]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/volumes.c
Merge tag 'nfsd-4.4-1' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128
129 DEFINE_MUTEX(uuid_mutex);
130 static LIST_HEAD(fs_uuids);
131 struct list_head *btrfs_get_fs_uuids(void)
132 {
133 return &fs_uuids;
134 }
135
136 static struct btrfs_fs_devices *__alloc_fs_devices(void)
137 {
138 struct btrfs_fs_devices *fs_devs;
139
140 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
141 if (!fs_devs)
142 return ERR_PTR(-ENOMEM);
143
144 mutex_init(&fs_devs->device_list_mutex);
145
146 INIT_LIST_HEAD(&fs_devs->devices);
147 INIT_LIST_HEAD(&fs_devs->resized_devices);
148 INIT_LIST_HEAD(&fs_devs->alloc_list);
149 INIT_LIST_HEAD(&fs_devs->list);
150
151 return fs_devs;
152 }
153
154 /**
155 * alloc_fs_devices - allocate struct btrfs_fs_devices
156 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
157 * generated.
158 *
159 * Return: a pointer to a new &struct btrfs_fs_devices on success;
160 * ERR_PTR() on error. Returned struct is not linked onto any lists and
161 * can be destroyed with kfree() right away.
162 */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = __alloc_fs_devices();
168 if (IS_ERR(fs_devs))
169 return fs_devs;
170
171 if (fsid)
172 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
173 else
174 generate_random_uuid(fs_devs->fsid);
175
176 return fs_devs;
177 }
178
179 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
180 {
181 struct btrfs_device *device;
182 WARN_ON(fs_devices->opened);
183 while (!list_empty(&fs_devices->devices)) {
184 device = list_entry(fs_devices->devices.next,
185 struct btrfs_device, dev_list);
186 list_del(&device->dev_list);
187 rcu_string_free(device->name);
188 kfree(device);
189 }
190 kfree(fs_devices);
191 }
192
193 static void btrfs_kobject_uevent(struct block_device *bdev,
194 enum kobject_action action)
195 {
196 int ret;
197
198 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
199 if (ret)
200 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
201 action,
202 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
203 &disk_to_dev(bdev->bd_disk)->kobj);
204 }
205
206 void btrfs_cleanup_fs_uuids(void)
207 {
208 struct btrfs_fs_devices *fs_devices;
209
210 while (!list_empty(&fs_uuids)) {
211 fs_devices = list_entry(fs_uuids.next,
212 struct btrfs_fs_devices, list);
213 list_del(&fs_devices->list);
214 free_fs_devices(fs_devices);
215 }
216 }
217
218 static struct btrfs_device *__alloc_device(void)
219 {
220 struct btrfs_device *dev;
221
222 dev = kzalloc(sizeof(*dev), GFP_NOFS);
223 if (!dev)
224 return ERR_PTR(-ENOMEM);
225
226 INIT_LIST_HEAD(&dev->dev_list);
227 INIT_LIST_HEAD(&dev->dev_alloc_list);
228 INIT_LIST_HEAD(&dev->resized_list);
229
230 spin_lock_init(&dev->io_lock);
231
232 spin_lock_init(&dev->reada_lock);
233 atomic_set(&dev->reada_in_flight, 0);
234 atomic_set(&dev->dev_stats_ccnt, 0);
235 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
236 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
237
238 return dev;
239 }
240
241 static noinline struct btrfs_device *__find_device(struct list_head *head,
242 u64 devid, u8 *uuid)
243 {
244 struct btrfs_device *dev;
245
246 list_for_each_entry(dev, head, dev_list) {
247 if (dev->devid == devid &&
248 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
249 return dev;
250 }
251 }
252 return NULL;
253 }
254
255 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
256 {
257 struct btrfs_fs_devices *fs_devices;
258
259 list_for_each_entry(fs_devices, &fs_uuids, list) {
260 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
261 return fs_devices;
262 }
263 return NULL;
264 }
265
266 static int
267 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
268 int flush, struct block_device **bdev,
269 struct buffer_head **bh)
270 {
271 int ret;
272
273 *bdev = blkdev_get_by_path(device_path, flags, holder);
274
275 if (IS_ERR(*bdev)) {
276 ret = PTR_ERR(*bdev);
277 goto error;
278 }
279
280 if (flush)
281 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
282 ret = set_blocksize(*bdev, 4096);
283 if (ret) {
284 blkdev_put(*bdev, flags);
285 goto error;
286 }
287 invalidate_bdev(*bdev);
288 *bh = btrfs_read_dev_super(*bdev);
289 if (IS_ERR(*bh)) {
290 ret = PTR_ERR(*bh);
291 blkdev_put(*bdev, flags);
292 goto error;
293 }
294
295 return 0;
296
297 error:
298 *bdev = NULL;
299 *bh = NULL;
300 return ret;
301 }
302
303 static void requeue_list(struct btrfs_pending_bios *pending_bios,
304 struct bio *head, struct bio *tail)
305 {
306
307 struct bio *old_head;
308
309 old_head = pending_bios->head;
310 pending_bios->head = head;
311 if (pending_bios->tail)
312 tail->bi_next = old_head;
313 else
314 pending_bios->tail = tail;
315 }
316
317 /*
318 * we try to collect pending bios for a device so we don't get a large
319 * number of procs sending bios down to the same device. This greatly
320 * improves the schedulers ability to collect and merge the bios.
321 *
322 * But, it also turns into a long list of bios to process and that is sure
323 * to eventually make the worker thread block. The solution here is to
324 * make some progress and then put this work struct back at the end of
325 * the list if the block device is congested. This way, multiple devices
326 * can make progress from a single worker thread.
327 */
328 static noinline void run_scheduled_bios(struct btrfs_device *device)
329 {
330 struct bio *pending;
331 struct backing_dev_info *bdi;
332 struct btrfs_fs_info *fs_info;
333 struct btrfs_pending_bios *pending_bios;
334 struct bio *tail;
335 struct bio *cur;
336 int again = 0;
337 unsigned long num_run;
338 unsigned long batch_run = 0;
339 unsigned long limit;
340 unsigned long last_waited = 0;
341 int force_reg = 0;
342 int sync_pending = 0;
343 struct blk_plug plug;
344
345 /*
346 * this function runs all the bios we've collected for
347 * a particular device. We don't want to wander off to
348 * another device without first sending all of these down.
349 * So, setup a plug here and finish it off before we return
350 */
351 blk_start_plug(&plug);
352
353 bdi = blk_get_backing_dev_info(device->bdev);
354 fs_info = device->dev_root->fs_info;
355 limit = btrfs_async_submit_limit(fs_info);
356 limit = limit * 2 / 3;
357
358 loop:
359 spin_lock(&device->io_lock);
360
361 loop_lock:
362 num_run = 0;
363
364 /* take all the bios off the list at once and process them
365 * later on (without the lock held). But, remember the
366 * tail and other pointers so the bios can be properly reinserted
367 * into the list if we hit congestion
368 */
369 if (!force_reg && device->pending_sync_bios.head) {
370 pending_bios = &device->pending_sync_bios;
371 force_reg = 1;
372 } else {
373 pending_bios = &device->pending_bios;
374 force_reg = 0;
375 }
376
377 pending = pending_bios->head;
378 tail = pending_bios->tail;
379 WARN_ON(pending && !tail);
380
381 /*
382 * if pending was null this time around, no bios need processing
383 * at all and we can stop. Otherwise it'll loop back up again
384 * and do an additional check so no bios are missed.
385 *
386 * device->running_pending is used to synchronize with the
387 * schedule_bio code.
388 */
389 if (device->pending_sync_bios.head == NULL &&
390 device->pending_bios.head == NULL) {
391 again = 0;
392 device->running_pending = 0;
393 } else {
394 again = 1;
395 device->running_pending = 1;
396 }
397
398 pending_bios->head = NULL;
399 pending_bios->tail = NULL;
400
401 spin_unlock(&device->io_lock);
402
403 while (pending) {
404
405 rmb();
406 /* we want to work on both lists, but do more bios on the
407 * sync list than the regular list
408 */
409 if ((num_run > 32 &&
410 pending_bios != &device->pending_sync_bios &&
411 device->pending_sync_bios.head) ||
412 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
413 device->pending_bios.head)) {
414 spin_lock(&device->io_lock);
415 requeue_list(pending_bios, pending, tail);
416 goto loop_lock;
417 }
418
419 cur = pending;
420 pending = pending->bi_next;
421 cur->bi_next = NULL;
422
423 /*
424 * atomic_dec_return implies a barrier for waitqueue_active
425 */
426 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
427 waitqueue_active(&fs_info->async_submit_wait))
428 wake_up(&fs_info->async_submit_wait);
429
430 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
431
432 /*
433 * if we're doing the sync list, record that our
434 * plug has some sync requests on it
435 *
436 * If we're doing the regular list and there are
437 * sync requests sitting around, unplug before
438 * we add more
439 */
440 if (pending_bios == &device->pending_sync_bios) {
441 sync_pending = 1;
442 } else if (sync_pending) {
443 blk_finish_plug(&plug);
444 blk_start_plug(&plug);
445 sync_pending = 0;
446 }
447
448 btrfsic_submit_bio(cur->bi_rw, cur);
449 num_run++;
450 batch_run++;
451
452 cond_resched();
453
454 /*
455 * we made progress, there is more work to do and the bdi
456 * is now congested. Back off and let other work structs
457 * run instead
458 */
459 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
460 fs_info->fs_devices->open_devices > 1) {
461 struct io_context *ioc;
462
463 ioc = current->io_context;
464
465 /*
466 * the main goal here is that we don't want to
467 * block if we're going to be able to submit
468 * more requests without blocking.
469 *
470 * This code does two great things, it pokes into
471 * the elevator code from a filesystem _and_
472 * it makes assumptions about how batching works.
473 */
474 if (ioc && ioc->nr_batch_requests > 0 &&
475 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
476 (last_waited == 0 ||
477 ioc->last_waited == last_waited)) {
478 /*
479 * we want to go through our batch of
480 * requests and stop. So, we copy out
481 * the ioc->last_waited time and test
482 * against it before looping
483 */
484 last_waited = ioc->last_waited;
485 cond_resched();
486 continue;
487 }
488 spin_lock(&device->io_lock);
489 requeue_list(pending_bios, pending, tail);
490 device->running_pending = 1;
491
492 spin_unlock(&device->io_lock);
493 btrfs_queue_work(fs_info->submit_workers,
494 &device->work);
495 goto done;
496 }
497 /* unplug every 64 requests just for good measure */
498 if (batch_run % 64 == 0) {
499 blk_finish_plug(&plug);
500 blk_start_plug(&plug);
501 sync_pending = 0;
502 }
503 }
504
505 cond_resched();
506 if (again)
507 goto loop;
508
509 spin_lock(&device->io_lock);
510 if (device->pending_bios.head || device->pending_sync_bios.head)
511 goto loop_lock;
512 spin_unlock(&device->io_lock);
513
514 done:
515 blk_finish_plug(&plug);
516 }
517
518 static void pending_bios_fn(struct btrfs_work *work)
519 {
520 struct btrfs_device *device;
521
522 device = container_of(work, struct btrfs_device, work);
523 run_scheduled_bios(device);
524 }
525
526
527 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
528 {
529 struct btrfs_fs_devices *fs_devs;
530 struct btrfs_device *dev;
531
532 if (!cur_dev->name)
533 return;
534
535 list_for_each_entry(fs_devs, &fs_uuids, list) {
536 int del = 1;
537
538 if (fs_devs->opened)
539 continue;
540 if (fs_devs->seeding)
541 continue;
542
543 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
544
545 if (dev == cur_dev)
546 continue;
547 if (!dev->name)
548 continue;
549
550 /*
551 * Todo: This won't be enough. What if the same device
552 * comes back (with new uuid and) with its mapper path?
553 * But for now, this does help as mostly an admin will
554 * either use mapper or non mapper path throughout.
555 */
556 rcu_read_lock();
557 del = strcmp(rcu_str_deref(dev->name),
558 rcu_str_deref(cur_dev->name));
559 rcu_read_unlock();
560 if (!del)
561 break;
562 }
563
564 if (!del) {
565 /* delete the stale device */
566 if (fs_devs->num_devices == 1) {
567 btrfs_sysfs_remove_fsid(fs_devs);
568 list_del(&fs_devs->list);
569 free_fs_devices(fs_devs);
570 } else {
571 fs_devs->num_devices--;
572 list_del(&dev->dev_list);
573 rcu_string_free(dev->name);
574 kfree(dev);
575 }
576 break;
577 }
578 }
579 }
580
581 /*
582 * Add new device to list of registered devices
583 *
584 * Returns:
585 * 1 - first time device is seen
586 * 0 - device already known
587 * < 0 - error
588 */
589 static noinline int device_list_add(const char *path,
590 struct btrfs_super_block *disk_super,
591 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
592 {
593 struct btrfs_device *device;
594 struct btrfs_fs_devices *fs_devices;
595 struct rcu_string *name;
596 int ret = 0;
597 u64 found_transid = btrfs_super_generation(disk_super);
598
599 fs_devices = find_fsid(disk_super->fsid);
600 if (!fs_devices) {
601 fs_devices = alloc_fs_devices(disk_super->fsid);
602 if (IS_ERR(fs_devices))
603 return PTR_ERR(fs_devices);
604
605 list_add(&fs_devices->list, &fs_uuids);
606
607 device = NULL;
608 } else {
609 device = __find_device(&fs_devices->devices, devid,
610 disk_super->dev_item.uuid);
611 }
612
613 if (!device) {
614 if (fs_devices->opened)
615 return -EBUSY;
616
617 device = btrfs_alloc_device(NULL, &devid,
618 disk_super->dev_item.uuid);
619 if (IS_ERR(device)) {
620 /* we can safely leave the fs_devices entry around */
621 return PTR_ERR(device);
622 }
623
624 name = rcu_string_strdup(path, GFP_NOFS);
625 if (!name) {
626 kfree(device);
627 return -ENOMEM;
628 }
629 rcu_assign_pointer(device->name, name);
630
631 mutex_lock(&fs_devices->device_list_mutex);
632 list_add_rcu(&device->dev_list, &fs_devices->devices);
633 fs_devices->num_devices++;
634 mutex_unlock(&fs_devices->device_list_mutex);
635
636 ret = 1;
637 device->fs_devices = fs_devices;
638 } else if (!device->name || strcmp(device->name->str, path)) {
639 /*
640 * When FS is already mounted.
641 * 1. If you are here and if the device->name is NULL that
642 * means this device was missing at time of FS mount.
643 * 2. If you are here and if the device->name is different
644 * from 'path' that means either
645 * a. The same device disappeared and reappeared with
646 * different name. or
647 * b. The missing-disk-which-was-replaced, has
648 * reappeared now.
649 *
650 * We must allow 1 and 2a above. But 2b would be a spurious
651 * and unintentional.
652 *
653 * Further in case of 1 and 2a above, the disk at 'path'
654 * would have missed some transaction when it was away and
655 * in case of 2a the stale bdev has to be updated as well.
656 * 2b must not be allowed at all time.
657 */
658
659 /*
660 * For now, we do allow update to btrfs_fs_device through the
661 * btrfs dev scan cli after FS has been mounted. We're still
662 * tracking a problem where systems fail mount by subvolume id
663 * when we reject replacement on a mounted FS.
664 */
665 if (!fs_devices->opened && found_transid < device->generation) {
666 /*
667 * That is if the FS is _not_ mounted and if you
668 * are here, that means there is more than one
669 * disk with same uuid and devid.We keep the one
670 * with larger generation number or the last-in if
671 * generation are equal.
672 */
673 return -EEXIST;
674 }
675
676 name = rcu_string_strdup(path, GFP_NOFS);
677 if (!name)
678 return -ENOMEM;
679 rcu_string_free(device->name);
680 rcu_assign_pointer(device->name, name);
681 if (device->missing) {
682 fs_devices->missing_devices--;
683 device->missing = 0;
684 }
685 }
686
687 /*
688 * Unmount does not free the btrfs_device struct but would zero
689 * generation along with most of the other members. So just update
690 * it back. We need it to pick the disk with largest generation
691 * (as above).
692 */
693 if (!fs_devices->opened)
694 device->generation = found_transid;
695
696 /*
697 * if there is new btrfs on an already registered device,
698 * then remove the stale device entry.
699 */
700 btrfs_free_stale_device(device);
701
702 *fs_devices_ret = fs_devices;
703
704 return ret;
705 }
706
707 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
708 {
709 struct btrfs_fs_devices *fs_devices;
710 struct btrfs_device *device;
711 struct btrfs_device *orig_dev;
712
713 fs_devices = alloc_fs_devices(orig->fsid);
714 if (IS_ERR(fs_devices))
715 return fs_devices;
716
717 mutex_lock(&orig->device_list_mutex);
718 fs_devices->total_devices = orig->total_devices;
719
720 /* We have held the volume lock, it is safe to get the devices. */
721 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
722 struct rcu_string *name;
723
724 device = btrfs_alloc_device(NULL, &orig_dev->devid,
725 orig_dev->uuid);
726 if (IS_ERR(device))
727 goto error;
728
729 /*
730 * This is ok to do without rcu read locked because we hold the
731 * uuid mutex so nothing we touch in here is going to disappear.
732 */
733 if (orig_dev->name) {
734 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
735 if (!name) {
736 kfree(device);
737 goto error;
738 }
739 rcu_assign_pointer(device->name, name);
740 }
741
742 list_add(&device->dev_list, &fs_devices->devices);
743 device->fs_devices = fs_devices;
744 fs_devices->num_devices++;
745 }
746 mutex_unlock(&orig->device_list_mutex);
747 return fs_devices;
748 error:
749 mutex_unlock(&orig->device_list_mutex);
750 free_fs_devices(fs_devices);
751 return ERR_PTR(-ENOMEM);
752 }
753
754 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
755 {
756 struct btrfs_device *device, *next;
757 struct btrfs_device *latest_dev = NULL;
758
759 mutex_lock(&uuid_mutex);
760 again:
761 /* This is the initialized path, it is safe to release the devices. */
762 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
763 if (device->in_fs_metadata) {
764 if (!device->is_tgtdev_for_dev_replace &&
765 (!latest_dev ||
766 device->generation > latest_dev->generation)) {
767 latest_dev = device;
768 }
769 continue;
770 }
771
772 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
773 /*
774 * In the first step, keep the device which has
775 * the correct fsid and the devid that is used
776 * for the dev_replace procedure.
777 * In the second step, the dev_replace state is
778 * read from the device tree and it is known
779 * whether the procedure is really active or
780 * not, which means whether this device is
781 * used or whether it should be removed.
782 */
783 if (step == 0 || device->is_tgtdev_for_dev_replace) {
784 continue;
785 }
786 }
787 if (device->bdev) {
788 blkdev_put(device->bdev, device->mode);
789 device->bdev = NULL;
790 fs_devices->open_devices--;
791 }
792 if (device->writeable) {
793 list_del_init(&device->dev_alloc_list);
794 device->writeable = 0;
795 if (!device->is_tgtdev_for_dev_replace)
796 fs_devices->rw_devices--;
797 }
798 list_del_init(&device->dev_list);
799 fs_devices->num_devices--;
800 rcu_string_free(device->name);
801 kfree(device);
802 }
803
804 if (fs_devices->seed) {
805 fs_devices = fs_devices->seed;
806 goto again;
807 }
808
809 fs_devices->latest_bdev = latest_dev->bdev;
810
811 mutex_unlock(&uuid_mutex);
812 }
813
814 static void __free_device(struct work_struct *work)
815 {
816 struct btrfs_device *device;
817
818 device = container_of(work, struct btrfs_device, rcu_work);
819
820 if (device->bdev)
821 blkdev_put(device->bdev, device->mode);
822
823 rcu_string_free(device->name);
824 kfree(device);
825 }
826
827 static void free_device(struct rcu_head *head)
828 {
829 struct btrfs_device *device;
830
831 device = container_of(head, struct btrfs_device, rcu);
832
833 INIT_WORK(&device->rcu_work, __free_device);
834 schedule_work(&device->rcu_work);
835 }
836
837 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
838 {
839 struct btrfs_device *device, *tmp;
840
841 if (--fs_devices->opened > 0)
842 return 0;
843
844 mutex_lock(&fs_devices->device_list_mutex);
845 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
846 btrfs_close_one_device(device);
847 }
848 mutex_unlock(&fs_devices->device_list_mutex);
849
850 WARN_ON(fs_devices->open_devices);
851 WARN_ON(fs_devices->rw_devices);
852 fs_devices->opened = 0;
853 fs_devices->seeding = 0;
854
855 return 0;
856 }
857
858 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
859 {
860 struct btrfs_fs_devices *seed_devices = NULL;
861 int ret;
862
863 mutex_lock(&uuid_mutex);
864 ret = __btrfs_close_devices(fs_devices);
865 if (!fs_devices->opened) {
866 seed_devices = fs_devices->seed;
867 fs_devices->seed = NULL;
868 }
869 mutex_unlock(&uuid_mutex);
870
871 while (seed_devices) {
872 fs_devices = seed_devices;
873 seed_devices = fs_devices->seed;
874 __btrfs_close_devices(fs_devices);
875 free_fs_devices(fs_devices);
876 }
877 /*
878 * Wait for rcu kworkers under __btrfs_close_devices
879 * to finish all blkdev_puts so device is really
880 * free when umount is done.
881 */
882 rcu_barrier();
883 return ret;
884 }
885
886 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
887 fmode_t flags, void *holder)
888 {
889 struct request_queue *q;
890 struct block_device *bdev;
891 struct list_head *head = &fs_devices->devices;
892 struct btrfs_device *device;
893 struct btrfs_device *latest_dev = NULL;
894 struct buffer_head *bh;
895 struct btrfs_super_block *disk_super;
896 u64 devid;
897 int seeding = 1;
898 int ret = 0;
899
900 flags |= FMODE_EXCL;
901
902 list_for_each_entry(device, head, dev_list) {
903 if (device->bdev)
904 continue;
905 if (!device->name)
906 continue;
907
908 /* Just open everything we can; ignore failures here */
909 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
910 &bdev, &bh))
911 continue;
912
913 disk_super = (struct btrfs_super_block *)bh->b_data;
914 devid = btrfs_stack_device_id(&disk_super->dev_item);
915 if (devid != device->devid)
916 goto error_brelse;
917
918 if (memcmp(device->uuid, disk_super->dev_item.uuid,
919 BTRFS_UUID_SIZE))
920 goto error_brelse;
921
922 device->generation = btrfs_super_generation(disk_super);
923 if (!latest_dev ||
924 device->generation > latest_dev->generation)
925 latest_dev = device;
926
927 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
928 device->writeable = 0;
929 } else {
930 device->writeable = !bdev_read_only(bdev);
931 seeding = 0;
932 }
933
934 q = bdev_get_queue(bdev);
935 if (blk_queue_discard(q))
936 device->can_discard = 1;
937
938 device->bdev = bdev;
939 device->in_fs_metadata = 0;
940 device->mode = flags;
941
942 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
943 fs_devices->rotating = 1;
944
945 fs_devices->open_devices++;
946 if (device->writeable &&
947 device->devid != BTRFS_DEV_REPLACE_DEVID) {
948 fs_devices->rw_devices++;
949 list_add(&device->dev_alloc_list,
950 &fs_devices->alloc_list);
951 }
952 brelse(bh);
953 continue;
954
955 error_brelse:
956 brelse(bh);
957 blkdev_put(bdev, flags);
958 continue;
959 }
960 if (fs_devices->open_devices == 0) {
961 ret = -EINVAL;
962 goto out;
963 }
964 fs_devices->seeding = seeding;
965 fs_devices->opened = 1;
966 fs_devices->latest_bdev = latest_dev->bdev;
967 fs_devices->total_rw_bytes = 0;
968 out:
969 return ret;
970 }
971
972 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
973 fmode_t flags, void *holder)
974 {
975 int ret;
976
977 mutex_lock(&uuid_mutex);
978 if (fs_devices->opened) {
979 fs_devices->opened++;
980 ret = 0;
981 } else {
982 ret = __btrfs_open_devices(fs_devices, flags, holder);
983 }
984 mutex_unlock(&uuid_mutex);
985 return ret;
986 }
987
988 /*
989 * Look for a btrfs signature on a device. This may be called out of the mount path
990 * and we are not allowed to call set_blocksize during the scan. The superblock
991 * is read via pagecache
992 */
993 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
994 struct btrfs_fs_devices **fs_devices_ret)
995 {
996 struct btrfs_super_block *disk_super;
997 struct block_device *bdev;
998 struct page *page;
999 void *p;
1000 int ret = -EINVAL;
1001 u64 devid;
1002 u64 transid;
1003 u64 total_devices;
1004 u64 bytenr;
1005 pgoff_t index;
1006
1007 /*
1008 * we would like to check all the supers, but that would make
1009 * a btrfs mount succeed after a mkfs from a different FS.
1010 * So, we need to add a special mount option to scan for
1011 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1012 */
1013 bytenr = btrfs_sb_offset(0);
1014 flags |= FMODE_EXCL;
1015 mutex_lock(&uuid_mutex);
1016
1017 bdev = blkdev_get_by_path(path, flags, holder);
1018
1019 if (IS_ERR(bdev)) {
1020 ret = PTR_ERR(bdev);
1021 goto error;
1022 }
1023
1024 /* make sure our super fits in the device */
1025 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1026 goto error_bdev_put;
1027
1028 /* make sure our super fits in the page */
1029 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1030 goto error_bdev_put;
1031
1032 /* make sure our super doesn't straddle pages on disk */
1033 index = bytenr >> PAGE_CACHE_SHIFT;
1034 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1035 goto error_bdev_put;
1036
1037 /* pull in the page with our super */
1038 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1039 index, GFP_NOFS);
1040
1041 if (IS_ERR_OR_NULL(page))
1042 goto error_bdev_put;
1043
1044 p = kmap(page);
1045
1046 /* align our pointer to the offset of the super block */
1047 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1048
1049 if (btrfs_super_bytenr(disk_super) != bytenr ||
1050 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1051 goto error_unmap;
1052
1053 devid = btrfs_stack_device_id(&disk_super->dev_item);
1054 transid = btrfs_super_generation(disk_super);
1055 total_devices = btrfs_super_num_devices(disk_super);
1056
1057 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1058 if (ret > 0) {
1059 if (disk_super->label[0]) {
1060 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1061 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1062 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1063 } else {
1064 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1065 }
1066
1067 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1068 ret = 0;
1069 }
1070 if (!ret && fs_devices_ret)
1071 (*fs_devices_ret)->total_devices = total_devices;
1072
1073 error_unmap:
1074 kunmap(page);
1075 page_cache_release(page);
1076
1077 error_bdev_put:
1078 blkdev_put(bdev, flags);
1079 error:
1080 mutex_unlock(&uuid_mutex);
1081 return ret;
1082 }
1083
1084 /* helper to account the used device space in the range */
1085 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1086 u64 end, u64 *length)
1087 {
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
1090 struct btrfs_dev_extent *dev_extent;
1091 struct btrfs_path *path;
1092 u64 extent_end;
1093 int ret;
1094 int slot;
1095 struct extent_buffer *l;
1096
1097 *length = 0;
1098
1099 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1100 return 0;
1101
1102 path = btrfs_alloc_path();
1103 if (!path)
1104 return -ENOMEM;
1105 path->reada = 2;
1106
1107 key.objectid = device->devid;
1108 key.offset = start;
1109 key.type = BTRFS_DEV_EXTENT_KEY;
1110
1111 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1112 if (ret < 0)
1113 goto out;
1114 if (ret > 0) {
1115 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1116 if (ret < 0)
1117 goto out;
1118 }
1119
1120 while (1) {
1121 l = path->nodes[0];
1122 slot = path->slots[0];
1123 if (slot >= btrfs_header_nritems(l)) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret == 0)
1126 continue;
1127 if (ret < 0)
1128 goto out;
1129
1130 break;
1131 }
1132 btrfs_item_key_to_cpu(l, &key, slot);
1133
1134 if (key.objectid < device->devid)
1135 goto next;
1136
1137 if (key.objectid > device->devid)
1138 break;
1139
1140 if (key.type != BTRFS_DEV_EXTENT_KEY)
1141 goto next;
1142
1143 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1144 extent_end = key.offset + btrfs_dev_extent_length(l,
1145 dev_extent);
1146 if (key.offset <= start && extent_end > end) {
1147 *length = end - start + 1;
1148 break;
1149 } else if (key.offset <= start && extent_end > start)
1150 *length += extent_end - start;
1151 else if (key.offset > start && extent_end <= end)
1152 *length += extent_end - key.offset;
1153 else if (key.offset > start && key.offset <= end) {
1154 *length += end - key.offset + 1;
1155 break;
1156 } else if (key.offset > end)
1157 break;
1158
1159 next:
1160 path->slots[0]++;
1161 }
1162 ret = 0;
1163 out:
1164 btrfs_free_path(path);
1165 return ret;
1166 }
1167
1168 static int contains_pending_extent(struct btrfs_transaction *transaction,
1169 struct btrfs_device *device,
1170 u64 *start, u64 len)
1171 {
1172 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1173 struct extent_map *em;
1174 struct list_head *search_list = &fs_info->pinned_chunks;
1175 int ret = 0;
1176 u64 physical_start = *start;
1177
1178 if (transaction)
1179 search_list = &transaction->pending_chunks;
1180 again:
1181 list_for_each_entry(em, search_list, list) {
1182 struct map_lookup *map;
1183 int i;
1184
1185 map = (struct map_lookup *)em->bdev;
1186 for (i = 0; i < map->num_stripes; i++) {
1187 u64 end;
1188
1189 if (map->stripes[i].dev != device)
1190 continue;
1191 if (map->stripes[i].physical >= physical_start + len ||
1192 map->stripes[i].physical + em->orig_block_len <=
1193 physical_start)
1194 continue;
1195 /*
1196 * Make sure that while processing the pinned list we do
1197 * not override our *start with a lower value, because
1198 * we can have pinned chunks that fall within this
1199 * device hole and that have lower physical addresses
1200 * than the pending chunks we processed before. If we
1201 * do not take this special care we can end up getting
1202 * 2 pending chunks that start at the same physical
1203 * device offsets because the end offset of a pinned
1204 * chunk can be equal to the start offset of some
1205 * pending chunk.
1206 */
1207 end = map->stripes[i].physical + em->orig_block_len;
1208 if (end > *start) {
1209 *start = end;
1210 ret = 1;
1211 }
1212 }
1213 }
1214 if (search_list != &fs_info->pinned_chunks) {
1215 search_list = &fs_info->pinned_chunks;
1216 goto again;
1217 }
1218
1219 return ret;
1220 }
1221
1222
1223 /*
1224 * find_free_dev_extent_start - find free space in the specified device
1225 * @device: the device which we search the free space in
1226 * @num_bytes: the size of the free space that we need
1227 * @search_start: the position from which to begin the search
1228 * @start: store the start of the free space.
1229 * @len: the size of the free space. that we find, or the size
1230 * of the max free space if we don't find suitable free space
1231 *
1232 * this uses a pretty simple search, the expectation is that it is
1233 * called very infrequently and that a given device has a small number
1234 * of extents
1235 *
1236 * @start is used to store the start of the free space if we find. But if we
1237 * don't find suitable free space, it will be used to store the start position
1238 * of the max free space.
1239 *
1240 * @len is used to store the size of the free space that we find.
1241 * But if we don't find suitable free space, it is used to store the size of
1242 * the max free space.
1243 */
1244 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1245 struct btrfs_device *device, u64 num_bytes,
1246 u64 search_start, u64 *start, u64 *len)
1247 {
1248 struct btrfs_key key;
1249 struct btrfs_root *root = device->dev_root;
1250 struct btrfs_dev_extent *dev_extent;
1251 struct btrfs_path *path;
1252 u64 hole_size;
1253 u64 max_hole_start;
1254 u64 max_hole_size;
1255 u64 extent_end;
1256 u64 search_end = device->total_bytes;
1257 int ret;
1258 int slot;
1259 struct extent_buffer *l;
1260
1261 path = btrfs_alloc_path();
1262 if (!path)
1263 return -ENOMEM;
1264
1265 max_hole_start = search_start;
1266 max_hole_size = 0;
1267
1268 again:
1269 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1270 ret = -ENOSPC;
1271 goto out;
1272 }
1273
1274 path->reada = 2;
1275 path->search_commit_root = 1;
1276 path->skip_locking = 1;
1277
1278 key.objectid = device->devid;
1279 key.offset = search_start;
1280 key.type = BTRFS_DEV_EXTENT_KEY;
1281
1282 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1283 if (ret < 0)
1284 goto out;
1285 if (ret > 0) {
1286 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1287 if (ret < 0)
1288 goto out;
1289 }
1290
1291 while (1) {
1292 l = path->nodes[0];
1293 slot = path->slots[0];
1294 if (slot >= btrfs_header_nritems(l)) {
1295 ret = btrfs_next_leaf(root, path);
1296 if (ret == 0)
1297 continue;
1298 if (ret < 0)
1299 goto out;
1300
1301 break;
1302 }
1303 btrfs_item_key_to_cpu(l, &key, slot);
1304
1305 if (key.objectid < device->devid)
1306 goto next;
1307
1308 if (key.objectid > device->devid)
1309 break;
1310
1311 if (key.type != BTRFS_DEV_EXTENT_KEY)
1312 goto next;
1313
1314 if (key.offset > search_start) {
1315 hole_size = key.offset - search_start;
1316
1317 /*
1318 * Have to check before we set max_hole_start, otherwise
1319 * we could end up sending back this offset anyway.
1320 */
1321 if (contains_pending_extent(transaction, device,
1322 &search_start,
1323 hole_size)) {
1324 if (key.offset >= search_start) {
1325 hole_size = key.offset - search_start;
1326 } else {
1327 WARN_ON_ONCE(1);
1328 hole_size = 0;
1329 }
1330 }
1331
1332 if (hole_size > max_hole_size) {
1333 max_hole_start = search_start;
1334 max_hole_size = hole_size;
1335 }
1336
1337 /*
1338 * If this free space is greater than which we need,
1339 * it must be the max free space that we have found
1340 * until now, so max_hole_start must point to the start
1341 * of this free space and the length of this free space
1342 * is stored in max_hole_size. Thus, we return
1343 * max_hole_start and max_hole_size and go back to the
1344 * caller.
1345 */
1346 if (hole_size >= num_bytes) {
1347 ret = 0;
1348 goto out;
1349 }
1350 }
1351
1352 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1353 extent_end = key.offset + btrfs_dev_extent_length(l,
1354 dev_extent);
1355 if (extent_end > search_start)
1356 search_start = extent_end;
1357 next:
1358 path->slots[0]++;
1359 cond_resched();
1360 }
1361
1362 /*
1363 * At this point, search_start should be the end of
1364 * allocated dev extents, and when shrinking the device,
1365 * search_end may be smaller than search_start.
1366 */
1367 if (search_end > search_start) {
1368 hole_size = search_end - search_start;
1369
1370 if (contains_pending_extent(transaction, device, &search_start,
1371 hole_size)) {
1372 btrfs_release_path(path);
1373 goto again;
1374 }
1375
1376 if (hole_size > max_hole_size) {
1377 max_hole_start = search_start;
1378 max_hole_size = hole_size;
1379 }
1380 }
1381
1382 /* See above. */
1383 if (max_hole_size < num_bytes)
1384 ret = -ENOSPC;
1385 else
1386 ret = 0;
1387
1388 out:
1389 btrfs_free_path(path);
1390 *start = max_hole_start;
1391 if (len)
1392 *len = max_hole_size;
1393 return ret;
1394 }
1395
1396 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1397 struct btrfs_device *device, u64 num_bytes,
1398 u64 *start, u64 *len)
1399 {
1400 struct btrfs_root *root = device->dev_root;
1401 u64 search_start;
1402
1403 /* FIXME use last free of some kind */
1404
1405 /*
1406 * we don't want to overwrite the superblock on the drive,
1407 * so we make sure to start at an offset of at least 1MB
1408 */
1409 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1410 return find_free_dev_extent_start(trans->transaction, device,
1411 num_bytes, search_start, start, len);
1412 }
1413
1414 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1415 struct btrfs_device *device,
1416 u64 start, u64 *dev_extent_len)
1417 {
1418 int ret;
1419 struct btrfs_path *path;
1420 struct btrfs_root *root = device->dev_root;
1421 struct btrfs_key key;
1422 struct btrfs_key found_key;
1423 struct extent_buffer *leaf = NULL;
1424 struct btrfs_dev_extent *extent = NULL;
1425
1426 path = btrfs_alloc_path();
1427 if (!path)
1428 return -ENOMEM;
1429
1430 key.objectid = device->devid;
1431 key.offset = start;
1432 key.type = BTRFS_DEV_EXTENT_KEY;
1433 again:
1434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1435 if (ret > 0) {
1436 ret = btrfs_previous_item(root, path, key.objectid,
1437 BTRFS_DEV_EXTENT_KEY);
1438 if (ret)
1439 goto out;
1440 leaf = path->nodes[0];
1441 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1442 extent = btrfs_item_ptr(leaf, path->slots[0],
1443 struct btrfs_dev_extent);
1444 BUG_ON(found_key.offset > start || found_key.offset +
1445 btrfs_dev_extent_length(leaf, extent) < start);
1446 key = found_key;
1447 btrfs_release_path(path);
1448 goto again;
1449 } else if (ret == 0) {
1450 leaf = path->nodes[0];
1451 extent = btrfs_item_ptr(leaf, path->slots[0],
1452 struct btrfs_dev_extent);
1453 } else {
1454 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1455 goto out;
1456 }
1457
1458 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1459
1460 ret = btrfs_del_item(trans, root, path);
1461 if (ret) {
1462 btrfs_std_error(root->fs_info, ret,
1463 "Failed to remove dev extent item");
1464 } else {
1465 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1466 }
1467 out:
1468 btrfs_free_path(path);
1469 return ret;
1470 }
1471
1472 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1473 struct btrfs_device *device,
1474 u64 chunk_tree, u64 chunk_objectid,
1475 u64 chunk_offset, u64 start, u64 num_bytes)
1476 {
1477 int ret;
1478 struct btrfs_path *path;
1479 struct btrfs_root *root = device->dev_root;
1480 struct btrfs_dev_extent *extent;
1481 struct extent_buffer *leaf;
1482 struct btrfs_key key;
1483
1484 WARN_ON(!device->in_fs_metadata);
1485 WARN_ON(device->is_tgtdev_for_dev_replace);
1486 path = btrfs_alloc_path();
1487 if (!path)
1488 return -ENOMEM;
1489
1490 key.objectid = device->devid;
1491 key.offset = start;
1492 key.type = BTRFS_DEV_EXTENT_KEY;
1493 ret = btrfs_insert_empty_item(trans, root, path, &key,
1494 sizeof(*extent));
1495 if (ret)
1496 goto out;
1497
1498 leaf = path->nodes[0];
1499 extent = btrfs_item_ptr(leaf, path->slots[0],
1500 struct btrfs_dev_extent);
1501 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1502 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1503 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1504
1505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1506 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1507
1508 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1509 btrfs_mark_buffer_dirty(leaf);
1510 out:
1511 btrfs_free_path(path);
1512 return ret;
1513 }
1514
1515 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1516 {
1517 struct extent_map_tree *em_tree;
1518 struct extent_map *em;
1519 struct rb_node *n;
1520 u64 ret = 0;
1521
1522 em_tree = &fs_info->mapping_tree.map_tree;
1523 read_lock(&em_tree->lock);
1524 n = rb_last(&em_tree->map);
1525 if (n) {
1526 em = rb_entry(n, struct extent_map, rb_node);
1527 ret = em->start + em->len;
1528 }
1529 read_unlock(&em_tree->lock);
1530
1531 return ret;
1532 }
1533
1534 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1535 u64 *devid_ret)
1536 {
1537 int ret;
1538 struct btrfs_key key;
1539 struct btrfs_key found_key;
1540 struct btrfs_path *path;
1541
1542 path = btrfs_alloc_path();
1543 if (!path)
1544 return -ENOMEM;
1545
1546 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1547 key.type = BTRFS_DEV_ITEM_KEY;
1548 key.offset = (u64)-1;
1549
1550 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1551 if (ret < 0)
1552 goto error;
1553
1554 BUG_ON(ret == 0); /* Corruption */
1555
1556 ret = btrfs_previous_item(fs_info->chunk_root, path,
1557 BTRFS_DEV_ITEMS_OBJECTID,
1558 BTRFS_DEV_ITEM_KEY);
1559 if (ret) {
1560 *devid_ret = 1;
1561 } else {
1562 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1563 path->slots[0]);
1564 *devid_ret = found_key.offset + 1;
1565 }
1566 ret = 0;
1567 error:
1568 btrfs_free_path(path);
1569 return ret;
1570 }
1571
1572 /*
1573 * the device information is stored in the chunk root
1574 * the btrfs_device struct should be fully filled in
1575 */
1576 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1577 struct btrfs_root *root,
1578 struct btrfs_device *device)
1579 {
1580 int ret;
1581 struct btrfs_path *path;
1582 struct btrfs_dev_item *dev_item;
1583 struct extent_buffer *leaf;
1584 struct btrfs_key key;
1585 unsigned long ptr;
1586
1587 root = root->fs_info->chunk_root;
1588
1589 path = btrfs_alloc_path();
1590 if (!path)
1591 return -ENOMEM;
1592
1593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1594 key.type = BTRFS_DEV_ITEM_KEY;
1595 key.offset = device->devid;
1596
1597 ret = btrfs_insert_empty_item(trans, root, path, &key,
1598 sizeof(*dev_item));
1599 if (ret)
1600 goto out;
1601
1602 leaf = path->nodes[0];
1603 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1604
1605 btrfs_set_device_id(leaf, dev_item, device->devid);
1606 btrfs_set_device_generation(leaf, dev_item, 0);
1607 btrfs_set_device_type(leaf, dev_item, device->type);
1608 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1609 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1610 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1611 btrfs_set_device_total_bytes(leaf, dev_item,
1612 btrfs_device_get_disk_total_bytes(device));
1613 btrfs_set_device_bytes_used(leaf, dev_item,
1614 btrfs_device_get_bytes_used(device));
1615 btrfs_set_device_group(leaf, dev_item, 0);
1616 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1617 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1618 btrfs_set_device_start_offset(leaf, dev_item, 0);
1619
1620 ptr = btrfs_device_uuid(dev_item);
1621 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1622 ptr = btrfs_device_fsid(dev_item);
1623 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1624 btrfs_mark_buffer_dirty(leaf);
1625
1626 ret = 0;
1627 out:
1628 btrfs_free_path(path);
1629 return ret;
1630 }
1631
1632 /*
1633 * Function to update ctime/mtime for a given device path.
1634 * Mainly used for ctime/mtime based probe like libblkid.
1635 */
1636 static void update_dev_time(char *path_name)
1637 {
1638 struct file *filp;
1639
1640 filp = filp_open(path_name, O_RDWR, 0);
1641 if (IS_ERR(filp))
1642 return;
1643 file_update_time(filp);
1644 filp_close(filp, NULL);
1645 return;
1646 }
1647
1648 static int btrfs_rm_dev_item(struct btrfs_root *root,
1649 struct btrfs_device *device)
1650 {
1651 int ret;
1652 struct btrfs_path *path;
1653 struct btrfs_key key;
1654 struct btrfs_trans_handle *trans;
1655
1656 root = root->fs_info->chunk_root;
1657
1658 path = btrfs_alloc_path();
1659 if (!path)
1660 return -ENOMEM;
1661
1662 trans = btrfs_start_transaction(root, 0);
1663 if (IS_ERR(trans)) {
1664 btrfs_free_path(path);
1665 return PTR_ERR(trans);
1666 }
1667 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1668 key.type = BTRFS_DEV_ITEM_KEY;
1669 key.offset = device->devid;
1670
1671 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1672 if (ret < 0)
1673 goto out;
1674
1675 if (ret > 0) {
1676 ret = -ENOENT;
1677 goto out;
1678 }
1679
1680 ret = btrfs_del_item(trans, root, path);
1681 if (ret)
1682 goto out;
1683 out:
1684 btrfs_free_path(path);
1685 btrfs_commit_transaction(trans, root);
1686 return ret;
1687 }
1688
1689 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1690 {
1691 struct btrfs_device *device;
1692 struct btrfs_device *next_device;
1693 struct block_device *bdev;
1694 struct buffer_head *bh = NULL;
1695 struct btrfs_super_block *disk_super;
1696 struct btrfs_fs_devices *cur_devices;
1697 u64 all_avail;
1698 u64 devid;
1699 u64 num_devices;
1700 u8 *dev_uuid;
1701 unsigned seq;
1702 int ret = 0;
1703 bool clear_super = false;
1704
1705 mutex_lock(&uuid_mutex);
1706
1707 do {
1708 seq = read_seqbegin(&root->fs_info->profiles_lock);
1709
1710 all_avail = root->fs_info->avail_data_alloc_bits |
1711 root->fs_info->avail_system_alloc_bits |
1712 root->fs_info->avail_metadata_alloc_bits;
1713 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1714
1715 num_devices = root->fs_info->fs_devices->num_devices;
1716 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1717 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1718 WARN_ON(num_devices < 1);
1719 num_devices--;
1720 }
1721 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1722
1723 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1724 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1725 goto out;
1726 }
1727
1728 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1729 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1730 goto out;
1731 }
1732
1733 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1734 root->fs_info->fs_devices->rw_devices <= 2) {
1735 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1736 goto out;
1737 }
1738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1739 root->fs_info->fs_devices->rw_devices <= 3) {
1740 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1741 goto out;
1742 }
1743
1744 if (strcmp(device_path, "missing") == 0) {
1745 struct list_head *devices;
1746 struct btrfs_device *tmp;
1747
1748 device = NULL;
1749 devices = &root->fs_info->fs_devices->devices;
1750 /*
1751 * It is safe to read the devices since the volume_mutex
1752 * is held.
1753 */
1754 list_for_each_entry(tmp, devices, dev_list) {
1755 if (tmp->in_fs_metadata &&
1756 !tmp->is_tgtdev_for_dev_replace &&
1757 !tmp->bdev) {
1758 device = tmp;
1759 break;
1760 }
1761 }
1762 bdev = NULL;
1763 bh = NULL;
1764 disk_super = NULL;
1765 if (!device) {
1766 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1767 goto out;
1768 }
1769 } else {
1770 ret = btrfs_get_bdev_and_sb(device_path,
1771 FMODE_WRITE | FMODE_EXCL,
1772 root->fs_info->bdev_holder, 0,
1773 &bdev, &bh);
1774 if (ret)
1775 goto out;
1776 disk_super = (struct btrfs_super_block *)bh->b_data;
1777 devid = btrfs_stack_device_id(&disk_super->dev_item);
1778 dev_uuid = disk_super->dev_item.uuid;
1779 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1780 disk_super->fsid);
1781 if (!device) {
1782 ret = -ENOENT;
1783 goto error_brelse;
1784 }
1785 }
1786
1787 if (device->is_tgtdev_for_dev_replace) {
1788 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1789 goto error_brelse;
1790 }
1791
1792 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1793 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1794 goto error_brelse;
1795 }
1796
1797 if (device->writeable) {
1798 lock_chunks(root);
1799 list_del_init(&device->dev_alloc_list);
1800 device->fs_devices->rw_devices--;
1801 unlock_chunks(root);
1802 clear_super = true;
1803 }
1804
1805 mutex_unlock(&uuid_mutex);
1806 ret = btrfs_shrink_device(device, 0);
1807 mutex_lock(&uuid_mutex);
1808 if (ret)
1809 goto error_undo;
1810
1811 /*
1812 * TODO: the superblock still includes this device in its num_devices
1813 * counter although write_all_supers() is not locked out. This
1814 * could give a filesystem state which requires a degraded mount.
1815 */
1816 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1817 if (ret)
1818 goto error_undo;
1819
1820 device->in_fs_metadata = 0;
1821 btrfs_scrub_cancel_dev(root->fs_info, device);
1822
1823 /*
1824 * the device list mutex makes sure that we don't change
1825 * the device list while someone else is writing out all
1826 * the device supers. Whoever is writing all supers, should
1827 * lock the device list mutex before getting the number of
1828 * devices in the super block (super_copy). Conversely,
1829 * whoever updates the number of devices in the super block
1830 * (super_copy) should hold the device list mutex.
1831 */
1832
1833 cur_devices = device->fs_devices;
1834 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1835 list_del_rcu(&device->dev_list);
1836
1837 device->fs_devices->num_devices--;
1838 device->fs_devices->total_devices--;
1839
1840 if (device->missing)
1841 device->fs_devices->missing_devices--;
1842
1843 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1844 struct btrfs_device, dev_list);
1845 if (device->bdev == root->fs_info->sb->s_bdev)
1846 root->fs_info->sb->s_bdev = next_device->bdev;
1847 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1848 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1849
1850 if (device->bdev) {
1851 device->fs_devices->open_devices--;
1852 /* remove sysfs entry */
1853 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1854 }
1855
1856 call_rcu(&device->rcu, free_device);
1857
1858 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1859 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1860 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1861
1862 if (cur_devices->open_devices == 0) {
1863 struct btrfs_fs_devices *fs_devices;
1864 fs_devices = root->fs_info->fs_devices;
1865 while (fs_devices) {
1866 if (fs_devices->seed == cur_devices) {
1867 fs_devices->seed = cur_devices->seed;
1868 break;
1869 }
1870 fs_devices = fs_devices->seed;
1871 }
1872 cur_devices->seed = NULL;
1873 __btrfs_close_devices(cur_devices);
1874 free_fs_devices(cur_devices);
1875 }
1876
1877 root->fs_info->num_tolerated_disk_barrier_failures =
1878 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1879
1880 /*
1881 * at this point, the device is zero sized. We want to
1882 * remove it from the devices list and zero out the old super
1883 */
1884 if (clear_super && disk_super) {
1885 u64 bytenr;
1886 int i;
1887
1888 /* make sure this device isn't detected as part of
1889 * the FS anymore
1890 */
1891 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1892 set_buffer_dirty(bh);
1893 sync_dirty_buffer(bh);
1894
1895 /* clear the mirror copies of super block on the disk
1896 * being removed, 0th copy is been taken care above and
1897 * the below would take of the rest
1898 */
1899 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1900 bytenr = btrfs_sb_offset(i);
1901 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1902 i_size_read(bdev->bd_inode))
1903 break;
1904
1905 brelse(bh);
1906 bh = __bread(bdev, bytenr / 4096,
1907 BTRFS_SUPER_INFO_SIZE);
1908 if (!bh)
1909 continue;
1910
1911 disk_super = (struct btrfs_super_block *)bh->b_data;
1912
1913 if (btrfs_super_bytenr(disk_super) != bytenr ||
1914 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1915 continue;
1916 }
1917 memset(&disk_super->magic, 0,
1918 sizeof(disk_super->magic));
1919 set_buffer_dirty(bh);
1920 sync_dirty_buffer(bh);
1921 }
1922 }
1923
1924 ret = 0;
1925
1926 if (bdev) {
1927 /* Notify udev that device has changed */
1928 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1929
1930 /* Update ctime/mtime for device path for libblkid */
1931 update_dev_time(device_path);
1932 }
1933
1934 error_brelse:
1935 brelse(bh);
1936 if (bdev)
1937 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1938 out:
1939 mutex_unlock(&uuid_mutex);
1940 return ret;
1941 error_undo:
1942 if (device->writeable) {
1943 lock_chunks(root);
1944 list_add(&device->dev_alloc_list,
1945 &root->fs_info->fs_devices->alloc_list);
1946 device->fs_devices->rw_devices++;
1947 unlock_chunks(root);
1948 }
1949 goto error_brelse;
1950 }
1951
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1953 struct btrfs_device *srcdev)
1954 {
1955 struct btrfs_fs_devices *fs_devices;
1956
1957 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1958
1959 /*
1960 * in case of fs with no seed, srcdev->fs_devices will point
1961 * to fs_devices of fs_info. However when the dev being replaced is
1962 * a seed dev it will point to the seed's local fs_devices. In short
1963 * srcdev will have its correct fs_devices in both the cases.
1964 */
1965 fs_devices = srcdev->fs_devices;
1966
1967 list_del_rcu(&srcdev->dev_list);
1968 list_del_rcu(&srcdev->dev_alloc_list);
1969 fs_devices->num_devices--;
1970 if (srcdev->missing)
1971 fs_devices->missing_devices--;
1972
1973 if (srcdev->writeable) {
1974 fs_devices->rw_devices--;
1975 /* zero out the old super if it is writable */
1976 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1977 }
1978
1979 if (srcdev->bdev)
1980 fs_devices->open_devices--;
1981 }
1982
1983 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1984 struct btrfs_device *srcdev)
1985 {
1986 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1987
1988 call_rcu(&srcdev->rcu, free_device);
1989
1990 /*
1991 * unless fs_devices is seed fs, num_devices shouldn't go
1992 * zero
1993 */
1994 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1995
1996 /* if this is no devs we rather delete the fs_devices */
1997 if (!fs_devices->num_devices) {
1998 struct btrfs_fs_devices *tmp_fs_devices;
1999
2000 tmp_fs_devices = fs_info->fs_devices;
2001 while (tmp_fs_devices) {
2002 if (tmp_fs_devices->seed == fs_devices) {
2003 tmp_fs_devices->seed = fs_devices->seed;
2004 break;
2005 }
2006 tmp_fs_devices = tmp_fs_devices->seed;
2007 }
2008 fs_devices->seed = NULL;
2009 __btrfs_close_devices(fs_devices);
2010 free_fs_devices(fs_devices);
2011 }
2012 }
2013
2014 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2015 struct btrfs_device *tgtdev)
2016 {
2017 struct btrfs_device *next_device;
2018
2019 mutex_lock(&uuid_mutex);
2020 WARN_ON(!tgtdev);
2021 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2022
2023 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2024
2025 if (tgtdev->bdev) {
2026 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2027 fs_info->fs_devices->open_devices--;
2028 }
2029 fs_info->fs_devices->num_devices--;
2030
2031 next_device = list_entry(fs_info->fs_devices->devices.next,
2032 struct btrfs_device, dev_list);
2033 if (tgtdev->bdev == fs_info->sb->s_bdev)
2034 fs_info->sb->s_bdev = next_device->bdev;
2035 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2036 fs_info->fs_devices->latest_bdev = next_device->bdev;
2037 list_del_rcu(&tgtdev->dev_list);
2038
2039 call_rcu(&tgtdev->rcu, free_device);
2040
2041 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2042 mutex_unlock(&uuid_mutex);
2043 }
2044
2045 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2046 struct btrfs_device **device)
2047 {
2048 int ret = 0;
2049 struct btrfs_super_block *disk_super;
2050 u64 devid;
2051 u8 *dev_uuid;
2052 struct block_device *bdev;
2053 struct buffer_head *bh;
2054
2055 *device = NULL;
2056 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2057 root->fs_info->bdev_holder, 0, &bdev, &bh);
2058 if (ret)
2059 return ret;
2060 disk_super = (struct btrfs_super_block *)bh->b_data;
2061 devid = btrfs_stack_device_id(&disk_super->dev_item);
2062 dev_uuid = disk_super->dev_item.uuid;
2063 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2064 disk_super->fsid);
2065 brelse(bh);
2066 if (!*device)
2067 ret = -ENOENT;
2068 blkdev_put(bdev, FMODE_READ);
2069 return ret;
2070 }
2071
2072 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2073 char *device_path,
2074 struct btrfs_device **device)
2075 {
2076 *device = NULL;
2077 if (strcmp(device_path, "missing") == 0) {
2078 struct list_head *devices;
2079 struct btrfs_device *tmp;
2080
2081 devices = &root->fs_info->fs_devices->devices;
2082 /*
2083 * It is safe to read the devices since the volume_mutex
2084 * is held by the caller.
2085 */
2086 list_for_each_entry(tmp, devices, dev_list) {
2087 if (tmp->in_fs_metadata && !tmp->bdev) {
2088 *device = tmp;
2089 break;
2090 }
2091 }
2092
2093 if (!*device)
2094 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2095
2096 return 0;
2097 } else {
2098 return btrfs_find_device_by_path(root, device_path, device);
2099 }
2100 }
2101
2102 /*
2103 * does all the dirty work required for changing file system's UUID.
2104 */
2105 static int btrfs_prepare_sprout(struct btrfs_root *root)
2106 {
2107 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2108 struct btrfs_fs_devices *old_devices;
2109 struct btrfs_fs_devices *seed_devices;
2110 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2111 struct btrfs_device *device;
2112 u64 super_flags;
2113
2114 BUG_ON(!mutex_is_locked(&uuid_mutex));
2115 if (!fs_devices->seeding)
2116 return -EINVAL;
2117
2118 seed_devices = __alloc_fs_devices();
2119 if (IS_ERR(seed_devices))
2120 return PTR_ERR(seed_devices);
2121
2122 old_devices = clone_fs_devices(fs_devices);
2123 if (IS_ERR(old_devices)) {
2124 kfree(seed_devices);
2125 return PTR_ERR(old_devices);
2126 }
2127
2128 list_add(&old_devices->list, &fs_uuids);
2129
2130 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2131 seed_devices->opened = 1;
2132 INIT_LIST_HEAD(&seed_devices->devices);
2133 INIT_LIST_HEAD(&seed_devices->alloc_list);
2134 mutex_init(&seed_devices->device_list_mutex);
2135
2136 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2137 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2138 synchronize_rcu);
2139 list_for_each_entry(device, &seed_devices->devices, dev_list)
2140 device->fs_devices = seed_devices;
2141
2142 lock_chunks(root);
2143 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2144 unlock_chunks(root);
2145
2146 fs_devices->seeding = 0;
2147 fs_devices->num_devices = 0;
2148 fs_devices->open_devices = 0;
2149 fs_devices->missing_devices = 0;
2150 fs_devices->rotating = 0;
2151 fs_devices->seed = seed_devices;
2152
2153 generate_random_uuid(fs_devices->fsid);
2154 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2155 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2156 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2157
2158 super_flags = btrfs_super_flags(disk_super) &
2159 ~BTRFS_SUPER_FLAG_SEEDING;
2160 btrfs_set_super_flags(disk_super, super_flags);
2161
2162 return 0;
2163 }
2164
2165 /*
2166 * strore the expected generation for seed devices in device items.
2167 */
2168 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2169 struct btrfs_root *root)
2170 {
2171 struct btrfs_path *path;
2172 struct extent_buffer *leaf;
2173 struct btrfs_dev_item *dev_item;
2174 struct btrfs_device *device;
2175 struct btrfs_key key;
2176 u8 fs_uuid[BTRFS_UUID_SIZE];
2177 u8 dev_uuid[BTRFS_UUID_SIZE];
2178 u64 devid;
2179 int ret;
2180
2181 path = btrfs_alloc_path();
2182 if (!path)
2183 return -ENOMEM;
2184
2185 root = root->fs_info->chunk_root;
2186 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2187 key.offset = 0;
2188 key.type = BTRFS_DEV_ITEM_KEY;
2189
2190 while (1) {
2191 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2192 if (ret < 0)
2193 goto error;
2194
2195 leaf = path->nodes[0];
2196 next_slot:
2197 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2198 ret = btrfs_next_leaf(root, path);
2199 if (ret > 0)
2200 break;
2201 if (ret < 0)
2202 goto error;
2203 leaf = path->nodes[0];
2204 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2205 btrfs_release_path(path);
2206 continue;
2207 }
2208
2209 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2210 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2211 key.type != BTRFS_DEV_ITEM_KEY)
2212 break;
2213
2214 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2215 struct btrfs_dev_item);
2216 devid = btrfs_device_id(leaf, dev_item);
2217 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2218 BTRFS_UUID_SIZE);
2219 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2220 BTRFS_UUID_SIZE);
2221 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2222 fs_uuid);
2223 BUG_ON(!device); /* Logic error */
2224
2225 if (device->fs_devices->seeding) {
2226 btrfs_set_device_generation(leaf, dev_item,
2227 device->generation);
2228 btrfs_mark_buffer_dirty(leaf);
2229 }
2230
2231 path->slots[0]++;
2232 goto next_slot;
2233 }
2234 ret = 0;
2235 error:
2236 btrfs_free_path(path);
2237 return ret;
2238 }
2239
2240 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2241 {
2242 struct request_queue *q;
2243 struct btrfs_trans_handle *trans;
2244 struct btrfs_device *device;
2245 struct block_device *bdev;
2246 struct list_head *devices;
2247 struct super_block *sb = root->fs_info->sb;
2248 struct rcu_string *name;
2249 u64 tmp;
2250 int seeding_dev = 0;
2251 int ret = 0;
2252
2253 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2254 return -EROFS;
2255
2256 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2257 root->fs_info->bdev_holder);
2258 if (IS_ERR(bdev))
2259 return PTR_ERR(bdev);
2260
2261 if (root->fs_info->fs_devices->seeding) {
2262 seeding_dev = 1;
2263 down_write(&sb->s_umount);
2264 mutex_lock(&uuid_mutex);
2265 }
2266
2267 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2268
2269 devices = &root->fs_info->fs_devices->devices;
2270
2271 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2272 list_for_each_entry(device, devices, dev_list) {
2273 if (device->bdev == bdev) {
2274 ret = -EEXIST;
2275 mutex_unlock(
2276 &root->fs_info->fs_devices->device_list_mutex);
2277 goto error;
2278 }
2279 }
2280 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2281
2282 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2283 if (IS_ERR(device)) {
2284 /* we can safely leave the fs_devices entry around */
2285 ret = PTR_ERR(device);
2286 goto error;
2287 }
2288
2289 name = rcu_string_strdup(device_path, GFP_NOFS);
2290 if (!name) {
2291 kfree(device);
2292 ret = -ENOMEM;
2293 goto error;
2294 }
2295 rcu_assign_pointer(device->name, name);
2296
2297 trans = btrfs_start_transaction(root, 0);
2298 if (IS_ERR(trans)) {
2299 rcu_string_free(device->name);
2300 kfree(device);
2301 ret = PTR_ERR(trans);
2302 goto error;
2303 }
2304
2305 q = bdev_get_queue(bdev);
2306 if (blk_queue_discard(q))
2307 device->can_discard = 1;
2308 device->writeable = 1;
2309 device->generation = trans->transid;
2310 device->io_width = root->sectorsize;
2311 device->io_align = root->sectorsize;
2312 device->sector_size = root->sectorsize;
2313 device->total_bytes = i_size_read(bdev->bd_inode);
2314 device->disk_total_bytes = device->total_bytes;
2315 device->commit_total_bytes = device->total_bytes;
2316 device->dev_root = root->fs_info->dev_root;
2317 device->bdev = bdev;
2318 device->in_fs_metadata = 1;
2319 device->is_tgtdev_for_dev_replace = 0;
2320 device->mode = FMODE_EXCL;
2321 device->dev_stats_valid = 1;
2322 set_blocksize(device->bdev, 4096);
2323
2324 if (seeding_dev) {
2325 sb->s_flags &= ~MS_RDONLY;
2326 ret = btrfs_prepare_sprout(root);
2327 BUG_ON(ret); /* -ENOMEM */
2328 }
2329
2330 device->fs_devices = root->fs_info->fs_devices;
2331
2332 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2333 lock_chunks(root);
2334 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2335 list_add(&device->dev_alloc_list,
2336 &root->fs_info->fs_devices->alloc_list);
2337 root->fs_info->fs_devices->num_devices++;
2338 root->fs_info->fs_devices->open_devices++;
2339 root->fs_info->fs_devices->rw_devices++;
2340 root->fs_info->fs_devices->total_devices++;
2341 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2342
2343 spin_lock(&root->fs_info->free_chunk_lock);
2344 root->fs_info->free_chunk_space += device->total_bytes;
2345 spin_unlock(&root->fs_info->free_chunk_lock);
2346
2347 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2348 root->fs_info->fs_devices->rotating = 1;
2349
2350 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2351 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2352 tmp + device->total_bytes);
2353
2354 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2355 btrfs_set_super_num_devices(root->fs_info->super_copy,
2356 tmp + 1);
2357
2358 /* add sysfs device entry */
2359 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2360
2361 /*
2362 * we've got more storage, clear any full flags on the space
2363 * infos
2364 */
2365 btrfs_clear_space_info_full(root->fs_info);
2366
2367 unlock_chunks(root);
2368 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2369
2370 if (seeding_dev) {
2371 lock_chunks(root);
2372 ret = init_first_rw_device(trans, root, device);
2373 unlock_chunks(root);
2374 if (ret) {
2375 btrfs_abort_transaction(trans, root, ret);
2376 goto error_trans;
2377 }
2378 }
2379
2380 ret = btrfs_add_device(trans, root, device);
2381 if (ret) {
2382 btrfs_abort_transaction(trans, root, ret);
2383 goto error_trans;
2384 }
2385
2386 if (seeding_dev) {
2387 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2388
2389 ret = btrfs_finish_sprout(trans, root);
2390 if (ret) {
2391 btrfs_abort_transaction(trans, root, ret);
2392 goto error_trans;
2393 }
2394
2395 /* Sprouting would change fsid of the mounted root,
2396 * so rename the fsid on the sysfs
2397 */
2398 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2399 root->fs_info->fsid);
2400 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2401 fsid_buf))
2402 btrfs_warn(root->fs_info,
2403 "sysfs: failed to create fsid for sprout");
2404 }
2405
2406 root->fs_info->num_tolerated_disk_barrier_failures =
2407 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2408 ret = btrfs_commit_transaction(trans, root);
2409
2410 if (seeding_dev) {
2411 mutex_unlock(&uuid_mutex);
2412 up_write(&sb->s_umount);
2413
2414 if (ret) /* transaction commit */
2415 return ret;
2416
2417 ret = btrfs_relocate_sys_chunks(root);
2418 if (ret < 0)
2419 btrfs_std_error(root->fs_info, ret,
2420 "Failed to relocate sys chunks after "
2421 "device initialization. This can be fixed "
2422 "using the \"btrfs balance\" command.");
2423 trans = btrfs_attach_transaction(root);
2424 if (IS_ERR(trans)) {
2425 if (PTR_ERR(trans) == -ENOENT)
2426 return 0;
2427 return PTR_ERR(trans);
2428 }
2429 ret = btrfs_commit_transaction(trans, root);
2430 }
2431
2432 /* Update ctime/mtime for libblkid */
2433 update_dev_time(device_path);
2434 return ret;
2435
2436 error_trans:
2437 btrfs_end_transaction(trans, root);
2438 rcu_string_free(device->name);
2439 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2440 kfree(device);
2441 error:
2442 blkdev_put(bdev, FMODE_EXCL);
2443 if (seeding_dev) {
2444 mutex_unlock(&uuid_mutex);
2445 up_write(&sb->s_umount);
2446 }
2447 return ret;
2448 }
2449
2450 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2451 struct btrfs_device *srcdev,
2452 struct btrfs_device **device_out)
2453 {
2454 struct request_queue *q;
2455 struct btrfs_device *device;
2456 struct block_device *bdev;
2457 struct btrfs_fs_info *fs_info = root->fs_info;
2458 struct list_head *devices;
2459 struct rcu_string *name;
2460 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2461 int ret = 0;
2462
2463 *device_out = NULL;
2464 if (fs_info->fs_devices->seeding) {
2465 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2466 return -EINVAL;
2467 }
2468
2469 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2470 fs_info->bdev_holder);
2471 if (IS_ERR(bdev)) {
2472 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2473 return PTR_ERR(bdev);
2474 }
2475
2476 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2477
2478 devices = &fs_info->fs_devices->devices;
2479 list_for_each_entry(device, devices, dev_list) {
2480 if (device->bdev == bdev) {
2481 btrfs_err(fs_info, "target device is in the filesystem!");
2482 ret = -EEXIST;
2483 goto error;
2484 }
2485 }
2486
2487
2488 if (i_size_read(bdev->bd_inode) <
2489 btrfs_device_get_total_bytes(srcdev)) {
2490 btrfs_err(fs_info, "target device is smaller than source device!");
2491 ret = -EINVAL;
2492 goto error;
2493 }
2494
2495
2496 device = btrfs_alloc_device(NULL, &devid, NULL);
2497 if (IS_ERR(device)) {
2498 ret = PTR_ERR(device);
2499 goto error;
2500 }
2501
2502 name = rcu_string_strdup(device_path, GFP_NOFS);
2503 if (!name) {
2504 kfree(device);
2505 ret = -ENOMEM;
2506 goto error;
2507 }
2508 rcu_assign_pointer(device->name, name);
2509
2510 q = bdev_get_queue(bdev);
2511 if (blk_queue_discard(q))
2512 device->can_discard = 1;
2513 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2514 device->writeable = 1;
2515 device->generation = 0;
2516 device->io_width = root->sectorsize;
2517 device->io_align = root->sectorsize;
2518 device->sector_size = root->sectorsize;
2519 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2520 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2521 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2522 ASSERT(list_empty(&srcdev->resized_list));
2523 device->commit_total_bytes = srcdev->commit_total_bytes;
2524 device->commit_bytes_used = device->bytes_used;
2525 device->dev_root = fs_info->dev_root;
2526 device->bdev = bdev;
2527 device->in_fs_metadata = 1;
2528 device->is_tgtdev_for_dev_replace = 1;
2529 device->mode = FMODE_EXCL;
2530 device->dev_stats_valid = 1;
2531 set_blocksize(device->bdev, 4096);
2532 device->fs_devices = fs_info->fs_devices;
2533 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2534 fs_info->fs_devices->num_devices++;
2535 fs_info->fs_devices->open_devices++;
2536 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2537
2538 *device_out = device;
2539 return ret;
2540
2541 error:
2542 blkdev_put(bdev, FMODE_EXCL);
2543 return ret;
2544 }
2545
2546 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2547 struct btrfs_device *tgtdev)
2548 {
2549 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2550 tgtdev->io_width = fs_info->dev_root->sectorsize;
2551 tgtdev->io_align = fs_info->dev_root->sectorsize;
2552 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2553 tgtdev->dev_root = fs_info->dev_root;
2554 tgtdev->in_fs_metadata = 1;
2555 }
2556
2557 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2558 struct btrfs_device *device)
2559 {
2560 int ret;
2561 struct btrfs_path *path;
2562 struct btrfs_root *root;
2563 struct btrfs_dev_item *dev_item;
2564 struct extent_buffer *leaf;
2565 struct btrfs_key key;
2566
2567 root = device->dev_root->fs_info->chunk_root;
2568
2569 path = btrfs_alloc_path();
2570 if (!path)
2571 return -ENOMEM;
2572
2573 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2574 key.type = BTRFS_DEV_ITEM_KEY;
2575 key.offset = device->devid;
2576
2577 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2578 if (ret < 0)
2579 goto out;
2580
2581 if (ret > 0) {
2582 ret = -ENOENT;
2583 goto out;
2584 }
2585
2586 leaf = path->nodes[0];
2587 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2588
2589 btrfs_set_device_id(leaf, dev_item, device->devid);
2590 btrfs_set_device_type(leaf, dev_item, device->type);
2591 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2592 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2593 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2594 btrfs_set_device_total_bytes(leaf, dev_item,
2595 btrfs_device_get_disk_total_bytes(device));
2596 btrfs_set_device_bytes_used(leaf, dev_item,
2597 btrfs_device_get_bytes_used(device));
2598 btrfs_mark_buffer_dirty(leaf);
2599
2600 out:
2601 btrfs_free_path(path);
2602 return ret;
2603 }
2604
2605 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2606 struct btrfs_device *device, u64 new_size)
2607 {
2608 struct btrfs_super_block *super_copy =
2609 device->dev_root->fs_info->super_copy;
2610 struct btrfs_fs_devices *fs_devices;
2611 u64 old_total;
2612 u64 diff;
2613
2614 if (!device->writeable)
2615 return -EACCES;
2616
2617 lock_chunks(device->dev_root);
2618 old_total = btrfs_super_total_bytes(super_copy);
2619 diff = new_size - device->total_bytes;
2620
2621 if (new_size <= device->total_bytes ||
2622 device->is_tgtdev_for_dev_replace) {
2623 unlock_chunks(device->dev_root);
2624 return -EINVAL;
2625 }
2626
2627 fs_devices = device->dev_root->fs_info->fs_devices;
2628
2629 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2630 device->fs_devices->total_rw_bytes += diff;
2631
2632 btrfs_device_set_total_bytes(device, new_size);
2633 btrfs_device_set_disk_total_bytes(device, new_size);
2634 btrfs_clear_space_info_full(device->dev_root->fs_info);
2635 if (list_empty(&device->resized_list))
2636 list_add_tail(&device->resized_list,
2637 &fs_devices->resized_devices);
2638 unlock_chunks(device->dev_root);
2639
2640 return btrfs_update_device(trans, device);
2641 }
2642
2643 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root, u64 chunk_objectid,
2645 u64 chunk_offset)
2646 {
2647 int ret;
2648 struct btrfs_path *path;
2649 struct btrfs_key key;
2650
2651 root = root->fs_info->chunk_root;
2652 path = btrfs_alloc_path();
2653 if (!path)
2654 return -ENOMEM;
2655
2656 key.objectid = chunk_objectid;
2657 key.offset = chunk_offset;
2658 key.type = BTRFS_CHUNK_ITEM_KEY;
2659
2660 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2661 if (ret < 0)
2662 goto out;
2663 else if (ret > 0) { /* Logic error or corruption */
2664 btrfs_std_error(root->fs_info, -ENOENT,
2665 "Failed lookup while freeing chunk.");
2666 ret = -ENOENT;
2667 goto out;
2668 }
2669
2670 ret = btrfs_del_item(trans, root, path);
2671 if (ret < 0)
2672 btrfs_std_error(root->fs_info, ret,
2673 "Failed to delete chunk item.");
2674 out:
2675 btrfs_free_path(path);
2676 return ret;
2677 }
2678
2679 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2680 chunk_offset)
2681 {
2682 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2683 struct btrfs_disk_key *disk_key;
2684 struct btrfs_chunk *chunk;
2685 u8 *ptr;
2686 int ret = 0;
2687 u32 num_stripes;
2688 u32 array_size;
2689 u32 len = 0;
2690 u32 cur;
2691 struct btrfs_key key;
2692
2693 lock_chunks(root);
2694 array_size = btrfs_super_sys_array_size(super_copy);
2695
2696 ptr = super_copy->sys_chunk_array;
2697 cur = 0;
2698
2699 while (cur < array_size) {
2700 disk_key = (struct btrfs_disk_key *)ptr;
2701 btrfs_disk_key_to_cpu(&key, disk_key);
2702
2703 len = sizeof(*disk_key);
2704
2705 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2706 chunk = (struct btrfs_chunk *)(ptr + len);
2707 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2708 len += btrfs_chunk_item_size(num_stripes);
2709 } else {
2710 ret = -EIO;
2711 break;
2712 }
2713 if (key.objectid == chunk_objectid &&
2714 key.offset == chunk_offset) {
2715 memmove(ptr, ptr + len, array_size - (cur + len));
2716 array_size -= len;
2717 btrfs_set_super_sys_array_size(super_copy, array_size);
2718 } else {
2719 ptr += len;
2720 cur += len;
2721 }
2722 }
2723 unlock_chunks(root);
2724 return ret;
2725 }
2726
2727 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2728 struct btrfs_root *root, u64 chunk_offset)
2729 {
2730 struct extent_map_tree *em_tree;
2731 struct extent_map *em;
2732 struct btrfs_root *extent_root = root->fs_info->extent_root;
2733 struct map_lookup *map;
2734 u64 dev_extent_len = 0;
2735 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2736 int i, ret = 0;
2737
2738 /* Just in case */
2739 root = root->fs_info->chunk_root;
2740 em_tree = &root->fs_info->mapping_tree.map_tree;
2741
2742 read_lock(&em_tree->lock);
2743 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2744 read_unlock(&em_tree->lock);
2745
2746 if (!em || em->start > chunk_offset ||
2747 em->start + em->len < chunk_offset) {
2748 /*
2749 * This is a logic error, but we don't want to just rely on the
2750 * user having built with ASSERT enabled, so if ASSERT doens't
2751 * do anything we still error out.
2752 */
2753 ASSERT(0);
2754 if (em)
2755 free_extent_map(em);
2756 return -EINVAL;
2757 }
2758 map = (struct map_lookup *)em->bdev;
2759 lock_chunks(root->fs_info->chunk_root);
2760 check_system_chunk(trans, extent_root, map->type);
2761 unlock_chunks(root->fs_info->chunk_root);
2762
2763 for (i = 0; i < map->num_stripes; i++) {
2764 struct btrfs_device *device = map->stripes[i].dev;
2765 ret = btrfs_free_dev_extent(trans, device,
2766 map->stripes[i].physical,
2767 &dev_extent_len);
2768 if (ret) {
2769 btrfs_abort_transaction(trans, root, ret);
2770 goto out;
2771 }
2772
2773 if (device->bytes_used > 0) {
2774 lock_chunks(root);
2775 btrfs_device_set_bytes_used(device,
2776 device->bytes_used - dev_extent_len);
2777 spin_lock(&root->fs_info->free_chunk_lock);
2778 root->fs_info->free_chunk_space += dev_extent_len;
2779 spin_unlock(&root->fs_info->free_chunk_lock);
2780 btrfs_clear_space_info_full(root->fs_info);
2781 unlock_chunks(root);
2782 }
2783
2784 if (map->stripes[i].dev) {
2785 ret = btrfs_update_device(trans, map->stripes[i].dev);
2786 if (ret) {
2787 btrfs_abort_transaction(trans, root, ret);
2788 goto out;
2789 }
2790 }
2791 }
2792 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2793 if (ret) {
2794 btrfs_abort_transaction(trans, root, ret);
2795 goto out;
2796 }
2797
2798 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2799
2800 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2801 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2802 if (ret) {
2803 btrfs_abort_transaction(trans, root, ret);
2804 goto out;
2805 }
2806 }
2807
2808 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2809 if (ret) {
2810 btrfs_abort_transaction(trans, extent_root, ret);
2811 goto out;
2812 }
2813
2814 out:
2815 /* once for us */
2816 free_extent_map(em);
2817 return ret;
2818 }
2819
2820 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2821 {
2822 struct btrfs_root *extent_root;
2823 struct btrfs_trans_handle *trans;
2824 int ret;
2825
2826 root = root->fs_info->chunk_root;
2827 extent_root = root->fs_info->extent_root;
2828
2829 /*
2830 * Prevent races with automatic removal of unused block groups.
2831 * After we relocate and before we remove the chunk with offset
2832 * chunk_offset, automatic removal of the block group can kick in,
2833 * resulting in a failure when calling btrfs_remove_chunk() below.
2834 *
2835 * Make sure to acquire this mutex before doing a tree search (dev
2836 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2837 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2838 * we release the path used to search the chunk/dev tree and before
2839 * the current task acquires this mutex and calls us.
2840 */
2841 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2842
2843 ret = btrfs_can_relocate(extent_root, chunk_offset);
2844 if (ret)
2845 return -ENOSPC;
2846
2847 /* step one, relocate all the extents inside this chunk */
2848 btrfs_scrub_pause(root);
2849 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2850 btrfs_scrub_continue(root);
2851 if (ret)
2852 return ret;
2853
2854 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2855 chunk_offset);
2856 if (IS_ERR(trans)) {
2857 ret = PTR_ERR(trans);
2858 btrfs_std_error(root->fs_info, ret, NULL);
2859 return ret;
2860 }
2861
2862 /*
2863 * step two, delete the device extents and the
2864 * chunk tree entries
2865 */
2866 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2867 btrfs_end_transaction(trans, root);
2868 return ret;
2869 }
2870
2871 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2872 {
2873 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2874 struct btrfs_path *path;
2875 struct extent_buffer *leaf;
2876 struct btrfs_chunk *chunk;
2877 struct btrfs_key key;
2878 struct btrfs_key found_key;
2879 u64 chunk_type;
2880 bool retried = false;
2881 int failed = 0;
2882 int ret;
2883
2884 path = btrfs_alloc_path();
2885 if (!path)
2886 return -ENOMEM;
2887
2888 again:
2889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2890 key.offset = (u64)-1;
2891 key.type = BTRFS_CHUNK_ITEM_KEY;
2892
2893 while (1) {
2894 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2895 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2896 if (ret < 0) {
2897 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2898 goto error;
2899 }
2900 BUG_ON(ret == 0); /* Corruption */
2901
2902 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2903 key.type);
2904 if (ret)
2905 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2906 if (ret < 0)
2907 goto error;
2908 if (ret > 0)
2909 break;
2910
2911 leaf = path->nodes[0];
2912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2913
2914 chunk = btrfs_item_ptr(leaf, path->slots[0],
2915 struct btrfs_chunk);
2916 chunk_type = btrfs_chunk_type(leaf, chunk);
2917 btrfs_release_path(path);
2918
2919 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2920 ret = btrfs_relocate_chunk(chunk_root,
2921 found_key.offset);
2922 if (ret == -ENOSPC)
2923 failed++;
2924 else
2925 BUG_ON(ret);
2926 }
2927 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2928
2929 if (found_key.offset == 0)
2930 break;
2931 key.offset = found_key.offset - 1;
2932 }
2933 ret = 0;
2934 if (failed && !retried) {
2935 failed = 0;
2936 retried = true;
2937 goto again;
2938 } else if (WARN_ON(failed && retried)) {
2939 ret = -ENOSPC;
2940 }
2941 error:
2942 btrfs_free_path(path);
2943 return ret;
2944 }
2945
2946 static int insert_balance_item(struct btrfs_root *root,
2947 struct btrfs_balance_control *bctl)
2948 {
2949 struct btrfs_trans_handle *trans;
2950 struct btrfs_balance_item *item;
2951 struct btrfs_disk_balance_args disk_bargs;
2952 struct btrfs_path *path;
2953 struct extent_buffer *leaf;
2954 struct btrfs_key key;
2955 int ret, err;
2956
2957 path = btrfs_alloc_path();
2958 if (!path)
2959 return -ENOMEM;
2960
2961 trans = btrfs_start_transaction(root, 0);
2962 if (IS_ERR(trans)) {
2963 btrfs_free_path(path);
2964 return PTR_ERR(trans);
2965 }
2966
2967 key.objectid = BTRFS_BALANCE_OBJECTID;
2968 key.type = BTRFS_BALANCE_ITEM_KEY;
2969 key.offset = 0;
2970
2971 ret = btrfs_insert_empty_item(trans, root, path, &key,
2972 sizeof(*item));
2973 if (ret)
2974 goto out;
2975
2976 leaf = path->nodes[0];
2977 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2978
2979 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2980
2981 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2982 btrfs_set_balance_data(leaf, item, &disk_bargs);
2983 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2984 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2985 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2986 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2987
2988 btrfs_set_balance_flags(leaf, item, bctl->flags);
2989
2990 btrfs_mark_buffer_dirty(leaf);
2991 out:
2992 btrfs_free_path(path);
2993 err = btrfs_commit_transaction(trans, root);
2994 if (err && !ret)
2995 ret = err;
2996 return ret;
2997 }
2998
2999 static int del_balance_item(struct btrfs_root *root)
3000 {
3001 struct btrfs_trans_handle *trans;
3002 struct btrfs_path *path;
3003 struct btrfs_key key;
3004 int ret, err;
3005
3006 path = btrfs_alloc_path();
3007 if (!path)
3008 return -ENOMEM;
3009
3010 trans = btrfs_start_transaction(root, 0);
3011 if (IS_ERR(trans)) {
3012 btrfs_free_path(path);
3013 return PTR_ERR(trans);
3014 }
3015
3016 key.objectid = BTRFS_BALANCE_OBJECTID;
3017 key.type = BTRFS_BALANCE_ITEM_KEY;
3018 key.offset = 0;
3019
3020 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3021 if (ret < 0)
3022 goto out;
3023 if (ret > 0) {
3024 ret = -ENOENT;
3025 goto out;
3026 }
3027
3028 ret = btrfs_del_item(trans, root, path);
3029 out:
3030 btrfs_free_path(path);
3031 err = btrfs_commit_transaction(trans, root);
3032 if (err && !ret)
3033 ret = err;
3034 return ret;
3035 }
3036
3037 /*
3038 * This is a heuristic used to reduce the number of chunks balanced on
3039 * resume after balance was interrupted.
3040 */
3041 static void update_balance_args(struct btrfs_balance_control *bctl)
3042 {
3043 /*
3044 * Turn on soft mode for chunk types that were being converted.
3045 */
3046 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3047 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3048 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3049 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3050 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3051 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3052
3053 /*
3054 * Turn on usage filter if is not already used. The idea is
3055 * that chunks that we have already balanced should be
3056 * reasonably full. Don't do it for chunks that are being
3057 * converted - that will keep us from relocating unconverted
3058 * (albeit full) chunks.
3059 */
3060 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3061 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3063 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3064 bctl->data.usage = 90;
3065 }
3066 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3067 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3068 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3069 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3070 bctl->sys.usage = 90;
3071 }
3072 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3073 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3074 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3075 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3076 bctl->meta.usage = 90;
3077 }
3078 }
3079
3080 /*
3081 * Should be called with both balance and volume mutexes held to
3082 * serialize other volume operations (add_dev/rm_dev/resize) with
3083 * restriper. Same goes for unset_balance_control.
3084 */
3085 static void set_balance_control(struct btrfs_balance_control *bctl)
3086 {
3087 struct btrfs_fs_info *fs_info = bctl->fs_info;
3088
3089 BUG_ON(fs_info->balance_ctl);
3090
3091 spin_lock(&fs_info->balance_lock);
3092 fs_info->balance_ctl = bctl;
3093 spin_unlock(&fs_info->balance_lock);
3094 }
3095
3096 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3097 {
3098 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3099
3100 BUG_ON(!fs_info->balance_ctl);
3101
3102 spin_lock(&fs_info->balance_lock);
3103 fs_info->balance_ctl = NULL;
3104 spin_unlock(&fs_info->balance_lock);
3105
3106 kfree(bctl);
3107 }
3108
3109 /*
3110 * Balance filters. Return 1 if chunk should be filtered out
3111 * (should not be balanced).
3112 */
3113 static int chunk_profiles_filter(u64 chunk_type,
3114 struct btrfs_balance_args *bargs)
3115 {
3116 chunk_type = chunk_to_extended(chunk_type) &
3117 BTRFS_EXTENDED_PROFILE_MASK;
3118
3119 if (bargs->profiles & chunk_type)
3120 return 0;
3121
3122 return 1;
3123 }
3124
3125 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3126 struct btrfs_balance_args *bargs)
3127 {
3128 struct btrfs_block_group_cache *cache;
3129 u64 chunk_used;
3130 u64 user_thresh_min;
3131 u64 user_thresh_max;
3132 int ret = 1;
3133
3134 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3135 chunk_used = btrfs_block_group_used(&cache->item);
3136
3137 if (bargs->usage_min == 0)
3138 user_thresh_min = 0;
3139 else
3140 user_thresh_min = div_factor_fine(cache->key.offset,
3141 bargs->usage_min);
3142
3143 if (bargs->usage_max == 0)
3144 user_thresh_max = 1;
3145 else if (bargs->usage_max > 100)
3146 user_thresh_max = cache->key.offset;
3147 else
3148 user_thresh_max = div_factor_fine(cache->key.offset,
3149 bargs->usage_max);
3150
3151 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3152 ret = 0;
3153
3154 btrfs_put_block_group(cache);
3155 return ret;
3156 }
3157
3158 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3159 u64 chunk_offset, struct btrfs_balance_args *bargs)
3160 {
3161 struct btrfs_block_group_cache *cache;
3162 u64 chunk_used, user_thresh;
3163 int ret = 1;
3164
3165 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3166 chunk_used = btrfs_block_group_used(&cache->item);
3167
3168 if (bargs->usage_min == 0)
3169 user_thresh = 1;
3170 else if (bargs->usage > 100)
3171 user_thresh = cache->key.offset;
3172 else
3173 user_thresh = div_factor_fine(cache->key.offset,
3174 bargs->usage);
3175
3176 if (chunk_used < user_thresh)
3177 ret = 0;
3178
3179 btrfs_put_block_group(cache);
3180 return ret;
3181 }
3182
3183 static int chunk_devid_filter(struct extent_buffer *leaf,
3184 struct btrfs_chunk *chunk,
3185 struct btrfs_balance_args *bargs)
3186 {
3187 struct btrfs_stripe *stripe;
3188 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3189 int i;
3190
3191 for (i = 0; i < num_stripes; i++) {
3192 stripe = btrfs_stripe_nr(chunk, i);
3193 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3194 return 0;
3195 }
3196
3197 return 1;
3198 }
3199
3200 /* [pstart, pend) */
3201 static int chunk_drange_filter(struct extent_buffer *leaf,
3202 struct btrfs_chunk *chunk,
3203 u64 chunk_offset,
3204 struct btrfs_balance_args *bargs)
3205 {
3206 struct btrfs_stripe *stripe;
3207 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3208 u64 stripe_offset;
3209 u64 stripe_length;
3210 int factor;
3211 int i;
3212
3213 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3214 return 0;
3215
3216 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3217 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3218 factor = num_stripes / 2;
3219 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3220 factor = num_stripes - 1;
3221 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3222 factor = num_stripes - 2;
3223 } else {
3224 factor = num_stripes;
3225 }
3226
3227 for (i = 0; i < num_stripes; i++) {
3228 stripe = btrfs_stripe_nr(chunk, i);
3229 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3230 continue;
3231
3232 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3233 stripe_length = btrfs_chunk_length(leaf, chunk);
3234 stripe_length = div_u64(stripe_length, factor);
3235
3236 if (stripe_offset < bargs->pend &&
3237 stripe_offset + stripe_length > bargs->pstart)
3238 return 0;
3239 }
3240
3241 return 1;
3242 }
3243
3244 /* [vstart, vend) */
3245 static int chunk_vrange_filter(struct extent_buffer *leaf,
3246 struct btrfs_chunk *chunk,
3247 u64 chunk_offset,
3248 struct btrfs_balance_args *bargs)
3249 {
3250 if (chunk_offset < bargs->vend &&
3251 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3252 /* at least part of the chunk is inside this vrange */
3253 return 0;
3254
3255 return 1;
3256 }
3257
3258 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3259 struct btrfs_chunk *chunk,
3260 struct btrfs_balance_args *bargs)
3261 {
3262 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3263
3264 if (bargs->stripes_min <= num_stripes
3265 && num_stripes <= bargs->stripes_max)
3266 return 0;
3267
3268 return 1;
3269 }
3270
3271 static int chunk_soft_convert_filter(u64 chunk_type,
3272 struct btrfs_balance_args *bargs)
3273 {
3274 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3275 return 0;
3276
3277 chunk_type = chunk_to_extended(chunk_type) &
3278 BTRFS_EXTENDED_PROFILE_MASK;
3279
3280 if (bargs->target == chunk_type)
3281 return 1;
3282
3283 return 0;
3284 }
3285
3286 static int should_balance_chunk(struct btrfs_root *root,
3287 struct extent_buffer *leaf,
3288 struct btrfs_chunk *chunk, u64 chunk_offset)
3289 {
3290 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3291 struct btrfs_balance_args *bargs = NULL;
3292 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3293
3294 /* type filter */
3295 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3296 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3297 return 0;
3298 }
3299
3300 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3301 bargs = &bctl->data;
3302 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3303 bargs = &bctl->sys;
3304 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3305 bargs = &bctl->meta;
3306
3307 /* profiles filter */
3308 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3309 chunk_profiles_filter(chunk_type, bargs)) {
3310 return 0;
3311 }
3312
3313 /* usage filter */
3314 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3315 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3316 return 0;
3317 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3318 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3319 return 0;
3320 }
3321
3322 /* devid filter */
3323 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3324 chunk_devid_filter(leaf, chunk, bargs)) {
3325 return 0;
3326 }
3327
3328 /* drange filter, makes sense only with devid filter */
3329 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3330 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3331 return 0;
3332 }
3333
3334 /* vrange filter */
3335 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3336 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3337 return 0;
3338 }
3339
3340 /* stripes filter */
3341 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3342 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3343 return 0;
3344 }
3345
3346 /* soft profile changing mode */
3347 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3348 chunk_soft_convert_filter(chunk_type, bargs)) {
3349 return 0;
3350 }
3351
3352 /*
3353 * limited by count, must be the last filter
3354 */
3355 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3356 if (bargs->limit == 0)
3357 return 0;
3358 else
3359 bargs->limit--;
3360 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3361 /*
3362 * Same logic as the 'limit' filter; the minimum cannot be
3363 * determined here because we do not have the global informatoin
3364 * about the count of all chunks that satisfy the filters.
3365 */
3366 if (bargs->limit_max == 0)
3367 return 0;
3368 else
3369 bargs->limit_max--;
3370 }
3371
3372 return 1;
3373 }
3374
3375 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3376 {
3377 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3378 struct btrfs_root *chunk_root = fs_info->chunk_root;
3379 struct btrfs_root *dev_root = fs_info->dev_root;
3380 struct list_head *devices;
3381 struct btrfs_device *device;
3382 u64 old_size;
3383 u64 size_to_free;
3384 u64 chunk_type;
3385 struct btrfs_chunk *chunk;
3386 struct btrfs_path *path;
3387 struct btrfs_key key;
3388 struct btrfs_key found_key;
3389 struct btrfs_trans_handle *trans;
3390 struct extent_buffer *leaf;
3391 int slot;
3392 int ret;
3393 int enospc_errors = 0;
3394 bool counting = true;
3395 /* The single value limit and min/max limits use the same bytes in the */
3396 u64 limit_data = bctl->data.limit;
3397 u64 limit_meta = bctl->meta.limit;
3398 u64 limit_sys = bctl->sys.limit;
3399 u32 count_data = 0;
3400 u32 count_meta = 0;
3401 u32 count_sys = 0;
3402 int chunk_reserved = 0;
3403
3404 /* step one make some room on all the devices */
3405 devices = &fs_info->fs_devices->devices;
3406 list_for_each_entry(device, devices, dev_list) {
3407 old_size = btrfs_device_get_total_bytes(device);
3408 size_to_free = div_factor(old_size, 1);
3409 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3410 if (!device->writeable ||
3411 btrfs_device_get_total_bytes(device) -
3412 btrfs_device_get_bytes_used(device) > size_to_free ||
3413 device->is_tgtdev_for_dev_replace)
3414 continue;
3415
3416 ret = btrfs_shrink_device(device, old_size - size_to_free);
3417 if (ret == -ENOSPC)
3418 break;
3419 BUG_ON(ret);
3420
3421 trans = btrfs_start_transaction(dev_root, 0);
3422 BUG_ON(IS_ERR(trans));
3423
3424 ret = btrfs_grow_device(trans, device, old_size);
3425 BUG_ON(ret);
3426
3427 btrfs_end_transaction(trans, dev_root);
3428 }
3429
3430 /* step two, relocate all the chunks */
3431 path = btrfs_alloc_path();
3432 if (!path) {
3433 ret = -ENOMEM;
3434 goto error;
3435 }
3436
3437 /* zero out stat counters */
3438 spin_lock(&fs_info->balance_lock);
3439 memset(&bctl->stat, 0, sizeof(bctl->stat));
3440 spin_unlock(&fs_info->balance_lock);
3441 again:
3442 if (!counting) {
3443 /*
3444 * The single value limit and min/max limits use the same bytes
3445 * in the
3446 */
3447 bctl->data.limit = limit_data;
3448 bctl->meta.limit = limit_meta;
3449 bctl->sys.limit = limit_sys;
3450 }
3451 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3452 key.offset = (u64)-1;
3453 key.type = BTRFS_CHUNK_ITEM_KEY;
3454
3455 while (1) {
3456 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3457 atomic_read(&fs_info->balance_cancel_req)) {
3458 ret = -ECANCELED;
3459 goto error;
3460 }
3461
3462 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3463 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3464 if (ret < 0) {
3465 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3466 goto error;
3467 }
3468
3469 /*
3470 * this shouldn't happen, it means the last relocate
3471 * failed
3472 */
3473 if (ret == 0)
3474 BUG(); /* FIXME break ? */
3475
3476 ret = btrfs_previous_item(chunk_root, path, 0,
3477 BTRFS_CHUNK_ITEM_KEY);
3478 if (ret) {
3479 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3480 ret = 0;
3481 break;
3482 }
3483
3484 leaf = path->nodes[0];
3485 slot = path->slots[0];
3486 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3487
3488 if (found_key.objectid != key.objectid) {
3489 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3490 break;
3491 }
3492
3493 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3494 chunk_type = btrfs_chunk_type(leaf, chunk);
3495
3496 if (!counting) {
3497 spin_lock(&fs_info->balance_lock);
3498 bctl->stat.considered++;
3499 spin_unlock(&fs_info->balance_lock);
3500 }
3501
3502 ret = should_balance_chunk(chunk_root, leaf, chunk,
3503 found_key.offset);
3504
3505 btrfs_release_path(path);
3506 if (!ret) {
3507 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3508 goto loop;
3509 }
3510
3511 if (counting) {
3512 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3513 spin_lock(&fs_info->balance_lock);
3514 bctl->stat.expected++;
3515 spin_unlock(&fs_info->balance_lock);
3516
3517 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3518 count_data++;
3519 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3520 count_sys++;
3521 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3522 count_meta++;
3523
3524 goto loop;
3525 }
3526
3527 /*
3528 * Apply limit_min filter, no need to check if the LIMITS
3529 * filter is used, limit_min is 0 by default
3530 */
3531 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3532 count_data < bctl->data.limit_min)
3533 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3534 count_meta < bctl->meta.limit_min)
3535 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3536 count_sys < bctl->sys.limit_min)) {
3537 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3538 goto loop;
3539 }
3540
3541 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3542 trans = btrfs_start_transaction(chunk_root, 0);
3543 if (IS_ERR(trans)) {
3544 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3545 ret = PTR_ERR(trans);
3546 goto error;
3547 }
3548
3549 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3550 BTRFS_BLOCK_GROUP_DATA);
3551 btrfs_end_transaction(trans, chunk_root);
3552 if (ret < 0) {
3553 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3554 goto error;
3555 }
3556 chunk_reserved = 1;
3557 }
3558
3559 ret = btrfs_relocate_chunk(chunk_root,
3560 found_key.offset);
3561 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3562 if (ret && ret != -ENOSPC)
3563 goto error;
3564 if (ret == -ENOSPC) {
3565 enospc_errors++;
3566 } else {
3567 spin_lock(&fs_info->balance_lock);
3568 bctl->stat.completed++;
3569 spin_unlock(&fs_info->balance_lock);
3570 }
3571 loop:
3572 if (found_key.offset == 0)
3573 break;
3574 key.offset = found_key.offset - 1;
3575 }
3576
3577 if (counting) {
3578 btrfs_release_path(path);
3579 counting = false;
3580 goto again;
3581 }
3582 error:
3583 btrfs_free_path(path);
3584 if (enospc_errors) {
3585 btrfs_info(fs_info, "%d enospc errors during balance",
3586 enospc_errors);
3587 if (!ret)
3588 ret = -ENOSPC;
3589 }
3590
3591 return ret;
3592 }
3593
3594 /**
3595 * alloc_profile_is_valid - see if a given profile is valid and reduced
3596 * @flags: profile to validate
3597 * @extended: if true @flags is treated as an extended profile
3598 */
3599 static int alloc_profile_is_valid(u64 flags, int extended)
3600 {
3601 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3602 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3603
3604 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3605
3606 /* 1) check that all other bits are zeroed */
3607 if (flags & ~mask)
3608 return 0;
3609
3610 /* 2) see if profile is reduced */
3611 if (flags == 0)
3612 return !extended; /* "0" is valid for usual profiles */
3613
3614 /* true if exactly one bit set */
3615 return (flags & (flags - 1)) == 0;
3616 }
3617
3618 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3619 {
3620 /* cancel requested || normal exit path */
3621 return atomic_read(&fs_info->balance_cancel_req) ||
3622 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3623 atomic_read(&fs_info->balance_cancel_req) == 0);
3624 }
3625
3626 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3627 {
3628 int ret;
3629
3630 unset_balance_control(fs_info);
3631 ret = del_balance_item(fs_info->tree_root);
3632 if (ret)
3633 btrfs_std_error(fs_info, ret, NULL);
3634
3635 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3636 }
3637
3638 /* Non-zero return value signifies invalidity */
3639 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3640 u64 allowed)
3641 {
3642 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3643 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3644 (bctl_arg->target & ~allowed)));
3645 }
3646
3647 /*
3648 * Should be called with both balance and volume mutexes held
3649 */
3650 int btrfs_balance(struct btrfs_balance_control *bctl,
3651 struct btrfs_ioctl_balance_args *bargs)
3652 {
3653 struct btrfs_fs_info *fs_info = bctl->fs_info;
3654 u64 allowed;
3655 int mixed = 0;
3656 int ret;
3657 u64 num_devices;
3658 unsigned seq;
3659
3660 if (btrfs_fs_closing(fs_info) ||
3661 atomic_read(&fs_info->balance_pause_req) ||
3662 atomic_read(&fs_info->balance_cancel_req)) {
3663 ret = -EINVAL;
3664 goto out;
3665 }
3666
3667 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3668 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3669 mixed = 1;
3670
3671 /*
3672 * In case of mixed groups both data and meta should be picked,
3673 * and identical options should be given for both of them.
3674 */
3675 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3676 if (mixed && (bctl->flags & allowed)) {
3677 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3678 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3679 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3680 btrfs_err(fs_info, "with mixed groups data and "
3681 "metadata balance options must be the same");
3682 ret = -EINVAL;
3683 goto out;
3684 }
3685 }
3686
3687 num_devices = fs_info->fs_devices->num_devices;
3688 btrfs_dev_replace_lock(&fs_info->dev_replace);
3689 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3690 BUG_ON(num_devices < 1);
3691 num_devices--;
3692 }
3693 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3694 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3695 if (num_devices == 1)
3696 allowed |= BTRFS_BLOCK_GROUP_DUP;
3697 else if (num_devices > 1)
3698 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3699 if (num_devices > 2)
3700 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3701 if (num_devices > 3)
3702 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3703 BTRFS_BLOCK_GROUP_RAID6);
3704 if (validate_convert_profile(&bctl->data, allowed)) {
3705 btrfs_err(fs_info, "unable to start balance with target "
3706 "data profile %llu",
3707 bctl->data.target);
3708 ret = -EINVAL;
3709 goto out;
3710 }
3711 if (validate_convert_profile(&bctl->meta, allowed)) {
3712 btrfs_err(fs_info,
3713 "unable to start balance with target metadata profile %llu",
3714 bctl->meta.target);
3715 ret = -EINVAL;
3716 goto out;
3717 }
3718 if (validate_convert_profile(&bctl->sys, allowed)) {
3719 btrfs_err(fs_info,
3720 "unable to start balance with target system profile %llu",
3721 bctl->sys.target);
3722 ret = -EINVAL;
3723 goto out;
3724 }
3725
3726 /* allow dup'ed data chunks only in mixed mode */
3727 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3728 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3729 btrfs_err(fs_info, "dup for data is not allowed");
3730 ret = -EINVAL;
3731 goto out;
3732 }
3733
3734 /* allow to reduce meta or sys integrity only if force set */
3735 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3736 BTRFS_BLOCK_GROUP_RAID10 |
3737 BTRFS_BLOCK_GROUP_RAID5 |
3738 BTRFS_BLOCK_GROUP_RAID6;
3739 do {
3740 seq = read_seqbegin(&fs_info->profiles_lock);
3741
3742 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3743 (fs_info->avail_system_alloc_bits & allowed) &&
3744 !(bctl->sys.target & allowed)) ||
3745 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3746 (fs_info->avail_metadata_alloc_bits & allowed) &&
3747 !(bctl->meta.target & allowed))) {
3748 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3749 btrfs_info(fs_info, "force reducing metadata integrity");
3750 } else {
3751 btrfs_err(fs_info, "balance will reduce metadata "
3752 "integrity, use force if you want this");
3753 ret = -EINVAL;
3754 goto out;
3755 }
3756 }
3757 } while (read_seqretry(&fs_info->profiles_lock, seq));
3758
3759 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3760 fs_info->num_tolerated_disk_barrier_failures = min(
3761 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3762 btrfs_get_num_tolerated_disk_barrier_failures(
3763 bctl->sys.target));
3764 }
3765
3766 ret = insert_balance_item(fs_info->tree_root, bctl);
3767 if (ret && ret != -EEXIST)
3768 goto out;
3769
3770 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3771 BUG_ON(ret == -EEXIST);
3772 set_balance_control(bctl);
3773 } else {
3774 BUG_ON(ret != -EEXIST);
3775 spin_lock(&fs_info->balance_lock);
3776 update_balance_args(bctl);
3777 spin_unlock(&fs_info->balance_lock);
3778 }
3779
3780 atomic_inc(&fs_info->balance_running);
3781 mutex_unlock(&fs_info->balance_mutex);
3782
3783 ret = __btrfs_balance(fs_info);
3784
3785 mutex_lock(&fs_info->balance_mutex);
3786 atomic_dec(&fs_info->balance_running);
3787
3788 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3789 fs_info->num_tolerated_disk_barrier_failures =
3790 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3791 }
3792
3793 if (bargs) {
3794 memset(bargs, 0, sizeof(*bargs));
3795 update_ioctl_balance_args(fs_info, 0, bargs);
3796 }
3797
3798 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3799 balance_need_close(fs_info)) {
3800 __cancel_balance(fs_info);
3801 }
3802
3803 wake_up(&fs_info->balance_wait_q);
3804
3805 return ret;
3806 out:
3807 if (bctl->flags & BTRFS_BALANCE_RESUME)
3808 __cancel_balance(fs_info);
3809 else {
3810 kfree(bctl);
3811 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3812 }
3813 return ret;
3814 }
3815
3816 static int balance_kthread(void *data)
3817 {
3818 struct btrfs_fs_info *fs_info = data;
3819 int ret = 0;
3820
3821 mutex_lock(&fs_info->volume_mutex);
3822 mutex_lock(&fs_info->balance_mutex);
3823
3824 if (fs_info->balance_ctl) {
3825 btrfs_info(fs_info, "continuing balance");
3826 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3827 }
3828
3829 mutex_unlock(&fs_info->balance_mutex);
3830 mutex_unlock(&fs_info->volume_mutex);
3831
3832 return ret;
3833 }
3834
3835 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3836 {
3837 struct task_struct *tsk;
3838
3839 spin_lock(&fs_info->balance_lock);
3840 if (!fs_info->balance_ctl) {
3841 spin_unlock(&fs_info->balance_lock);
3842 return 0;
3843 }
3844 spin_unlock(&fs_info->balance_lock);
3845
3846 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3847 btrfs_info(fs_info, "force skipping balance");
3848 return 0;
3849 }
3850
3851 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3852 return PTR_ERR_OR_ZERO(tsk);
3853 }
3854
3855 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3856 {
3857 struct btrfs_balance_control *bctl;
3858 struct btrfs_balance_item *item;
3859 struct btrfs_disk_balance_args disk_bargs;
3860 struct btrfs_path *path;
3861 struct extent_buffer *leaf;
3862 struct btrfs_key key;
3863 int ret;
3864
3865 path = btrfs_alloc_path();
3866 if (!path)
3867 return -ENOMEM;
3868
3869 key.objectid = BTRFS_BALANCE_OBJECTID;
3870 key.type = BTRFS_BALANCE_ITEM_KEY;
3871 key.offset = 0;
3872
3873 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3874 if (ret < 0)
3875 goto out;
3876 if (ret > 0) { /* ret = -ENOENT; */
3877 ret = 0;
3878 goto out;
3879 }
3880
3881 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3882 if (!bctl) {
3883 ret = -ENOMEM;
3884 goto out;
3885 }
3886
3887 leaf = path->nodes[0];
3888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3889
3890 bctl->fs_info = fs_info;
3891 bctl->flags = btrfs_balance_flags(leaf, item);
3892 bctl->flags |= BTRFS_BALANCE_RESUME;
3893
3894 btrfs_balance_data(leaf, item, &disk_bargs);
3895 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3896 btrfs_balance_meta(leaf, item, &disk_bargs);
3897 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3898 btrfs_balance_sys(leaf, item, &disk_bargs);
3899 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3900
3901 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3902
3903 mutex_lock(&fs_info->volume_mutex);
3904 mutex_lock(&fs_info->balance_mutex);
3905
3906 set_balance_control(bctl);
3907
3908 mutex_unlock(&fs_info->balance_mutex);
3909 mutex_unlock(&fs_info->volume_mutex);
3910 out:
3911 btrfs_free_path(path);
3912 return ret;
3913 }
3914
3915 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3916 {
3917 int ret = 0;
3918
3919 mutex_lock(&fs_info->balance_mutex);
3920 if (!fs_info->balance_ctl) {
3921 mutex_unlock(&fs_info->balance_mutex);
3922 return -ENOTCONN;
3923 }
3924
3925 if (atomic_read(&fs_info->balance_running)) {
3926 atomic_inc(&fs_info->balance_pause_req);
3927 mutex_unlock(&fs_info->balance_mutex);
3928
3929 wait_event(fs_info->balance_wait_q,
3930 atomic_read(&fs_info->balance_running) == 0);
3931
3932 mutex_lock(&fs_info->balance_mutex);
3933 /* we are good with balance_ctl ripped off from under us */
3934 BUG_ON(atomic_read(&fs_info->balance_running));
3935 atomic_dec(&fs_info->balance_pause_req);
3936 } else {
3937 ret = -ENOTCONN;
3938 }
3939
3940 mutex_unlock(&fs_info->balance_mutex);
3941 return ret;
3942 }
3943
3944 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3945 {
3946 if (fs_info->sb->s_flags & MS_RDONLY)
3947 return -EROFS;
3948
3949 mutex_lock(&fs_info->balance_mutex);
3950 if (!fs_info->balance_ctl) {
3951 mutex_unlock(&fs_info->balance_mutex);
3952 return -ENOTCONN;
3953 }
3954
3955 atomic_inc(&fs_info->balance_cancel_req);
3956 /*
3957 * if we are running just wait and return, balance item is
3958 * deleted in btrfs_balance in this case
3959 */
3960 if (atomic_read(&fs_info->balance_running)) {
3961 mutex_unlock(&fs_info->balance_mutex);
3962 wait_event(fs_info->balance_wait_q,
3963 atomic_read(&fs_info->balance_running) == 0);
3964 mutex_lock(&fs_info->balance_mutex);
3965 } else {
3966 /* __cancel_balance needs volume_mutex */
3967 mutex_unlock(&fs_info->balance_mutex);
3968 mutex_lock(&fs_info->volume_mutex);
3969 mutex_lock(&fs_info->balance_mutex);
3970
3971 if (fs_info->balance_ctl)
3972 __cancel_balance(fs_info);
3973
3974 mutex_unlock(&fs_info->volume_mutex);
3975 }
3976
3977 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3978 atomic_dec(&fs_info->balance_cancel_req);
3979 mutex_unlock(&fs_info->balance_mutex);
3980 return 0;
3981 }
3982
3983 static int btrfs_uuid_scan_kthread(void *data)
3984 {
3985 struct btrfs_fs_info *fs_info = data;
3986 struct btrfs_root *root = fs_info->tree_root;
3987 struct btrfs_key key;
3988 struct btrfs_key max_key;
3989 struct btrfs_path *path = NULL;
3990 int ret = 0;
3991 struct extent_buffer *eb;
3992 int slot;
3993 struct btrfs_root_item root_item;
3994 u32 item_size;
3995 struct btrfs_trans_handle *trans = NULL;
3996
3997 path = btrfs_alloc_path();
3998 if (!path) {
3999 ret = -ENOMEM;
4000 goto out;
4001 }
4002
4003 key.objectid = 0;
4004 key.type = BTRFS_ROOT_ITEM_KEY;
4005 key.offset = 0;
4006
4007 max_key.objectid = (u64)-1;
4008 max_key.type = BTRFS_ROOT_ITEM_KEY;
4009 max_key.offset = (u64)-1;
4010
4011 while (1) {
4012 ret = btrfs_search_forward(root, &key, path, 0);
4013 if (ret) {
4014 if (ret > 0)
4015 ret = 0;
4016 break;
4017 }
4018
4019 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4020 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4021 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4022 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4023 goto skip;
4024
4025 eb = path->nodes[0];
4026 slot = path->slots[0];
4027 item_size = btrfs_item_size_nr(eb, slot);
4028 if (item_size < sizeof(root_item))
4029 goto skip;
4030
4031 read_extent_buffer(eb, &root_item,
4032 btrfs_item_ptr_offset(eb, slot),
4033 (int)sizeof(root_item));
4034 if (btrfs_root_refs(&root_item) == 0)
4035 goto skip;
4036
4037 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4038 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4039 if (trans)
4040 goto update_tree;
4041
4042 btrfs_release_path(path);
4043 /*
4044 * 1 - subvol uuid item
4045 * 1 - received_subvol uuid item
4046 */
4047 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4048 if (IS_ERR(trans)) {
4049 ret = PTR_ERR(trans);
4050 break;
4051 }
4052 continue;
4053 } else {
4054 goto skip;
4055 }
4056 update_tree:
4057 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4058 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4059 root_item.uuid,
4060 BTRFS_UUID_KEY_SUBVOL,
4061 key.objectid);
4062 if (ret < 0) {
4063 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4064 ret);
4065 break;
4066 }
4067 }
4068
4069 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4070 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4071 root_item.received_uuid,
4072 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4073 key.objectid);
4074 if (ret < 0) {
4075 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4076 ret);
4077 break;
4078 }
4079 }
4080
4081 skip:
4082 if (trans) {
4083 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4084 trans = NULL;
4085 if (ret)
4086 break;
4087 }
4088
4089 btrfs_release_path(path);
4090 if (key.offset < (u64)-1) {
4091 key.offset++;
4092 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4093 key.offset = 0;
4094 key.type = BTRFS_ROOT_ITEM_KEY;
4095 } else if (key.objectid < (u64)-1) {
4096 key.offset = 0;
4097 key.type = BTRFS_ROOT_ITEM_KEY;
4098 key.objectid++;
4099 } else {
4100 break;
4101 }
4102 cond_resched();
4103 }
4104
4105 out:
4106 btrfs_free_path(path);
4107 if (trans && !IS_ERR(trans))
4108 btrfs_end_transaction(trans, fs_info->uuid_root);
4109 if (ret)
4110 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4111 else
4112 fs_info->update_uuid_tree_gen = 1;
4113 up(&fs_info->uuid_tree_rescan_sem);
4114 return 0;
4115 }
4116
4117 /*
4118 * Callback for btrfs_uuid_tree_iterate().
4119 * returns:
4120 * 0 check succeeded, the entry is not outdated.
4121 * < 0 if an error occured.
4122 * > 0 if the check failed, which means the caller shall remove the entry.
4123 */
4124 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4125 u8 *uuid, u8 type, u64 subid)
4126 {
4127 struct btrfs_key key;
4128 int ret = 0;
4129 struct btrfs_root *subvol_root;
4130
4131 if (type != BTRFS_UUID_KEY_SUBVOL &&
4132 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4133 goto out;
4134
4135 key.objectid = subid;
4136 key.type = BTRFS_ROOT_ITEM_KEY;
4137 key.offset = (u64)-1;
4138 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4139 if (IS_ERR(subvol_root)) {
4140 ret = PTR_ERR(subvol_root);
4141 if (ret == -ENOENT)
4142 ret = 1;
4143 goto out;
4144 }
4145
4146 switch (type) {
4147 case BTRFS_UUID_KEY_SUBVOL:
4148 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4149 ret = 1;
4150 break;
4151 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4152 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4153 BTRFS_UUID_SIZE))
4154 ret = 1;
4155 break;
4156 }
4157
4158 out:
4159 return ret;
4160 }
4161
4162 static int btrfs_uuid_rescan_kthread(void *data)
4163 {
4164 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4165 int ret;
4166
4167 /*
4168 * 1st step is to iterate through the existing UUID tree and
4169 * to delete all entries that contain outdated data.
4170 * 2nd step is to add all missing entries to the UUID tree.
4171 */
4172 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4173 if (ret < 0) {
4174 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4175 up(&fs_info->uuid_tree_rescan_sem);
4176 return ret;
4177 }
4178 return btrfs_uuid_scan_kthread(data);
4179 }
4180
4181 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4182 {
4183 struct btrfs_trans_handle *trans;
4184 struct btrfs_root *tree_root = fs_info->tree_root;
4185 struct btrfs_root *uuid_root;
4186 struct task_struct *task;
4187 int ret;
4188
4189 /*
4190 * 1 - root node
4191 * 1 - root item
4192 */
4193 trans = btrfs_start_transaction(tree_root, 2);
4194 if (IS_ERR(trans))
4195 return PTR_ERR(trans);
4196
4197 uuid_root = btrfs_create_tree(trans, fs_info,
4198 BTRFS_UUID_TREE_OBJECTID);
4199 if (IS_ERR(uuid_root)) {
4200 ret = PTR_ERR(uuid_root);
4201 btrfs_abort_transaction(trans, tree_root, ret);
4202 return ret;
4203 }
4204
4205 fs_info->uuid_root = uuid_root;
4206
4207 ret = btrfs_commit_transaction(trans, tree_root);
4208 if (ret)
4209 return ret;
4210
4211 down(&fs_info->uuid_tree_rescan_sem);
4212 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4213 if (IS_ERR(task)) {
4214 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4215 btrfs_warn(fs_info, "failed to start uuid_scan task");
4216 up(&fs_info->uuid_tree_rescan_sem);
4217 return PTR_ERR(task);
4218 }
4219
4220 return 0;
4221 }
4222
4223 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4224 {
4225 struct task_struct *task;
4226
4227 down(&fs_info->uuid_tree_rescan_sem);
4228 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4229 if (IS_ERR(task)) {
4230 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4231 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4232 up(&fs_info->uuid_tree_rescan_sem);
4233 return PTR_ERR(task);
4234 }
4235
4236 return 0;
4237 }
4238
4239 /*
4240 * shrinking a device means finding all of the device extents past
4241 * the new size, and then following the back refs to the chunks.
4242 * The chunk relocation code actually frees the device extent
4243 */
4244 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4245 {
4246 struct btrfs_trans_handle *trans;
4247 struct btrfs_root *root = device->dev_root;
4248 struct btrfs_dev_extent *dev_extent = NULL;
4249 struct btrfs_path *path;
4250 u64 length;
4251 u64 chunk_offset;
4252 int ret;
4253 int slot;
4254 int failed = 0;
4255 bool retried = false;
4256 bool checked_pending_chunks = false;
4257 struct extent_buffer *l;
4258 struct btrfs_key key;
4259 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4260 u64 old_total = btrfs_super_total_bytes(super_copy);
4261 u64 old_size = btrfs_device_get_total_bytes(device);
4262 u64 diff = old_size - new_size;
4263
4264 if (device->is_tgtdev_for_dev_replace)
4265 return -EINVAL;
4266
4267 path = btrfs_alloc_path();
4268 if (!path)
4269 return -ENOMEM;
4270
4271 path->reada = 2;
4272
4273 lock_chunks(root);
4274
4275 btrfs_device_set_total_bytes(device, new_size);
4276 if (device->writeable) {
4277 device->fs_devices->total_rw_bytes -= diff;
4278 spin_lock(&root->fs_info->free_chunk_lock);
4279 root->fs_info->free_chunk_space -= diff;
4280 spin_unlock(&root->fs_info->free_chunk_lock);
4281 }
4282 unlock_chunks(root);
4283
4284 again:
4285 key.objectid = device->devid;
4286 key.offset = (u64)-1;
4287 key.type = BTRFS_DEV_EXTENT_KEY;
4288
4289 do {
4290 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4291 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4292 if (ret < 0) {
4293 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4294 goto done;
4295 }
4296
4297 ret = btrfs_previous_item(root, path, 0, key.type);
4298 if (ret)
4299 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4300 if (ret < 0)
4301 goto done;
4302 if (ret) {
4303 ret = 0;
4304 btrfs_release_path(path);
4305 break;
4306 }
4307
4308 l = path->nodes[0];
4309 slot = path->slots[0];
4310 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4311
4312 if (key.objectid != device->devid) {
4313 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4314 btrfs_release_path(path);
4315 break;
4316 }
4317
4318 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4319 length = btrfs_dev_extent_length(l, dev_extent);
4320
4321 if (key.offset + length <= new_size) {
4322 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4323 btrfs_release_path(path);
4324 break;
4325 }
4326
4327 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4328 btrfs_release_path(path);
4329
4330 ret = btrfs_relocate_chunk(root, chunk_offset);
4331 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4332 if (ret && ret != -ENOSPC)
4333 goto done;
4334 if (ret == -ENOSPC)
4335 failed++;
4336 } while (key.offset-- > 0);
4337
4338 if (failed && !retried) {
4339 failed = 0;
4340 retried = true;
4341 goto again;
4342 } else if (failed && retried) {
4343 ret = -ENOSPC;
4344 goto done;
4345 }
4346
4347 /* Shrinking succeeded, else we would be at "done". */
4348 trans = btrfs_start_transaction(root, 0);
4349 if (IS_ERR(trans)) {
4350 ret = PTR_ERR(trans);
4351 goto done;
4352 }
4353
4354 lock_chunks(root);
4355
4356 /*
4357 * We checked in the above loop all device extents that were already in
4358 * the device tree. However before we have updated the device's
4359 * total_bytes to the new size, we might have had chunk allocations that
4360 * have not complete yet (new block groups attached to transaction
4361 * handles), and therefore their device extents were not yet in the
4362 * device tree and we missed them in the loop above. So if we have any
4363 * pending chunk using a device extent that overlaps the device range
4364 * that we can not use anymore, commit the current transaction and
4365 * repeat the search on the device tree - this way we guarantee we will
4366 * not have chunks using device extents that end beyond 'new_size'.
4367 */
4368 if (!checked_pending_chunks) {
4369 u64 start = new_size;
4370 u64 len = old_size - new_size;
4371
4372 if (contains_pending_extent(trans->transaction, device,
4373 &start, len)) {
4374 unlock_chunks(root);
4375 checked_pending_chunks = true;
4376 failed = 0;
4377 retried = false;
4378 ret = btrfs_commit_transaction(trans, root);
4379 if (ret)
4380 goto done;
4381 goto again;
4382 }
4383 }
4384
4385 btrfs_device_set_disk_total_bytes(device, new_size);
4386 if (list_empty(&device->resized_list))
4387 list_add_tail(&device->resized_list,
4388 &root->fs_info->fs_devices->resized_devices);
4389
4390 WARN_ON(diff > old_total);
4391 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4392 unlock_chunks(root);
4393
4394 /* Now btrfs_update_device() will change the on-disk size. */
4395 ret = btrfs_update_device(trans, device);
4396 btrfs_end_transaction(trans, root);
4397 done:
4398 btrfs_free_path(path);
4399 if (ret) {
4400 lock_chunks(root);
4401 btrfs_device_set_total_bytes(device, old_size);
4402 if (device->writeable)
4403 device->fs_devices->total_rw_bytes += diff;
4404 spin_lock(&root->fs_info->free_chunk_lock);
4405 root->fs_info->free_chunk_space += diff;
4406 spin_unlock(&root->fs_info->free_chunk_lock);
4407 unlock_chunks(root);
4408 }
4409 return ret;
4410 }
4411
4412 static int btrfs_add_system_chunk(struct btrfs_root *root,
4413 struct btrfs_key *key,
4414 struct btrfs_chunk *chunk, int item_size)
4415 {
4416 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4417 struct btrfs_disk_key disk_key;
4418 u32 array_size;
4419 u8 *ptr;
4420
4421 lock_chunks(root);
4422 array_size = btrfs_super_sys_array_size(super_copy);
4423 if (array_size + item_size + sizeof(disk_key)
4424 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4425 unlock_chunks(root);
4426 return -EFBIG;
4427 }
4428
4429 ptr = super_copy->sys_chunk_array + array_size;
4430 btrfs_cpu_key_to_disk(&disk_key, key);
4431 memcpy(ptr, &disk_key, sizeof(disk_key));
4432 ptr += sizeof(disk_key);
4433 memcpy(ptr, chunk, item_size);
4434 item_size += sizeof(disk_key);
4435 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4436 unlock_chunks(root);
4437
4438 return 0;
4439 }
4440
4441 /*
4442 * sort the devices in descending order by max_avail, total_avail
4443 */
4444 static int btrfs_cmp_device_info(const void *a, const void *b)
4445 {
4446 const struct btrfs_device_info *di_a = a;
4447 const struct btrfs_device_info *di_b = b;
4448
4449 if (di_a->max_avail > di_b->max_avail)
4450 return -1;
4451 if (di_a->max_avail < di_b->max_avail)
4452 return 1;
4453 if (di_a->total_avail > di_b->total_avail)
4454 return -1;
4455 if (di_a->total_avail < di_b->total_avail)
4456 return 1;
4457 return 0;
4458 }
4459
4460 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4461 {
4462 /* TODO allow them to set a preferred stripe size */
4463 return 64 * 1024;
4464 }
4465
4466 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4467 {
4468 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4469 return;
4470
4471 btrfs_set_fs_incompat(info, RAID56);
4472 }
4473
4474 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4475 - sizeof(struct btrfs_item) \
4476 - sizeof(struct btrfs_chunk)) \
4477 / sizeof(struct btrfs_stripe) + 1)
4478
4479 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4480 - 2 * sizeof(struct btrfs_disk_key) \
4481 - 2 * sizeof(struct btrfs_chunk)) \
4482 / sizeof(struct btrfs_stripe) + 1)
4483
4484 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4485 struct btrfs_root *extent_root, u64 start,
4486 u64 type)
4487 {
4488 struct btrfs_fs_info *info = extent_root->fs_info;
4489 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4490 struct list_head *cur;
4491 struct map_lookup *map = NULL;
4492 struct extent_map_tree *em_tree;
4493 struct extent_map *em;
4494 struct btrfs_device_info *devices_info = NULL;
4495 u64 total_avail;
4496 int num_stripes; /* total number of stripes to allocate */
4497 int data_stripes; /* number of stripes that count for
4498 block group size */
4499 int sub_stripes; /* sub_stripes info for map */
4500 int dev_stripes; /* stripes per dev */
4501 int devs_max; /* max devs to use */
4502 int devs_min; /* min devs needed */
4503 int devs_increment; /* ndevs has to be a multiple of this */
4504 int ncopies; /* how many copies to data has */
4505 int ret;
4506 u64 max_stripe_size;
4507 u64 max_chunk_size;
4508 u64 stripe_size;
4509 u64 num_bytes;
4510 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4511 int ndevs;
4512 int i;
4513 int j;
4514 int index;
4515
4516 BUG_ON(!alloc_profile_is_valid(type, 0));
4517
4518 if (list_empty(&fs_devices->alloc_list))
4519 return -ENOSPC;
4520
4521 index = __get_raid_index(type);
4522
4523 sub_stripes = btrfs_raid_array[index].sub_stripes;
4524 dev_stripes = btrfs_raid_array[index].dev_stripes;
4525 devs_max = btrfs_raid_array[index].devs_max;
4526 devs_min = btrfs_raid_array[index].devs_min;
4527 devs_increment = btrfs_raid_array[index].devs_increment;
4528 ncopies = btrfs_raid_array[index].ncopies;
4529
4530 if (type & BTRFS_BLOCK_GROUP_DATA) {
4531 max_stripe_size = 1024 * 1024 * 1024;
4532 max_chunk_size = 10 * max_stripe_size;
4533 if (!devs_max)
4534 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4535 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4536 /* for larger filesystems, use larger metadata chunks */
4537 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4538 max_stripe_size = 1024 * 1024 * 1024;
4539 else
4540 max_stripe_size = 256 * 1024 * 1024;
4541 max_chunk_size = max_stripe_size;
4542 if (!devs_max)
4543 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4544 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4545 max_stripe_size = 32 * 1024 * 1024;
4546 max_chunk_size = 2 * max_stripe_size;
4547 if (!devs_max)
4548 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4549 } else {
4550 btrfs_err(info, "invalid chunk type 0x%llx requested",
4551 type);
4552 BUG_ON(1);
4553 }
4554
4555 /* we don't want a chunk larger than 10% of writeable space */
4556 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4557 max_chunk_size);
4558
4559 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4560 GFP_NOFS);
4561 if (!devices_info)
4562 return -ENOMEM;
4563
4564 cur = fs_devices->alloc_list.next;
4565
4566 /*
4567 * in the first pass through the devices list, we gather information
4568 * about the available holes on each device.
4569 */
4570 ndevs = 0;
4571 while (cur != &fs_devices->alloc_list) {
4572 struct btrfs_device *device;
4573 u64 max_avail;
4574 u64 dev_offset;
4575
4576 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4577
4578 cur = cur->next;
4579
4580 if (!device->writeable) {
4581 WARN(1, KERN_ERR
4582 "BTRFS: read-only device in alloc_list\n");
4583 continue;
4584 }
4585
4586 if (!device->in_fs_metadata ||
4587 device->is_tgtdev_for_dev_replace)
4588 continue;
4589
4590 if (device->total_bytes > device->bytes_used)
4591 total_avail = device->total_bytes - device->bytes_used;
4592 else
4593 total_avail = 0;
4594
4595 /* If there is no space on this device, skip it. */
4596 if (total_avail == 0)
4597 continue;
4598
4599 ret = find_free_dev_extent(trans, device,
4600 max_stripe_size * dev_stripes,
4601 &dev_offset, &max_avail);
4602 if (ret && ret != -ENOSPC)
4603 goto error;
4604
4605 if (ret == 0)
4606 max_avail = max_stripe_size * dev_stripes;
4607
4608 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4609 continue;
4610
4611 if (ndevs == fs_devices->rw_devices) {
4612 WARN(1, "%s: found more than %llu devices\n",
4613 __func__, fs_devices->rw_devices);
4614 break;
4615 }
4616 devices_info[ndevs].dev_offset = dev_offset;
4617 devices_info[ndevs].max_avail = max_avail;
4618 devices_info[ndevs].total_avail = total_avail;
4619 devices_info[ndevs].dev = device;
4620 ++ndevs;
4621 }
4622
4623 /*
4624 * now sort the devices by hole size / available space
4625 */
4626 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4627 btrfs_cmp_device_info, NULL);
4628
4629 /* round down to number of usable stripes */
4630 ndevs -= ndevs % devs_increment;
4631
4632 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4633 ret = -ENOSPC;
4634 goto error;
4635 }
4636
4637 if (devs_max && ndevs > devs_max)
4638 ndevs = devs_max;
4639 /*
4640 * the primary goal is to maximize the number of stripes, so use as many
4641 * devices as possible, even if the stripes are not maximum sized.
4642 */
4643 stripe_size = devices_info[ndevs-1].max_avail;
4644 num_stripes = ndevs * dev_stripes;
4645
4646 /*
4647 * this will have to be fixed for RAID1 and RAID10 over
4648 * more drives
4649 */
4650 data_stripes = num_stripes / ncopies;
4651
4652 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4653 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4654 btrfs_super_stripesize(info->super_copy));
4655 data_stripes = num_stripes - 1;
4656 }
4657 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4658 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4659 btrfs_super_stripesize(info->super_copy));
4660 data_stripes = num_stripes - 2;
4661 }
4662
4663 /*
4664 * Use the number of data stripes to figure out how big this chunk
4665 * is really going to be in terms of logical address space,
4666 * and compare that answer with the max chunk size
4667 */
4668 if (stripe_size * data_stripes > max_chunk_size) {
4669 u64 mask = (1ULL << 24) - 1;
4670
4671 stripe_size = div_u64(max_chunk_size, data_stripes);
4672
4673 /* bump the answer up to a 16MB boundary */
4674 stripe_size = (stripe_size + mask) & ~mask;
4675
4676 /* but don't go higher than the limits we found
4677 * while searching for free extents
4678 */
4679 if (stripe_size > devices_info[ndevs-1].max_avail)
4680 stripe_size = devices_info[ndevs-1].max_avail;
4681 }
4682
4683 stripe_size = div_u64(stripe_size, dev_stripes);
4684
4685 /* align to BTRFS_STRIPE_LEN */
4686 stripe_size = div_u64(stripe_size, raid_stripe_len);
4687 stripe_size *= raid_stripe_len;
4688
4689 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4690 if (!map) {
4691 ret = -ENOMEM;
4692 goto error;
4693 }
4694 map->num_stripes = num_stripes;
4695
4696 for (i = 0; i < ndevs; ++i) {
4697 for (j = 0; j < dev_stripes; ++j) {
4698 int s = i * dev_stripes + j;
4699 map->stripes[s].dev = devices_info[i].dev;
4700 map->stripes[s].physical = devices_info[i].dev_offset +
4701 j * stripe_size;
4702 }
4703 }
4704 map->sector_size = extent_root->sectorsize;
4705 map->stripe_len = raid_stripe_len;
4706 map->io_align = raid_stripe_len;
4707 map->io_width = raid_stripe_len;
4708 map->type = type;
4709 map->sub_stripes = sub_stripes;
4710
4711 num_bytes = stripe_size * data_stripes;
4712
4713 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4714
4715 em = alloc_extent_map();
4716 if (!em) {
4717 kfree(map);
4718 ret = -ENOMEM;
4719 goto error;
4720 }
4721 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4722 em->bdev = (struct block_device *)map;
4723 em->start = start;
4724 em->len = num_bytes;
4725 em->block_start = 0;
4726 em->block_len = em->len;
4727 em->orig_block_len = stripe_size;
4728
4729 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4730 write_lock(&em_tree->lock);
4731 ret = add_extent_mapping(em_tree, em, 0);
4732 if (!ret) {
4733 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4734 atomic_inc(&em->refs);
4735 }
4736 write_unlock(&em_tree->lock);
4737 if (ret) {
4738 free_extent_map(em);
4739 goto error;
4740 }
4741
4742 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4743 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4744 start, num_bytes);
4745 if (ret)
4746 goto error_del_extent;
4747
4748 for (i = 0; i < map->num_stripes; i++) {
4749 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4750 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4751 }
4752
4753 spin_lock(&extent_root->fs_info->free_chunk_lock);
4754 extent_root->fs_info->free_chunk_space -= (stripe_size *
4755 map->num_stripes);
4756 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4757
4758 free_extent_map(em);
4759 check_raid56_incompat_flag(extent_root->fs_info, type);
4760
4761 kfree(devices_info);
4762 return 0;
4763
4764 error_del_extent:
4765 write_lock(&em_tree->lock);
4766 remove_extent_mapping(em_tree, em);
4767 write_unlock(&em_tree->lock);
4768
4769 /* One for our allocation */
4770 free_extent_map(em);
4771 /* One for the tree reference */
4772 free_extent_map(em);
4773 /* One for the pending_chunks list reference */
4774 free_extent_map(em);
4775 error:
4776 kfree(devices_info);
4777 return ret;
4778 }
4779
4780 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4781 struct btrfs_root *extent_root,
4782 u64 chunk_offset, u64 chunk_size)
4783 {
4784 struct btrfs_key key;
4785 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4786 struct btrfs_device *device;
4787 struct btrfs_chunk *chunk;
4788 struct btrfs_stripe *stripe;
4789 struct extent_map_tree *em_tree;
4790 struct extent_map *em;
4791 struct map_lookup *map;
4792 size_t item_size;
4793 u64 dev_offset;
4794 u64 stripe_size;
4795 int i = 0;
4796 int ret;
4797
4798 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4799 read_lock(&em_tree->lock);
4800 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4801 read_unlock(&em_tree->lock);
4802
4803 if (!em) {
4804 btrfs_crit(extent_root->fs_info, "unable to find logical "
4805 "%Lu len %Lu", chunk_offset, chunk_size);
4806 return -EINVAL;
4807 }
4808
4809 if (em->start != chunk_offset || em->len != chunk_size) {
4810 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4811 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4812 chunk_size, em->start, em->len);
4813 free_extent_map(em);
4814 return -EINVAL;
4815 }
4816
4817 map = (struct map_lookup *)em->bdev;
4818 item_size = btrfs_chunk_item_size(map->num_stripes);
4819 stripe_size = em->orig_block_len;
4820
4821 chunk = kzalloc(item_size, GFP_NOFS);
4822 if (!chunk) {
4823 ret = -ENOMEM;
4824 goto out;
4825 }
4826
4827 for (i = 0; i < map->num_stripes; i++) {
4828 device = map->stripes[i].dev;
4829 dev_offset = map->stripes[i].physical;
4830
4831 ret = btrfs_update_device(trans, device);
4832 if (ret)
4833 goto out;
4834 ret = btrfs_alloc_dev_extent(trans, device,
4835 chunk_root->root_key.objectid,
4836 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4837 chunk_offset, dev_offset,
4838 stripe_size);
4839 if (ret)
4840 goto out;
4841 }
4842
4843 stripe = &chunk->stripe;
4844 for (i = 0; i < map->num_stripes; i++) {
4845 device = map->stripes[i].dev;
4846 dev_offset = map->stripes[i].physical;
4847
4848 btrfs_set_stack_stripe_devid(stripe, device->devid);
4849 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4850 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4851 stripe++;
4852 }
4853
4854 btrfs_set_stack_chunk_length(chunk, chunk_size);
4855 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4856 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4857 btrfs_set_stack_chunk_type(chunk, map->type);
4858 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4859 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4860 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4861 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4862 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4863
4864 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4865 key.type = BTRFS_CHUNK_ITEM_KEY;
4866 key.offset = chunk_offset;
4867
4868 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4869 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4870 /*
4871 * TODO: Cleanup of inserted chunk root in case of
4872 * failure.
4873 */
4874 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4875 item_size);
4876 }
4877
4878 out:
4879 kfree(chunk);
4880 free_extent_map(em);
4881 return ret;
4882 }
4883
4884 /*
4885 * Chunk allocation falls into two parts. The first part does works
4886 * that make the new allocated chunk useable, but not do any operation
4887 * that modifies the chunk tree. The second part does the works that
4888 * require modifying the chunk tree. This division is important for the
4889 * bootstrap process of adding storage to a seed btrfs.
4890 */
4891 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4892 struct btrfs_root *extent_root, u64 type)
4893 {
4894 u64 chunk_offset;
4895
4896 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4897 chunk_offset = find_next_chunk(extent_root->fs_info);
4898 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4899 }
4900
4901 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4902 struct btrfs_root *root,
4903 struct btrfs_device *device)
4904 {
4905 u64 chunk_offset;
4906 u64 sys_chunk_offset;
4907 u64 alloc_profile;
4908 struct btrfs_fs_info *fs_info = root->fs_info;
4909 struct btrfs_root *extent_root = fs_info->extent_root;
4910 int ret;
4911
4912 chunk_offset = find_next_chunk(fs_info);
4913 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4914 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4915 alloc_profile);
4916 if (ret)
4917 return ret;
4918
4919 sys_chunk_offset = find_next_chunk(root->fs_info);
4920 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4921 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4922 alloc_profile);
4923 return ret;
4924 }
4925
4926 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4927 {
4928 int max_errors;
4929
4930 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4931 BTRFS_BLOCK_GROUP_RAID10 |
4932 BTRFS_BLOCK_GROUP_RAID5 |
4933 BTRFS_BLOCK_GROUP_DUP)) {
4934 max_errors = 1;
4935 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4936 max_errors = 2;
4937 } else {
4938 max_errors = 0;
4939 }
4940
4941 return max_errors;
4942 }
4943
4944 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4945 {
4946 struct extent_map *em;
4947 struct map_lookup *map;
4948 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4949 int readonly = 0;
4950 int miss_ndevs = 0;
4951 int i;
4952
4953 read_lock(&map_tree->map_tree.lock);
4954 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4955 read_unlock(&map_tree->map_tree.lock);
4956 if (!em)
4957 return 1;
4958
4959 map = (struct map_lookup *)em->bdev;
4960 for (i = 0; i < map->num_stripes; i++) {
4961 if (map->stripes[i].dev->missing) {
4962 miss_ndevs++;
4963 continue;
4964 }
4965
4966 if (!map->stripes[i].dev->writeable) {
4967 readonly = 1;
4968 goto end;
4969 }
4970 }
4971
4972 /*
4973 * If the number of missing devices is larger than max errors,
4974 * we can not write the data into that chunk successfully, so
4975 * set it readonly.
4976 */
4977 if (miss_ndevs > btrfs_chunk_max_errors(map))
4978 readonly = 1;
4979 end:
4980 free_extent_map(em);
4981 return readonly;
4982 }
4983
4984 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4985 {
4986 extent_map_tree_init(&tree->map_tree);
4987 }
4988
4989 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4990 {
4991 struct extent_map *em;
4992
4993 while (1) {
4994 write_lock(&tree->map_tree.lock);
4995 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4996 if (em)
4997 remove_extent_mapping(&tree->map_tree, em);
4998 write_unlock(&tree->map_tree.lock);
4999 if (!em)
5000 break;
5001 /* once for us */
5002 free_extent_map(em);
5003 /* once for the tree */
5004 free_extent_map(em);
5005 }
5006 }
5007
5008 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5009 {
5010 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5011 struct extent_map *em;
5012 struct map_lookup *map;
5013 struct extent_map_tree *em_tree = &map_tree->map_tree;
5014 int ret;
5015
5016 read_lock(&em_tree->lock);
5017 em = lookup_extent_mapping(em_tree, logical, len);
5018 read_unlock(&em_tree->lock);
5019
5020 /*
5021 * We could return errors for these cases, but that could get ugly and
5022 * we'd probably do the same thing which is just not do anything else
5023 * and exit, so return 1 so the callers don't try to use other copies.
5024 */
5025 if (!em) {
5026 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5027 logical+len);
5028 return 1;
5029 }
5030
5031 if (em->start > logical || em->start + em->len < logical) {
5032 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5033 "%Lu-%Lu", logical, logical+len, em->start,
5034 em->start + em->len);
5035 free_extent_map(em);
5036 return 1;
5037 }
5038
5039 map = (struct map_lookup *)em->bdev;
5040 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5041 ret = map->num_stripes;
5042 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5043 ret = map->sub_stripes;
5044 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5045 ret = 2;
5046 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5047 ret = 3;
5048 else
5049 ret = 1;
5050 free_extent_map(em);
5051
5052 btrfs_dev_replace_lock(&fs_info->dev_replace);
5053 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5054 ret++;
5055 btrfs_dev_replace_unlock(&fs_info->dev_replace);
5056
5057 return ret;
5058 }
5059
5060 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5061 struct btrfs_mapping_tree *map_tree,
5062 u64 logical)
5063 {
5064 struct extent_map *em;
5065 struct map_lookup *map;
5066 struct extent_map_tree *em_tree = &map_tree->map_tree;
5067 unsigned long len = root->sectorsize;
5068
5069 read_lock(&em_tree->lock);
5070 em = lookup_extent_mapping(em_tree, logical, len);
5071 read_unlock(&em_tree->lock);
5072 BUG_ON(!em);
5073
5074 BUG_ON(em->start > logical || em->start + em->len < logical);
5075 map = (struct map_lookup *)em->bdev;
5076 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5077 len = map->stripe_len * nr_data_stripes(map);
5078 free_extent_map(em);
5079 return len;
5080 }
5081
5082 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5083 u64 logical, u64 len, int mirror_num)
5084 {
5085 struct extent_map *em;
5086 struct map_lookup *map;
5087 struct extent_map_tree *em_tree = &map_tree->map_tree;
5088 int ret = 0;
5089
5090 read_lock(&em_tree->lock);
5091 em = lookup_extent_mapping(em_tree, logical, len);
5092 read_unlock(&em_tree->lock);
5093 BUG_ON(!em);
5094
5095 BUG_ON(em->start > logical || em->start + em->len < logical);
5096 map = (struct map_lookup *)em->bdev;
5097 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5098 ret = 1;
5099 free_extent_map(em);
5100 return ret;
5101 }
5102
5103 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5104 struct map_lookup *map, int first, int num,
5105 int optimal, int dev_replace_is_ongoing)
5106 {
5107 int i;
5108 int tolerance;
5109 struct btrfs_device *srcdev;
5110
5111 if (dev_replace_is_ongoing &&
5112 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5113 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5114 srcdev = fs_info->dev_replace.srcdev;
5115 else
5116 srcdev = NULL;
5117
5118 /*
5119 * try to avoid the drive that is the source drive for a
5120 * dev-replace procedure, only choose it if no other non-missing
5121 * mirror is available
5122 */
5123 for (tolerance = 0; tolerance < 2; tolerance++) {
5124 if (map->stripes[optimal].dev->bdev &&
5125 (tolerance || map->stripes[optimal].dev != srcdev))
5126 return optimal;
5127 for (i = first; i < first + num; i++) {
5128 if (map->stripes[i].dev->bdev &&
5129 (tolerance || map->stripes[i].dev != srcdev))
5130 return i;
5131 }
5132 }
5133
5134 /* we couldn't find one that doesn't fail. Just return something
5135 * and the io error handling code will clean up eventually
5136 */
5137 return optimal;
5138 }
5139
5140 static inline int parity_smaller(u64 a, u64 b)
5141 {
5142 return a > b;
5143 }
5144
5145 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5146 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5147 {
5148 struct btrfs_bio_stripe s;
5149 int i;
5150 u64 l;
5151 int again = 1;
5152
5153 while (again) {
5154 again = 0;
5155 for (i = 0; i < num_stripes - 1; i++) {
5156 if (parity_smaller(bbio->raid_map[i],
5157 bbio->raid_map[i+1])) {
5158 s = bbio->stripes[i];
5159 l = bbio->raid_map[i];
5160 bbio->stripes[i] = bbio->stripes[i+1];
5161 bbio->raid_map[i] = bbio->raid_map[i+1];
5162 bbio->stripes[i+1] = s;
5163 bbio->raid_map[i+1] = l;
5164
5165 again = 1;
5166 }
5167 }
5168 }
5169 }
5170
5171 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5172 {
5173 struct btrfs_bio *bbio = kzalloc(
5174 /* the size of the btrfs_bio */
5175 sizeof(struct btrfs_bio) +
5176 /* plus the variable array for the stripes */
5177 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5178 /* plus the variable array for the tgt dev */
5179 sizeof(int) * (real_stripes) +
5180 /*
5181 * plus the raid_map, which includes both the tgt dev
5182 * and the stripes
5183 */
5184 sizeof(u64) * (total_stripes),
5185 GFP_NOFS|__GFP_NOFAIL);
5186
5187 atomic_set(&bbio->error, 0);
5188 atomic_set(&bbio->refs, 1);
5189
5190 return bbio;
5191 }
5192
5193 void btrfs_get_bbio(struct btrfs_bio *bbio)
5194 {
5195 WARN_ON(!atomic_read(&bbio->refs));
5196 atomic_inc(&bbio->refs);
5197 }
5198
5199 void btrfs_put_bbio(struct btrfs_bio *bbio)
5200 {
5201 if (!bbio)
5202 return;
5203 if (atomic_dec_and_test(&bbio->refs))
5204 kfree(bbio);
5205 }
5206
5207 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5208 u64 logical, u64 *length,
5209 struct btrfs_bio **bbio_ret,
5210 int mirror_num, int need_raid_map)
5211 {
5212 struct extent_map *em;
5213 struct map_lookup *map;
5214 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5215 struct extent_map_tree *em_tree = &map_tree->map_tree;
5216 u64 offset;
5217 u64 stripe_offset;
5218 u64 stripe_end_offset;
5219 u64 stripe_nr;
5220 u64 stripe_nr_orig;
5221 u64 stripe_nr_end;
5222 u64 stripe_len;
5223 u32 stripe_index;
5224 int i;
5225 int ret = 0;
5226 int num_stripes;
5227 int max_errors = 0;
5228 int tgtdev_indexes = 0;
5229 struct btrfs_bio *bbio = NULL;
5230 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5231 int dev_replace_is_ongoing = 0;
5232 int num_alloc_stripes;
5233 int patch_the_first_stripe_for_dev_replace = 0;
5234 u64 physical_to_patch_in_first_stripe = 0;
5235 u64 raid56_full_stripe_start = (u64)-1;
5236
5237 read_lock(&em_tree->lock);
5238 em = lookup_extent_mapping(em_tree, logical, *length);
5239 read_unlock(&em_tree->lock);
5240
5241 if (!em) {
5242 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5243 logical, *length);
5244 return -EINVAL;
5245 }
5246
5247 if (em->start > logical || em->start + em->len < logical) {
5248 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5249 "found %Lu-%Lu", logical, em->start,
5250 em->start + em->len);
5251 free_extent_map(em);
5252 return -EINVAL;
5253 }
5254
5255 map = (struct map_lookup *)em->bdev;
5256 offset = logical - em->start;
5257
5258 stripe_len = map->stripe_len;
5259 stripe_nr = offset;
5260 /*
5261 * stripe_nr counts the total number of stripes we have to stride
5262 * to get to this block
5263 */
5264 stripe_nr = div64_u64(stripe_nr, stripe_len);
5265
5266 stripe_offset = stripe_nr * stripe_len;
5267 BUG_ON(offset < stripe_offset);
5268
5269 /* stripe_offset is the offset of this block in its stripe*/
5270 stripe_offset = offset - stripe_offset;
5271
5272 /* if we're here for raid56, we need to know the stripe aligned start */
5273 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5274 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5275 raid56_full_stripe_start = offset;
5276
5277 /* allow a write of a full stripe, but make sure we don't
5278 * allow straddling of stripes
5279 */
5280 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5281 full_stripe_len);
5282 raid56_full_stripe_start *= full_stripe_len;
5283 }
5284
5285 if (rw & REQ_DISCARD) {
5286 /* we don't discard raid56 yet */
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288 ret = -EOPNOTSUPP;
5289 goto out;
5290 }
5291 *length = min_t(u64, em->len - offset, *length);
5292 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5293 u64 max_len;
5294 /* For writes to RAID[56], allow a full stripeset across all disks.
5295 For other RAID types and for RAID[56] reads, just allow a single
5296 stripe (on a single disk). */
5297 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5298 (rw & REQ_WRITE)) {
5299 max_len = stripe_len * nr_data_stripes(map) -
5300 (offset - raid56_full_stripe_start);
5301 } else {
5302 /* we limit the length of each bio to what fits in a stripe */
5303 max_len = stripe_len - stripe_offset;
5304 }
5305 *length = min_t(u64, em->len - offset, max_len);
5306 } else {
5307 *length = em->len - offset;
5308 }
5309
5310 /* This is for when we're called from btrfs_merge_bio_hook() and all
5311 it cares about is the length */
5312 if (!bbio_ret)
5313 goto out;
5314
5315 btrfs_dev_replace_lock(dev_replace);
5316 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5317 if (!dev_replace_is_ongoing)
5318 btrfs_dev_replace_unlock(dev_replace);
5319
5320 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5321 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5322 dev_replace->tgtdev != NULL) {
5323 /*
5324 * in dev-replace case, for repair case (that's the only
5325 * case where the mirror is selected explicitly when
5326 * calling btrfs_map_block), blocks left of the left cursor
5327 * can also be read from the target drive.
5328 * For REQ_GET_READ_MIRRORS, the target drive is added as
5329 * the last one to the array of stripes. For READ, it also
5330 * needs to be supported using the same mirror number.
5331 * If the requested block is not left of the left cursor,
5332 * EIO is returned. This can happen because btrfs_num_copies()
5333 * returns one more in the dev-replace case.
5334 */
5335 u64 tmp_length = *length;
5336 struct btrfs_bio *tmp_bbio = NULL;
5337 int tmp_num_stripes;
5338 u64 srcdev_devid = dev_replace->srcdev->devid;
5339 int index_srcdev = 0;
5340 int found = 0;
5341 u64 physical_of_found = 0;
5342
5343 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5344 logical, &tmp_length, &tmp_bbio, 0, 0);
5345 if (ret) {
5346 WARN_ON(tmp_bbio != NULL);
5347 goto out;
5348 }
5349
5350 tmp_num_stripes = tmp_bbio->num_stripes;
5351 if (mirror_num > tmp_num_stripes) {
5352 /*
5353 * REQ_GET_READ_MIRRORS does not contain this
5354 * mirror, that means that the requested area
5355 * is not left of the left cursor
5356 */
5357 ret = -EIO;
5358 btrfs_put_bbio(tmp_bbio);
5359 goto out;
5360 }
5361
5362 /*
5363 * process the rest of the function using the mirror_num
5364 * of the source drive. Therefore look it up first.
5365 * At the end, patch the device pointer to the one of the
5366 * target drive.
5367 */
5368 for (i = 0; i < tmp_num_stripes; i++) {
5369 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5370 /*
5371 * In case of DUP, in order to keep it
5372 * simple, only add the mirror with the
5373 * lowest physical address
5374 */
5375 if (found &&
5376 physical_of_found <=
5377 tmp_bbio->stripes[i].physical)
5378 continue;
5379 index_srcdev = i;
5380 found = 1;
5381 physical_of_found =
5382 tmp_bbio->stripes[i].physical;
5383 }
5384 }
5385
5386 if (found) {
5387 mirror_num = index_srcdev + 1;
5388 patch_the_first_stripe_for_dev_replace = 1;
5389 physical_to_patch_in_first_stripe = physical_of_found;
5390 } else {
5391 WARN_ON(1);
5392 ret = -EIO;
5393 btrfs_put_bbio(tmp_bbio);
5394 goto out;
5395 }
5396
5397 btrfs_put_bbio(tmp_bbio);
5398 } else if (mirror_num > map->num_stripes) {
5399 mirror_num = 0;
5400 }
5401
5402 num_stripes = 1;
5403 stripe_index = 0;
5404 stripe_nr_orig = stripe_nr;
5405 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5406 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5407 stripe_end_offset = stripe_nr_end * map->stripe_len -
5408 (offset + *length);
5409
5410 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5411 if (rw & REQ_DISCARD)
5412 num_stripes = min_t(u64, map->num_stripes,
5413 stripe_nr_end - stripe_nr_orig);
5414 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5415 &stripe_index);
5416 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5417 mirror_num = 1;
5418 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5419 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5420 num_stripes = map->num_stripes;
5421 else if (mirror_num)
5422 stripe_index = mirror_num - 1;
5423 else {
5424 stripe_index = find_live_mirror(fs_info, map, 0,
5425 map->num_stripes,
5426 current->pid % map->num_stripes,
5427 dev_replace_is_ongoing);
5428 mirror_num = stripe_index + 1;
5429 }
5430
5431 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5432 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5433 num_stripes = map->num_stripes;
5434 } else if (mirror_num) {
5435 stripe_index = mirror_num - 1;
5436 } else {
5437 mirror_num = 1;
5438 }
5439
5440 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5441 u32 factor = map->num_stripes / map->sub_stripes;
5442
5443 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5444 stripe_index *= map->sub_stripes;
5445
5446 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5447 num_stripes = map->sub_stripes;
5448 else if (rw & REQ_DISCARD)
5449 num_stripes = min_t(u64, map->sub_stripes *
5450 (stripe_nr_end - stripe_nr_orig),
5451 map->num_stripes);
5452 else if (mirror_num)
5453 stripe_index += mirror_num - 1;
5454 else {
5455 int old_stripe_index = stripe_index;
5456 stripe_index = find_live_mirror(fs_info, map,
5457 stripe_index,
5458 map->sub_stripes, stripe_index +
5459 current->pid % map->sub_stripes,
5460 dev_replace_is_ongoing);
5461 mirror_num = stripe_index - old_stripe_index + 1;
5462 }
5463
5464 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5465 if (need_raid_map &&
5466 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5467 mirror_num > 1)) {
5468 /* push stripe_nr back to the start of the full stripe */
5469 stripe_nr = div_u64(raid56_full_stripe_start,
5470 stripe_len * nr_data_stripes(map));
5471
5472 /* RAID[56] write or recovery. Return all stripes */
5473 num_stripes = map->num_stripes;
5474 max_errors = nr_parity_stripes(map);
5475
5476 *length = map->stripe_len;
5477 stripe_index = 0;
5478 stripe_offset = 0;
5479 } else {
5480 /*
5481 * Mirror #0 or #1 means the original data block.
5482 * Mirror #2 is RAID5 parity block.
5483 * Mirror #3 is RAID6 Q block.
5484 */
5485 stripe_nr = div_u64_rem(stripe_nr,
5486 nr_data_stripes(map), &stripe_index);
5487 if (mirror_num > 1)
5488 stripe_index = nr_data_stripes(map) +
5489 mirror_num - 2;
5490
5491 /* We distribute the parity blocks across stripes */
5492 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5493 &stripe_index);
5494 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5495 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5496 mirror_num = 1;
5497 }
5498 } else {
5499 /*
5500 * after this, stripe_nr is the number of stripes on this
5501 * device we have to walk to find the data, and stripe_index is
5502 * the number of our device in the stripe array
5503 */
5504 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5505 &stripe_index);
5506 mirror_num = stripe_index + 1;
5507 }
5508 BUG_ON(stripe_index >= map->num_stripes);
5509
5510 num_alloc_stripes = num_stripes;
5511 if (dev_replace_is_ongoing) {
5512 if (rw & (REQ_WRITE | REQ_DISCARD))
5513 num_alloc_stripes <<= 1;
5514 if (rw & REQ_GET_READ_MIRRORS)
5515 num_alloc_stripes++;
5516 tgtdev_indexes = num_stripes;
5517 }
5518
5519 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5520 if (!bbio) {
5521 ret = -ENOMEM;
5522 goto out;
5523 }
5524 if (dev_replace_is_ongoing)
5525 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5526
5527 /* build raid_map */
5528 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5529 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5530 mirror_num > 1)) {
5531 u64 tmp;
5532 unsigned rot;
5533
5534 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5535 sizeof(struct btrfs_bio_stripe) *
5536 num_alloc_stripes +
5537 sizeof(int) * tgtdev_indexes);
5538
5539 /* Work out the disk rotation on this stripe-set */
5540 div_u64_rem(stripe_nr, num_stripes, &rot);
5541
5542 /* Fill in the logical address of each stripe */
5543 tmp = stripe_nr * nr_data_stripes(map);
5544 for (i = 0; i < nr_data_stripes(map); i++)
5545 bbio->raid_map[(i+rot) % num_stripes] =
5546 em->start + (tmp + i) * map->stripe_len;
5547
5548 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5549 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5550 bbio->raid_map[(i+rot+1) % num_stripes] =
5551 RAID6_Q_STRIPE;
5552 }
5553
5554 if (rw & REQ_DISCARD) {
5555 u32 factor = 0;
5556 u32 sub_stripes = 0;
5557 u64 stripes_per_dev = 0;
5558 u32 remaining_stripes = 0;
5559 u32 last_stripe = 0;
5560
5561 if (map->type &
5562 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5563 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5564 sub_stripes = 1;
5565 else
5566 sub_stripes = map->sub_stripes;
5567
5568 factor = map->num_stripes / sub_stripes;
5569 stripes_per_dev = div_u64_rem(stripe_nr_end -
5570 stripe_nr_orig,
5571 factor,
5572 &remaining_stripes);
5573 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5574 last_stripe *= sub_stripes;
5575 }
5576
5577 for (i = 0; i < num_stripes; i++) {
5578 bbio->stripes[i].physical =
5579 map->stripes[stripe_index].physical +
5580 stripe_offset + stripe_nr * map->stripe_len;
5581 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5582
5583 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5584 BTRFS_BLOCK_GROUP_RAID10)) {
5585 bbio->stripes[i].length = stripes_per_dev *
5586 map->stripe_len;
5587
5588 if (i / sub_stripes < remaining_stripes)
5589 bbio->stripes[i].length +=
5590 map->stripe_len;
5591
5592 /*
5593 * Special for the first stripe and
5594 * the last stripe:
5595 *
5596 * |-------|...|-------|
5597 * |----------|
5598 * off end_off
5599 */
5600 if (i < sub_stripes)
5601 bbio->stripes[i].length -=
5602 stripe_offset;
5603
5604 if (stripe_index >= last_stripe &&
5605 stripe_index <= (last_stripe +
5606 sub_stripes - 1))
5607 bbio->stripes[i].length -=
5608 stripe_end_offset;
5609
5610 if (i == sub_stripes - 1)
5611 stripe_offset = 0;
5612 } else
5613 bbio->stripes[i].length = *length;
5614
5615 stripe_index++;
5616 if (stripe_index == map->num_stripes) {
5617 /* This could only happen for RAID0/10 */
5618 stripe_index = 0;
5619 stripe_nr++;
5620 }
5621 }
5622 } else {
5623 for (i = 0; i < num_stripes; i++) {
5624 bbio->stripes[i].physical =
5625 map->stripes[stripe_index].physical +
5626 stripe_offset +
5627 stripe_nr * map->stripe_len;
5628 bbio->stripes[i].dev =
5629 map->stripes[stripe_index].dev;
5630 stripe_index++;
5631 }
5632 }
5633
5634 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5635 max_errors = btrfs_chunk_max_errors(map);
5636
5637 if (bbio->raid_map)
5638 sort_parity_stripes(bbio, num_stripes);
5639
5640 tgtdev_indexes = 0;
5641 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5642 dev_replace->tgtdev != NULL) {
5643 int index_where_to_add;
5644 u64 srcdev_devid = dev_replace->srcdev->devid;
5645
5646 /*
5647 * duplicate the write operations while the dev replace
5648 * procedure is running. Since the copying of the old disk
5649 * to the new disk takes place at run time while the
5650 * filesystem is mounted writable, the regular write
5651 * operations to the old disk have to be duplicated to go
5652 * to the new disk as well.
5653 * Note that device->missing is handled by the caller, and
5654 * that the write to the old disk is already set up in the
5655 * stripes array.
5656 */
5657 index_where_to_add = num_stripes;
5658 for (i = 0; i < num_stripes; i++) {
5659 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5660 /* write to new disk, too */
5661 struct btrfs_bio_stripe *new =
5662 bbio->stripes + index_where_to_add;
5663 struct btrfs_bio_stripe *old =
5664 bbio->stripes + i;
5665
5666 new->physical = old->physical;
5667 new->length = old->length;
5668 new->dev = dev_replace->tgtdev;
5669 bbio->tgtdev_map[i] = index_where_to_add;
5670 index_where_to_add++;
5671 max_errors++;
5672 tgtdev_indexes++;
5673 }
5674 }
5675 num_stripes = index_where_to_add;
5676 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5677 dev_replace->tgtdev != NULL) {
5678 u64 srcdev_devid = dev_replace->srcdev->devid;
5679 int index_srcdev = 0;
5680 int found = 0;
5681 u64 physical_of_found = 0;
5682
5683 /*
5684 * During the dev-replace procedure, the target drive can
5685 * also be used to read data in case it is needed to repair
5686 * a corrupt block elsewhere. This is possible if the
5687 * requested area is left of the left cursor. In this area,
5688 * the target drive is a full copy of the source drive.
5689 */
5690 for (i = 0; i < num_stripes; i++) {
5691 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5692 /*
5693 * In case of DUP, in order to keep it
5694 * simple, only add the mirror with the
5695 * lowest physical address
5696 */
5697 if (found &&
5698 physical_of_found <=
5699 bbio->stripes[i].physical)
5700 continue;
5701 index_srcdev = i;
5702 found = 1;
5703 physical_of_found = bbio->stripes[i].physical;
5704 }
5705 }
5706 if (found) {
5707 if (physical_of_found + map->stripe_len <=
5708 dev_replace->cursor_left) {
5709 struct btrfs_bio_stripe *tgtdev_stripe =
5710 bbio->stripes + num_stripes;
5711
5712 tgtdev_stripe->physical = physical_of_found;
5713 tgtdev_stripe->length =
5714 bbio->stripes[index_srcdev].length;
5715 tgtdev_stripe->dev = dev_replace->tgtdev;
5716 bbio->tgtdev_map[index_srcdev] = num_stripes;
5717
5718 tgtdev_indexes++;
5719 num_stripes++;
5720 }
5721 }
5722 }
5723
5724 *bbio_ret = bbio;
5725 bbio->map_type = map->type;
5726 bbio->num_stripes = num_stripes;
5727 bbio->max_errors = max_errors;
5728 bbio->mirror_num = mirror_num;
5729 bbio->num_tgtdevs = tgtdev_indexes;
5730
5731 /*
5732 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5733 * mirror_num == num_stripes + 1 && dev_replace target drive is
5734 * available as a mirror
5735 */
5736 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5737 WARN_ON(num_stripes > 1);
5738 bbio->stripes[0].dev = dev_replace->tgtdev;
5739 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5740 bbio->mirror_num = map->num_stripes + 1;
5741 }
5742 out:
5743 if (dev_replace_is_ongoing)
5744 btrfs_dev_replace_unlock(dev_replace);
5745 free_extent_map(em);
5746 return ret;
5747 }
5748
5749 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5750 u64 logical, u64 *length,
5751 struct btrfs_bio **bbio_ret, int mirror_num)
5752 {
5753 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5754 mirror_num, 0);
5755 }
5756
5757 /* For Scrub/replace */
5758 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5759 u64 logical, u64 *length,
5760 struct btrfs_bio **bbio_ret, int mirror_num,
5761 int need_raid_map)
5762 {
5763 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5764 mirror_num, need_raid_map);
5765 }
5766
5767 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5768 u64 chunk_start, u64 physical, u64 devid,
5769 u64 **logical, int *naddrs, int *stripe_len)
5770 {
5771 struct extent_map_tree *em_tree = &map_tree->map_tree;
5772 struct extent_map *em;
5773 struct map_lookup *map;
5774 u64 *buf;
5775 u64 bytenr;
5776 u64 length;
5777 u64 stripe_nr;
5778 u64 rmap_len;
5779 int i, j, nr = 0;
5780
5781 read_lock(&em_tree->lock);
5782 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5783 read_unlock(&em_tree->lock);
5784
5785 if (!em) {
5786 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5787 chunk_start);
5788 return -EIO;
5789 }
5790
5791 if (em->start != chunk_start) {
5792 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5793 em->start, chunk_start);
5794 free_extent_map(em);
5795 return -EIO;
5796 }
5797 map = (struct map_lookup *)em->bdev;
5798
5799 length = em->len;
5800 rmap_len = map->stripe_len;
5801
5802 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5803 length = div_u64(length, map->num_stripes / map->sub_stripes);
5804 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5805 length = div_u64(length, map->num_stripes);
5806 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5807 length = div_u64(length, nr_data_stripes(map));
5808 rmap_len = map->stripe_len * nr_data_stripes(map);
5809 }
5810
5811 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5812 BUG_ON(!buf); /* -ENOMEM */
5813
5814 for (i = 0; i < map->num_stripes; i++) {
5815 if (devid && map->stripes[i].dev->devid != devid)
5816 continue;
5817 if (map->stripes[i].physical > physical ||
5818 map->stripes[i].physical + length <= physical)
5819 continue;
5820
5821 stripe_nr = physical - map->stripes[i].physical;
5822 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5823
5824 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5825 stripe_nr = stripe_nr * map->num_stripes + i;
5826 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5827 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5828 stripe_nr = stripe_nr * map->num_stripes + i;
5829 } /* else if RAID[56], multiply by nr_data_stripes().
5830 * Alternatively, just use rmap_len below instead of
5831 * map->stripe_len */
5832
5833 bytenr = chunk_start + stripe_nr * rmap_len;
5834 WARN_ON(nr >= map->num_stripes);
5835 for (j = 0; j < nr; j++) {
5836 if (buf[j] == bytenr)
5837 break;
5838 }
5839 if (j == nr) {
5840 WARN_ON(nr >= map->num_stripes);
5841 buf[nr++] = bytenr;
5842 }
5843 }
5844
5845 *logical = buf;
5846 *naddrs = nr;
5847 *stripe_len = rmap_len;
5848
5849 free_extent_map(em);
5850 return 0;
5851 }
5852
5853 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5854 {
5855 bio->bi_private = bbio->private;
5856 bio->bi_end_io = bbio->end_io;
5857 bio_endio(bio);
5858
5859 btrfs_put_bbio(bbio);
5860 }
5861
5862 static void btrfs_end_bio(struct bio *bio)
5863 {
5864 struct btrfs_bio *bbio = bio->bi_private;
5865 int is_orig_bio = 0;
5866
5867 if (bio->bi_error) {
5868 atomic_inc(&bbio->error);
5869 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5870 unsigned int stripe_index =
5871 btrfs_io_bio(bio)->stripe_index;
5872 struct btrfs_device *dev;
5873
5874 BUG_ON(stripe_index >= bbio->num_stripes);
5875 dev = bbio->stripes[stripe_index].dev;
5876 if (dev->bdev) {
5877 if (bio->bi_rw & WRITE)
5878 btrfs_dev_stat_inc(dev,
5879 BTRFS_DEV_STAT_WRITE_ERRS);
5880 else
5881 btrfs_dev_stat_inc(dev,
5882 BTRFS_DEV_STAT_READ_ERRS);
5883 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5884 btrfs_dev_stat_inc(dev,
5885 BTRFS_DEV_STAT_FLUSH_ERRS);
5886 btrfs_dev_stat_print_on_error(dev);
5887 }
5888 }
5889 }
5890
5891 if (bio == bbio->orig_bio)
5892 is_orig_bio = 1;
5893
5894 btrfs_bio_counter_dec(bbio->fs_info);
5895
5896 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5897 if (!is_orig_bio) {
5898 bio_put(bio);
5899 bio = bbio->orig_bio;
5900 }
5901
5902 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5903 /* only send an error to the higher layers if it is
5904 * beyond the tolerance of the btrfs bio
5905 */
5906 if (atomic_read(&bbio->error) > bbio->max_errors) {
5907 bio->bi_error = -EIO;
5908 } else {
5909 /*
5910 * this bio is actually up to date, we didn't
5911 * go over the max number of errors
5912 */
5913 bio->bi_error = 0;
5914 }
5915
5916 btrfs_end_bbio(bbio, bio);
5917 } else if (!is_orig_bio) {
5918 bio_put(bio);
5919 }
5920 }
5921
5922 /*
5923 * see run_scheduled_bios for a description of why bios are collected for
5924 * async submit.
5925 *
5926 * This will add one bio to the pending list for a device and make sure
5927 * the work struct is scheduled.
5928 */
5929 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5930 struct btrfs_device *device,
5931 int rw, struct bio *bio)
5932 {
5933 int should_queue = 1;
5934 struct btrfs_pending_bios *pending_bios;
5935
5936 if (device->missing || !device->bdev) {
5937 bio_io_error(bio);
5938 return;
5939 }
5940
5941 /* don't bother with additional async steps for reads, right now */
5942 if (!(rw & REQ_WRITE)) {
5943 bio_get(bio);
5944 btrfsic_submit_bio(rw, bio);
5945 bio_put(bio);
5946 return;
5947 }
5948
5949 /*
5950 * nr_async_bios allows us to reliably return congestion to the
5951 * higher layers. Otherwise, the async bio makes it appear we have
5952 * made progress against dirty pages when we've really just put it
5953 * on a queue for later
5954 */
5955 atomic_inc(&root->fs_info->nr_async_bios);
5956 WARN_ON(bio->bi_next);
5957 bio->bi_next = NULL;
5958 bio->bi_rw |= rw;
5959
5960 spin_lock(&device->io_lock);
5961 if (bio->bi_rw & REQ_SYNC)
5962 pending_bios = &device->pending_sync_bios;
5963 else
5964 pending_bios = &device->pending_bios;
5965
5966 if (pending_bios->tail)
5967 pending_bios->tail->bi_next = bio;
5968
5969 pending_bios->tail = bio;
5970 if (!pending_bios->head)
5971 pending_bios->head = bio;
5972 if (device->running_pending)
5973 should_queue = 0;
5974
5975 spin_unlock(&device->io_lock);
5976
5977 if (should_queue)
5978 btrfs_queue_work(root->fs_info->submit_workers,
5979 &device->work);
5980 }
5981
5982 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5983 struct bio *bio, u64 physical, int dev_nr,
5984 int rw, int async)
5985 {
5986 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5987
5988 bio->bi_private = bbio;
5989 btrfs_io_bio(bio)->stripe_index = dev_nr;
5990 bio->bi_end_io = btrfs_end_bio;
5991 bio->bi_iter.bi_sector = physical >> 9;
5992 #ifdef DEBUG
5993 {
5994 struct rcu_string *name;
5995
5996 rcu_read_lock();
5997 name = rcu_dereference(dev->name);
5998 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5999 "(%s id %llu), size=%u\n", rw,
6000 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6001 name->str, dev->devid, bio->bi_iter.bi_size);
6002 rcu_read_unlock();
6003 }
6004 #endif
6005 bio->bi_bdev = dev->bdev;
6006
6007 btrfs_bio_counter_inc_noblocked(root->fs_info);
6008
6009 if (async)
6010 btrfs_schedule_bio(root, dev, rw, bio);
6011 else
6012 btrfsic_submit_bio(rw, bio);
6013 }
6014
6015 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6016 {
6017 atomic_inc(&bbio->error);
6018 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6019 /* Shoud be the original bio. */
6020 WARN_ON(bio != bbio->orig_bio);
6021
6022 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6023 bio->bi_iter.bi_sector = logical >> 9;
6024 bio->bi_error = -EIO;
6025 btrfs_end_bbio(bbio, bio);
6026 }
6027 }
6028
6029 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6030 int mirror_num, int async_submit)
6031 {
6032 struct btrfs_device *dev;
6033 struct bio *first_bio = bio;
6034 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6035 u64 length = 0;
6036 u64 map_length;
6037 int ret;
6038 int dev_nr;
6039 int total_devs;
6040 struct btrfs_bio *bbio = NULL;
6041
6042 length = bio->bi_iter.bi_size;
6043 map_length = length;
6044
6045 btrfs_bio_counter_inc_blocked(root->fs_info);
6046 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6047 mirror_num, 1);
6048 if (ret) {
6049 btrfs_bio_counter_dec(root->fs_info);
6050 return ret;
6051 }
6052
6053 total_devs = bbio->num_stripes;
6054 bbio->orig_bio = first_bio;
6055 bbio->private = first_bio->bi_private;
6056 bbio->end_io = first_bio->bi_end_io;
6057 bbio->fs_info = root->fs_info;
6058 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6059
6060 if (bbio->raid_map) {
6061 /* In this case, map_length has been set to the length of
6062 a single stripe; not the whole write */
6063 if (rw & WRITE) {
6064 ret = raid56_parity_write(root, bio, bbio, map_length);
6065 } else {
6066 ret = raid56_parity_recover(root, bio, bbio, map_length,
6067 mirror_num, 1);
6068 }
6069
6070 btrfs_bio_counter_dec(root->fs_info);
6071 return ret;
6072 }
6073
6074 if (map_length < length) {
6075 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6076 logical, length, map_length);
6077 BUG();
6078 }
6079
6080 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6081 dev = bbio->stripes[dev_nr].dev;
6082 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6083 bbio_error(bbio, first_bio, logical);
6084 continue;
6085 }
6086
6087 if (dev_nr < total_devs - 1) {
6088 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6089 BUG_ON(!bio); /* -ENOMEM */
6090 } else
6091 bio = first_bio;
6092
6093 submit_stripe_bio(root, bbio, bio,
6094 bbio->stripes[dev_nr].physical, dev_nr, rw,
6095 async_submit);
6096 }
6097 btrfs_bio_counter_dec(root->fs_info);
6098 return 0;
6099 }
6100
6101 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6102 u8 *uuid, u8 *fsid)
6103 {
6104 struct btrfs_device *device;
6105 struct btrfs_fs_devices *cur_devices;
6106
6107 cur_devices = fs_info->fs_devices;
6108 while (cur_devices) {
6109 if (!fsid ||
6110 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6111 device = __find_device(&cur_devices->devices,
6112 devid, uuid);
6113 if (device)
6114 return device;
6115 }
6116 cur_devices = cur_devices->seed;
6117 }
6118 return NULL;
6119 }
6120
6121 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6122 struct btrfs_fs_devices *fs_devices,
6123 u64 devid, u8 *dev_uuid)
6124 {
6125 struct btrfs_device *device;
6126
6127 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6128 if (IS_ERR(device))
6129 return NULL;
6130
6131 list_add(&device->dev_list, &fs_devices->devices);
6132 device->fs_devices = fs_devices;
6133 fs_devices->num_devices++;
6134
6135 device->missing = 1;
6136 fs_devices->missing_devices++;
6137
6138 return device;
6139 }
6140
6141 /**
6142 * btrfs_alloc_device - allocate struct btrfs_device
6143 * @fs_info: used only for generating a new devid, can be NULL if
6144 * devid is provided (i.e. @devid != NULL).
6145 * @devid: a pointer to devid for this device. If NULL a new devid
6146 * is generated.
6147 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6148 * is generated.
6149 *
6150 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6151 * on error. Returned struct is not linked onto any lists and can be
6152 * destroyed with kfree() right away.
6153 */
6154 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6155 const u64 *devid,
6156 const u8 *uuid)
6157 {
6158 struct btrfs_device *dev;
6159 u64 tmp;
6160
6161 if (WARN_ON(!devid && !fs_info))
6162 return ERR_PTR(-EINVAL);
6163
6164 dev = __alloc_device();
6165 if (IS_ERR(dev))
6166 return dev;
6167
6168 if (devid)
6169 tmp = *devid;
6170 else {
6171 int ret;
6172
6173 ret = find_next_devid(fs_info, &tmp);
6174 if (ret) {
6175 kfree(dev);
6176 return ERR_PTR(ret);
6177 }
6178 }
6179 dev->devid = tmp;
6180
6181 if (uuid)
6182 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6183 else
6184 generate_random_uuid(dev->uuid);
6185
6186 btrfs_init_work(&dev->work, btrfs_submit_helper,
6187 pending_bios_fn, NULL, NULL);
6188
6189 return dev;
6190 }
6191
6192 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6193 struct extent_buffer *leaf,
6194 struct btrfs_chunk *chunk)
6195 {
6196 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6197 struct map_lookup *map;
6198 struct extent_map *em;
6199 u64 logical;
6200 u64 length;
6201 u64 devid;
6202 u8 uuid[BTRFS_UUID_SIZE];
6203 int num_stripes;
6204 int ret;
6205 int i;
6206
6207 logical = key->offset;
6208 length = btrfs_chunk_length(leaf, chunk);
6209
6210 read_lock(&map_tree->map_tree.lock);
6211 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6212 read_unlock(&map_tree->map_tree.lock);
6213
6214 /* already mapped? */
6215 if (em && em->start <= logical && em->start + em->len > logical) {
6216 free_extent_map(em);
6217 return 0;
6218 } else if (em) {
6219 free_extent_map(em);
6220 }
6221
6222 em = alloc_extent_map();
6223 if (!em)
6224 return -ENOMEM;
6225 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6226 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6227 if (!map) {
6228 free_extent_map(em);
6229 return -ENOMEM;
6230 }
6231
6232 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6233 em->bdev = (struct block_device *)map;
6234 em->start = logical;
6235 em->len = length;
6236 em->orig_start = 0;
6237 em->block_start = 0;
6238 em->block_len = em->len;
6239
6240 map->num_stripes = num_stripes;
6241 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6242 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6243 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6244 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6245 map->type = btrfs_chunk_type(leaf, chunk);
6246 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6247 for (i = 0; i < num_stripes; i++) {
6248 map->stripes[i].physical =
6249 btrfs_stripe_offset_nr(leaf, chunk, i);
6250 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6251 read_extent_buffer(leaf, uuid, (unsigned long)
6252 btrfs_stripe_dev_uuid_nr(chunk, i),
6253 BTRFS_UUID_SIZE);
6254 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6255 uuid, NULL);
6256 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6257 free_extent_map(em);
6258 return -EIO;
6259 }
6260 if (!map->stripes[i].dev) {
6261 map->stripes[i].dev =
6262 add_missing_dev(root, root->fs_info->fs_devices,
6263 devid, uuid);
6264 if (!map->stripes[i].dev) {
6265 free_extent_map(em);
6266 return -EIO;
6267 }
6268 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6269 devid, uuid);
6270 }
6271 map->stripes[i].dev->in_fs_metadata = 1;
6272 }
6273
6274 write_lock(&map_tree->map_tree.lock);
6275 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6276 write_unlock(&map_tree->map_tree.lock);
6277 BUG_ON(ret); /* Tree corruption */
6278 free_extent_map(em);
6279
6280 return 0;
6281 }
6282
6283 static void fill_device_from_item(struct extent_buffer *leaf,
6284 struct btrfs_dev_item *dev_item,
6285 struct btrfs_device *device)
6286 {
6287 unsigned long ptr;
6288
6289 device->devid = btrfs_device_id(leaf, dev_item);
6290 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6291 device->total_bytes = device->disk_total_bytes;
6292 device->commit_total_bytes = device->disk_total_bytes;
6293 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6294 device->commit_bytes_used = device->bytes_used;
6295 device->type = btrfs_device_type(leaf, dev_item);
6296 device->io_align = btrfs_device_io_align(leaf, dev_item);
6297 device->io_width = btrfs_device_io_width(leaf, dev_item);
6298 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6299 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6300 device->is_tgtdev_for_dev_replace = 0;
6301
6302 ptr = btrfs_device_uuid(dev_item);
6303 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6304 }
6305
6306 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6307 u8 *fsid)
6308 {
6309 struct btrfs_fs_devices *fs_devices;
6310 int ret;
6311
6312 BUG_ON(!mutex_is_locked(&uuid_mutex));
6313
6314 fs_devices = root->fs_info->fs_devices->seed;
6315 while (fs_devices) {
6316 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6317 return fs_devices;
6318
6319 fs_devices = fs_devices->seed;
6320 }
6321
6322 fs_devices = find_fsid(fsid);
6323 if (!fs_devices) {
6324 if (!btrfs_test_opt(root, DEGRADED))
6325 return ERR_PTR(-ENOENT);
6326
6327 fs_devices = alloc_fs_devices(fsid);
6328 if (IS_ERR(fs_devices))
6329 return fs_devices;
6330
6331 fs_devices->seeding = 1;
6332 fs_devices->opened = 1;
6333 return fs_devices;
6334 }
6335
6336 fs_devices = clone_fs_devices(fs_devices);
6337 if (IS_ERR(fs_devices))
6338 return fs_devices;
6339
6340 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6341 root->fs_info->bdev_holder);
6342 if (ret) {
6343 free_fs_devices(fs_devices);
6344 fs_devices = ERR_PTR(ret);
6345 goto out;
6346 }
6347
6348 if (!fs_devices->seeding) {
6349 __btrfs_close_devices(fs_devices);
6350 free_fs_devices(fs_devices);
6351 fs_devices = ERR_PTR(-EINVAL);
6352 goto out;
6353 }
6354
6355 fs_devices->seed = root->fs_info->fs_devices->seed;
6356 root->fs_info->fs_devices->seed = fs_devices;
6357 out:
6358 return fs_devices;
6359 }
6360
6361 static int read_one_dev(struct btrfs_root *root,
6362 struct extent_buffer *leaf,
6363 struct btrfs_dev_item *dev_item)
6364 {
6365 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6366 struct btrfs_device *device;
6367 u64 devid;
6368 int ret;
6369 u8 fs_uuid[BTRFS_UUID_SIZE];
6370 u8 dev_uuid[BTRFS_UUID_SIZE];
6371
6372 devid = btrfs_device_id(leaf, dev_item);
6373 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6374 BTRFS_UUID_SIZE);
6375 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6376 BTRFS_UUID_SIZE);
6377
6378 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6379 fs_devices = open_seed_devices(root, fs_uuid);
6380 if (IS_ERR(fs_devices))
6381 return PTR_ERR(fs_devices);
6382 }
6383
6384 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6385 if (!device) {
6386 if (!btrfs_test_opt(root, DEGRADED))
6387 return -EIO;
6388
6389 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6390 if (!device)
6391 return -ENOMEM;
6392 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6393 devid, dev_uuid);
6394 } else {
6395 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6396 return -EIO;
6397
6398 if(!device->bdev && !device->missing) {
6399 /*
6400 * this happens when a device that was properly setup
6401 * in the device info lists suddenly goes bad.
6402 * device->bdev is NULL, and so we have to set
6403 * device->missing to one here
6404 */
6405 device->fs_devices->missing_devices++;
6406 device->missing = 1;
6407 }
6408
6409 /* Move the device to its own fs_devices */
6410 if (device->fs_devices != fs_devices) {
6411 ASSERT(device->missing);
6412
6413 list_move(&device->dev_list, &fs_devices->devices);
6414 device->fs_devices->num_devices--;
6415 fs_devices->num_devices++;
6416
6417 device->fs_devices->missing_devices--;
6418 fs_devices->missing_devices++;
6419
6420 device->fs_devices = fs_devices;
6421 }
6422 }
6423
6424 if (device->fs_devices != root->fs_info->fs_devices) {
6425 BUG_ON(device->writeable);
6426 if (device->generation !=
6427 btrfs_device_generation(leaf, dev_item))
6428 return -EINVAL;
6429 }
6430
6431 fill_device_from_item(leaf, dev_item, device);
6432 device->in_fs_metadata = 1;
6433 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6434 device->fs_devices->total_rw_bytes += device->total_bytes;
6435 spin_lock(&root->fs_info->free_chunk_lock);
6436 root->fs_info->free_chunk_space += device->total_bytes -
6437 device->bytes_used;
6438 spin_unlock(&root->fs_info->free_chunk_lock);
6439 }
6440 ret = 0;
6441 return ret;
6442 }
6443
6444 int btrfs_read_sys_array(struct btrfs_root *root)
6445 {
6446 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6447 struct extent_buffer *sb;
6448 struct btrfs_disk_key *disk_key;
6449 struct btrfs_chunk *chunk;
6450 u8 *array_ptr;
6451 unsigned long sb_array_offset;
6452 int ret = 0;
6453 u32 num_stripes;
6454 u32 array_size;
6455 u32 len = 0;
6456 u32 cur_offset;
6457 struct btrfs_key key;
6458
6459 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6460 /*
6461 * This will create extent buffer of nodesize, superblock size is
6462 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6463 * overallocate but we can keep it as-is, only the first page is used.
6464 */
6465 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6466 if (!sb)
6467 return -ENOMEM;
6468 btrfs_set_buffer_uptodate(sb);
6469 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6470 /*
6471 * The sb extent buffer is artifical and just used to read the system array.
6472 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6473 * pages up-to-date when the page is larger: extent does not cover the
6474 * whole page and consequently check_page_uptodate does not find all
6475 * the page's extents up-to-date (the hole beyond sb),
6476 * write_extent_buffer then triggers a WARN_ON.
6477 *
6478 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6479 * but sb spans only this function. Add an explicit SetPageUptodate call
6480 * to silence the warning eg. on PowerPC 64.
6481 */
6482 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6483 SetPageUptodate(sb->pages[0]);
6484
6485 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6486 array_size = btrfs_super_sys_array_size(super_copy);
6487
6488 array_ptr = super_copy->sys_chunk_array;
6489 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6490 cur_offset = 0;
6491
6492 while (cur_offset < array_size) {
6493 disk_key = (struct btrfs_disk_key *)array_ptr;
6494 len = sizeof(*disk_key);
6495 if (cur_offset + len > array_size)
6496 goto out_short_read;
6497
6498 btrfs_disk_key_to_cpu(&key, disk_key);
6499
6500 array_ptr += len;
6501 sb_array_offset += len;
6502 cur_offset += len;
6503
6504 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6505 chunk = (struct btrfs_chunk *)sb_array_offset;
6506 /*
6507 * At least one btrfs_chunk with one stripe must be
6508 * present, exact stripe count check comes afterwards
6509 */
6510 len = btrfs_chunk_item_size(1);
6511 if (cur_offset + len > array_size)
6512 goto out_short_read;
6513
6514 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6515 len = btrfs_chunk_item_size(num_stripes);
6516 if (cur_offset + len > array_size)
6517 goto out_short_read;
6518
6519 ret = read_one_chunk(root, &key, sb, chunk);
6520 if (ret)
6521 break;
6522 } else {
6523 ret = -EIO;
6524 break;
6525 }
6526 array_ptr += len;
6527 sb_array_offset += len;
6528 cur_offset += len;
6529 }
6530 free_extent_buffer(sb);
6531 return ret;
6532
6533 out_short_read:
6534 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6535 len, cur_offset);
6536 free_extent_buffer(sb);
6537 return -EIO;
6538 }
6539
6540 int btrfs_read_chunk_tree(struct btrfs_root *root)
6541 {
6542 struct btrfs_path *path;
6543 struct extent_buffer *leaf;
6544 struct btrfs_key key;
6545 struct btrfs_key found_key;
6546 int ret;
6547 int slot;
6548
6549 root = root->fs_info->chunk_root;
6550
6551 path = btrfs_alloc_path();
6552 if (!path)
6553 return -ENOMEM;
6554
6555 mutex_lock(&uuid_mutex);
6556 lock_chunks(root);
6557
6558 /*
6559 * Read all device items, and then all the chunk items. All
6560 * device items are found before any chunk item (their object id
6561 * is smaller than the lowest possible object id for a chunk
6562 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6563 */
6564 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6565 key.offset = 0;
6566 key.type = 0;
6567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6568 if (ret < 0)
6569 goto error;
6570 while (1) {
6571 leaf = path->nodes[0];
6572 slot = path->slots[0];
6573 if (slot >= btrfs_header_nritems(leaf)) {
6574 ret = btrfs_next_leaf(root, path);
6575 if (ret == 0)
6576 continue;
6577 if (ret < 0)
6578 goto error;
6579 break;
6580 }
6581 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6582 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6583 struct btrfs_dev_item *dev_item;
6584 dev_item = btrfs_item_ptr(leaf, slot,
6585 struct btrfs_dev_item);
6586 ret = read_one_dev(root, leaf, dev_item);
6587 if (ret)
6588 goto error;
6589 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6590 struct btrfs_chunk *chunk;
6591 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6592 ret = read_one_chunk(root, &found_key, leaf, chunk);
6593 if (ret)
6594 goto error;
6595 }
6596 path->slots[0]++;
6597 }
6598 ret = 0;
6599 error:
6600 unlock_chunks(root);
6601 mutex_unlock(&uuid_mutex);
6602
6603 btrfs_free_path(path);
6604 return ret;
6605 }
6606
6607 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6608 {
6609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6610 struct btrfs_device *device;
6611
6612 while (fs_devices) {
6613 mutex_lock(&fs_devices->device_list_mutex);
6614 list_for_each_entry(device, &fs_devices->devices, dev_list)
6615 device->dev_root = fs_info->dev_root;
6616 mutex_unlock(&fs_devices->device_list_mutex);
6617
6618 fs_devices = fs_devices->seed;
6619 }
6620 }
6621
6622 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6623 {
6624 int i;
6625
6626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6627 btrfs_dev_stat_reset(dev, i);
6628 }
6629
6630 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6631 {
6632 struct btrfs_key key;
6633 struct btrfs_key found_key;
6634 struct btrfs_root *dev_root = fs_info->dev_root;
6635 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6636 struct extent_buffer *eb;
6637 int slot;
6638 int ret = 0;
6639 struct btrfs_device *device;
6640 struct btrfs_path *path = NULL;
6641 int i;
6642
6643 path = btrfs_alloc_path();
6644 if (!path) {
6645 ret = -ENOMEM;
6646 goto out;
6647 }
6648
6649 mutex_lock(&fs_devices->device_list_mutex);
6650 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6651 int item_size;
6652 struct btrfs_dev_stats_item *ptr;
6653
6654 key.objectid = 0;
6655 key.type = BTRFS_DEV_STATS_KEY;
6656 key.offset = device->devid;
6657 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6658 if (ret) {
6659 __btrfs_reset_dev_stats(device);
6660 device->dev_stats_valid = 1;
6661 btrfs_release_path(path);
6662 continue;
6663 }
6664 slot = path->slots[0];
6665 eb = path->nodes[0];
6666 btrfs_item_key_to_cpu(eb, &found_key, slot);
6667 item_size = btrfs_item_size_nr(eb, slot);
6668
6669 ptr = btrfs_item_ptr(eb, slot,
6670 struct btrfs_dev_stats_item);
6671
6672 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6673 if (item_size >= (1 + i) * sizeof(__le64))
6674 btrfs_dev_stat_set(device, i,
6675 btrfs_dev_stats_value(eb, ptr, i));
6676 else
6677 btrfs_dev_stat_reset(device, i);
6678 }
6679
6680 device->dev_stats_valid = 1;
6681 btrfs_dev_stat_print_on_load(device);
6682 btrfs_release_path(path);
6683 }
6684 mutex_unlock(&fs_devices->device_list_mutex);
6685
6686 out:
6687 btrfs_free_path(path);
6688 return ret < 0 ? ret : 0;
6689 }
6690
6691 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6692 struct btrfs_root *dev_root,
6693 struct btrfs_device *device)
6694 {
6695 struct btrfs_path *path;
6696 struct btrfs_key key;
6697 struct extent_buffer *eb;
6698 struct btrfs_dev_stats_item *ptr;
6699 int ret;
6700 int i;
6701
6702 key.objectid = 0;
6703 key.type = BTRFS_DEV_STATS_KEY;
6704 key.offset = device->devid;
6705
6706 path = btrfs_alloc_path();
6707 BUG_ON(!path);
6708 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6709 if (ret < 0) {
6710 btrfs_warn_in_rcu(dev_root->fs_info,
6711 "error %d while searching for dev_stats item for device %s",
6712 ret, rcu_str_deref(device->name));
6713 goto out;
6714 }
6715
6716 if (ret == 0 &&
6717 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6718 /* need to delete old one and insert a new one */
6719 ret = btrfs_del_item(trans, dev_root, path);
6720 if (ret != 0) {
6721 btrfs_warn_in_rcu(dev_root->fs_info,
6722 "delete too small dev_stats item for device %s failed %d",
6723 rcu_str_deref(device->name), ret);
6724 goto out;
6725 }
6726 ret = 1;
6727 }
6728
6729 if (ret == 1) {
6730 /* need to insert a new item */
6731 btrfs_release_path(path);
6732 ret = btrfs_insert_empty_item(trans, dev_root, path,
6733 &key, sizeof(*ptr));
6734 if (ret < 0) {
6735 btrfs_warn_in_rcu(dev_root->fs_info,
6736 "insert dev_stats item for device %s failed %d",
6737 rcu_str_deref(device->name), ret);
6738 goto out;
6739 }
6740 }
6741
6742 eb = path->nodes[0];
6743 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6744 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6745 btrfs_set_dev_stats_value(eb, ptr, i,
6746 btrfs_dev_stat_read(device, i));
6747 btrfs_mark_buffer_dirty(eb);
6748
6749 out:
6750 btrfs_free_path(path);
6751 return ret;
6752 }
6753
6754 /*
6755 * called from commit_transaction. Writes all changed device stats to disk.
6756 */
6757 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6758 struct btrfs_fs_info *fs_info)
6759 {
6760 struct btrfs_root *dev_root = fs_info->dev_root;
6761 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6762 struct btrfs_device *device;
6763 int stats_cnt;
6764 int ret = 0;
6765
6766 mutex_lock(&fs_devices->device_list_mutex);
6767 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6768 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6769 continue;
6770
6771 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6772 ret = update_dev_stat_item(trans, dev_root, device);
6773 if (!ret)
6774 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6775 }
6776 mutex_unlock(&fs_devices->device_list_mutex);
6777
6778 return ret;
6779 }
6780
6781 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6782 {
6783 btrfs_dev_stat_inc(dev, index);
6784 btrfs_dev_stat_print_on_error(dev);
6785 }
6786
6787 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6788 {
6789 if (!dev->dev_stats_valid)
6790 return;
6791 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6792 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6793 rcu_str_deref(dev->name),
6794 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6795 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6796 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6797 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6798 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6799 }
6800
6801 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6802 {
6803 int i;
6804
6805 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6806 if (btrfs_dev_stat_read(dev, i) != 0)
6807 break;
6808 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6809 return; /* all values == 0, suppress message */
6810
6811 btrfs_info_in_rcu(dev->dev_root->fs_info,
6812 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6813 rcu_str_deref(dev->name),
6814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6819 }
6820
6821 int btrfs_get_dev_stats(struct btrfs_root *root,
6822 struct btrfs_ioctl_get_dev_stats *stats)
6823 {
6824 struct btrfs_device *dev;
6825 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6826 int i;
6827
6828 mutex_lock(&fs_devices->device_list_mutex);
6829 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6830 mutex_unlock(&fs_devices->device_list_mutex);
6831
6832 if (!dev) {
6833 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6834 return -ENODEV;
6835 } else if (!dev->dev_stats_valid) {
6836 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6837 return -ENODEV;
6838 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6839 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6840 if (stats->nr_items > i)
6841 stats->values[i] =
6842 btrfs_dev_stat_read_and_reset(dev, i);
6843 else
6844 btrfs_dev_stat_reset(dev, i);
6845 }
6846 } else {
6847 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6848 if (stats->nr_items > i)
6849 stats->values[i] = btrfs_dev_stat_read(dev, i);
6850 }
6851 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6852 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6853 return 0;
6854 }
6855
6856 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6857 {
6858 struct buffer_head *bh;
6859 struct btrfs_super_block *disk_super;
6860 int copy_num;
6861
6862 if (!bdev)
6863 return;
6864
6865 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6866 copy_num++) {
6867
6868 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6869 continue;
6870
6871 disk_super = (struct btrfs_super_block *)bh->b_data;
6872
6873 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6874 set_buffer_dirty(bh);
6875 sync_dirty_buffer(bh);
6876 brelse(bh);
6877 }
6878
6879 /* Notify udev that device has changed */
6880 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6881
6882 /* Update ctime/mtime for device path for libblkid */
6883 update_dev_time(device_path);
6884 }
6885
6886 /*
6887 * Update the size of all devices, which is used for writing out the
6888 * super blocks.
6889 */
6890 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6891 {
6892 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6893 struct btrfs_device *curr, *next;
6894
6895 if (list_empty(&fs_devices->resized_devices))
6896 return;
6897
6898 mutex_lock(&fs_devices->device_list_mutex);
6899 lock_chunks(fs_info->dev_root);
6900 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6901 resized_list) {
6902 list_del_init(&curr->resized_list);
6903 curr->commit_total_bytes = curr->disk_total_bytes;
6904 }
6905 unlock_chunks(fs_info->dev_root);
6906 mutex_unlock(&fs_devices->device_list_mutex);
6907 }
6908
6909 /* Must be invoked during the transaction commit */
6910 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6911 struct btrfs_transaction *transaction)
6912 {
6913 struct extent_map *em;
6914 struct map_lookup *map;
6915 struct btrfs_device *dev;
6916 int i;
6917
6918 if (list_empty(&transaction->pending_chunks))
6919 return;
6920
6921 /* In order to kick the device replace finish process */
6922 lock_chunks(root);
6923 list_for_each_entry(em, &transaction->pending_chunks, list) {
6924 map = (struct map_lookup *)em->bdev;
6925
6926 for (i = 0; i < map->num_stripes; i++) {
6927 dev = map->stripes[i].dev;
6928 dev->commit_bytes_used = dev->bytes_used;
6929 }
6930 }
6931 unlock_chunks(root);
6932 }
6933
6934 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6935 {
6936 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6937 while (fs_devices) {
6938 fs_devices->fs_info = fs_info;
6939 fs_devices = fs_devices->seed;
6940 }
6941 }
6942
6943 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6944 {
6945 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6946 while (fs_devices) {
6947 fs_devices->fs_info = NULL;
6948 fs_devices = fs_devices->seed;
6949 }
6950 }
6951
6952 void btrfs_close_one_device(struct btrfs_device *device)
6953 {
6954 struct btrfs_fs_devices *fs_devices = device->fs_devices;
6955 struct btrfs_device *new_device;
6956 struct rcu_string *name;
6957
6958 if (device->bdev)
6959 fs_devices->open_devices--;
6960
6961 if (device->writeable &&
6962 device->devid != BTRFS_DEV_REPLACE_DEVID) {
6963 list_del_init(&device->dev_alloc_list);
6964 fs_devices->rw_devices--;
6965 }
6966
6967 if (device->missing)
6968 fs_devices->missing_devices--;
6969
6970 new_device = btrfs_alloc_device(NULL, &device->devid,
6971 device->uuid);
6972 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
6973
6974 /* Safe because we are under uuid_mutex */
6975 if (device->name) {
6976 name = rcu_string_strdup(device->name->str, GFP_NOFS);
6977 BUG_ON(!name); /* -ENOMEM */
6978 rcu_assign_pointer(new_device->name, name);
6979 }
6980
6981 list_replace_rcu(&device->dev_list, &new_device->dev_list);
6982 new_device->fs_devices = device->fs_devices;
6983
6984 call_rcu(&device->rcu, free_device);
6985 }