]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/volumes.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 return &fs_uuids;
153 }
154
155 static struct btrfs_fs_devices *__alloc_fs_devices(void)
156 {
157 struct btrfs_fs_devices *fs_devs;
158
159 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
160 if (!fs_devs)
161 return ERR_PTR(-ENOMEM);
162
163 mutex_init(&fs_devs->device_list_mutex);
164
165 INIT_LIST_HEAD(&fs_devs->devices);
166 INIT_LIST_HEAD(&fs_devs->resized_devices);
167 INIT_LIST_HEAD(&fs_devs->alloc_list);
168 INIT_LIST_HEAD(&fs_devs->list);
169
170 return fs_devs;
171 }
172
173 /**
174 * alloc_fs_devices - allocate struct btrfs_fs_devices
175 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
176 * generated.
177 *
178 * Return: a pointer to a new &struct btrfs_fs_devices on success;
179 * ERR_PTR() on error. Returned struct is not linked onto any lists and
180 * can be destroyed with kfree() right away.
181 */
182 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183 {
184 struct btrfs_fs_devices *fs_devs;
185
186 fs_devs = __alloc_fs_devices();
187 if (IS_ERR(fs_devs))
188 return fs_devs;
189
190 if (fsid)
191 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192 else
193 generate_random_uuid(fs_devs->fsid);
194
195 return fs_devs;
196 }
197
198 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199 {
200 struct btrfs_device *device;
201 WARN_ON(fs_devices->opened);
202 while (!list_empty(&fs_devices->devices)) {
203 device = list_entry(fs_devices->devices.next,
204 struct btrfs_device, dev_list);
205 list_del(&device->dev_list);
206 rcu_string_free(device->name);
207 kfree(device);
208 }
209 kfree(fs_devices);
210 }
211
212 static void btrfs_kobject_uevent(struct block_device *bdev,
213 enum kobject_action action)
214 {
215 int ret;
216
217 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218 if (ret)
219 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
220 action,
221 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222 &disk_to_dev(bdev->bd_disk)->kobj);
223 }
224
225 void btrfs_cleanup_fs_uuids(void)
226 {
227 struct btrfs_fs_devices *fs_devices;
228
229 while (!list_empty(&fs_uuids)) {
230 fs_devices = list_entry(fs_uuids.next,
231 struct btrfs_fs_devices, list);
232 list_del(&fs_devices->list);
233 free_fs_devices(fs_devices);
234 }
235 }
236
237 static struct btrfs_device *__alloc_device(void)
238 {
239 struct btrfs_device *dev;
240
241 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
242 if (!dev)
243 return ERR_PTR(-ENOMEM);
244
245 /*
246 * Preallocate a bio that's always going to be used for flushing device
247 * barriers and matches the device lifespan
248 */
249 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
250 if (!dev->flush_bio) {
251 kfree(dev);
252 return ERR_PTR(-ENOMEM);
253 }
254 bio_get(dev->flush_bio);
255
256 INIT_LIST_HEAD(&dev->dev_list);
257 INIT_LIST_HEAD(&dev->dev_alloc_list);
258 INIT_LIST_HEAD(&dev->resized_list);
259
260 spin_lock_init(&dev->io_lock);
261
262 spin_lock_init(&dev->reada_lock);
263 atomic_set(&dev->reada_in_flight, 0);
264 atomic_set(&dev->dev_stats_ccnt, 0);
265 btrfs_device_data_ordered_init(dev);
266 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
267 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
268
269 return dev;
270 }
271
272 static noinline struct btrfs_device *__find_device(struct list_head *head,
273 u64 devid, u8 *uuid)
274 {
275 struct btrfs_device *dev;
276
277 list_for_each_entry(dev, head, dev_list) {
278 if (dev->devid == devid &&
279 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
280 return dev;
281 }
282 }
283 return NULL;
284 }
285
286 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
287 {
288 struct btrfs_fs_devices *fs_devices;
289
290 list_for_each_entry(fs_devices, &fs_uuids, list) {
291 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
292 return fs_devices;
293 }
294 return NULL;
295 }
296
297 static int
298 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
299 int flush, struct block_device **bdev,
300 struct buffer_head **bh)
301 {
302 int ret;
303
304 *bdev = blkdev_get_by_path(device_path, flags, holder);
305
306 if (IS_ERR(*bdev)) {
307 ret = PTR_ERR(*bdev);
308 goto error;
309 }
310
311 if (flush)
312 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
313 ret = set_blocksize(*bdev, 4096);
314 if (ret) {
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318 invalidate_bdev(*bdev);
319 *bh = btrfs_read_dev_super(*bdev);
320 if (IS_ERR(*bh)) {
321 ret = PTR_ERR(*bh);
322 blkdev_put(*bdev, flags);
323 goto error;
324 }
325
326 return 0;
327
328 error:
329 *bdev = NULL;
330 *bh = NULL;
331 return ret;
332 }
333
334 static void requeue_list(struct btrfs_pending_bios *pending_bios,
335 struct bio *head, struct bio *tail)
336 {
337
338 struct bio *old_head;
339
340 old_head = pending_bios->head;
341 pending_bios->head = head;
342 if (pending_bios->tail)
343 tail->bi_next = old_head;
344 else
345 pending_bios->tail = tail;
346 }
347
348 /*
349 * we try to collect pending bios for a device so we don't get a large
350 * number of procs sending bios down to the same device. This greatly
351 * improves the schedulers ability to collect and merge the bios.
352 *
353 * But, it also turns into a long list of bios to process and that is sure
354 * to eventually make the worker thread block. The solution here is to
355 * make some progress and then put this work struct back at the end of
356 * the list if the block device is congested. This way, multiple devices
357 * can make progress from a single worker thread.
358 */
359 static noinline void run_scheduled_bios(struct btrfs_device *device)
360 {
361 struct btrfs_fs_info *fs_info = device->fs_info;
362 struct bio *pending;
363 struct backing_dev_info *bdi;
364 struct btrfs_pending_bios *pending_bios;
365 struct bio *tail;
366 struct bio *cur;
367 int again = 0;
368 unsigned long num_run;
369 unsigned long batch_run = 0;
370 unsigned long limit;
371 unsigned long last_waited = 0;
372 int force_reg = 0;
373 int sync_pending = 0;
374 struct blk_plug plug;
375
376 /*
377 * this function runs all the bios we've collected for
378 * a particular device. We don't want to wander off to
379 * another device without first sending all of these down.
380 * So, setup a plug here and finish it off before we return
381 */
382 blk_start_plug(&plug);
383
384 bdi = device->bdev->bd_bdi;
385 limit = btrfs_async_submit_limit(fs_info);
386 limit = limit * 2 / 3;
387
388 loop:
389 spin_lock(&device->io_lock);
390
391 loop_lock:
392 num_run = 0;
393
394 /* take all the bios off the list at once and process them
395 * later on (without the lock held). But, remember the
396 * tail and other pointers so the bios can be properly reinserted
397 * into the list if we hit congestion
398 */
399 if (!force_reg && device->pending_sync_bios.head) {
400 pending_bios = &device->pending_sync_bios;
401 force_reg = 1;
402 } else {
403 pending_bios = &device->pending_bios;
404 force_reg = 0;
405 }
406
407 pending = pending_bios->head;
408 tail = pending_bios->tail;
409 WARN_ON(pending && !tail);
410
411 /*
412 * if pending was null this time around, no bios need processing
413 * at all and we can stop. Otherwise it'll loop back up again
414 * and do an additional check so no bios are missed.
415 *
416 * device->running_pending is used to synchronize with the
417 * schedule_bio code.
418 */
419 if (device->pending_sync_bios.head == NULL &&
420 device->pending_bios.head == NULL) {
421 again = 0;
422 device->running_pending = 0;
423 } else {
424 again = 1;
425 device->running_pending = 1;
426 }
427
428 pending_bios->head = NULL;
429 pending_bios->tail = NULL;
430
431 spin_unlock(&device->io_lock);
432
433 while (pending) {
434
435 rmb();
436 /* we want to work on both lists, but do more bios on the
437 * sync list than the regular list
438 */
439 if ((num_run > 32 &&
440 pending_bios != &device->pending_sync_bios &&
441 device->pending_sync_bios.head) ||
442 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
443 device->pending_bios.head)) {
444 spin_lock(&device->io_lock);
445 requeue_list(pending_bios, pending, tail);
446 goto loop_lock;
447 }
448
449 cur = pending;
450 pending = pending->bi_next;
451 cur->bi_next = NULL;
452
453 /*
454 * atomic_dec_return implies a barrier for waitqueue_active
455 */
456 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
457 waitqueue_active(&fs_info->async_submit_wait))
458 wake_up(&fs_info->async_submit_wait);
459
460 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
461
462 /*
463 * if we're doing the sync list, record that our
464 * plug has some sync requests on it
465 *
466 * If we're doing the regular list and there are
467 * sync requests sitting around, unplug before
468 * we add more
469 */
470 if (pending_bios == &device->pending_sync_bios) {
471 sync_pending = 1;
472 } else if (sync_pending) {
473 blk_finish_plug(&plug);
474 blk_start_plug(&plug);
475 sync_pending = 0;
476 }
477
478 btrfsic_submit_bio(cur);
479 num_run++;
480 batch_run++;
481
482 cond_resched();
483
484 /*
485 * we made progress, there is more work to do and the bdi
486 * is now congested. Back off and let other work structs
487 * run instead
488 */
489 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
490 fs_info->fs_devices->open_devices > 1) {
491 struct io_context *ioc;
492
493 ioc = current->io_context;
494
495 /*
496 * the main goal here is that we don't want to
497 * block if we're going to be able to submit
498 * more requests without blocking.
499 *
500 * This code does two great things, it pokes into
501 * the elevator code from a filesystem _and_
502 * it makes assumptions about how batching works.
503 */
504 if (ioc && ioc->nr_batch_requests > 0 &&
505 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
506 (last_waited == 0 ||
507 ioc->last_waited == last_waited)) {
508 /*
509 * we want to go through our batch of
510 * requests and stop. So, we copy out
511 * the ioc->last_waited time and test
512 * against it before looping
513 */
514 last_waited = ioc->last_waited;
515 cond_resched();
516 continue;
517 }
518 spin_lock(&device->io_lock);
519 requeue_list(pending_bios, pending, tail);
520 device->running_pending = 1;
521
522 spin_unlock(&device->io_lock);
523 btrfs_queue_work(fs_info->submit_workers,
524 &device->work);
525 goto done;
526 }
527 /* unplug every 64 requests just for good measure */
528 if (batch_run % 64 == 0) {
529 blk_finish_plug(&plug);
530 blk_start_plug(&plug);
531 sync_pending = 0;
532 }
533 }
534
535 cond_resched();
536 if (again)
537 goto loop;
538
539 spin_lock(&device->io_lock);
540 if (device->pending_bios.head || device->pending_sync_bios.head)
541 goto loop_lock;
542 spin_unlock(&device->io_lock);
543
544 done:
545 blk_finish_plug(&plug);
546 }
547
548 static void pending_bios_fn(struct btrfs_work *work)
549 {
550 struct btrfs_device *device;
551
552 device = container_of(work, struct btrfs_device, work);
553 run_scheduled_bios(device);
554 }
555
556
557 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
558 {
559 struct btrfs_fs_devices *fs_devs;
560 struct btrfs_device *dev;
561
562 if (!cur_dev->name)
563 return;
564
565 list_for_each_entry(fs_devs, &fs_uuids, list) {
566 int del = 1;
567
568 if (fs_devs->opened)
569 continue;
570 if (fs_devs->seeding)
571 continue;
572
573 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
574
575 if (dev == cur_dev)
576 continue;
577 if (!dev->name)
578 continue;
579
580 /*
581 * Todo: This won't be enough. What if the same device
582 * comes back (with new uuid and) with its mapper path?
583 * But for now, this does help as mostly an admin will
584 * either use mapper or non mapper path throughout.
585 */
586 rcu_read_lock();
587 del = strcmp(rcu_str_deref(dev->name),
588 rcu_str_deref(cur_dev->name));
589 rcu_read_unlock();
590 if (!del)
591 break;
592 }
593
594 if (!del) {
595 /* delete the stale device */
596 if (fs_devs->num_devices == 1) {
597 btrfs_sysfs_remove_fsid(fs_devs);
598 list_del(&fs_devs->list);
599 free_fs_devices(fs_devs);
600 } else {
601 fs_devs->num_devices--;
602 list_del(&dev->dev_list);
603 rcu_string_free(dev->name);
604 kfree(dev);
605 }
606 break;
607 }
608 }
609 }
610
611 /*
612 * Add new device to list of registered devices
613 *
614 * Returns:
615 * 1 - first time device is seen
616 * 0 - device already known
617 * < 0 - error
618 */
619 static noinline int device_list_add(const char *path,
620 struct btrfs_super_block *disk_super,
621 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
622 {
623 struct btrfs_device *device;
624 struct btrfs_fs_devices *fs_devices;
625 struct rcu_string *name;
626 int ret = 0;
627 u64 found_transid = btrfs_super_generation(disk_super);
628
629 fs_devices = find_fsid(disk_super->fsid);
630 if (!fs_devices) {
631 fs_devices = alloc_fs_devices(disk_super->fsid);
632 if (IS_ERR(fs_devices))
633 return PTR_ERR(fs_devices);
634
635 list_add(&fs_devices->list, &fs_uuids);
636
637 device = NULL;
638 } else {
639 device = __find_device(&fs_devices->devices, devid,
640 disk_super->dev_item.uuid);
641 }
642
643 if (!device) {
644 if (fs_devices->opened)
645 return -EBUSY;
646
647 device = btrfs_alloc_device(NULL, &devid,
648 disk_super->dev_item.uuid);
649 if (IS_ERR(device)) {
650 /* we can safely leave the fs_devices entry around */
651 return PTR_ERR(device);
652 }
653
654 name = rcu_string_strdup(path, GFP_NOFS);
655 if (!name) {
656 kfree(device);
657 return -ENOMEM;
658 }
659 rcu_assign_pointer(device->name, name);
660
661 mutex_lock(&fs_devices->device_list_mutex);
662 list_add_rcu(&device->dev_list, &fs_devices->devices);
663 fs_devices->num_devices++;
664 mutex_unlock(&fs_devices->device_list_mutex);
665
666 ret = 1;
667 device->fs_devices = fs_devices;
668 } else if (!device->name || strcmp(device->name->str, path)) {
669 /*
670 * When FS is already mounted.
671 * 1. If you are here and if the device->name is NULL that
672 * means this device was missing at time of FS mount.
673 * 2. If you are here and if the device->name is different
674 * from 'path' that means either
675 * a. The same device disappeared and reappeared with
676 * different name. or
677 * b. The missing-disk-which-was-replaced, has
678 * reappeared now.
679 *
680 * We must allow 1 and 2a above. But 2b would be a spurious
681 * and unintentional.
682 *
683 * Further in case of 1 and 2a above, the disk at 'path'
684 * would have missed some transaction when it was away and
685 * in case of 2a the stale bdev has to be updated as well.
686 * 2b must not be allowed at all time.
687 */
688
689 /*
690 * For now, we do allow update to btrfs_fs_device through the
691 * btrfs dev scan cli after FS has been mounted. We're still
692 * tracking a problem where systems fail mount by subvolume id
693 * when we reject replacement on a mounted FS.
694 */
695 if (!fs_devices->opened && found_transid < device->generation) {
696 /*
697 * That is if the FS is _not_ mounted and if you
698 * are here, that means there is more than one
699 * disk with same uuid and devid.We keep the one
700 * with larger generation number or the last-in if
701 * generation are equal.
702 */
703 return -EEXIST;
704 }
705
706 name = rcu_string_strdup(path, GFP_NOFS);
707 if (!name)
708 return -ENOMEM;
709 rcu_string_free(device->name);
710 rcu_assign_pointer(device->name, name);
711 if (device->missing) {
712 fs_devices->missing_devices--;
713 device->missing = 0;
714 }
715 }
716
717 /*
718 * Unmount does not free the btrfs_device struct but would zero
719 * generation along with most of the other members. So just update
720 * it back. We need it to pick the disk with largest generation
721 * (as above).
722 */
723 if (!fs_devices->opened)
724 device->generation = found_transid;
725
726 /*
727 * if there is new btrfs on an already registered device,
728 * then remove the stale device entry.
729 */
730 if (ret > 0)
731 btrfs_free_stale_device(device);
732
733 *fs_devices_ret = fs_devices;
734
735 return ret;
736 }
737
738 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
739 {
740 struct btrfs_fs_devices *fs_devices;
741 struct btrfs_device *device;
742 struct btrfs_device *orig_dev;
743
744 fs_devices = alloc_fs_devices(orig->fsid);
745 if (IS_ERR(fs_devices))
746 return fs_devices;
747
748 mutex_lock(&orig->device_list_mutex);
749 fs_devices->total_devices = orig->total_devices;
750
751 /* We have held the volume lock, it is safe to get the devices. */
752 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
753 struct rcu_string *name;
754
755 device = btrfs_alloc_device(NULL, &orig_dev->devid,
756 orig_dev->uuid);
757 if (IS_ERR(device))
758 goto error;
759
760 /*
761 * This is ok to do without rcu read locked because we hold the
762 * uuid mutex so nothing we touch in here is going to disappear.
763 */
764 if (orig_dev->name) {
765 name = rcu_string_strdup(orig_dev->name->str,
766 GFP_KERNEL);
767 if (!name) {
768 kfree(device);
769 goto error;
770 }
771 rcu_assign_pointer(device->name, name);
772 }
773
774 list_add(&device->dev_list, &fs_devices->devices);
775 device->fs_devices = fs_devices;
776 fs_devices->num_devices++;
777 }
778 mutex_unlock(&orig->device_list_mutex);
779 return fs_devices;
780 error:
781 mutex_unlock(&orig->device_list_mutex);
782 free_fs_devices(fs_devices);
783 return ERR_PTR(-ENOMEM);
784 }
785
786 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
787 {
788 struct btrfs_device *device, *next;
789 struct btrfs_device *latest_dev = NULL;
790
791 mutex_lock(&uuid_mutex);
792 again:
793 /* This is the initialized path, it is safe to release the devices. */
794 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
795 if (device->in_fs_metadata) {
796 if (!device->is_tgtdev_for_dev_replace &&
797 (!latest_dev ||
798 device->generation > latest_dev->generation)) {
799 latest_dev = device;
800 }
801 continue;
802 }
803
804 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
805 /*
806 * In the first step, keep the device which has
807 * the correct fsid and the devid that is used
808 * for the dev_replace procedure.
809 * In the second step, the dev_replace state is
810 * read from the device tree and it is known
811 * whether the procedure is really active or
812 * not, which means whether this device is
813 * used or whether it should be removed.
814 */
815 if (step == 0 || device->is_tgtdev_for_dev_replace) {
816 continue;
817 }
818 }
819 if (device->bdev) {
820 blkdev_put(device->bdev, device->mode);
821 device->bdev = NULL;
822 fs_devices->open_devices--;
823 }
824 if (device->writeable) {
825 list_del_init(&device->dev_alloc_list);
826 device->writeable = 0;
827 if (!device->is_tgtdev_for_dev_replace)
828 fs_devices->rw_devices--;
829 }
830 list_del_init(&device->dev_list);
831 fs_devices->num_devices--;
832 rcu_string_free(device->name);
833 kfree(device);
834 }
835
836 if (fs_devices->seed) {
837 fs_devices = fs_devices->seed;
838 goto again;
839 }
840
841 fs_devices->latest_bdev = latest_dev->bdev;
842
843 mutex_unlock(&uuid_mutex);
844 }
845
846 static void __free_device(struct work_struct *work)
847 {
848 struct btrfs_device *device;
849
850 device = container_of(work, struct btrfs_device, rcu_work);
851 rcu_string_free(device->name);
852 bio_put(device->flush_bio);
853 kfree(device);
854 }
855
856 static void free_device(struct rcu_head *head)
857 {
858 struct btrfs_device *device;
859
860 device = container_of(head, struct btrfs_device, rcu);
861
862 INIT_WORK(&device->rcu_work, __free_device);
863 schedule_work(&device->rcu_work);
864 }
865
866 static void btrfs_close_bdev(struct btrfs_device *device)
867 {
868 if (device->bdev && device->writeable) {
869 sync_blockdev(device->bdev);
870 invalidate_bdev(device->bdev);
871 }
872
873 if (device->bdev)
874 blkdev_put(device->bdev, device->mode);
875 }
876
877 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
878 {
879 struct btrfs_fs_devices *fs_devices = device->fs_devices;
880 struct btrfs_device *new_device;
881 struct rcu_string *name;
882
883 if (device->bdev)
884 fs_devices->open_devices--;
885
886 if (device->writeable &&
887 device->devid != BTRFS_DEV_REPLACE_DEVID) {
888 list_del_init(&device->dev_alloc_list);
889 fs_devices->rw_devices--;
890 }
891
892 if (device->missing)
893 fs_devices->missing_devices--;
894
895 new_device = btrfs_alloc_device(NULL, &device->devid,
896 device->uuid);
897 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
898
899 /* Safe because we are under uuid_mutex */
900 if (device->name) {
901 name = rcu_string_strdup(device->name->str, GFP_NOFS);
902 BUG_ON(!name); /* -ENOMEM */
903 rcu_assign_pointer(new_device->name, name);
904 }
905
906 list_replace_rcu(&device->dev_list, &new_device->dev_list);
907 new_device->fs_devices = device->fs_devices;
908 }
909
910 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
911 {
912 struct btrfs_device *device, *tmp;
913 struct list_head pending_put;
914
915 INIT_LIST_HEAD(&pending_put);
916
917 if (--fs_devices->opened > 0)
918 return 0;
919
920 mutex_lock(&fs_devices->device_list_mutex);
921 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
922 btrfs_prepare_close_one_device(device);
923 list_add(&device->dev_list, &pending_put);
924 }
925 mutex_unlock(&fs_devices->device_list_mutex);
926
927 /*
928 * btrfs_show_devname() is using the device_list_mutex,
929 * sometimes call to blkdev_put() leads vfs calling
930 * into this func. So do put outside of device_list_mutex,
931 * as of now.
932 */
933 while (!list_empty(&pending_put)) {
934 device = list_first_entry(&pending_put,
935 struct btrfs_device, dev_list);
936 list_del(&device->dev_list);
937 btrfs_close_bdev(device);
938 call_rcu(&device->rcu, free_device);
939 }
940
941 WARN_ON(fs_devices->open_devices);
942 WARN_ON(fs_devices->rw_devices);
943 fs_devices->opened = 0;
944 fs_devices->seeding = 0;
945
946 return 0;
947 }
948
949 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
950 {
951 struct btrfs_fs_devices *seed_devices = NULL;
952 int ret;
953
954 mutex_lock(&uuid_mutex);
955 ret = __btrfs_close_devices(fs_devices);
956 if (!fs_devices->opened) {
957 seed_devices = fs_devices->seed;
958 fs_devices->seed = NULL;
959 }
960 mutex_unlock(&uuid_mutex);
961
962 while (seed_devices) {
963 fs_devices = seed_devices;
964 seed_devices = fs_devices->seed;
965 __btrfs_close_devices(fs_devices);
966 free_fs_devices(fs_devices);
967 }
968 /*
969 * Wait for rcu kworkers under __btrfs_close_devices
970 * to finish all blkdev_puts so device is really
971 * free when umount is done.
972 */
973 rcu_barrier();
974 return ret;
975 }
976
977 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
978 fmode_t flags, void *holder)
979 {
980 struct request_queue *q;
981 struct block_device *bdev;
982 struct list_head *head = &fs_devices->devices;
983 struct btrfs_device *device;
984 struct btrfs_device *latest_dev = NULL;
985 struct buffer_head *bh;
986 struct btrfs_super_block *disk_super;
987 u64 devid;
988 int seeding = 1;
989 int ret = 0;
990
991 flags |= FMODE_EXCL;
992
993 list_for_each_entry(device, head, dev_list) {
994 if (device->bdev)
995 continue;
996 if (!device->name)
997 continue;
998
999 /* Just open everything we can; ignore failures here */
1000 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
1001 &bdev, &bh))
1002 continue;
1003
1004 disk_super = (struct btrfs_super_block *)bh->b_data;
1005 devid = btrfs_stack_device_id(&disk_super->dev_item);
1006 if (devid != device->devid)
1007 goto error_brelse;
1008
1009 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1010 BTRFS_UUID_SIZE))
1011 goto error_brelse;
1012
1013 device->generation = btrfs_super_generation(disk_super);
1014 if (!latest_dev ||
1015 device->generation > latest_dev->generation)
1016 latest_dev = device;
1017
1018 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1019 device->writeable = 0;
1020 } else {
1021 device->writeable = !bdev_read_only(bdev);
1022 seeding = 0;
1023 }
1024
1025 q = bdev_get_queue(bdev);
1026 if (blk_queue_discard(q))
1027 device->can_discard = 1;
1028 if (!blk_queue_nonrot(q))
1029 fs_devices->rotating = 1;
1030
1031 device->bdev = bdev;
1032 device->in_fs_metadata = 0;
1033 device->mode = flags;
1034
1035 fs_devices->open_devices++;
1036 if (device->writeable &&
1037 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1038 fs_devices->rw_devices++;
1039 list_add(&device->dev_alloc_list,
1040 &fs_devices->alloc_list);
1041 }
1042 brelse(bh);
1043 continue;
1044
1045 error_brelse:
1046 brelse(bh);
1047 blkdev_put(bdev, flags);
1048 continue;
1049 }
1050 if (fs_devices->open_devices == 0) {
1051 ret = -EINVAL;
1052 goto out;
1053 }
1054 fs_devices->seeding = seeding;
1055 fs_devices->opened = 1;
1056 fs_devices->latest_bdev = latest_dev->bdev;
1057 fs_devices->total_rw_bytes = 0;
1058 out:
1059 return ret;
1060 }
1061
1062 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1063 fmode_t flags, void *holder)
1064 {
1065 int ret;
1066
1067 mutex_lock(&uuid_mutex);
1068 if (fs_devices->opened) {
1069 fs_devices->opened++;
1070 ret = 0;
1071 } else {
1072 ret = __btrfs_open_devices(fs_devices, flags, holder);
1073 }
1074 mutex_unlock(&uuid_mutex);
1075 return ret;
1076 }
1077
1078 void btrfs_release_disk_super(struct page *page)
1079 {
1080 kunmap(page);
1081 put_page(page);
1082 }
1083
1084 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1085 struct page **page, struct btrfs_super_block **disk_super)
1086 {
1087 void *p;
1088 pgoff_t index;
1089
1090 /* make sure our super fits in the device */
1091 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1092 return 1;
1093
1094 /* make sure our super fits in the page */
1095 if (sizeof(**disk_super) > PAGE_SIZE)
1096 return 1;
1097
1098 /* make sure our super doesn't straddle pages on disk */
1099 index = bytenr >> PAGE_SHIFT;
1100 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1101 return 1;
1102
1103 /* pull in the page with our super */
1104 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1105 index, GFP_KERNEL);
1106
1107 if (IS_ERR_OR_NULL(*page))
1108 return 1;
1109
1110 p = kmap(*page);
1111
1112 /* align our pointer to the offset of the super block */
1113 *disk_super = p + (bytenr & ~PAGE_MASK);
1114
1115 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1116 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1117 btrfs_release_disk_super(*page);
1118 return 1;
1119 }
1120
1121 if ((*disk_super)->label[0] &&
1122 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1123 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1124
1125 return 0;
1126 }
1127
1128 /*
1129 * Look for a btrfs signature on a device. This may be called out of the mount path
1130 * and we are not allowed to call set_blocksize during the scan. The superblock
1131 * is read via pagecache
1132 */
1133 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1134 struct btrfs_fs_devices **fs_devices_ret)
1135 {
1136 struct btrfs_super_block *disk_super;
1137 struct block_device *bdev;
1138 struct page *page;
1139 int ret = -EINVAL;
1140 u64 devid;
1141 u64 transid;
1142 u64 total_devices;
1143 u64 bytenr;
1144
1145 /*
1146 * we would like to check all the supers, but that would make
1147 * a btrfs mount succeed after a mkfs from a different FS.
1148 * So, we need to add a special mount option to scan for
1149 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1150 */
1151 bytenr = btrfs_sb_offset(0);
1152 flags |= FMODE_EXCL;
1153 mutex_lock(&uuid_mutex);
1154
1155 bdev = blkdev_get_by_path(path, flags, holder);
1156 if (IS_ERR(bdev)) {
1157 ret = PTR_ERR(bdev);
1158 goto error;
1159 }
1160
1161 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1162 goto error_bdev_put;
1163
1164 devid = btrfs_stack_device_id(&disk_super->dev_item);
1165 transid = btrfs_super_generation(disk_super);
1166 total_devices = btrfs_super_num_devices(disk_super);
1167
1168 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1169 if (ret > 0) {
1170 if (disk_super->label[0]) {
1171 pr_info("BTRFS: device label %s ", disk_super->label);
1172 } else {
1173 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1174 }
1175
1176 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1177 ret = 0;
1178 }
1179 if (!ret && fs_devices_ret)
1180 (*fs_devices_ret)->total_devices = total_devices;
1181
1182 btrfs_release_disk_super(page);
1183
1184 error_bdev_put:
1185 blkdev_put(bdev, flags);
1186 error:
1187 mutex_unlock(&uuid_mutex);
1188 return ret;
1189 }
1190
1191 /* helper to account the used device space in the range */
1192 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1193 u64 end, u64 *length)
1194 {
1195 struct btrfs_key key;
1196 struct btrfs_root *root = device->fs_info->dev_root;
1197 struct btrfs_dev_extent *dev_extent;
1198 struct btrfs_path *path;
1199 u64 extent_end;
1200 int ret;
1201 int slot;
1202 struct extent_buffer *l;
1203
1204 *length = 0;
1205
1206 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1207 return 0;
1208
1209 path = btrfs_alloc_path();
1210 if (!path)
1211 return -ENOMEM;
1212 path->reada = READA_FORWARD;
1213
1214 key.objectid = device->devid;
1215 key.offset = start;
1216 key.type = BTRFS_DEV_EXTENT_KEY;
1217
1218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1219 if (ret < 0)
1220 goto out;
1221 if (ret > 0) {
1222 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1223 if (ret < 0)
1224 goto out;
1225 }
1226
1227 while (1) {
1228 l = path->nodes[0];
1229 slot = path->slots[0];
1230 if (slot >= btrfs_header_nritems(l)) {
1231 ret = btrfs_next_leaf(root, path);
1232 if (ret == 0)
1233 continue;
1234 if (ret < 0)
1235 goto out;
1236
1237 break;
1238 }
1239 btrfs_item_key_to_cpu(l, &key, slot);
1240
1241 if (key.objectid < device->devid)
1242 goto next;
1243
1244 if (key.objectid > device->devid)
1245 break;
1246
1247 if (key.type != BTRFS_DEV_EXTENT_KEY)
1248 goto next;
1249
1250 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1251 extent_end = key.offset + btrfs_dev_extent_length(l,
1252 dev_extent);
1253 if (key.offset <= start && extent_end > end) {
1254 *length = end - start + 1;
1255 break;
1256 } else if (key.offset <= start && extent_end > start)
1257 *length += extent_end - start;
1258 else if (key.offset > start && extent_end <= end)
1259 *length += extent_end - key.offset;
1260 else if (key.offset > start && key.offset <= end) {
1261 *length += end - key.offset + 1;
1262 break;
1263 } else if (key.offset > end)
1264 break;
1265
1266 next:
1267 path->slots[0]++;
1268 }
1269 ret = 0;
1270 out:
1271 btrfs_free_path(path);
1272 return ret;
1273 }
1274
1275 static int contains_pending_extent(struct btrfs_transaction *transaction,
1276 struct btrfs_device *device,
1277 u64 *start, u64 len)
1278 {
1279 struct btrfs_fs_info *fs_info = device->fs_info;
1280 struct extent_map *em;
1281 struct list_head *search_list = &fs_info->pinned_chunks;
1282 int ret = 0;
1283 u64 physical_start = *start;
1284
1285 if (transaction)
1286 search_list = &transaction->pending_chunks;
1287 again:
1288 list_for_each_entry(em, search_list, list) {
1289 struct map_lookup *map;
1290 int i;
1291
1292 map = em->map_lookup;
1293 for (i = 0; i < map->num_stripes; i++) {
1294 u64 end;
1295
1296 if (map->stripes[i].dev != device)
1297 continue;
1298 if (map->stripes[i].physical >= physical_start + len ||
1299 map->stripes[i].physical + em->orig_block_len <=
1300 physical_start)
1301 continue;
1302 /*
1303 * Make sure that while processing the pinned list we do
1304 * not override our *start with a lower value, because
1305 * we can have pinned chunks that fall within this
1306 * device hole and that have lower physical addresses
1307 * than the pending chunks we processed before. If we
1308 * do not take this special care we can end up getting
1309 * 2 pending chunks that start at the same physical
1310 * device offsets because the end offset of a pinned
1311 * chunk can be equal to the start offset of some
1312 * pending chunk.
1313 */
1314 end = map->stripes[i].physical + em->orig_block_len;
1315 if (end > *start) {
1316 *start = end;
1317 ret = 1;
1318 }
1319 }
1320 }
1321 if (search_list != &fs_info->pinned_chunks) {
1322 search_list = &fs_info->pinned_chunks;
1323 goto again;
1324 }
1325
1326 return ret;
1327 }
1328
1329
1330 /*
1331 * find_free_dev_extent_start - find free space in the specified device
1332 * @device: the device which we search the free space in
1333 * @num_bytes: the size of the free space that we need
1334 * @search_start: the position from which to begin the search
1335 * @start: store the start of the free space.
1336 * @len: the size of the free space. that we find, or the size
1337 * of the max free space if we don't find suitable free space
1338 *
1339 * this uses a pretty simple search, the expectation is that it is
1340 * called very infrequently and that a given device has a small number
1341 * of extents
1342 *
1343 * @start is used to store the start of the free space if we find. But if we
1344 * don't find suitable free space, it will be used to store the start position
1345 * of the max free space.
1346 *
1347 * @len is used to store the size of the free space that we find.
1348 * But if we don't find suitable free space, it is used to store the size of
1349 * the max free space.
1350 */
1351 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1352 struct btrfs_device *device, u64 num_bytes,
1353 u64 search_start, u64 *start, u64 *len)
1354 {
1355 struct btrfs_fs_info *fs_info = device->fs_info;
1356 struct btrfs_root *root = fs_info->dev_root;
1357 struct btrfs_key key;
1358 struct btrfs_dev_extent *dev_extent;
1359 struct btrfs_path *path;
1360 u64 hole_size;
1361 u64 max_hole_start;
1362 u64 max_hole_size;
1363 u64 extent_end;
1364 u64 search_end = device->total_bytes;
1365 int ret;
1366 int slot;
1367 struct extent_buffer *l;
1368
1369 /*
1370 * We don't want to overwrite the superblock on the drive nor any area
1371 * used by the boot loader (grub for example), so we make sure to start
1372 * at an offset of at least 1MB.
1373 */
1374 search_start = max_t(u64, search_start, SZ_1M);
1375
1376 path = btrfs_alloc_path();
1377 if (!path)
1378 return -ENOMEM;
1379
1380 max_hole_start = search_start;
1381 max_hole_size = 0;
1382
1383 again:
1384 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1385 ret = -ENOSPC;
1386 goto out;
1387 }
1388
1389 path->reada = READA_FORWARD;
1390 path->search_commit_root = 1;
1391 path->skip_locking = 1;
1392
1393 key.objectid = device->devid;
1394 key.offset = search_start;
1395 key.type = BTRFS_DEV_EXTENT_KEY;
1396
1397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1398 if (ret < 0)
1399 goto out;
1400 if (ret > 0) {
1401 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1402 if (ret < 0)
1403 goto out;
1404 }
1405
1406 while (1) {
1407 l = path->nodes[0];
1408 slot = path->slots[0];
1409 if (slot >= btrfs_header_nritems(l)) {
1410 ret = btrfs_next_leaf(root, path);
1411 if (ret == 0)
1412 continue;
1413 if (ret < 0)
1414 goto out;
1415
1416 break;
1417 }
1418 btrfs_item_key_to_cpu(l, &key, slot);
1419
1420 if (key.objectid < device->devid)
1421 goto next;
1422
1423 if (key.objectid > device->devid)
1424 break;
1425
1426 if (key.type != BTRFS_DEV_EXTENT_KEY)
1427 goto next;
1428
1429 if (key.offset > search_start) {
1430 hole_size = key.offset - search_start;
1431
1432 /*
1433 * Have to check before we set max_hole_start, otherwise
1434 * we could end up sending back this offset anyway.
1435 */
1436 if (contains_pending_extent(transaction, device,
1437 &search_start,
1438 hole_size)) {
1439 if (key.offset >= search_start) {
1440 hole_size = key.offset - search_start;
1441 } else {
1442 WARN_ON_ONCE(1);
1443 hole_size = 0;
1444 }
1445 }
1446
1447 if (hole_size > max_hole_size) {
1448 max_hole_start = search_start;
1449 max_hole_size = hole_size;
1450 }
1451
1452 /*
1453 * If this free space is greater than which we need,
1454 * it must be the max free space that we have found
1455 * until now, so max_hole_start must point to the start
1456 * of this free space and the length of this free space
1457 * is stored in max_hole_size. Thus, we return
1458 * max_hole_start and max_hole_size and go back to the
1459 * caller.
1460 */
1461 if (hole_size >= num_bytes) {
1462 ret = 0;
1463 goto out;
1464 }
1465 }
1466
1467 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1468 extent_end = key.offset + btrfs_dev_extent_length(l,
1469 dev_extent);
1470 if (extent_end > search_start)
1471 search_start = extent_end;
1472 next:
1473 path->slots[0]++;
1474 cond_resched();
1475 }
1476
1477 /*
1478 * At this point, search_start should be the end of
1479 * allocated dev extents, and when shrinking the device,
1480 * search_end may be smaller than search_start.
1481 */
1482 if (search_end > search_start) {
1483 hole_size = search_end - search_start;
1484
1485 if (contains_pending_extent(transaction, device, &search_start,
1486 hole_size)) {
1487 btrfs_release_path(path);
1488 goto again;
1489 }
1490
1491 if (hole_size > max_hole_size) {
1492 max_hole_start = search_start;
1493 max_hole_size = hole_size;
1494 }
1495 }
1496
1497 /* See above. */
1498 if (max_hole_size < num_bytes)
1499 ret = -ENOSPC;
1500 else
1501 ret = 0;
1502
1503 out:
1504 btrfs_free_path(path);
1505 *start = max_hole_start;
1506 if (len)
1507 *len = max_hole_size;
1508 return ret;
1509 }
1510
1511 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1512 struct btrfs_device *device, u64 num_bytes,
1513 u64 *start, u64 *len)
1514 {
1515 /* FIXME use last free of some kind */
1516 return find_free_dev_extent_start(trans->transaction, device,
1517 num_bytes, 0, start, len);
1518 }
1519
1520 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1521 struct btrfs_device *device,
1522 u64 start, u64 *dev_extent_len)
1523 {
1524 struct btrfs_fs_info *fs_info = device->fs_info;
1525 struct btrfs_root *root = fs_info->dev_root;
1526 int ret;
1527 struct btrfs_path *path;
1528 struct btrfs_key key;
1529 struct btrfs_key found_key;
1530 struct extent_buffer *leaf = NULL;
1531 struct btrfs_dev_extent *extent = NULL;
1532
1533 path = btrfs_alloc_path();
1534 if (!path)
1535 return -ENOMEM;
1536
1537 key.objectid = device->devid;
1538 key.offset = start;
1539 key.type = BTRFS_DEV_EXTENT_KEY;
1540 again:
1541 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1542 if (ret > 0) {
1543 ret = btrfs_previous_item(root, path, key.objectid,
1544 BTRFS_DEV_EXTENT_KEY);
1545 if (ret)
1546 goto out;
1547 leaf = path->nodes[0];
1548 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1549 extent = btrfs_item_ptr(leaf, path->slots[0],
1550 struct btrfs_dev_extent);
1551 BUG_ON(found_key.offset > start || found_key.offset +
1552 btrfs_dev_extent_length(leaf, extent) < start);
1553 key = found_key;
1554 btrfs_release_path(path);
1555 goto again;
1556 } else if (ret == 0) {
1557 leaf = path->nodes[0];
1558 extent = btrfs_item_ptr(leaf, path->slots[0],
1559 struct btrfs_dev_extent);
1560 } else {
1561 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1562 goto out;
1563 }
1564
1565 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1566
1567 ret = btrfs_del_item(trans, root, path);
1568 if (ret) {
1569 btrfs_handle_fs_error(fs_info, ret,
1570 "Failed to remove dev extent item");
1571 } else {
1572 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1573 }
1574 out:
1575 btrfs_free_path(path);
1576 return ret;
1577 }
1578
1579 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1580 struct btrfs_device *device,
1581 u64 chunk_tree, u64 chunk_objectid,
1582 u64 chunk_offset, u64 start, u64 num_bytes)
1583 {
1584 int ret;
1585 struct btrfs_path *path;
1586 struct btrfs_fs_info *fs_info = device->fs_info;
1587 struct btrfs_root *root = fs_info->dev_root;
1588 struct btrfs_dev_extent *extent;
1589 struct extent_buffer *leaf;
1590 struct btrfs_key key;
1591
1592 WARN_ON(!device->in_fs_metadata);
1593 WARN_ON(device->is_tgtdev_for_dev_replace);
1594 path = btrfs_alloc_path();
1595 if (!path)
1596 return -ENOMEM;
1597
1598 key.objectid = device->devid;
1599 key.offset = start;
1600 key.type = BTRFS_DEV_EXTENT_KEY;
1601 ret = btrfs_insert_empty_item(trans, root, path, &key,
1602 sizeof(*extent));
1603 if (ret)
1604 goto out;
1605
1606 leaf = path->nodes[0];
1607 extent = btrfs_item_ptr(leaf, path->slots[0],
1608 struct btrfs_dev_extent);
1609 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1610 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1611 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1612
1613 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1614
1615 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1616 btrfs_mark_buffer_dirty(leaf);
1617 out:
1618 btrfs_free_path(path);
1619 return ret;
1620 }
1621
1622 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1623 {
1624 struct extent_map_tree *em_tree;
1625 struct extent_map *em;
1626 struct rb_node *n;
1627 u64 ret = 0;
1628
1629 em_tree = &fs_info->mapping_tree.map_tree;
1630 read_lock(&em_tree->lock);
1631 n = rb_last(&em_tree->map);
1632 if (n) {
1633 em = rb_entry(n, struct extent_map, rb_node);
1634 ret = em->start + em->len;
1635 }
1636 read_unlock(&em_tree->lock);
1637
1638 return ret;
1639 }
1640
1641 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1642 u64 *devid_ret)
1643 {
1644 int ret;
1645 struct btrfs_key key;
1646 struct btrfs_key found_key;
1647 struct btrfs_path *path;
1648
1649 path = btrfs_alloc_path();
1650 if (!path)
1651 return -ENOMEM;
1652
1653 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1654 key.type = BTRFS_DEV_ITEM_KEY;
1655 key.offset = (u64)-1;
1656
1657 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1658 if (ret < 0)
1659 goto error;
1660
1661 BUG_ON(ret == 0); /* Corruption */
1662
1663 ret = btrfs_previous_item(fs_info->chunk_root, path,
1664 BTRFS_DEV_ITEMS_OBJECTID,
1665 BTRFS_DEV_ITEM_KEY);
1666 if (ret) {
1667 *devid_ret = 1;
1668 } else {
1669 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1670 path->slots[0]);
1671 *devid_ret = found_key.offset + 1;
1672 }
1673 ret = 0;
1674 error:
1675 btrfs_free_path(path);
1676 return ret;
1677 }
1678
1679 /*
1680 * the device information is stored in the chunk root
1681 * the btrfs_device struct should be fully filled in
1682 */
1683 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1684 struct btrfs_fs_info *fs_info,
1685 struct btrfs_device *device)
1686 {
1687 struct btrfs_root *root = fs_info->chunk_root;
1688 int ret;
1689 struct btrfs_path *path;
1690 struct btrfs_dev_item *dev_item;
1691 struct extent_buffer *leaf;
1692 struct btrfs_key key;
1693 unsigned long ptr;
1694
1695 path = btrfs_alloc_path();
1696 if (!path)
1697 return -ENOMEM;
1698
1699 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1700 key.type = BTRFS_DEV_ITEM_KEY;
1701 key.offset = device->devid;
1702
1703 ret = btrfs_insert_empty_item(trans, root, path, &key,
1704 sizeof(*dev_item));
1705 if (ret)
1706 goto out;
1707
1708 leaf = path->nodes[0];
1709 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1710
1711 btrfs_set_device_id(leaf, dev_item, device->devid);
1712 btrfs_set_device_generation(leaf, dev_item, 0);
1713 btrfs_set_device_type(leaf, dev_item, device->type);
1714 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1715 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1716 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1717 btrfs_set_device_total_bytes(leaf, dev_item,
1718 btrfs_device_get_disk_total_bytes(device));
1719 btrfs_set_device_bytes_used(leaf, dev_item,
1720 btrfs_device_get_bytes_used(device));
1721 btrfs_set_device_group(leaf, dev_item, 0);
1722 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1723 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1724 btrfs_set_device_start_offset(leaf, dev_item, 0);
1725
1726 ptr = btrfs_device_uuid(dev_item);
1727 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1728 ptr = btrfs_device_fsid(dev_item);
1729 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1730 btrfs_mark_buffer_dirty(leaf);
1731
1732 ret = 0;
1733 out:
1734 btrfs_free_path(path);
1735 return ret;
1736 }
1737
1738 /*
1739 * Function to update ctime/mtime for a given device path.
1740 * Mainly used for ctime/mtime based probe like libblkid.
1741 */
1742 static void update_dev_time(const char *path_name)
1743 {
1744 struct file *filp;
1745
1746 filp = filp_open(path_name, O_RDWR, 0);
1747 if (IS_ERR(filp))
1748 return;
1749 file_update_time(filp);
1750 filp_close(filp, NULL);
1751 }
1752
1753 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1754 struct btrfs_device *device)
1755 {
1756 struct btrfs_root *root = fs_info->chunk_root;
1757 int ret;
1758 struct btrfs_path *path;
1759 struct btrfs_key key;
1760 struct btrfs_trans_handle *trans;
1761
1762 path = btrfs_alloc_path();
1763 if (!path)
1764 return -ENOMEM;
1765
1766 trans = btrfs_start_transaction(root, 0);
1767 if (IS_ERR(trans)) {
1768 btrfs_free_path(path);
1769 return PTR_ERR(trans);
1770 }
1771 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1772 key.type = BTRFS_DEV_ITEM_KEY;
1773 key.offset = device->devid;
1774
1775 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1776 if (ret < 0)
1777 goto out;
1778
1779 if (ret > 0) {
1780 ret = -ENOENT;
1781 goto out;
1782 }
1783
1784 ret = btrfs_del_item(trans, root, path);
1785 if (ret)
1786 goto out;
1787 out:
1788 btrfs_free_path(path);
1789 btrfs_commit_transaction(trans);
1790 return ret;
1791 }
1792
1793 /*
1794 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1795 * filesystem. It's up to the caller to adjust that number regarding eg. device
1796 * replace.
1797 */
1798 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1799 u64 num_devices)
1800 {
1801 u64 all_avail;
1802 unsigned seq;
1803 int i;
1804
1805 do {
1806 seq = read_seqbegin(&fs_info->profiles_lock);
1807
1808 all_avail = fs_info->avail_data_alloc_bits |
1809 fs_info->avail_system_alloc_bits |
1810 fs_info->avail_metadata_alloc_bits;
1811 } while (read_seqretry(&fs_info->profiles_lock, seq));
1812
1813 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1814 if (!(all_avail & btrfs_raid_group[i]))
1815 continue;
1816
1817 if (num_devices < btrfs_raid_array[i].devs_min) {
1818 int ret = btrfs_raid_mindev_error[i];
1819
1820 if (ret)
1821 return ret;
1822 }
1823 }
1824
1825 return 0;
1826 }
1827
1828 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1829 struct btrfs_device *device)
1830 {
1831 struct btrfs_device *next_device;
1832
1833 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1834 if (next_device != device &&
1835 !next_device->missing && next_device->bdev)
1836 return next_device;
1837 }
1838
1839 return NULL;
1840 }
1841
1842 /*
1843 * Helper function to check if the given device is part of s_bdev / latest_bdev
1844 * and replace it with the provided or the next active device, in the context
1845 * where this function called, there should be always be another device (or
1846 * this_dev) which is active.
1847 */
1848 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1849 struct btrfs_device *device, struct btrfs_device *this_dev)
1850 {
1851 struct btrfs_device *next_device;
1852
1853 if (this_dev)
1854 next_device = this_dev;
1855 else
1856 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1857 device);
1858 ASSERT(next_device);
1859
1860 if (fs_info->sb->s_bdev &&
1861 (fs_info->sb->s_bdev == device->bdev))
1862 fs_info->sb->s_bdev = next_device->bdev;
1863
1864 if (fs_info->fs_devices->latest_bdev == device->bdev)
1865 fs_info->fs_devices->latest_bdev = next_device->bdev;
1866 }
1867
1868 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1869 u64 devid)
1870 {
1871 struct btrfs_device *device;
1872 struct btrfs_fs_devices *cur_devices;
1873 u64 num_devices;
1874 int ret = 0;
1875 bool clear_super = false;
1876
1877 mutex_lock(&uuid_mutex);
1878
1879 num_devices = fs_info->fs_devices->num_devices;
1880 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1881 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1882 WARN_ON(num_devices < 1);
1883 num_devices--;
1884 }
1885 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1886
1887 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1888 if (ret)
1889 goto out;
1890
1891 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1892 &device);
1893 if (ret)
1894 goto out;
1895
1896 if (device->is_tgtdev_for_dev_replace) {
1897 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1898 goto out;
1899 }
1900
1901 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1902 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1903 goto out;
1904 }
1905
1906 if (device->writeable) {
1907 mutex_lock(&fs_info->chunk_mutex);
1908 list_del_init(&device->dev_alloc_list);
1909 device->fs_devices->rw_devices--;
1910 mutex_unlock(&fs_info->chunk_mutex);
1911 clear_super = true;
1912 }
1913
1914 mutex_unlock(&uuid_mutex);
1915 ret = btrfs_shrink_device(device, 0);
1916 mutex_lock(&uuid_mutex);
1917 if (ret)
1918 goto error_undo;
1919
1920 /*
1921 * TODO: the superblock still includes this device in its num_devices
1922 * counter although write_all_supers() is not locked out. This
1923 * could give a filesystem state which requires a degraded mount.
1924 */
1925 ret = btrfs_rm_dev_item(fs_info, device);
1926 if (ret)
1927 goto error_undo;
1928
1929 device->in_fs_metadata = 0;
1930 btrfs_scrub_cancel_dev(fs_info, device);
1931
1932 /*
1933 * the device list mutex makes sure that we don't change
1934 * the device list while someone else is writing out all
1935 * the device supers. Whoever is writing all supers, should
1936 * lock the device list mutex before getting the number of
1937 * devices in the super block (super_copy). Conversely,
1938 * whoever updates the number of devices in the super block
1939 * (super_copy) should hold the device list mutex.
1940 */
1941
1942 cur_devices = device->fs_devices;
1943 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1944 list_del_rcu(&device->dev_list);
1945
1946 device->fs_devices->num_devices--;
1947 device->fs_devices->total_devices--;
1948
1949 if (device->missing)
1950 device->fs_devices->missing_devices--;
1951
1952 btrfs_assign_next_active_device(fs_info, device, NULL);
1953
1954 if (device->bdev) {
1955 device->fs_devices->open_devices--;
1956 /* remove sysfs entry */
1957 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1958 }
1959
1960 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1961 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1962 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1963
1964 /*
1965 * at this point, the device is zero sized and detached from
1966 * the devices list. All that's left is to zero out the old
1967 * supers and free the device.
1968 */
1969 if (device->writeable)
1970 btrfs_scratch_superblocks(device->bdev, device->name->str);
1971
1972 btrfs_close_bdev(device);
1973 call_rcu(&device->rcu, free_device);
1974
1975 if (cur_devices->open_devices == 0) {
1976 struct btrfs_fs_devices *fs_devices;
1977 fs_devices = fs_info->fs_devices;
1978 while (fs_devices) {
1979 if (fs_devices->seed == cur_devices) {
1980 fs_devices->seed = cur_devices->seed;
1981 break;
1982 }
1983 fs_devices = fs_devices->seed;
1984 }
1985 cur_devices->seed = NULL;
1986 __btrfs_close_devices(cur_devices);
1987 free_fs_devices(cur_devices);
1988 }
1989
1990 fs_info->num_tolerated_disk_barrier_failures =
1991 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1992
1993 out:
1994 mutex_unlock(&uuid_mutex);
1995 return ret;
1996
1997 error_undo:
1998 if (device->writeable) {
1999 mutex_lock(&fs_info->chunk_mutex);
2000 list_add(&device->dev_alloc_list,
2001 &fs_info->fs_devices->alloc_list);
2002 device->fs_devices->rw_devices++;
2003 mutex_unlock(&fs_info->chunk_mutex);
2004 }
2005 goto out;
2006 }
2007
2008 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2009 struct btrfs_device *srcdev)
2010 {
2011 struct btrfs_fs_devices *fs_devices;
2012
2013 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2014
2015 /*
2016 * in case of fs with no seed, srcdev->fs_devices will point
2017 * to fs_devices of fs_info. However when the dev being replaced is
2018 * a seed dev it will point to the seed's local fs_devices. In short
2019 * srcdev will have its correct fs_devices in both the cases.
2020 */
2021 fs_devices = srcdev->fs_devices;
2022
2023 list_del_rcu(&srcdev->dev_list);
2024 list_del_rcu(&srcdev->dev_alloc_list);
2025 fs_devices->num_devices--;
2026 if (srcdev->missing)
2027 fs_devices->missing_devices--;
2028
2029 if (srcdev->writeable)
2030 fs_devices->rw_devices--;
2031
2032 if (srcdev->bdev)
2033 fs_devices->open_devices--;
2034 }
2035
2036 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2037 struct btrfs_device *srcdev)
2038 {
2039 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2040
2041 if (srcdev->writeable) {
2042 /* zero out the old super if it is writable */
2043 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2044 }
2045
2046 btrfs_close_bdev(srcdev);
2047
2048 call_rcu(&srcdev->rcu, free_device);
2049
2050 /*
2051 * unless fs_devices is seed fs, num_devices shouldn't go
2052 * zero
2053 */
2054 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2055
2056 /* if this is no devs we rather delete the fs_devices */
2057 if (!fs_devices->num_devices) {
2058 struct btrfs_fs_devices *tmp_fs_devices;
2059
2060 tmp_fs_devices = fs_info->fs_devices;
2061 while (tmp_fs_devices) {
2062 if (tmp_fs_devices->seed == fs_devices) {
2063 tmp_fs_devices->seed = fs_devices->seed;
2064 break;
2065 }
2066 tmp_fs_devices = tmp_fs_devices->seed;
2067 }
2068 fs_devices->seed = NULL;
2069 __btrfs_close_devices(fs_devices);
2070 free_fs_devices(fs_devices);
2071 }
2072 }
2073
2074 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2075 struct btrfs_device *tgtdev)
2076 {
2077 mutex_lock(&uuid_mutex);
2078 WARN_ON(!tgtdev);
2079 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2080
2081 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2082
2083 if (tgtdev->bdev)
2084 fs_info->fs_devices->open_devices--;
2085
2086 fs_info->fs_devices->num_devices--;
2087
2088 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2089
2090 list_del_rcu(&tgtdev->dev_list);
2091
2092 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2093 mutex_unlock(&uuid_mutex);
2094
2095 /*
2096 * The update_dev_time() with in btrfs_scratch_superblocks()
2097 * may lead to a call to btrfs_show_devname() which will try
2098 * to hold device_list_mutex. And here this device
2099 * is already out of device list, so we don't have to hold
2100 * the device_list_mutex lock.
2101 */
2102 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2103
2104 btrfs_close_bdev(tgtdev);
2105 call_rcu(&tgtdev->rcu, free_device);
2106 }
2107
2108 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2109 const char *device_path,
2110 struct btrfs_device **device)
2111 {
2112 int ret = 0;
2113 struct btrfs_super_block *disk_super;
2114 u64 devid;
2115 u8 *dev_uuid;
2116 struct block_device *bdev;
2117 struct buffer_head *bh;
2118
2119 *device = NULL;
2120 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2121 fs_info->bdev_holder, 0, &bdev, &bh);
2122 if (ret)
2123 return ret;
2124 disk_super = (struct btrfs_super_block *)bh->b_data;
2125 devid = btrfs_stack_device_id(&disk_super->dev_item);
2126 dev_uuid = disk_super->dev_item.uuid;
2127 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2128 brelse(bh);
2129 if (!*device)
2130 ret = -ENOENT;
2131 blkdev_put(bdev, FMODE_READ);
2132 return ret;
2133 }
2134
2135 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2136 const char *device_path,
2137 struct btrfs_device **device)
2138 {
2139 *device = NULL;
2140 if (strcmp(device_path, "missing") == 0) {
2141 struct list_head *devices;
2142 struct btrfs_device *tmp;
2143
2144 devices = &fs_info->fs_devices->devices;
2145 /*
2146 * It is safe to read the devices since the volume_mutex
2147 * is held by the caller.
2148 */
2149 list_for_each_entry(tmp, devices, dev_list) {
2150 if (tmp->in_fs_metadata && !tmp->bdev) {
2151 *device = tmp;
2152 break;
2153 }
2154 }
2155
2156 if (!*device)
2157 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2158
2159 return 0;
2160 } else {
2161 return btrfs_find_device_by_path(fs_info, device_path, device);
2162 }
2163 }
2164
2165 /*
2166 * Lookup a device given by device id, or the path if the id is 0.
2167 */
2168 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2169 const char *devpath,
2170 struct btrfs_device **device)
2171 {
2172 int ret;
2173
2174 if (devid) {
2175 ret = 0;
2176 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2177 if (!*device)
2178 ret = -ENOENT;
2179 } else {
2180 if (!devpath || !devpath[0])
2181 return -EINVAL;
2182
2183 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2184 device);
2185 }
2186 return ret;
2187 }
2188
2189 /*
2190 * does all the dirty work required for changing file system's UUID.
2191 */
2192 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2193 {
2194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2195 struct btrfs_fs_devices *old_devices;
2196 struct btrfs_fs_devices *seed_devices;
2197 struct btrfs_super_block *disk_super = fs_info->super_copy;
2198 struct btrfs_device *device;
2199 u64 super_flags;
2200
2201 BUG_ON(!mutex_is_locked(&uuid_mutex));
2202 if (!fs_devices->seeding)
2203 return -EINVAL;
2204
2205 seed_devices = __alloc_fs_devices();
2206 if (IS_ERR(seed_devices))
2207 return PTR_ERR(seed_devices);
2208
2209 old_devices = clone_fs_devices(fs_devices);
2210 if (IS_ERR(old_devices)) {
2211 kfree(seed_devices);
2212 return PTR_ERR(old_devices);
2213 }
2214
2215 list_add(&old_devices->list, &fs_uuids);
2216
2217 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2218 seed_devices->opened = 1;
2219 INIT_LIST_HEAD(&seed_devices->devices);
2220 INIT_LIST_HEAD(&seed_devices->alloc_list);
2221 mutex_init(&seed_devices->device_list_mutex);
2222
2223 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2224 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2225 synchronize_rcu);
2226 list_for_each_entry(device, &seed_devices->devices, dev_list)
2227 device->fs_devices = seed_devices;
2228
2229 mutex_lock(&fs_info->chunk_mutex);
2230 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2231 mutex_unlock(&fs_info->chunk_mutex);
2232
2233 fs_devices->seeding = 0;
2234 fs_devices->num_devices = 0;
2235 fs_devices->open_devices = 0;
2236 fs_devices->missing_devices = 0;
2237 fs_devices->rotating = 0;
2238 fs_devices->seed = seed_devices;
2239
2240 generate_random_uuid(fs_devices->fsid);
2241 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2242 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2243 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2244
2245 super_flags = btrfs_super_flags(disk_super) &
2246 ~BTRFS_SUPER_FLAG_SEEDING;
2247 btrfs_set_super_flags(disk_super, super_flags);
2248
2249 return 0;
2250 }
2251
2252 /*
2253 * Store the expected generation for seed devices in device items.
2254 */
2255 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2256 struct btrfs_fs_info *fs_info)
2257 {
2258 struct btrfs_root *root = fs_info->chunk_root;
2259 struct btrfs_path *path;
2260 struct extent_buffer *leaf;
2261 struct btrfs_dev_item *dev_item;
2262 struct btrfs_device *device;
2263 struct btrfs_key key;
2264 u8 fs_uuid[BTRFS_UUID_SIZE];
2265 u8 dev_uuid[BTRFS_UUID_SIZE];
2266 u64 devid;
2267 int ret;
2268
2269 path = btrfs_alloc_path();
2270 if (!path)
2271 return -ENOMEM;
2272
2273 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2274 key.offset = 0;
2275 key.type = BTRFS_DEV_ITEM_KEY;
2276
2277 while (1) {
2278 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2279 if (ret < 0)
2280 goto error;
2281
2282 leaf = path->nodes[0];
2283 next_slot:
2284 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2285 ret = btrfs_next_leaf(root, path);
2286 if (ret > 0)
2287 break;
2288 if (ret < 0)
2289 goto error;
2290 leaf = path->nodes[0];
2291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2292 btrfs_release_path(path);
2293 continue;
2294 }
2295
2296 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2298 key.type != BTRFS_DEV_ITEM_KEY)
2299 break;
2300
2301 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2302 struct btrfs_dev_item);
2303 devid = btrfs_device_id(leaf, dev_item);
2304 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2305 BTRFS_UUID_SIZE);
2306 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2307 BTRFS_UUID_SIZE);
2308 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2309 BUG_ON(!device); /* Logic error */
2310
2311 if (device->fs_devices->seeding) {
2312 btrfs_set_device_generation(leaf, dev_item,
2313 device->generation);
2314 btrfs_mark_buffer_dirty(leaf);
2315 }
2316
2317 path->slots[0]++;
2318 goto next_slot;
2319 }
2320 ret = 0;
2321 error:
2322 btrfs_free_path(path);
2323 return ret;
2324 }
2325
2326 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2327 {
2328 struct btrfs_root *root = fs_info->dev_root;
2329 struct request_queue *q;
2330 struct btrfs_trans_handle *trans;
2331 struct btrfs_device *device;
2332 struct block_device *bdev;
2333 struct list_head *devices;
2334 struct super_block *sb = fs_info->sb;
2335 struct rcu_string *name;
2336 u64 tmp;
2337 int seeding_dev = 0;
2338 int ret = 0;
2339
2340 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2341 return -EROFS;
2342
2343 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2344 fs_info->bdev_holder);
2345 if (IS_ERR(bdev))
2346 return PTR_ERR(bdev);
2347
2348 if (fs_info->fs_devices->seeding) {
2349 seeding_dev = 1;
2350 down_write(&sb->s_umount);
2351 mutex_lock(&uuid_mutex);
2352 }
2353
2354 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2355
2356 devices = &fs_info->fs_devices->devices;
2357
2358 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2359 list_for_each_entry(device, devices, dev_list) {
2360 if (device->bdev == bdev) {
2361 ret = -EEXIST;
2362 mutex_unlock(
2363 &fs_info->fs_devices->device_list_mutex);
2364 goto error;
2365 }
2366 }
2367 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2368
2369 device = btrfs_alloc_device(fs_info, NULL, NULL);
2370 if (IS_ERR(device)) {
2371 /* we can safely leave the fs_devices entry around */
2372 ret = PTR_ERR(device);
2373 goto error;
2374 }
2375
2376 name = rcu_string_strdup(device_path, GFP_KERNEL);
2377 if (!name) {
2378 kfree(device);
2379 ret = -ENOMEM;
2380 goto error;
2381 }
2382 rcu_assign_pointer(device->name, name);
2383
2384 trans = btrfs_start_transaction(root, 0);
2385 if (IS_ERR(trans)) {
2386 rcu_string_free(device->name);
2387 kfree(device);
2388 ret = PTR_ERR(trans);
2389 goto error;
2390 }
2391
2392 q = bdev_get_queue(bdev);
2393 if (blk_queue_discard(q))
2394 device->can_discard = 1;
2395 device->writeable = 1;
2396 device->generation = trans->transid;
2397 device->io_width = fs_info->sectorsize;
2398 device->io_align = fs_info->sectorsize;
2399 device->sector_size = fs_info->sectorsize;
2400 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2401 fs_info->sectorsize);
2402 device->disk_total_bytes = device->total_bytes;
2403 device->commit_total_bytes = device->total_bytes;
2404 device->fs_info = fs_info;
2405 device->bdev = bdev;
2406 device->in_fs_metadata = 1;
2407 device->is_tgtdev_for_dev_replace = 0;
2408 device->mode = FMODE_EXCL;
2409 device->dev_stats_valid = 1;
2410 set_blocksize(device->bdev, 4096);
2411
2412 if (seeding_dev) {
2413 sb->s_flags &= ~MS_RDONLY;
2414 ret = btrfs_prepare_sprout(fs_info);
2415 BUG_ON(ret); /* -ENOMEM */
2416 }
2417
2418 device->fs_devices = fs_info->fs_devices;
2419
2420 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2421 mutex_lock(&fs_info->chunk_mutex);
2422 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2423 list_add(&device->dev_alloc_list,
2424 &fs_info->fs_devices->alloc_list);
2425 fs_info->fs_devices->num_devices++;
2426 fs_info->fs_devices->open_devices++;
2427 fs_info->fs_devices->rw_devices++;
2428 fs_info->fs_devices->total_devices++;
2429 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2430
2431 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2432
2433 if (!blk_queue_nonrot(q))
2434 fs_info->fs_devices->rotating = 1;
2435
2436 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2437 btrfs_set_super_total_bytes(fs_info->super_copy,
2438 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2439
2440 tmp = btrfs_super_num_devices(fs_info->super_copy);
2441 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2442
2443 /* add sysfs device entry */
2444 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2445
2446 /*
2447 * we've got more storage, clear any full flags on the space
2448 * infos
2449 */
2450 btrfs_clear_space_info_full(fs_info);
2451
2452 mutex_unlock(&fs_info->chunk_mutex);
2453 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2454
2455 if (seeding_dev) {
2456 mutex_lock(&fs_info->chunk_mutex);
2457 ret = init_first_rw_device(trans, fs_info);
2458 mutex_unlock(&fs_info->chunk_mutex);
2459 if (ret) {
2460 btrfs_abort_transaction(trans, ret);
2461 goto error_trans;
2462 }
2463 }
2464
2465 ret = btrfs_add_device(trans, fs_info, device);
2466 if (ret) {
2467 btrfs_abort_transaction(trans, ret);
2468 goto error_trans;
2469 }
2470
2471 if (seeding_dev) {
2472 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2473
2474 ret = btrfs_finish_sprout(trans, fs_info);
2475 if (ret) {
2476 btrfs_abort_transaction(trans, ret);
2477 goto error_trans;
2478 }
2479
2480 /* Sprouting would change fsid of the mounted root,
2481 * so rename the fsid on the sysfs
2482 */
2483 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2484 fs_info->fsid);
2485 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2486 btrfs_warn(fs_info,
2487 "sysfs: failed to create fsid for sprout");
2488 }
2489
2490 fs_info->num_tolerated_disk_barrier_failures =
2491 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2492 ret = btrfs_commit_transaction(trans);
2493
2494 if (seeding_dev) {
2495 mutex_unlock(&uuid_mutex);
2496 up_write(&sb->s_umount);
2497
2498 if (ret) /* transaction commit */
2499 return ret;
2500
2501 ret = btrfs_relocate_sys_chunks(fs_info);
2502 if (ret < 0)
2503 btrfs_handle_fs_error(fs_info, ret,
2504 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2505 trans = btrfs_attach_transaction(root);
2506 if (IS_ERR(trans)) {
2507 if (PTR_ERR(trans) == -ENOENT)
2508 return 0;
2509 return PTR_ERR(trans);
2510 }
2511 ret = btrfs_commit_transaction(trans);
2512 }
2513
2514 /* Update ctime/mtime for libblkid */
2515 update_dev_time(device_path);
2516 return ret;
2517
2518 error_trans:
2519 btrfs_end_transaction(trans);
2520 rcu_string_free(device->name);
2521 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2522 kfree(device);
2523 error:
2524 blkdev_put(bdev, FMODE_EXCL);
2525 if (seeding_dev) {
2526 mutex_unlock(&uuid_mutex);
2527 up_write(&sb->s_umount);
2528 }
2529 return ret;
2530 }
2531
2532 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2533 const char *device_path,
2534 struct btrfs_device *srcdev,
2535 struct btrfs_device **device_out)
2536 {
2537 struct request_queue *q;
2538 struct btrfs_device *device;
2539 struct block_device *bdev;
2540 struct list_head *devices;
2541 struct rcu_string *name;
2542 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2543 int ret = 0;
2544
2545 *device_out = NULL;
2546 if (fs_info->fs_devices->seeding) {
2547 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2548 return -EINVAL;
2549 }
2550
2551 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2552 fs_info->bdev_holder);
2553 if (IS_ERR(bdev)) {
2554 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2555 return PTR_ERR(bdev);
2556 }
2557
2558 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2559
2560 devices = &fs_info->fs_devices->devices;
2561 list_for_each_entry(device, devices, dev_list) {
2562 if (device->bdev == bdev) {
2563 btrfs_err(fs_info,
2564 "target device is in the filesystem!");
2565 ret = -EEXIST;
2566 goto error;
2567 }
2568 }
2569
2570
2571 if (i_size_read(bdev->bd_inode) <
2572 btrfs_device_get_total_bytes(srcdev)) {
2573 btrfs_err(fs_info,
2574 "target device is smaller than source device!");
2575 ret = -EINVAL;
2576 goto error;
2577 }
2578
2579
2580 device = btrfs_alloc_device(NULL, &devid, NULL);
2581 if (IS_ERR(device)) {
2582 ret = PTR_ERR(device);
2583 goto error;
2584 }
2585
2586 name = rcu_string_strdup(device_path, GFP_KERNEL);
2587 if (!name) {
2588 kfree(device);
2589 ret = -ENOMEM;
2590 goto error;
2591 }
2592 rcu_assign_pointer(device->name, name);
2593
2594 q = bdev_get_queue(bdev);
2595 if (blk_queue_discard(q))
2596 device->can_discard = 1;
2597 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2598 device->writeable = 1;
2599 device->generation = 0;
2600 device->io_width = fs_info->sectorsize;
2601 device->io_align = fs_info->sectorsize;
2602 device->sector_size = fs_info->sectorsize;
2603 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2604 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2605 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2606 ASSERT(list_empty(&srcdev->resized_list));
2607 device->commit_total_bytes = srcdev->commit_total_bytes;
2608 device->commit_bytes_used = device->bytes_used;
2609 device->fs_info = fs_info;
2610 device->bdev = bdev;
2611 device->in_fs_metadata = 1;
2612 device->is_tgtdev_for_dev_replace = 1;
2613 device->mode = FMODE_EXCL;
2614 device->dev_stats_valid = 1;
2615 set_blocksize(device->bdev, 4096);
2616 device->fs_devices = fs_info->fs_devices;
2617 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2618 fs_info->fs_devices->num_devices++;
2619 fs_info->fs_devices->open_devices++;
2620 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2621
2622 *device_out = device;
2623 return ret;
2624
2625 error:
2626 blkdev_put(bdev, FMODE_EXCL);
2627 return ret;
2628 }
2629
2630 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2631 struct btrfs_device *tgtdev)
2632 {
2633 u32 sectorsize = fs_info->sectorsize;
2634
2635 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2636 tgtdev->io_width = sectorsize;
2637 tgtdev->io_align = sectorsize;
2638 tgtdev->sector_size = sectorsize;
2639 tgtdev->fs_info = fs_info;
2640 tgtdev->in_fs_metadata = 1;
2641 }
2642
2643 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2644 struct btrfs_device *device)
2645 {
2646 int ret;
2647 struct btrfs_path *path;
2648 struct btrfs_root *root = device->fs_info->chunk_root;
2649 struct btrfs_dev_item *dev_item;
2650 struct extent_buffer *leaf;
2651 struct btrfs_key key;
2652
2653 path = btrfs_alloc_path();
2654 if (!path)
2655 return -ENOMEM;
2656
2657 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2658 key.type = BTRFS_DEV_ITEM_KEY;
2659 key.offset = device->devid;
2660
2661 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2662 if (ret < 0)
2663 goto out;
2664
2665 if (ret > 0) {
2666 ret = -ENOENT;
2667 goto out;
2668 }
2669
2670 leaf = path->nodes[0];
2671 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2672
2673 btrfs_set_device_id(leaf, dev_item, device->devid);
2674 btrfs_set_device_type(leaf, dev_item, device->type);
2675 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2676 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2677 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2678 btrfs_set_device_total_bytes(leaf, dev_item,
2679 btrfs_device_get_disk_total_bytes(device));
2680 btrfs_set_device_bytes_used(leaf, dev_item,
2681 btrfs_device_get_bytes_used(device));
2682 btrfs_mark_buffer_dirty(leaf);
2683
2684 out:
2685 btrfs_free_path(path);
2686 return ret;
2687 }
2688
2689 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2690 struct btrfs_device *device, u64 new_size)
2691 {
2692 struct btrfs_fs_info *fs_info = device->fs_info;
2693 struct btrfs_super_block *super_copy = fs_info->super_copy;
2694 struct btrfs_fs_devices *fs_devices;
2695 u64 old_total;
2696 u64 diff;
2697
2698 if (!device->writeable)
2699 return -EACCES;
2700
2701 new_size = round_down(new_size, fs_info->sectorsize);
2702
2703 mutex_lock(&fs_info->chunk_mutex);
2704 old_total = btrfs_super_total_bytes(super_copy);
2705 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2706
2707 if (new_size <= device->total_bytes ||
2708 device->is_tgtdev_for_dev_replace) {
2709 mutex_unlock(&fs_info->chunk_mutex);
2710 return -EINVAL;
2711 }
2712
2713 fs_devices = fs_info->fs_devices;
2714
2715 btrfs_set_super_total_bytes(super_copy,
2716 round_down(old_total + diff, fs_info->sectorsize));
2717 device->fs_devices->total_rw_bytes += diff;
2718
2719 btrfs_device_set_total_bytes(device, new_size);
2720 btrfs_device_set_disk_total_bytes(device, new_size);
2721 btrfs_clear_space_info_full(device->fs_info);
2722 if (list_empty(&device->resized_list))
2723 list_add_tail(&device->resized_list,
2724 &fs_devices->resized_devices);
2725 mutex_unlock(&fs_info->chunk_mutex);
2726
2727 return btrfs_update_device(trans, device);
2728 }
2729
2730 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2731 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2732 u64 chunk_offset)
2733 {
2734 struct btrfs_root *root = fs_info->chunk_root;
2735 int ret;
2736 struct btrfs_path *path;
2737 struct btrfs_key key;
2738
2739 path = btrfs_alloc_path();
2740 if (!path)
2741 return -ENOMEM;
2742
2743 key.objectid = chunk_objectid;
2744 key.offset = chunk_offset;
2745 key.type = BTRFS_CHUNK_ITEM_KEY;
2746
2747 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2748 if (ret < 0)
2749 goto out;
2750 else if (ret > 0) { /* Logic error or corruption */
2751 btrfs_handle_fs_error(fs_info, -ENOENT,
2752 "Failed lookup while freeing chunk.");
2753 ret = -ENOENT;
2754 goto out;
2755 }
2756
2757 ret = btrfs_del_item(trans, root, path);
2758 if (ret < 0)
2759 btrfs_handle_fs_error(fs_info, ret,
2760 "Failed to delete chunk item.");
2761 out:
2762 btrfs_free_path(path);
2763 return ret;
2764 }
2765
2766 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2767 u64 chunk_objectid, u64 chunk_offset)
2768 {
2769 struct btrfs_super_block *super_copy = fs_info->super_copy;
2770 struct btrfs_disk_key *disk_key;
2771 struct btrfs_chunk *chunk;
2772 u8 *ptr;
2773 int ret = 0;
2774 u32 num_stripes;
2775 u32 array_size;
2776 u32 len = 0;
2777 u32 cur;
2778 struct btrfs_key key;
2779
2780 mutex_lock(&fs_info->chunk_mutex);
2781 array_size = btrfs_super_sys_array_size(super_copy);
2782
2783 ptr = super_copy->sys_chunk_array;
2784 cur = 0;
2785
2786 while (cur < array_size) {
2787 disk_key = (struct btrfs_disk_key *)ptr;
2788 btrfs_disk_key_to_cpu(&key, disk_key);
2789
2790 len = sizeof(*disk_key);
2791
2792 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2793 chunk = (struct btrfs_chunk *)(ptr + len);
2794 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2795 len += btrfs_chunk_item_size(num_stripes);
2796 } else {
2797 ret = -EIO;
2798 break;
2799 }
2800 if (key.objectid == chunk_objectid &&
2801 key.offset == chunk_offset) {
2802 memmove(ptr, ptr + len, array_size - (cur + len));
2803 array_size -= len;
2804 btrfs_set_super_sys_array_size(super_copy, array_size);
2805 } else {
2806 ptr += len;
2807 cur += len;
2808 }
2809 }
2810 mutex_unlock(&fs_info->chunk_mutex);
2811 return ret;
2812 }
2813
2814 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2815 u64 logical, u64 length)
2816 {
2817 struct extent_map_tree *em_tree;
2818 struct extent_map *em;
2819
2820 em_tree = &fs_info->mapping_tree.map_tree;
2821 read_lock(&em_tree->lock);
2822 em = lookup_extent_mapping(em_tree, logical, length);
2823 read_unlock(&em_tree->lock);
2824
2825 if (!em) {
2826 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2827 logical, length);
2828 return ERR_PTR(-EINVAL);
2829 }
2830
2831 if (em->start > logical || em->start + em->len < logical) {
2832 btrfs_crit(fs_info,
2833 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2834 logical, length, em->start, em->start + em->len);
2835 free_extent_map(em);
2836 return ERR_PTR(-EINVAL);
2837 }
2838
2839 /* callers are responsible for dropping em's ref. */
2840 return em;
2841 }
2842
2843 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2844 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2845 {
2846 struct extent_map *em;
2847 struct map_lookup *map;
2848 u64 dev_extent_len = 0;
2849 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2850 int i, ret = 0;
2851 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2852
2853 em = get_chunk_map(fs_info, chunk_offset, 1);
2854 if (IS_ERR(em)) {
2855 /*
2856 * This is a logic error, but we don't want to just rely on the
2857 * user having built with ASSERT enabled, so if ASSERT doesn't
2858 * do anything we still error out.
2859 */
2860 ASSERT(0);
2861 return PTR_ERR(em);
2862 }
2863 map = em->map_lookup;
2864 mutex_lock(&fs_info->chunk_mutex);
2865 check_system_chunk(trans, fs_info, map->type);
2866 mutex_unlock(&fs_info->chunk_mutex);
2867
2868 /*
2869 * Take the device list mutex to prevent races with the final phase of
2870 * a device replace operation that replaces the device object associated
2871 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2872 */
2873 mutex_lock(&fs_devices->device_list_mutex);
2874 for (i = 0; i < map->num_stripes; i++) {
2875 struct btrfs_device *device = map->stripes[i].dev;
2876 ret = btrfs_free_dev_extent(trans, device,
2877 map->stripes[i].physical,
2878 &dev_extent_len);
2879 if (ret) {
2880 mutex_unlock(&fs_devices->device_list_mutex);
2881 btrfs_abort_transaction(trans, ret);
2882 goto out;
2883 }
2884
2885 if (device->bytes_used > 0) {
2886 mutex_lock(&fs_info->chunk_mutex);
2887 btrfs_device_set_bytes_used(device,
2888 device->bytes_used - dev_extent_len);
2889 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2890 btrfs_clear_space_info_full(fs_info);
2891 mutex_unlock(&fs_info->chunk_mutex);
2892 }
2893
2894 if (map->stripes[i].dev) {
2895 ret = btrfs_update_device(trans, map->stripes[i].dev);
2896 if (ret) {
2897 mutex_unlock(&fs_devices->device_list_mutex);
2898 btrfs_abort_transaction(trans, ret);
2899 goto out;
2900 }
2901 }
2902 }
2903 mutex_unlock(&fs_devices->device_list_mutex);
2904
2905 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2906 if (ret) {
2907 btrfs_abort_transaction(trans, ret);
2908 goto out;
2909 }
2910
2911 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2912
2913 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2914 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2915 chunk_offset);
2916 if (ret) {
2917 btrfs_abort_transaction(trans, ret);
2918 goto out;
2919 }
2920 }
2921
2922 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2923 if (ret) {
2924 btrfs_abort_transaction(trans, ret);
2925 goto out;
2926 }
2927
2928 out:
2929 /* once for us */
2930 free_extent_map(em);
2931 return ret;
2932 }
2933
2934 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2935 {
2936 struct btrfs_root *root = fs_info->chunk_root;
2937 struct btrfs_trans_handle *trans;
2938 int ret;
2939
2940 /*
2941 * Prevent races with automatic removal of unused block groups.
2942 * After we relocate and before we remove the chunk with offset
2943 * chunk_offset, automatic removal of the block group can kick in,
2944 * resulting in a failure when calling btrfs_remove_chunk() below.
2945 *
2946 * Make sure to acquire this mutex before doing a tree search (dev
2947 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2948 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2949 * we release the path used to search the chunk/dev tree and before
2950 * the current task acquires this mutex and calls us.
2951 */
2952 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2953
2954 ret = btrfs_can_relocate(fs_info, chunk_offset);
2955 if (ret)
2956 return -ENOSPC;
2957
2958 /* step one, relocate all the extents inside this chunk */
2959 btrfs_scrub_pause(fs_info);
2960 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2961 btrfs_scrub_continue(fs_info);
2962 if (ret)
2963 return ret;
2964
2965 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2966 chunk_offset);
2967 if (IS_ERR(trans)) {
2968 ret = PTR_ERR(trans);
2969 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2970 return ret;
2971 }
2972
2973 /*
2974 * step two, delete the device extents and the
2975 * chunk tree entries
2976 */
2977 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2978 btrfs_end_transaction(trans);
2979 return ret;
2980 }
2981
2982 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2983 {
2984 struct btrfs_root *chunk_root = fs_info->chunk_root;
2985 struct btrfs_path *path;
2986 struct extent_buffer *leaf;
2987 struct btrfs_chunk *chunk;
2988 struct btrfs_key key;
2989 struct btrfs_key found_key;
2990 u64 chunk_type;
2991 bool retried = false;
2992 int failed = 0;
2993 int ret;
2994
2995 path = btrfs_alloc_path();
2996 if (!path)
2997 return -ENOMEM;
2998
2999 again:
3000 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3001 key.offset = (u64)-1;
3002 key.type = BTRFS_CHUNK_ITEM_KEY;
3003
3004 while (1) {
3005 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3006 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3007 if (ret < 0) {
3008 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3009 goto error;
3010 }
3011 BUG_ON(ret == 0); /* Corruption */
3012
3013 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3014 key.type);
3015 if (ret)
3016 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3017 if (ret < 0)
3018 goto error;
3019 if (ret > 0)
3020 break;
3021
3022 leaf = path->nodes[0];
3023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3024
3025 chunk = btrfs_item_ptr(leaf, path->slots[0],
3026 struct btrfs_chunk);
3027 chunk_type = btrfs_chunk_type(leaf, chunk);
3028 btrfs_release_path(path);
3029
3030 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3031 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3032 if (ret == -ENOSPC)
3033 failed++;
3034 else
3035 BUG_ON(ret);
3036 }
3037 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3038
3039 if (found_key.offset == 0)
3040 break;
3041 key.offset = found_key.offset - 1;
3042 }
3043 ret = 0;
3044 if (failed && !retried) {
3045 failed = 0;
3046 retried = true;
3047 goto again;
3048 } else if (WARN_ON(failed && retried)) {
3049 ret = -ENOSPC;
3050 }
3051 error:
3052 btrfs_free_path(path);
3053 return ret;
3054 }
3055
3056 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3057 struct btrfs_balance_control *bctl)
3058 {
3059 struct btrfs_root *root = fs_info->tree_root;
3060 struct btrfs_trans_handle *trans;
3061 struct btrfs_balance_item *item;
3062 struct btrfs_disk_balance_args disk_bargs;
3063 struct btrfs_path *path;
3064 struct extent_buffer *leaf;
3065 struct btrfs_key key;
3066 int ret, err;
3067
3068 path = btrfs_alloc_path();
3069 if (!path)
3070 return -ENOMEM;
3071
3072 trans = btrfs_start_transaction(root, 0);
3073 if (IS_ERR(trans)) {
3074 btrfs_free_path(path);
3075 return PTR_ERR(trans);
3076 }
3077
3078 key.objectid = BTRFS_BALANCE_OBJECTID;
3079 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3080 key.offset = 0;
3081
3082 ret = btrfs_insert_empty_item(trans, root, path, &key,
3083 sizeof(*item));
3084 if (ret)
3085 goto out;
3086
3087 leaf = path->nodes[0];
3088 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3089
3090 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3091
3092 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3093 btrfs_set_balance_data(leaf, item, &disk_bargs);
3094 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3095 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3096 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3097 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3098
3099 btrfs_set_balance_flags(leaf, item, bctl->flags);
3100
3101 btrfs_mark_buffer_dirty(leaf);
3102 out:
3103 btrfs_free_path(path);
3104 err = btrfs_commit_transaction(trans);
3105 if (err && !ret)
3106 ret = err;
3107 return ret;
3108 }
3109
3110 static int del_balance_item(struct btrfs_fs_info *fs_info)
3111 {
3112 struct btrfs_root *root = fs_info->tree_root;
3113 struct btrfs_trans_handle *trans;
3114 struct btrfs_path *path;
3115 struct btrfs_key key;
3116 int ret, err;
3117
3118 path = btrfs_alloc_path();
3119 if (!path)
3120 return -ENOMEM;
3121
3122 trans = btrfs_start_transaction(root, 0);
3123 if (IS_ERR(trans)) {
3124 btrfs_free_path(path);
3125 return PTR_ERR(trans);
3126 }
3127
3128 key.objectid = BTRFS_BALANCE_OBJECTID;
3129 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3130 key.offset = 0;
3131
3132 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3133 if (ret < 0)
3134 goto out;
3135 if (ret > 0) {
3136 ret = -ENOENT;
3137 goto out;
3138 }
3139
3140 ret = btrfs_del_item(trans, root, path);
3141 out:
3142 btrfs_free_path(path);
3143 err = btrfs_commit_transaction(trans);
3144 if (err && !ret)
3145 ret = err;
3146 return ret;
3147 }
3148
3149 /*
3150 * This is a heuristic used to reduce the number of chunks balanced on
3151 * resume after balance was interrupted.
3152 */
3153 static void update_balance_args(struct btrfs_balance_control *bctl)
3154 {
3155 /*
3156 * Turn on soft mode for chunk types that were being converted.
3157 */
3158 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3159 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3160 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3161 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3162 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3163 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3164
3165 /*
3166 * Turn on usage filter if is not already used. The idea is
3167 * that chunks that we have already balanced should be
3168 * reasonably full. Don't do it for chunks that are being
3169 * converted - that will keep us from relocating unconverted
3170 * (albeit full) chunks.
3171 */
3172 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3173 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3174 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3175 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3176 bctl->data.usage = 90;
3177 }
3178 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3179 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3180 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3181 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3182 bctl->sys.usage = 90;
3183 }
3184 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3185 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3186 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3187 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3188 bctl->meta.usage = 90;
3189 }
3190 }
3191
3192 /*
3193 * Should be called with both balance and volume mutexes held to
3194 * serialize other volume operations (add_dev/rm_dev/resize) with
3195 * restriper. Same goes for unset_balance_control.
3196 */
3197 static void set_balance_control(struct btrfs_balance_control *bctl)
3198 {
3199 struct btrfs_fs_info *fs_info = bctl->fs_info;
3200
3201 BUG_ON(fs_info->balance_ctl);
3202
3203 spin_lock(&fs_info->balance_lock);
3204 fs_info->balance_ctl = bctl;
3205 spin_unlock(&fs_info->balance_lock);
3206 }
3207
3208 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3209 {
3210 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3211
3212 BUG_ON(!fs_info->balance_ctl);
3213
3214 spin_lock(&fs_info->balance_lock);
3215 fs_info->balance_ctl = NULL;
3216 spin_unlock(&fs_info->balance_lock);
3217
3218 kfree(bctl);
3219 }
3220
3221 /*
3222 * Balance filters. Return 1 if chunk should be filtered out
3223 * (should not be balanced).
3224 */
3225 static int chunk_profiles_filter(u64 chunk_type,
3226 struct btrfs_balance_args *bargs)
3227 {
3228 chunk_type = chunk_to_extended(chunk_type) &
3229 BTRFS_EXTENDED_PROFILE_MASK;
3230
3231 if (bargs->profiles & chunk_type)
3232 return 0;
3233
3234 return 1;
3235 }
3236
3237 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3238 struct btrfs_balance_args *bargs)
3239 {
3240 struct btrfs_block_group_cache *cache;
3241 u64 chunk_used;
3242 u64 user_thresh_min;
3243 u64 user_thresh_max;
3244 int ret = 1;
3245
3246 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247 chunk_used = btrfs_block_group_used(&cache->item);
3248
3249 if (bargs->usage_min == 0)
3250 user_thresh_min = 0;
3251 else
3252 user_thresh_min = div_factor_fine(cache->key.offset,
3253 bargs->usage_min);
3254
3255 if (bargs->usage_max == 0)
3256 user_thresh_max = 1;
3257 else if (bargs->usage_max > 100)
3258 user_thresh_max = cache->key.offset;
3259 else
3260 user_thresh_max = div_factor_fine(cache->key.offset,
3261 bargs->usage_max);
3262
3263 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3264 ret = 0;
3265
3266 btrfs_put_block_group(cache);
3267 return ret;
3268 }
3269
3270 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3271 u64 chunk_offset, struct btrfs_balance_args *bargs)
3272 {
3273 struct btrfs_block_group_cache *cache;
3274 u64 chunk_used, user_thresh;
3275 int ret = 1;
3276
3277 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3278 chunk_used = btrfs_block_group_used(&cache->item);
3279
3280 if (bargs->usage_min == 0)
3281 user_thresh = 1;
3282 else if (bargs->usage > 100)
3283 user_thresh = cache->key.offset;
3284 else
3285 user_thresh = div_factor_fine(cache->key.offset,
3286 bargs->usage);
3287
3288 if (chunk_used < user_thresh)
3289 ret = 0;
3290
3291 btrfs_put_block_group(cache);
3292 return ret;
3293 }
3294
3295 static int chunk_devid_filter(struct extent_buffer *leaf,
3296 struct btrfs_chunk *chunk,
3297 struct btrfs_balance_args *bargs)
3298 {
3299 struct btrfs_stripe *stripe;
3300 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3301 int i;
3302
3303 for (i = 0; i < num_stripes; i++) {
3304 stripe = btrfs_stripe_nr(chunk, i);
3305 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3306 return 0;
3307 }
3308
3309 return 1;
3310 }
3311
3312 /* [pstart, pend) */
3313 static int chunk_drange_filter(struct extent_buffer *leaf,
3314 struct btrfs_chunk *chunk,
3315 u64 chunk_offset,
3316 struct btrfs_balance_args *bargs)
3317 {
3318 struct btrfs_stripe *stripe;
3319 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3320 u64 stripe_offset;
3321 u64 stripe_length;
3322 int factor;
3323 int i;
3324
3325 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3326 return 0;
3327
3328 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3329 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3330 factor = num_stripes / 2;
3331 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3332 factor = num_stripes - 1;
3333 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3334 factor = num_stripes - 2;
3335 } else {
3336 factor = num_stripes;
3337 }
3338
3339 for (i = 0; i < num_stripes; i++) {
3340 stripe = btrfs_stripe_nr(chunk, i);
3341 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3342 continue;
3343
3344 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3345 stripe_length = btrfs_chunk_length(leaf, chunk);
3346 stripe_length = div_u64(stripe_length, factor);
3347
3348 if (stripe_offset < bargs->pend &&
3349 stripe_offset + stripe_length > bargs->pstart)
3350 return 0;
3351 }
3352
3353 return 1;
3354 }
3355
3356 /* [vstart, vend) */
3357 static int chunk_vrange_filter(struct extent_buffer *leaf,
3358 struct btrfs_chunk *chunk,
3359 u64 chunk_offset,
3360 struct btrfs_balance_args *bargs)
3361 {
3362 if (chunk_offset < bargs->vend &&
3363 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3364 /* at least part of the chunk is inside this vrange */
3365 return 0;
3366
3367 return 1;
3368 }
3369
3370 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3371 struct btrfs_chunk *chunk,
3372 struct btrfs_balance_args *bargs)
3373 {
3374 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3375
3376 if (bargs->stripes_min <= num_stripes
3377 && num_stripes <= bargs->stripes_max)
3378 return 0;
3379
3380 return 1;
3381 }
3382
3383 static int chunk_soft_convert_filter(u64 chunk_type,
3384 struct btrfs_balance_args *bargs)
3385 {
3386 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3387 return 0;
3388
3389 chunk_type = chunk_to_extended(chunk_type) &
3390 BTRFS_EXTENDED_PROFILE_MASK;
3391
3392 if (bargs->target == chunk_type)
3393 return 1;
3394
3395 return 0;
3396 }
3397
3398 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3399 struct extent_buffer *leaf,
3400 struct btrfs_chunk *chunk, u64 chunk_offset)
3401 {
3402 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3403 struct btrfs_balance_args *bargs = NULL;
3404 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3405
3406 /* type filter */
3407 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3408 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3409 return 0;
3410 }
3411
3412 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3413 bargs = &bctl->data;
3414 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3415 bargs = &bctl->sys;
3416 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3417 bargs = &bctl->meta;
3418
3419 /* profiles filter */
3420 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3421 chunk_profiles_filter(chunk_type, bargs)) {
3422 return 0;
3423 }
3424
3425 /* usage filter */
3426 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3427 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3428 return 0;
3429 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3430 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3431 return 0;
3432 }
3433
3434 /* devid filter */
3435 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3436 chunk_devid_filter(leaf, chunk, bargs)) {
3437 return 0;
3438 }
3439
3440 /* drange filter, makes sense only with devid filter */
3441 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3442 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3443 return 0;
3444 }
3445
3446 /* vrange filter */
3447 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3448 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3449 return 0;
3450 }
3451
3452 /* stripes filter */
3453 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3454 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3455 return 0;
3456 }
3457
3458 /* soft profile changing mode */
3459 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3460 chunk_soft_convert_filter(chunk_type, bargs)) {
3461 return 0;
3462 }
3463
3464 /*
3465 * limited by count, must be the last filter
3466 */
3467 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3468 if (bargs->limit == 0)
3469 return 0;
3470 else
3471 bargs->limit--;
3472 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3473 /*
3474 * Same logic as the 'limit' filter; the minimum cannot be
3475 * determined here because we do not have the global information
3476 * about the count of all chunks that satisfy the filters.
3477 */
3478 if (bargs->limit_max == 0)
3479 return 0;
3480 else
3481 bargs->limit_max--;
3482 }
3483
3484 return 1;
3485 }
3486
3487 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3488 {
3489 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3490 struct btrfs_root *chunk_root = fs_info->chunk_root;
3491 struct btrfs_root *dev_root = fs_info->dev_root;
3492 struct list_head *devices;
3493 struct btrfs_device *device;
3494 u64 old_size;
3495 u64 size_to_free;
3496 u64 chunk_type;
3497 struct btrfs_chunk *chunk;
3498 struct btrfs_path *path = NULL;
3499 struct btrfs_key key;
3500 struct btrfs_key found_key;
3501 struct btrfs_trans_handle *trans;
3502 struct extent_buffer *leaf;
3503 int slot;
3504 int ret;
3505 int enospc_errors = 0;
3506 bool counting = true;
3507 /* The single value limit and min/max limits use the same bytes in the */
3508 u64 limit_data = bctl->data.limit;
3509 u64 limit_meta = bctl->meta.limit;
3510 u64 limit_sys = bctl->sys.limit;
3511 u32 count_data = 0;
3512 u32 count_meta = 0;
3513 u32 count_sys = 0;
3514 int chunk_reserved = 0;
3515 u64 bytes_used = 0;
3516
3517 /* step one make some room on all the devices */
3518 devices = &fs_info->fs_devices->devices;
3519 list_for_each_entry(device, devices, dev_list) {
3520 old_size = btrfs_device_get_total_bytes(device);
3521 size_to_free = div_factor(old_size, 1);
3522 size_to_free = min_t(u64, size_to_free, SZ_1M);
3523 if (!device->writeable ||
3524 btrfs_device_get_total_bytes(device) -
3525 btrfs_device_get_bytes_used(device) > size_to_free ||
3526 device->is_tgtdev_for_dev_replace)
3527 continue;
3528
3529 ret = btrfs_shrink_device(device, old_size - size_to_free);
3530 if (ret == -ENOSPC)
3531 break;
3532 if (ret) {
3533 /* btrfs_shrink_device never returns ret > 0 */
3534 WARN_ON(ret > 0);
3535 goto error;
3536 }
3537
3538 trans = btrfs_start_transaction(dev_root, 0);
3539 if (IS_ERR(trans)) {
3540 ret = PTR_ERR(trans);
3541 btrfs_info_in_rcu(fs_info,
3542 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3543 rcu_str_deref(device->name), ret,
3544 old_size, old_size - size_to_free);
3545 goto error;
3546 }
3547
3548 ret = btrfs_grow_device(trans, device, old_size);
3549 if (ret) {
3550 btrfs_end_transaction(trans);
3551 /* btrfs_grow_device never returns ret > 0 */
3552 WARN_ON(ret > 0);
3553 btrfs_info_in_rcu(fs_info,
3554 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3555 rcu_str_deref(device->name), ret,
3556 old_size, old_size - size_to_free);
3557 goto error;
3558 }
3559
3560 btrfs_end_transaction(trans);
3561 }
3562
3563 /* step two, relocate all the chunks */
3564 path = btrfs_alloc_path();
3565 if (!path) {
3566 ret = -ENOMEM;
3567 goto error;
3568 }
3569
3570 /* zero out stat counters */
3571 spin_lock(&fs_info->balance_lock);
3572 memset(&bctl->stat, 0, sizeof(bctl->stat));
3573 spin_unlock(&fs_info->balance_lock);
3574 again:
3575 if (!counting) {
3576 /*
3577 * The single value limit and min/max limits use the same bytes
3578 * in the
3579 */
3580 bctl->data.limit = limit_data;
3581 bctl->meta.limit = limit_meta;
3582 bctl->sys.limit = limit_sys;
3583 }
3584 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3585 key.offset = (u64)-1;
3586 key.type = BTRFS_CHUNK_ITEM_KEY;
3587
3588 while (1) {
3589 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3590 atomic_read(&fs_info->balance_cancel_req)) {
3591 ret = -ECANCELED;
3592 goto error;
3593 }
3594
3595 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3596 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3597 if (ret < 0) {
3598 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3599 goto error;
3600 }
3601
3602 /*
3603 * this shouldn't happen, it means the last relocate
3604 * failed
3605 */
3606 if (ret == 0)
3607 BUG(); /* FIXME break ? */
3608
3609 ret = btrfs_previous_item(chunk_root, path, 0,
3610 BTRFS_CHUNK_ITEM_KEY);
3611 if (ret) {
3612 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3613 ret = 0;
3614 break;
3615 }
3616
3617 leaf = path->nodes[0];
3618 slot = path->slots[0];
3619 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3620
3621 if (found_key.objectid != key.objectid) {
3622 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3623 break;
3624 }
3625
3626 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3627 chunk_type = btrfs_chunk_type(leaf, chunk);
3628
3629 if (!counting) {
3630 spin_lock(&fs_info->balance_lock);
3631 bctl->stat.considered++;
3632 spin_unlock(&fs_info->balance_lock);
3633 }
3634
3635 ret = should_balance_chunk(fs_info, leaf, chunk,
3636 found_key.offset);
3637
3638 btrfs_release_path(path);
3639 if (!ret) {
3640 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3641 goto loop;
3642 }
3643
3644 if (counting) {
3645 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3646 spin_lock(&fs_info->balance_lock);
3647 bctl->stat.expected++;
3648 spin_unlock(&fs_info->balance_lock);
3649
3650 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3651 count_data++;
3652 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3653 count_sys++;
3654 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3655 count_meta++;
3656
3657 goto loop;
3658 }
3659
3660 /*
3661 * Apply limit_min filter, no need to check if the LIMITS
3662 * filter is used, limit_min is 0 by default
3663 */
3664 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3665 count_data < bctl->data.limit_min)
3666 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3667 count_meta < bctl->meta.limit_min)
3668 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3669 count_sys < bctl->sys.limit_min)) {
3670 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3671 goto loop;
3672 }
3673
3674 ASSERT(fs_info->data_sinfo);
3675 spin_lock(&fs_info->data_sinfo->lock);
3676 bytes_used = fs_info->data_sinfo->bytes_used;
3677 spin_unlock(&fs_info->data_sinfo->lock);
3678
3679 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3680 !chunk_reserved && !bytes_used) {
3681 trans = btrfs_start_transaction(chunk_root, 0);
3682 if (IS_ERR(trans)) {
3683 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684 ret = PTR_ERR(trans);
3685 goto error;
3686 }
3687
3688 ret = btrfs_force_chunk_alloc(trans, fs_info,
3689 BTRFS_BLOCK_GROUP_DATA);
3690 btrfs_end_transaction(trans);
3691 if (ret < 0) {
3692 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3693 goto error;
3694 }
3695 chunk_reserved = 1;
3696 }
3697
3698 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3699 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700 if (ret && ret != -ENOSPC)
3701 goto error;
3702 if (ret == -ENOSPC) {
3703 enospc_errors++;
3704 } else {
3705 spin_lock(&fs_info->balance_lock);
3706 bctl->stat.completed++;
3707 spin_unlock(&fs_info->balance_lock);
3708 }
3709 loop:
3710 if (found_key.offset == 0)
3711 break;
3712 key.offset = found_key.offset - 1;
3713 }
3714
3715 if (counting) {
3716 btrfs_release_path(path);
3717 counting = false;
3718 goto again;
3719 }
3720 error:
3721 btrfs_free_path(path);
3722 if (enospc_errors) {
3723 btrfs_info(fs_info, "%d enospc errors during balance",
3724 enospc_errors);
3725 if (!ret)
3726 ret = -ENOSPC;
3727 }
3728
3729 return ret;
3730 }
3731
3732 /**
3733 * alloc_profile_is_valid - see if a given profile is valid and reduced
3734 * @flags: profile to validate
3735 * @extended: if true @flags is treated as an extended profile
3736 */
3737 static int alloc_profile_is_valid(u64 flags, int extended)
3738 {
3739 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3740 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3741
3742 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3743
3744 /* 1) check that all other bits are zeroed */
3745 if (flags & ~mask)
3746 return 0;
3747
3748 /* 2) see if profile is reduced */
3749 if (flags == 0)
3750 return !extended; /* "0" is valid for usual profiles */
3751
3752 /* true if exactly one bit set */
3753 return (flags & (flags - 1)) == 0;
3754 }
3755
3756 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3757 {
3758 /* cancel requested || normal exit path */
3759 return atomic_read(&fs_info->balance_cancel_req) ||
3760 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3761 atomic_read(&fs_info->balance_cancel_req) == 0);
3762 }
3763
3764 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3765 {
3766 int ret;
3767
3768 unset_balance_control(fs_info);
3769 ret = del_balance_item(fs_info);
3770 if (ret)
3771 btrfs_handle_fs_error(fs_info, ret, NULL);
3772
3773 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3774 }
3775
3776 /* Non-zero return value signifies invalidity */
3777 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3778 u64 allowed)
3779 {
3780 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3781 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3782 (bctl_arg->target & ~allowed)));
3783 }
3784
3785 /*
3786 * Should be called with both balance and volume mutexes held
3787 */
3788 int btrfs_balance(struct btrfs_balance_control *bctl,
3789 struct btrfs_ioctl_balance_args *bargs)
3790 {
3791 struct btrfs_fs_info *fs_info = bctl->fs_info;
3792 u64 meta_target, data_target;
3793 u64 allowed;
3794 int mixed = 0;
3795 int ret;
3796 u64 num_devices;
3797 unsigned seq;
3798
3799 if (btrfs_fs_closing(fs_info) ||
3800 atomic_read(&fs_info->balance_pause_req) ||
3801 atomic_read(&fs_info->balance_cancel_req)) {
3802 ret = -EINVAL;
3803 goto out;
3804 }
3805
3806 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3807 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3808 mixed = 1;
3809
3810 /*
3811 * In case of mixed groups both data and meta should be picked,
3812 * and identical options should be given for both of them.
3813 */
3814 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3815 if (mixed && (bctl->flags & allowed)) {
3816 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3817 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3818 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3819 btrfs_err(fs_info,
3820 "with mixed groups data and metadata balance options must be the same");
3821 ret = -EINVAL;
3822 goto out;
3823 }
3824 }
3825
3826 num_devices = fs_info->fs_devices->num_devices;
3827 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3828 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3829 BUG_ON(num_devices < 1);
3830 num_devices--;
3831 }
3832 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3833 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3834 if (num_devices > 1)
3835 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3836 if (num_devices > 2)
3837 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3838 if (num_devices > 3)
3839 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3840 BTRFS_BLOCK_GROUP_RAID6);
3841 if (validate_convert_profile(&bctl->data, allowed)) {
3842 btrfs_err(fs_info,
3843 "unable to start balance with target data profile %llu",
3844 bctl->data.target);
3845 ret = -EINVAL;
3846 goto out;
3847 }
3848 if (validate_convert_profile(&bctl->meta, allowed)) {
3849 btrfs_err(fs_info,
3850 "unable to start balance with target metadata profile %llu",
3851 bctl->meta.target);
3852 ret = -EINVAL;
3853 goto out;
3854 }
3855 if (validate_convert_profile(&bctl->sys, allowed)) {
3856 btrfs_err(fs_info,
3857 "unable to start balance with target system profile %llu",
3858 bctl->sys.target);
3859 ret = -EINVAL;
3860 goto out;
3861 }
3862
3863 /* allow to reduce meta or sys integrity only if force set */
3864 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3865 BTRFS_BLOCK_GROUP_RAID10 |
3866 BTRFS_BLOCK_GROUP_RAID5 |
3867 BTRFS_BLOCK_GROUP_RAID6;
3868 do {
3869 seq = read_seqbegin(&fs_info->profiles_lock);
3870
3871 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3872 (fs_info->avail_system_alloc_bits & allowed) &&
3873 !(bctl->sys.target & allowed)) ||
3874 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3875 (fs_info->avail_metadata_alloc_bits & allowed) &&
3876 !(bctl->meta.target & allowed))) {
3877 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3878 btrfs_info(fs_info,
3879 "force reducing metadata integrity");
3880 } else {
3881 btrfs_err(fs_info,
3882 "balance will reduce metadata integrity, use force if you want this");
3883 ret = -EINVAL;
3884 goto out;
3885 }
3886 }
3887 } while (read_seqretry(&fs_info->profiles_lock, seq));
3888
3889 /* if we're not converting, the target field is uninitialized */
3890 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3891 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3892 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3893 bctl->data.target : fs_info->avail_data_alloc_bits;
3894 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3895 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3896 btrfs_warn(fs_info,
3897 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3898 meta_target, data_target);
3899 }
3900
3901 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3902 fs_info->num_tolerated_disk_barrier_failures = min(
3903 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3904 btrfs_get_num_tolerated_disk_barrier_failures(
3905 bctl->sys.target));
3906 }
3907
3908 ret = insert_balance_item(fs_info, bctl);
3909 if (ret && ret != -EEXIST)
3910 goto out;
3911
3912 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3913 BUG_ON(ret == -EEXIST);
3914 set_balance_control(bctl);
3915 } else {
3916 BUG_ON(ret != -EEXIST);
3917 spin_lock(&fs_info->balance_lock);
3918 update_balance_args(bctl);
3919 spin_unlock(&fs_info->balance_lock);
3920 }
3921
3922 atomic_inc(&fs_info->balance_running);
3923 mutex_unlock(&fs_info->balance_mutex);
3924
3925 ret = __btrfs_balance(fs_info);
3926
3927 mutex_lock(&fs_info->balance_mutex);
3928 atomic_dec(&fs_info->balance_running);
3929
3930 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3931 fs_info->num_tolerated_disk_barrier_failures =
3932 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3933 }
3934
3935 if (bargs) {
3936 memset(bargs, 0, sizeof(*bargs));
3937 update_ioctl_balance_args(fs_info, 0, bargs);
3938 }
3939
3940 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3941 balance_need_close(fs_info)) {
3942 __cancel_balance(fs_info);
3943 }
3944
3945 wake_up(&fs_info->balance_wait_q);
3946
3947 return ret;
3948 out:
3949 if (bctl->flags & BTRFS_BALANCE_RESUME)
3950 __cancel_balance(fs_info);
3951 else {
3952 kfree(bctl);
3953 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3954 }
3955 return ret;
3956 }
3957
3958 static int balance_kthread(void *data)
3959 {
3960 struct btrfs_fs_info *fs_info = data;
3961 int ret = 0;
3962
3963 mutex_lock(&fs_info->volume_mutex);
3964 mutex_lock(&fs_info->balance_mutex);
3965
3966 if (fs_info->balance_ctl) {
3967 btrfs_info(fs_info, "continuing balance");
3968 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3969 }
3970
3971 mutex_unlock(&fs_info->balance_mutex);
3972 mutex_unlock(&fs_info->volume_mutex);
3973
3974 return ret;
3975 }
3976
3977 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3978 {
3979 struct task_struct *tsk;
3980
3981 spin_lock(&fs_info->balance_lock);
3982 if (!fs_info->balance_ctl) {
3983 spin_unlock(&fs_info->balance_lock);
3984 return 0;
3985 }
3986 spin_unlock(&fs_info->balance_lock);
3987
3988 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3989 btrfs_info(fs_info, "force skipping balance");
3990 return 0;
3991 }
3992
3993 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3994 return PTR_ERR_OR_ZERO(tsk);
3995 }
3996
3997 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3998 {
3999 struct btrfs_balance_control *bctl;
4000 struct btrfs_balance_item *item;
4001 struct btrfs_disk_balance_args disk_bargs;
4002 struct btrfs_path *path;
4003 struct extent_buffer *leaf;
4004 struct btrfs_key key;
4005 int ret;
4006
4007 path = btrfs_alloc_path();
4008 if (!path)
4009 return -ENOMEM;
4010
4011 key.objectid = BTRFS_BALANCE_OBJECTID;
4012 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4013 key.offset = 0;
4014
4015 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4016 if (ret < 0)
4017 goto out;
4018 if (ret > 0) { /* ret = -ENOENT; */
4019 ret = 0;
4020 goto out;
4021 }
4022
4023 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4024 if (!bctl) {
4025 ret = -ENOMEM;
4026 goto out;
4027 }
4028
4029 leaf = path->nodes[0];
4030 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4031
4032 bctl->fs_info = fs_info;
4033 bctl->flags = btrfs_balance_flags(leaf, item);
4034 bctl->flags |= BTRFS_BALANCE_RESUME;
4035
4036 btrfs_balance_data(leaf, item, &disk_bargs);
4037 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4038 btrfs_balance_meta(leaf, item, &disk_bargs);
4039 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4040 btrfs_balance_sys(leaf, item, &disk_bargs);
4041 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4042
4043 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4044
4045 mutex_lock(&fs_info->volume_mutex);
4046 mutex_lock(&fs_info->balance_mutex);
4047
4048 set_balance_control(bctl);
4049
4050 mutex_unlock(&fs_info->balance_mutex);
4051 mutex_unlock(&fs_info->volume_mutex);
4052 out:
4053 btrfs_free_path(path);
4054 return ret;
4055 }
4056
4057 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4058 {
4059 int ret = 0;
4060
4061 mutex_lock(&fs_info->balance_mutex);
4062 if (!fs_info->balance_ctl) {
4063 mutex_unlock(&fs_info->balance_mutex);
4064 return -ENOTCONN;
4065 }
4066
4067 if (atomic_read(&fs_info->balance_running)) {
4068 atomic_inc(&fs_info->balance_pause_req);
4069 mutex_unlock(&fs_info->balance_mutex);
4070
4071 wait_event(fs_info->balance_wait_q,
4072 atomic_read(&fs_info->balance_running) == 0);
4073
4074 mutex_lock(&fs_info->balance_mutex);
4075 /* we are good with balance_ctl ripped off from under us */
4076 BUG_ON(atomic_read(&fs_info->balance_running));
4077 atomic_dec(&fs_info->balance_pause_req);
4078 } else {
4079 ret = -ENOTCONN;
4080 }
4081
4082 mutex_unlock(&fs_info->balance_mutex);
4083 return ret;
4084 }
4085
4086 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4087 {
4088 if (fs_info->sb->s_flags & MS_RDONLY)
4089 return -EROFS;
4090
4091 mutex_lock(&fs_info->balance_mutex);
4092 if (!fs_info->balance_ctl) {
4093 mutex_unlock(&fs_info->balance_mutex);
4094 return -ENOTCONN;
4095 }
4096
4097 atomic_inc(&fs_info->balance_cancel_req);
4098 /*
4099 * if we are running just wait and return, balance item is
4100 * deleted in btrfs_balance in this case
4101 */
4102 if (atomic_read(&fs_info->balance_running)) {
4103 mutex_unlock(&fs_info->balance_mutex);
4104 wait_event(fs_info->balance_wait_q,
4105 atomic_read(&fs_info->balance_running) == 0);
4106 mutex_lock(&fs_info->balance_mutex);
4107 } else {
4108 /* __cancel_balance needs volume_mutex */
4109 mutex_unlock(&fs_info->balance_mutex);
4110 mutex_lock(&fs_info->volume_mutex);
4111 mutex_lock(&fs_info->balance_mutex);
4112
4113 if (fs_info->balance_ctl)
4114 __cancel_balance(fs_info);
4115
4116 mutex_unlock(&fs_info->volume_mutex);
4117 }
4118
4119 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4120 atomic_dec(&fs_info->balance_cancel_req);
4121 mutex_unlock(&fs_info->balance_mutex);
4122 return 0;
4123 }
4124
4125 static int btrfs_uuid_scan_kthread(void *data)
4126 {
4127 struct btrfs_fs_info *fs_info = data;
4128 struct btrfs_root *root = fs_info->tree_root;
4129 struct btrfs_key key;
4130 struct btrfs_key max_key;
4131 struct btrfs_path *path = NULL;
4132 int ret = 0;
4133 struct extent_buffer *eb;
4134 int slot;
4135 struct btrfs_root_item root_item;
4136 u32 item_size;
4137 struct btrfs_trans_handle *trans = NULL;
4138
4139 path = btrfs_alloc_path();
4140 if (!path) {
4141 ret = -ENOMEM;
4142 goto out;
4143 }
4144
4145 key.objectid = 0;
4146 key.type = BTRFS_ROOT_ITEM_KEY;
4147 key.offset = 0;
4148
4149 max_key.objectid = (u64)-1;
4150 max_key.type = BTRFS_ROOT_ITEM_KEY;
4151 max_key.offset = (u64)-1;
4152
4153 while (1) {
4154 ret = btrfs_search_forward(root, &key, path, 0);
4155 if (ret) {
4156 if (ret > 0)
4157 ret = 0;
4158 break;
4159 }
4160
4161 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4162 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4163 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4164 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4165 goto skip;
4166
4167 eb = path->nodes[0];
4168 slot = path->slots[0];
4169 item_size = btrfs_item_size_nr(eb, slot);
4170 if (item_size < sizeof(root_item))
4171 goto skip;
4172
4173 read_extent_buffer(eb, &root_item,
4174 btrfs_item_ptr_offset(eb, slot),
4175 (int)sizeof(root_item));
4176 if (btrfs_root_refs(&root_item) == 0)
4177 goto skip;
4178
4179 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4180 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4181 if (trans)
4182 goto update_tree;
4183
4184 btrfs_release_path(path);
4185 /*
4186 * 1 - subvol uuid item
4187 * 1 - received_subvol uuid item
4188 */
4189 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4190 if (IS_ERR(trans)) {
4191 ret = PTR_ERR(trans);
4192 break;
4193 }
4194 continue;
4195 } else {
4196 goto skip;
4197 }
4198 update_tree:
4199 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4200 ret = btrfs_uuid_tree_add(trans, fs_info,
4201 root_item.uuid,
4202 BTRFS_UUID_KEY_SUBVOL,
4203 key.objectid);
4204 if (ret < 0) {
4205 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4206 ret);
4207 break;
4208 }
4209 }
4210
4211 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4212 ret = btrfs_uuid_tree_add(trans, fs_info,
4213 root_item.received_uuid,
4214 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4215 key.objectid);
4216 if (ret < 0) {
4217 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4218 ret);
4219 break;
4220 }
4221 }
4222
4223 skip:
4224 if (trans) {
4225 ret = btrfs_end_transaction(trans);
4226 trans = NULL;
4227 if (ret)
4228 break;
4229 }
4230
4231 btrfs_release_path(path);
4232 if (key.offset < (u64)-1) {
4233 key.offset++;
4234 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4235 key.offset = 0;
4236 key.type = BTRFS_ROOT_ITEM_KEY;
4237 } else if (key.objectid < (u64)-1) {
4238 key.offset = 0;
4239 key.type = BTRFS_ROOT_ITEM_KEY;
4240 key.objectid++;
4241 } else {
4242 break;
4243 }
4244 cond_resched();
4245 }
4246
4247 out:
4248 btrfs_free_path(path);
4249 if (trans && !IS_ERR(trans))
4250 btrfs_end_transaction(trans);
4251 if (ret)
4252 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4253 else
4254 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4255 up(&fs_info->uuid_tree_rescan_sem);
4256 return 0;
4257 }
4258
4259 /*
4260 * Callback for btrfs_uuid_tree_iterate().
4261 * returns:
4262 * 0 check succeeded, the entry is not outdated.
4263 * < 0 if an error occurred.
4264 * > 0 if the check failed, which means the caller shall remove the entry.
4265 */
4266 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4267 u8 *uuid, u8 type, u64 subid)
4268 {
4269 struct btrfs_key key;
4270 int ret = 0;
4271 struct btrfs_root *subvol_root;
4272
4273 if (type != BTRFS_UUID_KEY_SUBVOL &&
4274 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4275 goto out;
4276
4277 key.objectid = subid;
4278 key.type = BTRFS_ROOT_ITEM_KEY;
4279 key.offset = (u64)-1;
4280 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4281 if (IS_ERR(subvol_root)) {
4282 ret = PTR_ERR(subvol_root);
4283 if (ret == -ENOENT)
4284 ret = 1;
4285 goto out;
4286 }
4287
4288 switch (type) {
4289 case BTRFS_UUID_KEY_SUBVOL:
4290 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4291 ret = 1;
4292 break;
4293 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4294 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4295 BTRFS_UUID_SIZE))
4296 ret = 1;
4297 break;
4298 }
4299
4300 out:
4301 return ret;
4302 }
4303
4304 static int btrfs_uuid_rescan_kthread(void *data)
4305 {
4306 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4307 int ret;
4308
4309 /*
4310 * 1st step is to iterate through the existing UUID tree and
4311 * to delete all entries that contain outdated data.
4312 * 2nd step is to add all missing entries to the UUID tree.
4313 */
4314 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4315 if (ret < 0) {
4316 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4317 up(&fs_info->uuid_tree_rescan_sem);
4318 return ret;
4319 }
4320 return btrfs_uuid_scan_kthread(data);
4321 }
4322
4323 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4324 {
4325 struct btrfs_trans_handle *trans;
4326 struct btrfs_root *tree_root = fs_info->tree_root;
4327 struct btrfs_root *uuid_root;
4328 struct task_struct *task;
4329 int ret;
4330
4331 /*
4332 * 1 - root node
4333 * 1 - root item
4334 */
4335 trans = btrfs_start_transaction(tree_root, 2);
4336 if (IS_ERR(trans))
4337 return PTR_ERR(trans);
4338
4339 uuid_root = btrfs_create_tree(trans, fs_info,
4340 BTRFS_UUID_TREE_OBJECTID);
4341 if (IS_ERR(uuid_root)) {
4342 ret = PTR_ERR(uuid_root);
4343 btrfs_abort_transaction(trans, ret);
4344 btrfs_end_transaction(trans);
4345 return ret;
4346 }
4347
4348 fs_info->uuid_root = uuid_root;
4349
4350 ret = btrfs_commit_transaction(trans);
4351 if (ret)
4352 return ret;
4353
4354 down(&fs_info->uuid_tree_rescan_sem);
4355 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4356 if (IS_ERR(task)) {
4357 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4358 btrfs_warn(fs_info, "failed to start uuid_scan task");
4359 up(&fs_info->uuid_tree_rescan_sem);
4360 return PTR_ERR(task);
4361 }
4362
4363 return 0;
4364 }
4365
4366 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4367 {
4368 struct task_struct *task;
4369
4370 down(&fs_info->uuid_tree_rescan_sem);
4371 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4372 if (IS_ERR(task)) {
4373 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4374 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4375 up(&fs_info->uuid_tree_rescan_sem);
4376 return PTR_ERR(task);
4377 }
4378
4379 return 0;
4380 }
4381
4382 /*
4383 * shrinking a device means finding all of the device extents past
4384 * the new size, and then following the back refs to the chunks.
4385 * The chunk relocation code actually frees the device extent
4386 */
4387 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4388 {
4389 struct btrfs_fs_info *fs_info = device->fs_info;
4390 struct btrfs_root *root = fs_info->dev_root;
4391 struct btrfs_trans_handle *trans;
4392 struct btrfs_dev_extent *dev_extent = NULL;
4393 struct btrfs_path *path;
4394 u64 length;
4395 u64 chunk_offset;
4396 int ret;
4397 int slot;
4398 int failed = 0;
4399 bool retried = false;
4400 bool checked_pending_chunks = false;
4401 struct extent_buffer *l;
4402 struct btrfs_key key;
4403 struct btrfs_super_block *super_copy = fs_info->super_copy;
4404 u64 old_total = btrfs_super_total_bytes(super_copy);
4405 u64 old_size = btrfs_device_get_total_bytes(device);
4406 u64 diff;
4407
4408 new_size = round_down(new_size, fs_info->sectorsize);
4409 diff = round_down(old_size - new_size, fs_info->sectorsize);
4410
4411 if (device->is_tgtdev_for_dev_replace)
4412 return -EINVAL;
4413
4414 path = btrfs_alloc_path();
4415 if (!path)
4416 return -ENOMEM;
4417
4418 path->reada = READA_FORWARD;
4419
4420 mutex_lock(&fs_info->chunk_mutex);
4421
4422 btrfs_device_set_total_bytes(device, new_size);
4423 if (device->writeable) {
4424 device->fs_devices->total_rw_bytes -= diff;
4425 atomic64_sub(diff, &fs_info->free_chunk_space);
4426 }
4427 mutex_unlock(&fs_info->chunk_mutex);
4428
4429 again:
4430 key.objectid = device->devid;
4431 key.offset = (u64)-1;
4432 key.type = BTRFS_DEV_EXTENT_KEY;
4433
4434 do {
4435 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4437 if (ret < 0) {
4438 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4439 goto done;
4440 }
4441
4442 ret = btrfs_previous_item(root, path, 0, key.type);
4443 if (ret)
4444 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4445 if (ret < 0)
4446 goto done;
4447 if (ret) {
4448 ret = 0;
4449 btrfs_release_path(path);
4450 break;
4451 }
4452
4453 l = path->nodes[0];
4454 slot = path->slots[0];
4455 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4456
4457 if (key.objectid != device->devid) {
4458 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4459 btrfs_release_path(path);
4460 break;
4461 }
4462
4463 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4464 length = btrfs_dev_extent_length(l, dev_extent);
4465
4466 if (key.offset + length <= new_size) {
4467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4468 btrfs_release_path(path);
4469 break;
4470 }
4471
4472 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4473 btrfs_release_path(path);
4474
4475 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4476 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4477 if (ret && ret != -ENOSPC)
4478 goto done;
4479 if (ret == -ENOSPC)
4480 failed++;
4481 } while (key.offset-- > 0);
4482
4483 if (failed && !retried) {
4484 failed = 0;
4485 retried = true;
4486 goto again;
4487 } else if (failed && retried) {
4488 ret = -ENOSPC;
4489 goto done;
4490 }
4491
4492 /* Shrinking succeeded, else we would be at "done". */
4493 trans = btrfs_start_transaction(root, 0);
4494 if (IS_ERR(trans)) {
4495 ret = PTR_ERR(trans);
4496 goto done;
4497 }
4498
4499 mutex_lock(&fs_info->chunk_mutex);
4500
4501 /*
4502 * We checked in the above loop all device extents that were already in
4503 * the device tree. However before we have updated the device's
4504 * total_bytes to the new size, we might have had chunk allocations that
4505 * have not complete yet (new block groups attached to transaction
4506 * handles), and therefore their device extents were not yet in the
4507 * device tree and we missed them in the loop above. So if we have any
4508 * pending chunk using a device extent that overlaps the device range
4509 * that we can not use anymore, commit the current transaction and
4510 * repeat the search on the device tree - this way we guarantee we will
4511 * not have chunks using device extents that end beyond 'new_size'.
4512 */
4513 if (!checked_pending_chunks) {
4514 u64 start = new_size;
4515 u64 len = old_size - new_size;
4516
4517 if (contains_pending_extent(trans->transaction, device,
4518 &start, len)) {
4519 mutex_unlock(&fs_info->chunk_mutex);
4520 checked_pending_chunks = true;
4521 failed = 0;
4522 retried = false;
4523 ret = btrfs_commit_transaction(trans);
4524 if (ret)
4525 goto done;
4526 goto again;
4527 }
4528 }
4529
4530 btrfs_device_set_disk_total_bytes(device, new_size);
4531 if (list_empty(&device->resized_list))
4532 list_add_tail(&device->resized_list,
4533 &fs_info->fs_devices->resized_devices);
4534
4535 WARN_ON(diff > old_total);
4536 btrfs_set_super_total_bytes(super_copy,
4537 round_down(old_total - diff, fs_info->sectorsize));
4538 mutex_unlock(&fs_info->chunk_mutex);
4539
4540 /* Now btrfs_update_device() will change the on-disk size. */
4541 ret = btrfs_update_device(trans, device);
4542 btrfs_end_transaction(trans);
4543 done:
4544 btrfs_free_path(path);
4545 if (ret) {
4546 mutex_lock(&fs_info->chunk_mutex);
4547 btrfs_device_set_total_bytes(device, old_size);
4548 if (device->writeable)
4549 device->fs_devices->total_rw_bytes += diff;
4550 atomic64_add(diff, &fs_info->free_chunk_space);
4551 mutex_unlock(&fs_info->chunk_mutex);
4552 }
4553 return ret;
4554 }
4555
4556 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4557 struct btrfs_key *key,
4558 struct btrfs_chunk *chunk, int item_size)
4559 {
4560 struct btrfs_super_block *super_copy = fs_info->super_copy;
4561 struct btrfs_disk_key disk_key;
4562 u32 array_size;
4563 u8 *ptr;
4564
4565 mutex_lock(&fs_info->chunk_mutex);
4566 array_size = btrfs_super_sys_array_size(super_copy);
4567 if (array_size + item_size + sizeof(disk_key)
4568 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4569 mutex_unlock(&fs_info->chunk_mutex);
4570 return -EFBIG;
4571 }
4572
4573 ptr = super_copy->sys_chunk_array + array_size;
4574 btrfs_cpu_key_to_disk(&disk_key, key);
4575 memcpy(ptr, &disk_key, sizeof(disk_key));
4576 ptr += sizeof(disk_key);
4577 memcpy(ptr, chunk, item_size);
4578 item_size += sizeof(disk_key);
4579 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4580 mutex_unlock(&fs_info->chunk_mutex);
4581
4582 return 0;
4583 }
4584
4585 /*
4586 * sort the devices in descending order by max_avail, total_avail
4587 */
4588 static int btrfs_cmp_device_info(const void *a, const void *b)
4589 {
4590 const struct btrfs_device_info *di_a = a;
4591 const struct btrfs_device_info *di_b = b;
4592
4593 if (di_a->max_avail > di_b->max_avail)
4594 return -1;
4595 if (di_a->max_avail < di_b->max_avail)
4596 return 1;
4597 if (di_a->total_avail > di_b->total_avail)
4598 return -1;
4599 if (di_a->total_avail < di_b->total_avail)
4600 return 1;
4601 return 0;
4602 }
4603
4604 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4605 {
4606 /* TODO allow them to set a preferred stripe size */
4607 return SZ_64K;
4608 }
4609
4610 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4611 {
4612 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4613 return;
4614
4615 btrfs_set_fs_incompat(info, RAID56);
4616 }
4617
4618 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4619 - sizeof(struct btrfs_chunk)) \
4620 / sizeof(struct btrfs_stripe) + 1)
4621
4622 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4623 - 2 * sizeof(struct btrfs_disk_key) \
4624 - 2 * sizeof(struct btrfs_chunk)) \
4625 / sizeof(struct btrfs_stripe) + 1)
4626
4627 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4628 u64 start, u64 type)
4629 {
4630 struct btrfs_fs_info *info = trans->fs_info;
4631 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4632 struct list_head *cur;
4633 struct map_lookup *map = NULL;
4634 struct extent_map_tree *em_tree;
4635 struct extent_map *em;
4636 struct btrfs_device_info *devices_info = NULL;
4637 u64 total_avail;
4638 int num_stripes; /* total number of stripes to allocate */
4639 int data_stripes; /* number of stripes that count for
4640 block group size */
4641 int sub_stripes; /* sub_stripes info for map */
4642 int dev_stripes; /* stripes per dev */
4643 int devs_max; /* max devs to use */
4644 int devs_min; /* min devs needed */
4645 int devs_increment; /* ndevs has to be a multiple of this */
4646 int ncopies; /* how many copies to data has */
4647 int ret;
4648 u64 max_stripe_size;
4649 u64 max_chunk_size;
4650 u64 stripe_size;
4651 u64 num_bytes;
4652 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4653 int ndevs;
4654 int i;
4655 int j;
4656 int index;
4657
4658 BUG_ON(!alloc_profile_is_valid(type, 0));
4659
4660 if (list_empty(&fs_devices->alloc_list))
4661 return -ENOSPC;
4662
4663 index = __get_raid_index(type);
4664
4665 sub_stripes = btrfs_raid_array[index].sub_stripes;
4666 dev_stripes = btrfs_raid_array[index].dev_stripes;
4667 devs_max = btrfs_raid_array[index].devs_max;
4668 devs_min = btrfs_raid_array[index].devs_min;
4669 devs_increment = btrfs_raid_array[index].devs_increment;
4670 ncopies = btrfs_raid_array[index].ncopies;
4671
4672 if (type & BTRFS_BLOCK_GROUP_DATA) {
4673 max_stripe_size = SZ_1G;
4674 max_chunk_size = 10 * max_stripe_size;
4675 if (!devs_max)
4676 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4677 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4678 /* for larger filesystems, use larger metadata chunks */
4679 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4680 max_stripe_size = SZ_1G;
4681 else
4682 max_stripe_size = SZ_256M;
4683 max_chunk_size = max_stripe_size;
4684 if (!devs_max)
4685 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4686 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4687 max_stripe_size = SZ_32M;
4688 max_chunk_size = 2 * max_stripe_size;
4689 if (!devs_max)
4690 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4691 } else {
4692 btrfs_err(info, "invalid chunk type 0x%llx requested",
4693 type);
4694 BUG_ON(1);
4695 }
4696
4697 /* we don't want a chunk larger than 10% of writeable space */
4698 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4699 max_chunk_size);
4700
4701 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4702 GFP_NOFS);
4703 if (!devices_info)
4704 return -ENOMEM;
4705
4706 cur = fs_devices->alloc_list.next;
4707
4708 /*
4709 * in the first pass through the devices list, we gather information
4710 * about the available holes on each device.
4711 */
4712 ndevs = 0;
4713 while (cur != &fs_devices->alloc_list) {
4714 struct btrfs_device *device;
4715 u64 max_avail;
4716 u64 dev_offset;
4717
4718 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4719
4720 cur = cur->next;
4721
4722 if (!device->writeable) {
4723 WARN(1, KERN_ERR
4724 "BTRFS: read-only device in alloc_list\n");
4725 continue;
4726 }
4727
4728 if (!device->in_fs_metadata ||
4729 device->is_tgtdev_for_dev_replace)
4730 continue;
4731
4732 if (device->total_bytes > device->bytes_used)
4733 total_avail = device->total_bytes - device->bytes_used;
4734 else
4735 total_avail = 0;
4736
4737 /* If there is no space on this device, skip it. */
4738 if (total_avail == 0)
4739 continue;
4740
4741 ret = find_free_dev_extent(trans, device,
4742 max_stripe_size * dev_stripes,
4743 &dev_offset, &max_avail);
4744 if (ret && ret != -ENOSPC)
4745 goto error;
4746
4747 if (ret == 0)
4748 max_avail = max_stripe_size * dev_stripes;
4749
4750 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4751 continue;
4752
4753 if (ndevs == fs_devices->rw_devices) {
4754 WARN(1, "%s: found more than %llu devices\n",
4755 __func__, fs_devices->rw_devices);
4756 break;
4757 }
4758 devices_info[ndevs].dev_offset = dev_offset;
4759 devices_info[ndevs].max_avail = max_avail;
4760 devices_info[ndevs].total_avail = total_avail;
4761 devices_info[ndevs].dev = device;
4762 ++ndevs;
4763 }
4764
4765 /*
4766 * now sort the devices by hole size / available space
4767 */
4768 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4769 btrfs_cmp_device_info, NULL);
4770
4771 /* round down to number of usable stripes */
4772 ndevs -= ndevs % devs_increment;
4773
4774 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4775 ret = -ENOSPC;
4776 goto error;
4777 }
4778
4779 if (devs_max && ndevs > devs_max)
4780 ndevs = devs_max;
4781 /*
4782 * the primary goal is to maximize the number of stripes, so use as many
4783 * devices as possible, even if the stripes are not maximum sized.
4784 */
4785 stripe_size = devices_info[ndevs-1].max_avail;
4786 num_stripes = ndevs * dev_stripes;
4787
4788 /*
4789 * this will have to be fixed for RAID1 and RAID10 over
4790 * more drives
4791 */
4792 data_stripes = num_stripes / ncopies;
4793
4794 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4795 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4796 info->stripesize);
4797 data_stripes = num_stripes - 1;
4798 }
4799 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4800 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4801 info->stripesize);
4802 data_stripes = num_stripes - 2;
4803 }
4804
4805 /*
4806 * Use the number of data stripes to figure out how big this chunk
4807 * is really going to be in terms of logical address space,
4808 * and compare that answer with the max chunk size
4809 */
4810 if (stripe_size * data_stripes > max_chunk_size) {
4811 u64 mask = (1ULL << 24) - 1;
4812
4813 stripe_size = div_u64(max_chunk_size, data_stripes);
4814
4815 /* bump the answer up to a 16MB boundary */
4816 stripe_size = (stripe_size + mask) & ~mask;
4817
4818 /* but don't go higher than the limits we found
4819 * while searching for free extents
4820 */
4821 if (stripe_size > devices_info[ndevs-1].max_avail)
4822 stripe_size = devices_info[ndevs-1].max_avail;
4823 }
4824
4825 stripe_size = div_u64(stripe_size, dev_stripes);
4826
4827 /* align to BTRFS_STRIPE_LEN */
4828 stripe_size = div64_u64(stripe_size, raid_stripe_len);
4829 stripe_size *= raid_stripe_len;
4830
4831 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4832 if (!map) {
4833 ret = -ENOMEM;
4834 goto error;
4835 }
4836 map->num_stripes = num_stripes;
4837
4838 for (i = 0; i < ndevs; ++i) {
4839 for (j = 0; j < dev_stripes; ++j) {
4840 int s = i * dev_stripes + j;
4841 map->stripes[s].dev = devices_info[i].dev;
4842 map->stripes[s].physical = devices_info[i].dev_offset +
4843 j * stripe_size;
4844 }
4845 }
4846 map->sector_size = info->sectorsize;
4847 map->stripe_len = raid_stripe_len;
4848 map->io_align = raid_stripe_len;
4849 map->io_width = raid_stripe_len;
4850 map->type = type;
4851 map->sub_stripes = sub_stripes;
4852
4853 num_bytes = stripe_size * data_stripes;
4854
4855 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4856
4857 em = alloc_extent_map();
4858 if (!em) {
4859 kfree(map);
4860 ret = -ENOMEM;
4861 goto error;
4862 }
4863 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4864 em->map_lookup = map;
4865 em->start = start;
4866 em->len = num_bytes;
4867 em->block_start = 0;
4868 em->block_len = em->len;
4869 em->orig_block_len = stripe_size;
4870
4871 em_tree = &info->mapping_tree.map_tree;
4872 write_lock(&em_tree->lock);
4873 ret = add_extent_mapping(em_tree, em, 0);
4874 if (!ret) {
4875 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4876 refcount_inc(&em->refs);
4877 }
4878 write_unlock(&em_tree->lock);
4879 if (ret) {
4880 free_extent_map(em);
4881 goto error;
4882 }
4883
4884 ret = btrfs_make_block_group(trans, info, 0, type,
4885 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4886 start, num_bytes);
4887 if (ret)
4888 goto error_del_extent;
4889
4890 for (i = 0; i < map->num_stripes; i++) {
4891 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4892 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4893 }
4894
4895 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4896
4897 free_extent_map(em);
4898 check_raid56_incompat_flag(info, type);
4899
4900 kfree(devices_info);
4901 return 0;
4902
4903 error_del_extent:
4904 write_lock(&em_tree->lock);
4905 remove_extent_mapping(em_tree, em);
4906 write_unlock(&em_tree->lock);
4907
4908 /* One for our allocation */
4909 free_extent_map(em);
4910 /* One for the tree reference */
4911 free_extent_map(em);
4912 /* One for the pending_chunks list reference */
4913 free_extent_map(em);
4914 error:
4915 kfree(devices_info);
4916 return ret;
4917 }
4918
4919 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4920 struct btrfs_fs_info *fs_info,
4921 u64 chunk_offset, u64 chunk_size)
4922 {
4923 struct btrfs_root *extent_root = fs_info->extent_root;
4924 struct btrfs_root *chunk_root = fs_info->chunk_root;
4925 struct btrfs_key key;
4926 struct btrfs_device *device;
4927 struct btrfs_chunk *chunk;
4928 struct btrfs_stripe *stripe;
4929 struct extent_map *em;
4930 struct map_lookup *map;
4931 size_t item_size;
4932 u64 dev_offset;
4933 u64 stripe_size;
4934 int i = 0;
4935 int ret = 0;
4936
4937 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4938 if (IS_ERR(em))
4939 return PTR_ERR(em);
4940
4941 map = em->map_lookup;
4942 item_size = btrfs_chunk_item_size(map->num_stripes);
4943 stripe_size = em->orig_block_len;
4944
4945 chunk = kzalloc(item_size, GFP_NOFS);
4946 if (!chunk) {
4947 ret = -ENOMEM;
4948 goto out;
4949 }
4950
4951 /*
4952 * Take the device list mutex to prevent races with the final phase of
4953 * a device replace operation that replaces the device object associated
4954 * with the map's stripes, because the device object's id can change
4955 * at any time during that final phase of the device replace operation
4956 * (dev-replace.c:btrfs_dev_replace_finishing()).
4957 */
4958 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4959 for (i = 0; i < map->num_stripes; i++) {
4960 device = map->stripes[i].dev;
4961 dev_offset = map->stripes[i].physical;
4962
4963 ret = btrfs_update_device(trans, device);
4964 if (ret)
4965 break;
4966 ret = btrfs_alloc_dev_extent(trans, device,
4967 chunk_root->root_key.objectid,
4968 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4969 chunk_offset, dev_offset,
4970 stripe_size);
4971 if (ret)
4972 break;
4973 }
4974 if (ret) {
4975 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4976 goto out;
4977 }
4978
4979 stripe = &chunk->stripe;
4980 for (i = 0; i < map->num_stripes; i++) {
4981 device = map->stripes[i].dev;
4982 dev_offset = map->stripes[i].physical;
4983
4984 btrfs_set_stack_stripe_devid(stripe, device->devid);
4985 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4986 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4987 stripe++;
4988 }
4989 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4990
4991 btrfs_set_stack_chunk_length(chunk, chunk_size);
4992 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4993 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4994 btrfs_set_stack_chunk_type(chunk, map->type);
4995 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4996 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4997 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4998 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4999 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5000
5001 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5002 key.type = BTRFS_CHUNK_ITEM_KEY;
5003 key.offset = chunk_offset;
5004
5005 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5006 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5007 /*
5008 * TODO: Cleanup of inserted chunk root in case of
5009 * failure.
5010 */
5011 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5012 }
5013
5014 out:
5015 kfree(chunk);
5016 free_extent_map(em);
5017 return ret;
5018 }
5019
5020 /*
5021 * Chunk allocation falls into two parts. The first part does works
5022 * that make the new allocated chunk useable, but not do any operation
5023 * that modifies the chunk tree. The second part does the works that
5024 * require modifying the chunk tree. This division is important for the
5025 * bootstrap process of adding storage to a seed btrfs.
5026 */
5027 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5028 struct btrfs_fs_info *fs_info, u64 type)
5029 {
5030 u64 chunk_offset;
5031
5032 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5033 chunk_offset = find_next_chunk(fs_info);
5034 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5035 }
5036
5037 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5038 struct btrfs_fs_info *fs_info)
5039 {
5040 u64 chunk_offset;
5041 u64 sys_chunk_offset;
5042 u64 alloc_profile;
5043 int ret;
5044
5045 chunk_offset = find_next_chunk(fs_info);
5046 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5047 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5048 if (ret)
5049 return ret;
5050
5051 sys_chunk_offset = find_next_chunk(fs_info);
5052 alloc_profile = btrfs_system_alloc_profile(fs_info);
5053 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5054 return ret;
5055 }
5056
5057 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5058 {
5059 int max_errors;
5060
5061 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5062 BTRFS_BLOCK_GROUP_RAID10 |
5063 BTRFS_BLOCK_GROUP_RAID5 |
5064 BTRFS_BLOCK_GROUP_DUP)) {
5065 max_errors = 1;
5066 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5067 max_errors = 2;
5068 } else {
5069 max_errors = 0;
5070 }
5071
5072 return max_errors;
5073 }
5074
5075 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5076 {
5077 struct extent_map *em;
5078 struct map_lookup *map;
5079 int readonly = 0;
5080 int miss_ndevs = 0;
5081 int i;
5082
5083 em = get_chunk_map(fs_info, chunk_offset, 1);
5084 if (IS_ERR(em))
5085 return 1;
5086
5087 map = em->map_lookup;
5088 for (i = 0; i < map->num_stripes; i++) {
5089 if (map->stripes[i].dev->missing) {
5090 miss_ndevs++;
5091 continue;
5092 }
5093
5094 if (!map->stripes[i].dev->writeable) {
5095 readonly = 1;
5096 goto end;
5097 }
5098 }
5099
5100 /*
5101 * If the number of missing devices is larger than max errors,
5102 * we can not write the data into that chunk successfully, so
5103 * set it readonly.
5104 */
5105 if (miss_ndevs > btrfs_chunk_max_errors(map))
5106 readonly = 1;
5107 end:
5108 free_extent_map(em);
5109 return readonly;
5110 }
5111
5112 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5113 {
5114 extent_map_tree_init(&tree->map_tree);
5115 }
5116
5117 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5118 {
5119 struct extent_map *em;
5120
5121 while (1) {
5122 write_lock(&tree->map_tree.lock);
5123 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5124 if (em)
5125 remove_extent_mapping(&tree->map_tree, em);
5126 write_unlock(&tree->map_tree.lock);
5127 if (!em)
5128 break;
5129 /* once for us */
5130 free_extent_map(em);
5131 /* once for the tree */
5132 free_extent_map(em);
5133 }
5134 }
5135
5136 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5137 {
5138 struct extent_map *em;
5139 struct map_lookup *map;
5140 int ret;
5141
5142 em = get_chunk_map(fs_info, logical, len);
5143 if (IS_ERR(em))
5144 /*
5145 * We could return errors for these cases, but that could get
5146 * ugly and we'd probably do the same thing which is just not do
5147 * anything else and exit, so return 1 so the callers don't try
5148 * to use other copies.
5149 */
5150 return 1;
5151
5152 map = em->map_lookup;
5153 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5154 ret = map->num_stripes;
5155 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5156 ret = map->sub_stripes;
5157 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5158 ret = 2;
5159 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5160 ret = 3;
5161 else
5162 ret = 1;
5163 free_extent_map(em);
5164
5165 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5166 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5167 fs_info->dev_replace.tgtdev)
5168 ret++;
5169 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5170
5171 return ret;
5172 }
5173
5174 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5175 struct btrfs_mapping_tree *map_tree,
5176 u64 logical)
5177 {
5178 struct extent_map *em;
5179 struct map_lookup *map;
5180 unsigned long len = fs_info->sectorsize;
5181
5182 em = get_chunk_map(fs_info, logical, len);
5183 WARN_ON(IS_ERR(em));
5184
5185 map = em->map_lookup;
5186 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5187 len = map->stripe_len * nr_data_stripes(map);
5188 free_extent_map(em);
5189 return len;
5190 }
5191
5192 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
5193 u64 logical, u64 len, int mirror_num)
5194 {
5195 struct extent_map *em;
5196 struct map_lookup *map;
5197 int ret = 0;
5198
5199 em = get_chunk_map(fs_info, logical, len);
5200 WARN_ON(IS_ERR(em));
5201
5202 map = em->map_lookup;
5203 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5204 ret = 1;
5205 free_extent_map(em);
5206 return ret;
5207 }
5208
5209 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5210 struct map_lookup *map, int first, int num,
5211 int optimal, int dev_replace_is_ongoing)
5212 {
5213 int i;
5214 int tolerance;
5215 struct btrfs_device *srcdev;
5216
5217 if (dev_replace_is_ongoing &&
5218 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5219 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5220 srcdev = fs_info->dev_replace.srcdev;
5221 else
5222 srcdev = NULL;
5223
5224 /*
5225 * try to avoid the drive that is the source drive for a
5226 * dev-replace procedure, only choose it if no other non-missing
5227 * mirror is available
5228 */
5229 for (tolerance = 0; tolerance < 2; tolerance++) {
5230 if (map->stripes[optimal].dev->bdev &&
5231 (tolerance || map->stripes[optimal].dev != srcdev))
5232 return optimal;
5233 for (i = first; i < first + num; i++) {
5234 if (map->stripes[i].dev->bdev &&
5235 (tolerance || map->stripes[i].dev != srcdev))
5236 return i;
5237 }
5238 }
5239
5240 /* we couldn't find one that doesn't fail. Just return something
5241 * and the io error handling code will clean up eventually
5242 */
5243 return optimal;
5244 }
5245
5246 static inline int parity_smaller(u64 a, u64 b)
5247 {
5248 return a > b;
5249 }
5250
5251 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5252 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5253 {
5254 struct btrfs_bio_stripe s;
5255 int i;
5256 u64 l;
5257 int again = 1;
5258
5259 while (again) {
5260 again = 0;
5261 for (i = 0; i < num_stripes - 1; i++) {
5262 if (parity_smaller(bbio->raid_map[i],
5263 bbio->raid_map[i+1])) {
5264 s = bbio->stripes[i];
5265 l = bbio->raid_map[i];
5266 bbio->stripes[i] = bbio->stripes[i+1];
5267 bbio->raid_map[i] = bbio->raid_map[i+1];
5268 bbio->stripes[i+1] = s;
5269 bbio->raid_map[i+1] = l;
5270
5271 again = 1;
5272 }
5273 }
5274 }
5275 }
5276
5277 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5278 {
5279 struct btrfs_bio *bbio = kzalloc(
5280 /* the size of the btrfs_bio */
5281 sizeof(struct btrfs_bio) +
5282 /* plus the variable array for the stripes */
5283 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5284 /* plus the variable array for the tgt dev */
5285 sizeof(int) * (real_stripes) +
5286 /*
5287 * plus the raid_map, which includes both the tgt dev
5288 * and the stripes
5289 */
5290 sizeof(u64) * (total_stripes),
5291 GFP_NOFS|__GFP_NOFAIL);
5292
5293 atomic_set(&bbio->error, 0);
5294 refcount_set(&bbio->refs, 1);
5295
5296 return bbio;
5297 }
5298
5299 void btrfs_get_bbio(struct btrfs_bio *bbio)
5300 {
5301 WARN_ON(!refcount_read(&bbio->refs));
5302 refcount_inc(&bbio->refs);
5303 }
5304
5305 void btrfs_put_bbio(struct btrfs_bio *bbio)
5306 {
5307 if (!bbio)
5308 return;
5309 if (refcount_dec_and_test(&bbio->refs))
5310 kfree(bbio);
5311 }
5312
5313 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5314 /*
5315 * Please note that, discard won't be sent to target device of device
5316 * replace.
5317 */
5318 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5319 u64 logical, u64 length,
5320 struct btrfs_bio **bbio_ret)
5321 {
5322 struct extent_map *em;
5323 struct map_lookup *map;
5324 struct btrfs_bio *bbio;
5325 u64 offset;
5326 u64 stripe_nr;
5327 u64 stripe_nr_end;
5328 u64 stripe_end_offset;
5329 u64 stripe_cnt;
5330 u64 stripe_len;
5331 u64 stripe_offset;
5332 u64 num_stripes;
5333 u32 stripe_index;
5334 u32 factor = 0;
5335 u32 sub_stripes = 0;
5336 u64 stripes_per_dev = 0;
5337 u32 remaining_stripes = 0;
5338 u32 last_stripe = 0;
5339 int ret = 0;
5340 int i;
5341
5342 /* discard always return a bbio */
5343 ASSERT(bbio_ret);
5344
5345 em = get_chunk_map(fs_info, logical, length);
5346 if (IS_ERR(em))
5347 return PTR_ERR(em);
5348
5349 map = em->map_lookup;
5350 /* we don't discard raid56 yet */
5351 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5352 ret = -EOPNOTSUPP;
5353 goto out;
5354 }
5355
5356 offset = logical - em->start;
5357 length = min_t(u64, em->len - offset, length);
5358
5359 stripe_len = map->stripe_len;
5360 /*
5361 * stripe_nr counts the total number of stripes we have to stride
5362 * to get to this block
5363 */
5364 stripe_nr = div64_u64(offset, stripe_len);
5365
5366 /* stripe_offset is the offset of this block in its stripe */
5367 stripe_offset = offset - stripe_nr * stripe_len;
5368
5369 stripe_nr_end = round_up(offset + length, map->stripe_len);
5370 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5371 stripe_cnt = stripe_nr_end - stripe_nr;
5372 stripe_end_offset = stripe_nr_end * map->stripe_len -
5373 (offset + length);
5374 /*
5375 * after this, stripe_nr is the number of stripes on this
5376 * device we have to walk to find the data, and stripe_index is
5377 * the number of our device in the stripe array
5378 */
5379 num_stripes = 1;
5380 stripe_index = 0;
5381 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5382 BTRFS_BLOCK_GROUP_RAID10)) {
5383 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5384 sub_stripes = 1;
5385 else
5386 sub_stripes = map->sub_stripes;
5387
5388 factor = map->num_stripes / sub_stripes;
5389 num_stripes = min_t(u64, map->num_stripes,
5390 sub_stripes * stripe_cnt);
5391 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5392 stripe_index *= sub_stripes;
5393 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5394 &remaining_stripes);
5395 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5396 last_stripe *= sub_stripes;
5397 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5398 BTRFS_BLOCK_GROUP_DUP)) {
5399 num_stripes = map->num_stripes;
5400 } else {
5401 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5402 &stripe_index);
5403 }
5404
5405 bbio = alloc_btrfs_bio(num_stripes, 0);
5406 if (!bbio) {
5407 ret = -ENOMEM;
5408 goto out;
5409 }
5410
5411 for (i = 0; i < num_stripes; i++) {
5412 bbio->stripes[i].physical =
5413 map->stripes[stripe_index].physical +
5414 stripe_offset + stripe_nr * map->stripe_len;
5415 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5416
5417 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5418 BTRFS_BLOCK_GROUP_RAID10)) {
5419 bbio->stripes[i].length = stripes_per_dev *
5420 map->stripe_len;
5421
5422 if (i / sub_stripes < remaining_stripes)
5423 bbio->stripes[i].length +=
5424 map->stripe_len;
5425
5426 /*
5427 * Special for the first stripe and
5428 * the last stripe:
5429 *
5430 * |-------|...|-------|
5431 * |----------|
5432 * off end_off
5433 */
5434 if (i < sub_stripes)
5435 bbio->stripes[i].length -=
5436 stripe_offset;
5437
5438 if (stripe_index >= last_stripe &&
5439 stripe_index <= (last_stripe +
5440 sub_stripes - 1))
5441 bbio->stripes[i].length -=
5442 stripe_end_offset;
5443
5444 if (i == sub_stripes - 1)
5445 stripe_offset = 0;
5446 } else {
5447 bbio->stripes[i].length = length;
5448 }
5449
5450 stripe_index++;
5451 if (stripe_index == map->num_stripes) {
5452 stripe_index = 0;
5453 stripe_nr++;
5454 }
5455 }
5456
5457 *bbio_ret = bbio;
5458 bbio->map_type = map->type;
5459 bbio->num_stripes = num_stripes;
5460 out:
5461 free_extent_map(em);
5462 return ret;
5463 }
5464
5465 /*
5466 * In dev-replace case, for repair case (that's the only case where the mirror
5467 * is selected explicitly when calling btrfs_map_block), blocks left of the
5468 * left cursor can also be read from the target drive.
5469 *
5470 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5471 * array of stripes.
5472 * For READ, it also needs to be supported using the same mirror number.
5473 *
5474 * If the requested block is not left of the left cursor, EIO is returned. This
5475 * can happen because btrfs_num_copies() returns one more in the dev-replace
5476 * case.
5477 */
5478 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5479 u64 logical, u64 length,
5480 u64 srcdev_devid, int *mirror_num,
5481 u64 *physical)
5482 {
5483 struct btrfs_bio *bbio = NULL;
5484 int num_stripes;
5485 int index_srcdev = 0;
5486 int found = 0;
5487 u64 physical_of_found = 0;
5488 int i;
5489 int ret = 0;
5490
5491 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5492 logical, &length, &bbio, 0, 0);
5493 if (ret) {
5494 ASSERT(bbio == NULL);
5495 return ret;
5496 }
5497
5498 num_stripes = bbio->num_stripes;
5499 if (*mirror_num > num_stripes) {
5500 /*
5501 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5502 * that means that the requested area is not left of the left
5503 * cursor
5504 */
5505 btrfs_put_bbio(bbio);
5506 return -EIO;
5507 }
5508
5509 /*
5510 * process the rest of the function using the mirror_num of the source
5511 * drive. Therefore look it up first. At the end, patch the device
5512 * pointer to the one of the target drive.
5513 */
5514 for (i = 0; i < num_stripes; i++) {
5515 if (bbio->stripes[i].dev->devid != srcdev_devid)
5516 continue;
5517
5518 /*
5519 * In case of DUP, in order to keep it simple, only add the
5520 * mirror with the lowest physical address
5521 */
5522 if (found &&
5523 physical_of_found <= bbio->stripes[i].physical)
5524 continue;
5525
5526 index_srcdev = i;
5527 found = 1;
5528 physical_of_found = bbio->stripes[i].physical;
5529 }
5530
5531 btrfs_put_bbio(bbio);
5532
5533 ASSERT(found);
5534 if (!found)
5535 return -EIO;
5536
5537 *mirror_num = index_srcdev + 1;
5538 *physical = physical_of_found;
5539 return ret;
5540 }
5541
5542 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5543 struct btrfs_bio **bbio_ret,
5544 struct btrfs_dev_replace *dev_replace,
5545 int *num_stripes_ret, int *max_errors_ret)
5546 {
5547 struct btrfs_bio *bbio = *bbio_ret;
5548 u64 srcdev_devid = dev_replace->srcdev->devid;
5549 int tgtdev_indexes = 0;
5550 int num_stripes = *num_stripes_ret;
5551 int max_errors = *max_errors_ret;
5552 int i;
5553
5554 if (op == BTRFS_MAP_WRITE) {
5555 int index_where_to_add;
5556
5557 /*
5558 * duplicate the write operations while the dev replace
5559 * procedure is running. Since the copying of the old disk to
5560 * the new disk takes place at run time while the filesystem is
5561 * mounted writable, the regular write operations to the old
5562 * disk have to be duplicated to go to the new disk as well.
5563 *
5564 * Note that device->missing is handled by the caller, and that
5565 * the write to the old disk is already set up in the stripes
5566 * array.
5567 */
5568 index_where_to_add = num_stripes;
5569 for (i = 0; i < num_stripes; i++) {
5570 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5571 /* write to new disk, too */
5572 struct btrfs_bio_stripe *new =
5573 bbio->stripes + index_where_to_add;
5574 struct btrfs_bio_stripe *old =
5575 bbio->stripes + i;
5576
5577 new->physical = old->physical;
5578 new->length = old->length;
5579 new->dev = dev_replace->tgtdev;
5580 bbio->tgtdev_map[i] = index_where_to_add;
5581 index_where_to_add++;
5582 max_errors++;
5583 tgtdev_indexes++;
5584 }
5585 }
5586 num_stripes = index_where_to_add;
5587 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5588 int index_srcdev = 0;
5589 int found = 0;
5590 u64 physical_of_found = 0;
5591
5592 /*
5593 * During the dev-replace procedure, the target drive can also
5594 * be used to read data in case it is needed to repair a corrupt
5595 * block elsewhere. This is possible if the requested area is
5596 * left of the left cursor. In this area, the target drive is a
5597 * full copy of the source drive.
5598 */
5599 for (i = 0; i < num_stripes; i++) {
5600 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5601 /*
5602 * In case of DUP, in order to keep it simple,
5603 * only add the mirror with the lowest physical
5604 * address
5605 */
5606 if (found &&
5607 physical_of_found <=
5608 bbio->stripes[i].physical)
5609 continue;
5610 index_srcdev = i;
5611 found = 1;
5612 physical_of_found = bbio->stripes[i].physical;
5613 }
5614 }
5615 if (found) {
5616 struct btrfs_bio_stripe *tgtdev_stripe =
5617 bbio->stripes + num_stripes;
5618
5619 tgtdev_stripe->physical = physical_of_found;
5620 tgtdev_stripe->length =
5621 bbio->stripes[index_srcdev].length;
5622 tgtdev_stripe->dev = dev_replace->tgtdev;
5623 bbio->tgtdev_map[index_srcdev] = num_stripes;
5624
5625 tgtdev_indexes++;
5626 num_stripes++;
5627 }
5628 }
5629
5630 *num_stripes_ret = num_stripes;
5631 *max_errors_ret = max_errors;
5632 bbio->num_tgtdevs = tgtdev_indexes;
5633 *bbio_ret = bbio;
5634 }
5635
5636 static bool need_full_stripe(enum btrfs_map_op op)
5637 {
5638 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5639 }
5640
5641 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5642 enum btrfs_map_op op,
5643 u64 logical, u64 *length,
5644 struct btrfs_bio **bbio_ret,
5645 int mirror_num, int need_raid_map)
5646 {
5647 struct extent_map *em;
5648 struct map_lookup *map;
5649 u64 offset;
5650 u64 stripe_offset;
5651 u64 stripe_nr;
5652 u64 stripe_len;
5653 u32 stripe_index;
5654 int i;
5655 int ret = 0;
5656 int num_stripes;
5657 int max_errors = 0;
5658 int tgtdev_indexes = 0;
5659 struct btrfs_bio *bbio = NULL;
5660 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5661 int dev_replace_is_ongoing = 0;
5662 int num_alloc_stripes;
5663 int patch_the_first_stripe_for_dev_replace = 0;
5664 u64 physical_to_patch_in_first_stripe = 0;
5665 u64 raid56_full_stripe_start = (u64)-1;
5666
5667 if (op == BTRFS_MAP_DISCARD)
5668 return __btrfs_map_block_for_discard(fs_info, logical,
5669 *length, bbio_ret);
5670
5671 em = get_chunk_map(fs_info, logical, *length);
5672 if (IS_ERR(em))
5673 return PTR_ERR(em);
5674
5675 map = em->map_lookup;
5676 offset = logical - em->start;
5677
5678 stripe_len = map->stripe_len;
5679 stripe_nr = offset;
5680 /*
5681 * stripe_nr counts the total number of stripes we have to stride
5682 * to get to this block
5683 */
5684 stripe_nr = div64_u64(stripe_nr, stripe_len);
5685
5686 stripe_offset = stripe_nr * stripe_len;
5687 if (offset < stripe_offset) {
5688 btrfs_crit(fs_info,
5689 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5690 stripe_offset, offset, em->start, logical,
5691 stripe_len);
5692 free_extent_map(em);
5693 return -EINVAL;
5694 }
5695
5696 /* stripe_offset is the offset of this block in its stripe*/
5697 stripe_offset = offset - stripe_offset;
5698
5699 /* if we're here for raid56, we need to know the stripe aligned start */
5700 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5701 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5702 raid56_full_stripe_start = offset;
5703
5704 /* allow a write of a full stripe, but make sure we don't
5705 * allow straddling of stripes
5706 */
5707 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5708 full_stripe_len);
5709 raid56_full_stripe_start *= full_stripe_len;
5710 }
5711
5712 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5713 u64 max_len;
5714 /* For writes to RAID[56], allow a full stripeset across all disks.
5715 For other RAID types and for RAID[56] reads, just allow a single
5716 stripe (on a single disk). */
5717 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5718 (op == BTRFS_MAP_WRITE)) {
5719 max_len = stripe_len * nr_data_stripes(map) -
5720 (offset - raid56_full_stripe_start);
5721 } else {
5722 /* we limit the length of each bio to what fits in a stripe */
5723 max_len = stripe_len - stripe_offset;
5724 }
5725 *length = min_t(u64, em->len - offset, max_len);
5726 } else {
5727 *length = em->len - offset;
5728 }
5729
5730 /* This is for when we're called from btrfs_merge_bio_hook() and all
5731 it cares about is the length */
5732 if (!bbio_ret)
5733 goto out;
5734
5735 btrfs_dev_replace_lock(dev_replace, 0);
5736 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5737 if (!dev_replace_is_ongoing)
5738 btrfs_dev_replace_unlock(dev_replace, 0);
5739 else
5740 btrfs_dev_replace_set_lock_blocking(dev_replace);
5741
5742 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5743 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5744 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5745 dev_replace->srcdev->devid,
5746 &mirror_num,
5747 &physical_to_patch_in_first_stripe);
5748 if (ret)
5749 goto out;
5750 else
5751 patch_the_first_stripe_for_dev_replace = 1;
5752 } else if (mirror_num > map->num_stripes) {
5753 mirror_num = 0;
5754 }
5755
5756 num_stripes = 1;
5757 stripe_index = 0;
5758 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5759 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5760 &stripe_index);
5761 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5762 mirror_num = 1;
5763 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5764 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5765 num_stripes = map->num_stripes;
5766 else if (mirror_num)
5767 stripe_index = mirror_num - 1;
5768 else {
5769 stripe_index = find_live_mirror(fs_info, map, 0,
5770 map->num_stripes,
5771 current->pid % map->num_stripes,
5772 dev_replace_is_ongoing);
5773 mirror_num = stripe_index + 1;
5774 }
5775
5776 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5777 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5778 num_stripes = map->num_stripes;
5779 } else if (mirror_num) {
5780 stripe_index = mirror_num - 1;
5781 } else {
5782 mirror_num = 1;
5783 }
5784
5785 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5786 u32 factor = map->num_stripes / map->sub_stripes;
5787
5788 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5789 stripe_index *= map->sub_stripes;
5790
5791 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5792 num_stripes = map->sub_stripes;
5793 else if (mirror_num)
5794 stripe_index += mirror_num - 1;
5795 else {
5796 int old_stripe_index = stripe_index;
5797 stripe_index = find_live_mirror(fs_info, map,
5798 stripe_index,
5799 map->sub_stripes, stripe_index +
5800 current->pid % map->sub_stripes,
5801 dev_replace_is_ongoing);
5802 mirror_num = stripe_index - old_stripe_index + 1;
5803 }
5804
5805 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5806 if (need_raid_map &&
5807 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5808 mirror_num > 1)) {
5809 /* push stripe_nr back to the start of the full stripe */
5810 stripe_nr = div64_u64(raid56_full_stripe_start,
5811 stripe_len * nr_data_stripes(map));
5812
5813 /* RAID[56] write or recovery. Return all stripes */
5814 num_stripes = map->num_stripes;
5815 max_errors = nr_parity_stripes(map);
5816
5817 *length = map->stripe_len;
5818 stripe_index = 0;
5819 stripe_offset = 0;
5820 } else {
5821 /*
5822 * Mirror #0 or #1 means the original data block.
5823 * Mirror #2 is RAID5 parity block.
5824 * Mirror #3 is RAID6 Q block.
5825 */
5826 stripe_nr = div_u64_rem(stripe_nr,
5827 nr_data_stripes(map), &stripe_index);
5828 if (mirror_num > 1)
5829 stripe_index = nr_data_stripes(map) +
5830 mirror_num - 2;
5831
5832 /* We distribute the parity blocks across stripes */
5833 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5834 &stripe_index);
5835 if ((op != BTRFS_MAP_WRITE &&
5836 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5837 mirror_num <= 1)
5838 mirror_num = 1;
5839 }
5840 } else {
5841 /*
5842 * after this, stripe_nr is the number of stripes on this
5843 * device we have to walk to find the data, and stripe_index is
5844 * the number of our device in the stripe array
5845 */
5846 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5847 &stripe_index);
5848 mirror_num = stripe_index + 1;
5849 }
5850 if (stripe_index >= map->num_stripes) {
5851 btrfs_crit(fs_info,
5852 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5853 stripe_index, map->num_stripes);
5854 ret = -EINVAL;
5855 goto out;
5856 }
5857
5858 num_alloc_stripes = num_stripes;
5859 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5860 if (op == BTRFS_MAP_WRITE)
5861 num_alloc_stripes <<= 1;
5862 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5863 num_alloc_stripes++;
5864 tgtdev_indexes = num_stripes;
5865 }
5866
5867 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5868 if (!bbio) {
5869 ret = -ENOMEM;
5870 goto out;
5871 }
5872 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5873 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5874
5875 /* build raid_map */
5876 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5877 (need_full_stripe(op) || mirror_num > 1)) {
5878 u64 tmp;
5879 unsigned rot;
5880
5881 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5882 sizeof(struct btrfs_bio_stripe) *
5883 num_alloc_stripes +
5884 sizeof(int) * tgtdev_indexes);
5885
5886 /* Work out the disk rotation on this stripe-set */
5887 div_u64_rem(stripe_nr, num_stripes, &rot);
5888
5889 /* Fill in the logical address of each stripe */
5890 tmp = stripe_nr * nr_data_stripes(map);
5891 for (i = 0; i < nr_data_stripes(map); i++)
5892 bbio->raid_map[(i+rot) % num_stripes] =
5893 em->start + (tmp + i) * map->stripe_len;
5894
5895 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5896 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5897 bbio->raid_map[(i+rot+1) % num_stripes] =
5898 RAID6_Q_STRIPE;
5899 }
5900
5901
5902 for (i = 0; i < num_stripes; i++) {
5903 bbio->stripes[i].physical =
5904 map->stripes[stripe_index].physical +
5905 stripe_offset +
5906 stripe_nr * map->stripe_len;
5907 bbio->stripes[i].dev =
5908 map->stripes[stripe_index].dev;
5909 stripe_index++;
5910 }
5911
5912 if (need_full_stripe(op))
5913 max_errors = btrfs_chunk_max_errors(map);
5914
5915 if (bbio->raid_map)
5916 sort_parity_stripes(bbio, num_stripes);
5917
5918 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5919 need_full_stripe(op)) {
5920 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5921 &max_errors);
5922 }
5923
5924 *bbio_ret = bbio;
5925 bbio->map_type = map->type;
5926 bbio->num_stripes = num_stripes;
5927 bbio->max_errors = max_errors;
5928 bbio->mirror_num = mirror_num;
5929
5930 /*
5931 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5932 * mirror_num == num_stripes + 1 && dev_replace target drive is
5933 * available as a mirror
5934 */
5935 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5936 WARN_ON(num_stripes > 1);
5937 bbio->stripes[0].dev = dev_replace->tgtdev;
5938 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5939 bbio->mirror_num = map->num_stripes + 1;
5940 }
5941 out:
5942 if (dev_replace_is_ongoing) {
5943 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5944 btrfs_dev_replace_unlock(dev_replace, 0);
5945 }
5946 free_extent_map(em);
5947 return ret;
5948 }
5949
5950 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5951 u64 logical, u64 *length,
5952 struct btrfs_bio **bbio_ret, int mirror_num)
5953 {
5954 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5955 mirror_num, 0);
5956 }
5957
5958 /* For Scrub/replace */
5959 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5960 u64 logical, u64 *length,
5961 struct btrfs_bio **bbio_ret)
5962 {
5963 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5964 }
5965
5966 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5967 u64 chunk_start, u64 physical, u64 devid,
5968 u64 **logical, int *naddrs, int *stripe_len)
5969 {
5970 struct extent_map *em;
5971 struct map_lookup *map;
5972 u64 *buf;
5973 u64 bytenr;
5974 u64 length;
5975 u64 stripe_nr;
5976 u64 rmap_len;
5977 int i, j, nr = 0;
5978
5979 em = get_chunk_map(fs_info, chunk_start, 1);
5980 if (IS_ERR(em))
5981 return -EIO;
5982
5983 map = em->map_lookup;
5984 length = em->len;
5985 rmap_len = map->stripe_len;
5986
5987 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5988 length = div_u64(length, map->num_stripes / map->sub_stripes);
5989 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5990 length = div_u64(length, map->num_stripes);
5991 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5992 length = div_u64(length, nr_data_stripes(map));
5993 rmap_len = map->stripe_len * nr_data_stripes(map);
5994 }
5995
5996 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5997 BUG_ON(!buf); /* -ENOMEM */
5998
5999 for (i = 0; i < map->num_stripes; i++) {
6000 if (devid && map->stripes[i].dev->devid != devid)
6001 continue;
6002 if (map->stripes[i].physical > physical ||
6003 map->stripes[i].physical + length <= physical)
6004 continue;
6005
6006 stripe_nr = physical - map->stripes[i].physical;
6007 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6008
6009 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6010 stripe_nr = stripe_nr * map->num_stripes + i;
6011 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6012 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6013 stripe_nr = stripe_nr * map->num_stripes + i;
6014 } /* else if RAID[56], multiply by nr_data_stripes().
6015 * Alternatively, just use rmap_len below instead of
6016 * map->stripe_len */
6017
6018 bytenr = chunk_start + stripe_nr * rmap_len;
6019 WARN_ON(nr >= map->num_stripes);
6020 for (j = 0; j < nr; j++) {
6021 if (buf[j] == bytenr)
6022 break;
6023 }
6024 if (j == nr) {
6025 WARN_ON(nr >= map->num_stripes);
6026 buf[nr++] = bytenr;
6027 }
6028 }
6029
6030 *logical = buf;
6031 *naddrs = nr;
6032 *stripe_len = rmap_len;
6033
6034 free_extent_map(em);
6035 return 0;
6036 }
6037
6038 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6039 {
6040 bio->bi_private = bbio->private;
6041 bio->bi_end_io = bbio->end_io;
6042 bio_endio(bio);
6043
6044 btrfs_put_bbio(bbio);
6045 }
6046
6047 static void btrfs_end_bio(struct bio *bio)
6048 {
6049 struct btrfs_bio *bbio = bio->bi_private;
6050 int is_orig_bio = 0;
6051
6052 if (bio->bi_status) {
6053 atomic_inc(&bbio->error);
6054 if (bio->bi_status == BLK_STS_IOERR ||
6055 bio->bi_status == BLK_STS_TARGET) {
6056 unsigned int stripe_index =
6057 btrfs_io_bio(bio)->stripe_index;
6058 struct btrfs_device *dev;
6059
6060 BUG_ON(stripe_index >= bbio->num_stripes);
6061 dev = bbio->stripes[stripe_index].dev;
6062 if (dev->bdev) {
6063 if (bio_op(bio) == REQ_OP_WRITE)
6064 btrfs_dev_stat_inc(dev,
6065 BTRFS_DEV_STAT_WRITE_ERRS);
6066 else
6067 btrfs_dev_stat_inc(dev,
6068 BTRFS_DEV_STAT_READ_ERRS);
6069 if (bio->bi_opf & REQ_PREFLUSH)
6070 btrfs_dev_stat_inc(dev,
6071 BTRFS_DEV_STAT_FLUSH_ERRS);
6072 btrfs_dev_stat_print_on_error(dev);
6073 }
6074 }
6075 }
6076
6077 if (bio == bbio->orig_bio)
6078 is_orig_bio = 1;
6079
6080 btrfs_bio_counter_dec(bbio->fs_info);
6081
6082 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6083 if (!is_orig_bio) {
6084 bio_put(bio);
6085 bio = bbio->orig_bio;
6086 }
6087
6088 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6089 /* only send an error to the higher layers if it is
6090 * beyond the tolerance of the btrfs bio
6091 */
6092 if (atomic_read(&bbio->error) > bbio->max_errors) {
6093 bio->bi_status = BLK_STS_IOERR;
6094 } else {
6095 /*
6096 * this bio is actually up to date, we didn't
6097 * go over the max number of errors
6098 */
6099 bio->bi_status = 0;
6100 }
6101
6102 btrfs_end_bbio(bbio, bio);
6103 } else if (!is_orig_bio) {
6104 bio_put(bio);
6105 }
6106 }
6107
6108 /*
6109 * see run_scheduled_bios for a description of why bios are collected for
6110 * async submit.
6111 *
6112 * This will add one bio to the pending list for a device and make sure
6113 * the work struct is scheduled.
6114 */
6115 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6116 struct bio *bio)
6117 {
6118 struct btrfs_fs_info *fs_info = device->fs_info;
6119 int should_queue = 1;
6120 struct btrfs_pending_bios *pending_bios;
6121
6122 if (device->missing || !device->bdev) {
6123 bio_io_error(bio);
6124 return;
6125 }
6126
6127 /* don't bother with additional async steps for reads, right now */
6128 if (bio_op(bio) == REQ_OP_READ) {
6129 bio_get(bio);
6130 btrfsic_submit_bio(bio);
6131 bio_put(bio);
6132 return;
6133 }
6134
6135 /*
6136 * nr_async_bios allows us to reliably return congestion to the
6137 * higher layers. Otherwise, the async bio makes it appear we have
6138 * made progress against dirty pages when we've really just put it
6139 * on a queue for later
6140 */
6141 atomic_inc(&fs_info->nr_async_bios);
6142 WARN_ON(bio->bi_next);
6143 bio->bi_next = NULL;
6144
6145 spin_lock(&device->io_lock);
6146 if (op_is_sync(bio->bi_opf))
6147 pending_bios = &device->pending_sync_bios;
6148 else
6149 pending_bios = &device->pending_bios;
6150
6151 if (pending_bios->tail)
6152 pending_bios->tail->bi_next = bio;
6153
6154 pending_bios->tail = bio;
6155 if (!pending_bios->head)
6156 pending_bios->head = bio;
6157 if (device->running_pending)
6158 should_queue = 0;
6159
6160 spin_unlock(&device->io_lock);
6161
6162 if (should_queue)
6163 btrfs_queue_work(fs_info->submit_workers, &device->work);
6164 }
6165
6166 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6167 u64 physical, int dev_nr, int async)
6168 {
6169 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6170 struct btrfs_fs_info *fs_info = bbio->fs_info;
6171
6172 bio->bi_private = bbio;
6173 btrfs_io_bio(bio)->stripe_index = dev_nr;
6174 bio->bi_end_io = btrfs_end_bio;
6175 bio->bi_iter.bi_sector = physical >> 9;
6176 #ifdef DEBUG
6177 {
6178 struct rcu_string *name;
6179
6180 rcu_read_lock();
6181 name = rcu_dereference(dev->name);
6182 btrfs_debug(fs_info,
6183 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6184 bio_op(bio), bio->bi_opf,
6185 (u64)bio->bi_iter.bi_sector,
6186 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6187 bio->bi_iter.bi_size);
6188 rcu_read_unlock();
6189 }
6190 #endif
6191 bio->bi_bdev = dev->bdev;
6192
6193 btrfs_bio_counter_inc_noblocked(fs_info);
6194
6195 if (async)
6196 btrfs_schedule_bio(dev, bio);
6197 else
6198 btrfsic_submit_bio(bio);
6199 }
6200
6201 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6202 {
6203 atomic_inc(&bbio->error);
6204 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6205 /* Should be the original bio. */
6206 WARN_ON(bio != bbio->orig_bio);
6207
6208 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6209 bio->bi_iter.bi_sector = logical >> 9;
6210 bio->bi_status = BLK_STS_IOERR;
6211 btrfs_end_bbio(bbio, bio);
6212 }
6213 }
6214
6215 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6216 int mirror_num, int async_submit)
6217 {
6218 struct btrfs_device *dev;
6219 struct bio *first_bio = bio;
6220 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6221 u64 length = 0;
6222 u64 map_length;
6223 int ret;
6224 int dev_nr;
6225 int total_devs;
6226 struct btrfs_bio *bbio = NULL;
6227
6228 length = bio->bi_iter.bi_size;
6229 map_length = length;
6230
6231 btrfs_bio_counter_inc_blocked(fs_info);
6232 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6233 &map_length, &bbio, mirror_num, 1);
6234 if (ret) {
6235 btrfs_bio_counter_dec(fs_info);
6236 return errno_to_blk_status(ret);
6237 }
6238
6239 total_devs = bbio->num_stripes;
6240 bbio->orig_bio = first_bio;
6241 bbio->private = first_bio->bi_private;
6242 bbio->end_io = first_bio->bi_end_io;
6243 bbio->fs_info = fs_info;
6244 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6245
6246 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6247 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6248 /* In this case, map_length has been set to the length of
6249 a single stripe; not the whole write */
6250 if (bio_op(bio) == REQ_OP_WRITE) {
6251 ret = raid56_parity_write(fs_info, bio, bbio,
6252 map_length);
6253 } else {
6254 ret = raid56_parity_recover(fs_info, bio, bbio,
6255 map_length, mirror_num, 1);
6256 }
6257
6258 btrfs_bio_counter_dec(fs_info);
6259 return errno_to_blk_status(ret);
6260 }
6261
6262 if (map_length < length) {
6263 btrfs_crit(fs_info,
6264 "mapping failed logical %llu bio len %llu len %llu",
6265 logical, length, map_length);
6266 BUG();
6267 }
6268
6269 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6270 dev = bbio->stripes[dev_nr].dev;
6271 if (!dev || !dev->bdev ||
6272 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6273 bbio_error(bbio, first_bio, logical);
6274 continue;
6275 }
6276
6277 if (dev_nr < total_devs - 1)
6278 bio = btrfs_bio_clone(first_bio);
6279 else
6280 bio = first_bio;
6281
6282 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6283 dev_nr, async_submit);
6284 }
6285 btrfs_bio_counter_dec(fs_info);
6286 return BLK_STS_OK;
6287 }
6288
6289 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6290 u8 *uuid, u8 *fsid)
6291 {
6292 struct btrfs_device *device;
6293 struct btrfs_fs_devices *cur_devices;
6294
6295 cur_devices = fs_info->fs_devices;
6296 while (cur_devices) {
6297 if (!fsid ||
6298 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6299 device = __find_device(&cur_devices->devices,
6300 devid, uuid);
6301 if (device)
6302 return device;
6303 }
6304 cur_devices = cur_devices->seed;
6305 }
6306 return NULL;
6307 }
6308
6309 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6310 u64 devid, u8 *dev_uuid)
6311 {
6312 struct btrfs_device *device;
6313
6314 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6315 if (IS_ERR(device))
6316 return NULL;
6317
6318 list_add(&device->dev_list, &fs_devices->devices);
6319 device->fs_devices = fs_devices;
6320 fs_devices->num_devices++;
6321
6322 device->missing = 1;
6323 fs_devices->missing_devices++;
6324
6325 return device;
6326 }
6327
6328 /**
6329 * btrfs_alloc_device - allocate struct btrfs_device
6330 * @fs_info: used only for generating a new devid, can be NULL if
6331 * devid is provided (i.e. @devid != NULL).
6332 * @devid: a pointer to devid for this device. If NULL a new devid
6333 * is generated.
6334 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6335 * is generated.
6336 *
6337 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6338 * on error. Returned struct is not linked onto any lists and can be
6339 * destroyed with kfree() right away.
6340 */
6341 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6342 const u64 *devid,
6343 const u8 *uuid)
6344 {
6345 struct btrfs_device *dev;
6346 u64 tmp;
6347
6348 if (WARN_ON(!devid && !fs_info))
6349 return ERR_PTR(-EINVAL);
6350
6351 dev = __alloc_device();
6352 if (IS_ERR(dev))
6353 return dev;
6354
6355 if (devid)
6356 tmp = *devid;
6357 else {
6358 int ret;
6359
6360 ret = find_next_devid(fs_info, &tmp);
6361 if (ret) {
6362 kfree(dev);
6363 return ERR_PTR(ret);
6364 }
6365 }
6366 dev->devid = tmp;
6367
6368 if (uuid)
6369 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6370 else
6371 generate_random_uuid(dev->uuid);
6372
6373 btrfs_init_work(&dev->work, btrfs_submit_helper,
6374 pending_bios_fn, NULL, NULL);
6375
6376 return dev;
6377 }
6378
6379 /* Return -EIO if any error, otherwise return 0. */
6380 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6381 struct extent_buffer *leaf,
6382 struct btrfs_chunk *chunk, u64 logical)
6383 {
6384 u64 length;
6385 u64 stripe_len;
6386 u16 num_stripes;
6387 u16 sub_stripes;
6388 u64 type;
6389
6390 length = btrfs_chunk_length(leaf, chunk);
6391 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6392 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6393 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6394 type = btrfs_chunk_type(leaf, chunk);
6395
6396 if (!num_stripes) {
6397 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6398 num_stripes);
6399 return -EIO;
6400 }
6401 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6402 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6403 return -EIO;
6404 }
6405 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6406 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6407 btrfs_chunk_sector_size(leaf, chunk));
6408 return -EIO;
6409 }
6410 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6411 btrfs_err(fs_info, "invalid chunk length %llu", length);
6412 return -EIO;
6413 }
6414 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6415 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6416 stripe_len);
6417 return -EIO;
6418 }
6419 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6420 type) {
6421 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6422 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6423 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6424 btrfs_chunk_type(leaf, chunk));
6425 return -EIO;
6426 }
6427 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6428 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6429 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6430 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6431 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6432 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6433 num_stripes != 1)) {
6434 btrfs_err(fs_info,
6435 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6436 num_stripes, sub_stripes,
6437 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6438 return -EIO;
6439 }
6440
6441 return 0;
6442 }
6443
6444 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6445 struct extent_buffer *leaf,
6446 struct btrfs_chunk *chunk)
6447 {
6448 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6449 struct map_lookup *map;
6450 struct extent_map *em;
6451 u64 logical;
6452 u64 length;
6453 u64 stripe_len;
6454 u64 devid;
6455 u8 uuid[BTRFS_UUID_SIZE];
6456 int num_stripes;
6457 int ret;
6458 int i;
6459
6460 logical = key->offset;
6461 length = btrfs_chunk_length(leaf, chunk);
6462 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6463 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6464
6465 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6466 if (ret)
6467 return ret;
6468
6469 read_lock(&map_tree->map_tree.lock);
6470 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6471 read_unlock(&map_tree->map_tree.lock);
6472
6473 /* already mapped? */
6474 if (em && em->start <= logical && em->start + em->len > logical) {
6475 free_extent_map(em);
6476 return 0;
6477 } else if (em) {
6478 free_extent_map(em);
6479 }
6480
6481 em = alloc_extent_map();
6482 if (!em)
6483 return -ENOMEM;
6484 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6485 if (!map) {
6486 free_extent_map(em);
6487 return -ENOMEM;
6488 }
6489
6490 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6491 em->map_lookup = map;
6492 em->start = logical;
6493 em->len = length;
6494 em->orig_start = 0;
6495 em->block_start = 0;
6496 em->block_len = em->len;
6497
6498 map->num_stripes = num_stripes;
6499 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6500 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6501 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6502 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6503 map->type = btrfs_chunk_type(leaf, chunk);
6504 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6505 for (i = 0; i < num_stripes; i++) {
6506 map->stripes[i].physical =
6507 btrfs_stripe_offset_nr(leaf, chunk, i);
6508 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6509 read_extent_buffer(leaf, uuid, (unsigned long)
6510 btrfs_stripe_dev_uuid_nr(chunk, i),
6511 BTRFS_UUID_SIZE);
6512 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6513 uuid, NULL);
6514 if (!map->stripes[i].dev &&
6515 !btrfs_test_opt(fs_info, DEGRADED)) {
6516 free_extent_map(em);
6517 return -EIO;
6518 }
6519 if (!map->stripes[i].dev) {
6520 map->stripes[i].dev =
6521 add_missing_dev(fs_info->fs_devices, devid,
6522 uuid);
6523 if (!map->stripes[i].dev) {
6524 free_extent_map(em);
6525 return -EIO;
6526 }
6527 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6528 devid, uuid);
6529 }
6530 map->stripes[i].dev->in_fs_metadata = 1;
6531 }
6532
6533 write_lock(&map_tree->map_tree.lock);
6534 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6535 write_unlock(&map_tree->map_tree.lock);
6536 BUG_ON(ret); /* Tree corruption */
6537 free_extent_map(em);
6538
6539 return 0;
6540 }
6541
6542 static void fill_device_from_item(struct extent_buffer *leaf,
6543 struct btrfs_dev_item *dev_item,
6544 struct btrfs_device *device)
6545 {
6546 unsigned long ptr;
6547
6548 device->devid = btrfs_device_id(leaf, dev_item);
6549 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6550 device->total_bytes = device->disk_total_bytes;
6551 device->commit_total_bytes = device->disk_total_bytes;
6552 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6553 device->commit_bytes_used = device->bytes_used;
6554 device->type = btrfs_device_type(leaf, dev_item);
6555 device->io_align = btrfs_device_io_align(leaf, dev_item);
6556 device->io_width = btrfs_device_io_width(leaf, dev_item);
6557 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6558 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6559 device->is_tgtdev_for_dev_replace = 0;
6560
6561 ptr = btrfs_device_uuid(dev_item);
6562 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6563 }
6564
6565 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6566 u8 *fsid)
6567 {
6568 struct btrfs_fs_devices *fs_devices;
6569 int ret;
6570
6571 BUG_ON(!mutex_is_locked(&uuid_mutex));
6572
6573 fs_devices = fs_info->fs_devices->seed;
6574 while (fs_devices) {
6575 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6576 return fs_devices;
6577
6578 fs_devices = fs_devices->seed;
6579 }
6580
6581 fs_devices = find_fsid(fsid);
6582 if (!fs_devices) {
6583 if (!btrfs_test_opt(fs_info, DEGRADED))
6584 return ERR_PTR(-ENOENT);
6585
6586 fs_devices = alloc_fs_devices(fsid);
6587 if (IS_ERR(fs_devices))
6588 return fs_devices;
6589
6590 fs_devices->seeding = 1;
6591 fs_devices->opened = 1;
6592 return fs_devices;
6593 }
6594
6595 fs_devices = clone_fs_devices(fs_devices);
6596 if (IS_ERR(fs_devices))
6597 return fs_devices;
6598
6599 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6600 fs_info->bdev_holder);
6601 if (ret) {
6602 free_fs_devices(fs_devices);
6603 fs_devices = ERR_PTR(ret);
6604 goto out;
6605 }
6606
6607 if (!fs_devices->seeding) {
6608 __btrfs_close_devices(fs_devices);
6609 free_fs_devices(fs_devices);
6610 fs_devices = ERR_PTR(-EINVAL);
6611 goto out;
6612 }
6613
6614 fs_devices->seed = fs_info->fs_devices->seed;
6615 fs_info->fs_devices->seed = fs_devices;
6616 out:
6617 return fs_devices;
6618 }
6619
6620 static int read_one_dev(struct btrfs_fs_info *fs_info,
6621 struct extent_buffer *leaf,
6622 struct btrfs_dev_item *dev_item)
6623 {
6624 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6625 struct btrfs_device *device;
6626 u64 devid;
6627 int ret;
6628 u8 fs_uuid[BTRFS_UUID_SIZE];
6629 u8 dev_uuid[BTRFS_UUID_SIZE];
6630
6631 devid = btrfs_device_id(leaf, dev_item);
6632 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6633 BTRFS_UUID_SIZE);
6634 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6635 BTRFS_UUID_SIZE);
6636
6637 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6638 fs_devices = open_seed_devices(fs_info, fs_uuid);
6639 if (IS_ERR(fs_devices))
6640 return PTR_ERR(fs_devices);
6641 }
6642
6643 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6644 if (!device) {
6645 if (!btrfs_test_opt(fs_info, DEGRADED))
6646 return -EIO;
6647
6648 device = add_missing_dev(fs_devices, devid, dev_uuid);
6649 if (!device)
6650 return -ENOMEM;
6651 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6652 devid, dev_uuid);
6653 } else {
6654 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6655 return -EIO;
6656
6657 if(!device->bdev && !device->missing) {
6658 /*
6659 * this happens when a device that was properly setup
6660 * in the device info lists suddenly goes bad.
6661 * device->bdev is NULL, and so we have to set
6662 * device->missing to one here
6663 */
6664 device->fs_devices->missing_devices++;
6665 device->missing = 1;
6666 }
6667
6668 /* Move the device to its own fs_devices */
6669 if (device->fs_devices != fs_devices) {
6670 ASSERT(device->missing);
6671
6672 list_move(&device->dev_list, &fs_devices->devices);
6673 device->fs_devices->num_devices--;
6674 fs_devices->num_devices++;
6675
6676 device->fs_devices->missing_devices--;
6677 fs_devices->missing_devices++;
6678
6679 device->fs_devices = fs_devices;
6680 }
6681 }
6682
6683 if (device->fs_devices != fs_info->fs_devices) {
6684 BUG_ON(device->writeable);
6685 if (device->generation !=
6686 btrfs_device_generation(leaf, dev_item))
6687 return -EINVAL;
6688 }
6689
6690 fill_device_from_item(leaf, dev_item, device);
6691 device->in_fs_metadata = 1;
6692 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6693 device->fs_devices->total_rw_bytes += device->total_bytes;
6694 atomic64_add(device->total_bytes - device->bytes_used,
6695 &fs_info->free_chunk_space);
6696 }
6697 ret = 0;
6698 return ret;
6699 }
6700
6701 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6702 {
6703 struct btrfs_root *root = fs_info->tree_root;
6704 struct btrfs_super_block *super_copy = fs_info->super_copy;
6705 struct extent_buffer *sb;
6706 struct btrfs_disk_key *disk_key;
6707 struct btrfs_chunk *chunk;
6708 u8 *array_ptr;
6709 unsigned long sb_array_offset;
6710 int ret = 0;
6711 u32 num_stripes;
6712 u32 array_size;
6713 u32 len = 0;
6714 u32 cur_offset;
6715 u64 type;
6716 struct btrfs_key key;
6717
6718 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6719 /*
6720 * This will create extent buffer of nodesize, superblock size is
6721 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6722 * overallocate but we can keep it as-is, only the first page is used.
6723 */
6724 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6725 if (IS_ERR(sb))
6726 return PTR_ERR(sb);
6727 set_extent_buffer_uptodate(sb);
6728 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6729 /*
6730 * The sb extent buffer is artificial and just used to read the system array.
6731 * set_extent_buffer_uptodate() call does not properly mark all it's
6732 * pages up-to-date when the page is larger: extent does not cover the
6733 * whole page and consequently check_page_uptodate does not find all
6734 * the page's extents up-to-date (the hole beyond sb),
6735 * write_extent_buffer then triggers a WARN_ON.
6736 *
6737 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6738 * but sb spans only this function. Add an explicit SetPageUptodate call
6739 * to silence the warning eg. on PowerPC 64.
6740 */
6741 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6742 SetPageUptodate(sb->pages[0]);
6743
6744 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6745 array_size = btrfs_super_sys_array_size(super_copy);
6746
6747 array_ptr = super_copy->sys_chunk_array;
6748 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6749 cur_offset = 0;
6750
6751 while (cur_offset < array_size) {
6752 disk_key = (struct btrfs_disk_key *)array_ptr;
6753 len = sizeof(*disk_key);
6754 if (cur_offset + len > array_size)
6755 goto out_short_read;
6756
6757 btrfs_disk_key_to_cpu(&key, disk_key);
6758
6759 array_ptr += len;
6760 sb_array_offset += len;
6761 cur_offset += len;
6762
6763 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6764 chunk = (struct btrfs_chunk *)sb_array_offset;
6765 /*
6766 * At least one btrfs_chunk with one stripe must be
6767 * present, exact stripe count check comes afterwards
6768 */
6769 len = btrfs_chunk_item_size(1);
6770 if (cur_offset + len > array_size)
6771 goto out_short_read;
6772
6773 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6774 if (!num_stripes) {
6775 btrfs_err(fs_info,
6776 "invalid number of stripes %u in sys_array at offset %u",
6777 num_stripes, cur_offset);
6778 ret = -EIO;
6779 break;
6780 }
6781
6782 type = btrfs_chunk_type(sb, chunk);
6783 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6784 btrfs_err(fs_info,
6785 "invalid chunk type %llu in sys_array at offset %u",
6786 type, cur_offset);
6787 ret = -EIO;
6788 break;
6789 }
6790
6791 len = btrfs_chunk_item_size(num_stripes);
6792 if (cur_offset + len > array_size)
6793 goto out_short_read;
6794
6795 ret = read_one_chunk(fs_info, &key, sb, chunk);
6796 if (ret)
6797 break;
6798 } else {
6799 btrfs_err(fs_info,
6800 "unexpected item type %u in sys_array at offset %u",
6801 (u32)key.type, cur_offset);
6802 ret = -EIO;
6803 break;
6804 }
6805 array_ptr += len;
6806 sb_array_offset += len;
6807 cur_offset += len;
6808 }
6809 clear_extent_buffer_uptodate(sb);
6810 free_extent_buffer_stale(sb);
6811 return ret;
6812
6813 out_short_read:
6814 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6815 len, cur_offset);
6816 clear_extent_buffer_uptodate(sb);
6817 free_extent_buffer_stale(sb);
6818 return -EIO;
6819 }
6820
6821 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6822 {
6823 struct btrfs_root *root = fs_info->chunk_root;
6824 struct btrfs_path *path;
6825 struct extent_buffer *leaf;
6826 struct btrfs_key key;
6827 struct btrfs_key found_key;
6828 int ret;
6829 int slot;
6830 u64 total_dev = 0;
6831
6832 path = btrfs_alloc_path();
6833 if (!path)
6834 return -ENOMEM;
6835
6836 mutex_lock(&uuid_mutex);
6837 mutex_lock(&fs_info->chunk_mutex);
6838
6839 /*
6840 * Read all device items, and then all the chunk items. All
6841 * device items are found before any chunk item (their object id
6842 * is smaller than the lowest possible object id for a chunk
6843 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6844 */
6845 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6846 key.offset = 0;
6847 key.type = 0;
6848 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6849 if (ret < 0)
6850 goto error;
6851 while (1) {
6852 leaf = path->nodes[0];
6853 slot = path->slots[0];
6854 if (slot >= btrfs_header_nritems(leaf)) {
6855 ret = btrfs_next_leaf(root, path);
6856 if (ret == 0)
6857 continue;
6858 if (ret < 0)
6859 goto error;
6860 break;
6861 }
6862 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6863 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6864 struct btrfs_dev_item *dev_item;
6865 dev_item = btrfs_item_ptr(leaf, slot,
6866 struct btrfs_dev_item);
6867 ret = read_one_dev(fs_info, leaf, dev_item);
6868 if (ret)
6869 goto error;
6870 total_dev++;
6871 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6872 struct btrfs_chunk *chunk;
6873 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6874 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6875 if (ret)
6876 goto error;
6877 }
6878 path->slots[0]++;
6879 }
6880
6881 /*
6882 * After loading chunk tree, we've got all device information,
6883 * do another round of validation checks.
6884 */
6885 if (total_dev != fs_info->fs_devices->total_devices) {
6886 btrfs_err(fs_info,
6887 "super_num_devices %llu mismatch with num_devices %llu found here",
6888 btrfs_super_num_devices(fs_info->super_copy),
6889 total_dev);
6890 ret = -EINVAL;
6891 goto error;
6892 }
6893 if (btrfs_super_total_bytes(fs_info->super_copy) <
6894 fs_info->fs_devices->total_rw_bytes) {
6895 btrfs_err(fs_info,
6896 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6897 btrfs_super_total_bytes(fs_info->super_copy),
6898 fs_info->fs_devices->total_rw_bytes);
6899 ret = -EINVAL;
6900 goto error;
6901 }
6902 ret = 0;
6903 error:
6904 mutex_unlock(&fs_info->chunk_mutex);
6905 mutex_unlock(&uuid_mutex);
6906
6907 btrfs_free_path(path);
6908 return ret;
6909 }
6910
6911 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6912 {
6913 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6914 struct btrfs_device *device;
6915
6916 while (fs_devices) {
6917 mutex_lock(&fs_devices->device_list_mutex);
6918 list_for_each_entry(device, &fs_devices->devices, dev_list)
6919 device->fs_info = fs_info;
6920 mutex_unlock(&fs_devices->device_list_mutex);
6921
6922 fs_devices = fs_devices->seed;
6923 }
6924 }
6925
6926 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6927 {
6928 int i;
6929
6930 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6931 btrfs_dev_stat_reset(dev, i);
6932 }
6933
6934 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6935 {
6936 struct btrfs_key key;
6937 struct btrfs_key found_key;
6938 struct btrfs_root *dev_root = fs_info->dev_root;
6939 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6940 struct extent_buffer *eb;
6941 int slot;
6942 int ret = 0;
6943 struct btrfs_device *device;
6944 struct btrfs_path *path = NULL;
6945 int i;
6946
6947 path = btrfs_alloc_path();
6948 if (!path) {
6949 ret = -ENOMEM;
6950 goto out;
6951 }
6952
6953 mutex_lock(&fs_devices->device_list_mutex);
6954 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6955 int item_size;
6956 struct btrfs_dev_stats_item *ptr;
6957
6958 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6959 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6960 key.offset = device->devid;
6961 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6962 if (ret) {
6963 __btrfs_reset_dev_stats(device);
6964 device->dev_stats_valid = 1;
6965 btrfs_release_path(path);
6966 continue;
6967 }
6968 slot = path->slots[0];
6969 eb = path->nodes[0];
6970 btrfs_item_key_to_cpu(eb, &found_key, slot);
6971 item_size = btrfs_item_size_nr(eb, slot);
6972
6973 ptr = btrfs_item_ptr(eb, slot,
6974 struct btrfs_dev_stats_item);
6975
6976 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6977 if (item_size >= (1 + i) * sizeof(__le64))
6978 btrfs_dev_stat_set(device, i,
6979 btrfs_dev_stats_value(eb, ptr, i));
6980 else
6981 btrfs_dev_stat_reset(device, i);
6982 }
6983
6984 device->dev_stats_valid = 1;
6985 btrfs_dev_stat_print_on_load(device);
6986 btrfs_release_path(path);
6987 }
6988 mutex_unlock(&fs_devices->device_list_mutex);
6989
6990 out:
6991 btrfs_free_path(path);
6992 return ret < 0 ? ret : 0;
6993 }
6994
6995 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6996 struct btrfs_fs_info *fs_info,
6997 struct btrfs_device *device)
6998 {
6999 struct btrfs_root *dev_root = fs_info->dev_root;
7000 struct btrfs_path *path;
7001 struct btrfs_key key;
7002 struct extent_buffer *eb;
7003 struct btrfs_dev_stats_item *ptr;
7004 int ret;
7005 int i;
7006
7007 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7008 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7009 key.offset = device->devid;
7010
7011 path = btrfs_alloc_path();
7012 if (!path)
7013 return -ENOMEM;
7014 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7015 if (ret < 0) {
7016 btrfs_warn_in_rcu(fs_info,
7017 "error %d while searching for dev_stats item for device %s",
7018 ret, rcu_str_deref(device->name));
7019 goto out;
7020 }
7021
7022 if (ret == 0 &&
7023 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7024 /* need to delete old one and insert a new one */
7025 ret = btrfs_del_item(trans, dev_root, path);
7026 if (ret != 0) {
7027 btrfs_warn_in_rcu(fs_info,
7028 "delete too small dev_stats item for device %s failed %d",
7029 rcu_str_deref(device->name), ret);
7030 goto out;
7031 }
7032 ret = 1;
7033 }
7034
7035 if (ret == 1) {
7036 /* need to insert a new item */
7037 btrfs_release_path(path);
7038 ret = btrfs_insert_empty_item(trans, dev_root, path,
7039 &key, sizeof(*ptr));
7040 if (ret < 0) {
7041 btrfs_warn_in_rcu(fs_info,
7042 "insert dev_stats item for device %s failed %d",
7043 rcu_str_deref(device->name), ret);
7044 goto out;
7045 }
7046 }
7047
7048 eb = path->nodes[0];
7049 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7050 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7051 btrfs_set_dev_stats_value(eb, ptr, i,
7052 btrfs_dev_stat_read(device, i));
7053 btrfs_mark_buffer_dirty(eb);
7054
7055 out:
7056 btrfs_free_path(path);
7057 return ret;
7058 }
7059
7060 /*
7061 * called from commit_transaction. Writes all changed device stats to disk.
7062 */
7063 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7064 struct btrfs_fs_info *fs_info)
7065 {
7066 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7067 struct btrfs_device *device;
7068 int stats_cnt;
7069 int ret = 0;
7070
7071 mutex_lock(&fs_devices->device_list_mutex);
7072 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7073 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7074 continue;
7075
7076 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7077 ret = update_dev_stat_item(trans, fs_info, device);
7078 if (!ret)
7079 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7080 }
7081 mutex_unlock(&fs_devices->device_list_mutex);
7082
7083 return ret;
7084 }
7085
7086 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7087 {
7088 btrfs_dev_stat_inc(dev, index);
7089 btrfs_dev_stat_print_on_error(dev);
7090 }
7091
7092 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7093 {
7094 if (!dev->dev_stats_valid)
7095 return;
7096 btrfs_err_rl_in_rcu(dev->fs_info,
7097 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7098 rcu_str_deref(dev->name),
7099 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7100 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7101 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7102 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7103 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7104 }
7105
7106 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7107 {
7108 int i;
7109
7110 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7111 if (btrfs_dev_stat_read(dev, i) != 0)
7112 break;
7113 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7114 return; /* all values == 0, suppress message */
7115
7116 btrfs_info_in_rcu(dev->fs_info,
7117 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7118 rcu_str_deref(dev->name),
7119 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7120 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7121 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7122 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7123 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7124 }
7125
7126 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7127 struct btrfs_ioctl_get_dev_stats *stats)
7128 {
7129 struct btrfs_device *dev;
7130 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7131 int i;
7132
7133 mutex_lock(&fs_devices->device_list_mutex);
7134 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7135 mutex_unlock(&fs_devices->device_list_mutex);
7136
7137 if (!dev) {
7138 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7139 return -ENODEV;
7140 } else if (!dev->dev_stats_valid) {
7141 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7142 return -ENODEV;
7143 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7144 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7145 if (stats->nr_items > i)
7146 stats->values[i] =
7147 btrfs_dev_stat_read_and_reset(dev, i);
7148 else
7149 btrfs_dev_stat_reset(dev, i);
7150 }
7151 } else {
7152 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7153 if (stats->nr_items > i)
7154 stats->values[i] = btrfs_dev_stat_read(dev, i);
7155 }
7156 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7157 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7158 return 0;
7159 }
7160
7161 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7162 {
7163 struct buffer_head *bh;
7164 struct btrfs_super_block *disk_super;
7165 int copy_num;
7166
7167 if (!bdev)
7168 return;
7169
7170 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7171 copy_num++) {
7172
7173 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7174 continue;
7175
7176 disk_super = (struct btrfs_super_block *)bh->b_data;
7177
7178 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7179 set_buffer_dirty(bh);
7180 sync_dirty_buffer(bh);
7181 brelse(bh);
7182 }
7183
7184 /* Notify udev that device has changed */
7185 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7186
7187 /* Update ctime/mtime for device path for libblkid */
7188 update_dev_time(device_path);
7189 }
7190
7191 /*
7192 * Update the size of all devices, which is used for writing out the
7193 * super blocks.
7194 */
7195 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7196 {
7197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7198 struct btrfs_device *curr, *next;
7199
7200 if (list_empty(&fs_devices->resized_devices))
7201 return;
7202
7203 mutex_lock(&fs_devices->device_list_mutex);
7204 mutex_lock(&fs_info->chunk_mutex);
7205 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7206 resized_list) {
7207 list_del_init(&curr->resized_list);
7208 curr->commit_total_bytes = curr->disk_total_bytes;
7209 }
7210 mutex_unlock(&fs_info->chunk_mutex);
7211 mutex_unlock(&fs_devices->device_list_mutex);
7212 }
7213
7214 /* Must be invoked during the transaction commit */
7215 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7216 struct btrfs_transaction *transaction)
7217 {
7218 struct extent_map *em;
7219 struct map_lookup *map;
7220 struct btrfs_device *dev;
7221 int i;
7222
7223 if (list_empty(&transaction->pending_chunks))
7224 return;
7225
7226 /* In order to kick the device replace finish process */
7227 mutex_lock(&fs_info->chunk_mutex);
7228 list_for_each_entry(em, &transaction->pending_chunks, list) {
7229 map = em->map_lookup;
7230
7231 for (i = 0; i < map->num_stripes; i++) {
7232 dev = map->stripes[i].dev;
7233 dev->commit_bytes_used = dev->bytes_used;
7234 }
7235 }
7236 mutex_unlock(&fs_info->chunk_mutex);
7237 }
7238
7239 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7240 {
7241 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7242 while (fs_devices) {
7243 fs_devices->fs_info = fs_info;
7244 fs_devices = fs_devices->seed;
7245 }
7246 }
7247
7248 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7249 {
7250 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7251 while (fs_devices) {
7252 fs_devices->fs_info = NULL;
7253 fs_devices = fs_devices->seed;
7254 }
7255 }