]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/volumes.c
f983d258bf5cbc0b803b2ce7585120968574b4e1
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 return &fs_uuids;
149 }
150
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 struct btrfs_fs_devices *fs_devs;
154
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167 }
168
169 /**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192 }
193
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
203 kfree(device);
204 }
205 kfree(fs_devices);
206 }
207
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210 {
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
221 void btrfs_cleanup_fs_uuids(void)
222 {
223 struct btrfs_fs_devices *fs_devices;
224
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
230 }
231 }
232
233 static struct btrfs_device *__alloc_device(void)
234 {
235 struct btrfs_device *dev;
236
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
259 {
260 struct btrfs_device *dev;
261
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 return dev;
266 }
267 }
268 return NULL;
269 }
270
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 struct btrfs_fs_devices *fs_devices;
274
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280 }
281
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286 {
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313 error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317 }
318
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321 {
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331 }
332
333 /*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 struct btrfs_fs_info *fs_info = device->fs_info;
347 struct bio *pending;
348 struct backing_dev_info *bdi;
349 struct btrfs_pending_bios *pending_bios;
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
355 unsigned long limit;
356 unsigned long last_waited = 0;
357 int force_reg = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
368
369 bdi = blk_get_backing_dev_info(device->bdev);
370 limit = btrfs_async_submit_limit(fs_info);
371 limit = limit * 2 / 3;
372
373 loop:
374 spin_lock(&device->io_lock);
375
376 loop_lock:
377 num_run = 0;
378
379 /* take all the bios off the list at once and process them
380 * later on (without the lock held). But, remember the
381 * tail and other pointers so the bios can be properly reinserted
382 * into the list if we hit congestion
383 */
384 if (!force_reg && device->pending_sync_bios.head) {
385 pending_bios = &device->pending_sync_bios;
386 force_reg = 1;
387 } else {
388 pending_bios = &device->pending_bios;
389 force_reg = 0;
390 }
391
392 pending = pending_bios->head;
393 tail = pending_bios->tail;
394 WARN_ON(pending && !tail);
395
396 /*
397 * if pending was null this time around, no bios need processing
398 * at all and we can stop. Otherwise it'll loop back up again
399 * and do an additional check so no bios are missed.
400 *
401 * device->running_pending is used to synchronize with the
402 * schedule_bio code.
403 */
404 if (device->pending_sync_bios.head == NULL &&
405 device->pending_bios.head == NULL) {
406 again = 0;
407 device->running_pending = 0;
408 } else {
409 again = 1;
410 device->running_pending = 1;
411 }
412
413 pending_bios->head = NULL;
414 pending_bios->tail = NULL;
415
416 spin_unlock(&device->io_lock);
417
418 while (pending) {
419
420 rmb();
421 /* we want to work on both lists, but do more bios on the
422 * sync list than the regular list
423 */
424 if ((num_run > 32 &&
425 pending_bios != &device->pending_sync_bios &&
426 device->pending_sync_bios.head) ||
427 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
428 device->pending_bios.head)) {
429 spin_lock(&device->io_lock);
430 requeue_list(pending_bios, pending, tail);
431 goto loop_lock;
432 }
433
434 cur = pending;
435 pending = pending->bi_next;
436 cur->bi_next = NULL;
437
438 /*
439 * atomic_dec_return implies a barrier for waitqueue_active
440 */
441 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
442 waitqueue_active(&fs_info->async_submit_wait))
443 wake_up(&fs_info->async_submit_wait);
444
445 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
446
447 /*
448 * if we're doing the sync list, record that our
449 * plug has some sync requests on it
450 *
451 * If we're doing the regular list and there are
452 * sync requests sitting around, unplug before
453 * we add more
454 */
455 if (pending_bios == &device->pending_sync_bios) {
456 sync_pending = 1;
457 } else if (sync_pending) {
458 blk_finish_plug(&plug);
459 blk_start_plug(&plug);
460 sync_pending = 0;
461 }
462
463 btrfsic_submit_bio(cur);
464 num_run++;
465 batch_run++;
466
467 cond_resched();
468
469 /*
470 * we made progress, there is more work to do and the bdi
471 * is now congested. Back off and let other work structs
472 * run instead
473 */
474 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
475 fs_info->fs_devices->open_devices > 1) {
476 struct io_context *ioc;
477
478 ioc = current->io_context;
479
480 /*
481 * the main goal here is that we don't want to
482 * block if we're going to be able to submit
483 * more requests without blocking.
484 *
485 * This code does two great things, it pokes into
486 * the elevator code from a filesystem _and_
487 * it makes assumptions about how batching works.
488 */
489 if (ioc && ioc->nr_batch_requests > 0 &&
490 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
491 (last_waited == 0 ||
492 ioc->last_waited == last_waited)) {
493 /*
494 * we want to go through our batch of
495 * requests and stop. So, we copy out
496 * the ioc->last_waited time and test
497 * against it before looping
498 */
499 last_waited = ioc->last_waited;
500 cond_resched();
501 continue;
502 }
503 spin_lock(&device->io_lock);
504 requeue_list(pending_bios, pending, tail);
505 device->running_pending = 1;
506
507 spin_unlock(&device->io_lock);
508 btrfs_queue_work(fs_info->submit_workers,
509 &device->work);
510 goto done;
511 }
512 /* unplug every 64 requests just for good measure */
513 if (batch_run % 64 == 0) {
514 blk_finish_plug(&plug);
515 blk_start_plug(&plug);
516 sync_pending = 0;
517 }
518 }
519
520 cond_resched();
521 if (again)
522 goto loop;
523
524 spin_lock(&device->io_lock);
525 if (device->pending_bios.head || device->pending_sync_bios.head)
526 goto loop_lock;
527 spin_unlock(&device->io_lock);
528
529 done:
530 blk_finish_plug(&plug);
531 }
532
533 static void pending_bios_fn(struct btrfs_work *work)
534 {
535 struct btrfs_device *device;
536
537 device = container_of(work, struct btrfs_device, work);
538 run_scheduled_bios(device);
539 }
540
541
542 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
543 {
544 struct btrfs_fs_devices *fs_devs;
545 struct btrfs_device *dev;
546
547 if (!cur_dev->name)
548 return;
549
550 list_for_each_entry(fs_devs, &fs_uuids, list) {
551 int del = 1;
552
553 if (fs_devs->opened)
554 continue;
555 if (fs_devs->seeding)
556 continue;
557
558 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
559
560 if (dev == cur_dev)
561 continue;
562 if (!dev->name)
563 continue;
564
565 /*
566 * Todo: This won't be enough. What if the same device
567 * comes back (with new uuid and) with its mapper path?
568 * But for now, this does help as mostly an admin will
569 * either use mapper or non mapper path throughout.
570 */
571 rcu_read_lock();
572 del = strcmp(rcu_str_deref(dev->name),
573 rcu_str_deref(cur_dev->name));
574 rcu_read_unlock();
575 if (!del)
576 break;
577 }
578
579 if (!del) {
580 /* delete the stale device */
581 if (fs_devs->num_devices == 1) {
582 btrfs_sysfs_remove_fsid(fs_devs);
583 list_del(&fs_devs->list);
584 free_fs_devices(fs_devs);
585 } else {
586 fs_devs->num_devices--;
587 list_del(&dev->dev_list);
588 rcu_string_free(dev->name);
589 kfree(dev);
590 }
591 break;
592 }
593 }
594 }
595
596 /*
597 * Add new device to list of registered devices
598 *
599 * Returns:
600 * 1 - first time device is seen
601 * 0 - device already known
602 * < 0 - error
603 */
604 static noinline int device_list_add(const char *path,
605 struct btrfs_super_block *disk_super,
606 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
607 {
608 struct btrfs_device *device;
609 struct btrfs_fs_devices *fs_devices;
610 struct rcu_string *name;
611 int ret = 0;
612 u64 found_transid = btrfs_super_generation(disk_super);
613
614 fs_devices = find_fsid(disk_super->fsid);
615 if (!fs_devices) {
616 fs_devices = alloc_fs_devices(disk_super->fsid);
617 if (IS_ERR(fs_devices))
618 return PTR_ERR(fs_devices);
619
620 list_add(&fs_devices->list, &fs_uuids);
621
622 device = NULL;
623 } else {
624 device = __find_device(&fs_devices->devices, devid,
625 disk_super->dev_item.uuid);
626 }
627
628 if (!device) {
629 if (fs_devices->opened)
630 return -EBUSY;
631
632 device = btrfs_alloc_device(NULL, &devid,
633 disk_super->dev_item.uuid);
634 if (IS_ERR(device)) {
635 /* we can safely leave the fs_devices entry around */
636 return PTR_ERR(device);
637 }
638
639 name = rcu_string_strdup(path, GFP_NOFS);
640 if (!name) {
641 kfree(device);
642 return -ENOMEM;
643 }
644 rcu_assign_pointer(device->name, name);
645
646 mutex_lock(&fs_devices->device_list_mutex);
647 list_add_rcu(&device->dev_list, &fs_devices->devices);
648 fs_devices->num_devices++;
649 mutex_unlock(&fs_devices->device_list_mutex);
650
651 ret = 1;
652 device->fs_devices = fs_devices;
653 } else if (!device->name || strcmp(device->name->str, path)) {
654 /*
655 * When FS is already mounted.
656 * 1. If you are here and if the device->name is NULL that
657 * means this device was missing at time of FS mount.
658 * 2. If you are here and if the device->name is different
659 * from 'path' that means either
660 * a. The same device disappeared and reappeared with
661 * different name. or
662 * b. The missing-disk-which-was-replaced, has
663 * reappeared now.
664 *
665 * We must allow 1 and 2a above. But 2b would be a spurious
666 * and unintentional.
667 *
668 * Further in case of 1 and 2a above, the disk at 'path'
669 * would have missed some transaction when it was away and
670 * in case of 2a the stale bdev has to be updated as well.
671 * 2b must not be allowed at all time.
672 */
673
674 /*
675 * For now, we do allow update to btrfs_fs_device through the
676 * btrfs dev scan cli after FS has been mounted. We're still
677 * tracking a problem where systems fail mount by subvolume id
678 * when we reject replacement on a mounted FS.
679 */
680 if (!fs_devices->opened && found_transid < device->generation) {
681 /*
682 * That is if the FS is _not_ mounted and if you
683 * are here, that means there is more than one
684 * disk with same uuid and devid.We keep the one
685 * with larger generation number or the last-in if
686 * generation are equal.
687 */
688 return -EEXIST;
689 }
690
691 name = rcu_string_strdup(path, GFP_NOFS);
692 if (!name)
693 return -ENOMEM;
694 rcu_string_free(device->name);
695 rcu_assign_pointer(device->name, name);
696 if (device->missing) {
697 fs_devices->missing_devices--;
698 device->missing = 0;
699 }
700 }
701
702 /*
703 * Unmount does not free the btrfs_device struct but would zero
704 * generation along with most of the other members. So just update
705 * it back. We need it to pick the disk with largest generation
706 * (as above).
707 */
708 if (!fs_devices->opened)
709 device->generation = found_transid;
710
711 /*
712 * if there is new btrfs on an already registered device,
713 * then remove the stale device entry.
714 */
715 if (ret > 0)
716 btrfs_free_stale_device(device);
717
718 *fs_devices_ret = fs_devices;
719
720 return ret;
721 }
722
723 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
724 {
725 struct btrfs_fs_devices *fs_devices;
726 struct btrfs_device *device;
727 struct btrfs_device *orig_dev;
728
729 fs_devices = alloc_fs_devices(orig->fsid);
730 if (IS_ERR(fs_devices))
731 return fs_devices;
732
733 mutex_lock(&orig->device_list_mutex);
734 fs_devices->total_devices = orig->total_devices;
735
736 /* We have held the volume lock, it is safe to get the devices. */
737 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
738 struct rcu_string *name;
739
740 device = btrfs_alloc_device(NULL, &orig_dev->devid,
741 orig_dev->uuid);
742 if (IS_ERR(device))
743 goto error;
744
745 /*
746 * This is ok to do without rcu read locked because we hold the
747 * uuid mutex so nothing we touch in here is going to disappear.
748 */
749 if (orig_dev->name) {
750 name = rcu_string_strdup(orig_dev->name->str,
751 GFP_KERNEL);
752 if (!name) {
753 kfree(device);
754 goto error;
755 }
756 rcu_assign_pointer(device->name, name);
757 }
758
759 list_add(&device->dev_list, &fs_devices->devices);
760 device->fs_devices = fs_devices;
761 fs_devices->num_devices++;
762 }
763 mutex_unlock(&orig->device_list_mutex);
764 return fs_devices;
765 error:
766 mutex_unlock(&orig->device_list_mutex);
767 free_fs_devices(fs_devices);
768 return ERR_PTR(-ENOMEM);
769 }
770
771 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
772 {
773 struct btrfs_device *device, *next;
774 struct btrfs_device *latest_dev = NULL;
775
776 mutex_lock(&uuid_mutex);
777 again:
778 /* This is the initialized path, it is safe to release the devices. */
779 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
780 if (device->in_fs_metadata) {
781 if (!device->is_tgtdev_for_dev_replace &&
782 (!latest_dev ||
783 device->generation > latest_dev->generation)) {
784 latest_dev = device;
785 }
786 continue;
787 }
788
789 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
790 /*
791 * In the first step, keep the device which has
792 * the correct fsid and the devid that is used
793 * for the dev_replace procedure.
794 * In the second step, the dev_replace state is
795 * read from the device tree and it is known
796 * whether the procedure is really active or
797 * not, which means whether this device is
798 * used or whether it should be removed.
799 */
800 if (step == 0 || device->is_tgtdev_for_dev_replace) {
801 continue;
802 }
803 }
804 if (device->bdev) {
805 blkdev_put(device->bdev, device->mode);
806 device->bdev = NULL;
807 fs_devices->open_devices--;
808 }
809 if (device->writeable) {
810 list_del_init(&device->dev_alloc_list);
811 device->writeable = 0;
812 if (!device->is_tgtdev_for_dev_replace)
813 fs_devices->rw_devices--;
814 }
815 list_del_init(&device->dev_list);
816 fs_devices->num_devices--;
817 rcu_string_free(device->name);
818 kfree(device);
819 }
820
821 if (fs_devices->seed) {
822 fs_devices = fs_devices->seed;
823 goto again;
824 }
825
826 fs_devices->latest_bdev = latest_dev->bdev;
827
828 mutex_unlock(&uuid_mutex);
829 }
830
831 static void __free_device(struct work_struct *work)
832 {
833 struct btrfs_device *device;
834
835 device = container_of(work, struct btrfs_device, rcu_work);
836 rcu_string_free(device->name);
837 kfree(device);
838 }
839
840 static void free_device(struct rcu_head *head)
841 {
842 struct btrfs_device *device;
843
844 device = container_of(head, struct btrfs_device, rcu);
845
846 INIT_WORK(&device->rcu_work, __free_device);
847 schedule_work(&device->rcu_work);
848 }
849
850 static void btrfs_close_bdev(struct btrfs_device *device)
851 {
852 if (device->bdev && device->writeable) {
853 sync_blockdev(device->bdev);
854 invalidate_bdev(device->bdev);
855 }
856
857 if (device->bdev)
858 blkdev_put(device->bdev, device->mode);
859 }
860
861 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
862 {
863 struct btrfs_fs_devices *fs_devices = device->fs_devices;
864 struct btrfs_device *new_device;
865 struct rcu_string *name;
866
867 if (device->bdev)
868 fs_devices->open_devices--;
869
870 if (device->writeable &&
871 device->devid != BTRFS_DEV_REPLACE_DEVID) {
872 list_del_init(&device->dev_alloc_list);
873 fs_devices->rw_devices--;
874 }
875
876 if (device->missing)
877 fs_devices->missing_devices--;
878
879 new_device = btrfs_alloc_device(NULL, &device->devid,
880 device->uuid);
881 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
882
883 /* Safe because we are under uuid_mutex */
884 if (device->name) {
885 name = rcu_string_strdup(device->name->str, GFP_NOFS);
886 BUG_ON(!name); /* -ENOMEM */
887 rcu_assign_pointer(new_device->name, name);
888 }
889
890 list_replace_rcu(&device->dev_list, &new_device->dev_list);
891 new_device->fs_devices = device->fs_devices;
892 }
893
894 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
895 {
896 struct btrfs_device *device, *tmp;
897 struct list_head pending_put;
898
899 INIT_LIST_HEAD(&pending_put);
900
901 if (--fs_devices->opened > 0)
902 return 0;
903
904 mutex_lock(&fs_devices->device_list_mutex);
905 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
906 btrfs_prepare_close_one_device(device);
907 list_add(&device->dev_list, &pending_put);
908 }
909 mutex_unlock(&fs_devices->device_list_mutex);
910
911 /*
912 * btrfs_show_devname() is using the device_list_mutex,
913 * sometimes call to blkdev_put() leads vfs calling
914 * into this func. So do put outside of device_list_mutex,
915 * as of now.
916 */
917 while (!list_empty(&pending_put)) {
918 device = list_first_entry(&pending_put,
919 struct btrfs_device, dev_list);
920 list_del(&device->dev_list);
921 btrfs_close_bdev(device);
922 call_rcu(&device->rcu, free_device);
923 }
924
925 WARN_ON(fs_devices->open_devices);
926 WARN_ON(fs_devices->rw_devices);
927 fs_devices->opened = 0;
928 fs_devices->seeding = 0;
929
930 return 0;
931 }
932
933 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
934 {
935 struct btrfs_fs_devices *seed_devices = NULL;
936 int ret;
937
938 mutex_lock(&uuid_mutex);
939 ret = __btrfs_close_devices(fs_devices);
940 if (!fs_devices->opened) {
941 seed_devices = fs_devices->seed;
942 fs_devices->seed = NULL;
943 }
944 mutex_unlock(&uuid_mutex);
945
946 while (seed_devices) {
947 fs_devices = seed_devices;
948 seed_devices = fs_devices->seed;
949 __btrfs_close_devices(fs_devices);
950 free_fs_devices(fs_devices);
951 }
952 /*
953 * Wait for rcu kworkers under __btrfs_close_devices
954 * to finish all blkdev_puts so device is really
955 * free when umount is done.
956 */
957 rcu_barrier();
958 return ret;
959 }
960
961 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
962 fmode_t flags, void *holder)
963 {
964 struct request_queue *q;
965 struct block_device *bdev;
966 struct list_head *head = &fs_devices->devices;
967 struct btrfs_device *device;
968 struct btrfs_device *latest_dev = NULL;
969 struct buffer_head *bh;
970 struct btrfs_super_block *disk_super;
971 u64 devid;
972 int seeding = 1;
973 int ret = 0;
974
975 flags |= FMODE_EXCL;
976
977 list_for_each_entry(device, head, dev_list) {
978 if (device->bdev)
979 continue;
980 if (!device->name)
981 continue;
982
983 /* Just open everything we can; ignore failures here */
984 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
985 &bdev, &bh))
986 continue;
987
988 disk_super = (struct btrfs_super_block *)bh->b_data;
989 devid = btrfs_stack_device_id(&disk_super->dev_item);
990 if (devid != device->devid)
991 goto error_brelse;
992
993 if (memcmp(device->uuid, disk_super->dev_item.uuid,
994 BTRFS_UUID_SIZE))
995 goto error_brelse;
996
997 device->generation = btrfs_super_generation(disk_super);
998 if (!latest_dev ||
999 device->generation > latest_dev->generation)
1000 latest_dev = device;
1001
1002 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1003 device->writeable = 0;
1004 } else {
1005 device->writeable = !bdev_read_only(bdev);
1006 seeding = 0;
1007 }
1008
1009 q = bdev_get_queue(bdev);
1010 if (blk_queue_discard(q))
1011 device->can_discard = 1;
1012
1013 device->bdev = bdev;
1014 device->in_fs_metadata = 0;
1015 device->mode = flags;
1016
1017 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1018 fs_devices->rotating = 1;
1019
1020 fs_devices->open_devices++;
1021 if (device->writeable &&
1022 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1023 fs_devices->rw_devices++;
1024 list_add(&device->dev_alloc_list,
1025 &fs_devices->alloc_list);
1026 }
1027 brelse(bh);
1028 continue;
1029
1030 error_brelse:
1031 brelse(bh);
1032 blkdev_put(bdev, flags);
1033 continue;
1034 }
1035 if (fs_devices->open_devices == 0) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039 fs_devices->seeding = seeding;
1040 fs_devices->opened = 1;
1041 fs_devices->latest_bdev = latest_dev->bdev;
1042 fs_devices->total_rw_bytes = 0;
1043 out:
1044 return ret;
1045 }
1046
1047 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1048 fmode_t flags, void *holder)
1049 {
1050 int ret;
1051
1052 mutex_lock(&uuid_mutex);
1053 if (fs_devices->opened) {
1054 fs_devices->opened++;
1055 ret = 0;
1056 } else {
1057 ret = __btrfs_open_devices(fs_devices, flags, holder);
1058 }
1059 mutex_unlock(&uuid_mutex);
1060 return ret;
1061 }
1062
1063 void btrfs_release_disk_super(struct page *page)
1064 {
1065 kunmap(page);
1066 put_page(page);
1067 }
1068
1069 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1070 struct page **page, struct btrfs_super_block **disk_super)
1071 {
1072 void *p;
1073 pgoff_t index;
1074
1075 /* make sure our super fits in the device */
1076 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1077 return 1;
1078
1079 /* make sure our super fits in the page */
1080 if (sizeof(**disk_super) > PAGE_SIZE)
1081 return 1;
1082
1083 /* make sure our super doesn't straddle pages on disk */
1084 index = bytenr >> PAGE_SHIFT;
1085 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1086 return 1;
1087
1088 /* pull in the page with our super */
1089 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1090 index, GFP_KERNEL);
1091
1092 if (IS_ERR_OR_NULL(*page))
1093 return 1;
1094
1095 p = kmap(*page);
1096
1097 /* align our pointer to the offset of the super block */
1098 *disk_super = p + (bytenr & ~PAGE_MASK);
1099
1100 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1101 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1102 btrfs_release_disk_super(*page);
1103 return 1;
1104 }
1105
1106 if ((*disk_super)->label[0] &&
1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1108 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1109
1110 return 0;
1111 }
1112
1113 /*
1114 * Look for a btrfs signature on a device. This may be called out of the mount path
1115 * and we are not allowed to call set_blocksize during the scan. The superblock
1116 * is read via pagecache
1117 */
1118 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1119 struct btrfs_fs_devices **fs_devices_ret)
1120 {
1121 struct btrfs_super_block *disk_super;
1122 struct block_device *bdev;
1123 struct page *page;
1124 int ret = -EINVAL;
1125 u64 devid;
1126 u64 transid;
1127 u64 total_devices;
1128 u64 bytenr;
1129
1130 /*
1131 * we would like to check all the supers, but that would make
1132 * a btrfs mount succeed after a mkfs from a different FS.
1133 * So, we need to add a special mount option to scan for
1134 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1135 */
1136 bytenr = btrfs_sb_offset(0);
1137 flags |= FMODE_EXCL;
1138 mutex_lock(&uuid_mutex);
1139
1140 bdev = blkdev_get_by_path(path, flags, holder);
1141 if (IS_ERR(bdev)) {
1142 ret = PTR_ERR(bdev);
1143 goto error;
1144 }
1145
1146 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1147 goto error_bdev_put;
1148
1149 devid = btrfs_stack_device_id(&disk_super->dev_item);
1150 transid = btrfs_super_generation(disk_super);
1151 total_devices = btrfs_super_num_devices(disk_super);
1152
1153 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1154 if (ret > 0) {
1155 if (disk_super->label[0]) {
1156 pr_info("BTRFS: device label %s ", disk_super->label);
1157 } else {
1158 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1159 }
1160
1161 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1162 ret = 0;
1163 }
1164 if (!ret && fs_devices_ret)
1165 (*fs_devices_ret)->total_devices = total_devices;
1166
1167 btrfs_release_disk_super(page);
1168
1169 error_bdev_put:
1170 blkdev_put(bdev, flags);
1171 error:
1172 mutex_unlock(&uuid_mutex);
1173 return ret;
1174 }
1175
1176 /* helper to account the used device space in the range */
1177 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1178 u64 end, u64 *length)
1179 {
1180 struct btrfs_key key;
1181 struct btrfs_root *root = device->fs_info->dev_root;
1182 struct btrfs_dev_extent *dev_extent;
1183 struct btrfs_path *path;
1184 u64 extent_end;
1185 int ret;
1186 int slot;
1187 struct extent_buffer *l;
1188
1189 *length = 0;
1190
1191 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1192 return 0;
1193
1194 path = btrfs_alloc_path();
1195 if (!path)
1196 return -ENOMEM;
1197 path->reada = READA_FORWARD;
1198
1199 key.objectid = device->devid;
1200 key.offset = start;
1201 key.type = BTRFS_DEV_EXTENT_KEY;
1202
1203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1204 if (ret < 0)
1205 goto out;
1206 if (ret > 0) {
1207 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1208 if (ret < 0)
1209 goto out;
1210 }
1211
1212 while (1) {
1213 l = path->nodes[0];
1214 slot = path->slots[0];
1215 if (slot >= btrfs_header_nritems(l)) {
1216 ret = btrfs_next_leaf(root, path);
1217 if (ret == 0)
1218 continue;
1219 if (ret < 0)
1220 goto out;
1221
1222 break;
1223 }
1224 btrfs_item_key_to_cpu(l, &key, slot);
1225
1226 if (key.objectid < device->devid)
1227 goto next;
1228
1229 if (key.objectid > device->devid)
1230 break;
1231
1232 if (key.type != BTRFS_DEV_EXTENT_KEY)
1233 goto next;
1234
1235 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1236 extent_end = key.offset + btrfs_dev_extent_length(l,
1237 dev_extent);
1238 if (key.offset <= start && extent_end > end) {
1239 *length = end - start + 1;
1240 break;
1241 } else if (key.offset <= start && extent_end > start)
1242 *length += extent_end - start;
1243 else if (key.offset > start && extent_end <= end)
1244 *length += extent_end - key.offset;
1245 else if (key.offset > start && key.offset <= end) {
1246 *length += end - key.offset + 1;
1247 break;
1248 } else if (key.offset > end)
1249 break;
1250
1251 next:
1252 path->slots[0]++;
1253 }
1254 ret = 0;
1255 out:
1256 btrfs_free_path(path);
1257 return ret;
1258 }
1259
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261 struct btrfs_device *device,
1262 u64 *start, u64 len)
1263 {
1264 struct btrfs_fs_info *fs_info = device->fs_info;
1265 struct extent_map *em;
1266 struct list_head *search_list = &fs_info->pinned_chunks;
1267 int ret = 0;
1268 u64 physical_start = *start;
1269
1270 if (transaction)
1271 search_list = &transaction->pending_chunks;
1272 again:
1273 list_for_each_entry(em, search_list, list) {
1274 struct map_lookup *map;
1275 int i;
1276
1277 map = em->map_lookup;
1278 for (i = 0; i < map->num_stripes; i++) {
1279 u64 end;
1280
1281 if (map->stripes[i].dev != device)
1282 continue;
1283 if (map->stripes[i].physical >= physical_start + len ||
1284 map->stripes[i].physical + em->orig_block_len <=
1285 physical_start)
1286 continue;
1287 /*
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1297 * pending chunk.
1298 */
1299 end = map->stripes[i].physical + em->orig_block_len;
1300 if (end > *start) {
1301 *start = end;
1302 ret = 1;
1303 }
1304 }
1305 }
1306 if (search_list != &fs_info->pinned_chunks) {
1307 search_list = &fs_info->pinned_chunks;
1308 goto again;
1309 }
1310
1311 return ret;
1312 }
1313
1314
1315 /*
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
1323 *
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1326 * of extents
1327 *
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1331 *
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
1335 */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 struct btrfs_device *device, u64 num_bytes,
1338 u64 search_start, u64 *start, u64 *len)
1339 {
1340 struct btrfs_fs_info *fs_info = device->fs_info;
1341 struct btrfs_root *root = fs_info->dev_root;
1342 struct btrfs_key key;
1343 struct btrfs_dev_extent *dev_extent;
1344 struct btrfs_path *path;
1345 u64 hole_size;
1346 u64 max_hole_start;
1347 u64 max_hole_size;
1348 u64 extent_end;
1349 u64 search_end = device->total_bytes;
1350 int ret;
1351 int slot;
1352 struct extent_buffer *l;
1353 u64 min_search_start;
1354
1355 /*
1356 * We don't want to overwrite the superblock on the drive nor any area
1357 * used by the boot loader (grub for example), so we make sure to start
1358 * at an offset of at least 1MB.
1359 */
1360 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1361 search_start = max(search_start, min_search_start);
1362
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
1366
1367 max_hole_start = search_start;
1368 max_hole_size = 0;
1369
1370 again:
1371 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372 ret = -ENOSPC;
1373 goto out;
1374 }
1375
1376 path->reada = READA_FORWARD;
1377 path->search_commit_root = 1;
1378 path->skip_locking = 1;
1379
1380 key.objectid = device->devid;
1381 key.offset = search_start;
1382 key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385 if (ret < 0)
1386 goto out;
1387 if (ret > 0) {
1388 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389 if (ret < 0)
1390 goto out;
1391 }
1392
1393 while (1) {
1394 l = path->nodes[0];
1395 slot = path->slots[0];
1396 if (slot >= btrfs_header_nritems(l)) {
1397 ret = btrfs_next_leaf(root, path);
1398 if (ret == 0)
1399 continue;
1400 if (ret < 0)
1401 goto out;
1402
1403 break;
1404 }
1405 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407 if (key.objectid < device->devid)
1408 goto next;
1409
1410 if (key.objectid > device->devid)
1411 break;
1412
1413 if (key.type != BTRFS_DEV_EXTENT_KEY)
1414 goto next;
1415
1416 if (key.offset > search_start) {
1417 hole_size = key.offset - search_start;
1418
1419 /*
1420 * Have to check before we set max_hole_start, otherwise
1421 * we could end up sending back this offset anyway.
1422 */
1423 if (contains_pending_extent(transaction, device,
1424 &search_start,
1425 hole_size)) {
1426 if (key.offset >= search_start) {
1427 hole_size = key.offset - search_start;
1428 } else {
1429 WARN_ON_ONCE(1);
1430 hole_size = 0;
1431 }
1432 }
1433
1434 if (hole_size > max_hole_size) {
1435 max_hole_start = search_start;
1436 max_hole_size = hole_size;
1437 }
1438
1439 /*
1440 * If this free space is greater than which we need,
1441 * it must be the max free space that we have found
1442 * until now, so max_hole_start must point to the start
1443 * of this free space and the length of this free space
1444 * is stored in max_hole_size. Thus, we return
1445 * max_hole_start and max_hole_size and go back to the
1446 * caller.
1447 */
1448 if (hole_size >= num_bytes) {
1449 ret = 0;
1450 goto out;
1451 }
1452 }
1453
1454 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455 extent_end = key.offset + btrfs_dev_extent_length(l,
1456 dev_extent);
1457 if (extent_end > search_start)
1458 search_start = extent_end;
1459 next:
1460 path->slots[0]++;
1461 cond_resched();
1462 }
1463
1464 /*
1465 * At this point, search_start should be the end of
1466 * allocated dev extents, and when shrinking the device,
1467 * search_end may be smaller than search_start.
1468 */
1469 if (search_end > search_start) {
1470 hole_size = search_end - search_start;
1471
1472 if (contains_pending_extent(transaction, device, &search_start,
1473 hole_size)) {
1474 btrfs_release_path(path);
1475 goto again;
1476 }
1477
1478 if (hole_size > max_hole_size) {
1479 max_hole_start = search_start;
1480 max_hole_size = hole_size;
1481 }
1482 }
1483
1484 /* See above. */
1485 if (max_hole_size < num_bytes)
1486 ret = -ENOSPC;
1487 else
1488 ret = 0;
1489
1490 out:
1491 btrfs_free_path(path);
1492 *start = max_hole_start;
1493 if (len)
1494 *len = max_hole_size;
1495 return ret;
1496 }
1497
1498 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device, u64 num_bytes,
1500 u64 *start, u64 *len)
1501 {
1502 /* FIXME use last free of some kind */
1503 return find_free_dev_extent_start(trans->transaction, device,
1504 num_bytes, 0, start, len);
1505 }
1506
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508 struct btrfs_device *device,
1509 u64 start, u64 *dev_extent_len)
1510 {
1511 struct btrfs_fs_info *fs_info = device->fs_info;
1512 struct btrfs_root *root = fs_info->dev_root;
1513 int ret;
1514 struct btrfs_path *path;
1515 struct btrfs_key key;
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 key.objectid = device->devid;
1525 key.offset = start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
1527 again:
1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1529 if (ret > 0) {
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
1532 if (ret)
1533 goto out;
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
1540 key = found_key;
1541 btrfs_release_path(path);
1542 goto again;
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
1547 } else {
1548 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1549 goto out;
1550 }
1551
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553
1554 ret = btrfs_del_item(trans, root, path);
1555 if (ret) {
1556 btrfs_handle_fs_error(fs_info, ret,
1557 "Failed to remove dev extent item");
1558 } else {
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1560 }
1561 out:
1562 btrfs_free_path(path);
1563 return ret;
1564 }
1565
1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_tree, u64 chunk_objectid,
1569 u64 chunk_offset, u64 start, u64 num_bytes)
1570 {
1571 int ret;
1572 struct btrfs_path *path;
1573 struct btrfs_fs_info *fs_info = device->fs_info;
1574 struct btrfs_root *root = fs_info->dev_root;
1575 struct btrfs_dev_extent *extent;
1576 struct extent_buffer *leaf;
1577 struct btrfs_key key;
1578
1579 WARN_ON(!device->in_fs_metadata);
1580 WARN_ON(device->is_tgtdev_for_dev_replace);
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return -ENOMEM;
1584
1585 key.objectid = device->devid;
1586 key.offset = start;
1587 key.type = BTRFS_DEV_EXTENT_KEY;
1588 ret = btrfs_insert_empty_item(trans, root, path, &key,
1589 sizeof(*extent));
1590 if (ret)
1591 goto out;
1592
1593 leaf = path->nodes[0];
1594 extent = btrfs_item_ptr(leaf, path->slots[0],
1595 struct btrfs_dev_extent);
1596 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1597 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1598 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1601
1602 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 btrfs_mark_buffer_dirty(leaf);
1604 out:
1605 btrfs_free_path(path);
1606 return ret;
1607 }
1608
1609 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1610 {
1611 struct extent_map_tree *em_tree;
1612 struct extent_map *em;
1613 struct rb_node *n;
1614 u64 ret = 0;
1615
1616 em_tree = &fs_info->mapping_tree.map_tree;
1617 read_lock(&em_tree->lock);
1618 n = rb_last(&em_tree->map);
1619 if (n) {
1620 em = rb_entry(n, struct extent_map, rb_node);
1621 ret = em->start + em->len;
1622 }
1623 read_unlock(&em_tree->lock);
1624
1625 return ret;
1626 }
1627
1628 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1629 u64 *devid_ret)
1630 {
1631 int ret;
1632 struct btrfs_key key;
1633 struct btrfs_key found_key;
1634 struct btrfs_path *path;
1635
1636 path = btrfs_alloc_path();
1637 if (!path)
1638 return -ENOMEM;
1639
1640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 key.type = BTRFS_DEV_ITEM_KEY;
1642 key.offset = (u64)-1;
1643
1644 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1645 if (ret < 0)
1646 goto error;
1647
1648 BUG_ON(ret == 0); /* Corruption */
1649
1650 ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 BTRFS_DEV_ITEMS_OBJECTID,
1652 BTRFS_DEV_ITEM_KEY);
1653 if (ret) {
1654 *devid_ret = 1;
1655 } else {
1656 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1657 path->slots[0]);
1658 *devid_ret = found_key.offset + 1;
1659 }
1660 ret = 0;
1661 error:
1662 btrfs_free_path(path);
1663 return ret;
1664 }
1665
1666 /*
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1669 */
1670 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1671 struct btrfs_fs_info *fs_info,
1672 struct btrfs_device *device)
1673 {
1674 struct btrfs_root *root = fs_info->chunk_root;
1675 int ret;
1676 struct btrfs_path *path;
1677 struct btrfs_dev_item *dev_item;
1678 struct extent_buffer *leaf;
1679 struct btrfs_key key;
1680 unsigned long ptr;
1681
1682 path = btrfs_alloc_path();
1683 if (!path)
1684 return -ENOMEM;
1685
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
1688 key.offset = device->devid;
1689
1690 ret = btrfs_insert_empty_item(trans, root, path, &key,
1691 sizeof(*dev_item));
1692 if (ret)
1693 goto out;
1694
1695 leaf = path->nodes[0];
1696 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698 btrfs_set_device_id(leaf, dev_item, device->devid);
1699 btrfs_set_device_generation(leaf, dev_item, 0);
1700 btrfs_set_device_type(leaf, dev_item, device->type);
1701 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1704 btrfs_set_device_total_bytes(leaf, dev_item,
1705 btrfs_device_get_disk_total_bytes(device));
1706 btrfs_set_device_bytes_used(leaf, dev_item,
1707 btrfs_device_get_bytes_used(device));
1708 btrfs_set_device_group(leaf, dev_item, 0);
1709 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1711 btrfs_set_device_start_offset(leaf, dev_item, 0);
1712
1713 ptr = btrfs_device_uuid(dev_item);
1714 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1715 ptr = btrfs_device_fsid(dev_item);
1716 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1717 btrfs_mark_buffer_dirty(leaf);
1718
1719 ret = 0;
1720 out:
1721 btrfs_free_path(path);
1722 return ret;
1723 }
1724
1725 /*
1726 * Function to update ctime/mtime for a given device path.
1727 * Mainly used for ctime/mtime based probe like libblkid.
1728 */
1729 static void update_dev_time(char *path_name)
1730 {
1731 struct file *filp;
1732
1733 filp = filp_open(path_name, O_RDWR, 0);
1734 if (IS_ERR(filp))
1735 return;
1736 file_update_time(filp);
1737 filp_close(filp, NULL);
1738 }
1739
1740 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1741 struct btrfs_device *device)
1742 {
1743 struct btrfs_root *root = fs_info->chunk_root;
1744 int ret;
1745 struct btrfs_path *path;
1746 struct btrfs_key key;
1747 struct btrfs_trans_handle *trans;
1748
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
1753 trans = btrfs_start_transaction(root, 0);
1754 if (IS_ERR(trans)) {
1755 btrfs_free_path(path);
1756 return PTR_ERR(trans);
1757 }
1758 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1759 key.type = BTRFS_DEV_ITEM_KEY;
1760 key.offset = device->devid;
1761
1762 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1763 if (ret < 0)
1764 goto out;
1765
1766 if (ret > 0) {
1767 ret = -ENOENT;
1768 goto out;
1769 }
1770
1771 ret = btrfs_del_item(trans, root, path);
1772 if (ret)
1773 goto out;
1774 out:
1775 btrfs_free_path(path);
1776 btrfs_commit_transaction(trans, root);
1777 return ret;
1778 }
1779
1780 /*
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1783 * replace.
1784 */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 u64 num_devices)
1787 {
1788 u64 all_avail;
1789 unsigned seq;
1790 int i;
1791
1792 do {
1793 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795 all_avail = fs_info->avail_data_alloc_bits |
1796 fs_info->avail_system_alloc_bits |
1797 fs_info->avail_metadata_alloc_bits;
1798 } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 if (!(all_avail & btrfs_raid_group[i]))
1802 continue;
1803
1804 if (num_devices < btrfs_raid_array[i].devs_min) {
1805 int ret = btrfs_raid_mindev_error[i];
1806
1807 if (ret)
1808 return ret;
1809 }
1810 }
1811
1812 return 0;
1813 }
1814
1815 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1816 struct btrfs_device *device)
1817 {
1818 struct btrfs_device *next_device;
1819
1820 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 if (next_device != device &&
1822 !next_device->missing && next_device->bdev)
1823 return next_device;
1824 }
1825
1826 return NULL;
1827 }
1828
1829 /*
1830 * Helper function to check if the given device is part of s_bdev / latest_bdev
1831 * and replace it with the provided or the next active device, in the context
1832 * where this function called, there should be always be another device (or
1833 * this_dev) which is active.
1834 */
1835 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1836 struct btrfs_device *device, struct btrfs_device *this_dev)
1837 {
1838 struct btrfs_device *next_device;
1839
1840 if (this_dev)
1841 next_device = this_dev;
1842 else
1843 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1844 device);
1845 ASSERT(next_device);
1846
1847 if (fs_info->sb->s_bdev &&
1848 (fs_info->sb->s_bdev == device->bdev))
1849 fs_info->sb->s_bdev = next_device->bdev;
1850
1851 if (fs_info->fs_devices->latest_bdev == device->bdev)
1852 fs_info->fs_devices->latest_bdev = next_device->bdev;
1853 }
1854
1855 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1856 {
1857 struct btrfs_fs_info *fs_info = root->fs_info;
1858 struct btrfs_device *device;
1859 struct btrfs_fs_devices *cur_devices;
1860 u64 num_devices;
1861 int ret = 0;
1862 bool clear_super = false;
1863
1864 mutex_lock(&uuid_mutex);
1865
1866 num_devices = fs_info->fs_devices->num_devices;
1867 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1868 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1869 WARN_ON(num_devices < 1);
1870 num_devices--;
1871 }
1872 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1873
1874 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1875 if (ret)
1876 goto out;
1877
1878 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1879 &device);
1880 if (ret)
1881 goto out;
1882
1883 if (device->is_tgtdev_for_dev_replace) {
1884 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1885 goto out;
1886 }
1887
1888 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1889 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1890 goto out;
1891 }
1892
1893 if (device->writeable) {
1894 lock_chunks(fs_info);
1895 list_del_init(&device->dev_alloc_list);
1896 device->fs_devices->rw_devices--;
1897 unlock_chunks(fs_info);
1898 clear_super = true;
1899 }
1900
1901 mutex_unlock(&uuid_mutex);
1902 ret = btrfs_shrink_device(device, 0);
1903 mutex_lock(&uuid_mutex);
1904 if (ret)
1905 goto error_undo;
1906
1907 /*
1908 * TODO: the superblock still includes this device in its num_devices
1909 * counter although write_all_supers() is not locked out. This
1910 * could give a filesystem state which requires a degraded mount.
1911 */
1912 ret = btrfs_rm_dev_item(fs_info, device);
1913 if (ret)
1914 goto error_undo;
1915
1916 device->in_fs_metadata = 0;
1917 btrfs_scrub_cancel_dev(fs_info, device);
1918
1919 /*
1920 * the device list mutex makes sure that we don't change
1921 * the device list while someone else is writing out all
1922 * the device supers. Whoever is writing all supers, should
1923 * lock the device list mutex before getting the number of
1924 * devices in the super block (super_copy). Conversely,
1925 * whoever updates the number of devices in the super block
1926 * (super_copy) should hold the device list mutex.
1927 */
1928
1929 cur_devices = device->fs_devices;
1930 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1931 list_del_rcu(&device->dev_list);
1932
1933 device->fs_devices->num_devices--;
1934 device->fs_devices->total_devices--;
1935
1936 if (device->missing)
1937 device->fs_devices->missing_devices--;
1938
1939 btrfs_assign_next_active_device(fs_info, device, NULL);
1940
1941 if (device->bdev) {
1942 device->fs_devices->open_devices--;
1943 /* remove sysfs entry */
1944 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1945 }
1946
1947 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1948 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1949 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1950
1951 /*
1952 * at this point, the device is zero sized and detached from
1953 * the devices list. All that's left is to zero out the old
1954 * supers and free the device.
1955 */
1956 if (device->writeable)
1957 btrfs_scratch_superblocks(device->bdev, device->name->str);
1958
1959 btrfs_close_bdev(device);
1960 call_rcu(&device->rcu, free_device);
1961
1962 if (cur_devices->open_devices == 0) {
1963 struct btrfs_fs_devices *fs_devices;
1964 fs_devices = fs_info->fs_devices;
1965 while (fs_devices) {
1966 if (fs_devices->seed == cur_devices) {
1967 fs_devices->seed = cur_devices->seed;
1968 break;
1969 }
1970 fs_devices = fs_devices->seed;
1971 }
1972 cur_devices->seed = NULL;
1973 __btrfs_close_devices(cur_devices);
1974 free_fs_devices(cur_devices);
1975 }
1976
1977 fs_info->num_tolerated_disk_barrier_failures =
1978 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1979
1980 out:
1981 mutex_unlock(&uuid_mutex);
1982 return ret;
1983
1984 error_undo:
1985 if (device->writeable) {
1986 lock_chunks(fs_info);
1987 list_add(&device->dev_alloc_list,
1988 &fs_info->fs_devices->alloc_list);
1989 device->fs_devices->rw_devices++;
1990 unlock_chunks(fs_info);
1991 }
1992 goto out;
1993 }
1994
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996 struct btrfs_device *srcdev)
1997 {
1998 struct btrfs_fs_devices *fs_devices;
1999
2000 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2001
2002 /*
2003 * in case of fs with no seed, srcdev->fs_devices will point
2004 * to fs_devices of fs_info. However when the dev being replaced is
2005 * a seed dev it will point to the seed's local fs_devices. In short
2006 * srcdev will have its correct fs_devices in both the cases.
2007 */
2008 fs_devices = srcdev->fs_devices;
2009
2010 list_del_rcu(&srcdev->dev_list);
2011 list_del_rcu(&srcdev->dev_alloc_list);
2012 fs_devices->num_devices--;
2013 if (srcdev->missing)
2014 fs_devices->missing_devices--;
2015
2016 if (srcdev->writeable)
2017 fs_devices->rw_devices--;
2018
2019 if (srcdev->bdev)
2020 fs_devices->open_devices--;
2021 }
2022
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024 struct btrfs_device *srcdev)
2025 {
2026 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2027
2028 if (srcdev->writeable) {
2029 /* zero out the old super if it is writable */
2030 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031 }
2032
2033 btrfs_close_bdev(srcdev);
2034
2035 call_rcu(&srcdev->rcu, free_device);
2036
2037 /*
2038 * unless fs_devices is seed fs, num_devices shouldn't go
2039 * zero
2040 */
2041 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042
2043 /* if this is no devs we rather delete the fs_devices */
2044 if (!fs_devices->num_devices) {
2045 struct btrfs_fs_devices *tmp_fs_devices;
2046
2047 tmp_fs_devices = fs_info->fs_devices;
2048 while (tmp_fs_devices) {
2049 if (tmp_fs_devices->seed == fs_devices) {
2050 tmp_fs_devices->seed = fs_devices->seed;
2051 break;
2052 }
2053 tmp_fs_devices = tmp_fs_devices->seed;
2054 }
2055 fs_devices->seed = NULL;
2056 __btrfs_close_devices(fs_devices);
2057 free_fs_devices(fs_devices);
2058 }
2059 }
2060
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062 struct btrfs_device *tgtdev)
2063 {
2064 mutex_lock(&uuid_mutex);
2065 WARN_ON(!tgtdev);
2066 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2067
2068 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2069
2070 if (tgtdev->bdev)
2071 fs_info->fs_devices->open_devices--;
2072
2073 fs_info->fs_devices->num_devices--;
2074
2075 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2076
2077 list_del_rcu(&tgtdev->dev_list);
2078
2079 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080 mutex_unlock(&uuid_mutex);
2081
2082 /*
2083 * The update_dev_time() with in btrfs_scratch_superblocks()
2084 * may lead to a call to btrfs_show_devname() which will try
2085 * to hold device_list_mutex. And here this device
2086 * is already out of device list, so we don't have to hold
2087 * the device_list_mutex lock.
2088 */
2089 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2090
2091 btrfs_close_bdev(tgtdev);
2092 call_rcu(&tgtdev->rcu, free_device);
2093 }
2094
2095 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2096 struct btrfs_device **device)
2097 {
2098 struct btrfs_fs_info *fs_info = root->fs_info;
2099 int ret = 0;
2100 struct btrfs_super_block *disk_super;
2101 u64 devid;
2102 u8 *dev_uuid;
2103 struct block_device *bdev;
2104 struct buffer_head *bh;
2105
2106 *device = NULL;
2107 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108 fs_info->bdev_holder, 0, &bdev, &bh);
2109 if (ret)
2110 return ret;
2111 disk_super = (struct btrfs_super_block *)bh->b_data;
2112 devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 dev_uuid = disk_super->dev_item.uuid;
2114 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2115 brelse(bh);
2116 if (!*device)
2117 ret = -ENOENT;
2118 blkdev_put(bdev, FMODE_READ);
2119 return ret;
2120 }
2121
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2123 char *device_path,
2124 struct btrfs_device **device)
2125 {
2126 struct btrfs_fs_info *fs_info = root->fs_info;
2127
2128 *device = NULL;
2129 if (strcmp(device_path, "missing") == 0) {
2130 struct list_head *devices;
2131 struct btrfs_device *tmp;
2132
2133 devices = &fs_info->fs_devices->devices;
2134 /*
2135 * It is safe to read the devices since the volume_mutex
2136 * is held by the caller.
2137 */
2138 list_for_each_entry(tmp, devices, dev_list) {
2139 if (tmp->in_fs_metadata && !tmp->bdev) {
2140 *device = tmp;
2141 break;
2142 }
2143 }
2144
2145 if (!*device)
2146 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2147
2148 return 0;
2149 } else {
2150 return btrfs_find_device_by_path(root, device_path, device);
2151 }
2152 }
2153
2154 /*
2155 * Lookup a device given by device id, or the path if the id is 0.
2156 */
2157 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2158 char *devpath,
2159 struct btrfs_device **device)
2160 {
2161 struct btrfs_fs_info *fs_info = root->fs_info;
2162 int ret;
2163
2164 if (devid) {
2165 ret = 0;
2166 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2167 if (!*device)
2168 ret = -ENOENT;
2169 } else {
2170 if (!devpath || !devpath[0])
2171 return -EINVAL;
2172
2173 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2174 device);
2175 }
2176 return ret;
2177 }
2178
2179 /*
2180 * does all the dirty work required for changing file system's UUID.
2181 */
2182 static int btrfs_prepare_sprout(struct btrfs_root *root)
2183 {
2184 struct btrfs_fs_info *fs_info = root->fs_info;
2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2186 struct btrfs_fs_devices *old_devices;
2187 struct btrfs_fs_devices *seed_devices;
2188 struct btrfs_super_block *disk_super = fs_info->super_copy;
2189 struct btrfs_device *device;
2190 u64 super_flags;
2191
2192 BUG_ON(!mutex_is_locked(&uuid_mutex));
2193 if (!fs_devices->seeding)
2194 return -EINVAL;
2195
2196 seed_devices = __alloc_fs_devices();
2197 if (IS_ERR(seed_devices))
2198 return PTR_ERR(seed_devices);
2199
2200 old_devices = clone_fs_devices(fs_devices);
2201 if (IS_ERR(old_devices)) {
2202 kfree(seed_devices);
2203 return PTR_ERR(old_devices);
2204 }
2205
2206 list_add(&old_devices->list, &fs_uuids);
2207
2208 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2209 seed_devices->opened = 1;
2210 INIT_LIST_HEAD(&seed_devices->devices);
2211 INIT_LIST_HEAD(&seed_devices->alloc_list);
2212 mutex_init(&seed_devices->device_list_mutex);
2213
2214 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2215 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2216 synchronize_rcu);
2217 list_for_each_entry(device, &seed_devices->devices, dev_list)
2218 device->fs_devices = seed_devices;
2219
2220 lock_chunks(fs_info);
2221 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2222 unlock_chunks(fs_info);
2223
2224 fs_devices->seeding = 0;
2225 fs_devices->num_devices = 0;
2226 fs_devices->open_devices = 0;
2227 fs_devices->missing_devices = 0;
2228 fs_devices->rotating = 0;
2229 fs_devices->seed = seed_devices;
2230
2231 generate_random_uuid(fs_devices->fsid);
2232 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2234 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2235
2236 super_flags = btrfs_super_flags(disk_super) &
2237 ~BTRFS_SUPER_FLAG_SEEDING;
2238 btrfs_set_super_flags(disk_super, super_flags);
2239
2240 return 0;
2241 }
2242
2243 /*
2244 * Store the expected generation for seed devices in device items.
2245 */
2246 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2247 struct btrfs_fs_info *fs_info)
2248 {
2249 struct btrfs_root *root = fs_info->chunk_root;
2250 struct btrfs_path *path;
2251 struct extent_buffer *leaf;
2252 struct btrfs_dev_item *dev_item;
2253 struct btrfs_device *device;
2254 struct btrfs_key key;
2255 u8 fs_uuid[BTRFS_UUID_SIZE];
2256 u8 dev_uuid[BTRFS_UUID_SIZE];
2257 u64 devid;
2258 int ret;
2259
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2264 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2265 key.offset = 0;
2266 key.type = BTRFS_DEV_ITEM_KEY;
2267
2268 while (1) {
2269 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2270 if (ret < 0)
2271 goto error;
2272
2273 leaf = path->nodes[0];
2274 next_slot:
2275 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2276 ret = btrfs_next_leaf(root, path);
2277 if (ret > 0)
2278 break;
2279 if (ret < 0)
2280 goto error;
2281 leaf = path->nodes[0];
2282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283 btrfs_release_path(path);
2284 continue;
2285 }
2286
2287 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2288 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2289 key.type != BTRFS_DEV_ITEM_KEY)
2290 break;
2291
2292 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2293 struct btrfs_dev_item);
2294 devid = btrfs_device_id(leaf, dev_item);
2295 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2296 BTRFS_UUID_SIZE);
2297 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2298 BTRFS_UUID_SIZE);
2299 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2300 BUG_ON(!device); /* Logic error */
2301
2302 if (device->fs_devices->seeding) {
2303 btrfs_set_device_generation(leaf, dev_item,
2304 device->generation);
2305 btrfs_mark_buffer_dirty(leaf);
2306 }
2307
2308 path->slots[0]++;
2309 goto next_slot;
2310 }
2311 ret = 0;
2312 error:
2313 btrfs_free_path(path);
2314 return ret;
2315 }
2316
2317 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
2318 {
2319 struct btrfs_root *root = fs_info->dev_root;
2320 struct request_queue *q;
2321 struct btrfs_trans_handle *trans;
2322 struct btrfs_device *device;
2323 struct block_device *bdev;
2324 struct list_head *devices;
2325 struct super_block *sb = fs_info->sb;
2326 struct rcu_string *name;
2327 u64 tmp;
2328 int seeding_dev = 0;
2329 int ret = 0;
2330
2331 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2332 return -EROFS;
2333
2334 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2335 fs_info->bdev_holder);
2336 if (IS_ERR(bdev))
2337 return PTR_ERR(bdev);
2338
2339 if (fs_info->fs_devices->seeding) {
2340 seeding_dev = 1;
2341 down_write(&sb->s_umount);
2342 mutex_lock(&uuid_mutex);
2343 }
2344
2345 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2346
2347 devices = &fs_info->fs_devices->devices;
2348
2349 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2350 list_for_each_entry(device, devices, dev_list) {
2351 if (device->bdev == bdev) {
2352 ret = -EEXIST;
2353 mutex_unlock(
2354 &fs_info->fs_devices->device_list_mutex);
2355 goto error;
2356 }
2357 }
2358 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2359
2360 device = btrfs_alloc_device(fs_info, NULL, NULL);
2361 if (IS_ERR(device)) {
2362 /* we can safely leave the fs_devices entry around */
2363 ret = PTR_ERR(device);
2364 goto error;
2365 }
2366
2367 name = rcu_string_strdup(device_path, GFP_KERNEL);
2368 if (!name) {
2369 kfree(device);
2370 ret = -ENOMEM;
2371 goto error;
2372 }
2373 rcu_assign_pointer(device->name, name);
2374
2375 trans = btrfs_start_transaction(root, 0);
2376 if (IS_ERR(trans)) {
2377 rcu_string_free(device->name);
2378 kfree(device);
2379 ret = PTR_ERR(trans);
2380 goto error;
2381 }
2382
2383 q = bdev_get_queue(bdev);
2384 if (blk_queue_discard(q))
2385 device->can_discard = 1;
2386 device->writeable = 1;
2387 device->generation = trans->transid;
2388 device->io_width = fs_info->sectorsize;
2389 device->io_align = fs_info->sectorsize;
2390 device->sector_size = fs_info->sectorsize;
2391 device->total_bytes = i_size_read(bdev->bd_inode);
2392 device->disk_total_bytes = device->total_bytes;
2393 device->commit_total_bytes = device->total_bytes;
2394 device->fs_info = fs_info;
2395 device->bdev = bdev;
2396 device->in_fs_metadata = 1;
2397 device->is_tgtdev_for_dev_replace = 0;
2398 device->mode = FMODE_EXCL;
2399 device->dev_stats_valid = 1;
2400 set_blocksize(device->bdev, 4096);
2401
2402 if (seeding_dev) {
2403 sb->s_flags &= ~MS_RDONLY;
2404 ret = btrfs_prepare_sprout(root);
2405 BUG_ON(ret); /* -ENOMEM */
2406 }
2407
2408 device->fs_devices = fs_info->fs_devices;
2409
2410 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2411 lock_chunks(fs_info);
2412 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2413 list_add(&device->dev_alloc_list,
2414 &fs_info->fs_devices->alloc_list);
2415 fs_info->fs_devices->num_devices++;
2416 fs_info->fs_devices->open_devices++;
2417 fs_info->fs_devices->rw_devices++;
2418 fs_info->fs_devices->total_devices++;
2419 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2420
2421 spin_lock(&fs_info->free_chunk_lock);
2422 fs_info->free_chunk_space += device->total_bytes;
2423 spin_unlock(&fs_info->free_chunk_lock);
2424
2425 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2426 fs_info->fs_devices->rotating = 1;
2427
2428 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2429 btrfs_set_super_total_bytes(fs_info->super_copy,
2430 tmp + device->total_bytes);
2431
2432 tmp = btrfs_super_num_devices(fs_info->super_copy);
2433 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2434
2435 /* add sysfs device entry */
2436 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2437
2438 /*
2439 * we've got more storage, clear any full flags on the space
2440 * infos
2441 */
2442 btrfs_clear_space_info_full(fs_info);
2443
2444 unlock_chunks(fs_info);
2445 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2446
2447 if (seeding_dev) {
2448 lock_chunks(fs_info);
2449 ret = init_first_rw_device(trans, root, device);
2450 unlock_chunks(fs_info);
2451 if (ret) {
2452 btrfs_abort_transaction(trans, ret);
2453 goto error_trans;
2454 }
2455 }
2456
2457 ret = btrfs_add_device(trans, fs_info, device);
2458 if (ret) {
2459 btrfs_abort_transaction(trans, ret);
2460 goto error_trans;
2461 }
2462
2463 if (seeding_dev) {
2464 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2465
2466 ret = btrfs_finish_sprout(trans, fs_info);
2467 if (ret) {
2468 btrfs_abort_transaction(trans, ret);
2469 goto error_trans;
2470 }
2471
2472 /* Sprouting would change fsid of the mounted root,
2473 * so rename the fsid on the sysfs
2474 */
2475 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2476 fs_info->fsid);
2477 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2478 btrfs_warn(fs_info,
2479 "sysfs: failed to create fsid for sprout");
2480 }
2481
2482 fs_info->num_tolerated_disk_barrier_failures =
2483 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2484 ret = btrfs_commit_transaction(trans, root);
2485
2486 if (seeding_dev) {
2487 mutex_unlock(&uuid_mutex);
2488 up_write(&sb->s_umount);
2489
2490 if (ret) /* transaction commit */
2491 return ret;
2492
2493 ret = btrfs_relocate_sys_chunks(root);
2494 if (ret < 0)
2495 btrfs_handle_fs_error(fs_info, ret,
2496 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2497 trans = btrfs_attach_transaction(root);
2498 if (IS_ERR(trans)) {
2499 if (PTR_ERR(trans) == -ENOENT)
2500 return 0;
2501 return PTR_ERR(trans);
2502 }
2503 ret = btrfs_commit_transaction(trans, root);
2504 }
2505
2506 /* Update ctime/mtime for libblkid */
2507 update_dev_time(device_path);
2508 return ret;
2509
2510 error_trans:
2511 btrfs_end_transaction(trans, root);
2512 rcu_string_free(device->name);
2513 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2514 kfree(device);
2515 error:
2516 blkdev_put(bdev, FMODE_EXCL);
2517 if (seeding_dev) {
2518 mutex_unlock(&uuid_mutex);
2519 up_write(&sb->s_umount);
2520 }
2521 return ret;
2522 }
2523
2524 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2525 struct btrfs_device *srcdev,
2526 struct btrfs_device **device_out)
2527 {
2528 struct request_queue *q;
2529 struct btrfs_device *device;
2530 struct block_device *bdev;
2531 struct btrfs_fs_info *fs_info = root->fs_info;
2532 struct list_head *devices;
2533 struct rcu_string *name;
2534 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2535 int ret = 0;
2536
2537 *device_out = NULL;
2538 if (fs_info->fs_devices->seeding) {
2539 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2540 return -EINVAL;
2541 }
2542
2543 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2544 fs_info->bdev_holder);
2545 if (IS_ERR(bdev)) {
2546 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2547 return PTR_ERR(bdev);
2548 }
2549
2550 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2551
2552 devices = &fs_info->fs_devices->devices;
2553 list_for_each_entry(device, devices, dev_list) {
2554 if (device->bdev == bdev) {
2555 btrfs_err(fs_info,
2556 "target device is in the filesystem!");
2557 ret = -EEXIST;
2558 goto error;
2559 }
2560 }
2561
2562
2563 if (i_size_read(bdev->bd_inode) <
2564 btrfs_device_get_total_bytes(srcdev)) {
2565 btrfs_err(fs_info,
2566 "target device is smaller than source device!");
2567 ret = -EINVAL;
2568 goto error;
2569 }
2570
2571
2572 device = btrfs_alloc_device(NULL, &devid, NULL);
2573 if (IS_ERR(device)) {
2574 ret = PTR_ERR(device);
2575 goto error;
2576 }
2577
2578 name = rcu_string_strdup(device_path, GFP_NOFS);
2579 if (!name) {
2580 kfree(device);
2581 ret = -ENOMEM;
2582 goto error;
2583 }
2584 rcu_assign_pointer(device->name, name);
2585
2586 q = bdev_get_queue(bdev);
2587 if (blk_queue_discard(q))
2588 device->can_discard = 1;
2589 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2590 device->writeable = 1;
2591 device->generation = 0;
2592 device->io_width = fs_info->sectorsize;
2593 device->io_align = fs_info->sectorsize;
2594 device->sector_size = fs_info->sectorsize;
2595 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2596 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2597 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2598 ASSERT(list_empty(&srcdev->resized_list));
2599 device->commit_total_bytes = srcdev->commit_total_bytes;
2600 device->commit_bytes_used = device->bytes_used;
2601 device->fs_info = fs_info;
2602 device->bdev = bdev;
2603 device->in_fs_metadata = 1;
2604 device->is_tgtdev_for_dev_replace = 1;
2605 device->mode = FMODE_EXCL;
2606 device->dev_stats_valid = 1;
2607 set_blocksize(device->bdev, 4096);
2608 device->fs_devices = fs_info->fs_devices;
2609 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2610 fs_info->fs_devices->num_devices++;
2611 fs_info->fs_devices->open_devices++;
2612 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2613
2614 *device_out = device;
2615 return ret;
2616
2617 error:
2618 blkdev_put(bdev, FMODE_EXCL);
2619 return ret;
2620 }
2621
2622 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2623 struct btrfs_device *tgtdev)
2624 {
2625 u32 sectorsize = fs_info->sectorsize;
2626
2627 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2628 tgtdev->io_width = sectorsize;
2629 tgtdev->io_align = sectorsize;
2630 tgtdev->sector_size = sectorsize;
2631 tgtdev->fs_info = fs_info;
2632 tgtdev->in_fs_metadata = 1;
2633 }
2634
2635 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2636 struct btrfs_device *device)
2637 {
2638 int ret;
2639 struct btrfs_path *path;
2640 struct btrfs_root *root = device->fs_info->chunk_root;
2641 struct btrfs_dev_item *dev_item;
2642 struct extent_buffer *leaf;
2643 struct btrfs_key key;
2644
2645 path = btrfs_alloc_path();
2646 if (!path)
2647 return -ENOMEM;
2648
2649 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2650 key.type = BTRFS_DEV_ITEM_KEY;
2651 key.offset = device->devid;
2652
2653 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654 if (ret < 0)
2655 goto out;
2656
2657 if (ret > 0) {
2658 ret = -ENOENT;
2659 goto out;
2660 }
2661
2662 leaf = path->nodes[0];
2663 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2664
2665 btrfs_set_device_id(leaf, dev_item, device->devid);
2666 btrfs_set_device_type(leaf, dev_item, device->type);
2667 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2668 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2669 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2670 btrfs_set_device_total_bytes(leaf, dev_item,
2671 btrfs_device_get_disk_total_bytes(device));
2672 btrfs_set_device_bytes_used(leaf, dev_item,
2673 btrfs_device_get_bytes_used(device));
2674 btrfs_mark_buffer_dirty(leaf);
2675
2676 out:
2677 btrfs_free_path(path);
2678 return ret;
2679 }
2680
2681 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2682 struct btrfs_device *device, u64 new_size)
2683 {
2684 struct btrfs_fs_info *fs_info = device->fs_info;
2685 struct btrfs_super_block *super_copy = fs_info->super_copy;
2686 struct btrfs_fs_devices *fs_devices;
2687 u64 old_total;
2688 u64 diff;
2689
2690 if (!device->writeable)
2691 return -EACCES;
2692
2693 lock_chunks(fs_info);
2694 old_total = btrfs_super_total_bytes(super_copy);
2695 diff = new_size - device->total_bytes;
2696
2697 if (new_size <= device->total_bytes ||
2698 device->is_tgtdev_for_dev_replace) {
2699 unlock_chunks(fs_info);
2700 return -EINVAL;
2701 }
2702
2703 fs_devices = fs_info->fs_devices;
2704
2705 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2706 device->fs_devices->total_rw_bytes += diff;
2707
2708 btrfs_device_set_total_bytes(device, new_size);
2709 btrfs_device_set_disk_total_bytes(device, new_size);
2710 btrfs_clear_space_info_full(device->fs_info);
2711 if (list_empty(&device->resized_list))
2712 list_add_tail(&device->resized_list,
2713 &fs_devices->resized_devices);
2714 unlock_chunks(fs_info);
2715
2716 return btrfs_update_device(trans, device);
2717 }
2718
2719 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2720 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2721 u64 chunk_offset)
2722 {
2723 struct btrfs_root *root = fs_info->chunk_root;
2724 int ret;
2725 struct btrfs_path *path;
2726 struct btrfs_key key;
2727
2728 path = btrfs_alloc_path();
2729 if (!path)
2730 return -ENOMEM;
2731
2732 key.objectid = chunk_objectid;
2733 key.offset = chunk_offset;
2734 key.type = BTRFS_CHUNK_ITEM_KEY;
2735
2736 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2737 if (ret < 0)
2738 goto out;
2739 else if (ret > 0) { /* Logic error or corruption */
2740 btrfs_handle_fs_error(fs_info, -ENOENT,
2741 "Failed lookup while freeing chunk.");
2742 ret = -ENOENT;
2743 goto out;
2744 }
2745
2746 ret = btrfs_del_item(trans, root, path);
2747 if (ret < 0)
2748 btrfs_handle_fs_error(fs_info, ret,
2749 "Failed to delete chunk item.");
2750 out:
2751 btrfs_free_path(path);
2752 return ret;
2753 }
2754
2755 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2756 u64 chunk_objectid, u64 chunk_offset)
2757 {
2758 struct btrfs_super_block *super_copy = fs_info->super_copy;
2759 struct btrfs_disk_key *disk_key;
2760 struct btrfs_chunk *chunk;
2761 u8 *ptr;
2762 int ret = 0;
2763 u32 num_stripes;
2764 u32 array_size;
2765 u32 len = 0;
2766 u32 cur;
2767 struct btrfs_key key;
2768
2769 lock_chunks(fs_info);
2770 array_size = btrfs_super_sys_array_size(super_copy);
2771
2772 ptr = super_copy->sys_chunk_array;
2773 cur = 0;
2774
2775 while (cur < array_size) {
2776 disk_key = (struct btrfs_disk_key *)ptr;
2777 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779 len = sizeof(*disk_key);
2780
2781 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782 chunk = (struct btrfs_chunk *)(ptr + len);
2783 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784 len += btrfs_chunk_item_size(num_stripes);
2785 } else {
2786 ret = -EIO;
2787 break;
2788 }
2789 if (key.objectid == chunk_objectid &&
2790 key.offset == chunk_offset) {
2791 memmove(ptr, ptr + len, array_size - (cur + len));
2792 array_size -= len;
2793 btrfs_set_super_sys_array_size(super_copy, array_size);
2794 } else {
2795 ptr += len;
2796 cur += len;
2797 }
2798 }
2799 unlock_chunks(fs_info);
2800 return ret;
2801 }
2802
2803 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2804 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2805 {
2806 struct extent_map_tree *em_tree;
2807 struct extent_map *em;
2808 struct btrfs_root *extent_root = fs_info->extent_root;
2809 struct map_lookup *map;
2810 u64 dev_extent_len = 0;
2811 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2812 int i, ret = 0;
2813 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2814
2815 em_tree = &fs_info->mapping_tree.map_tree;
2816
2817 read_lock(&em_tree->lock);
2818 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2819 read_unlock(&em_tree->lock);
2820
2821 if (!em || em->start > chunk_offset ||
2822 em->start + em->len < chunk_offset) {
2823 /*
2824 * This is a logic error, but we don't want to just rely on the
2825 * user having built with ASSERT enabled, so if ASSERT doesn't
2826 * do anything we still error out.
2827 */
2828 ASSERT(0);
2829 if (em)
2830 free_extent_map(em);
2831 return -EINVAL;
2832 }
2833 map = em->map_lookup;
2834 lock_chunks(fs_info);
2835 check_system_chunk(trans, extent_root, map->type);
2836 unlock_chunks(fs_info);
2837
2838 /*
2839 * Take the device list mutex to prevent races with the final phase of
2840 * a device replace operation that replaces the device object associated
2841 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2842 */
2843 mutex_lock(&fs_devices->device_list_mutex);
2844 for (i = 0; i < map->num_stripes; i++) {
2845 struct btrfs_device *device = map->stripes[i].dev;
2846 ret = btrfs_free_dev_extent(trans, device,
2847 map->stripes[i].physical,
2848 &dev_extent_len);
2849 if (ret) {
2850 mutex_unlock(&fs_devices->device_list_mutex);
2851 btrfs_abort_transaction(trans, ret);
2852 goto out;
2853 }
2854
2855 if (device->bytes_used > 0) {
2856 lock_chunks(fs_info);
2857 btrfs_device_set_bytes_used(device,
2858 device->bytes_used - dev_extent_len);
2859 spin_lock(&fs_info->free_chunk_lock);
2860 fs_info->free_chunk_space += dev_extent_len;
2861 spin_unlock(&fs_info->free_chunk_lock);
2862 btrfs_clear_space_info_full(fs_info);
2863 unlock_chunks(fs_info);
2864 }
2865
2866 if (map->stripes[i].dev) {
2867 ret = btrfs_update_device(trans, map->stripes[i].dev);
2868 if (ret) {
2869 mutex_unlock(&fs_devices->device_list_mutex);
2870 btrfs_abort_transaction(trans, ret);
2871 goto out;
2872 }
2873 }
2874 }
2875 mutex_unlock(&fs_devices->device_list_mutex);
2876
2877 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2878 if (ret) {
2879 btrfs_abort_transaction(trans, ret);
2880 goto out;
2881 }
2882
2883 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2884
2885 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2886 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2887 chunk_offset);
2888 if (ret) {
2889 btrfs_abort_transaction(trans, ret);
2890 goto out;
2891 }
2892 }
2893
2894 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2895 if (ret) {
2896 btrfs_abort_transaction(trans, ret);
2897 goto out;
2898 }
2899
2900 out:
2901 /* once for us */
2902 free_extent_map(em);
2903 return ret;
2904 }
2905
2906 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2907 {
2908 struct btrfs_root *root = fs_info->chunk_root;
2909 struct btrfs_root *extent_root = fs_info->extent_root;
2910 struct btrfs_trans_handle *trans;
2911 int ret;
2912
2913 /*
2914 * Prevent races with automatic removal of unused block groups.
2915 * After we relocate and before we remove the chunk with offset
2916 * chunk_offset, automatic removal of the block group can kick in,
2917 * resulting in a failure when calling btrfs_remove_chunk() below.
2918 *
2919 * Make sure to acquire this mutex before doing a tree search (dev
2920 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2921 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2922 * we release the path used to search the chunk/dev tree and before
2923 * the current task acquires this mutex and calls us.
2924 */
2925 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2926
2927 ret = btrfs_can_relocate(fs_info, chunk_offset);
2928 if (ret)
2929 return -ENOSPC;
2930
2931 /* step one, relocate all the extents inside this chunk */
2932 btrfs_scrub_pause(root);
2933 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2934 btrfs_scrub_continue(root);
2935 if (ret)
2936 return ret;
2937
2938 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2939 chunk_offset);
2940 if (IS_ERR(trans)) {
2941 ret = PTR_ERR(trans);
2942 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2943 return ret;
2944 }
2945
2946 /*
2947 * step two, delete the device extents and the
2948 * chunk tree entries
2949 */
2950 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2951 btrfs_end_transaction(trans, extent_root);
2952 return ret;
2953 }
2954
2955 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2956 {
2957 struct btrfs_fs_info *fs_info = root->fs_info;
2958 struct btrfs_root *chunk_root = fs_info->chunk_root;
2959 struct btrfs_path *path;
2960 struct extent_buffer *leaf;
2961 struct btrfs_chunk *chunk;
2962 struct btrfs_key key;
2963 struct btrfs_key found_key;
2964 u64 chunk_type;
2965 bool retried = false;
2966 int failed = 0;
2967 int ret;
2968
2969 path = btrfs_alloc_path();
2970 if (!path)
2971 return -ENOMEM;
2972
2973 again:
2974 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2975 key.offset = (u64)-1;
2976 key.type = BTRFS_CHUNK_ITEM_KEY;
2977
2978 while (1) {
2979 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2980 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2981 if (ret < 0) {
2982 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2983 goto error;
2984 }
2985 BUG_ON(ret == 0); /* Corruption */
2986
2987 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2988 key.type);
2989 if (ret)
2990 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2991 if (ret < 0)
2992 goto error;
2993 if (ret > 0)
2994 break;
2995
2996 leaf = path->nodes[0];
2997 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2998
2999 chunk = btrfs_item_ptr(leaf, path->slots[0],
3000 struct btrfs_chunk);
3001 chunk_type = btrfs_chunk_type(leaf, chunk);
3002 btrfs_release_path(path);
3003
3004 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3005 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3006 if (ret == -ENOSPC)
3007 failed++;
3008 else
3009 BUG_ON(ret);
3010 }
3011 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3012
3013 if (found_key.offset == 0)
3014 break;
3015 key.offset = found_key.offset - 1;
3016 }
3017 ret = 0;
3018 if (failed && !retried) {
3019 failed = 0;
3020 retried = true;
3021 goto again;
3022 } else if (WARN_ON(failed && retried)) {
3023 ret = -ENOSPC;
3024 }
3025 error:
3026 btrfs_free_path(path);
3027 return ret;
3028 }
3029
3030 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3031 struct btrfs_balance_control *bctl)
3032 {
3033 struct btrfs_root *root = fs_info->tree_root;
3034 struct btrfs_trans_handle *trans;
3035 struct btrfs_balance_item *item;
3036 struct btrfs_disk_balance_args disk_bargs;
3037 struct btrfs_path *path;
3038 struct extent_buffer *leaf;
3039 struct btrfs_key key;
3040 int ret, err;
3041
3042 path = btrfs_alloc_path();
3043 if (!path)
3044 return -ENOMEM;
3045
3046 trans = btrfs_start_transaction(root, 0);
3047 if (IS_ERR(trans)) {
3048 btrfs_free_path(path);
3049 return PTR_ERR(trans);
3050 }
3051
3052 key.objectid = BTRFS_BALANCE_OBJECTID;
3053 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3054 key.offset = 0;
3055
3056 ret = btrfs_insert_empty_item(trans, root, path, &key,
3057 sizeof(*item));
3058 if (ret)
3059 goto out;
3060
3061 leaf = path->nodes[0];
3062 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3063
3064 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3065
3066 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3067 btrfs_set_balance_data(leaf, item, &disk_bargs);
3068 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3069 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3071 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3072
3073 btrfs_set_balance_flags(leaf, item, bctl->flags);
3074
3075 btrfs_mark_buffer_dirty(leaf);
3076 out:
3077 btrfs_free_path(path);
3078 err = btrfs_commit_transaction(trans, root);
3079 if (err && !ret)
3080 ret = err;
3081 return ret;
3082 }
3083
3084 static int del_balance_item(struct btrfs_fs_info *fs_info)
3085 {
3086 struct btrfs_root *root = fs_info->tree_root;
3087 struct btrfs_trans_handle *trans;
3088 struct btrfs_path *path;
3089 struct btrfs_key key;
3090 int ret, err;
3091
3092 path = btrfs_alloc_path();
3093 if (!path)
3094 return -ENOMEM;
3095
3096 trans = btrfs_start_transaction(root, 0);
3097 if (IS_ERR(trans)) {
3098 btrfs_free_path(path);
3099 return PTR_ERR(trans);
3100 }
3101
3102 key.objectid = BTRFS_BALANCE_OBJECTID;
3103 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3104 key.offset = 0;
3105
3106 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3107 if (ret < 0)
3108 goto out;
3109 if (ret > 0) {
3110 ret = -ENOENT;
3111 goto out;
3112 }
3113
3114 ret = btrfs_del_item(trans, root, path);
3115 out:
3116 btrfs_free_path(path);
3117 err = btrfs_commit_transaction(trans, root);
3118 if (err && !ret)
3119 ret = err;
3120 return ret;
3121 }
3122
3123 /*
3124 * This is a heuristic used to reduce the number of chunks balanced on
3125 * resume after balance was interrupted.
3126 */
3127 static void update_balance_args(struct btrfs_balance_control *bctl)
3128 {
3129 /*
3130 * Turn on soft mode for chunk types that were being converted.
3131 */
3132 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138
3139 /*
3140 * Turn on usage filter if is not already used. The idea is
3141 * that chunks that we have already balanced should be
3142 * reasonably full. Don't do it for chunks that are being
3143 * converted - that will keep us from relocating unconverted
3144 * (albeit full) chunks.
3145 */
3146 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3147 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3148 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3149 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3150 bctl->data.usage = 90;
3151 }
3152 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3153 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3154 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3155 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3156 bctl->sys.usage = 90;
3157 }
3158 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3159 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3160 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162 bctl->meta.usage = 90;
3163 }
3164 }
3165
3166 /*
3167 * Should be called with both balance and volume mutexes held to
3168 * serialize other volume operations (add_dev/rm_dev/resize) with
3169 * restriper. Same goes for unset_balance_control.
3170 */
3171 static void set_balance_control(struct btrfs_balance_control *bctl)
3172 {
3173 struct btrfs_fs_info *fs_info = bctl->fs_info;
3174
3175 BUG_ON(fs_info->balance_ctl);
3176
3177 spin_lock(&fs_info->balance_lock);
3178 fs_info->balance_ctl = bctl;
3179 spin_unlock(&fs_info->balance_lock);
3180 }
3181
3182 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3183 {
3184 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3185
3186 BUG_ON(!fs_info->balance_ctl);
3187
3188 spin_lock(&fs_info->balance_lock);
3189 fs_info->balance_ctl = NULL;
3190 spin_unlock(&fs_info->balance_lock);
3191
3192 kfree(bctl);
3193 }
3194
3195 /*
3196 * Balance filters. Return 1 if chunk should be filtered out
3197 * (should not be balanced).
3198 */
3199 static int chunk_profiles_filter(u64 chunk_type,
3200 struct btrfs_balance_args *bargs)
3201 {
3202 chunk_type = chunk_to_extended(chunk_type) &
3203 BTRFS_EXTENDED_PROFILE_MASK;
3204
3205 if (bargs->profiles & chunk_type)
3206 return 0;
3207
3208 return 1;
3209 }
3210
3211 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3212 struct btrfs_balance_args *bargs)
3213 {
3214 struct btrfs_block_group_cache *cache;
3215 u64 chunk_used;
3216 u64 user_thresh_min;
3217 u64 user_thresh_max;
3218 int ret = 1;
3219
3220 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3221 chunk_used = btrfs_block_group_used(&cache->item);
3222
3223 if (bargs->usage_min == 0)
3224 user_thresh_min = 0;
3225 else
3226 user_thresh_min = div_factor_fine(cache->key.offset,
3227 bargs->usage_min);
3228
3229 if (bargs->usage_max == 0)
3230 user_thresh_max = 1;
3231 else if (bargs->usage_max > 100)
3232 user_thresh_max = cache->key.offset;
3233 else
3234 user_thresh_max = div_factor_fine(cache->key.offset,
3235 bargs->usage_max);
3236
3237 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3238 ret = 0;
3239
3240 btrfs_put_block_group(cache);
3241 return ret;
3242 }
3243
3244 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3245 u64 chunk_offset, struct btrfs_balance_args *bargs)
3246 {
3247 struct btrfs_block_group_cache *cache;
3248 u64 chunk_used, user_thresh;
3249 int ret = 1;
3250
3251 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3252 chunk_used = btrfs_block_group_used(&cache->item);
3253
3254 if (bargs->usage_min == 0)
3255 user_thresh = 1;
3256 else if (bargs->usage > 100)
3257 user_thresh = cache->key.offset;
3258 else
3259 user_thresh = div_factor_fine(cache->key.offset,
3260 bargs->usage);
3261
3262 if (chunk_used < user_thresh)
3263 ret = 0;
3264
3265 btrfs_put_block_group(cache);
3266 return ret;
3267 }
3268
3269 static int chunk_devid_filter(struct extent_buffer *leaf,
3270 struct btrfs_chunk *chunk,
3271 struct btrfs_balance_args *bargs)
3272 {
3273 struct btrfs_stripe *stripe;
3274 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3275 int i;
3276
3277 for (i = 0; i < num_stripes; i++) {
3278 stripe = btrfs_stripe_nr(chunk, i);
3279 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3280 return 0;
3281 }
3282
3283 return 1;
3284 }
3285
3286 /* [pstart, pend) */
3287 static int chunk_drange_filter(struct extent_buffer *leaf,
3288 struct btrfs_chunk *chunk,
3289 u64 chunk_offset,
3290 struct btrfs_balance_args *bargs)
3291 {
3292 struct btrfs_stripe *stripe;
3293 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3294 u64 stripe_offset;
3295 u64 stripe_length;
3296 int factor;
3297 int i;
3298
3299 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3300 return 0;
3301
3302 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3303 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3304 factor = num_stripes / 2;
3305 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3306 factor = num_stripes - 1;
3307 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3308 factor = num_stripes - 2;
3309 } else {
3310 factor = num_stripes;
3311 }
3312
3313 for (i = 0; i < num_stripes; i++) {
3314 stripe = btrfs_stripe_nr(chunk, i);
3315 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3316 continue;
3317
3318 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3319 stripe_length = btrfs_chunk_length(leaf, chunk);
3320 stripe_length = div_u64(stripe_length, factor);
3321
3322 if (stripe_offset < bargs->pend &&
3323 stripe_offset + stripe_length > bargs->pstart)
3324 return 0;
3325 }
3326
3327 return 1;
3328 }
3329
3330 /* [vstart, vend) */
3331 static int chunk_vrange_filter(struct extent_buffer *leaf,
3332 struct btrfs_chunk *chunk,
3333 u64 chunk_offset,
3334 struct btrfs_balance_args *bargs)
3335 {
3336 if (chunk_offset < bargs->vend &&
3337 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3338 /* at least part of the chunk is inside this vrange */
3339 return 0;
3340
3341 return 1;
3342 }
3343
3344 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3345 struct btrfs_chunk *chunk,
3346 struct btrfs_balance_args *bargs)
3347 {
3348 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349
3350 if (bargs->stripes_min <= num_stripes
3351 && num_stripes <= bargs->stripes_max)
3352 return 0;
3353
3354 return 1;
3355 }
3356
3357 static int chunk_soft_convert_filter(u64 chunk_type,
3358 struct btrfs_balance_args *bargs)
3359 {
3360 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3361 return 0;
3362
3363 chunk_type = chunk_to_extended(chunk_type) &
3364 BTRFS_EXTENDED_PROFILE_MASK;
3365
3366 if (bargs->target == chunk_type)
3367 return 1;
3368
3369 return 0;
3370 }
3371
3372 static int should_balance_chunk(struct btrfs_root *root,
3373 struct extent_buffer *leaf,
3374 struct btrfs_chunk *chunk, u64 chunk_offset)
3375 {
3376 struct btrfs_fs_info *fs_info = root->fs_info;
3377 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3378 struct btrfs_balance_args *bargs = NULL;
3379 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3380
3381 /* type filter */
3382 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3383 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3384 return 0;
3385 }
3386
3387 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3388 bargs = &bctl->data;
3389 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3390 bargs = &bctl->sys;
3391 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3392 bargs = &bctl->meta;
3393
3394 /* profiles filter */
3395 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3396 chunk_profiles_filter(chunk_type, bargs)) {
3397 return 0;
3398 }
3399
3400 /* usage filter */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3402 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3403 return 0;
3404 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3405 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3406 return 0;
3407 }
3408
3409 /* devid filter */
3410 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3411 chunk_devid_filter(leaf, chunk, bargs)) {
3412 return 0;
3413 }
3414
3415 /* drange filter, makes sense only with devid filter */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3417 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3418 return 0;
3419 }
3420
3421 /* vrange filter */
3422 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3423 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3424 return 0;
3425 }
3426
3427 /* stripes filter */
3428 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3429 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3430 return 0;
3431 }
3432
3433 /* soft profile changing mode */
3434 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3435 chunk_soft_convert_filter(chunk_type, bargs)) {
3436 return 0;
3437 }
3438
3439 /*
3440 * limited by count, must be the last filter
3441 */
3442 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3443 if (bargs->limit == 0)
3444 return 0;
3445 else
3446 bargs->limit--;
3447 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3448 /*
3449 * Same logic as the 'limit' filter; the minimum cannot be
3450 * determined here because we do not have the global information
3451 * about the count of all chunks that satisfy the filters.
3452 */
3453 if (bargs->limit_max == 0)
3454 return 0;
3455 else
3456 bargs->limit_max--;
3457 }
3458
3459 return 1;
3460 }
3461
3462 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3463 {
3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465 struct btrfs_root *chunk_root = fs_info->chunk_root;
3466 struct btrfs_root *dev_root = fs_info->dev_root;
3467 struct list_head *devices;
3468 struct btrfs_device *device;
3469 u64 old_size;
3470 u64 size_to_free;
3471 u64 chunk_type;
3472 struct btrfs_chunk *chunk;
3473 struct btrfs_path *path = NULL;
3474 struct btrfs_key key;
3475 struct btrfs_key found_key;
3476 struct btrfs_trans_handle *trans;
3477 struct extent_buffer *leaf;
3478 int slot;
3479 int ret;
3480 int enospc_errors = 0;
3481 bool counting = true;
3482 /* The single value limit and min/max limits use the same bytes in the */
3483 u64 limit_data = bctl->data.limit;
3484 u64 limit_meta = bctl->meta.limit;
3485 u64 limit_sys = bctl->sys.limit;
3486 u32 count_data = 0;
3487 u32 count_meta = 0;
3488 u32 count_sys = 0;
3489 int chunk_reserved = 0;
3490 u64 bytes_used = 0;
3491
3492 /* step one make some room on all the devices */
3493 devices = &fs_info->fs_devices->devices;
3494 list_for_each_entry(device, devices, dev_list) {
3495 old_size = btrfs_device_get_total_bytes(device);
3496 size_to_free = div_factor(old_size, 1);
3497 size_to_free = min_t(u64, size_to_free, SZ_1M);
3498 if (!device->writeable ||
3499 btrfs_device_get_total_bytes(device) -
3500 btrfs_device_get_bytes_used(device) > size_to_free ||
3501 device->is_tgtdev_for_dev_replace)
3502 continue;
3503
3504 ret = btrfs_shrink_device(device, old_size - size_to_free);
3505 if (ret == -ENOSPC)
3506 break;
3507 if (ret) {
3508 /* btrfs_shrink_device never returns ret > 0 */
3509 WARN_ON(ret > 0);
3510 goto error;
3511 }
3512
3513 trans = btrfs_start_transaction(dev_root, 0);
3514 if (IS_ERR(trans)) {
3515 ret = PTR_ERR(trans);
3516 btrfs_info_in_rcu(fs_info,
3517 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3518 rcu_str_deref(device->name), ret,
3519 old_size, old_size - size_to_free);
3520 goto error;
3521 }
3522
3523 ret = btrfs_grow_device(trans, device, old_size);
3524 if (ret) {
3525 btrfs_end_transaction(trans, dev_root);
3526 /* btrfs_grow_device never returns ret > 0 */
3527 WARN_ON(ret > 0);
3528 btrfs_info_in_rcu(fs_info,
3529 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3530 rcu_str_deref(device->name), ret,
3531 old_size, old_size - size_to_free);
3532 goto error;
3533 }
3534
3535 btrfs_end_transaction(trans, dev_root);
3536 }
3537
3538 /* step two, relocate all the chunks */
3539 path = btrfs_alloc_path();
3540 if (!path) {
3541 ret = -ENOMEM;
3542 goto error;
3543 }
3544
3545 /* zero out stat counters */
3546 spin_lock(&fs_info->balance_lock);
3547 memset(&bctl->stat, 0, sizeof(bctl->stat));
3548 spin_unlock(&fs_info->balance_lock);
3549 again:
3550 if (!counting) {
3551 /*
3552 * The single value limit and min/max limits use the same bytes
3553 * in the
3554 */
3555 bctl->data.limit = limit_data;
3556 bctl->meta.limit = limit_meta;
3557 bctl->sys.limit = limit_sys;
3558 }
3559 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3560 key.offset = (u64)-1;
3561 key.type = BTRFS_CHUNK_ITEM_KEY;
3562
3563 while (1) {
3564 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3565 atomic_read(&fs_info->balance_cancel_req)) {
3566 ret = -ECANCELED;
3567 goto error;
3568 }
3569
3570 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3571 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3572 if (ret < 0) {
3573 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3574 goto error;
3575 }
3576
3577 /*
3578 * this shouldn't happen, it means the last relocate
3579 * failed
3580 */
3581 if (ret == 0)
3582 BUG(); /* FIXME break ? */
3583
3584 ret = btrfs_previous_item(chunk_root, path, 0,
3585 BTRFS_CHUNK_ITEM_KEY);
3586 if (ret) {
3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 ret = 0;
3589 break;
3590 }
3591
3592 leaf = path->nodes[0];
3593 slot = path->slots[0];
3594 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3595
3596 if (found_key.objectid != key.objectid) {
3597 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3598 break;
3599 }
3600
3601 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3602 chunk_type = btrfs_chunk_type(leaf, chunk);
3603
3604 if (!counting) {
3605 spin_lock(&fs_info->balance_lock);
3606 bctl->stat.considered++;
3607 spin_unlock(&fs_info->balance_lock);
3608 }
3609
3610 ret = should_balance_chunk(chunk_root, leaf, chunk,
3611 found_key.offset);
3612
3613 btrfs_release_path(path);
3614 if (!ret) {
3615 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3616 goto loop;
3617 }
3618
3619 if (counting) {
3620 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 spin_lock(&fs_info->balance_lock);
3622 bctl->stat.expected++;
3623 spin_unlock(&fs_info->balance_lock);
3624
3625 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3626 count_data++;
3627 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3628 count_sys++;
3629 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3630 count_meta++;
3631
3632 goto loop;
3633 }
3634
3635 /*
3636 * Apply limit_min filter, no need to check if the LIMITS
3637 * filter is used, limit_min is 0 by default
3638 */
3639 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3640 count_data < bctl->data.limit_min)
3641 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3642 count_meta < bctl->meta.limit_min)
3643 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3644 count_sys < bctl->sys.limit_min)) {
3645 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3646 goto loop;
3647 }
3648
3649 ASSERT(fs_info->data_sinfo);
3650 spin_lock(&fs_info->data_sinfo->lock);
3651 bytes_used = fs_info->data_sinfo->bytes_used;
3652 spin_unlock(&fs_info->data_sinfo->lock);
3653
3654 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 !chunk_reserved && !bytes_used) {
3656 trans = btrfs_start_transaction(chunk_root, 0);
3657 if (IS_ERR(trans)) {
3658 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659 ret = PTR_ERR(trans);
3660 goto error;
3661 }
3662
3663 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3664 BTRFS_BLOCK_GROUP_DATA);
3665 btrfs_end_transaction(trans, chunk_root);
3666 if (ret < 0) {
3667 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3668 goto error;
3669 }
3670 chunk_reserved = 1;
3671 }
3672
3673 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3674 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675 if (ret && ret != -ENOSPC)
3676 goto error;
3677 if (ret == -ENOSPC) {
3678 enospc_errors++;
3679 } else {
3680 spin_lock(&fs_info->balance_lock);
3681 bctl->stat.completed++;
3682 spin_unlock(&fs_info->balance_lock);
3683 }
3684 loop:
3685 if (found_key.offset == 0)
3686 break;
3687 key.offset = found_key.offset - 1;
3688 }
3689
3690 if (counting) {
3691 btrfs_release_path(path);
3692 counting = false;
3693 goto again;
3694 }
3695 error:
3696 btrfs_free_path(path);
3697 if (enospc_errors) {
3698 btrfs_info(fs_info, "%d enospc errors during balance",
3699 enospc_errors);
3700 if (!ret)
3701 ret = -ENOSPC;
3702 }
3703
3704 return ret;
3705 }
3706
3707 /**
3708 * alloc_profile_is_valid - see if a given profile is valid and reduced
3709 * @flags: profile to validate
3710 * @extended: if true @flags is treated as an extended profile
3711 */
3712 static int alloc_profile_is_valid(u64 flags, int extended)
3713 {
3714 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3715 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3716
3717 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3718
3719 /* 1) check that all other bits are zeroed */
3720 if (flags & ~mask)
3721 return 0;
3722
3723 /* 2) see if profile is reduced */
3724 if (flags == 0)
3725 return !extended; /* "0" is valid for usual profiles */
3726
3727 /* true if exactly one bit set */
3728 return (flags & (flags - 1)) == 0;
3729 }
3730
3731 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3732 {
3733 /* cancel requested || normal exit path */
3734 return atomic_read(&fs_info->balance_cancel_req) ||
3735 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3736 atomic_read(&fs_info->balance_cancel_req) == 0);
3737 }
3738
3739 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3740 {
3741 int ret;
3742
3743 unset_balance_control(fs_info);
3744 ret = del_balance_item(fs_info);
3745 if (ret)
3746 btrfs_handle_fs_error(fs_info, ret, NULL);
3747
3748 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3749 }
3750
3751 /* Non-zero return value signifies invalidity */
3752 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3753 u64 allowed)
3754 {
3755 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3756 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3757 (bctl_arg->target & ~allowed)));
3758 }
3759
3760 /*
3761 * Should be called with both balance and volume mutexes held
3762 */
3763 int btrfs_balance(struct btrfs_balance_control *bctl,
3764 struct btrfs_ioctl_balance_args *bargs)
3765 {
3766 struct btrfs_fs_info *fs_info = bctl->fs_info;
3767 u64 allowed;
3768 int mixed = 0;
3769 int ret;
3770 u64 num_devices;
3771 unsigned seq;
3772
3773 if (btrfs_fs_closing(fs_info) ||
3774 atomic_read(&fs_info->balance_pause_req) ||
3775 atomic_read(&fs_info->balance_cancel_req)) {
3776 ret = -EINVAL;
3777 goto out;
3778 }
3779
3780 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3781 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3782 mixed = 1;
3783
3784 /*
3785 * In case of mixed groups both data and meta should be picked,
3786 * and identical options should be given for both of them.
3787 */
3788 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3789 if (mixed && (bctl->flags & allowed)) {
3790 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3791 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3792 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3793 btrfs_err(fs_info,
3794 "with mixed groups data and metadata balance options must be the same");
3795 ret = -EINVAL;
3796 goto out;
3797 }
3798 }
3799
3800 num_devices = fs_info->fs_devices->num_devices;
3801 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3802 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3803 BUG_ON(num_devices < 1);
3804 num_devices--;
3805 }
3806 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3807 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3808 if (num_devices > 1)
3809 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3810 if (num_devices > 2)
3811 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3812 if (num_devices > 3)
3813 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3814 BTRFS_BLOCK_GROUP_RAID6);
3815 if (validate_convert_profile(&bctl->data, allowed)) {
3816 btrfs_err(fs_info,
3817 "unable to start balance with target data profile %llu",
3818 bctl->data.target);
3819 ret = -EINVAL;
3820 goto out;
3821 }
3822 if (validate_convert_profile(&bctl->meta, allowed)) {
3823 btrfs_err(fs_info,
3824 "unable to start balance with target metadata profile %llu",
3825 bctl->meta.target);
3826 ret = -EINVAL;
3827 goto out;
3828 }
3829 if (validate_convert_profile(&bctl->sys, allowed)) {
3830 btrfs_err(fs_info,
3831 "unable to start balance with target system profile %llu",
3832 bctl->sys.target);
3833 ret = -EINVAL;
3834 goto out;
3835 }
3836
3837 /* allow to reduce meta or sys integrity only if force set */
3838 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3839 BTRFS_BLOCK_GROUP_RAID10 |
3840 BTRFS_BLOCK_GROUP_RAID5 |
3841 BTRFS_BLOCK_GROUP_RAID6;
3842 do {
3843 seq = read_seqbegin(&fs_info->profiles_lock);
3844
3845 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3846 (fs_info->avail_system_alloc_bits & allowed) &&
3847 !(bctl->sys.target & allowed)) ||
3848 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 (fs_info->avail_metadata_alloc_bits & allowed) &&
3850 !(bctl->meta.target & allowed))) {
3851 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3852 btrfs_info(fs_info,
3853 "force reducing metadata integrity");
3854 } else {
3855 btrfs_err(fs_info,
3856 "balance will reduce metadata integrity, use force if you want this");
3857 ret = -EINVAL;
3858 goto out;
3859 }
3860 }
3861 } while (read_seqretry(&fs_info->profiles_lock, seq));
3862
3863 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3864 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3865 btrfs_warn(fs_info,
3866 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3867 bctl->meta.target, bctl->data.target);
3868 }
3869
3870 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3871 fs_info->num_tolerated_disk_barrier_failures = min(
3872 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3873 btrfs_get_num_tolerated_disk_barrier_failures(
3874 bctl->sys.target));
3875 }
3876
3877 ret = insert_balance_item(fs_info, bctl);
3878 if (ret && ret != -EEXIST)
3879 goto out;
3880
3881 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3882 BUG_ON(ret == -EEXIST);
3883 set_balance_control(bctl);
3884 } else {
3885 BUG_ON(ret != -EEXIST);
3886 spin_lock(&fs_info->balance_lock);
3887 update_balance_args(bctl);
3888 spin_unlock(&fs_info->balance_lock);
3889 }
3890
3891 atomic_inc(&fs_info->balance_running);
3892 mutex_unlock(&fs_info->balance_mutex);
3893
3894 ret = __btrfs_balance(fs_info);
3895
3896 mutex_lock(&fs_info->balance_mutex);
3897 atomic_dec(&fs_info->balance_running);
3898
3899 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900 fs_info->num_tolerated_disk_barrier_failures =
3901 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3902 }
3903
3904 if (bargs) {
3905 memset(bargs, 0, sizeof(*bargs));
3906 update_ioctl_balance_args(fs_info, 0, bargs);
3907 }
3908
3909 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3910 balance_need_close(fs_info)) {
3911 __cancel_balance(fs_info);
3912 }
3913
3914 wake_up(&fs_info->balance_wait_q);
3915
3916 return ret;
3917 out:
3918 if (bctl->flags & BTRFS_BALANCE_RESUME)
3919 __cancel_balance(fs_info);
3920 else {
3921 kfree(bctl);
3922 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3923 }
3924 return ret;
3925 }
3926
3927 static int balance_kthread(void *data)
3928 {
3929 struct btrfs_fs_info *fs_info = data;
3930 int ret = 0;
3931
3932 mutex_lock(&fs_info->volume_mutex);
3933 mutex_lock(&fs_info->balance_mutex);
3934
3935 if (fs_info->balance_ctl) {
3936 btrfs_info(fs_info, "continuing balance");
3937 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3938 }
3939
3940 mutex_unlock(&fs_info->balance_mutex);
3941 mutex_unlock(&fs_info->volume_mutex);
3942
3943 return ret;
3944 }
3945
3946 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3947 {
3948 struct task_struct *tsk;
3949
3950 spin_lock(&fs_info->balance_lock);
3951 if (!fs_info->balance_ctl) {
3952 spin_unlock(&fs_info->balance_lock);
3953 return 0;
3954 }
3955 spin_unlock(&fs_info->balance_lock);
3956
3957 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3958 btrfs_info(fs_info, "force skipping balance");
3959 return 0;
3960 }
3961
3962 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3963 return PTR_ERR_OR_ZERO(tsk);
3964 }
3965
3966 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3967 {
3968 struct btrfs_balance_control *bctl;
3969 struct btrfs_balance_item *item;
3970 struct btrfs_disk_balance_args disk_bargs;
3971 struct btrfs_path *path;
3972 struct extent_buffer *leaf;
3973 struct btrfs_key key;
3974 int ret;
3975
3976 path = btrfs_alloc_path();
3977 if (!path)
3978 return -ENOMEM;
3979
3980 key.objectid = BTRFS_BALANCE_OBJECTID;
3981 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3982 key.offset = 0;
3983
3984 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3985 if (ret < 0)
3986 goto out;
3987 if (ret > 0) { /* ret = -ENOENT; */
3988 ret = 0;
3989 goto out;
3990 }
3991
3992 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3993 if (!bctl) {
3994 ret = -ENOMEM;
3995 goto out;
3996 }
3997
3998 leaf = path->nodes[0];
3999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4000
4001 bctl->fs_info = fs_info;
4002 bctl->flags = btrfs_balance_flags(leaf, item);
4003 bctl->flags |= BTRFS_BALANCE_RESUME;
4004
4005 btrfs_balance_data(leaf, item, &disk_bargs);
4006 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4007 btrfs_balance_meta(leaf, item, &disk_bargs);
4008 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4009 btrfs_balance_sys(leaf, item, &disk_bargs);
4010 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4011
4012 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4013
4014 mutex_lock(&fs_info->volume_mutex);
4015 mutex_lock(&fs_info->balance_mutex);
4016
4017 set_balance_control(bctl);
4018
4019 mutex_unlock(&fs_info->balance_mutex);
4020 mutex_unlock(&fs_info->volume_mutex);
4021 out:
4022 btrfs_free_path(path);
4023 return ret;
4024 }
4025
4026 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4027 {
4028 int ret = 0;
4029
4030 mutex_lock(&fs_info->balance_mutex);
4031 if (!fs_info->balance_ctl) {
4032 mutex_unlock(&fs_info->balance_mutex);
4033 return -ENOTCONN;
4034 }
4035
4036 if (atomic_read(&fs_info->balance_running)) {
4037 atomic_inc(&fs_info->balance_pause_req);
4038 mutex_unlock(&fs_info->balance_mutex);
4039
4040 wait_event(fs_info->balance_wait_q,
4041 atomic_read(&fs_info->balance_running) == 0);
4042
4043 mutex_lock(&fs_info->balance_mutex);
4044 /* we are good with balance_ctl ripped off from under us */
4045 BUG_ON(atomic_read(&fs_info->balance_running));
4046 atomic_dec(&fs_info->balance_pause_req);
4047 } else {
4048 ret = -ENOTCONN;
4049 }
4050
4051 mutex_unlock(&fs_info->balance_mutex);
4052 return ret;
4053 }
4054
4055 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4056 {
4057 if (fs_info->sb->s_flags & MS_RDONLY)
4058 return -EROFS;
4059
4060 mutex_lock(&fs_info->balance_mutex);
4061 if (!fs_info->balance_ctl) {
4062 mutex_unlock(&fs_info->balance_mutex);
4063 return -ENOTCONN;
4064 }
4065
4066 atomic_inc(&fs_info->balance_cancel_req);
4067 /*
4068 * if we are running just wait and return, balance item is
4069 * deleted in btrfs_balance in this case
4070 */
4071 if (atomic_read(&fs_info->balance_running)) {
4072 mutex_unlock(&fs_info->balance_mutex);
4073 wait_event(fs_info->balance_wait_q,
4074 atomic_read(&fs_info->balance_running) == 0);
4075 mutex_lock(&fs_info->balance_mutex);
4076 } else {
4077 /* __cancel_balance needs volume_mutex */
4078 mutex_unlock(&fs_info->balance_mutex);
4079 mutex_lock(&fs_info->volume_mutex);
4080 mutex_lock(&fs_info->balance_mutex);
4081
4082 if (fs_info->balance_ctl)
4083 __cancel_balance(fs_info);
4084
4085 mutex_unlock(&fs_info->volume_mutex);
4086 }
4087
4088 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4089 atomic_dec(&fs_info->balance_cancel_req);
4090 mutex_unlock(&fs_info->balance_mutex);
4091 return 0;
4092 }
4093
4094 static int btrfs_uuid_scan_kthread(void *data)
4095 {
4096 struct btrfs_fs_info *fs_info = data;
4097 struct btrfs_root *root = fs_info->tree_root;
4098 struct btrfs_key key;
4099 struct btrfs_key max_key;
4100 struct btrfs_path *path = NULL;
4101 int ret = 0;
4102 struct extent_buffer *eb;
4103 int slot;
4104 struct btrfs_root_item root_item;
4105 u32 item_size;
4106 struct btrfs_trans_handle *trans = NULL;
4107
4108 path = btrfs_alloc_path();
4109 if (!path) {
4110 ret = -ENOMEM;
4111 goto out;
4112 }
4113
4114 key.objectid = 0;
4115 key.type = BTRFS_ROOT_ITEM_KEY;
4116 key.offset = 0;
4117
4118 max_key.objectid = (u64)-1;
4119 max_key.type = BTRFS_ROOT_ITEM_KEY;
4120 max_key.offset = (u64)-1;
4121
4122 while (1) {
4123 ret = btrfs_search_forward(root, &key, path, 0);
4124 if (ret) {
4125 if (ret > 0)
4126 ret = 0;
4127 break;
4128 }
4129
4130 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4131 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4132 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4133 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4134 goto skip;
4135
4136 eb = path->nodes[0];
4137 slot = path->slots[0];
4138 item_size = btrfs_item_size_nr(eb, slot);
4139 if (item_size < sizeof(root_item))
4140 goto skip;
4141
4142 read_extent_buffer(eb, &root_item,
4143 btrfs_item_ptr_offset(eb, slot),
4144 (int)sizeof(root_item));
4145 if (btrfs_root_refs(&root_item) == 0)
4146 goto skip;
4147
4148 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4149 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4150 if (trans)
4151 goto update_tree;
4152
4153 btrfs_release_path(path);
4154 /*
4155 * 1 - subvol uuid item
4156 * 1 - received_subvol uuid item
4157 */
4158 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4159 if (IS_ERR(trans)) {
4160 ret = PTR_ERR(trans);
4161 break;
4162 }
4163 continue;
4164 } else {
4165 goto skip;
4166 }
4167 update_tree:
4168 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4169 ret = btrfs_uuid_tree_add(trans, fs_info,
4170 root_item.uuid,
4171 BTRFS_UUID_KEY_SUBVOL,
4172 key.objectid);
4173 if (ret < 0) {
4174 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4175 ret);
4176 break;
4177 }
4178 }
4179
4180 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4181 ret = btrfs_uuid_tree_add(trans, fs_info,
4182 root_item.received_uuid,
4183 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4184 key.objectid);
4185 if (ret < 0) {
4186 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4187 ret);
4188 break;
4189 }
4190 }
4191
4192 skip:
4193 if (trans) {
4194 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4195 trans = NULL;
4196 if (ret)
4197 break;
4198 }
4199
4200 btrfs_release_path(path);
4201 if (key.offset < (u64)-1) {
4202 key.offset++;
4203 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4204 key.offset = 0;
4205 key.type = BTRFS_ROOT_ITEM_KEY;
4206 } else if (key.objectid < (u64)-1) {
4207 key.offset = 0;
4208 key.type = BTRFS_ROOT_ITEM_KEY;
4209 key.objectid++;
4210 } else {
4211 break;
4212 }
4213 cond_resched();
4214 }
4215
4216 out:
4217 btrfs_free_path(path);
4218 if (trans && !IS_ERR(trans))
4219 btrfs_end_transaction(trans, fs_info->uuid_root);
4220 if (ret)
4221 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4222 else
4223 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4224 up(&fs_info->uuid_tree_rescan_sem);
4225 return 0;
4226 }
4227
4228 /*
4229 * Callback for btrfs_uuid_tree_iterate().
4230 * returns:
4231 * 0 check succeeded, the entry is not outdated.
4232 * < 0 if an error occurred.
4233 * > 0 if the check failed, which means the caller shall remove the entry.
4234 */
4235 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4236 u8 *uuid, u8 type, u64 subid)
4237 {
4238 struct btrfs_key key;
4239 int ret = 0;
4240 struct btrfs_root *subvol_root;
4241
4242 if (type != BTRFS_UUID_KEY_SUBVOL &&
4243 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4244 goto out;
4245
4246 key.objectid = subid;
4247 key.type = BTRFS_ROOT_ITEM_KEY;
4248 key.offset = (u64)-1;
4249 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4250 if (IS_ERR(subvol_root)) {
4251 ret = PTR_ERR(subvol_root);
4252 if (ret == -ENOENT)
4253 ret = 1;
4254 goto out;
4255 }
4256
4257 switch (type) {
4258 case BTRFS_UUID_KEY_SUBVOL:
4259 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4260 ret = 1;
4261 break;
4262 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4263 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4264 BTRFS_UUID_SIZE))
4265 ret = 1;
4266 break;
4267 }
4268
4269 out:
4270 return ret;
4271 }
4272
4273 static int btrfs_uuid_rescan_kthread(void *data)
4274 {
4275 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4276 int ret;
4277
4278 /*
4279 * 1st step is to iterate through the existing UUID tree and
4280 * to delete all entries that contain outdated data.
4281 * 2nd step is to add all missing entries to the UUID tree.
4282 */
4283 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4284 if (ret < 0) {
4285 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4286 up(&fs_info->uuid_tree_rescan_sem);
4287 return ret;
4288 }
4289 return btrfs_uuid_scan_kthread(data);
4290 }
4291
4292 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4293 {
4294 struct btrfs_trans_handle *trans;
4295 struct btrfs_root *tree_root = fs_info->tree_root;
4296 struct btrfs_root *uuid_root;
4297 struct task_struct *task;
4298 int ret;
4299
4300 /*
4301 * 1 - root node
4302 * 1 - root item
4303 */
4304 trans = btrfs_start_transaction(tree_root, 2);
4305 if (IS_ERR(trans))
4306 return PTR_ERR(trans);
4307
4308 uuid_root = btrfs_create_tree(trans, fs_info,
4309 BTRFS_UUID_TREE_OBJECTID);
4310 if (IS_ERR(uuid_root)) {
4311 ret = PTR_ERR(uuid_root);
4312 btrfs_abort_transaction(trans, ret);
4313 btrfs_end_transaction(trans, tree_root);
4314 return ret;
4315 }
4316
4317 fs_info->uuid_root = uuid_root;
4318
4319 ret = btrfs_commit_transaction(trans, tree_root);
4320 if (ret)
4321 return ret;
4322
4323 down(&fs_info->uuid_tree_rescan_sem);
4324 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4325 if (IS_ERR(task)) {
4326 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4327 btrfs_warn(fs_info, "failed to start uuid_scan task");
4328 up(&fs_info->uuid_tree_rescan_sem);
4329 return PTR_ERR(task);
4330 }
4331
4332 return 0;
4333 }
4334
4335 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4336 {
4337 struct task_struct *task;
4338
4339 down(&fs_info->uuid_tree_rescan_sem);
4340 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4341 if (IS_ERR(task)) {
4342 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4343 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4344 up(&fs_info->uuid_tree_rescan_sem);
4345 return PTR_ERR(task);
4346 }
4347
4348 return 0;
4349 }
4350
4351 /*
4352 * shrinking a device means finding all of the device extents past
4353 * the new size, and then following the back refs to the chunks.
4354 * The chunk relocation code actually frees the device extent
4355 */
4356 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4357 {
4358 struct btrfs_fs_info *fs_info = device->fs_info;
4359 struct btrfs_root *root = fs_info->dev_root;
4360 struct btrfs_trans_handle *trans;
4361 struct btrfs_dev_extent *dev_extent = NULL;
4362 struct btrfs_path *path;
4363 u64 length;
4364 u64 chunk_offset;
4365 int ret;
4366 int slot;
4367 int failed = 0;
4368 bool retried = false;
4369 bool checked_pending_chunks = false;
4370 struct extent_buffer *l;
4371 struct btrfs_key key;
4372 struct btrfs_super_block *super_copy = fs_info->super_copy;
4373 u64 old_total = btrfs_super_total_bytes(super_copy);
4374 u64 old_size = btrfs_device_get_total_bytes(device);
4375 u64 diff = old_size - new_size;
4376
4377 if (device->is_tgtdev_for_dev_replace)
4378 return -EINVAL;
4379
4380 path = btrfs_alloc_path();
4381 if (!path)
4382 return -ENOMEM;
4383
4384 path->reada = READA_FORWARD;
4385
4386 lock_chunks(fs_info);
4387
4388 btrfs_device_set_total_bytes(device, new_size);
4389 if (device->writeable) {
4390 device->fs_devices->total_rw_bytes -= diff;
4391 spin_lock(&fs_info->free_chunk_lock);
4392 fs_info->free_chunk_space -= diff;
4393 spin_unlock(&fs_info->free_chunk_lock);
4394 }
4395 unlock_chunks(fs_info);
4396
4397 again:
4398 key.objectid = device->devid;
4399 key.offset = (u64)-1;
4400 key.type = BTRFS_DEV_EXTENT_KEY;
4401
4402 do {
4403 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4405 if (ret < 0) {
4406 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4407 goto done;
4408 }
4409
4410 ret = btrfs_previous_item(root, path, 0, key.type);
4411 if (ret)
4412 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4413 if (ret < 0)
4414 goto done;
4415 if (ret) {
4416 ret = 0;
4417 btrfs_release_path(path);
4418 break;
4419 }
4420
4421 l = path->nodes[0];
4422 slot = path->slots[0];
4423 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4424
4425 if (key.objectid != device->devid) {
4426 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4427 btrfs_release_path(path);
4428 break;
4429 }
4430
4431 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4432 length = btrfs_dev_extent_length(l, dev_extent);
4433
4434 if (key.offset + length <= new_size) {
4435 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4436 btrfs_release_path(path);
4437 break;
4438 }
4439
4440 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4441 btrfs_release_path(path);
4442
4443 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4444 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4445 if (ret && ret != -ENOSPC)
4446 goto done;
4447 if (ret == -ENOSPC)
4448 failed++;
4449 } while (key.offset-- > 0);
4450
4451 if (failed && !retried) {
4452 failed = 0;
4453 retried = true;
4454 goto again;
4455 } else if (failed && retried) {
4456 ret = -ENOSPC;
4457 goto done;
4458 }
4459
4460 /* Shrinking succeeded, else we would be at "done". */
4461 trans = btrfs_start_transaction(root, 0);
4462 if (IS_ERR(trans)) {
4463 ret = PTR_ERR(trans);
4464 goto done;
4465 }
4466
4467 lock_chunks(fs_info);
4468
4469 /*
4470 * We checked in the above loop all device extents that were already in
4471 * the device tree. However before we have updated the device's
4472 * total_bytes to the new size, we might have had chunk allocations that
4473 * have not complete yet (new block groups attached to transaction
4474 * handles), and therefore their device extents were not yet in the
4475 * device tree and we missed them in the loop above. So if we have any
4476 * pending chunk using a device extent that overlaps the device range
4477 * that we can not use anymore, commit the current transaction and
4478 * repeat the search on the device tree - this way we guarantee we will
4479 * not have chunks using device extents that end beyond 'new_size'.
4480 */
4481 if (!checked_pending_chunks) {
4482 u64 start = new_size;
4483 u64 len = old_size - new_size;
4484
4485 if (contains_pending_extent(trans->transaction, device,
4486 &start, len)) {
4487 unlock_chunks(fs_info);
4488 checked_pending_chunks = true;
4489 failed = 0;
4490 retried = false;
4491 ret = btrfs_commit_transaction(trans, root);
4492 if (ret)
4493 goto done;
4494 goto again;
4495 }
4496 }
4497
4498 btrfs_device_set_disk_total_bytes(device, new_size);
4499 if (list_empty(&device->resized_list))
4500 list_add_tail(&device->resized_list,
4501 &fs_info->fs_devices->resized_devices);
4502
4503 WARN_ON(diff > old_total);
4504 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4505 unlock_chunks(fs_info);
4506
4507 /* Now btrfs_update_device() will change the on-disk size. */
4508 ret = btrfs_update_device(trans, device);
4509 btrfs_end_transaction(trans, root);
4510 done:
4511 btrfs_free_path(path);
4512 if (ret) {
4513 lock_chunks(fs_info);
4514 btrfs_device_set_total_bytes(device, old_size);
4515 if (device->writeable)
4516 device->fs_devices->total_rw_bytes += diff;
4517 spin_lock(&fs_info->free_chunk_lock);
4518 fs_info->free_chunk_space += diff;
4519 spin_unlock(&fs_info->free_chunk_lock);
4520 unlock_chunks(fs_info);
4521 }
4522 return ret;
4523 }
4524
4525 static int btrfs_add_system_chunk(struct btrfs_root *root,
4526 struct btrfs_key *key,
4527 struct btrfs_chunk *chunk, int item_size)
4528 {
4529 struct btrfs_fs_info *fs_info = root->fs_info;
4530 struct btrfs_super_block *super_copy = fs_info->super_copy;
4531 struct btrfs_disk_key disk_key;
4532 u32 array_size;
4533 u8 *ptr;
4534
4535 lock_chunks(fs_info);
4536 array_size = btrfs_super_sys_array_size(super_copy);
4537 if (array_size + item_size + sizeof(disk_key)
4538 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4539 unlock_chunks(fs_info);
4540 return -EFBIG;
4541 }
4542
4543 ptr = super_copy->sys_chunk_array + array_size;
4544 btrfs_cpu_key_to_disk(&disk_key, key);
4545 memcpy(ptr, &disk_key, sizeof(disk_key));
4546 ptr += sizeof(disk_key);
4547 memcpy(ptr, chunk, item_size);
4548 item_size += sizeof(disk_key);
4549 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4550 unlock_chunks(fs_info);
4551
4552 return 0;
4553 }
4554
4555 /*
4556 * sort the devices in descending order by max_avail, total_avail
4557 */
4558 static int btrfs_cmp_device_info(const void *a, const void *b)
4559 {
4560 const struct btrfs_device_info *di_a = a;
4561 const struct btrfs_device_info *di_b = b;
4562
4563 if (di_a->max_avail > di_b->max_avail)
4564 return -1;
4565 if (di_a->max_avail < di_b->max_avail)
4566 return 1;
4567 if (di_a->total_avail > di_b->total_avail)
4568 return -1;
4569 if (di_a->total_avail < di_b->total_avail)
4570 return 1;
4571 return 0;
4572 }
4573
4574 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4575 {
4576 /* TODO allow them to set a preferred stripe size */
4577 return SZ_64K;
4578 }
4579
4580 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4581 {
4582 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4583 return;
4584
4585 btrfs_set_fs_incompat(info, RAID56);
4586 }
4587
4588 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4589 - sizeof(struct btrfs_chunk)) \
4590 / sizeof(struct btrfs_stripe) + 1)
4591
4592 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4593 - 2 * sizeof(struct btrfs_disk_key) \
4594 - 2 * sizeof(struct btrfs_chunk)) \
4595 / sizeof(struct btrfs_stripe) + 1)
4596
4597 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4598 struct btrfs_root *extent_root, u64 start,
4599 u64 type)
4600 {
4601 struct btrfs_fs_info *info = extent_root->fs_info;
4602 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4603 struct list_head *cur;
4604 struct map_lookup *map = NULL;
4605 struct extent_map_tree *em_tree;
4606 struct extent_map *em;
4607 struct btrfs_device_info *devices_info = NULL;
4608 u64 total_avail;
4609 int num_stripes; /* total number of stripes to allocate */
4610 int data_stripes; /* number of stripes that count for
4611 block group size */
4612 int sub_stripes; /* sub_stripes info for map */
4613 int dev_stripes; /* stripes per dev */
4614 int devs_max; /* max devs to use */
4615 int devs_min; /* min devs needed */
4616 int devs_increment; /* ndevs has to be a multiple of this */
4617 int ncopies; /* how many copies to data has */
4618 int ret;
4619 u64 max_stripe_size;
4620 u64 max_chunk_size;
4621 u64 stripe_size;
4622 u64 num_bytes;
4623 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4624 int ndevs;
4625 int i;
4626 int j;
4627 int index;
4628
4629 BUG_ON(!alloc_profile_is_valid(type, 0));
4630
4631 if (list_empty(&fs_devices->alloc_list))
4632 return -ENOSPC;
4633
4634 index = __get_raid_index(type);
4635
4636 sub_stripes = btrfs_raid_array[index].sub_stripes;
4637 dev_stripes = btrfs_raid_array[index].dev_stripes;
4638 devs_max = btrfs_raid_array[index].devs_max;
4639 devs_min = btrfs_raid_array[index].devs_min;
4640 devs_increment = btrfs_raid_array[index].devs_increment;
4641 ncopies = btrfs_raid_array[index].ncopies;
4642
4643 if (type & BTRFS_BLOCK_GROUP_DATA) {
4644 max_stripe_size = SZ_1G;
4645 max_chunk_size = 10 * max_stripe_size;
4646 if (!devs_max)
4647 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4648 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4649 /* for larger filesystems, use larger metadata chunks */
4650 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4651 max_stripe_size = SZ_1G;
4652 else
4653 max_stripe_size = SZ_256M;
4654 max_chunk_size = max_stripe_size;
4655 if (!devs_max)
4656 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4657 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4658 max_stripe_size = SZ_32M;
4659 max_chunk_size = 2 * max_stripe_size;
4660 if (!devs_max)
4661 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4662 } else {
4663 btrfs_err(info, "invalid chunk type 0x%llx requested",
4664 type);
4665 BUG_ON(1);
4666 }
4667
4668 /* we don't want a chunk larger than 10% of writeable space */
4669 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4670 max_chunk_size);
4671
4672 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4673 GFP_NOFS);
4674 if (!devices_info)
4675 return -ENOMEM;
4676
4677 cur = fs_devices->alloc_list.next;
4678
4679 /*
4680 * in the first pass through the devices list, we gather information
4681 * about the available holes on each device.
4682 */
4683 ndevs = 0;
4684 while (cur != &fs_devices->alloc_list) {
4685 struct btrfs_device *device;
4686 u64 max_avail;
4687 u64 dev_offset;
4688
4689 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4690
4691 cur = cur->next;
4692
4693 if (!device->writeable) {
4694 WARN(1, KERN_ERR
4695 "BTRFS: read-only device in alloc_list\n");
4696 continue;
4697 }
4698
4699 if (!device->in_fs_metadata ||
4700 device->is_tgtdev_for_dev_replace)
4701 continue;
4702
4703 if (device->total_bytes > device->bytes_used)
4704 total_avail = device->total_bytes - device->bytes_used;
4705 else
4706 total_avail = 0;
4707
4708 /* If there is no space on this device, skip it. */
4709 if (total_avail == 0)
4710 continue;
4711
4712 ret = find_free_dev_extent(trans, device,
4713 max_stripe_size * dev_stripes,
4714 &dev_offset, &max_avail);
4715 if (ret && ret != -ENOSPC)
4716 goto error;
4717
4718 if (ret == 0)
4719 max_avail = max_stripe_size * dev_stripes;
4720
4721 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4722 continue;
4723
4724 if (ndevs == fs_devices->rw_devices) {
4725 WARN(1, "%s: found more than %llu devices\n",
4726 __func__, fs_devices->rw_devices);
4727 break;
4728 }
4729 devices_info[ndevs].dev_offset = dev_offset;
4730 devices_info[ndevs].max_avail = max_avail;
4731 devices_info[ndevs].total_avail = total_avail;
4732 devices_info[ndevs].dev = device;
4733 ++ndevs;
4734 }
4735
4736 /*
4737 * now sort the devices by hole size / available space
4738 */
4739 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4740 btrfs_cmp_device_info, NULL);
4741
4742 /* round down to number of usable stripes */
4743 ndevs -= ndevs % devs_increment;
4744
4745 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4746 ret = -ENOSPC;
4747 goto error;
4748 }
4749
4750 if (devs_max && ndevs > devs_max)
4751 ndevs = devs_max;
4752 /*
4753 * the primary goal is to maximize the number of stripes, so use as many
4754 * devices as possible, even if the stripes are not maximum sized.
4755 */
4756 stripe_size = devices_info[ndevs-1].max_avail;
4757 num_stripes = ndevs * dev_stripes;
4758
4759 /*
4760 * this will have to be fixed for RAID1 and RAID10 over
4761 * more drives
4762 */
4763 data_stripes = num_stripes / ncopies;
4764
4765 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4766 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4767 info->stripesize);
4768 data_stripes = num_stripes - 1;
4769 }
4770 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4771 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4772 info->stripesize);
4773 data_stripes = num_stripes - 2;
4774 }
4775
4776 /*
4777 * Use the number of data stripes to figure out how big this chunk
4778 * is really going to be in terms of logical address space,
4779 * and compare that answer with the max chunk size
4780 */
4781 if (stripe_size * data_stripes > max_chunk_size) {
4782 u64 mask = (1ULL << 24) - 1;
4783
4784 stripe_size = div_u64(max_chunk_size, data_stripes);
4785
4786 /* bump the answer up to a 16MB boundary */
4787 stripe_size = (stripe_size + mask) & ~mask;
4788
4789 /* but don't go higher than the limits we found
4790 * while searching for free extents
4791 */
4792 if (stripe_size > devices_info[ndevs-1].max_avail)
4793 stripe_size = devices_info[ndevs-1].max_avail;
4794 }
4795
4796 stripe_size = div_u64(stripe_size, dev_stripes);
4797
4798 /* align to BTRFS_STRIPE_LEN */
4799 stripe_size = div_u64(stripe_size, raid_stripe_len);
4800 stripe_size *= raid_stripe_len;
4801
4802 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4803 if (!map) {
4804 ret = -ENOMEM;
4805 goto error;
4806 }
4807 map->num_stripes = num_stripes;
4808
4809 for (i = 0; i < ndevs; ++i) {
4810 for (j = 0; j < dev_stripes; ++j) {
4811 int s = i * dev_stripes + j;
4812 map->stripes[s].dev = devices_info[i].dev;
4813 map->stripes[s].physical = devices_info[i].dev_offset +
4814 j * stripe_size;
4815 }
4816 }
4817 map->sector_size = info->sectorsize;
4818 map->stripe_len = raid_stripe_len;
4819 map->io_align = raid_stripe_len;
4820 map->io_width = raid_stripe_len;
4821 map->type = type;
4822 map->sub_stripes = sub_stripes;
4823
4824 num_bytes = stripe_size * data_stripes;
4825
4826 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4827
4828 em = alloc_extent_map();
4829 if (!em) {
4830 kfree(map);
4831 ret = -ENOMEM;
4832 goto error;
4833 }
4834 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4835 em->map_lookup = map;
4836 em->start = start;
4837 em->len = num_bytes;
4838 em->block_start = 0;
4839 em->block_len = em->len;
4840 em->orig_block_len = stripe_size;
4841
4842 em_tree = &info->mapping_tree.map_tree;
4843 write_lock(&em_tree->lock);
4844 ret = add_extent_mapping(em_tree, em, 0);
4845 if (!ret) {
4846 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4847 atomic_inc(&em->refs);
4848 }
4849 write_unlock(&em_tree->lock);
4850 if (ret) {
4851 free_extent_map(em);
4852 goto error;
4853 }
4854
4855 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4856 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4857 start, num_bytes);
4858 if (ret)
4859 goto error_del_extent;
4860
4861 for (i = 0; i < map->num_stripes; i++) {
4862 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4863 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4864 }
4865
4866 spin_lock(&info->free_chunk_lock);
4867 info->free_chunk_space -= (stripe_size * map->num_stripes);
4868 spin_unlock(&info->free_chunk_lock);
4869
4870 free_extent_map(em);
4871 check_raid56_incompat_flag(info, type);
4872
4873 kfree(devices_info);
4874 return 0;
4875
4876 error_del_extent:
4877 write_lock(&em_tree->lock);
4878 remove_extent_mapping(em_tree, em);
4879 write_unlock(&em_tree->lock);
4880
4881 /* One for our allocation */
4882 free_extent_map(em);
4883 /* One for the tree reference */
4884 free_extent_map(em);
4885 /* One for the pending_chunks list reference */
4886 free_extent_map(em);
4887 error:
4888 kfree(devices_info);
4889 return ret;
4890 }
4891
4892 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4893 struct btrfs_fs_info *fs_info,
4894 u64 chunk_offset, u64 chunk_size)
4895 {
4896 struct btrfs_root *extent_root = fs_info->extent_root;
4897 struct btrfs_root *chunk_root = fs_info->chunk_root;
4898 struct btrfs_key key;
4899 struct btrfs_device *device;
4900 struct btrfs_chunk *chunk;
4901 struct btrfs_stripe *stripe;
4902 struct extent_map_tree *em_tree;
4903 struct extent_map *em;
4904 struct map_lookup *map;
4905 size_t item_size;
4906 u64 dev_offset;
4907 u64 stripe_size;
4908 int i = 0;
4909 int ret = 0;
4910
4911 em_tree = &fs_info->mapping_tree.map_tree;
4912 read_lock(&em_tree->lock);
4913 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4914 read_unlock(&em_tree->lock);
4915
4916 if (!em) {
4917 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
4918 chunk_offset, chunk_size);
4919 return -EINVAL;
4920 }
4921
4922 if (em->start != chunk_offset || em->len != chunk_size) {
4923 btrfs_crit(fs_info,
4924 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4925 chunk_offset, chunk_size, em->start, em->len);
4926 free_extent_map(em);
4927 return -EINVAL;
4928 }
4929
4930 map = em->map_lookup;
4931 item_size = btrfs_chunk_item_size(map->num_stripes);
4932 stripe_size = em->orig_block_len;
4933
4934 chunk = kzalloc(item_size, GFP_NOFS);
4935 if (!chunk) {
4936 ret = -ENOMEM;
4937 goto out;
4938 }
4939
4940 /*
4941 * Take the device list mutex to prevent races with the final phase of
4942 * a device replace operation that replaces the device object associated
4943 * with the map's stripes, because the device object's id can change
4944 * at any time during that final phase of the device replace operation
4945 * (dev-replace.c:btrfs_dev_replace_finishing()).
4946 */
4947 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4948 for (i = 0; i < map->num_stripes; i++) {
4949 device = map->stripes[i].dev;
4950 dev_offset = map->stripes[i].physical;
4951
4952 ret = btrfs_update_device(trans, device);
4953 if (ret)
4954 break;
4955 ret = btrfs_alloc_dev_extent(trans, device,
4956 chunk_root->root_key.objectid,
4957 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4958 chunk_offset, dev_offset,
4959 stripe_size);
4960 if (ret)
4961 break;
4962 }
4963 if (ret) {
4964 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4965 goto out;
4966 }
4967
4968 stripe = &chunk->stripe;
4969 for (i = 0; i < map->num_stripes; i++) {
4970 device = map->stripes[i].dev;
4971 dev_offset = map->stripes[i].physical;
4972
4973 btrfs_set_stack_stripe_devid(stripe, device->devid);
4974 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4975 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4976 stripe++;
4977 }
4978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4979
4980 btrfs_set_stack_chunk_length(chunk, chunk_size);
4981 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4982 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4983 btrfs_set_stack_chunk_type(chunk, map->type);
4984 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4985 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4986 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4987 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4988 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4989
4990 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4991 key.type = BTRFS_CHUNK_ITEM_KEY;
4992 key.offset = chunk_offset;
4993
4994 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4995 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4996 /*
4997 * TODO: Cleanup of inserted chunk root in case of
4998 * failure.
4999 */
5000 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5001 item_size);
5002 }
5003
5004 out:
5005 kfree(chunk);
5006 free_extent_map(em);
5007 return ret;
5008 }
5009
5010 /*
5011 * Chunk allocation falls into two parts. The first part does works
5012 * that make the new allocated chunk useable, but not do any operation
5013 * that modifies the chunk tree. The second part does the works that
5014 * require modifying the chunk tree. This division is important for the
5015 * bootstrap process of adding storage to a seed btrfs.
5016 */
5017 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5018 struct btrfs_root *extent_root, u64 type)
5019 {
5020 struct btrfs_fs_info *fs_info = extent_root->fs_info;
5021 u64 chunk_offset;
5022
5023 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5024 chunk_offset = find_next_chunk(fs_info);
5025 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5026 }
5027
5028 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5029 struct btrfs_root *root,
5030 struct btrfs_device *device)
5031 {
5032 u64 chunk_offset;
5033 u64 sys_chunk_offset;
5034 u64 alloc_profile;
5035 struct btrfs_fs_info *fs_info = root->fs_info;
5036 struct btrfs_root *extent_root = fs_info->extent_root;
5037 int ret;
5038
5039 chunk_offset = find_next_chunk(fs_info);
5040 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5041 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5042 alloc_profile);
5043 if (ret)
5044 return ret;
5045
5046 sys_chunk_offset = find_next_chunk(fs_info);
5047 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5048 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5049 alloc_profile);
5050 return ret;
5051 }
5052
5053 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5054 {
5055 int max_errors;
5056
5057 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5058 BTRFS_BLOCK_GROUP_RAID10 |
5059 BTRFS_BLOCK_GROUP_RAID5 |
5060 BTRFS_BLOCK_GROUP_DUP)) {
5061 max_errors = 1;
5062 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5063 max_errors = 2;
5064 } else {
5065 max_errors = 0;
5066 }
5067
5068 return max_errors;
5069 }
5070
5071 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5072 {
5073 struct btrfs_fs_info *fs_info = root->fs_info;
5074 struct extent_map *em;
5075 struct map_lookup *map;
5076 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5077 int readonly = 0;
5078 int miss_ndevs = 0;
5079 int i;
5080
5081 read_lock(&map_tree->map_tree.lock);
5082 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5083 read_unlock(&map_tree->map_tree.lock);
5084 if (!em)
5085 return 1;
5086
5087 map = em->map_lookup;
5088 for (i = 0; i < map->num_stripes; i++) {
5089 if (map->stripes[i].dev->missing) {
5090 miss_ndevs++;
5091 continue;
5092 }
5093
5094 if (!map->stripes[i].dev->writeable) {
5095 readonly = 1;
5096 goto end;
5097 }
5098 }
5099
5100 /*
5101 * If the number of missing devices is larger than max errors,
5102 * we can not write the data into that chunk successfully, so
5103 * set it readonly.
5104 */
5105 if (miss_ndevs > btrfs_chunk_max_errors(map))
5106 readonly = 1;
5107 end:
5108 free_extent_map(em);
5109 return readonly;
5110 }
5111
5112 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5113 {
5114 extent_map_tree_init(&tree->map_tree);
5115 }
5116
5117 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5118 {
5119 struct extent_map *em;
5120
5121 while (1) {
5122 write_lock(&tree->map_tree.lock);
5123 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5124 if (em)
5125 remove_extent_mapping(&tree->map_tree, em);
5126 write_unlock(&tree->map_tree.lock);
5127 if (!em)
5128 break;
5129 /* once for us */
5130 free_extent_map(em);
5131 /* once for the tree */
5132 free_extent_map(em);
5133 }
5134 }
5135
5136 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5137 {
5138 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5139 struct extent_map *em;
5140 struct map_lookup *map;
5141 struct extent_map_tree *em_tree = &map_tree->map_tree;
5142 int ret;
5143
5144 read_lock(&em_tree->lock);
5145 em = lookup_extent_mapping(em_tree, logical, len);
5146 read_unlock(&em_tree->lock);
5147
5148 /*
5149 * We could return errors for these cases, but that could get ugly and
5150 * we'd probably do the same thing which is just not do anything else
5151 * and exit, so return 1 so the callers don't try to use other copies.
5152 */
5153 if (!em) {
5154 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5155 logical+len);
5156 return 1;
5157 }
5158
5159 if (em->start > logical || em->start + em->len < logical) {
5160 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5161 logical, logical+len, em->start,
5162 em->start + em->len);
5163 free_extent_map(em);
5164 return 1;
5165 }
5166
5167 map = em->map_lookup;
5168 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5169 ret = map->num_stripes;
5170 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5171 ret = map->sub_stripes;
5172 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5173 ret = 2;
5174 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5175 ret = 3;
5176 else
5177 ret = 1;
5178 free_extent_map(em);
5179
5180 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5181 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5182 ret++;
5183 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5184
5185 return ret;
5186 }
5187
5188 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5189 struct btrfs_mapping_tree *map_tree,
5190 u64 logical)
5191 {
5192 struct btrfs_fs_info *fs_info = root->fs_info;
5193 struct extent_map *em;
5194 struct map_lookup *map;
5195 struct extent_map_tree *em_tree = &map_tree->map_tree;
5196 unsigned long len = fs_info->sectorsize;
5197
5198 read_lock(&em_tree->lock);
5199 em = lookup_extent_mapping(em_tree, logical, len);
5200 read_unlock(&em_tree->lock);
5201 BUG_ON(!em);
5202
5203 BUG_ON(em->start > logical || em->start + em->len < logical);
5204 map = em->map_lookup;
5205 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5206 len = map->stripe_len * nr_data_stripes(map);
5207 free_extent_map(em);
5208 return len;
5209 }
5210
5211 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5212 u64 logical, u64 len, int mirror_num)
5213 {
5214 struct extent_map *em;
5215 struct map_lookup *map;
5216 struct extent_map_tree *em_tree = &map_tree->map_tree;
5217 int ret = 0;
5218
5219 read_lock(&em_tree->lock);
5220 em = lookup_extent_mapping(em_tree, logical, len);
5221 read_unlock(&em_tree->lock);
5222 BUG_ON(!em);
5223
5224 BUG_ON(em->start > logical || em->start + em->len < logical);
5225 map = em->map_lookup;
5226 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5227 ret = 1;
5228 free_extent_map(em);
5229 return ret;
5230 }
5231
5232 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5233 struct map_lookup *map, int first, int num,
5234 int optimal, int dev_replace_is_ongoing)
5235 {
5236 int i;
5237 int tolerance;
5238 struct btrfs_device *srcdev;
5239
5240 if (dev_replace_is_ongoing &&
5241 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5242 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5243 srcdev = fs_info->dev_replace.srcdev;
5244 else
5245 srcdev = NULL;
5246
5247 /*
5248 * try to avoid the drive that is the source drive for a
5249 * dev-replace procedure, only choose it if no other non-missing
5250 * mirror is available
5251 */
5252 for (tolerance = 0; tolerance < 2; tolerance++) {
5253 if (map->stripes[optimal].dev->bdev &&
5254 (tolerance || map->stripes[optimal].dev != srcdev))
5255 return optimal;
5256 for (i = first; i < first + num; i++) {
5257 if (map->stripes[i].dev->bdev &&
5258 (tolerance || map->stripes[i].dev != srcdev))
5259 return i;
5260 }
5261 }
5262
5263 /* we couldn't find one that doesn't fail. Just return something
5264 * and the io error handling code will clean up eventually
5265 */
5266 return optimal;
5267 }
5268
5269 static inline int parity_smaller(u64 a, u64 b)
5270 {
5271 return a > b;
5272 }
5273
5274 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5275 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5276 {
5277 struct btrfs_bio_stripe s;
5278 int i;
5279 u64 l;
5280 int again = 1;
5281
5282 while (again) {
5283 again = 0;
5284 for (i = 0; i < num_stripes - 1; i++) {
5285 if (parity_smaller(bbio->raid_map[i],
5286 bbio->raid_map[i+1])) {
5287 s = bbio->stripes[i];
5288 l = bbio->raid_map[i];
5289 bbio->stripes[i] = bbio->stripes[i+1];
5290 bbio->raid_map[i] = bbio->raid_map[i+1];
5291 bbio->stripes[i+1] = s;
5292 bbio->raid_map[i+1] = l;
5293
5294 again = 1;
5295 }
5296 }
5297 }
5298 }
5299
5300 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5301 {
5302 struct btrfs_bio *bbio = kzalloc(
5303 /* the size of the btrfs_bio */
5304 sizeof(struct btrfs_bio) +
5305 /* plus the variable array for the stripes */
5306 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5307 /* plus the variable array for the tgt dev */
5308 sizeof(int) * (real_stripes) +
5309 /*
5310 * plus the raid_map, which includes both the tgt dev
5311 * and the stripes
5312 */
5313 sizeof(u64) * (total_stripes),
5314 GFP_NOFS|__GFP_NOFAIL);
5315
5316 atomic_set(&bbio->error, 0);
5317 atomic_set(&bbio->refs, 1);
5318
5319 return bbio;
5320 }
5321
5322 void btrfs_get_bbio(struct btrfs_bio *bbio)
5323 {
5324 WARN_ON(!atomic_read(&bbio->refs));
5325 atomic_inc(&bbio->refs);
5326 }
5327
5328 void btrfs_put_bbio(struct btrfs_bio *bbio)
5329 {
5330 if (!bbio)
5331 return;
5332 if (atomic_dec_and_test(&bbio->refs))
5333 kfree(bbio);
5334 }
5335
5336 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5337 enum btrfs_map_op op,
5338 u64 logical, u64 *length,
5339 struct btrfs_bio **bbio_ret,
5340 int mirror_num, int need_raid_map)
5341 {
5342 struct extent_map *em;
5343 struct map_lookup *map;
5344 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5345 struct extent_map_tree *em_tree = &map_tree->map_tree;
5346 u64 offset;
5347 u64 stripe_offset;
5348 u64 stripe_end_offset;
5349 u64 stripe_nr;
5350 u64 stripe_nr_orig;
5351 u64 stripe_nr_end;
5352 u64 stripe_len;
5353 u32 stripe_index;
5354 int i;
5355 int ret = 0;
5356 int num_stripes;
5357 int max_errors = 0;
5358 int tgtdev_indexes = 0;
5359 struct btrfs_bio *bbio = NULL;
5360 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5361 int dev_replace_is_ongoing = 0;
5362 int num_alloc_stripes;
5363 int patch_the_first_stripe_for_dev_replace = 0;
5364 u64 physical_to_patch_in_first_stripe = 0;
5365 u64 raid56_full_stripe_start = (u64)-1;
5366
5367 read_lock(&em_tree->lock);
5368 em = lookup_extent_mapping(em_tree, logical, *length);
5369 read_unlock(&em_tree->lock);
5370
5371 if (!em) {
5372 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5373 logical, *length);
5374 return -EINVAL;
5375 }
5376
5377 if (em->start > logical || em->start + em->len < logical) {
5378 btrfs_crit(fs_info,
5379 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5380 logical, em->start, em->start + em->len);
5381 free_extent_map(em);
5382 return -EINVAL;
5383 }
5384
5385 map = em->map_lookup;
5386 offset = logical - em->start;
5387
5388 stripe_len = map->stripe_len;
5389 stripe_nr = offset;
5390 /*
5391 * stripe_nr counts the total number of stripes we have to stride
5392 * to get to this block
5393 */
5394 stripe_nr = div64_u64(stripe_nr, stripe_len);
5395
5396 stripe_offset = stripe_nr * stripe_len;
5397 if (offset < stripe_offset) {
5398 btrfs_crit(fs_info,
5399 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5400 stripe_offset, offset, em->start, logical,
5401 stripe_len);
5402 free_extent_map(em);
5403 return -EINVAL;
5404 }
5405
5406 /* stripe_offset is the offset of this block in its stripe*/
5407 stripe_offset = offset - stripe_offset;
5408
5409 /* if we're here for raid56, we need to know the stripe aligned start */
5410 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5411 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5412 raid56_full_stripe_start = offset;
5413
5414 /* allow a write of a full stripe, but make sure we don't
5415 * allow straddling of stripes
5416 */
5417 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5418 full_stripe_len);
5419 raid56_full_stripe_start *= full_stripe_len;
5420 }
5421
5422 if (op == BTRFS_MAP_DISCARD) {
5423 /* we don't discard raid56 yet */
5424 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5425 ret = -EOPNOTSUPP;
5426 goto out;
5427 }
5428 *length = min_t(u64, em->len - offset, *length);
5429 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5430 u64 max_len;
5431 /* For writes to RAID[56], allow a full stripeset across all disks.
5432 For other RAID types and for RAID[56] reads, just allow a single
5433 stripe (on a single disk). */
5434 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5435 (op == BTRFS_MAP_WRITE)) {
5436 max_len = stripe_len * nr_data_stripes(map) -
5437 (offset - raid56_full_stripe_start);
5438 } else {
5439 /* we limit the length of each bio to what fits in a stripe */
5440 max_len = stripe_len - stripe_offset;
5441 }
5442 *length = min_t(u64, em->len - offset, max_len);
5443 } else {
5444 *length = em->len - offset;
5445 }
5446
5447 /* This is for when we're called from btrfs_merge_bio_hook() and all
5448 it cares about is the length */
5449 if (!bbio_ret)
5450 goto out;
5451
5452 btrfs_dev_replace_lock(dev_replace, 0);
5453 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5454 if (!dev_replace_is_ongoing)
5455 btrfs_dev_replace_unlock(dev_replace, 0);
5456 else
5457 btrfs_dev_replace_set_lock_blocking(dev_replace);
5458
5459 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5460 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5461 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5462 /*
5463 * in dev-replace case, for repair case (that's the only
5464 * case where the mirror is selected explicitly when
5465 * calling btrfs_map_block), blocks left of the left cursor
5466 * can also be read from the target drive.
5467 * For REQ_GET_READ_MIRRORS, the target drive is added as
5468 * the last one to the array of stripes. For READ, it also
5469 * needs to be supported using the same mirror number.
5470 * If the requested block is not left of the left cursor,
5471 * EIO is returned. This can happen because btrfs_num_copies()
5472 * returns one more in the dev-replace case.
5473 */
5474 u64 tmp_length = *length;
5475 struct btrfs_bio *tmp_bbio = NULL;
5476 int tmp_num_stripes;
5477 u64 srcdev_devid = dev_replace->srcdev->devid;
5478 int index_srcdev = 0;
5479 int found = 0;
5480 u64 physical_of_found = 0;
5481
5482 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5483 logical, &tmp_length, &tmp_bbio, 0, 0);
5484 if (ret) {
5485 WARN_ON(tmp_bbio != NULL);
5486 goto out;
5487 }
5488
5489 tmp_num_stripes = tmp_bbio->num_stripes;
5490 if (mirror_num > tmp_num_stripes) {
5491 /*
5492 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5493 * mirror, that means that the requested area
5494 * is not left of the left cursor
5495 */
5496 ret = -EIO;
5497 btrfs_put_bbio(tmp_bbio);
5498 goto out;
5499 }
5500
5501 /*
5502 * process the rest of the function using the mirror_num
5503 * of the source drive. Therefore look it up first.
5504 * At the end, patch the device pointer to the one of the
5505 * target drive.
5506 */
5507 for (i = 0; i < tmp_num_stripes; i++) {
5508 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5509 continue;
5510
5511 /*
5512 * In case of DUP, in order to keep it simple, only add
5513 * the mirror with the lowest physical address
5514 */
5515 if (found &&
5516 physical_of_found <= tmp_bbio->stripes[i].physical)
5517 continue;
5518
5519 index_srcdev = i;
5520 found = 1;
5521 physical_of_found = tmp_bbio->stripes[i].physical;
5522 }
5523
5524 btrfs_put_bbio(tmp_bbio);
5525
5526 if (!found) {
5527 WARN_ON(1);
5528 ret = -EIO;
5529 goto out;
5530 }
5531
5532 mirror_num = index_srcdev + 1;
5533 patch_the_first_stripe_for_dev_replace = 1;
5534 physical_to_patch_in_first_stripe = physical_of_found;
5535 } else if (mirror_num > map->num_stripes) {
5536 mirror_num = 0;
5537 }
5538
5539 num_stripes = 1;
5540 stripe_index = 0;
5541 stripe_nr_orig = stripe_nr;
5542 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5543 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5544 stripe_end_offset = stripe_nr_end * map->stripe_len -
5545 (offset + *length);
5546
5547 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5548 if (op == BTRFS_MAP_DISCARD)
5549 num_stripes = min_t(u64, map->num_stripes,
5550 stripe_nr_end - stripe_nr_orig);
5551 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5552 &stripe_index);
5553 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5554 op != BTRFS_MAP_GET_READ_MIRRORS)
5555 mirror_num = 1;
5556 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5557 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5558 op == BTRFS_MAP_GET_READ_MIRRORS)
5559 num_stripes = map->num_stripes;
5560 else if (mirror_num)
5561 stripe_index = mirror_num - 1;
5562 else {
5563 stripe_index = find_live_mirror(fs_info, map, 0,
5564 map->num_stripes,
5565 current->pid % map->num_stripes,
5566 dev_replace_is_ongoing);
5567 mirror_num = stripe_index + 1;
5568 }
5569
5570 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5571 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5572 op == BTRFS_MAP_GET_READ_MIRRORS) {
5573 num_stripes = map->num_stripes;
5574 } else if (mirror_num) {
5575 stripe_index = mirror_num - 1;
5576 } else {
5577 mirror_num = 1;
5578 }
5579
5580 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5581 u32 factor = map->num_stripes / map->sub_stripes;
5582
5583 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5584 stripe_index *= map->sub_stripes;
5585
5586 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5587 num_stripes = map->sub_stripes;
5588 else if (op == BTRFS_MAP_DISCARD)
5589 num_stripes = min_t(u64, map->sub_stripes *
5590 (stripe_nr_end - stripe_nr_orig),
5591 map->num_stripes);
5592 else if (mirror_num)
5593 stripe_index += mirror_num - 1;
5594 else {
5595 int old_stripe_index = stripe_index;
5596 stripe_index = find_live_mirror(fs_info, map,
5597 stripe_index,
5598 map->sub_stripes, stripe_index +
5599 current->pid % map->sub_stripes,
5600 dev_replace_is_ongoing);
5601 mirror_num = stripe_index - old_stripe_index + 1;
5602 }
5603
5604 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5605 if (need_raid_map &&
5606 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5607 mirror_num > 1)) {
5608 /* push stripe_nr back to the start of the full stripe */
5609 stripe_nr = div_u64(raid56_full_stripe_start,
5610 stripe_len * nr_data_stripes(map));
5611
5612 /* RAID[56] write or recovery. Return all stripes */
5613 num_stripes = map->num_stripes;
5614 max_errors = nr_parity_stripes(map);
5615
5616 *length = map->stripe_len;
5617 stripe_index = 0;
5618 stripe_offset = 0;
5619 } else {
5620 /*
5621 * Mirror #0 or #1 means the original data block.
5622 * Mirror #2 is RAID5 parity block.
5623 * Mirror #3 is RAID6 Q block.
5624 */
5625 stripe_nr = div_u64_rem(stripe_nr,
5626 nr_data_stripes(map), &stripe_index);
5627 if (mirror_num > 1)
5628 stripe_index = nr_data_stripes(map) +
5629 mirror_num - 2;
5630
5631 /* We distribute the parity blocks across stripes */
5632 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5633 &stripe_index);
5634 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5635 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
5636 mirror_num = 1;
5637 }
5638 } else {
5639 /*
5640 * after this, stripe_nr is the number of stripes on this
5641 * device we have to walk to find the data, and stripe_index is
5642 * the number of our device in the stripe array
5643 */
5644 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5645 &stripe_index);
5646 mirror_num = stripe_index + 1;
5647 }
5648 if (stripe_index >= map->num_stripes) {
5649 btrfs_crit(fs_info,
5650 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5651 stripe_index, map->num_stripes);
5652 ret = -EINVAL;
5653 goto out;
5654 }
5655
5656 num_alloc_stripes = num_stripes;
5657 if (dev_replace_is_ongoing) {
5658 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
5659 num_alloc_stripes <<= 1;
5660 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5661 num_alloc_stripes++;
5662 tgtdev_indexes = num_stripes;
5663 }
5664
5665 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5666 if (!bbio) {
5667 ret = -ENOMEM;
5668 goto out;
5669 }
5670 if (dev_replace_is_ongoing)
5671 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5672
5673 /* build raid_map */
5674 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5675 need_raid_map &&
5676 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
5677 mirror_num > 1)) {
5678 u64 tmp;
5679 unsigned rot;
5680
5681 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5682 sizeof(struct btrfs_bio_stripe) *
5683 num_alloc_stripes +
5684 sizeof(int) * tgtdev_indexes);
5685
5686 /* Work out the disk rotation on this stripe-set */
5687 div_u64_rem(stripe_nr, num_stripes, &rot);
5688
5689 /* Fill in the logical address of each stripe */
5690 tmp = stripe_nr * nr_data_stripes(map);
5691 for (i = 0; i < nr_data_stripes(map); i++)
5692 bbio->raid_map[(i+rot) % num_stripes] =
5693 em->start + (tmp + i) * map->stripe_len;
5694
5695 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5696 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5697 bbio->raid_map[(i+rot+1) % num_stripes] =
5698 RAID6_Q_STRIPE;
5699 }
5700
5701 if (op == BTRFS_MAP_DISCARD) {
5702 u32 factor = 0;
5703 u32 sub_stripes = 0;
5704 u64 stripes_per_dev = 0;
5705 u32 remaining_stripes = 0;
5706 u32 last_stripe = 0;
5707
5708 if (map->type &
5709 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5710 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5711 sub_stripes = 1;
5712 else
5713 sub_stripes = map->sub_stripes;
5714
5715 factor = map->num_stripes / sub_stripes;
5716 stripes_per_dev = div_u64_rem(stripe_nr_end -
5717 stripe_nr_orig,
5718 factor,
5719 &remaining_stripes);
5720 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5721 last_stripe *= sub_stripes;
5722 }
5723
5724 for (i = 0; i < num_stripes; i++) {
5725 bbio->stripes[i].physical =
5726 map->stripes[stripe_index].physical +
5727 stripe_offset + stripe_nr * map->stripe_len;
5728 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5729
5730 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5731 BTRFS_BLOCK_GROUP_RAID10)) {
5732 bbio->stripes[i].length = stripes_per_dev *
5733 map->stripe_len;
5734
5735 if (i / sub_stripes < remaining_stripes)
5736 bbio->stripes[i].length +=
5737 map->stripe_len;
5738
5739 /*
5740 * Special for the first stripe and
5741 * the last stripe:
5742 *
5743 * |-------|...|-------|
5744 * |----------|
5745 * off end_off
5746 */
5747 if (i < sub_stripes)
5748 bbio->stripes[i].length -=
5749 stripe_offset;
5750
5751 if (stripe_index >= last_stripe &&
5752 stripe_index <= (last_stripe +
5753 sub_stripes - 1))
5754 bbio->stripes[i].length -=
5755 stripe_end_offset;
5756
5757 if (i == sub_stripes - 1)
5758 stripe_offset = 0;
5759 } else
5760 bbio->stripes[i].length = *length;
5761
5762 stripe_index++;
5763 if (stripe_index == map->num_stripes) {
5764 /* This could only happen for RAID0/10 */
5765 stripe_index = 0;
5766 stripe_nr++;
5767 }
5768 }
5769 } else {
5770 for (i = 0; i < num_stripes; i++) {
5771 bbio->stripes[i].physical =
5772 map->stripes[stripe_index].physical +
5773 stripe_offset +
5774 stripe_nr * map->stripe_len;
5775 bbio->stripes[i].dev =
5776 map->stripes[stripe_index].dev;
5777 stripe_index++;
5778 }
5779 }
5780
5781 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5782 max_errors = btrfs_chunk_max_errors(map);
5783
5784 if (bbio->raid_map)
5785 sort_parity_stripes(bbio, num_stripes);
5786
5787 tgtdev_indexes = 0;
5788 if (dev_replace_is_ongoing &&
5789 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
5790 dev_replace->tgtdev != NULL) {
5791 int index_where_to_add;
5792 u64 srcdev_devid = dev_replace->srcdev->devid;
5793
5794 /*
5795 * duplicate the write operations while the dev replace
5796 * procedure is running. Since the copying of the old disk
5797 * to the new disk takes place at run time while the
5798 * filesystem is mounted writable, the regular write
5799 * operations to the old disk have to be duplicated to go
5800 * to the new disk as well.
5801 * Note that device->missing is handled by the caller, and
5802 * that the write to the old disk is already set up in the
5803 * stripes array.
5804 */
5805 index_where_to_add = num_stripes;
5806 for (i = 0; i < num_stripes; i++) {
5807 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5808 /* write to new disk, too */
5809 struct btrfs_bio_stripe *new =
5810 bbio->stripes + index_where_to_add;
5811 struct btrfs_bio_stripe *old =
5812 bbio->stripes + i;
5813
5814 new->physical = old->physical;
5815 new->length = old->length;
5816 new->dev = dev_replace->tgtdev;
5817 bbio->tgtdev_map[i] = index_where_to_add;
5818 index_where_to_add++;
5819 max_errors++;
5820 tgtdev_indexes++;
5821 }
5822 }
5823 num_stripes = index_where_to_add;
5824 } else if (dev_replace_is_ongoing &&
5825 op == BTRFS_MAP_GET_READ_MIRRORS &&
5826 dev_replace->tgtdev != NULL) {
5827 u64 srcdev_devid = dev_replace->srcdev->devid;
5828 int index_srcdev = 0;
5829 int found = 0;
5830 u64 physical_of_found = 0;
5831
5832 /*
5833 * During the dev-replace procedure, the target drive can
5834 * also be used to read data in case it is needed to repair
5835 * a corrupt block elsewhere. This is possible if the
5836 * requested area is left of the left cursor. In this area,
5837 * the target drive is a full copy of the source drive.
5838 */
5839 for (i = 0; i < num_stripes; i++) {
5840 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5841 /*
5842 * In case of DUP, in order to keep it
5843 * simple, only add the mirror with the
5844 * lowest physical address
5845 */
5846 if (found &&
5847 physical_of_found <=
5848 bbio->stripes[i].physical)
5849 continue;
5850 index_srcdev = i;
5851 found = 1;
5852 physical_of_found = bbio->stripes[i].physical;
5853 }
5854 }
5855 if (found) {
5856 struct btrfs_bio_stripe *tgtdev_stripe =
5857 bbio->stripes + num_stripes;
5858
5859 tgtdev_stripe->physical = physical_of_found;
5860 tgtdev_stripe->length =
5861 bbio->stripes[index_srcdev].length;
5862 tgtdev_stripe->dev = dev_replace->tgtdev;
5863 bbio->tgtdev_map[index_srcdev] = num_stripes;
5864
5865 tgtdev_indexes++;
5866 num_stripes++;
5867 }
5868 }
5869
5870 *bbio_ret = bbio;
5871 bbio->map_type = map->type;
5872 bbio->num_stripes = num_stripes;
5873 bbio->max_errors = max_errors;
5874 bbio->mirror_num = mirror_num;
5875 bbio->num_tgtdevs = tgtdev_indexes;
5876
5877 /*
5878 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5879 * mirror_num == num_stripes + 1 && dev_replace target drive is
5880 * available as a mirror
5881 */
5882 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5883 WARN_ON(num_stripes > 1);
5884 bbio->stripes[0].dev = dev_replace->tgtdev;
5885 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5886 bbio->mirror_num = map->num_stripes + 1;
5887 }
5888 out:
5889 if (dev_replace_is_ongoing) {
5890 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5891 btrfs_dev_replace_unlock(dev_replace, 0);
5892 }
5893 free_extent_map(em);
5894 return ret;
5895 }
5896
5897 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5898 u64 logical, u64 *length,
5899 struct btrfs_bio **bbio_ret, int mirror_num)
5900 {
5901 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5902 mirror_num, 0);
5903 }
5904
5905 /* For Scrub/replace */
5906 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5907 u64 logical, u64 *length,
5908 struct btrfs_bio **bbio_ret, int mirror_num,
5909 int need_raid_map)
5910 {
5911 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5912 mirror_num, need_raid_map);
5913 }
5914
5915 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5916 u64 chunk_start, u64 physical, u64 devid,
5917 u64 **logical, int *naddrs, int *stripe_len)
5918 {
5919 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5920 struct extent_map_tree *em_tree = &map_tree->map_tree;
5921 struct extent_map *em;
5922 struct map_lookup *map;
5923 u64 *buf;
5924 u64 bytenr;
5925 u64 length;
5926 u64 stripe_nr;
5927 u64 rmap_len;
5928 int i, j, nr = 0;
5929
5930 read_lock(&em_tree->lock);
5931 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5932 read_unlock(&em_tree->lock);
5933
5934 if (!em) {
5935 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5936 chunk_start);
5937 return -EIO;
5938 }
5939
5940 if (em->start != chunk_start) {
5941 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5942 em->start, chunk_start);
5943 free_extent_map(em);
5944 return -EIO;
5945 }
5946 map = em->map_lookup;
5947
5948 length = em->len;
5949 rmap_len = map->stripe_len;
5950
5951 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5952 length = div_u64(length, map->num_stripes / map->sub_stripes);
5953 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5954 length = div_u64(length, map->num_stripes);
5955 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5956 length = div_u64(length, nr_data_stripes(map));
5957 rmap_len = map->stripe_len * nr_data_stripes(map);
5958 }
5959
5960 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5961 BUG_ON(!buf); /* -ENOMEM */
5962
5963 for (i = 0; i < map->num_stripes; i++) {
5964 if (devid && map->stripes[i].dev->devid != devid)
5965 continue;
5966 if (map->stripes[i].physical > physical ||
5967 map->stripes[i].physical + length <= physical)
5968 continue;
5969
5970 stripe_nr = physical - map->stripes[i].physical;
5971 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5972
5973 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5974 stripe_nr = stripe_nr * map->num_stripes + i;
5975 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5976 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5977 stripe_nr = stripe_nr * map->num_stripes + i;
5978 } /* else if RAID[56], multiply by nr_data_stripes().
5979 * Alternatively, just use rmap_len below instead of
5980 * map->stripe_len */
5981
5982 bytenr = chunk_start + stripe_nr * rmap_len;
5983 WARN_ON(nr >= map->num_stripes);
5984 for (j = 0; j < nr; j++) {
5985 if (buf[j] == bytenr)
5986 break;
5987 }
5988 if (j == nr) {
5989 WARN_ON(nr >= map->num_stripes);
5990 buf[nr++] = bytenr;
5991 }
5992 }
5993
5994 *logical = buf;
5995 *naddrs = nr;
5996 *stripe_len = rmap_len;
5997
5998 free_extent_map(em);
5999 return 0;
6000 }
6001
6002 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6003 {
6004 bio->bi_private = bbio->private;
6005 bio->bi_end_io = bbio->end_io;
6006 bio_endio(bio);
6007
6008 btrfs_put_bbio(bbio);
6009 }
6010
6011 static void btrfs_end_bio(struct bio *bio)
6012 {
6013 struct btrfs_bio *bbio = bio->bi_private;
6014 int is_orig_bio = 0;
6015
6016 if (bio->bi_error) {
6017 atomic_inc(&bbio->error);
6018 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6019 unsigned int stripe_index =
6020 btrfs_io_bio(bio)->stripe_index;
6021 struct btrfs_device *dev;
6022
6023 BUG_ON(stripe_index >= bbio->num_stripes);
6024 dev = bbio->stripes[stripe_index].dev;
6025 if (dev->bdev) {
6026 if (bio_op(bio) == REQ_OP_WRITE)
6027 btrfs_dev_stat_inc(dev,
6028 BTRFS_DEV_STAT_WRITE_ERRS);
6029 else
6030 btrfs_dev_stat_inc(dev,
6031 BTRFS_DEV_STAT_READ_ERRS);
6032 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6033 btrfs_dev_stat_inc(dev,
6034 BTRFS_DEV_STAT_FLUSH_ERRS);
6035 btrfs_dev_stat_print_on_error(dev);
6036 }
6037 }
6038 }
6039
6040 if (bio == bbio->orig_bio)
6041 is_orig_bio = 1;
6042
6043 btrfs_bio_counter_dec(bbio->fs_info);
6044
6045 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6046 if (!is_orig_bio) {
6047 bio_put(bio);
6048 bio = bbio->orig_bio;
6049 }
6050
6051 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6052 /* only send an error to the higher layers if it is
6053 * beyond the tolerance of the btrfs bio
6054 */
6055 if (atomic_read(&bbio->error) > bbio->max_errors) {
6056 bio->bi_error = -EIO;
6057 } else {
6058 /*
6059 * this bio is actually up to date, we didn't
6060 * go over the max number of errors
6061 */
6062 bio->bi_error = 0;
6063 }
6064
6065 btrfs_end_bbio(bbio, bio);
6066 } else if (!is_orig_bio) {
6067 bio_put(bio);
6068 }
6069 }
6070
6071 /*
6072 * see run_scheduled_bios for a description of why bios are collected for
6073 * async submit.
6074 *
6075 * This will add one bio to the pending list for a device and make sure
6076 * the work struct is scheduled.
6077 */
6078 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6079 struct btrfs_device *device,
6080 struct bio *bio)
6081 {
6082 struct btrfs_fs_info *fs_info = device->fs_info;
6083 int should_queue = 1;
6084 struct btrfs_pending_bios *pending_bios;
6085
6086 if (device->missing || !device->bdev) {
6087 bio_io_error(bio);
6088 return;
6089 }
6090
6091 /* don't bother with additional async steps for reads, right now */
6092 if (bio_op(bio) == REQ_OP_READ) {
6093 bio_get(bio);
6094 btrfsic_submit_bio(bio);
6095 bio_put(bio);
6096 return;
6097 }
6098
6099 /*
6100 * nr_async_bios allows us to reliably return congestion to the
6101 * higher layers. Otherwise, the async bio makes it appear we have
6102 * made progress against dirty pages when we've really just put it
6103 * on a queue for later
6104 */
6105 atomic_inc(&fs_info->nr_async_bios);
6106 WARN_ON(bio->bi_next);
6107 bio->bi_next = NULL;
6108
6109 spin_lock(&device->io_lock);
6110 if (bio->bi_opf & REQ_SYNC)
6111 pending_bios = &device->pending_sync_bios;
6112 else
6113 pending_bios = &device->pending_bios;
6114
6115 if (pending_bios->tail)
6116 pending_bios->tail->bi_next = bio;
6117
6118 pending_bios->tail = bio;
6119 if (!pending_bios->head)
6120 pending_bios->head = bio;
6121 if (device->running_pending)
6122 should_queue = 0;
6123
6124 spin_unlock(&device->io_lock);
6125
6126 if (should_queue)
6127 btrfs_queue_work(fs_info->submit_workers, &device->work);
6128 }
6129
6130 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6131 struct bio *bio, u64 physical, int dev_nr,
6132 int async)
6133 {
6134 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6135
6136 bio->bi_private = bbio;
6137 btrfs_io_bio(bio)->stripe_index = dev_nr;
6138 bio->bi_end_io = btrfs_end_bio;
6139 bio->bi_iter.bi_sector = physical >> 9;
6140 #ifdef DEBUG
6141 {
6142 struct rcu_string *name;
6143
6144 rcu_read_lock();
6145 name = rcu_dereference(dev->name);
6146 btrfs_debug(fs_info,
6147 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6148 bio_op(bio), bio->bi_opf,
6149 (u64)bio->bi_iter.bi_sector,
6150 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6151 bio->bi_iter.bi_size);
6152 rcu_read_unlock();
6153 }
6154 #endif
6155 bio->bi_bdev = dev->bdev;
6156
6157 btrfs_bio_counter_inc_noblocked(root->fs_info);
6158
6159 if (async)
6160 btrfs_schedule_bio(root, dev, bio);
6161 else
6162 btrfsic_submit_bio(bio);
6163 }
6164
6165 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6166 {
6167 atomic_inc(&bbio->error);
6168 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6169 /* Should be the original bio. */
6170 WARN_ON(bio != bbio->orig_bio);
6171
6172 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6173 bio->bi_iter.bi_sector = logical >> 9;
6174 bio->bi_error = -EIO;
6175 btrfs_end_bbio(bbio, bio);
6176 }
6177 }
6178
6179 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6180 int mirror_num, int async_submit)
6181 {
6182 struct btrfs_fs_info *fs_info = root->fs_info;
6183 struct btrfs_device *dev;
6184 struct bio *first_bio = bio;
6185 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6186 u64 length = 0;
6187 u64 map_length;
6188 int ret;
6189 int dev_nr;
6190 int total_devs;
6191 struct btrfs_bio *bbio = NULL;
6192
6193 length = bio->bi_iter.bi_size;
6194 map_length = length;
6195
6196 btrfs_bio_counter_inc_blocked(fs_info);
6197 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6198 &map_length, &bbio, mirror_num, 1);
6199 if (ret) {
6200 btrfs_bio_counter_dec(fs_info);
6201 return ret;
6202 }
6203
6204 total_devs = bbio->num_stripes;
6205 bbio->orig_bio = first_bio;
6206 bbio->private = first_bio->bi_private;
6207 bbio->end_io = first_bio->bi_end_io;
6208 bbio->fs_info = fs_info;
6209 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6210
6211 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6212 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6213 /* In this case, map_length has been set to the length of
6214 a single stripe; not the whole write */
6215 if (bio_op(bio) == REQ_OP_WRITE) {
6216 ret = raid56_parity_write(root, bio, bbio, map_length);
6217 } else {
6218 ret = raid56_parity_recover(root, bio, bbio, map_length,
6219 mirror_num, 1);
6220 }
6221
6222 btrfs_bio_counter_dec(fs_info);
6223 return ret;
6224 }
6225
6226 if (map_length < length) {
6227 btrfs_crit(fs_info,
6228 "mapping failed logical %llu bio len %llu len %llu",
6229 logical, length, map_length);
6230 BUG();
6231 }
6232
6233 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6234 dev = bbio->stripes[dev_nr].dev;
6235 if (!dev || !dev->bdev ||
6236 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6237 bbio_error(bbio, first_bio, logical);
6238 continue;
6239 }
6240
6241 if (dev_nr < total_devs - 1) {
6242 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6243 BUG_ON(!bio); /* -ENOMEM */
6244 } else
6245 bio = first_bio;
6246
6247 submit_stripe_bio(root, bbio, bio,
6248 bbio->stripes[dev_nr].physical, dev_nr,
6249 async_submit);
6250 }
6251 btrfs_bio_counter_dec(fs_info);
6252 return 0;
6253 }
6254
6255 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6256 u8 *uuid, u8 *fsid)
6257 {
6258 struct btrfs_device *device;
6259 struct btrfs_fs_devices *cur_devices;
6260
6261 cur_devices = fs_info->fs_devices;
6262 while (cur_devices) {
6263 if (!fsid ||
6264 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6265 device = __find_device(&cur_devices->devices,
6266 devid, uuid);
6267 if (device)
6268 return device;
6269 }
6270 cur_devices = cur_devices->seed;
6271 }
6272 return NULL;
6273 }
6274
6275 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6276 struct btrfs_fs_devices *fs_devices,
6277 u64 devid, u8 *dev_uuid)
6278 {
6279 struct btrfs_device *device;
6280
6281 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6282 if (IS_ERR(device))
6283 return NULL;
6284
6285 list_add(&device->dev_list, &fs_devices->devices);
6286 device->fs_devices = fs_devices;
6287 fs_devices->num_devices++;
6288
6289 device->missing = 1;
6290 fs_devices->missing_devices++;
6291
6292 return device;
6293 }
6294
6295 /**
6296 * btrfs_alloc_device - allocate struct btrfs_device
6297 * @fs_info: used only for generating a new devid, can be NULL if
6298 * devid is provided (i.e. @devid != NULL).
6299 * @devid: a pointer to devid for this device. If NULL a new devid
6300 * is generated.
6301 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6302 * is generated.
6303 *
6304 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6305 * on error. Returned struct is not linked onto any lists and can be
6306 * destroyed with kfree() right away.
6307 */
6308 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6309 const u64 *devid,
6310 const u8 *uuid)
6311 {
6312 struct btrfs_device *dev;
6313 u64 tmp;
6314
6315 if (WARN_ON(!devid && !fs_info))
6316 return ERR_PTR(-EINVAL);
6317
6318 dev = __alloc_device();
6319 if (IS_ERR(dev))
6320 return dev;
6321
6322 if (devid)
6323 tmp = *devid;
6324 else {
6325 int ret;
6326
6327 ret = find_next_devid(fs_info, &tmp);
6328 if (ret) {
6329 kfree(dev);
6330 return ERR_PTR(ret);
6331 }
6332 }
6333 dev->devid = tmp;
6334
6335 if (uuid)
6336 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6337 else
6338 generate_random_uuid(dev->uuid);
6339
6340 btrfs_init_work(&dev->work, btrfs_submit_helper,
6341 pending_bios_fn, NULL, NULL);
6342
6343 return dev;
6344 }
6345
6346 /* Return -EIO if any error, otherwise return 0. */
6347 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6348 struct extent_buffer *leaf,
6349 struct btrfs_chunk *chunk, u64 logical)
6350 {
6351 struct btrfs_fs_info *fs_info = root->fs_info;
6352 u64 length;
6353 u64 stripe_len;
6354 u16 num_stripes;
6355 u16 sub_stripes;
6356 u64 type;
6357
6358 length = btrfs_chunk_length(leaf, chunk);
6359 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6360 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6361 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6362 type = btrfs_chunk_type(leaf, chunk);
6363
6364 if (!num_stripes) {
6365 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6366 num_stripes);
6367 return -EIO;
6368 }
6369 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6370 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6371 return -EIO;
6372 }
6373 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6374 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6375 btrfs_chunk_sector_size(leaf, chunk));
6376 return -EIO;
6377 }
6378 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6379 btrfs_err(fs_info, "invalid chunk length %llu", length);
6380 return -EIO;
6381 }
6382 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6383 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6384 stripe_len);
6385 return -EIO;
6386 }
6387 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6388 type) {
6389 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6390 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6391 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6392 btrfs_chunk_type(leaf, chunk));
6393 return -EIO;
6394 }
6395 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6396 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6397 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6398 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6399 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6400 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6401 num_stripes != 1)) {
6402 btrfs_err(fs_info,
6403 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6404 num_stripes, sub_stripes,
6405 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6406 return -EIO;
6407 }
6408
6409 return 0;
6410 }
6411
6412 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6413 struct extent_buffer *leaf,
6414 struct btrfs_chunk *chunk)
6415 {
6416 struct btrfs_fs_info *fs_info = root->fs_info;
6417 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6418 struct map_lookup *map;
6419 struct extent_map *em;
6420 u64 logical;
6421 u64 length;
6422 u64 stripe_len;
6423 u64 devid;
6424 u8 uuid[BTRFS_UUID_SIZE];
6425 int num_stripes;
6426 int ret;
6427 int i;
6428
6429 logical = key->offset;
6430 length = btrfs_chunk_length(leaf, chunk);
6431 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6432 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6433
6434 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6435 if (ret)
6436 return ret;
6437
6438 read_lock(&map_tree->map_tree.lock);
6439 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6440 read_unlock(&map_tree->map_tree.lock);
6441
6442 /* already mapped? */
6443 if (em && em->start <= logical && em->start + em->len > logical) {
6444 free_extent_map(em);
6445 return 0;
6446 } else if (em) {
6447 free_extent_map(em);
6448 }
6449
6450 em = alloc_extent_map();
6451 if (!em)
6452 return -ENOMEM;
6453 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6454 if (!map) {
6455 free_extent_map(em);
6456 return -ENOMEM;
6457 }
6458
6459 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6460 em->map_lookup = map;
6461 em->start = logical;
6462 em->len = length;
6463 em->orig_start = 0;
6464 em->block_start = 0;
6465 em->block_len = em->len;
6466
6467 map->num_stripes = num_stripes;
6468 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6469 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6470 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6471 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6472 map->type = btrfs_chunk_type(leaf, chunk);
6473 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6474 for (i = 0; i < num_stripes; i++) {
6475 map->stripes[i].physical =
6476 btrfs_stripe_offset_nr(leaf, chunk, i);
6477 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6478 read_extent_buffer(leaf, uuid, (unsigned long)
6479 btrfs_stripe_dev_uuid_nr(chunk, i),
6480 BTRFS_UUID_SIZE);
6481 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6482 uuid, NULL);
6483 if (!map->stripes[i].dev &&
6484 !btrfs_test_opt(fs_info, DEGRADED)) {
6485 free_extent_map(em);
6486 return -EIO;
6487 }
6488 if (!map->stripes[i].dev) {
6489 map->stripes[i].dev =
6490 add_missing_dev(root, fs_info->fs_devices,
6491 devid, uuid);
6492 if (!map->stripes[i].dev) {
6493 free_extent_map(em);
6494 return -EIO;
6495 }
6496 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6497 devid, uuid);
6498 }
6499 map->stripes[i].dev->in_fs_metadata = 1;
6500 }
6501
6502 write_lock(&map_tree->map_tree.lock);
6503 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6504 write_unlock(&map_tree->map_tree.lock);
6505 BUG_ON(ret); /* Tree corruption */
6506 free_extent_map(em);
6507
6508 return 0;
6509 }
6510
6511 static void fill_device_from_item(struct extent_buffer *leaf,
6512 struct btrfs_dev_item *dev_item,
6513 struct btrfs_device *device)
6514 {
6515 unsigned long ptr;
6516
6517 device->devid = btrfs_device_id(leaf, dev_item);
6518 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6519 device->total_bytes = device->disk_total_bytes;
6520 device->commit_total_bytes = device->disk_total_bytes;
6521 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6522 device->commit_bytes_used = device->bytes_used;
6523 device->type = btrfs_device_type(leaf, dev_item);
6524 device->io_align = btrfs_device_io_align(leaf, dev_item);
6525 device->io_width = btrfs_device_io_width(leaf, dev_item);
6526 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6527 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6528 device->is_tgtdev_for_dev_replace = 0;
6529
6530 ptr = btrfs_device_uuid(dev_item);
6531 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6532 }
6533
6534 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6535 u8 *fsid)
6536 {
6537 struct btrfs_fs_info *fs_info = root->fs_info;
6538 struct btrfs_fs_devices *fs_devices;
6539 int ret;
6540
6541 BUG_ON(!mutex_is_locked(&uuid_mutex));
6542
6543 fs_devices = fs_info->fs_devices->seed;
6544 while (fs_devices) {
6545 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6546 return fs_devices;
6547
6548 fs_devices = fs_devices->seed;
6549 }
6550
6551 fs_devices = find_fsid(fsid);
6552 if (!fs_devices) {
6553 if (!btrfs_test_opt(fs_info, DEGRADED))
6554 return ERR_PTR(-ENOENT);
6555
6556 fs_devices = alloc_fs_devices(fsid);
6557 if (IS_ERR(fs_devices))
6558 return fs_devices;
6559
6560 fs_devices->seeding = 1;
6561 fs_devices->opened = 1;
6562 return fs_devices;
6563 }
6564
6565 fs_devices = clone_fs_devices(fs_devices);
6566 if (IS_ERR(fs_devices))
6567 return fs_devices;
6568
6569 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6570 fs_info->bdev_holder);
6571 if (ret) {
6572 free_fs_devices(fs_devices);
6573 fs_devices = ERR_PTR(ret);
6574 goto out;
6575 }
6576
6577 if (!fs_devices->seeding) {
6578 __btrfs_close_devices(fs_devices);
6579 free_fs_devices(fs_devices);
6580 fs_devices = ERR_PTR(-EINVAL);
6581 goto out;
6582 }
6583
6584 fs_devices->seed = fs_info->fs_devices->seed;
6585 fs_info->fs_devices->seed = fs_devices;
6586 out:
6587 return fs_devices;
6588 }
6589
6590 static int read_one_dev(struct btrfs_root *root,
6591 struct extent_buffer *leaf,
6592 struct btrfs_dev_item *dev_item)
6593 {
6594 struct btrfs_fs_info *fs_info = root->fs_info;
6595 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6596 struct btrfs_device *device;
6597 u64 devid;
6598 int ret;
6599 u8 fs_uuid[BTRFS_UUID_SIZE];
6600 u8 dev_uuid[BTRFS_UUID_SIZE];
6601
6602 devid = btrfs_device_id(leaf, dev_item);
6603 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6604 BTRFS_UUID_SIZE);
6605 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6606 BTRFS_UUID_SIZE);
6607
6608 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6609 fs_devices = open_seed_devices(root, fs_uuid);
6610 if (IS_ERR(fs_devices))
6611 return PTR_ERR(fs_devices);
6612 }
6613
6614 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6615 if (!device) {
6616 if (!btrfs_test_opt(fs_info, DEGRADED))
6617 return -EIO;
6618
6619 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6620 if (!device)
6621 return -ENOMEM;
6622 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6623 devid, dev_uuid);
6624 } else {
6625 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6626 return -EIO;
6627
6628 if(!device->bdev && !device->missing) {
6629 /*
6630 * this happens when a device that was properly setup
6631 * in the device info lists suddenly goes bad.
6632 * device->bdev is NULL, and so we have to set
6633 * device->missing to one here
6634 */
6635 device->fs_devices->missing_devices++;
6636 device->missing = 1;
6637 }
6638
6639 /* Move the device to its own fs_devices */
6640 if (device->fs_devices != fs_devices) {
6641 ASSERT(device->missing);
6642
6643 list_move(&device->dev_list, &fs_devices->devices);
6644 device->fs_devices->num_devices--;
6645 fs_devices->num_devices++;
6646
6647 device->fs_devices->missing_devices--;
6648 fs_devices->missing_devices++;
6649
6650 device->fs_devices = fs_devices;
6651 }
6652 }
6653
6654 if (device->fs_devices != fs_info->fs_devices) {
6655 BUG_ON(device->writeable);
6656 if (device->generation !=
6657 btrfs_device_generation(leaf, dev_item))
6658 return -EINVAL;
6659 }
6660
6661 fill_device_from_item(leaf, dev_item, device);
6662 device->in_fs_metadata = 1;
6663 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6664 device->fs_devices->total_rw_bytes += device->total_bytes;
6665 spin_lock(&fs_info->free_chunk_lock);
6666 fs_info->free_chunk_space += device->total_bytes -
6667 device->bytes_used;
6668 spin_unlock(&fs_info->free_chunk_lock);
6669 }
6670 ret = 0;
6671 return ret;
6672 }
6673
6674 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6675 {
6676 struct btrfs_root *root = fs_info->tree_root;
6677 struct btrfs_super_block *super_copy = fs_info->super_copy;
6678 struct extent_buffer *sb;
6679 struct btrfs_disk_key *disk_key;
6680 struct btrfs_chunk *chunk;
6681 u8 *array_ptr;
6682 unsigned long sb_array_offset;
6683 int ret = 0;
6684 u32 num_stripes;
6685 u32 array_size;
6686 u32 len = 0;
6687 u32 cur_offset;
6688 u64 type;
6689 struct btrfs_key key;
6690
6691 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6692 /*
6693 * This will create extent buffer of nodesize, superblock size is
6694 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6695 * overallocate but we can keep it as-is, only the first page is used.
6696 */
6697 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6698 if (IS_ERR(sb))
6699 return PTR_ERR(sb);
6700 set_extent_buffer_uptodate(sb);
6701 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6702 /*
6703 * The sb extent buffer is artificial and just used to read the system array.
6704 * set_extent_buffer_uptodate() call does not properly mark all it's
6705 * pages up-to-date when the page is larger: extent does not cover the
6706 * whole page and consequently check_page_uptodate does not find all
6707 * the page's extents up-to-date (the hole beyond sb),
6708 * write_extent_buffer then triggers a WARN_ON.
6709 *
6710 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6711 * but sb spans only this function. Add an explicit SetPageUptodate call
6712 * to silence the warning eg. on PowerPC 64.
6713 */
6714 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6715 SetPageUptodate(sb->pages[0]);
6716
6717 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6718 array_size = btrfs_super_sys_array_size(super_copy);
6719
6720 array_ptr = super_copy->sys_chunk_array;
6721 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6722 cur_offset = 0;
6723
6724 while (cur_offset < array_size) {
6725 disk_key = (struct btrfs_disk_key *)array_ptr;
6726 len = sizeof(*disk_key);
6727 if (cur_offset + len > array_size)
6728 goto out_short_read;
6729
6730 btrfs_disk_key_to_cpu(&key, disk_key);
6731
6732 array_ptr += len;
6733 sb_array_offset += len;
6734 cur_offset += len;
6735
6736 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6737 chunk = (struct btrfs_chunk *)sb_array_offset;
6738 /*
6739 * At least one btrfs_chunk with one stripe must be
6740 * present, exact stripe count check comes afterwards
6741 */
6742 len = btrfs_chunk_item_size(1);
6743 if (cur_offset + len > array_size)
6744 goto out_short_read;
6745
6746 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6747 if (!num_stripes) {
6748 btrfs_err(fs_info,
6749 "invalid number of stripes %u in sys_array at offset %u",
6750 num_stripes, cur_offset);
6751 ret = -EIO;
6752 break;
6753 }
6754
6755 type = btrfs_chunk_type(sb, chunk);
6756 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6757 btrfs_err(fs_info,
6758 "invalid chunk type %llu in sys_array at offset %u",
6759 type, cur_offset);
6760 ret = -EIO;
6761 break;
6762 }
6763
6764 len = btrfs_chunk_item_size(num_stripes);
6765 if (cur_offset + len > array_size)
6766 goto out_short_read;
6767
6768 ret = read_one_chunk(root, &key, sb, chunk);
6769 if (ret)
6770 break;
6771 } else {
6772 btrfs_err(fs_info,
6773 "unexpected item type %u in sys_array at offset %u",
6774 (u32)key.type, cur_offset);
6775 ret = -EIO;
6776 break;
6777 }
6778 array_ptr += len;
6779 sb_array_offset += len;
6780 cur_offset += len;
6781 }
6782 clear_extent_buffer_uptodate(sb);
6783 free_extent_buffer_stale(sb);
6784 return ret;
6785
6786 out_short_read:
6787 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6788 len, cur_offset);
6789 clear_extent_buffer_uptodate(sb);
6790 free_extent_buffer_stale(sb);
6791 return -EIO;
6792 }
6793
6794 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6795 {
6796 struct btrfs_root *root = fs_info->chunk_root;
6797 struct btrfs_path *path;
6798 struct extent_buffer *leaf;
6799 struct btrfs_key key;
6800 struct btrfs_key found_key;
6801 int ret;
6802 int slot;
6803 u64 total_dev = 0;
6804
6805 path = btrfs_alloc_path();
6806 if (!path)
6807 return -ENOMEM;
6808
6809 mutex_lock(&uuid_mutex);
6810 lock_chunks(fs_info);
6811
6812 /*
6813 * Read all device items, and then all the chunk items. All
6814 * device items are found before any chunk item (their object id
6815 * is smaller than the lowest possible object id for a chunk
6816 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6817 */
6818 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6819 key.offset = 0;
6820 key.type = 0;
6821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6822 if (ret < 0)
6823 goto error;
6824 while (1) {
6825 leaf = path->nodes[0];
6826 slot = path->slots[0];
6827 if (slot >= btrfs_header_nritems(leaf)) {
6828 ret = btrfs_next_leaf(root, path);
6829 if (ret == 0)
6830 continue;
6831 if (ret < 0)
6832 goto error;
6833 break;
6834 }
6835 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6836 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6837 struct btrfs_dev_item *dev_item;
6838 dev_item = btrfs_item_ptr(leaf, slot,
6839 struct btrfs_dev_item);
6840 ret = read_one_dev(root, leaf, dev_item);
6841 if (ret)
6842 goto error;
6843 total_dev++;
6844 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6845 struct btrfs_chunk *chunk;
6846 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6847 ret = read_one_chunk(root, &found_key, leaf, chunk);
6848 if (ret)
6849 goto error;
6850 }
6851 path->slots[0]++;
6852 }
6853
6854 /*
6855 * After loading chunk tree, we've got all device information,
6856 * do another round of validation checks.
6857 */
6858 if (total_dev != fs_info->fs_devices->total_devices) {
6859 btrfs_err(fs_info,
6860 "super_num_devices %llu mismatch with num_devices %llu found here",
6861 btrfs_super_num_devices(fs_info->super_copy),
6862 total_dev);
6863 ret = -EINVAL;
6864 goto error;
6865 }
6866 if (btrfs_super_total_bytes(fs_info->super_copy) <
6867 fs_info->fs_devices->total_rw_bytes) {
6868 btrfs_err(fs_info,
6869 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6870 btrfs_super_total_bytes(fs_info->super_copy),
6871 fs_info->fs_devices->total_rw_bytes);
6872 ret = -EINVAL;
6873 goto error;
6874 }
6875 ret = 0;
6876 error:
6877 unlock_chunks(fs_info);
6878 mutex_unlock(&uuid_mutex);
6879
6880 btrfs_free_path(path);
6881 return ret;
6882 }
6883
6884 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6885 {
6886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6887 struct btrfs_device *device;
6888
6889 while (fs_devices) {
6890 mutex_lock(&fs_devices->device_list_mutex);
6891 list_for_each_entry(device, &fs_devices->devices, dev_list)
6892 device->fs_info = fs_info;
6893 mutex_unlock(&fs_devices->device_list_mutex);
6894
6895 fs_devices = fs_devices->seed;
6896 }
6897 }
6898
6899 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6900 {
6901 int i;
6902
6903 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6904 btrfs_dev_stat_reset(dev, i);
6905 }
6906
6907 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6908 {
6909 struct btrfs_key key;
6910 struct btrfs_key found_key;
6911 struct btrfs_root *dev_root = fs_info->dev_root;
6912 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6913 struct extent_buffer *eb;
6914 int slot;
6915 int ret = 0;
6916 struct btrfs_device *device;
6917 struct btrfs_path *path = NULL;
6918 int i;
6919
6920 path = btrfs_alloc_path();
6921 if (!path) {
6922 ret = -ENOMEM;
6923 goto out;
6924 }
6925
6926 mutex_lock(&fs_devices->device_list_mutex);
6927 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6928 int item_size;
6929 struct btrfs_dev_stats_item *ptr;
6930
6931 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6932 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6933 key.offset = device->devid;
6934 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6935 if (ret) {
6936 __btrfs_reset_dev_stats(device);
6937 device->dev_stats_valid = 1;
6938 btrfs_release_path(path);
6939 continue;
6940 }
6941 slot = path->slots[0];
6942 eb = path->nodes[0];
6943 btrfs_item_key_to_cpu(eb, &found_key, slot);
6944 item_size = btrfs_item_size_nr(eb, slot);
6945
6946 ptr = btrfs_item_ptr(eb, slot,
6947 struct btrfs_dev_stats_item);
6948
6949 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6950 if (item_size >= (1 + i) * sizeof(__le64))
6951 btrfs_dev_stat_set(device, i,
6952 btrfs_dev_stats_value(eb, ptr, i));
6953 else
6954 btrfs_dev_stat_reset(device, i);
6955 }
6956
6957 device->dev_stats_valid = 1;
6958 btrfs_dev_stat_print_on_load(device);
6959 btrfs_release_path(path);
6960 }
6961 mutex_unlock(&fs_devices->device_list_mutex);
6962
6963 out:
6964 btrfs_free_path(path);
6965 return ret < 0 ? ret : 0;
6966 }
6967
6968 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6969 struct btrfs_fs_info *fs_info,
6970 struct btrfs_device *device)
6971 {
6972 struct btrfs_root *dev_root = fs_info->dev_root;
6973 struct btrfs_path *path;
6974 struct btrfs_key key;
6975 struct extent_buffer *eb;
6976 struct btrfs_dev_stats_item *ptr;
6977 int ret;
6978 int i;
6979
6980 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6981 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6982 key.offset = device->devid;
6983
6984 path = btrfs_alloc_path();
6985 BUG_ON(!path);
6986 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6987 if (ret < 0) {
6988 btrfs_warn_in_rcu(fs_info,
6989 "error %d while searching for dev_stats item for device %s",
6990 ret, rcu_str_deref(device->name));
6991 goto out;
6992 }
6993
6994 if (ret == 0 &&
6995 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6996 /* need to delete old one and insert a new one */
6997 ret = btrfs_del_item(trans, dev_root, path);
6998 if (ret != 0) {
6999 btrfs_warn_in_rcu(fs_info,
7000 "delete too small dev_stats item for device %s failed %d",
7001 rcu_str_deref(device->name), ret);
7002 goto out;
7003 }
7004 ret = 1;
7005 }
7006
7007 if (ret == 1) {
7008 /* need to insert a new item */
7009 btrfs_release_path(path);
7010 ret = btrfs_insert_empty_item(trans, dev_root, path,
7011 &key, sizeof(*ptr));
7012 if (ret < 0) {
7013 btrfs_warn_in_rcu(fs_info,
7014 "insert dev_stats item for device %s failed %d",
7015 rcu_str_deref(device->name), ret);
7016 goto out;
7017 }
7018 }
7019
7020 eb = path->nodes[0];
7021 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7022 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7023 btrfs_set_dev_stats_value(eb, ptr, i,
7024 btrfs_dev_stat_read(device, i));
7025 btrfs_mark_buffer_dirty(eb);
7026
7027 out:
7028 btrfs_free_path(path);
7029 return ret;
7030 }
7031
7032 /*
7033 * called from commit_transaction. Writes all changed device stats to disk.
7034 */
7035 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7036 struct btrfs_fs_info *fs_info)
7037 {
7038 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7039 struct btrfs_device *device;
7040 int stats_cnt;
7041 int ret = 0;
7042
7043 mutex_lock(&fs_devices->device_list_mutex);
7044 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7045 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7046 continue;
7047
7048 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7049 ret = update_dev_stat_item(trans, fs_info, device);
7050 if (!ret)
7051 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7052 }
7053 mutex_unlock(&fs_devices->device_list_mutex);
7054
7055 return ret;
7056 }
7057
7058 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7059 {
7060 btrfs_dev_stat_inc(dev, index);
7061 btrfs_dev_stat_print_on_error(dev);
7062 }
7063
7064 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7065 {
7066 if (!dev->dev_stats_valid)
7067 return;
7068 btrfs_err_rl_in_rcu(dev->fs_info,
7069 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7070 rcu_str_deref(dev->name),
7071 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7072 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7073 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7074 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7075 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7076 }
7077
7078 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7079 {
7080 int i;
7081
7082 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7083 if (btrfs_dev_stat_read(dev, i) != 0)
7084 break;
7085 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7086 return; /* all values == 0, suppress message */
7087
7088 btrfs_info_in_rcu(dev->fs_info,
7089 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7090 rcu_str_deref(dev->name),
7091 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7092 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7093 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7094 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7095 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7096 }
7097
7098 int btrfs_get_dev_stats(struct btrfs_root *root,
7099 struct btrfs_ioctl_get_dev_stats *stats)
7100 {
7101 struct btrfs_fs_info *fs_info = root->fs_info;
7102 struct btrfs_device *dev;
7103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7104 int i;
7105
7106 mutex_lock(&fs_devices->device_list_mutex);
7107 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7108 mutex_unlock(&fs_devices->device_list_mutex);
7109
7110 if (!dev) {
7111 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7112 return -ENODEV;
7113 } else if (!dev->dev_stats_valid) {
7114 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7115 return -ENODEV;
7116 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7117 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7118 if (stats->nr_items > i)
7119 stats->values[i] =
7120 btrfs_dev_stat_read_and_reset(dev, i);
7121 else
7122 btrfs_dev_stat_reset(dev, i);
7123 }
7124 } else {
7125 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7126 if (stats->nr_items > i)
7127 stats->values[i] = btrfs_dev_stat_read(dev, i);
7128 }
7129 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7130 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7131 return 0;
7132 }
7133
7134 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7135 {
7136 struct buffer_head *bh;
7137 struct btrfs_super_block *disk_super;
7138 int copy_num;
7139
7140 if (!bdev)
7141 return;
7142
7143 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7144 copy_num++) {
7145
7146 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7147 continue;
7148
7149 disk_super = (struct btrfs_super_block *)bh->b_data;
7150
7151 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7152 set_buffer_dirty(bh);
7153 sync_dirty_buffer(bh);
7154 brelse(bh);
7155 }
7156
7157 /* Notify udev that device has changed */
7158 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7159
7160 /* Update ctime/mtime for device path for libblkid */
7161 update_dev_time(device_path);
7162 }
7163
7164 /*
7165 * Update the size of all devices, which is used for writing out the
7166 * super blocks.
7167 */
7168 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7169 {
7170 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7171 struct btrfs_device *curr, *next;
7172
7173 if (list_empty(&fs_devices->resized_devices))
7174 return;
7175
7176 mutex_lock(&fs_devices->device_list_mutex);
7177 lock_chunks(fs_info);
7178 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7179 resized_list) {
7180 list_del_init(&curr->resized_list);
7181 curr->commit_total_bytes = curr->disk_total_bytes;
7182 }
7183 unlock_chunks(fs_info);
7184 mutex_unlock(&fs_devices->device_list_mutex);
7185 }
7186
7187 /* Must be invoked during the transaction commit */
7188 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7189 struct btrfs_transaction *transaction)
7190 {
7191 struct btrfs_fs_info *fs_info = root->fs_info;
7192 struct extent_map *em;
7193 struct map_lookup *map;
7194 struct btrfs_device *dev;
7195 int i;
7196
7197 if (list_empty(&transaction->pending_chunks))
7198 return;
7199
7200 /* In order to kick the device replace finish process */
7201 lock_chunks(fs_info);
7202 list_for_each_entry(em, &transaction->pending_chunks, list) {
7203 map = em->map_lookup;
7204
7205 for (i = 0; i < map->num_stripes; i++) {
7206 dev = map->stripes[i].dev;
7207 dev->commit_bytes_used = dev->bytes_used;
7208 }
7209 }
7210 unlock_chunks(fs_info);
7211 }
7212
7213 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7214 {
7215 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7216 while (fs_devices) {
7217 fs_devices->fs_info = fs_info;
7218 fs_devices = fs_devices->seed;
7219 }
7220 }
7221
7222 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7223 {
7224 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7225 while (fs_devices) {
7226 fs_devices->fs_info = NULL;
7227 fs_devices = fs_devices->seed;
7228 }
7229 }