failed = 0;
4378 retried = false;
4379 ret = btrfs_commit_transaction(trans, root);
4380 if (ret)
4381 goto done;
4382 goto again;
4383 }
4384 }
4385
4386 btrfs_device_set_disk_total_bytes(device, new_size);
4387 if (list_empty(&device->resized_list))
4388 list_add_tail(&device->resized_list,
4389 &root->fs_info->fs_devices->resized_devices);
4390
4391 WARN_ON(diff > old_total);
4392 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4393 unlock_chunks(root);
4394
4395 /* Now btrfs_update_device() will change the on-disk size. */
4396 ret = btrfs_update_device(trans, device);
4397 btrfs_end_transaction(trans, root);
4398 done:
4399 btrfs_free_path(path);
4400 if (ret) {
4401 lock_chunks(root);
4402 btrfs_device_set_total_bytes(device, old_size);
4403 if (device->writeable)
4404 device->fs_devices->total_rw_bytes += diff;
4405 spin_lock(&root->fs_info->free_chunk_lock);
4406 root->fs_info->free_chunk_space += diff;
4407 spin_unlock(&root->fs_info->free_chunk_lock);
4408 unlock_chunks(root);
4409 }
4410 return ret;
4411 }
4412
4413 static int btrfs_add_system_chunk(struct btrfs_root *root,
4414 struct btrfs_key *key,
4415 struct btrfs_chunk *chunk, int item_size)
4416 {
4417 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4418 struct btrfs_disk_key disk_key;
4419 u32 array_size;
4420 u8 *ptr;
4421
4422 lock_chunks(root);
4423 array_size = btrfs_super_sys_array_size(super_copy);
4424 if (array_size + item_size + sizeof(disk_key)
4425 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4426 unlock_chunks(root);
4427 return -EFBIG;
4428 }
4429
4430 ptr = super_copy->sys_chunk_array + array_size;
4431 btrfs_cpu_key_to_disk(&disk_key, key);
4432 memcpy(ptr, &disk_key, sizeof(disk_key));
4433 ptr += sizeof(disk_key);
4434 memcpy(ptr, chunk, item_size);
4435 item_size += sizeof(disk_key);
4436 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4437 unlock_chunks(root);
4438
4439 return 0;
4440 }
4441
4442 /*
4443 * sort the devices in descending order by max_avail, total_avail
4444 */
4445 static int btrfs_cmp_device_info(const void *a, const void *b)
4446 {
4447 const struct btrfs_device_info *di_a = a;
4448 const struct btrfs_device_info *di_b = b;
4449
4450 if (di_a->max_avail > di_b->max_avail)
4451 return -1;
4452 if (di_a->max_avail < di_b->max_avail)
4453 return 1;
4454 if (di_a->total_avail > di_b->total_avail)
4455 return -1;
4456 if (di_a->total_avail < di_b->total_avail)
4457 return 1;
4458 return 0;
4459 }
4460
4461 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4462 {
4463 /* TODO allow them to set a preferred stripe size */
4464 return 64 * 1024;
4465 }
4466
4467 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4468 {
4469 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4470 return;
4471
4472 btrfs_set_fs_incompat(info, RAID56);
4473 }
4474
4475 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4476 - sizeof(struct btrfs_item) \
4477 - sizeof(struct btrfs_chunk)) \
4478 / sizeof(struct btrfs_stripe) + 1)
4479
4480 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4481 - 2 * sizeof(struct btrfs_disk_key) \
4482 - 2 * sizeof(struct btrfs_chunk)) \
4483 / sizeof(struct btrfs_stripe) + 1)
4484
4485 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4486 struct btrfs_root *extent_root, u64 start,
4487 u64 type)
4488 {
4489 struct btrfs_fs_info *info = extent_root->fs_info;
4490 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4491 struct list_head *cur;
4492 struct map_lookup *map = NULL;
4493 struct extent_map_tree *em_tree;
4494 struct extent_map *em;
4495 struct btrfs_device_info *devices_info = NULL;
4496 u64 total_avail;
4497 int num_stripes; /* total number of stripes to allocate */
4498 int data_stripes; /* number of stripes that count for
4499 block group size */
4500 int sub_stripes; /* sub_stripes info for map */
4501 int dev_stripes; /* stripes per dev */
4502 int devs_max; /* max devs to use */
4503 int devs_min; /* min devs needed */
4504 int devs_increment; /* ndevs has to be a multiple of this */
4505 int ncopies; /* how many copies to data has */
4506 int ret;
4507 u64 max_stripe_size;
4508 u64 max_chunk_size;
4509 u64 stripe_size;
4510 u64 num_bytes;
4511 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4512 int ndevs;
4513 int i;
4514 int j;
4515 int index;
4516
4517 BUG_ON(!alloc_profile_is_valid(type, 0));
4518
4519 if (list_empty(&fs_devices->alloc_list))
4520 return -ENOSPC;
4521
4522 index = __get_raid_index(type);
4523
4524 sub_stripes = btrfs_raid_array[index].sub_stripes;
4525 dev_stripes = btrfs_raid_array[index].dev_stripes;
4526 devs_max = btrfs_raid_array[index].devs_max;
4527 devs_min = btrfs_raid_array[index].devs_min;
4528 devs_increment = btrfs_raid_array[index].devs_increment;
4529 ncopies = btrfs_raid_array[index].ncopies;
4530
4531 if (type & BTRFS_BLOCK_GROUP_DATA) {
4532 max_stripe_size = 1024 * 1024 * 1024;
4533 max_chunk_size = 10 * max_stripe_size;
4534 if (!devs_max)
4535 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4536 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4537 /* for larger filesystems, use larger metadata chunks */
4538 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4539 max_stripe_size = 1024 * 1024 * 1024;
4540 else
4541 max_stripe_size = 256 * 1024 * 1024;
4542 max_chunk_size = max_stripe_size;
4543 if (!devs_max)
4544 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4545 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4546 max_stripe_size = 32 * 1024 * 1024;
4547 max_chunk_size = 2 * max_stripe_size;
4548 if (!devs_max)
4549 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4550 } else {
4551 btrfs_err(info, "invalid chunk type 0x%llx requested",
4552 type);
4553 BUG_ON(1);
4554 }
4555
4556 /* we don't want a chunk larger than 10% of writeable space */
4557 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4558 max_chunk_size);
4559
4560 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4561 GFP_NOFS);
4562 if (!devices_info)
4563 return -ENOMEM;
4564
4565 cur = fs_devices->alloc_list.next;
4566
4567 /*
4568 * in the first pass through the devices list, we gather information
4569 * about the available holes on each device.
4570 */
4571 ndevs = 0;
4572 while (cur != &fs_devices->alloc_list) {
4573 struct btrfs_device *device;
4574 u64 max_avail;
4575 u64 dev_offset;
4576
4577 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4578
4579 cur = cur->next;
4580
4581 if (!device->writeable) {
4582 WARN(1, KERN_ERR
4583 "BTRFS: read-only device in alloc_list\n");
4584 continue;
4585 }
4586
4587 if (!device->in_fs_metadata ||
4588 device->is_tgtdev_for_dev_replace)
4589 continue;
4590
4591 if (device->total_bytes > device->bytes_used)
4592 total_avail = device->total_bytes - device->bytes_used;
4593 else
4594 total_avail = 0;
4595
4596 /* If there is no space on this device, skip it. */
4597 if (total_avail == 0)
4598 continue;
4599
4600 ret = find_free_dev_extent(trans, device,
4601 max_stripe_size * dev_stripes,
4602 &dev_offset, &max_avail);
4603 if (ret && ret != -ENOSPC)
4604 goto error;
4605
4606 if (ret == 0)
4607 max_avail = max_stripe_size * dev_stripes;
4608
4609 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4610 continue;
4611
4612 if (ndevs == fs_devices->rw_devices) {
4613 WARN(1, "%s: found more than %llu devices\n",
4614 __func__, fs_devices->rw_devices);
4615 break;
4616 }
4617 devices_info[ndevs].dev_offset = dev_offset;
4618 devices_info[ndevs].max_avail = max_avail;
4619 devices_info[ndevs].total_avail = total_avail;
4620 devices_info[ndevs].dev = device;
4621 ++ndevs;
4622 }
4623
4624 /*
4625 * now sort the devices by hole size / available space
4626 */
4627 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4628 btrfs_cmp_device_info, NULL);
4629
4630 /* round down to number of usable stripes */
4631 ndevs -= ndevs % devs_increment;
4632
4633 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4634 ret = -ENOSPC;
4635 goto error;
4636 }
4637
4638 if (devs_max && ndevs > devs_max)
4639 ndevs = devs_max;
4640 /*
4641 * the primary goal is to maximize the number of stripes, so use as many
4642 * devices as possible, even if the stripes are not maximum sized.
4643 */
4644 stripe_size = devices_info[ndevs-1].max_avail;
4645 num_stripes = ndevs * dev_stripes;
4646
4647 /*
4648 * this will have to be fixed for RAID1 and RAID10 over
4649 * more drives
4650 */
4651 data_stripes = num_stripes / ncopies;
4652
4653 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4654 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4655 btrfs_super_stripesize(info->super_copy));
4656 data_stripes = num_stripes - 1;
4657 }
4658 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4659 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4660 btrfs_super_stripesize(info->super_copy));
4661 data_stripes = num_stripes - 2;
4662 }
4663
4664 /*
4665 * Use the number of data stripes to figure out how big this chunk
4666 * is really going to be in terms of logical address space,
4667 * and compare that answer with the max chunk size
4668 */
4669 if (stripe_size * data_stripes > max_chunk_size) {
4670 u64 mask = (1ULL << 24) - 1;
4671
4672 stripe_size = div_u64(max_chunk_size, data_stripes);
4673
4674 /* bump the answer up to a 16MB boundary */
4675 stripe_size = (stripe_size + mask) & ~mask;
4676
4677 /* but don't go higher than the limits we found
4678 * while searching for free extents
4679 */
4680 if (stripe_size > devices_info[ndevs-1].max_avail)
4681 stripe_size = devices_info[ndevs-1].max_avail;
4682 }
4683
4684 stripe_size = div_u64(stripe_size, dev_stripes);
4685
4686 /* align to BTRFS_STRIPE_LEN */
4687 stripe_size = div_u64(stripe_size, raid_stripe_len);
4688 stripe_size *= raid_stripe_len;
4689
4690 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4691 if (!map) {
4692 ret = -ENOMEM;
4693 goto error;
4694 }
4695 map->num_stripes = num_stripes;
4696
4697 for (i = 0; i < ndevs; ++i) {
4698 for (j = 0; j < dev_stripes; ++j) {
4699 int s = i * dev_stripes + j;
4700 map->stripes[s].dev = devices_info[i].dev;
4701 map->stripes[s].physical = devices_info[i].dev_offset +
4702 j * stripe_size;
4703 }
4704 }
4705 map->sector_size = extent_root->sectorsize;
4706 map->stripe_len = raid_stripe_len;
4707 map->io_align = raid_stripe_len;
4708 map->io_width = raid_stripe_len;
4709 map->type = type;
4710 map->sub_stripes = sub_stripes;
4711
4712 num_bytes = stripe_size * data_stripes;
4713
4714 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4715
4716 em = alloc_extent_map();
4717 if (!em) {
4718 kfree(map);
4719 ret = -ENOMEM;
4720 goto error;
4721 }
4722 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4723 em->bdev = (struct block_device *)map;
4724 em->start = start;
4725 em->len = num_bytes;
4726 em->block_start = 0;
4727 em->block_len = em->len;
4728 em->orig_block_len = stripe_size;
4729
4730 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4731 write_lock(&em_tree->lock);
4732 ret = add_extent_mapping(em_tree, em, 0);
4733 if (!ret) {
4734 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4735 atomic_inc(&em->refs);
4736 }
4737 write_unlock(&em_tree->lock);
4738 if (ret) {
4739 free_extent_map(em);
4740 goto error;
4741 }
4742
4743 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4744 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4745 start, num_bytes);
4746 if (ret)
4747 goto error_del_extent;
4748
4749 for (i = 0; i < map->num_stripes; i++) {
4750 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4751 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4752 }
4753
4754 spin_lock(&extent_root->fs_info->free_chunk_lock);
4755 extent_root->fs_info->free_chunk_space -= (stripe_size *
4756 map->num_stripes);
4757 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4758
4759 free_extent_map(em);
4760 check_raid56_incompat_flag(extent_root->fs_info, type);
4761
4762 kfree(devices_info);
4763 return 0;
4764
4765 error_del_extent:
4766 write_lock(&em_tree->lock);
4767 remove_extent_mapping(em_tree, em);
4768 write_unlock(&em_tree->lock);
4769
4770 /* One for our allocation */
4771 free_extent_map(em);
4772 /* One for the tree reference */
4773 free_extent_map(em);
4774 /* One for the pending_chunks list reference */
4775 free_extent_map(em);
4776 error:
4777 kfree(devices_info);
4778 return ret;
4779 }
4780
4781 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4782 struct btrfs_root *extent_root,
4783 u64 chunk_offset, u64 chunk_size)
4784 {
4785 struct btrfs_key key;
4786 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4787 struct btrfs_device *device;
4788 struct btrfs_chunk *chunk;
4789 struct btrfs_stripe *stripe;
4790 struct extent_map_tree *em_tree;
4791 struct extent_map *em;
4792 struct map_lookup *map;
4793 size_t item_size;
4794 u64 dev_offset;
4795 u64 stripe_size;
4796 int i = 0;
4797 int ret;
4798
4799 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4800 read_lock(&em_tree->lock);
4801 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4802 read_unlock(&em_tree->lock);
4803
4804 if (!em) {
4805 btrfs_crit(extent_root->fs_info, "unable to find logical "
4806 "%Lu len %Lu", chunk_offset, chunk_size);
4807 return -EINVAL;
4808 }
4809
4810 if (em->start != chunk_offset || em->len != chunk_size) {
4811 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4812 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4813 chunk_size, em->start, em->len);
4814 free_extent_map(em);
4815 return -EINVAL;
4816 }
4817
4818 map = (struct map_lookup *)em->bdev;
4819 item_size = btrfs_chunk_item_size(map->num_stripes);
4820 stripe_size = em->orig_block_len;
4821
4822 chunk = kzalloc(item_size, GFP_NOFS);
4823 if (!chunk) {
4824 ret = -ENOMEM;
4825 goto out;
4826 }
4827
4828 /*
4829 * Take the device list mutex to prevent races with the final phase of
4830 * a device replace operation that replaces the device object associated
4831 * with the map's stripes, because the device object's id can change
4832 * at any time during that final phase of the device replace operation
4833 * (dev-replace.c:btrfs_dev_replace_finishing()).
4834 */
4835 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4836 for (i = 0; i < map->num_stripes; i++) {
4837 device = map->stripes[i].dev;
4838 dev_offset = map->stripes[i].physical;
4839
4840 ret = btrfs_update_device(trans, device);
4841 if (ret)
4842 break;
4843 ret = btrfs_alloc_dev_extent(trans, device,
4844 chunk_root->root_key.objectid,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 chunk_offset, dev_offset,
4847 stripe_size);
4848 if (ret)
4849 break;
4850 }
4851 if (ret) {
4852 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4853 goto out;
4854 }
4855
4856 stripe = &chunk->stripe;
4857 for (i = 0; i < map->num_stripes; i++) {
4858 device = map->stripes[i].dev;
4859 dev_offset = map->stripes[i].physical;
4860
4861 btrfs_set_stack_stripe_devid(stripe, device->devid);
4862 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4863 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4864 stripe++;
4865 }
4866 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4867
4868 btrfs_set_stack_chunk_length(chunk, chunk_size);
4869 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4870 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4871 btrfs_set_stack_chunk_type(chunk, map->type);
4872 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4873 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4874 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4875 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4876 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4877
4878 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4879 key.type = BTRFS_CHUNK_ITEM_KEY;
4880 key.offset = chunk_offset;
4881
4882 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4883 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4884 /*
4885 * TODO: Cleanup of inserted chunk root in case of
4886 * failure.
4887 */
4888 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4889 item_size);
4890 }
4891
4892 out:
4893 kfree(chunk);
4894 free_extent_map(em);
4895 return ret;
4896 }
4897
4898 /*
4899 * Chunk allocation falls into two parts. The first part does works
4900 * that make the new allocated chunk useable, but not do any operation
4901 * that modifies the chunk tree. The second part does the works that
4902 * require modifying the chunk tree. This division is important for the
4903 * bootstrap process of adding storage to a seed btrfs.
4904 */
4905 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906 struct btrfs_root *extent_root, u64 type)
4907 {
4908 u64 chunk_offset;
4909
4910 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4911 chunk_offset = find_next_chunk(extent_root->fs_info);
4912 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4913 }
4914
4915 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4916 struct btrfs_root *root,
4917 struct btrfs_device *device)
4918 {
4919 u64 chunk_offset;
4920 u64 sys_chunk_offset;
4921 u64 alloc_profile;
4922 struct btrfs_fs_info *fs_info = root->fs_info;
4923 struct btrfs_root *extent_root = fs_info->extent_root;
4924 int ret;
4925
4926 chunk_offset = find_next_chunk(fs_info);
4927 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4928 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4929 alloc_profile);
4930 if (ret)
4931 return ret;
4932
4933 sys_chunk_offset = find_next_chunk(root->fs_info);
4934 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4935 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4936 alloc_profile);
4937 return ret;
4938 }
4939
4940 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4941 {
4942 int max_errors;
4943
4944 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4945 BTRFS_BLOCK_GROUP_RAID10 |
4946 BTRFS_BLOCK_GROUP_RAID5 |
4947 BTRFS_BLOCK_GROUP_DUP)) {
4948 max_errors = 1;
4949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950 max_errors = 2;
4951 } else {
4952 max_errors = 0;
4953 }
4954
4955 return max_errors;
4956 }
4957
4958 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959 {
4960 struct extent_map *em;
4961 struct map_lookup *map;
4962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963 int readonly = 0;
4964 int miss_ndevs = 0;
4965 int i;
4966
4967 read_lock(&map_tree->map_tree.lock);
4968 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969 read_unlock(&map_tree->map_tree.lock);
4970 if (!em)
4971 return 1;
4972
4973 map = (struct map_lookup *)em->bdev;
4974 for (i = 0; i < map->num_stripes; i++) {
4975 if (map->stripes[i].dev->missing) {
4976 miss_ndevs++;
4977 continue;
4978 }
4979
4980 if (!map->stripes[i].dev->writeable) {
4981 readonly = 1;
4982 goto end;
4983 }
4984 }
4985
4986 /*
4987 * If the number of missing devices is larger than max errors,
4988 * we can not write the data into that chunk successfully, so
4989 * set it readonly.
4990 */
4991 if (miss_ndevs > btrfs_chunk_max_errors(map))
4992 readonly = 1;
4993 end:
4994 free_extent_map(em);
4995 return readonly;
4996 }
4997
4998 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999 {
5000 extent_map_tree_init(&tree->map_tree);
5001 }
5002
5003 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004 {
5005 struct extent_map *em;
5006
5007 while (1) {
5008 write_lock(&tree->map_tree.lock);
5009 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010 if (em)
5011 remove_extent_mapping(&tree->map_tree, em);
5012 write_unlock(&tree->map_tree.lock);
5013 if (!em)
5014 break;
5015 /* once for us */
5016 free_extent_map(em);
5017 /* once for the tree */
5018 free_extent_map(em);
5019 }
5020 }
5021
5022 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023 {
5024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025 struct extent_map *em;
5026 struct map_lookup *map;
5027 struct extent_map_tree *em_tree = &map_tree->map_tree;
5028 int ret;
5029
5030 read_lock(&em_tree->lock);
5031 em = lookup_extent_mapping(em_tree, logical, len);
5032 read_unlock(&em_tree->lock);
5033
5034 /*
5035 * We could return errors for these cases, but that could get ugly and
5036 * we'd probably do the same thing which is just not do anything else
5037 * and exit, so return 1 so the callers don't try to use other copies.
5038 */
5039 if (!em) {
5040 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041 logical+len);
5042 return 1;
5043 }
5044
5045 if (em->start > logical || em->start + em->len < logical) {
5046 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047 "%Lu-%Lu", logical, logical+len, em->start,
5048 em->start + em->len);
5049 free_extent_map(em);
5050 return 1;
5051 }
5052
5053 map = (struct map_lookup *)em->bdev;
5054 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055 ret = map->num_stripes;
5056 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057 ret = map->sub_stripes;
5058 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059 ret = 2;
5060 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061 ret = 3;
5062 else
5063 ret = 1;
5064 free_extent_map(em);
5065
5066 btrfs_dev_replace_lock(&fs_info->dev_replace);
5067 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5068 ret++;
5069 btrfs_dev_replace_unlock(&fs_info->dev_replace);
5070
5071 return ret;
5072 }
5073
5074 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5075 struct btrfs_mapping_tree *map_tree,
5076 u64 logical)
5077 {
5078 struct extent_map *em;
5079 struct map_lookup *map;
5080 struct extent_map_tree *em_tree = &map_tree->map_tree;
5081 unsigned long len = root->sectorsize;
5082
5083 read_lock(&em_tree->lock);
5084 em = lookup_extent_mapping(em_tree, logical, len);
5085 read_unlock(&em_tree->lock);
5086 BUG_ON(!em);
5087
5088 BUG_ON(em->start > logical || em->start + em->len < logical);
5089 map = (struct map_lookup *)em->bdev;
5090 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5091 len = map->stripe_len * nr_data_stripes(map);
5092 free_extent_map(em);
5093 return len;
5094 }
5095
5096 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5097 u64 logical, u64 len, int mirror_num)
5098 {
5099 struct extent_map *em;
5100 struct map_lookup *map;
5101 struct extent_map_tree *em_tree = &map_tree->map_tree;
5102 int ret = 0;
5103
5104 read_lock(&em_tree->lock);
5105 em = lookup_extent_mapping(em_tree, logical, len);
5106 read_unlock(&em_tree->lock);
5107 BUG_ON(!em);
5108
5109 BUG_ON(em->start > logical || em->start + em->len < logical);
5110 map = (struct map_lookup *)em->bdev;
5111 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5112 ret = 1;
5113 free_extent_map(em);
5114 return ret;
5115 }
5116
5117 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5118 struct map_lookup *map, int first, int num,
5119 int optimal, int dev_replace_is_ongoing)
5120 {
5121 int i;
5122 int tolerance;
5123 struct btrfs_device *srcdev;
5124
5125 if (dev_replace_is_ongoing &&
5126 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5127 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5128 srcdev = fs_info->dev_replace.srcdev;
5129 else
5130 srcdev = NULL;
5131
5132 /*
5133 * try to avoid the drive that is the source drive for a
5134 * dev-replace procedure, only choose it if no other non-missing
5135 * mirror is available
5136 */
5137 for (tolerance = 0; tolerance < 2; tolerance++) {
5138 if (map->stripes[optimal].dev->bdev &&
5139 (tolerance || map->stripes[optimal].dev != srcdev))
5140 return optimal;
5141 for (i = first; i < first + num; i++) {
5142 if (map->stripes[i].dev->bdev &&
5143 (tolerance || map->stripes[i].dev != srcdev))
5144 return i;
5145 }
5146 }
5147
5148 /* we couldn't find one that doesn't fail. Just return something
5149 * and the io error handling code will clean up eventually
5150 */
5151 return optimal;
5152 }
5153
5154 static inline int parity_smaller(u64 a, u64 b)
5155 {
5156 return a > b;
5157 }
5158
5159 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5160 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5161 {
5162 struct btrfs_bio_stripe s;
5163 int i;
5164 u64 l;
5165 int again = 1;
5166
5167 while (again) {
5168 again = 0;
5169 for (i = 0; i < num_stripes - 1; i++) {
5170 if (parity_smaller(bbio->raid_map[i],
5171 bbio->raid_map[i+1])) {
5172 s = bbio->stripes[i];
5173 l = bbio->raid_map[i];
5174 bbio->stripes[i] = bbio->stripes[i+1];
5175 bbio->raid_map[i] = bbio->raid_map[i+1];
5176 bbio->stripes[i+1] = s;
5177 bbio->raid_map[i+1] = l;
5178
5179 again = 1;
5180 }
5181 }
5182 }
5183 }
5184
5185 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5186 {
5187 struct btrfs_bio *bbio = kzalloc(
5188 /* the size of the btrfs_bio */
5189 sizeof(struct btrfs_bio) +
5190 /* plus the variable array for the stripes */
5191 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5192 /* plus the variable array for the tgt dev */
5193 sizeof(int) * (real_stripes) +
5194 /*
5195 * plus the raid_map, which includes both the tgt dev
5196 * and the stripes
5197 */
5198 sizeof(u64) * (total_stripes),
5199 GFP_NOFS|__GFP_NOFAIL);
5200
5201 atomic_set(&bbio->error, 0);
5202 atomic_set(&bbio->refs, 1);
5203
5204 return bbio;
5205 }
5206
5207 void btrfs_get_bbio(struct btrfs_bio *bbio)
5208 {
5209 WARN_ON(!atomic_read(&bbio->refs));
5210 atomic_inc(&bbio->refs);
5211 }
5212
5213 void btrfs_put_bbio(struct btrfs_bio *bbio)
5214 {
5215 if (!bbio)
5216 return;
5217 if (atomic_dec_and_test(&bbio->refs))
5218 kfree(bbio);
5219 }
5220
5221 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5222 u64 logical, u64 *length,
5223 struct btrfs_bio **bbio_ret,
5224 int mirror_num, int need_raid_map)
5225 {
5226 struct extent_map *em;
5227 struct map_lookup *map;
5228 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5229 struct extent_map_tree *em_tree = &map_tree->map_tree;
5230 u64 offset;
5231 u64 stripe_offset;
5232 u64 stripe_end_offset;
5233 u64 stripe_nr;
5234 u64 stripe_nr_orig;
5235 u64 stripe_nr_end;
5236 u64 stripe_len;
5237 u32 stripe_index;
5238 int i;
5239 int ret = 0;
5240 int num_stripes;
5241 int max_errors = 0;
5242 int tgtdev_indexes = 0;
5243 struct btrfs_bio *bbio = NULL;
5244 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5245 int dev_replace_is_ongoing = 0;
5246 int num_alloc_stripes;
5247 int patch_the_first_stripe_for_dev_replace = 0;
5248 u64 physical_to_patch_in_first_stripe = 0;
5249 u64 raid56_full_stripe_start = (u64)-1;
5250
5251 read_lock(&em_tree->lock);
5252 em = lookup_extent_mapping(em_tree, logical, *length);
5253 read_unlock(&em_tree->lock);
5254
5255 if (!em) {
5256 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5257 logical, *length);
5258 return -EINVAL;
5259 }
5260
5261 if (em->start > logical || em->start + em->len < logical) {
5262 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5263 "found %Lu-%Lu", logical, em->start,
5264 em->start + em->len);
5265 free_extent_map(em);
5266 return -EINVAL;
5267 }
5268
5269 map = (struct map_lookup *)em->bdev;
5270 offset = logical - em->start;
5271
5272 stripe_len = map->stripe_len;
5273 stripe_nr = offset;
5274 /*
5275 * stripe_nr counts the total number of stripes we have to stride
5276 * to get to this block
5277 */
5278 stripe_nr = div64_u64(stripe_nr, stripe_len);
5279
5280 stripe_offset = stripe_nr * stripe_len;
5281 BUG_ON(offset < stripe_offset);
5282
5283 /* stripe_offset is the offset of this block in its stripe*/
5284 stripe_offset = offset - stripe_offset;
5285
5286 /* if we're here for raid56, we need to know the stripe aligned start */
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5289 raid56_full_stripe_start = offset;
5290
5291 /* allow a write of a full stripe, but make sure we don't
5292 * allow straddling of stripes
5293 */
5294 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5295 full_stripe_len);
5296 raid56_full_stripe_start *= full_stripe_len;
5297 }
5298
5299 if (rw & REQ_DISCARD) {
5300 /* we don't discard raid56 yet */
5301 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5302 ret = -EOPNOTSUPP;
5303 goto out;
5304 }
5305 *length = min_t(u64, em->len - offset, *length);
5306 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5307 u64 max_len;
5308 /* For writes to RAID[56], allow a full stripeset across all disks.
5309 For other RAID types and for RAID[56] reads, just allow a single
5310 stripe (on a single disk). */
5311 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5312 (rw & REQ_WRITE)) {
5313 max_len = stripe_len * nr_data_stripes(map) -
5314 (offset - raid56_full_stripe_start);
5315 } else {
5316 /* we limit the length of each bio to what fits in a stripe */
5317 max_len = stripe_len - stripe_offset;
5318 }
5319 *length = min_t(u64, em->len - offset, max_len);
5320 } else {
5321 *length = em->len - offset;
5322 }
5323
5324 /* This is for when we're called from btrfs_merge_bio_hook() and all
5325 it cares about is the length */
5326 if (!bbio_ret)
5327 goto out;
5328
5329 btrfs_dev_replace_lock(dev_replace);
5330 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5331 if (!dev_replace_is_ongoing)
5332 btrfs_dev_replace_unlock(dev_replace);
5333
5334 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5335 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5336 dev_replace->tgtdev != NULL) {
5337 /*
5338 * in dev-replace case, for repair case (that's the only
5339 * case where the mirror is selected explicitly when
5340 * calling btrfs_map_block), blocks left of the left cursor
5341 * can also be read from the target drive.
5342 * For REQ_GET_READ_MIRRORS, the target drive is added as
5343 * the last one to the array of stripes. For READ, it also
5344 * needs to be supported using the same mirror number.
5345 * If the requested block is not left of the left cursor,
5346 * EIO is returned. This can happen because btrfs_num_copies()
5347 * returns one more in the dev-replace case.
5348 */
5349 u64 tmp_length = *length;
5350 struct btrfs_bio *tmp_bbio = NULL;
5351 int tmp_num_stripes;
5352 u64 srcdev_devid = dev_replace->srcdev->devid;
5353 int index_srcdev = 0;
5354 int found = 0;
5355 u64 physical_of_found = 0;
5356
5357 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5358 logical, &tmp_length, &tmp_bbio, 0, 0);
5359 if (ret) {
5360 WARN_ON(tmp_bbio != NULL);
5361 goto out;
5362 }
5363
5364 tmp_num_stripes = tmp_bbio->num_stripes;
5365 if (mirror_num > tmp_num_stripes) {
5366 /*
5367 * REQ_GET_READ_MIRRORS does not contain this
5368 * mirror, that means that the requested area
5369 * is not left of the left cursor
5370 */
5371 ret = -EIO;
5372 btrfs_put_bbio(tmp_bbio);
5373 goto out;
5374 }
5375
5376 /*
5377 * process the rest of the function using the mirror_num
5378 * of the source drive. Therefore look it up first.
5379 * At the end, patch the device pointer to the one of the
5380 * target drive.
5381 */
5382 for (i = 0; i < tmp_num_stripes; i++) {
5383 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5384 /*
5385 * In case of DUP, in order to keep it
5386 * simple, only add the mirror with the
5387 * lowest physical address
5388 */
5389 if (found &&
5390 physical_of_found <=
5391 tmp_bbio->stripes[i].physical)
5392 continue;
5393 index_srcdev = i;
5394 found = 1;
5395 physical_of_found =
5396 tmp_bbio->stripes[i].physical;
5397 }
5398 }
5399
5400 if (found) {
5401 mirror_num = index_srcdev + 1;
5402 patch_the_first_stripe_for_dev_replace = 1;
5403 physical_to_patch_in_first_stripe = physical_of_found;
5404 } else {
5405 WARN_ON(1);
5406 ret = -EIO;
5407 btrfs_put_bbio(tmp_bbio);
5408 goto out;
5409 }
5410
5411 btrfs_put_bbio(tmp_bbio);
5412 } else if (mirror_num > map->num_stripes) {
5413 mirror_num = 0;
5414 }
5415
5416 num_stripes = 1;
5417 stripe_index = 0;
5418 stripe_nr_orig = stripe_nr;
5419 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5420 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5421 stripe_end_offset = stripe_nr_end * map->stripe_len -
5422 (offset + *length);
5423
5424 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5425 if (rw & REQ_DISCARD)
5426 num_stripes = min_t(u64, map->num_stripes,
5427 stripe_nr_end - stripe_nr_orig);
5428 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5429 &stripe_index);
5430 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5431 mirror_num = 1;
5432 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5433 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5434 num_stripes = map->num_stripes;
5435 else if (mirror_num)
5436 stripe_index = mirror_num - 1;
5437 else {
5438 stripe_index = find_live_mirror(fs_info, map, 0,
5439 map->num_stripes,
5440 current->pid % map->num_stripes,
5441 dev_replace_is_ongoing);
5442 mirror_num = stripe_index + 1;
5443 }
5444
5445 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5446 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5447 num_stripes = map->num_stripes;
5448 } else if (mirror_num) {
5449 stripe_index = mirror_num - 1;
5450 } else {
5451 mirror_num = 1;
5452 }
5453
5454 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5455 u32 factor = map->num_stripes / map->sub_stripes;
5456
5457 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5458 stripe_index *= map->sub_stripes;
5459
5460 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5461 num_stripes = map->sub_stripes;
5462 else if (rw & REQ_DISCARD)
5463 num_stripes = min_t(u64, map->sub_stripes *
5464 (stripe_nr_end - stripe_nr_orig),
5465 map->num_stripes);
5466 else if (mirror_num)
5467 stripe_index += mirror_num - 1;
5468 else {
5469 int old_stripe_index = stripe_index;
5470 stripe_index = find_live_mirror(fs_info, map,
5471 stripe_index,
5472 map->sub_stripes, stripe_index +
5473 current->pid % map->sub_stripes,
5474 dev_replace_is_ongoing);
5475 mirror_num = stripe_index - old_stripe_index + 1;
5476 }
5477
5478 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5479 if (need_raid_map &&
5480 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5481 mirror_num > 1)) {
5482 /* push stripe_nr back to the start of the full stripe */
5483 stripe_nr = div_u64(raid56_full_stripe_start,
5484 stripe_len * nr_data_stripes(map));
5485
5486 /* RAID[56] write or recovery. Return all stripes */
5487 num_stripes = map->num_stripes;
5488 max_errors = nr_parity_stripes(map);
5489
5490 *length = map->stripe_len;
5491 stripe_index = 0;
5492 stripe_offset = 0;
5493 } else {
5494 /*
5495 * Mirror #0 or #1 means the original data block.
5496 * Mirror #2 is RAID5 parity block.
5497 * Mirror #3 is RAID6 Q block.
5498 */
5499 stripe_nr = div_u64_rem(stripe_nr,
5500 nr_data_stripes(map), &stripe_index);
5501 if (mirror_num > 1)
5502 stripe_index = nr_data_stripes(map) +
5503 mirror_num - 2;
5504
5505 /* We distribute the parity blocks across stripes */
5506 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5507 &stripe_index);
5508 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5509 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5510 mirror_num = 1;
5511 }
5512 } else {
5513 /*
5514 * after this, stripe_nr is the number of stripes on this
5515 * device we have to walk to find the data, and stripe_index is
5516 * the number of our device in the stripe array
5517 */
5518 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5519 &stripe_index);
5520 mirror_num = stripe_index + 1;
5521 }
5522 BUG_ON(stripe_index >= map->num_stripes);
5523
5524 num_alloc_stripes = num_stripes;
5525 if (dev_replace_is_ongoing) {
5526 if (rw & (REQ_WRITE | REQ_DISCARD))
5527 num_alloc_stripes <<= 1;
5528 if (rw & REQ_GET_READ_MIRRORS)
5529 num_alloc_stripes++;
5530 tgtdev_indexes = num_stripes;
5531 }
5532
5533 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5534 if (!bbio) {
5535 ret = -ENOMEM;
5536 goto out;
5537 }
5538 if (dev_replace_is_ongoing)
5539 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5540
5541 /* build raid_map */
5542 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5543 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5544 mirror_num > 1)) {
5545 u64 tmp;
5546 unsigned rot;
5547
5548 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5549 sizeof(struct btrfs_bio_stripe) *
5550 num_alloc_stripes +
5551 sizeof(int) * tgtdev_indexes);
5552
5553 /* Work out the disk rotation on this stripe-set */
5554 div_u64_rem(stripe_nr, num_stripes, &rot);
5555
5556 /* Fill in the logical address of each stripe */
5557 tmp = stripe_nr * nr_data_stripes(map);
5558 for (i = 0; i < nr_data_stripes(map); i++)
5559 bbio->raid_map[(i+rot) % num_stripes] =
5560 em->start + (tmp + i) * map->stripe_len;
5561
5562 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5563 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5564 bbio->raid_map[(i+rot+1) % num_stripes] =
5565 RAID6_Q_STRIPE;
5566 }
5567
5568 if (rw & REQ_DISCARD) {
5569 u32 factor = 0;
5570 u32 sub_stripes = 0;
5571 u64 stripes_per_dev = 0;
5572 u32 remaining_stripes = 0;
5573 u32 last_stripe = 0;
5574
5575 if (map->type &
5576 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5577 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5578 sub_stripes = 1;
5579 else
5580 sub_stripes = map->sub_stripes;
5581
5582 factor = map->num_stripes / sub_stripes;
5583 stripes_per_dev = div_u64_rem(stripe_nr_end -
5584 stripe_nr_orig,
5585 factor,
5586 &remaining_stripes);
5587 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5588 last_stripe *= sub_stripes;
5589 }
5590
5591 for (i = 0; i < num_stripes; i++) {
5592 bbio->stripes[i].physical =
5593 map->stripes[stripe_index].physical +
5594 stripe_offset + stripe_nr * map->stripe_len;
5595 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5596
5597 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5598 BTRFS_BLOCK_GROUP_RAID10)) {
5599 bbio->stripes[i].length = stripes_per_dev *
5600 map->stripe_len;
5601
5602 if (i / sub_stripes < remaining_stripes)
5603 bbio->stripes[i].length +=
5604 map->stripe_len;
5605
5606 /*
5607 * Special for the first stripe and
5608 * the last stripe:
5609 *
5610 * |-------|...|-------|
5611 * |----------|
5612 * off end_off
5613 */
5614 if (i < sub_stripes)
5615 bbio->stripes[i].length -=
5616 stripe_offset;
5617
5618 if (stripe_index >= last_stripe &&
5619 stripe_index <= (last_stripe +
5620 sub_stripes - 1))
5621 bbio->stripes[i].length -=
5622 stripe_end_offset;
5623
5624 if (i == sub_stripes - 1)
5625 stripe_offset = 0;
5626 } else
5627 bbio->stripes[i].length = *length;
5628
5629 stripe_index++;
5630 if (stripe_index == map->num_stripes) {
5631 /* This could only happen for RAID0/10 */
5632 stripe_index = 0;
5633 stripe_nr++;
5634 }
5635 }
5636 } else {
5637 for (i = 0; i < num_stripes; i++) {
5638 bbio->stripes[i].physical =
5639 map->stripes[stripe_index].physical +
5640 stripe_offset +
5641 stripe_nr * map->stripe_len;
5642 bbio->stripes[i].dev =
5643 map->stripes[stripe_index].dev;
5644 stripe_index++;
5645 }
5646 }
5647
5648 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5649 max_errors = btrfs_chunk_max_errors(map);
5650
5651 if (bbio->raid_map)
5652 sort_parity_stripes(bbio, num_stripes);
5653
5654 tgtdev_indexes = 0;
5655 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5656 dev_replace->tgtdev != NULL) {
5657 int index_where_to_add;
5658 u64 srcdev_devid = dev_replace->srcdev->devid;
5659
5660 /*
5661 * duplicate the write operations while the dev replace
5662 * procedure is running. Since the copying of the old disk
5663 * to the new disk takes place at run time while the
5664 * filesystem is mounted writable, the regular write
5665 * operations to the old disk have to be duplicated to go
5666 * to the new disk as well.
5667 * Note that device->missing is handled by the caller, and
5668 * that the write to the old disk is already set up in the
5669 * stripes array.
5670 */
5671 index_where_to_add = num_stripes;
5672 for (i = 0; i < num_stripes; i++) {
5673 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5674 /* write to new disk, too */
5675 struct btrfs_bio_stripe *new =
5676 bbio->stripes + index_where_to_add;
5677 struct btrfs_bio_stripe *old =
5678 bbio->stripes + i;
5679
5680 new->physical = old->physical;
5681 new->length = old->length;
5682 new->dev = dev_replace->tgtdev;
5683 bbio->tgtdev_map[i] = index_where_to_add;
5684 index_where_to_add++;
5685 max_errors++;
5686 tgtdev_indexes++;
5687 }
5688 }
5689 num_stripes = index_where_to_add;
5690 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5691 dev_replace->tgtdev != NULL) {
5692 u64 srcdev_devid = dev_replace->srcdev->devid;
5693 int index_srcdev = 0;
5694 int found = 0;
5695 u64 physical_of_found = 0;
5696
5697 /*
5698 * During the dev-replace procedure, the target drive can
5699 * also be used to read data in case it is needed to repair
5700 * a corrupt block elsewhere. This is possible if the
5701 * requested area is left of the left cursor. In this area,
5702 * the target drive is a full copy of the source drive.
5703 */
5704 for (i = 0; i < num_stripes; i++) {
5705 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5706 /*
5707 * In case of DUP, in order to keep it
5708 * simple, only add the mirror with the
5709 * lowest physical address
5710 */
5711 if (found &&
5712 physical_of_found <=
5713 bbio->stripes[i].physical)
5714 continue;
5715 index_srcdev = i;
5716 found = 1;
5717 physical_of_found = bbio->stripes[i].physical;
5718 }
5719 }
5720 if (found) {
5721 if (physical_of_found + map->stripe_len <=
5722 dev_replace->cursor_left) {
5723 struct btrfs_bio_stripe *tgtdev_stripe =
5724 bbio->stripes + num_stripes;
5725
5726 tgtdev_stripe->physical = physical_of_found;
5727 tgtdev_stripe->length =
5728 bbio->stripes[index_srcdev].length;
5729 tgtdev_stripe->dev = dev_replace->tgtdev;
5730 bbio->tgtdev_map[index_srcdev] = num_stripes;
5731
5732 tgtdev_indexes++;
5733 num_stripes++;
5734 }
5735 }
5736 }
5737
5738 *bbio_ret = bbio;
5739 bbio->map_type = map->type;
5740 bbio->num_stripes = num_stripes;
5741 bbio->max_errors = max_errors;
5742 bbio->mirror_num = mirror_num;
5743 bbio->num_tgtdevs = tgtdev_indexes;
5744
5745 /*
5746 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5747 * mirror_num == num_stripes + 1 && dev_replace target drive is
5748 * available as a mirror
5749 */
5750 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5751 WARN_ON(num_stripes > 1);
5752 bbio->stripes[0].dev = dev_replace->tgtdev;
5753 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5754 bbio->mirror_num = map->num_stripes + 1;
5755 }
5756 out:
5757 if (dev_replace_is_ongoing)
5758 btrfs_dev_replace_unlock(dev_replace);
5759 free_extent_map(em);
5760 return ret;
5761 }
5762
5763 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5764 u64 logical, u64 *length,
5765 struct btrfs_bio **bbio_ret, int mirror_num)
5766 {
5767 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5768 mirror_num, 0);
5769 }
5770
5771 /* For Scrub/replace */
5772 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5773 u64 logical, u64 *length,
5774 struct btrfs_bio **bbio_ret, int mirror_num,
5775 int need_raid_map)
5776 {
5777 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5778 mirror_num, need_raid_map);
5779 }
5780
5781 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5782 u64 chunk_start, u64 physical, u64 devid,
5783 u64 **logical, int *naddrs, int *stripe_len)
5784 {
5785 struct extent_map_tree *em_tree = &map_tree->map_tree;
5786 struct extent_map *em;
5787 struct map_lookup *map;
5788 u64 *buf;
5789 u64 bytenr;
5790 u64 length;
5791 u64 stripe_nr;
5792 u64 rmap_len;
5793 int i, j, nr = 0;
5794
5795 read_lock(&em_tree->lock);
5796 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5797 read_unlock(&em_tree->lock);
5798
5799 if (!em) {
5800 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5801 chunk_start);
5802 return -EIO;
5803 }
5804
5805 if (em->start != chunk_start) {
5806 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5807 em->start, chunk_start);
5808 free_extent_map(em);
5809 return -EIO;
5810 }
5811 map = (struct map_lookup *)em->bdev;
5812
5813 length = em->len;
5814 rmap_len = map->stripe_len;
5815
5816 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5817 length = div_u64(length, map->num_stripes / map->sub_stripes);
5818 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5819 length = div_u64(length, map->num_stripes);
5820 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5821 length = div_u64(length, nr_data_stripes(map));
5822 rmap_len = map->stripe_len * nr_data_stripes(map);
5823 }
5824
5825 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5826 BUG_ON(!buf); /* -ENOMEM */
5827
5828 for (i = 0; i < map->num_stripes; i++) {
5829 if (devid && map->stripes[i].dev->devid != devid)
5830 continue;
5831 if (map->stripes[i].physical > physical ||
5832 map->stripes[i].physical + length <= physical)
5833 continue;
5834
5835 stripe_nr = physical - map->stripes[i].physical;
5836 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5837
5838 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5839 stripe_nr = stripe_nr * map->num_stripes + i;
5840 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5841 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5842 stripe_nr = stripe_nr * map->num_stripes + i;
5843 } /* else if RAID[56], multiply by nr_data_stripes().
5844 * Alternatively, just use rmap_len below instead of
5845 * map->stripe_len */
5846
5847 bytenr = chunk_start + stripe_nr * rmap_len;
5848 WARN_ON(nr >= map->num_stripes);
5849 for (j = 0; j < nr; j++) {
5850 if (buf[j] == bytenr)
5851 break;
5852 }
5853 if (j == nr) {
5854 WARN_ON(nr >= map->num_stripes);
5855 buf[nr++] = bytenr;
5856 }
5857 }
5858
5859 *logical = buf;
5860 *naddrs = nr;
5861 *stripe_len = rmap_len;
5862
5863 free_extent_map(em);
5864 return 0;
5865 }
5866
5867 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5868 {
5869 bio->bi_private = bbio->private;
5870 bio->bi_end_io = bbio->end_io;
5871 bio_endio(bio);
5872
5873 btrfs_put_bbio(bbio);
5874 }
5875
5876 static void btrfs_end_bio(struct bio *bio)
5877 {
5878 struct btrfs_bio *bbio = bio->bi_private;
5879 int is_orig_bio = 0;
5880
5881 if (bio->bi_error) {
5882 atomic_inc(&bbio->error);
5883 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5884 unsigned int stripe_index =
5885 btrfs_io_bio(bio)->stripe_index;
5886 struct btrfs_device *dev;
5887
5888 BUG_ON(stripe_index >= bbio->num_stripes);
5889 dev = bbio->stripes[stripe_index].dev;
5890 if (dev->bdev) {
5891 if (bio->bi_rw & WRITE)
5892 btrfs_dev_stat_inc(dev,
5893 BTRFS_DEV_STAT_WRITE_ERRS);
5894 else
5895 btrfs_dev_stat_inc(dev,
5896 BTRFS_DEV_STAT_READ_ERRS);
5897 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5898 btrfs_dev_stat_inc(dev,
5899 BTRFS_DEV_STAT_FLUSH_ERRS);
5900 btrfs_dev_stat_print_on_error(dev);
5901 }
5902 }
5903 }
5904
5905 if (bio == bbio->orig_bio)
5906 is_orig_bio = 1;
5907
5908 btrfs_bio_counter_dec(bbio->fs_info);
5909
5910 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5911 if (!is_orig_bio) {
5912 bio_put(bio);
5913 bio = bbio->orig_bio;
5914 }
5915
5916 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5917 /* only send an error to the higher layers if it is
5918 * beyond the tolerance of the btrfs bio
5919 */
5920 if (atomic_read(&bbio->error) > bbio->max_errors) {
5921 bio->bi_error = -EIO;
5922 } else {
5923 /*
5924 * this bio is actually up to date, we didn't
5925 * go over the max number of errors
5926 */
5927 bio->bi_error = 0;
5928 }
5929
5930 btrfs_end_bbio(bbio, bio);
5931 } else if (!is_orig_bio) {
5932 bio_put(bio);
5933 }
5934 }
5935
5936 /*
5937 * see run_scheduled_bios for a description of why bios are collected for
5938 * async submit.
5939 *
5940 * This will add one bio to the pending list for a device and make sure
5941 * the work struct is scheduled.
5942 */
5943 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5944 struct btrfs_device *device,
5945 int rw, struct bio *bio)
5946 {
5947 int should_queue = 1;
5948 struct btrfs_pending_bios *pending_bios;
5949
5950 if (device->missing || !device->bdev) {
5951 bio_io_error(bio);
5952 return;
5953 }
5954
5955 /* don't bother with additional async steps for reads, right now */
5956 if (!(rw & REQ_WRITE)) {
5957 bio_get(bio);
5958 btrfsic_submit_bio(rw, bio);
5959 bio_put(bio);
5960 return;
5961 }
5962
5963 /*
5964 * nr_async_bios allows us to reliably return congestion to the
5965 * higher layers. Otherwise, the async bio makes it appear we have
5966 * made progress against dirty pages when we've really just put it
5967 * on a queue for later
5968 */
5969 atomic_inc(&root->fs_info->nr_async_bios);
5970 WARN_ON(bio->bi_next);
5971 bio->bi_next = NULL;
5972 bio->bi_rw |= rw;
5973
5974 spin_lock(&device->io_lock);
5975 if (bio->bi_rw & REQ_SYNC)
5976 pending_bios = &device->pending_sync_bios;
5977 else
5978 pending_bios = &device->pending_bios;
5979
5980 if (pending_bios->tail)
5981 pending_bios->tail->bi_next = bio;
5982
5983 pending_bios->tail = bio;
5984 if (!pending_bios->head)
5985 pending_bios->head = bio;
5986 if (device->running_pending)
5987 should_queue = 0;
5988
5989 spin_unlock(&device->io_lock);
5990
5991 if (should_queue)
5992 btrfs_queue_work(root->fs_info->submit_workers,
5993 &device->work);
5994 }
5995
5996 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5997 struct bio *bio, u64 physical, int dev_nr,
5998 int rw, int async)
5999 {
6000 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6001
6002 bio->bi_private = bbio;
6003 btrfs_io_bio(bio)->stripe_index = dev_nr;
6004 bio->bi_end_io = btrfs_end_bio;
6005 bio->bi_iter.bi_sector = physical >> 9;
6006 #ifdef DEBUG
6007 {
6008 struct rcu_string *name;
6009
6010 rcu_read_lock();
6011 name = rcu_dereference(dev->name);
6012 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6013 "(%s id %llu), size=%u\n", rw,
6014 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6015 name->str, dev->devid, bio->bi_iter.bi_size);
6016 rcu_read_unlock();
6017 }
6018 #endif
6019 bio->bi_bdev = dev->bdev;
6020
6021 btrfs_bio_counter_inc_noblocked(root->fs_info);
6022
6023 if (async)
6024 btrfs_schedule_bio(root, dev, rw, bio);
6025 else
6026 btrfsic_submit_bio(rw, bio);
6027 }
6028
6029 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6030 {
6031 atomic_inc(&bbio->error);
6032 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6033 /* Shoud be the original bio. */
6034 WARN_ON(bio != bbio->orig_bio);
6035
6036 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6037 bio->bi_iter.bi_sector = logical >> 9;
6038 bio->bi_error = -EIO;
6039 btrfs_end_bbio(bbio, bio);
6040 }
6041 }
6042
6043 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6044 int mirror_num, int async_submit)
6045 {
6046 struct btrfs_device *dev;
6047 struct bio *first_bio = bio;
6048 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6049 u64 length = 0;
6050 u64 map_length;
6051 int ret;
6052 int dev_nr;
6053 int total_devs;
6054 struct btrfs_bio *bbio = NULL;
6055
6056 length = bio->bi_iter.bi_size;
6057 map_length = length;
6058
6059 btrfs_bio_counter_inc_blocked(root->fs_info);
6060 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6061 mirror_num, 1);
6062 if (ret) {
6063 btrfs_bio_counter_dec(root->fs_info);
6064 return ret;
6065 }
6066
6067 total_devs = bbio->num_stripes;
6068 bbio->orig_bio = first_bio;
6069 bbio->private = first_bio->bi_private;
6070 bbio->end_io = first_bio->bi_end_io;
6071 bbio->fs_info = root->fs_info;
6072 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6073
6074 if (bbio->raid_map) {
6075 /* In this case, map_length has been set to the length of
6076 a single stripe; not the whole write */
6077 if (rw & WRITE) {
6078 ret = raid56_parity_write(root, bio, bbio, map_length);
6079 } else {
6080 ret = raid56_parity_recover(root, bio, bbio, map_length,
6081 mirror_num, 1);
6082 }
6083
6084 btrfs_bio_counter_dec(root->fs_info);
6085 return ret;
6086 }
6087
6088 if (map_length < length) {
6089 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6090 logical, length, map_length);
6091 BUG();
6092 }
6093
6094 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6095 dev = bbio->stripes[dev_nr].dev;
6096 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6097 bbio_error(bbio, first_bio, logical);
6098 continue;
6099 }
6100
6101 if (dev_nr < total_devs - 1) {
6102 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6103 BUG_ON(!bio); /* -ENOMEM */
6104 } else
6105 bio = first_bio;
6106
6107 submit_stripe_bio(root, bbio, bio,
6108 bbio->stripes[dev_nr].physical, dev_nr, rw,
6109 async_submit);
6110 }
6111 btrfs_bio_counter_dec(root->fs_info);
6112 return 0;
6113 }
6114
6115 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6116 u8 *uuid, u8 *fsid)
6117 {
6118 struct btrfs_device *device;
6119 struct btrfs_fs_devices *cur_devices;
6120
6121 cur_devices = fs_info->fs_devices;
6122 while (cur_devices) {
6123 if (!fsid ||
6124 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6125 device = __find_device(&cur_devices->devices,
6126 devid, uuid);
6127 if (device)
6128 return device;
6129 }
6130 cur_devices = cur_devices->seed;
6131 }
6132 return NULL;
6133 }
6134
6135 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6136 struct btrfs_fs_devices *fs_devices,
6137 u64 devid, u8 *dev_uuid)
6138 {
6139 struct btrfs_device *device;
6140
6141 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6142 if (IS_ERR(device))
6143 return NULL;
6144
6145 list_add(&device->dev_list, &fs_devices->devices);
6146 device->fs_devices = fs_devices;
6147 fs_devices->num_devices++;
6148
6149 device->missing = 1;
6150 fs_devices->missing_devices++;
6151
6152 return device;
6153 }
6154
6155 /**
6156 * btrfs_alloc_device - allocate struct btrfs_device
6157 * @fs_info: used only for generating a new devid, can be NULL if
6158 * devid is provided (i.e. @devid != NULL).
6159 * @devid: a pointer to devid for this device. If NULL a new devid
6160 * is generated.
6161 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6162 * is generated.
6163 *
6164 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6165 * on error. Returned struct is not linked onto any lists and can be
6166 * destroyed with kfree() right away.
6167 */
6168 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6169 const u64 *devid,
6170 const u8 *uuid)
6171 {
6172 struct btrfs_device *dev;
6173 u64 tmp;
6174
6175 if (WARN_ON(!devid && !fs_info))
6176 return ERR_PTR(-EINVAL);
6177
6178 dev = __alloc_device();
6179 if (IS_ERR(dev))
6180 return dev;
6181
6182 if (devid)
6183 tmp = *devid;
6184 else {
6185 int ret;
6186
6187 ret = find_next_devid(fs_info, &tmp);
6188 if (ret) {
6189 kfree(dev);
6190 return ERR_PTR(ret);
6191 }
6192 }
6193 dev->devid = tmp;
6194
6195 if (uuid)
6196 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6197 else
6198 generate_random_uuid(dev->uuid);
6199
6200 btrfs_init_work(&dev->work, btrfs_submit_helper,
6201 pending_bios_fn, NULL, NULL);
6202
6203 return dev;
6204 }
6205
6206 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6207 struct extent_buffer *leaf,
6208 struct btrfs_chunk *chunk)
6209 {
6210 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6211 struct map_lookup *map;
6212 struct extent_map *em;
6213 u64 logical;
6214 u64 length;
6215 u64 devid;
6216 u8 uuid[BTRFS_UUID_SIZE];
6217 int num_stripes;
6218 int ret;
6219 int i;
6220
6221 logical = key->offset;
6222 length = btrfs_chunk_length(leaf, chunk);
6223
6224 read_lock(&map_tree->map_tree.lock);
6225 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6226 read_unlock(&map_tree->map_tree.lock);
6227
6228 /* already mapped? */
6229 if (em && em->start <= logical && em->start + em->len > logical) {
6230 free_extent_map(em);
6231 return 0;
6232 } else if (em) {
6233 free_extent_map(em);
6234 }
6235
6236 em = alloc_extent_map();
6237 if (!em)
6238 return -ENOMEM;
6239 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6240 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6241 if (!map) {
6242 free_extent_map(em);
6243 return -ENOMEM;
6244 }
6245
6246 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6247 em->bdev = (struct block_device *)map;
6248 em->start = logical;
6249 em->len = length;
6250 em->orig_start = 0;
6251 em->block_start = 0;
6252 em->block_len = em->len;
6253
6254 map->num_stripes = num_stripes;
6255 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6256 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6257 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6258 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6259 map->type = btrfs_chunk_type(leaf, chunk);
6260 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6261 for (i = 0; i < num_stripes; i++) {
6262 map->stripes[i].physical =
6263 btrfs_stripe_offset_nr(leaf, chunk, i);
6264 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6265 read_extent_buffer(leaf, uuid, (unsigned long)
6266 btrfs_stripe_dev_uuid_nr(chunk, i),
6267 BTRFS_UUID_SIZE);
6268 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6269 uuid, NULL);
6270 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6271 free_extent_map(em);
6272 return -EIO;
6273 }
6274 if (!map->stripes[i].dev) {
6275 map->stripes[i].dev =
6276 add_missing_dev(root, root->fs_info->fs_devices,
6277 devid, uuid);
6278 if (!map->stripes[i].dev) {
6279 free_extent_map(em);
6280 return -EIO;
6281 }
6282 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6283 devid, uuid);
6284 }
6285 map->stripes[i].dev->in_fs_metadata = 1;
6286 }
6287
6288 write_lock(&map_tree->map_tree.lock);
6289 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6290 write_unlock(&map_tree->map_tree.lock);
6291 BUG_ON(ret); /* Tree corruption */
6292 free_extent_map(em);
6293
6294 return 0;
6295 }
6296
6297 static void fill_device_from_item(struct extent_buffer *leaf,
6298 struct btrfs_dev_item *dev_item,
6299 struct btrfs_device *device)
6300 {
6301 unsigned long ptr;
6302
6303 device->devid = btrfs_device_id(leaf, dev_item);
6304 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6305 device->total_bytes = device->disk_total_bytes;
6306 device->commit_total_bytes = device->disk_total_bytes;
6307 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6308 device->commit_bytes_used = device->bytes_used;
6309 device->type = btrfs_device_type(leaf, dev_item);
6310 device->io_align = btrfs_device_io_align(leaf, dev_item);
6311 device->io_width = btrfs_device_io_width(leaf, dev_item);
6312 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6313 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6314 device->is_tgtdev_for_dev_replace = 0;
6315
6316 ptr = btrfs_device_uuid(dev_item);
6317 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6318 }
6319
6320 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6321 u8 *fsid)
6322 {
6323 struct btrfs_fs_devices *fs_devices;
6324 int ret;
6325
6326 BUG_ON(!mutex_is_locked(&uuid_mutex));
6327
6328 fs_devices = root->fs_info->fs_devices->seed;
6329 while (fs_devices) {
6330 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6331 return fs_devices;
6332
6333 fs_devices = fs_devices->seed;
6334 }
6335
6336 fs_devices = find_fsid(fsid);
6337 if (!fs_devices) {
6338 if (!btrfs_test_opt(root, DEGRADED))
6339 return ERR_PTR(-ENOENT);
6340
6341 fs_devices = alloc_fs_devices(fsid);
6342 if (IS_ERR(fs_devices))
6343 return fs_devices;
6344
6345 fs_devices->seeding = 1;
6346 fs_devices->opened = 1;
6347 return fs_devices;
6348 }
6349
6350 fs_devices = clone_fs_devices(fs_devices);
6351 if (IS_ERR(fs_devices))
6352 return fs_devices;
6353
6354 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6355 root->fs_info->bdev_holder);
6356 if (ret) {
6357 free_fs_devices(fs_devices);
6358 fs_devices = ERR_PTR(ret);
6359 goto out;
6360 }
6361
6362 if (!fs_devices->seeding) {
6363 __btrfs_close_devices(fs_devices);
6364 free_fs_devices(fs_devices);
6365 fs_devices = ERR_PTR(-EINVAL);
6366 goto out;
6367 }
6368
6369 fs_devices->seed = root->fs_info->fs_devices->seed;
6370 root->fs_info->fs_devices->seed = fs_devices;
6371 out:
6372 return fs_devices;
6373 }
6374
6375 static int read_one_dev(struct btrfs_root *root,
6376 struct extent_buffer *leaf,
6377 struct btrfs_dev_item *dev_item)
6378 {
6379 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6380 struct btrfs_device *device;
6381 u64 devid;
6382 int ret;
6383 u8 fs_uuid[BTRFS_UUID_SIZE];
6384 u8 dev_uuid[BTRFS_UUID_SIZE];
6385
6386 devid = btrfs_device_id(leaf, dev_item);
6387 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6388 BTRFS_UUID_SIZE);
6389 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6390 BTRFS_UUID_SIZE);
6391
6392 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6393 fs_devices = open_seed_devices(root, fs_uuid);
6394 if (IS_ERR(fs_devices))
6395 return PTR_ERR(fs_devices);
6396 }
6397
6398 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6399 if (!device) {
6400 if (!btrfs_test_opt(root, DEGRADED))
6401 return -EIO;
6402
6403 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6404 if (!device)
6405 return -ENOMEM;
6406 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6407 devid, dev_uuid);
6408 } else {
6409 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6410 return -EIO;
6411
6412 if(!device->bdev && !device->missing) {
6413 /*
6414 * this happens when a device that was properly setup
6415 * in the device info lists suddenly goes bad.
6416 * device->bdev is NULL, and so we have to set
6417 * device->missing to one here
6418 */
6419 device->fs_devices->missing_devices++;
6420 device->missing = 1;
6421 }
6422
6423 /* Move the device to its own fs_devices */
6424 if (device->fs_devices != fs_devices) {
6425 ASSERT(device->missing);
6426
6427 list_move(&device->dev_list, &fs_devices->devices);
6428 device->fs_devices->num_devices--;
6429 fs_devices->num_devices++;
6430
6431 device->fs_devices->missing_devices--;
6432 fs_devices->missing_devices++;
6433
6434 device->fs_devices = fs_devices;
6435 }
6436 }
6437
6438 if (device->fs_devices != root->fs_info->fs_devices) {
6439 BUG_ON(device->writeable);
6440 if (device->generation !=
6441 btrfs_device_generation(leaf, dev_item))
6442 return -EINVAL;
6443 }
6444
6445 fill_device_from_item(leaf, dev_item, device);
6446 device->in_fs_metadata = 1;
6447 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6448 device->fs_devices->total_rw_bytes += device->total_bytes;
6449 spin_lock(&root->fs_info->free_chunk_lock);
6450 root->fs_info->free_chunk_space += device->total_bytes -
6451 device->bytes_used;
6452 spin_unlock(&root->fs_info->free_chunk_lock);
6453 }
6454 ret = 0;
6455 return ret;
6456 }
6457
6458 int btrfs_read_sys_array(struct btrfs_root *root)
6459 {
6460 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6461 struct extent_buffer *sb;
6462 struct btrfs_disk_key *disk_key;
6463 struct btrfs_chunk *chunk;
6464 u8 *array_ptr;
6465 unsigned long sb_array_offset;
6466 int ret = 0;
6467 u32 num_stripes;
6468 u32 array_size;
6469 u32 len = 0;
6470 u32 cur_offset;
6471 struct btrfs_key key;
6472
6473 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6474 /*
6475 * This will create extent buffer of nodesize, superblock size is
6476 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6477 * overallocate but we can keep it as-is, only the first page is used.
6478 */
6479 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6480 if (!sb)
6481 return -ENOMEM;
6482 set_extent_buffer_uptodate(sb);
6483 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6484 /*
6485 * The sb extent buffer is artifical and just used to read the system array.
6486 * set_extent_buffer_uptodate() call does not properly mark all it's
6487 * pages up-to-date when the page is larger: extent does not cover the
6488 * whole page and consequently check_page_uptodate does not find all
6489 * the page's extents up-to-date (the hole beyond sb),
6490 * write_extent_buffer then triggers a WARN_ON.
6491 *
6492 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6493 * but sb spans only this function. Add an explicit SetPageUptodate call
6494 * to silence the warning eg. on PowerPC 64.
6495 */
6496 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6497 SetPageUptodate(sb->pages[0]);
6498
6499 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6500 array_size = btrfs_super_sys_array_size(super_copy);
6501
6502 array_ptr = super_copy->sys_chunk_array;
6503 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6504 cur_offset = 0;
6505
6506 while (cur_offset < array_size) {
6507 disk_key = (struct btrfs_disk_key *)array_ptr;
6508 len = sizeof(*disk_key);
6509 if (cur_offset + len > array_size)
6510 goto out_short_read;
6511
6512 btrfs_disk_key_to_cpu(&key, disk_key);
6513
6514 array_ptr += len;
6515 sb_array_offset += len;
6516 cur_offset += len;
6517
6518 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6519 chunk = (struct btrfs_chunk *)sb_array_offset;
6520 /*
6521 * At least one btrfs_chunk with one stripe must be
6522 * present, exact stripe count check comes afterwards
6523 */
6524 len = btrfs_chunk_item_size(1);
6525 if (cur_offset + len > array_size)
6526 goto out_short_read;
6527
6528 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6529 len = btrfs_chunk_item_size(num_stripes);
6530 if (cur_offset + len > array_size)
6531 goto out_short_read;
6532
6533 ret = read_one_chunk(root, &key, sb, chunk);
6534 if (ret)
6535 break;
6536 } else {
6537 ret = -EIO;
6538 break;
6539 }
6540 array_ptr += len;
6541 sb_array_offset += len;
6542 cur_offset += len;
6543 }
6544 free_extent_buffer(sb);
6545 return ret;
6546
6547 out_short_read:
6548 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6549 len, cur_offset);
6550 free_extent_buffer(sb);
6551 return -EIO;
6552 }
6553
6554 int btrfs_read_chunk_tree(struct btrfs_root *root)
6555 {
6556 struct btrfs_path *path;
6557 struct extent_buffer *leaf;
6558 struct btrfs_key key;
6559 struct btrfs_key found_key;
6560 int ret;
6561 int slot;
6562
6563 root = root->fs_info->chunk_root;
6564
6565 path = btrfs_alloc_path();
6566 if (!path)
6567 return -ENOMEM;
6568
6569 mutex_lock(&uuid_mutex);
6570 lock_chunks(root);
6571
6572 /*
6573 * Read all device items, and then all the chunk items. All
6574 * device items are found before any chunk item (their object id
6575 * is smaller than the lowest possible object id for a chunk
6576 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6577 */
6578 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6579 key.offset = 0;
6580 key.type = 0;
6581 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6582 if (ret < 0)
6583 goto error;
6584 while (1) {
6585 leaf = path->nodes[0];
6586 slot = path->slots[0];
6587 if (slot >= btrfs_header_nritems(leaf)) {
6588 ret = btrfs_next_leaf(root, path);
6589 if (ret == 0)
6590 continue;
6591 if (ret < 0)
6592 goto error;
6593 break;
6594 }
6595 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6596 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6597 struct btrfs_dev_item *dev_item;
6598 dev_item = btrfs_item_ptr(leaf, slot,
6599 struct btrfs_dev_item);
6600 ret = read_one_dev(root, leaf, dev_item);
6601 if (ret)
6602 goto error;
6603 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6604 struct btrfs_chunk *chunk;
6605 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6606 ret = read_one_chunk(root, &found_key, leaf, chunk);
6607 if (ret)
6608 goto error;
6609 }
6610 path->slots[0]++;
6611 }
6612 ret = 0;
6613 error:
6614 unlock_chunks(root);
6615 mutex_unlock(&uuid_mutex);
6616
6617 btrfs_free_path(path);
6618 return ret;
6619 }
6620
6621 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6622 {
6623 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6624 struct btrfs_device *device;
6625
6626 while (fs_devices) {
6627 mutex_lock(&fs_devices->device_list_mutex);
6628 list_for_each_entry(device, &fs_devices->devices, dev_list)
6629 device->dev_root = fs_info->dev_root;
6630 mutex_unlock(&fs_devices->device_list_mutex);
6631
6632 fs_devices = fs_devices->seed;
6633 }
6634 }
6635
6636 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6637 {
6638 int i;
6639
6640 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6641 btrfs_dev_stat_reset(dev, i);
6642 }
6643
6644 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6645 {
6646 struct btrfs_key key;
6647 struct btrfs_key found_key;
6648 struct btrfs_root *dev_root = fs_info->dev_root;
6649 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6650 struct extent_buffer *eb;
6651 int slot;
6652 int ret = 0;
6653 struct btrfs_device *device;
6654 struct btrfs_path *path = NULL;
6655 int i;
6656
6657 path = btrfs_alloc_path();
6658 if (!path) {
6659 ret = -ENOMEM;
6660 goto out;
6661 }
6662
6663 mutex_lock(&fs_devices->device_list_mutex);
6664 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6665 int item_size;
6666 struct btrfs_dev_stats_item *ptr;
6667
6668 key.objectid = 0;
6669 key.type = BTRFS_DEV_STATS_KEY;
6670 key.offset = device->devid;
6671 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6672 if (ret) {
6673 __btrfs_reset_dev_stats(device);
6674 device->dev_stats_valid = 1;
6675 btrfs_release_path(path);
6676 continue;
6677 }
6678 slot = path->slots[0];
6679 eb = path->nodes[0];
6680 btrfs_item_key_to_cpu(eb, &found_key, slot);
6681 item_size = btrfs_item_size_nr(eb, slot);
6682
6683 ptr = btrfs_item_ptr(eb, slot,
6684 struct btrfs_dev_stats_item);
6685
6686 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6687 if (item_size >= (1 + i) * sizeof(__le64))
6688 btrfs_dev_stat_set(device, i,
6689 btrfs_dev_stats_value(eb, ptr, i));
6690 else
6691 btrfs_dev_stat_reset(device, i);
6692 }
6693
6694 device->dev_stats_valid = 1;
6695 btrfs_dev_stat_print_on_load(device);
6696 btrfs_release_path(path);
6697 }
6698 mutex_unlock(&fs_devices->device_list_mutex);
6699
6700 out:
6701 btrfs_free_path(path);
6702 return ret < 0 ? ret : 0;
6703 }
6704
6705 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6706 struct btrfs_root *dev_root,
6707 struct btrfs_device *device)
6708 {
6709 struct btrfs_path *path;
6710 struct btrfs_key key;
6711 struct extent_buffer *eb;
6712 struct btrfs_dev_stats_item *ptr;
6713 int ret;
6714 int i;
6715
6716 key.objectid = 0;
6717 key.type = BTRFS_DEV_STATS_KEY;
6718 key.offset = device->devid;
6719
6720 path = btrfs_alloc_path();
6721 BUG_ON(!path);
6722 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6723 if (ret < 0) {
6724 btrfs_warn_in_rcu(dev_root->fs_info,
6725 "error %d while searching for dev_stats item for device %s",
6726 ret, rcu_str_deref(device->name));
6727 goto out;
6728 }
6729
6730 if (ret == 0 &&
6731 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6732 /* need to delete old one and insert a new one */
6733 ret = btrfs_del_item(trans, dev_root, path);
6734 if (ret != 0) {
6735 btrfs_warn_in_rcu(dev_root->fs_info,
6736 "delete too small dev_stats item for device %s failed %d",
6737 rcu_str_deref(device->name), ret);
6738 goto out;
6739 }
6740 ret = 1;
6741 }
6742
6743 if (ret == 1) {
6744 /* need to insert a new item */
6745 btrfs_release_path(path);
6746 ret = btrfs_insert_empty_item(trans, dev_root, path,
6747 &key, sizeof(*ptr));
6748 if (ret < 0) {
6749 btrfs_warn_in_rcu(dev_root->fs_info,
6750 "insert dev_stats item for device %s failed %d",
6751 rcu_str_deref(device->name), ret);
6752 goto out;
6753 }
6754 }
6755
6756 eb = path->nodes[0];
6757 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6759 btrfs_set_dev_stats_value(eb, ptr, i,
6760 btrfs_dev_stat_read(device, i));
6761 btrfs_mark_buffer_dirty(eb);
6762
6763 out:
6764 btrfs_free_path(path);
6765 return ret;
6766 }
6767
6768 /*
6769 * called from commit_transaction. Writes all changed device stats to disk.
6770 */
6771 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6772 struct btrfs_fs_info *fs_info)
6773 {
6774 struct btrfs_root *dev_root = fs_info->dev_root;
6775 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6776 struct btrfs_device *device;
6777 int stats_cnt;
6778 int ret = 0;
6779
6780 mutex_lock(&fs_devices->device_list_mutex);
6781 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6782 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6783 continue;
6784
6785 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6786 ret = update_dev_stat_item(trans, dev_root, device);
6787 if (!ret)
6788 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6789 }
6790 mutex_unlock(&fs_devices->device_list_mutex);
6791
6792 return ret;
6793 }
6794
6795 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6796 {
6797 btrfs_dev_stat_inc(dev, index);
6798 btrfs_dev_stat_print_on_error(dev);
6799 }
6800
6801 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6802 {
6803 if (!dev->dev_stats_valid)
6804 return;
6805 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6806 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6807 rcu_str_deref(dev->name),
6808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6813 }
6814
6815 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6816 {
6817 int i;
6818
6819 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6820 if (btrfs_dev_stat_read(dev, i) != 0)
6821 break;
6822 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6823 return; /* all values == 0, suppress message */
6824
6825 btrfs_info_in_rcu(dev->dev_root->fs_info,
6826 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6827 rcu_str_deref(dev->name),
6828 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6829 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6833 }
6834
6835 int btrfs_get_dev_stats(struct btrfs_root *root,
6836 struct btrfs_ioctl_get_dev_stats *stats)
6837 {
6838 struct btrfs_device *dev;
6839 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6840 int i;
6841
6842 mutex_lock(&fs_devices->device_list_mutex);
6843 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6844 mutex_unlock(&fs_devices->device_list_mutex);
6845
6846 if (!dev) {
6847 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6848 return -ENODEV;
6849 } else if (!dev->dev_stats_valid) {
6850 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6851 return -ENODEV;
6852 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6853 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6854 if (stats->nr_items > i)
6855 stats->values[i] =
6856 btrfs_dev_stat_read_and_reset(dev, i);
6857 else
6858 btrfs_dev_stat_reset(dev, i);
6859 }
6860 } else {
6861 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6862 if (stats->nr_items > i)
6863 stats->values[i] = btrfs_dev_stat_read(dev, i);
6864 }
6865 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6866 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6867 return 0;
6868 }
6869
6870 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6871 {
6872 struct buffer_head *bh;
6873 struct btrfs_super_block *disk_super;
6874 int copy_num;
6875
6876 if (!bdev)
6877 return;
6878
6879 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6880 copy_num++) {
6881
6882 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6883 continue;
6884
6885 disk_super = (struct btrfs_super_block *)bh->b_data;
6886
6887 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6888 set_buffer_dirty(bh);
6889 sync_dirty_buffer(bh);
6890 brelse(bh);
6891 }
6892
6893 /* Notify udev that device has changed */
6894 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6895
6896 /* Update ctime/mtime for device path for libblkid */
6897 update_dev_time(device_path);
6898 }
6899
6900 /*
6901 * Update the size of all devices, which is used for writing out the
6902 * super blocks.
6903 */
6904 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6905 {
6906 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6907 struct btrfs_device *curr, *next;
6908
6909 if (list_empty(&fs_devices->resized_devices))
6910 return;
6911
6912 mutex_lock(&fs_devices->device_list_mutex);
6913 lock_chunks(fs_info->dev_root);
6914 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6915 resized_list) {
6916 list_del_init(&curr->resized_list);
6917 curr->commit_total_bytes = curr->disk_total_bytes;
6918 }
6919 unlock_chunks(fs_info->dev_root);
6920 mutex_unlock(&fs_devices->device_list_mutex);
6921 }
6922
6923 /* Must be invoked during the transaction commit */
6924 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6925 struct btrfs_transaction *transaction)
6926 {
6927 struct extent_map *em;
6928 struct map_lookup *map;
6929 struct btrfs_device *dev;
6930 int i;
6931
6932 if (list_empty(&transaction->pending_chunks))
6933 return;
6934
6935 /* In order to kick the device replace finish process */
6936 lock_chunks(root);
6937 list_for_each_entry(em, &transaction->pending_chunks, list) {
6938 map = (struct map_lookup *)em->bdev;
6939
6940 for (i = 0; i < map->num_stripes; i++) {
6941 dev = map->stripes[i].dev;
6942 dev->commit_bytes_used = dev->bytes_used;
6943 }
6944 }
6945 unlock_chunks(root);
6946 }
6947
6948 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6949 {
6950 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6951 while (fs_devices) {
6952 fs_devices->fs_info = fs_info;
6953 fs_devices = fs_devices->seed;
6954 }
6955 }
6956
6957 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6958 {
6959 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6960 while (fs_devices) {
6961 fs_devices->fs_info = NULL;
6962 fs_devices = fs_devices->seed;
6963 }
6964 }
6965
6966 static void btrfs_close_one_device(struct btrfs_device *device)
6967 {
6968 struct btrfs_fs_devices *fs_devices = device->fs_devices;
6969 struct btrfs_device *new_device;
6970 struct rcu_string *name;
6971
6972 if (device->bdev)
6973 fs_devices->open_devices--;
6974
6975 if (device->writeable &&
6976 device->devid != BTRFS_DEV_REPLACE_DEVID) {
6977 list_del_init(&device->dev_alloc_list);
6978 fs_devices->rw_devices--;
6979 }
6980
6981 if (device->missing)
6982 fs_devices->missing_devices--;
6983
6984 new_device = btrfs_alloc_device(NULL, &device->devid,
6985 device->uuid);
6986 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
6987
6988 /* Safe because we are under uuid_mutex */
6989 if (device->name) {
6990 name = rcu_string_strdup(device->name->str, GFP_NOFS);
6991 BUG_ON(!name); /* -ENOMEM */
6992 rcu_assign_pointer(new_device->name, name);
6993 }
6994
6995 list_replace_rcu(&device->dev_list, &new_device->dev_list);
6996 new_device->fs_devices = device->fs_devices;
6997
6998 call_rcu(&device->rcu, free_device);
6999 }