]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/volumes.c
Merge tag 'block-5.11-2021-01-29' of git://git.kernel.dk/linux-block
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
41 .devs_min = 4,
42 .tolerated_failures = 1,
43 .devs_increment = 2,
44 .ncopies = 2,
45 .nparity = 0,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
55 .tolerated_failures = 1,
56 .devs_increment = 2,
57 .ncopies = 2,
58 .nparity = 0,
59 .raid_name = "raid1",
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 },
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
66 .devs_max = 3,
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
71 .nparity = 0,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
79 .devs_max = 4,
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
84 .nparity = 0,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
94 .tolerated_failures = 0,
95 .devs_increment = 1,
96 .ncopies = 2,
97 .nparity = 0,
98 .raid_name = "dup",
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
100 .mindev_error = 0,
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
106 .devs_min = 2,
107 .tolerated_failures = 0,
108 .devs_increment = 1,
109 .ncopies = 1,
110 .nparity = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
113 .mindev_error = 0,
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
120 .tolerated_failures = 0,
121 .devs_increment = 1,
122 .ncopies = 1,
123 .nparity = 0,
124 .raid_name = "single",
125 .bg_flag = 0,
126 .mindev_error = 0,
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
133 .tolerated_failures = 1,
134 .devs_increment = 1,
135 .ncopies = 1,
136 .nparity = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
146 .tolerated_failures = 2,
147 .devs_increment = 1,
148 .ncopies = 1,
149 .nparity = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 },
154 };
155
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158 const int index = btrfs_bg_flags_to_raid_index(flags);
159
160 if (index >= BTRFS_NR_RAID_TYPES)
161 return NULL;
162
163 return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
169 */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172 int i;
173 int ret;
174 char *bp = buf;
175 u64 flags = bg_flags;
176 u32 size_bp = size_buf;
177
178 if (!flags) {
179 strcpy(bp, "NONE");
180 return;
181 }
182
183 #define DESCRIBE_FLAG(flag, desc) \
184 do { \
185 if (flags & (flag)) { \
186 ret = snprintf(bp, size_bp, "%s|", (desc)); \
187 if (ret < 0 || ret >= size_bp) \
188 goto out_overflow; \
189 size_bp -= ret; \
190 bp += ret; \
191 flags &= ~(flag); \
192 } \
193 } while (0)
194
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205 if (flags) {
206 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207 size_bp -= ret;
208 }
209
210 if (size_bp < size_buf)
211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213 /*
214 * The text is trimmed, it's up to the caller to provide sufficiently
215 * large buffer
216 */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 enum btrfs_map_op op,
226 u64 logical, u64 *length,
227 struct btrfs_bio **bbio_ret,
228 int mirror_num, int need_raid_map);
229
230 /*
231 * Device locking
232 * ==============
233 *
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
236 *
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
242 *
243 * the mutex can be very coarse and can cover long-running operations
244 *
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
247 *
248 * global::fs_devs - add, remove, updates to the global list
249 *
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
252 * scan ioctl
253 *
254 * btrfs_device::name - renames (write side), read is RCU
255 *
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
259 *
260 * simple list traversal with read-only actions can be done with RCU protection
261 *
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
264 *
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
267 *
268 * balance_mutex
269 * -------------
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
272 *
273 * chunk_mutex
274 * -----------
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
279 *
280 * cleaner_mutex
281 * -------------
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
284 *
285 *
286 * Lock nesting
287 * ============
288 *
289 * uuid_mutex
290 * device_list_mutex
291 * chunk_mutex
292 * balance_mutex
293 *
294 *
295 * Exclusive operations
296 * ====================
297 *
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
300 *
301 * - Balance (*)
302 * - Device add
303 * - Device remove
304 * - Device replace (*)
305 * - Resize
306 *
307 * The device operations (as above) can be in one of the following states:
308 *
309 * - Running state
310 * - Paused state
311 * - Completed state
312 *
313 * Only device operations marked with (*) can go into the Paused state for the
314 * following reasons:
315 *
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
321 *
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
327 * completed.
328 */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334 return &fs_uuids;
335 }
336
337 /*
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
341 *
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
345 */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 const u8 *metadata_fsid)
348 {
349 struct btrfs_fs_devices *fs_devs;
350
351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352 if (!fs_devs)
353 return ERR_PTR(-ENOMEM);
354
355 mutex_init(&fs_devs->device_list_mutex);
356
357 INIT_LIST_HEAD(&fs_devs->devices);
358 INIT_LIST_HEAD(&fs_devs->alloc_list);
359 INIT_LIST_HEAD(&fs_devs->fs_list);
360 INIT_LIST_HEAD(&fs_devs->seed_list);
361 if (fsid)
362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364 if (metadata_fsid)
365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366 else if (fsid)
367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369 return fs_devs;
370 }
371
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374 WARN_ON(!list_empty(&device->post_commit_list));
375 rcu_string_free(device->name);
376 extent_io_tree_release(&device->alloc_state);
377 bio_put(device->flush_bio);
378 btrfs_destroy_dev_zone_info(device);
379 kfree(device);
380 }
381
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384 struct btrfs_device *device;
385 WARN_ON(fs_devices->opened);
386 while (!list_empty(&fs_devices->devices)) {
387 device = list_entry(fs_devices->devices.next,
388 struct btrfs_device, dev_list);
389 list_del(&device->dev_list);
390 btrfs_free_device(device);
391 }
392 kfree(fs_devices);
393 }
394
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397 struct btrfs_fs_devices *fs_devices;
398
399 while (!list_empty(&fs_uuids)) {
400 fs_devices = list_entry(fs_uuids.next,
401 struct btrfs_fs_devices, fs_list);
402 list_del(&fs_devices->fs_list);
403 free_fs_devices(fs_devices);
404 }
405 }
406
407 /*
408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409 * Returned struct is not linked onto any lists and must be destroyed using
410 * btrfs_free_device.
411 */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414 struct btrfs_device *dev;
415
416 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417 if (!dev)
418 return ERR_PTR(-ENOMEM);
419
420 /*
421 * Preallocate a bio that's always going to be used for flushing device
422 * barriers and matches the device lifespan
423 */
424 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
425 if (!dev->flush_bio) {
426 kfree(dev);
427 return ERR_PTR(-ENOMEM);
428 }
429
430 INIT_LIST_HEAD(&dev->dev_list);
431 INIT_LIST_HEAD(&dev->dev_alloc_list);
432 INIT_LIST_HEAD(&dev->post_commit_list);
433
434 atomic_set(&dev->reada_in_flight, 0);
435 atomic_set(&dev->dev_stats_ccnt, 0);
436 btrfs_device_data_ordered_init(dev, fs_info);
437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439 extent_io_tree_init(fs_info, &dev->alloc_state,
440 IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442 return dev;
443 }
444
445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447 {
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
463 }
464 return NULL;
465 }
466
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468 struct btrfs_super_block *disk_super)
469 {
470
471 struct btrfs_fs_devices *fs_devices;
472
473 /*
474 * Handle scanned device having completed its fsid change but
475 * belonging to a fs_devices that was created by first scanning
476 * a device which didn't have its fsid/metadata_uuid changed
477 * at all and the CHANGING_FSID_V2 flag set.
478 */
479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480 if (fs_devices->fsid_change &&
481 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482 BTRFS_FSID_SIZE) == 0 &&
483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484 BTRFS_FSID_SIZE) == 0) {
485 return fs_devices;
486 }
487 }
488 /*
489 * Handle scanned device having completed its fsid change but
490 * belonging to a fs_devices that was created by a device that
491 * has an outdated pair of fsid/metadata_uuid and
492 * CHANGING_FSID_V2 flag set.
493 */
494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495 if (fs_devices->fsid_change &&
496 memcmp(fs_devices->metadata_uuid,
497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499 BTRFS_FSID_SIZE) == 0) {
500 return fs_devices;
501 }
502 }
503
504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506
507
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510 int flush, struct block_device **bdev,
511 struct btrfs_super_block **disk_super)
512 {
513 int ret;
514
515 *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517 if (IS_ERR(*bdev)) {
518 ret = PTR_ERR(*bdev);
519 goto error;
520 }
521
522 if (flush)
523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525 if (ret) {
526 blkdev_put(*bdev, flags);
527 goto error;
528 }
529 invalidate_bdev(*bdev);
530 *disk_super = btrfs_read_dev_super(*bdev);
531 if (IS_ERR(*disk_super)) {
532 ret = PTR_ERR(*disk_super);
533 blkdev_put(*bdev, flags);
534 goto error;
535 }
536
537 return 0;
538
539 error:
540 *bdev = NULL;
541 return ret;
542 }
543
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546 int found;
547
548 rcu_read_lock();
549 found = strcmp(rcu_str_deref(device->name), path);
550 rcu_read_unlock();
551
552 return found == 0;
553 }
554
555 /*
556 * Search and remove all stale (devices which are not mounted) devices.
557 * When both inputs are NULL, it will search and release all stale devices.
558 * path: Optional. When provided will it release all unmounted devices
559 * matching this path only.
560 * skip_dev: Optional. Will skip this device when searching for the stale
561 * devices.
562 * Return: 0 for success or if @path is NULL.
563 * -EBUSY if @path is a mounted device.
564 * -ENOENT if @path does not match any device in the list.
565 */
566 static int btrfs_free_stale_devices(const char *path,
567 struct btrfs_device *skip_device)
568 {
569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570 struct btrfs_device *device, *tmp_device;
571 int ret = 0;
572
573 if (path)
574 ret = -ENOENT;
575
576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578 mutex_lock(&fs_devices->device_list_mutex);
579 list_for_each_entry_safe(device, tmp_device,
580 &fs_devices->devices, dev_list) {
581 if (skip_device && skip_device == device)
582 continue;
583 if (path && !device->name)
584 continue;
585 if (path && !device_path_matched(path, device))
586 continue;
587 if (fs_devices->opened) {
588 /* for an already deleted device return 0 */
589 if (path && ret != 0)
590 ret = -EBUSY;
591 break;
592 }
593
594 /* delete the stale device */
595 fs_devices->num_devices--;
596 list_del(&device->dev_list);
597 btrfs_free_device(device);
598
599 ret = 0;
600 }
601 mutex_unlock(&fs_devices->device_list_mutex);
602
603 if (fs_devices->num_devices == 0) {
604 btrfs_sysfs_remove_fsid(fs_devices);
605 list_del(&fs_devices->fs_list);
606 free_fs_devices(fs_devices);
607 }
608 }
609
610 return ret;
611 }
612
613 /*
614 * This is only used on mount, and we are protected from competing things
615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
616 * fs_devices->device_list_mutex here.
617 */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619 struct btrfs_device *device, fmode_t flags,
620 void *holder)
621 {
622 struct request_queue *q;
623 struct block_device *bdev;
624 struct btrfs_super_block *disk_super;
625 u64 devid;
626 int ret;
627
628 if (device->bdev)
629 return -EINVAL;
630 if (!device->name)
631 return -EINVAL;
632
633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634 &bdev, &disk_super);
635 if (ret)
636 return ret;
637
638 devid = btrfs_stack_device_id(&disk_super->dev_item);
639 if (devid != device->devid)
640 goto error_free_page;
641
642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643 goto error_free_page;
644
645 device->generation = btrfs_super_generation(disk_super);
646
647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 if (btrfs_super_incompat_flags(disk_super) &
649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650 pr_err(
651 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652 goto error_free_page;
653 }
654
655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 fs_devices->seeding = true;
657 } else {
658 if (bdev_read_only(bdev))
659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 else
661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 }
663
664 q = bdev_get_queue(bdev);
665 if (!blk_queue_nonrot(q))
666 fs_devices->rotating = true;
667
668 device->bdev = bdev;
669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 device->mode = flags;
671
672 ret = btrfs_get_dev_zone_info(device);
673 if (ret != 0)
674 goto error_free_page;
675
676 fs_devices->open_devices++;
677 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
678 device->devid != BTRFS_DEV_REPLACE_DEVID) {
679 fs_devices->rw_devices++;
680 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
681 }
682 btrfs_release_disk_super(disk_super);
683
684 return 0;
685
686 error_free_page:
687 btrfs_release_disk_super(disk_super);
688 blkdev_put(bdev, flags);
689
690 return -EINVAL;
691 }
692
693 /*
694 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
695 * being created with a disk that has already completed its fsid change. Such
696 * disk can belong to an fs which has its FSID changed or to one which doesn't.
697 * Handle both cases here.
698 */
699 static struct btrfs_fs_devices *find_fsid_inprogress(
700 struct btrfs_super_block *disk_super)
701 {
702 struct btrfs_fs_devices *fs_devices;
703
704 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
705 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706 BTRFS_FSID_SIZE) != 0 &&
707 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
708 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
709 return fs_devices;
710 }
711 }
712
713 return find_fsid(disk_super->fsid, NULL);
714 }
715
716
717 static struct btrfs_fs_devices *find_fsid_changed(
718 struct btrfs_super_block *disk_super)
719 {
720 struct btrfs_fs_devices *fs_devices;
721
722 /*
723 * Handles the case where scanned device is part of an fs that had
724 * multiple successful changes of FSID but curently device didn't
725 * observe it. Meaning our fsid will be different than theirs. We need
726 * to handle two subcases :
727 * 1 - The fs still continues to have different METADATA/FSID uuids.
728 * 2 - The fs is switched back to its original FSID (METADATA/FSID
729 * are equal).
730 */
731 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
732 /* Changed UUIDs */
733 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
734 BTRFS_FSID_SIZE) != 0 &&
735 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
736 BTRFS_FSID_SIZE) == 0 &&
737 memcmp(fs_devices->fsid, disk_super->fsid,
738 BTRFS_FSID_SIZE) != 0)
739 return fs_devices;
740
741 /* Unchanged UUIDs */
742 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
743 BTRFS_FSID_SIZE) == 0 &&
744 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
745 BTRFS_FSID_SIZE) == 0)
746 return fs_devices;
747 }
748
749 return NULL;
750 }
751
752 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
753 struct btrfs_super_block *disk_super)
754 {
755 struct btrfs_fs_devices *fs_devices;
756
757 /*
758 * Handle the case where the scanned device is part of an fs whose last
759 * metadata UUID change reverted it to the original FSID. At the same
760 * time * fs_devices was first created by another constitutent device
761 * which didn't fully observe the operation. This results in an
762 * btrfs_fs_devices created with metadata/fsid different AND
763 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
764 * fs_devices equal to the FSID of the disk.
765 */
766 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
767 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
768 BTRFS_FSID_SIZE) != 0 &&
769 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
770 BTRFS_FSID_SIZE) == 0 &&
771 fs_devices->fsid_change)
772 return fs_devices;
773 }
774
775 return NULL;
776 }
777 /*
778 * Add new device to list of registered devices
779 *
780 * Returns:
781 * device pointer which was just added or updated when successful
782 * error pointer when failed
783 */
784 static noinline struct btrfs_device *device_list_add(const char *path,
785 struct btrfs_super_block *disk_super,
786 bool *new_device_added)
787 {
788 struct btrfs_device *device;
789 struct btrfs_fs_devices *fs_devices = NULL;
790 struct rcu_string *name;
791 u64 found_transid = btrfs_super_generation(disk_super);
792 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
795 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
796 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
797
798 if (fsid_change_in_progress) {
799 if (!has_metadata_uuid)
800 fs_devices = find_fsid_inprogress(disk_super);
801 else
802 fs_devices = find_fsid_changed(disk_super);
803 } else if (has_metadata_uuid) {
804 fs_devices = find_fsid_with_metadata_uuid(disk_super);
805 } else {
806 fs_devices = find_fsid_reverted_metadata(disk_super);
807 if (!fs_devices)
808 fs_devices = find_fsid(disk_super->fsid, NULL);
809 }
810
811
812 if (!fs_devices) {
813 if (has_metadata_uuid)
814 fs_devices = alloc_fs_devices(disk_super->fsid,
815 disk_super->metadata_uuid);
816 else
817 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
818
819 if (IS_ERR(fs_devices))
820 return ERR_CAST(fs_devices);
821
822 fs_devices->fsid_change = fsid_change_in_progress;
823
824 mutex_lock(&fs_devices->device_list_mutex);
825 list_add(&fs_devices->fs_list, &fs_uuids);
826
827 device = NULL;
828 } else {
829 mutex_lock(&fs_devices->device_list_mutex);
830 device = btrfs_find_device(fs_devices, devid,
831 disk_super->dev_item.uuid, NULL);
832
833 /*
834 * If this disk has been pulled into an fs devices created by
835 * a device which had the CHANGING_FSID_V2 flag then replace the
836 * metadata_uuid/fsid values of the fs_devices.
837 */
838 if (fs_devices->fsid_change &&
839 found_transid > fs_devices->latest_generation) {
840 memcpy(fs_devices->fsid, disk_super->fsid,
841 BTRFS_FSID_SIZE);
842
843 if (has_metadata_uuid)
844 memcpy(fs_devices->metadata_uuid,
845 disk_super->metadata_uuid,
846 BTRFS_FSID_SIZE);
847 else
848 memcpy(fs_devices->metadata_uuid,
849 disk_super->fsid, BTRFS_FSID_SIZE);
850
851 fs_devices->fsid_change = false;
852 }
853 }
854
855 if (!device) {
856 if (fs_devices->opened) {
857 mutex_unlock(&fs_devices->device_list_mutex);
858 return ERR_PTR(-EBUSY);
859 }
860
861 device = btrfs_alloc_device(NULL, &devid,
862 disk_super->dev_item.uuid);
863 if (IS_ERR(device)) {
864 mutex_unlock(&fs_devices->device_list_mutex);
865 /* we can safely leave the fs_devices entry around */
866 return device;
867 }
868
869 name = rcu_string_strdup(path, GFP_NOFS);
870 if (!name) {
871 btrfs_free_device(device);
872 mutex_unlock(&fs_devices->device_list_mutex);
873 return ERR_PTR(-ENOMEM);
874 }
875 rcu_assign_pointer(device->name, name);
876
877 list_add_rcu(&device->dev_list, &fs_devices->devices);
878 fs_devices->num_devices++;
879
880 device->fs_devices = fs_devices;
881 *new_device_added = true;
882
883 if (disk_super->label[0])
884 pr_info(
885 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
886 disk_super->label, devid, found_transid, path,
887 current->comm, task_pid_nr(current));
888 else
889 pr_info(
890 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
891 disk_super->fsid, devid, found_transid, path,
892 current->comm, task_pid_nr(current));
893
894 } else if (!device->name || strcmp(device->name->str, path)) {
895 /*
896 * When FS is already mounted.
897 * 1. If you are here and if the device->name is NULL that
898 * means this device was missing at time of FS mount.
899 * 2. If you are here and if the device->name is different
900 * from 'path' that means either
901 * a. The same device disappeared and reappeared with
902 * different name. or
903 * b. The missing-disk-which-was-replaced, has
904 * reappeared now.
905 *
906 * We must allow 1 and 2a above. But 2b would be a spurious
907 * and unintentional.
908 *
909 * Further in case of 1 and 2a above, the disk at 'path'
910 * would have missed some transaction when it was away and
911 * in case of 2a the stale bdev has to be updated as well.
912 * 2b must not be allowed at all time.
913 */
914
915 /*
916 * For now, we do allow update to btrfs_fs_device through the
917 * btrfs dev scan cli after FS has been mounted. We're still
918 * tracking a problem where systems fail mount by subvolume id
919 * when we reject replacement on a mounted FS.
920 */
921 if (!fs_devices->opened && found_transid < device->generation) {
922 /*
923 * That is if the FS is _not_ mounted and if you
924 * are here, that means there is more than one
925 * disk with same uuid and devid.We keep the one
926 * with larger generation number or the last-in if
927 * generation are equal.
928 */
929 mutex_unlock(&fs_devices->device_list_mutex);
930 return ERR_PTR(-EEXIST);
931 }
932
933 /*
934 * We are going to replace the device path for a given devid,
935 * make sure it's the same device if the device is mounted
936 */
937 if (device->bdev) {
938 int error;
939 dev_t path_dev;
940
941 error = lookup_bdev(path, &path_dev);
942 if (error) {
943 mutex_unlock(&fs_devices->device_list_mutex);
944 return ERR_PTR(error);
945 }
946
947 if (device->bdev->bd_dev != path_dev) {
948 mutex_unlock(&fs_devices->device_list_mutex);
949 /*
950 * device->fs_info may not be reliable here, so
951 * pass in a NULL instead. This avoids a
952 * possible use-after-free when the fs_info and
953 * fs_info->sb are already torn down.
954 */
955 btrfs_warn_in_rcu(NULL,
956 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
957 path, devid, found_transid,
958 current->comm,
959 task_pid_nr(current));
960 return ERR_PTR(-EEXIST);
961 }
962 btrfs_info_in_rcu(device->fs_info,
963 "devid %llu device path %s changed to %s scanned by %s (%d)",
964 devid, rcu_str_deref(device->name),
965 path, current->comm,
966 task_pid_nr(current));
967 }
968
969 name = rcu_string_strdup(path, GFP_NOFS);
970 if (!name) {
971 mutex_unlock(&fs_devices->device_list_mutex);
972 return ERR_PTR(-ENOMEM);
973 }
974 rcu_string_free(device->name);
975 rcu_assign_pointer(device->name, name);
976 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
977 fs_devices->missing_devices--;
978 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
979 }
980 }
981
982 /*
983 * Unmount does not free the btrfs_device struct but would zero
984 * generation along with most of the other members. So just update
985 * it back. We need it to pick the disk with largest generation
986 * (as above).
987 */
988 if (!fs_devices->opened) {
989 device->generation = found_transid;
990 fs_devices->latest_generation = max_t(u64, found_transid,
991 fs_devices->latest_generation);
992 }
993
994 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
995
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return device;
998 }
999
1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1001 {
1002 struct btrfs_fs_devices *fs_devices;
1003 struct btrfs_device *device;
1004 struct btrfs_device *orig_dev;
1005 int ret = 0;
1006
1007 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1008 if (IS_ERR(fs_devices))
1009 return fs_devices;
1010
1011 mutex_lock(&orig->device_list_mutex);
1012 fs_devices->total_devices = orig->total_devices;
1013
1014 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1015 struct rcu_string *name;
1016
1017 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1018 orig_dev->uuid);
1019 if (IS_ERR(device)) {
1020 ret = PTR_ERR(device);
1021 goto error;
1022 }
1023
1024 /*
1025 * This is ok to do without rcu read locked because we hold the
1026 * uuid mutex so nothing we touch in here is going to disappear.
1027 */
1028 if (orig_dev->name) {
1029 name = rcu_string_strdup(orig_dev->name->str,
1030 GFP_KERNEL);
1031 if (!name) {
1032 btrfs_free_device(device);
1033 ret = -ENOMEM;
1034 goto error;
1035 }
1036 rcu_assign_pointer(device->name, name);
1037 }
1038
1039 list_add(&device->dev_list, &fs_devices->devices);
1040 device->fs_devices = fs_devices;
1041 fs_devices->num_devices++;
1042 }
1043 mutex_unlock(&orig->device_list_mutex);
1044 return fs_devices;
1045 error:
1046 mutex_unlock(&orig->device_list_mutex);
1047 free_fs_devices(fs_devices);
1048 return ERR_PTR(ret);
1049 }
1050
1051 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1052 struct btrfs_device **latest_dev)
1053 {
1054 struct btrfs_device *device, *next;
1055
1056 /* This is the initialized path, it is safe to release the devices. */
1057 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1058 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1059 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1060 &device->dev_state) &&
1061 !test_bit(BTRFS_DEV_STATE_MISSING,
1062 &device->dev_state) &&
1063 (!*latest_dev ||
1064 device->generation > (*latest_dev)->generation)) {
1065 *latest_dev = device;
1066 }
1067 continue;
1068 }
1069
1070 /*
1071 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1072 * in btrfs_init_dev_replace() so just continue.
1073 */
1074 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1075 continue;
1076
1077 if (device->bdev) {
1078 blkdev_put(device->bdev, device->mode);
1079 device->bdev = NULL;
1080 fs_devices->open_devices--;
1081 }
1082 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1083 list_del_init(&device->dev_alloc_list);
1084 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1085 }
1086 list_del_init(&device->dev_list);
1087 fs_devices->num_devices--;
1088 btrfs_free_device(device);
1089 }
1090
1091 }
1092
1093 /*
1094 * After we have read the system tree and know devids belonging to this
1095 * filesystem, remove the device which does not belong there.
1096 */
1097 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1098 {
1099 struct btrfs_device *latest_dev = NULL;
1100 struct btrfs_fs_devices *seed_dev;
1101
1102 mutex_lock(&uuid_mutex);
1103 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1104
1105 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1106 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1107
1108 fs_devices->latest_bdev = latest_dev->bdev;
1109
1110 mutex_unlock(&uuid_mutex);
1111 }
1112
1113 static void btrfs_close_bdev(struct btrfs_device *device)
1114 {
1115 if (!device->bdev)
1116 return;
1117
1118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1119 sync_blockdev(device->bdev);
1120 invalidate_bdev(device->bdev);
1121 }
1122
1123 blkdev_put(device->bdev, device->mode);
1124 }
1125
1126 static void btrfs_close_one_device(struct btrfs_device *device)
1127 {
1128 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1129
1130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1131 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1132 list_del_init(&device->dev_alloc_list);
1133 fs_devices->rw_devices--;
1134 }
1135
1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1137 fs_devices->missing_devices--;
1138
1139 btrfs_close_bdev(device);
1140 if (device->bdev) {
1141 fs_devices->open_devices--;
1142 device->bdev = NULL;
1143 }
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 btrfs_destroy_dev_zone_info(device);
1146
1147 device->fs_info = NULL;
1148 atomic_set(&device->dev_stats_ccnt, 0);
1149 extent_io_tree_release(&device->alloc_state);
1150
1151 /* Verify the device is back in a pristine state */
1152 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 ASSERT(list_empty(&device->dev_alloc_list));
1155 ASSERT(list_empty(&device->post_commit_list));
1156 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 }
1158
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176 }
1177
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened)
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189 close_fs_devices(fs_devices);
1190 list_del(&fs_devices->seed_list);
1191 free_fs_devices(fs_devices);
1192 }
1193 mutex_unlock(&uuid_mutex);
1194 }
1195
1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1197 fmode_t flags, void *holder)
1198 {
1199 struct btrfs_device *device;
1200 struct btrfs_device *latest_dev = NULL;
1201 struct btrfs_device *tmp_device;
1202
1203 flags |= FMODE_EXCL;
1204
1205 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206 dev_list) {
1207 int ret;
1208
1209 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1210 if (ret == 0 &&
1211 (!latest_dev || device->generation > latest_dev->generation)) {
1212 latest_dev = device;
1213 } else if (ret == -ENODATA) {
1214 fs_devices->num_devices--;
1215 list_del(&device->dev_list);
1216 btrfs_free_device(device);
1217 }
1218 }
1219 if (fs_devices->open_devices == 0)
1220 return -EINVAL;
1221
1222 fs_devices->opened = 1;
1223 fs_devices->latest_bdev = latest_dev->bdev;
1224 fs_devices->total_rw_bytes = 0;
1225 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1227
1228 return 0;
1229 }
1230
1231 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1232 {
1233 struct btrfs_device *dev1, *dev2;
1234
1235 dev1 = list_entry(a, struct btrfs_device, dev_list);
1236 dev2 = list_entry(b, struct btrfs_device, dev_list);
1237
1238 if (dev1->devid < dev2->devid)
1239 return -1;
1240 else if (dev1->devid > dev2->devid)
1241 return 1;
1242 return 0;
1243 }
1244
1245 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1246 fmode_t flags, void *holder)
1247 {
1248 int ret;
1249
1250 lockdep_assert_held(&uuid_mutex);
1251 /*
1252 * The device_list_mutex cannot be taken here in case opening the
1253 * underlying device takes further locks like bd_mutex.
1254 *
1255 * We also don't need the lock here as this is called during mount and
1256 * exclusion is provided by uuid_mutex
1257 */
1258
1259 if (fs_devices->opened) {
1260 fs_devices->opened++;
1261 ret = 0;
1262 } else {
1263 list_sort(NULL, &fs_devices->devices, devid_cmp);
1264 ret = open_fs_devices(fs_devices, flags, holder);
1265 }
1266
1267 return ret;
1268 }
1269
1270 void btrfs_release_disk_super(struct btrfs_super_block *super)
1271 {
1272 struct page *page = virt_to_page(super);
1273
1274 put_page(page);
1275 }
1276
1277 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1278 u64 bytenr, u64 bytenr_orig)
1279 {
1280 struct btrfs_super_block *disk_super;
1281 struct page *page;
1282 void *p;
1283 pgoff_t index;
1284
1285 /* make sure our super fits in the device */
1286 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1287 return ERR_PTR(-EINVAL);
1288
1289 /* make sure our super fits in the page */
1290 if (sizeof(*disk_super) > PAGE_SIZE)
1291 return ERR_PTR(-EINVAL);
1292
1293 /* make sure our super doesn't straddle pages on disk */
1294 index = bytenr >> PAGE_SHIFT;
1295 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1296 return ERR_PTR(-EINVAL);
1297
1298 /* pull in the page with our super */
1299 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1300
1301 if (IS_ERR(page))
1302 return ERR_CAST(page);
1303
1304 p = page_address(page);
1305
1306 /* align our pointer to the offset of the super block */
1307 disk_super = p + offset_in_page(bytenr);
1308
1309 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1310 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1311 btrfs_release_disk_super(p);
1312 return ERR_PTR(-EINVAL);
1313 }
1314
1315 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1316 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1317
1318 return disk_super;
1319 }
1320
1321 int btrfs_forget_devices(const char *path)
1322 {
1323 int ret;
1324
1325 mutex_lock(&uuid_mutex);
1326 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1327 mutex_unlock(&uuid_mutex);
1328
1329 return ret;
1330 }
1331
1332 /*
1333 * Look for a btrfs signature on a device. This may be called out of the mount path
1334 * and we are not allowed to call set_blocksize during the scan. The superblock
1335 * is read via pagecache
1336 */
1337 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1338 void *holder)
1339 {
1340 struct btrfs_super_block *disk_super;
1341 bool new_device_added = false;
1342 struct btrfs_device *device = NULL;
1343 struct block_device *bdev;
1344 u64 bytenr, bytenr_orig;
1345 int ret;
1346
1347 lockdep_assert_held(&uuid_mutex);
1348
1349 /*
1350 * we would like to check all the supers, but that would make
1351 * a btrfs mount succeed after a mkfs from a different FS.
1352 * So, we need to add a special mount option to scan for
1353 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1354 */
1355 flags |= FMODE_EXCL;
1356
1357 bdev = blkdev_get_by_path(path, flags, holder);
1358 if (IS_ERR(bdev))
1359 return ERR_CAST(bdev);
1360
1361 bytenr_orig = btrfs_sb_offset(0);
1362 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1363 if (ret)
1364 return ERR_PTR(ret);
1365
1366 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1367 if (IS_ERR(disk_super)) {
1368 device = ERR_CAST(disk_super);
1369 goto error_bdev_put;
1370 }
1371
1372 device = device_list_add(path, disk_super, &new_device_added);
1373 if (!IS_ERR(device)) {
1374 if (new_device_added)
1375 btrfs_free_stale_devices(path, device);
1376 }
1377
1378 btrfs_release_disk_super(disk_super);
1379
1380 error_bdev_put:
1381 blkdev_put(bdev, flags);
1382
1383 return device;
1384 }
1385
1386 /*
1387 * Try to find a chunk that intersects [start, start + len] range and when one
1388 * such is found, record the end of it in *start
1389 */
1390 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1391 u64 len)
1392 {
1393 u64 physical_start, physical_end;
1394
1395 lockdep_assert_held(&device->fs_info->chunk_mutex);
1396
1397 if (!find_first_extent_bit(&device->alloc_state, *start,
1398 &physical_start, &physical_end,
1399 CHUNK_ALLOCATED, NULL)) {
1400
1401 if (in_range(physical_start, *start, len) ||
1402 in_range(*start, physical_start,
1403 physical_end - physical_start)) {
1404 *start = physical_end + 1;
1405 return true;
1406 }
1407 }
1408 return false;
1409 }
1410
1411 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1412 {
1413 switch (device->fs_devices->chunk_alloc_policy) {
1414 case BTRFS_CHUNK_ALLOC_REGULAR:
1415 /*
1416 * We don't want to overwrite the superblock on the drive nor
1417 * any area used by the boot loader (grub for example), so we
1418 * make sure to start at an offset of at least 1MB.
1419 */
1420 return max_t(u64, start, SZ_1M);
1421 default:
1422 BUG();
1423 }
1424 }
1425
1426 /**
1427 * dev_extent_hole_check - check if specified hole is suitable for allocation
1428 * @device: the device which we have the hole
1429 * @hole_start: starting position of the hole
1430 * @hole_size: the size of the hole
1431 * @num_bytes: the size of the free space that we need
1432 *
1433 * This function may modify @hole_start and @hole_end to reflect the suitable
1434 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1435 */
1436 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1437 u64 *hole_size, u64 num_bytes)
1438 {
1439 bool changed = false;
1440 u64 hole_end = *hole_start + *hole_size;
1441
1442 /*
1443 * Check before we set max_hole_start, otherwise we could end up
1444 * sending back this offset anyway.
1445 */
1446 if (contains_pending_extent(device, hole_start, *hole_size)) {
1447 if (hole_end >= *hole_start)
1448 *hole_size = hole_end - *hole_start;
1449 else
1450 *hole_size = 0;
1451 changed = true;
1452 }
1453
1454 switch (device->fs_devices->chunk_alloc_policy) {
1455 case BTRFS_CHUNK_ALLOC_REGULAR:
1456 /* No extra check */
1457 break;
1458 default:
1459 BUG();
1460 }
1461
1462 return changed;
1463 }
1464
1465 /*
1466 * find_free_dev_extent_start - find free space in the specified device
1467 * @device: the device which we search the free space in
1468 * @num_bytes: the size of the free space that we need
1469 * @search_start: the position from which to begin the search
1470 * @start: store the start of the free space.
1471 * @len: the size of the free space. that we find, or the size
1472 * of the max free space if we don't find suitable free space
1473 *
1474 * this uses a pretty simple search, the expectation is that it is
1475 * called very infrequently and that a given device has a small number
1476 * of extents
1477 *
1478 * @start is used to store the start of the free space if we find. But if we
1479 * don't find suitable free space, it will be used to store the start position
1480 * of the max free space.
1481 *
1482 * @len is used to store the size of the free space that we find.
1483 * But if we don't find suitable free space, it is used to store the size of
1484 * the max free space.
1485 *
1486 * NOTE: This function will search *commit* root of device tree, and does extra
1487 * check to ensure dev extents are not double allocated.
1488 * This makes the function safe to allocate dev extents but may not report
1489 * correct usable device space, as device extent freed in current transaction
1490 * is not reported as avaiable.
1491 */
1492 static int find_free_dev_extent_start(struct btrfs_device *device,
1493 u64 num_bytes, u64 search_start, u64 *start,
1494 u64 *len)
1495 {
1496 struct btrfs_fs_info *fs_info = device->fs_info;
1497 struct btrfs_root *root = fs_info->dev_root;
1498 struct btrfs_key key;
1499 struct btrfs_dev_extent *dev_extent;
1500 struct btrfs_path *path;
1501 u64 hole_size;
1502 u64 max_hole_start;
1503 u64 max_hole_size;
1504 u64 extent_end;
1505 u64 search_end = device->total_bytes;
1506 int ret;
1507 int slot;
1508 struct extent_buffer *l;
1509
1510 search_start = dev_extent_search_start(device, search_start);
1511
1512 path = btrfs_alloc_path();
1513 if (!path)
1514 return -ENOMEM;
1515
1516 max_hole_start = search_start;
1517 max_hole_size = 0;
1518
1519 again:
1520 if (search_start >= search_end ||
1521 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1522 ret = -ENOSPC;
1523 goto out;
1524 }
1525
1526 path->reada = READA_FORWARD;
1527 path->search_commit_root = 1;
1528 path->skip_locking = 1;
1529
1530 key.objectid = device->devid;
1531 key.offset = search_start;
1532 key.type = BTRFS_DEV_EXTENT_KEY;
1533
1534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1535 if (ret < 0)
1536 goto out;
1537 if (ret > 0) {
1538 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1539 if (ret < 0)
1540 goto out;
1541 }
1542
1543 while (1) {
1544 l = path->nodes[0];
1545 slot = path->slots[0];
1546 if (slot >= btrfs_header_nritems(l)) {
1547 ret = btrfs_next_leaf(root, path);
1548 if (ret == 0)
1549 continue;
1550 if (ret < 0)
1551 goto out;
1552
1553 break;
1554 }
1555 btrfs_item_key_to_cpu(l, &key, slot);
1556
1557 if (key.objectid < device->devid)
1558 goto next;
1559
1560 if (key.objectid > device->devid)
1561 break;
1562
1563 if (key.type != BTRFS_DEV_EXTENT_KEY)
1564 goto next;
1565
1566 if (key.offset > search_start) {
1567 hole_size = key.offset - search_start;
1568 dev_extent_hole_check(device, &search_start, &hole_size,
1569 num_bytes);
1570
1571 if (hole_size > max_hole_size) {
1572 max_hole_start = search_start;
1573 max_hole_size = hole_size;
1574 }
1575
1576 /*
1577 * If this free space is greater than which we need,
1578 * it must be the max free space that we have found
1579 * until now, so max_hole_start must point to the start
1580 * of this free space and the length of this free space
1581 * is stored in max_hole_size. Thus, we return
1582 * max_hole_start and max_hole_size and go back to the
1583 * caller.
1584 */
1585 if (hole_size >= num_bytes) {
1586 ret = 0;
1587 goto out;
1588 }
1589 }
1590
1591 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1592 extent_end = key.offset + btrfs_dev_extent_length(l,
1593 dev_extent);
1594 if (extent_end > search_start)
1595 search_start = extent_end;
1596 next:
1597 path->slots[0]++;
1598 cond_resched();
1599 }
1600
1601 /*
1602 * At this point, search_start should be the end of
1603 * allocated dev extents, and when shrinking the device,
1604 * search_end may be smaller than search_start.
1605 */
1606 if (search_end > search_start) {
1607 hole_size = search_end - search_start;
1608 if (dev_extent_hole_check(device, &search_start, &hole_size,
1609 num_bytes)) {
1610 btrfs_release_path(path);
1611 goto again;
1612 }
1613
1614 if (hole_size > max_hole_size) {
1615 max_hole_start = search_start;
1616 max_hole_size = hole_size;
1617 }
1618 }
1619
1620 /* See above. */
1621 if (max_hole_size < num_bytes)
1622 ret = -ENOSPC;
1623 else
1624 ret = 0;
1625
1626 out:
1627 btrfs_free_path(path);
1628 *start = max_hole_start;
1629 if (len)
1630 *len = max_hole_size;
1631 return ret;
1632 }
1633
1634 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1635 u64 *start, u64 *len)
1636 {
1637 /* FIXME use last free of some kind */
1638 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1639 }
1640
1641 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1642 struct btrfs_device *device,
1643 u64 start, u64 *dev_extent_len)
1644 {
1645 struct btrfs_fs_info *fs_info = device->fs_info;
1646 struct btrfs_root *root = fs_info->dev_root;
1647 int ret;
1648 struct btrfs_path *path;
1649 struct btrfs_key key;
1650 struct btrfs_key found_key;
1651 struct extent_buffer *leaf = NULL;
1652 struct btrfs_dev_extent *extent = NULL;
1653
1654 path = btrfs_alloc_path();
1655 if (!path)
1656 return -ENOMEM;
1657
1658 key.objectid = device->devid;
1659 key.offset = start;
1660 key.type = BTRFS_DEV_EXTENT_KEY;
1661 again:
1662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1663 if (ret > 0) {
1664 ret = btrfs_previous_item(root, path, key.objectid,
1665 BTRFS_DEV_EXTENT_KEY);
1666 if (ret)
1667 goto out;
1668 leaf = path->nodes[0];
1669 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1670 extent = btrfs_item_ptr(leaf, path->slots[0],
1671 struct btrfs_dev_extent);
1672 BUG_ON(found_key.offset > start || found_key.offset +
1673 btrfs_dev_extent_length(leaf, extent) < start);
1674 key = found_key;
1675 btrfs_release_path(path);
1676 goto again;
1677 } else if (ret == 0) {
1678 leaf = path->nodes[0];
1679 extent = btrfs_item_ptr(leaf, path->slots[0],
1680 struct btrfs_dev_extent);
1681 } else {
1682 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1683 goto out;
1684 }
1685
1686 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1687
1688 ret = btrfs_del_item(trans, root, path);
1689 if (ret) {
1690 btrfs_handle_fs_error(fs_info, ret,
1691 "Failed to remove dev extent item");
1692 } else {
1693 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1694 }
1695 out:
1696 btrfs_free_path(path);
1697 return ret;
1698 }
1699
1700 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device,
1702 u64 chunk_offset, u64 start, u64 num_bytes)
1703 {
1704 int ret;
1705 struct btrfs_path *path;
1706 struct btrfs_fs_info *fs_info = device->fs_info;
1707 struct btrfs_root *root = fs_info->dev_root;
1708 struct btrfs_dev_extent *extent;
1709 struct extent_buffer *leaf;
1710 struct btrfs_key key;
1711
1712 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1713 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1714 path = btrfs_alloc_path();
1715 if (!path)
1716 return -ENOMEM;
1717
1718 key.objectid = device->devid;
1719 key.offset = start;
1720 key.type = BTRFS_DEV_EXTENT_KEY;
1721 ret = btrfs_insert_empty_item(trans, root, path, &key,
1722 sizeof(*extent));
1723 if (ret)
1724 goto out;
1725
1726 leaf = path->nodes[0];
1727 extent = btrfs_item_ptr(leaf, path->slots[0],
1728 struct btrfs_dev_extent);
1729 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1730 BTRFS_CHUNK_TREE_OBJECTID);
1731 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1732 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1733 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1734
1735 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1736 btrfs_mark_buffer_dirty(leaf);
1737 out:
1738 btrfs_free_path(path);
1739 return ret;
1740 }
1741
1742 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1743 {
1744 struct extent_map_tree *em_tree;
1745 struct extent_map *em;
1746 struct rb_node *n;
1747 u64 ret = 0;
1748
1749 em_tree = &fs_info->mapping_tree;
1750 read_lock(&em_tree->lock);
1751 n = rb_last(&em_tree->map.rb_root);
1752 if (n) {
1753 em = rb_entry(n, struct extent_map, rb_node);
1754 ret = em->start + em->len;
1755 }
1756 read_unlock(&em_tree->lock);
1757
1758 return ret;
1759 }
1760
1761 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1762 u64 *devid_ret)
1763 {
1764 int ret;
1765 struct btrfs_key key;
1766 struct btrfs_key found_key;
1767 struct btrfs_path *path;
1768
1769 path = btrfs_alloc_path();
1770 if (!path)
1771 return -ENOMEM;
1772
1773 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774 key.type = BTRFS_DEV_ITEM_KEY;
1775 key.offset = (u64)-1;
1776
1777 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1778 if (ret < 0)
1779 goto error;
1780
1781 if (ret == 0) {
1782 /* Corruption */
1783 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1784 ret = -EUCLEAN;
1785 goto error;
1786 }
1787
1788 ret = btrfs_previous_item(fs_info->chunk_root, path,
1789 BTRFS_DEV_ITEMS_OBJECTID,
1790 BTRFS_DEV_ITEM_KEY);
1791 if (ret) {
1792 *devid_ret = 1;
1793 } else {
1794 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1795 path->slots[0]);
1796 *devid_ret = found_key.offset + 1;
1797 }
1798 ret = 0;
1799 error:
1800 btrfs_free_path(path);
1801 return ret;
1802 }
1803
1804 /*
1805 * the device information is stored in the chunk root
1806 * the btrfs_device struct should be fully filled in
1807 */
1808 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1809 struct btrfs_device *device)
1810 {
1811 int ret;
1812 struct btrfs_path *path;
1813 struct btrfs_dev_item *dev_item;
1814 struct extent_buffer *leaf;
1815 struct btrfs_key key;
1816 unsigned long ptr;
1817
1818 path = btrfs_alloc_path();
1819 if (!path)
1820 return -ENOMEM;
1821
1822 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1823 key.type = BTRFS_DEV_ITEM_KEY;
1824 key.offset = device->devid;
1825
1826 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1827 &key, sizeof(*dev_item));
1828 if (ret)
1829 goto out;
1830
1831 leaf = path->nodes[0];
1832 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1833
1834 btrfs_set_device_id(leaf, dev_item, device->devid);
1835 btrfs_set_device_generation(leaf, dev_item, 0);
1836 btrfs_set_device_type(leaf, dev_item, device->type);
1837 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1838 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1839 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1840 btrfs_set_device_total_bytes(leaf, dev_item,
1841 btrfs_device_get_disk_total_bytes(device));
1842 btrfs_set_device_bytes_used(leaf, dev_item,
1843 btrfs_device_get_bytes_used(device));
1844 btrfs_set_device_group(leaf, dev_item, 0);
1845 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1846 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1847 btrfs_set_device_start_offset(leaf, dev_item, 0);
1848
1849 ptr = btrfs_device_uuid(dev_item);
1850 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1851 ptr = btrfs_device_fsid(dev_item);
1852 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1853 ptr, BTRFS_FSID_SIZE);
1854 btrfs_mark_buffer_dirty(leaf);
1855
1856 ret = 0;
1857 out:
1858 btrfs_free_path(path);
1859 return ret;
1860 }
1861
1862 /*
1863 * Function to update ctime/mtime for a given device path.
1864 * Mainly used for ctime/mtime based probe like libblkid.
1865 */
1866 static void update_dev_time(const char *path_name)
1867 {
1868 struct file *filp;
1869
1870 filp = filp_open(path_name, O_RDWR, 0);
1871 if (IS_ERR(filp))
1872 return;
1873 file_update_time(filp);
1874 filp_close(filp, NULL);
1875 }
1876
1877 static int btrfs_rm_dev_item(struct btrfs_device *device)
1878 {
1879 struct btrfs_root *root = device->fs_info->chunk_root;
1880 int ret;
1881 struct btrfs_path *path;
1882 struct btrfs_key key;
1883 struct btrfs_trans_handle *trans;
1884
1885 path = btrfs_alloc_path();
1886 if (!path)
1887 return -ENOMEM;
1888
1889 trans = btrfs_start_transaction(root, 0);
1890 if (IS_ERR(trans)) {
1891 btrfs_free_path(path);
1892 return PTR_ERR(trans);
1893 }
1894 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895 key.type = BTRFS_DEV_ITEM_KEY;
1896 key.offset = device->devid;
1897
1898 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1899 if (ret) {
1900 if (ret > 0)
1901 ret = -ENOENT;
1902 btrfs_abort_transaction(trans, ret);
1903 btrfs_end_transaction(trans);
1904 goto out;
1905 }
1906
1907 ret = btrfs_del_item(trans, root, path);
1908 if (ret) {
1909 btrfs_abort_transaction(trans, ret);
1910 btrfs_end_transaction(trans);
1911 }
1912
1913 out:
1914 btrfs_free_path(path);
1915 if (!ret)
1916 ret = btrfs_commit_transaction(trans);
1917 return ret;
1918 }
1919
1920 /*
1921 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1922 * filesystem. It's up to the caller to adjust that number regarding eg. device
1923 * replace.
1924 */
1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1926 u64 num_devices)
1927 {
1928 u64 all_avail;
1929 unsigned seq;
1930 int i;
1931
1932 do {
1933 seq = read_seqbegin(&fs_info->profiles_lock);
1934
1935 all_avail = fs_info->avail_data_alloc_bits |
1936 fs_info->avail_system_alloc_bits |
1937 fs_info->avail_metadata_alloc_bits;
1938 } while (read_seqretry(&fs_info->profiles_lock, seq));
1939
1940 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1941 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1942 continue;
1943
1944 if (num_devices < btrfs_raid_array[i].devs_min) {
1945 int ret = btrfs_raid_array[i].mindev_error;
1946
1947 if (ret)
1948 return ret;
1949 }
1950 }
1951
1952 return 0;
1953 }
1954
1955 static struct btrfs_device * btrfs_find_next_active_device(
1956 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1957 {
1958 struct btrfs_device *next_device;
1959
1960 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1961 if (next_device != device &&
1962 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1963 && next_device->bdev)
1964 return next_device;
1965 }
1966
1967 return NULL;
1968 }
1969
1970 /*
1971 * Helper function to check if the given device is part of s_bdev / latest_bdev
1972 * and replace it with the provided or the next active device, in the context
1973 * where this function called, there should be always be another device (or
1974 * this_dev) which is active.
1975 */
1976 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1977 struct btrfs_device *next_device)
1978 {
1979 struct btrfs_fs_info *fs_info = device->fs_info;
1980
1981 if (!next_device)
1982 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1983 device);
1984 ASSERT(next_device);
1985
1986 if (fs_info->sb->s_bdev &&
1987 (fs_info->sb->s_bdev == device->bdev))
1988 fs_info->sb->s_bdev = next_device->bdev;
1989
1990 if (fs_info->fs_devices->latest_bdev == device->bdev)
1991 fs_info->fs_devices->latest_bdev = next_device->bdev;
1992 }
1993
1994 /*
1995 * Return btrfs_fs_devices::num_devices excluding the device that's being
1996 * currently replaced.
1997 */
1998 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1999 {
2000 u64 num_devices = fs_info->fs_devices->num_devices;
2001
2002 down_read(&fs_info->dev_replace.rwsem);
2003 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2004 ASSERT(num_devices > 1);
2005 num_devices--;
2006 }
2007 up_read(&fs_info->dev_replace.rwsem);
2008
2009 return num_devices;
2010 }
2011
2012 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2013 struct block_device *bdev,
2014 const char *device_path)
2015 {
2016 struct btrfs_super_block *disk_super;
2017 int copy_num;
2018
2019 if (!bdev)
2020 return;
2021
2022 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2023 struct page *page;
2024 int ret;
2025
2026 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2027 if (IS_ERR(disk_super))
2028 continue;
2029
2030 if (bdev_is_zoned(bdev)) {
2031 btrfs_reset_sb_log_zones(bdev, copy_num);
2032 continue;
2033 }
2034
2035 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2036
2037 page = virt_to_page(disk_super);
2038 set_page_dirty(page);
2039 lock_page(page);
2040 /* write_on_page() unlocks the page */
2041 ret = write_one_page(page);
2042 if (ret)
2043 btrfs_warn(fs_info,
2044 "error clearing superblock number %d (%d)",
2045 copy_num, ret);
2046 btrfs_release_disk_super(disk_super);
2047
2048 }
2049
2050 /* Notify udev that device has changed */
2051 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2052
2053 /* Update ctime/mtime for device path for libblkid */
2054 update_dev_time(device_path);
2055 }
2056
2057 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2058 u64 devid)
2059 {
2060 struct btrfs_device *device;
2061 struct btrfs_fs_devices *cur_devices;
2062 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2063 u64 num_devices;
2064 int ret = 0;
2065
2066 mutex_lock(&uuid_mutex);
2067
2068 num_devices = btrfs_num_devices(fs_info);
2069
2070 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2071 if (ret)
2072 goto out;
2073
2074 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2075
2076 if (IS_ERR(device)) {
2077 if (PTR_ERR(device) == -ENOENT &&
2078 strcmp(device_path, "missing") == 0)
2079 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2080 else
2081 ret = PTR_ERR(device);
2082 goto out;
2083 }
2084
2085 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2086 btrfs_warn_in_rcu(fs_info,
2087 "cannot remove device %s (devid %llu) due to active swapfile",
2088 rcu_str_deref(device->name), device->devid);
2089 ret = -ETXTBSY;
2090 goto out;
2091 }
2092
2093 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2094 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2095 goto out;
2096 }
2097
2098 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2099 fs_info->fs_devices->rw_devices == 1) {
2100 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2101 goto out;
2102 }
2103
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2105 mutex_lock(&fs_info->chunk_mutex);
2106 list_del_init(&device->dev_alloc_list);
2107 device->fs_devices->rw_devices--;
2108 mutex_unlock(&fs_info->chunk_mutex);
2109 }
2110
2111 mutex_unlock(&uuid_mutex);
2112 ret = btrfs_shrink_device(device, 0);
2113 if (!ret)
2114 btrfs_reada_remove_dev(device);
2115 mutex_lock(&uuid_mutex);
2116 if (ret)
2117 goto error_undo;
2118
2119 /*
2120 * TODO: the superblock still includes this device in its num_devices
2121 * counter although write_all_supers() is not locked out. This
2122 * could give a filesystem state which requires a degraded mount.
2123 */
2124 ret = btrfs_rm_dev_item(device);
2125 if (ret)
2126 goto error_undo;
2127
2128 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2129 btrfs_scrub_cancel_dev(device);
2130
2131 /*
2132 * the device list mutex makes sure that we don't change
2133 * the device list while someone else is writing out all
2134 * the device supers. Whoever is writing all supers, should
2135 * lock the device list mutex before getting the number of
2136 * devices in the super block (super_copy). Conversely,
2137 * whoever updates the number of devices in the super block
2138 * (super_copy) should hold the device list mutex.
2139 */
2140
2141 /*
2142 * In normal cases the cur_devices == fs_devices. But in case
2143 * of deleting a seed device, the cur_devices should point to
2144 * its own fs_devices listed under the fs_devices->seed.
2145 */
2146 cur_devices = device->fs_devices;
2147 mutex_lock(&fs_devices->device_list_mutex);
2148 list_del_rcu(&device->dev_list);
2149
2150 cur_devices->num_devices--;
2151 cur_devices->total_devices--;
2152 /* Update total_devices of the parent fs_devices if it's seed */
2153 if (cur_devices != fs_devices)
2154 fs_devices->total_devices--;
2155
2156 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2157 cur_devices->missing_devices--;
2158
2159 btrfs_assign_next_active_device(device, NULL);
2160
2161 if (device->bdev) {
2162 cur_devices->open_devices--;
2163 /* remove sysfs entry */
2164 btrfs_sysfs_remove_device(device);
2165 }
2166
2167 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2168 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2169 mutex_unlock(&fs_devices->device_list_mutex);
2170
2171 /*
2172 * at this point, the device is zero sized and detached from
2173 * the devices list. All that's left is to zero out the old
2174 * supers and free the device.
2175 */
2176 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2177 btrfs_scratch_superblocks(fs_info, device->bdev,
2178 device->name->str);
2179
2180 btrfs_close_bdev(device);
2181 synchronize_rcu();
2182 btrfs_free_device(device);
2183
2184 if (cur_devices->open_devices == 0) {
2185 list_del_init(&cur_devices->seed_list);
2186 close_fs_devices(cur_devices);
2187 free_fs_devices(cur_devices);
2188 }
2189
2190 out:
2191 mutex_unlock(&uuid_mutex);
2192 return ret;
2193
2194 error_undo:
2195 btrfs_reada_undo_remove_dev(device);
2196 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2197 mutex_lock(&fs_info->chunk_mutex);
2198 list_add(&device->dev_alloc_list,
2199 &fs_devices->alloc_list);
2200 device->fs_devices->rw_devices++;
2201 mutex_unlock(&fs_info->chunk_mutex);
2202 }
2203 goto out;
2204 }
2205
2206 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2207 {
2208 struct btrfs_fs_devices *fs_devices;
2209
2210 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2211
2212 /*
2213 * in case of fs with no seed, srcdev->fs_devices will point
2214 * to fs_devices of fs_info. However when the dev being replaced is
2215 * a seed dev it will point to the seed's local fs_devices. In short
2216 * srcdev will have its correct fs_devices in both the cases.
2217 */
2218 fs_devices = srcdev->fs_devices;
2219
2220 list_del_rcu(&srcdev->dev_list);
2221 list_del(&srcdev->dev_alloc_list);
2222 fs_devices->num_devices--;
2223 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2224 fs_devices->missing_devices--;
2225
2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2227 fs_devices->rw_devices--;
2228
2229 if (srcdev->bdev)
2230 fs_devices->open_devices--;
2231 }
2232
2233 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2234 {
2235 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2236
2237 mutex_lock(&uuid_mutex);
2238
2239 btrfs_close_bdev(srcdev);
2240 synchronize_rcu();
2241 btrfs_free_device(srcdev);
2242
2243 /* if this is no devs we rather delete the fs_devices */
2244 if (!fs_devices->num_devices) {
2245 /*
2246 * On a mounted FS, num_devices can't be zero unless it's a
2247 * seed. In case of a seed device being replaced, the replace
2248 * target added to the sprout FS, so there will be no more
2249 * device left under the seed FS.
2250 */
2251 ASSERT(fs_devices->seeding);
2252
2253 list_del_init(&fs_devices->seed_list);
2254 close_fs_devices(fs_devices);
2255 free_fs_devices(fs_devices);
2256 }
2257 mutex_unlock(&uuid_mutex);
2258 }
2259
2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2261 {
2262 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2263
2264 mutex_lock(&fs_devices->device_list_mutex);
2265
2266 btrfs_sysfs_remove_device(tgtdev);
2267
2268 if (tgtdev->bdev)
2269 fs_devices->open_devices--;
2270
2271 fs_devices->num_devices--;
2272
2273 btrfs_assign_next_active_device(tgtdev, NULL);
2274
2275 list_del_rcu(&tgtdev->dev_list);
2276
2277 mutex_unlock(&fs_devices->device_list_mutex);
2278
2279 /*
2280 * The update_dev_time() with in btrfs_scratch_superblocks()
2281 * may lead to a call to btrfs_show_devname() which will try
2282 * to hold device_list_mutex. And here this device
2283 * is already out of device list, so we don't have to hold
2284 * the device_list_mutex lock.
2285 */
2286 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2287 tgtdev->name->str);
2288
2289 btrfs_close_bdev(tgtdev);
2290 synchronize_rcu();
2291 btrfs_free_device(tgtdev);
2292 }
2293
2294 static struct btrfs_device *btrfs_find_device_by_path(
2295 struct btrfs_fs_info *fs_info, const char *device_path)
2296 {
2297 int ret = 0;
2298 struct btrfs_super_block *disk_super;
2299 u64 devid;
2300 u8 *dev_uuid;
2301 struct block_device *bdev;
2302 struct btrfs_device *device;
2303
2304 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2305 fs_info->bdev_holder, 0, &bdev, &disk_super);
2306 if (ret)
2307 return ERR_PTR(ret);
2308
2309 devid = btrfs_stack_device_id(&disk_super->dev_item);
2310 dev_uuid = disk_super->dev_item.uuid;
2311 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2312 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2313 disk_super->metadata_uuid);
2314 else
2315 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316 disk_super->fsid);
2317
2318 btrfs_release_disk_super(disk_super);
2319 if (!device)
2320 device = ERR_PTR(-ENOENT);
2321 blkdev_put(bdev, FMODE_READ);
2322 return device;
2323 }
2324
2325 /*
2326 * Lookup a device given by device id, or the path if the id is 0.
2327 */
2328 struct btrfs_device *btrfs_find_device_by_devspec(
2329 struct btrfs_fs_info *fs_info, u64 devid,
2330 const char *device_path)
2331 {
2332 struct btrfs_device *device;
2333
2334 if (devid) {
2335 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2336 NULL);
2337 if (!device)
2338 return ERR_PTR(-ENOENT);
2339 return device;
2340 }
2341
2342 if (!device_path || !device_path[0])
2343 return ERR_PTR(-EINVAL);
2344
2345 if (strcmp(device_path, "missing") == 0) {
2346 /* Find first missing device */
2347 list_for_each_entry(device, &fs_info->fs_devices->devices,
2348 dev_list) {
2349 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2350 &device->dev_state) && !device->bdev)
2351 return device;
2352 }
2353 return ERR_PTR(-ENOENT);
2354 }
2355
2356 return btrfs_find_device_by_path(fs_info, device_path);
2357 }
2358
2359 /*
2360 * does all the dirty work required for changing file system's UUID.
2361 */
2362 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2363 {
2364 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2365 struct btrfs_fs_devices *old_devices;
2366 struct btrfs_fs_devices *seed_devices;
2367 struct btrfs_super_block *disk_super = fs_info->super_copy;
2368 struct btrfs_device *device;
2369 u64 super_flags;
2370
2371 lockdep_assert_held(&uuid_mutex);
2372 if (!fs_devices->seeding)
2373 return -EINVAL;
2374
2375 /*
2376 * Private copy of the seed devices, anchored at
2377 * fs_info->fs_devices->seed_list
2378 */
2379 seed_devices = alloc_fs_devices(NULL, NULL);
2380 if (IS_ERR(seed_devices))
2381 return PTR_ERR(seed_devices);
2382
2383 /*
2384 * It's necessary to retain a copy of the original seed fs_devices in
2385 * fs_uuids so that filesystems which have been seeded can successfully
2386 * reference the seed device from open_seed_devices. This also supports
2387 * multiple fs seed.
2388 */
2389 old_devices = clone_fs_devices(fs_devices);
2390 if (IS_ERR(old_devices)) {
2391 kfree(seed_devices);
2392 return PTR_ERR(old_devices);
2393 }
2394
2395 list_add(&old_devices->fs_list, &fs_uuids);
2396
2397 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2398 seed_devices->opened = 1;
2399 INIT_LIST_HEAD(&seed_devices->devices);
2400 INIT_LIST_HEAD(&seed_devices->alloc_list);
2401 mutex_init(&seed_devices->device_list_mutex);
2402
2403 mutex_lock(&fs_devices->device_list_mutex);
2404 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2405 synchronize_rcu);
2406 list_for_each_entry(device, &seed_devices->devices, dev_list)
2407 device->fs_devices = seed_devices;
2408
2409 fs_devices->seeding = false;
2410 fs_devices->num_devices = 0;
2411 fs_devices->open_devices = 0;
2412 fs_devices->missing_devices = 0;
2413 fs_devices->rotating = false;
2414 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2415
2416 generate_random_uuid(fs_devices->fsid);
2417 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2418 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2419 mutex_unlock(&fs_devices->device_list_mutex);
2420
2421 super_flags = btrfs_super_flags(disk_super) &
2422 ~BTRFS_SUPER_FLAG_SEEDING;
2423 btrfs_set_super_flags(disk_super, super_flags);
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * Store the expected generation for seed devices in device items.
2430 */
2431 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2432 {
2433 struct btrfs_fs_info *fs_info = trans->fs_info;
2434 struct btrfs_root *root = fs_info->chunk_root;
2435 struct btrfs_path *path;
2436 struct extent_buffer *leaf;
2437 struct btrfs_dev_item *dev_item;
2438 struct btrfs_device *device;
2439 struct btrfs_key key;
2440 u8 fs_uuid[BTRFS_FSID_SIZE];
2441 u8 dev_uuid[BTRFS_UUID_SIZE];
2442 u64 devid;
2443 int ret;
2444
2445 path = btrfs_alloc_path();
2446 if (!path)
2447 return -ENOMEM;
2448
2449 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2450 key.offset = 0;
2451 key.type = BTRFS_DEV_ITEM_KEY;
2452
2453 while (1) {
2454 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2455 if (ret < 0)
2456 goto error;
2457
2458 leaf = path->nodes[0];
2459 next_slot:
2460 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2461 ret = btrfs_next_leaf(root, path);
2462 if (ret > 0)
2463 break;
2464 if (ret < 0)
2465 goto error;
2466 leaf = path->nodes[0];
2467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2468 btrfs_release_path(path);
2469 continue;
2470 }
2471
2472 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2473 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2474 key.type != BTRFS_DEV_ITEM_KEY)
2475 break;
2476
2477 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2478 struct btrfs_dev_item);
2479 devid = btrfs_device_id(leaf, dev_item);
2480 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2481 BTRFS_UUID_SIZE);
2482 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2483 BTRFS_FSID_SIZE);
2484 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2485 fs_uuid);
2486 BUG_ON(!device); /* Logic error */
2487
2488 if (device->fs_devices->seeding) {
2489 btrfs_set_device_generation(leaf, dev_item,
2490 device->generation);
2491 btrfs_mark_buffer_dirty(leaf);
2492 }
2493
2494 path->slots[0]++;
2495 goto next_slot;
2496 }
2497 ret = 0;
2498 error:
2499 btrfs_free_path(path);
2500 return ret;
2501 }
2502
2503 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2504 {
2505 struct btrfs_root *root = fs_info->dev_root;
2506 struct request_queue *q;
2507 struct btrfs_trans_handle *trans;
2508 struct btrfs_device *device;
2509 struct block_device *bdev;
2510 struct super_block *sb = fs_info->sb;
2511 struct rcu_string *name;
2512 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2513 u64 orig_super_total_bytes;
2514 u64 orig_super_num_devices;
2515 int seeding_dev = 0;
2516 int ret = 0;
2517 bool locked = false;
2518
2519 if (sb_rdonly(sb) && !fs_devices->seeding)
2520 return -EROFS;
2521
2522 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2523 fs_info->bdev_holder);
2524 if (IS_ERR(bdev))
2525 return PTR_ERR(bdev);
2526
2527 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2528 ret = -EINVAL;
2529 goto error;
2530 }
2531
2532 if (fs_devices->seeding) {
2533 seeding_dev = 1;
2534 down_write(&sb->s_umount);
2535 mutex_lock(&uuid_mutex);
2536 locked = true;
2537 }
2538
2539 sync_blockdev(bdev);
2540
2541 rcu_read_lock();
2542 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2543 if (device->bdev == bdev) {
2544 ret = -EEXIST;
2545 rcu_read_unlock();
2546 goto error;
2547 }
2548 }
2549 rcu_read_unlock();
2550
2551 device = btrfs_alloc_device(fs_info, NULL, NULL);
2552 if (IS_ERR(device)) {
2553 /* we can safely leave the fs_devices entry around */
2554 ret = PTR_ERR(device);
2555 goto error;
2556 }
2557
2558 name = rcu_string_strdup(device_path, GFP_KERNEL);
2559 if (!name) {
2560 ret = -ENOMEM;
2561 goto error_free_device;
2562 }
2563 rcu_assign_pointer(device->name, name);
2564
2565 device->fs_info = fs_info;
2566 device->bdev = bdev;
2567
2568 ret = btrfs_get_dev_zone_info(device);
2569 if (ret)
2570 goto error_free_device;
2571
2572 trans = btrfs_start_transaction(root, 0);
2573 if (IS_ERR(trans)) {
2574 ret = PTR_ERR(trans);
2575 goto error_free_zone;
2576 }
2577
2578 q = bdev_get_queue(bdev);
2579 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2580 device->generation = trans->transid;
2581 device->io_width = fs_info->sectorsize;
2582 device->io_align = fs_info->sectorsize;
2583 device->sector_size = fs_info->sectorsize;
2584 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2585 fs_info->sectorsize);
2586 device->disk_total_bytes = device->total_bytes;
2587 device->commit_total_bytes = device->total_bytes;
2588 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2589 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2590 device->mode = FMODE_EXCL;
2591 device->dev_stats_valid = 1;
2592 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2593
2594 if (seeding_dev) {
2595 btrfs_clear_sb_rdonly(sb);
2596 ret = btrfs_prepare_sprout(fs_info);
2597 if (ret) {
2598 btrfs_abort_transaction(trans, ret);
2599 goto error_trans;
2600 }
2601 }
2602
2603 device->fs_devices = fs_devices;
2604
2605 mutex_lock(&fs_devices->device_list_mutex);
2606 mutex_lock(&fs_info->chunk_mutex);
2607 list_add_rcu(&device->dev_list, &fs_devices->devices);
2608 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2609 fs_devices->num_devices++;
2610 fs_devices->open_devices++;
2611 fs_devices->rw_devices++;
2612 fs_devices->total_devices++;
2613 fs_devices->total_rw_bytes += device->total_bytes;
2614
2615 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2616
2617 if (!blk_queue_nonrot(q))
2618 fs_devices->rotating = true;
2619
2620 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2621 btrfs_set_super_total_bytes(fs_info->super_copy,
2622 round_down(orig_super_total_bytes + device->total_bytes,
2623 fs_info->sectorsize));
2624
2625 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2626 btrfs_set_super_num_devices(fs_info->super_copy,
2627 orig_super_num_devices + 1);
2628
2629 /*
2630 * we've got more storage, clear any full flags on the space
2631 * infos
2632 */
2633 btrfs_clear_space_info_full(fs_info);
2634
2635 mutex_unlock(&fs_info->chunk_mutex);
2636
2637 /* Add sysfs device entry */
2638 btrfs_sysfs_add_device(device);
2639
2640 mutex_unlock(&fs_devices->device_list_mutex);
2641
2642 if (seeding_dev) {
2643 mutex_lock(&fs_info->chunk_mutex);
2644 ret = init_first_rw_device(trans);
2645 mutex_unlock(&fs_info->chunk_mutex);
2646 if (ret) {
2647 btrfs_abort_transaction(trans, ret);
2648 goto error_sysfs;
2649 }
2650 }
2651
2652 ret = btrfs_add_dev_item(trans, device);
2653 if (ret) {
2654 btrfs_abort_transaction(trans, ret);
2655 goto error_sysfs;
2656 }
2657
2658 if (seeding_dev) {
2659 ret = btrfs_finish_sprout(trans);
2660 if (ret) {
2661 btrfs_abort_transaction(trans, ret);
2662 goto error_sysfs;
2663 }
2664
2665 /*
2666 * fs_devices now represents the newly sprouted filesystem and
2667 * its fsid has been changed by btrfs_prepare_sprout
2668 */
2669 btrfs_sysfs_update_sprout_fsid(fs_devices);
2670 }
2671
2672 ret = btrfs_commit_transaction(trans);
2673
2674 if (seeding_dev) {
2675 mutex_unlock(&uuid_mutex);
2676 up_write(&sb->s_umount);
2677 locked = false;
2678
2679 if (ret) /* transaction commit */
2680 return ret;
2681
2682 ret = btrfs_relocate_sys_chunks(fs_info);
2683 if (ret < 0)
2684 btrfs_handle_fs_error(fs_info, ret,
2685 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2686 trans = btrfs_attach_transaction(root);
2687 if (IS_ERR(trans)) {
2688 if (PTR_ERR(trans) == -ENOENT)
2689 return 0;
2690 ret = PTR_ERR(trans);
2691 trans = NULL;
2692 goto error_sysfs;
2693 }
2694 ret = btrfs_commit_transaction(trans);
2695 }
2696
2697 /*
2698 * Now that we have written a new super block to this device, check all
2699 * other fs_devices list if device_path alienates any other scanned
2700 * device.
2701 * We can ignore the return value as it typically returns -EINVAL and
2702 * only succeeds if the device was an alien.
2703 */
2704 btrfs_forget_devices(device_path);
2705
2706 /* Update ctime/mtime for blkid or udev */
2707 update_dev_time(device_path);
2708
2709 return ret;
2710
2711 error_sysfs:
2712 btrfs_sysfs_remove_device(device);
2713 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2714 mutex_lock(&fs_info->chunk_mutex);
2715 list_del_rcu(&device->dev_list);
2716 list_del(&device->dev_alloc_list);
2717 fs_info->fs_devices->num_devices--;
2718 fs_info->fs_devices->open_devices--;
2719 fs_info->fs_devices->rw_devices--;
2720 fs_info->fs_devices->total_devices--;
2721 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2722 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2723 btrfs_set_super_total_bytes(fs_info->super_copy,
2724 orig_super_total_bytes);
2725 btrfs_set_super_num_devices(fs_info->super_copy,
2726 orig_super_num_devices);
2727 mutex_unlock(&fs_info->chunk_mutex);
2728 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2729 error_trans:
2730 if (seeding_dev)
2731 btrfs_set_sb_rdonly(sb);
2732 if (trans)
2733 btrfs_end_transaction(trans);
2734 error_free_zone:
2735 btrfs_destroy_dev_zone_info(device);
2736 error_free_device:
2737 btrfs_free_device(device);
2738 error:
2739 blkdev_put(bdev, FMODE_EXCL);
2740 if (locked) {
2741 mutex_unlock(&uuid_mutex);
2742 up_write(&sb->s_umount);
2743 }
2744 return ret;
2745 }
2746
2747 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2748 struct btrfs_device *device)
2749 {
2750 int ret;
2751 struct btrfs_path *path;
2752 struct btrfs_root *root = device->fs_info->chunk_root;
2753 struct btrfs_dev_item *dev_item;
2754 struct extent_buffer *leaf;
2755 struct btrfs_key key;
2756
2757 path = btrfs_alloc_path();
2758 if (!path)
2759 return -ENOMEM;
2760
2761 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2762 key.type = BTRFS_DEV_ITEM_KEY;
2763 key.offset = device->devid;
2764
2765 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2766 if (ret < 0)
2767 goto out;
2768
2769 if (ret > 0) {
2770 ret = -ENOENT;
2771 goto out;
2772 }
2773
2774 leaf = path->nodes[0];
2775 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2776
2777 btrfs_set_device_id(leaf, dev_item, device->devid);
2778 btrfs_set_device_type(leaf, dev_item, device->type);
2779 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2780 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2781 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2782 btrfs_set_device_total_bytes(leaf, dev_item,
2783 btrfs_device_get_disk_total_bytes(device));
2784 btrfs_set_device_bytes_used(leaf, dev_item,
2785 btrfs_device_get_bytes_used(device));
2786 btrfs_mark_buffer_dirty(leaf);
2787
2788 out:
2789 btrfs_free_path(path);
2790 return ret;
2791 }
2792
2793 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2794 struct btrfs_device *device, u64 new_size)
2795 {
2796 struct btrfs_fs_info *fs_info = device->fs_info;
2797 struct btrfs_super_block *super_copy = fs_info->super_copy;
2798 u64 old_total;
2799 u64 diff;
2800
2801 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2802 return -EACCES;
2803
2804 new_size = round_down(new_size, fs_info->sectorsize);
2805
2806 mutex_lock(&fs_info->chunk_mutex);
2807 old_total = btrfs_super_total_bytes(super_copy);
2808 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2809
2810 if (new_size <= device->total_bytes ||
2811 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2812 mutex_unlock(&fs_info->chunk_mutex);
2813 return -EINVAL;
2814 }
2815
2816 btrfs_set_super_total_bytes(super_copy,
2817 round_down(old_total + diff, fs_info->sectorsize));
2818 device->fs_devices->total_rw_bytes += diff;
2819
2820 btrfs_device_set_total_bytes(device, new_size);
2821 btrfs_device_set_disk_total_bytes(device, new_size);
2822 btrfs_clear_space_info_full(device->fs_info);
2823 if (list_empty(&device->post_commit_list))
2824 list_add_tail(&device->post_commit_list,
2825 &trans->transaction->dev_update_list);
2826 mutex_unlock(&fs_info->chunk_mutex);
2827
2828 return btrfs_update_device(trans, device);
2829 }
2830
2831 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2832 {
2833 struct btrfs_fs_info *fs_info = trans->fs_info;
2834 struct btrfs_root *root = fs_info->chunk_root;
2835 int ret;
2836 struct btrfs_path *path;
2837 struct btrfs_key key;
2838
2839 path = btrfs_alloc_path();
2840 if (!path)
2841 return -ENOMEM;
2842
2843 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2844 key.offset = chunk_offset;
2845 key.type = BTRFS_CHUNK_ITEM_KEY;
2846
2847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2848 if (ret < 0)
2849 goto out;
2850 else if (ret > 0) { /* Logic error or corruption */
2851 btrfs_handle_fs_error(fs_info, -ENOENT,
2852 "Failed lookup while freeing chunk.");
2853 ret = -ENOENT;
2854 goto out;
2855 }
2856
2857 ret = btrfs_del_item(trans, root, path);
2858 if (ret < 0)
2859 btrfs_handle_fs_error(fs_info, ret,
2860 "Failed to delete chunk item.");
2861 out:
2862 btrfs_free_path(path);
2863 return ret;
2864 }
2865
2866 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2867 {
2868 struct btrfs_super_block *super_copy = fs_info->super_copy;
2869 struct btrfs_disk_key *disk_key;
2870 struct btrfs_chunk *chunk;
2871 u8 *ptr;
2872 int ret = 0;
2873 u32 num_stripes;
2874 u32 array_size;
2875 u32 len = 0;
2876 u32 cur;
2877 struct btrfs_key key;
2878
2879 mutex_lock(&fs_info->chunk_mutex);
2880 array_size = btrfs_super_sys_array_size(super_copy);
2881
2882 ptr = super_copy->sys_chunk_array;
2883 cur = 0;
2884
2885 while (cur < array_size) {
2886 disk_key = (struct btrfs_disk_key *)ptr;
2887 btrfs_disk_key_to_cpu(&key, disk_key);
2888
2889 len = sizeof(*disk_key);
2890
2891 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2892 chunk = (struct btrfs_chunk *)(ptr + len);
2893 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2894 len += btrfs_chunk_item_size(num_stripes);
2895 } else {
2896 ret = -EIO;
2897 break;
2898 }
2899 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2900 key.offset == chunk_offset) {
2901 memmove(ptr, ptr + len, array_size - (cur + len));
2902 array_size -= len;
2903 btrfs_set_super_sys_array_size(super_copy, array_size);
2904 } else {
2905 ptr += len;
2906 cur += len;
2907 }
2908 }
2909 mutex_unlock(&fs_info->chunk_mutex);
2910 return ret;
2911 }
2912
2913 /*
2914 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2915 * @logical: Logical block offset in bytes.
2916 * @length: Length of extent in bytes.
2917 *
2918 * Return: Chunk mapping or ERR_PTR.
2919 */
2920 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2921 u64 logical, u64 length)
2922 {
2923 struct extent_map_tree *em_tree;
2924 struct extent_map *em;
2925
2926 em_tree = &fs_info->mapping_tree;
2927 read_lock(&em_tree->lock);
2928 em = lookup_extent_mapping(em_tree, logical, length);
2929 read_unlock(&em_tree->lock);
2930
2931 if (!em) {
2932 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2933 logical, length);
2934 return ERR_PTR(-EINVAL);
2935 }
2936
2937 if (em->start > logical || em->start + em->len < logical) {
2938 btrfs_crit(fs_info,
2939 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2940 logical, length, em->start, em->start + em->len);
2941 free_extent_map(em);
2942 return ERR_PTR(-EINVAL);
2943 }
2944
2945 /* callers are responsible for dropping em's ref. */
2946 return em;
2947 }
2948
2949 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2950 {
2951 struct btrfs_fs_info *fs_info = trans->fs_info;
2952 struct extent_map *em;
2953 struct map_lookup *map;
2954 u64 dev_extent_len = 0;
2955 int i, ret = 0;
2956 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2957
2958 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2959 if (IS_ERR(em)) {
2960 /*
2961 * This is a logic error, but we don't want to just rely on the
2962 * user having built with ASSERT enabled, so if ASSERT doesn't
2963 * do anything we still error out.
2964 */
2965 ASSERT(0);
2966 return PTR_ERR(em);
2967 }
2968 map = em->map_lookup;
2969 mutex_lock(&fs_info->chunk_mutex);
2970 check_system_chunk(trans, map->type);
2971 mutex_unlock(&fs_info->chunk_mutex);
2972
2973 /*
2974 * Take the device list mutex to prevent races with the final phase of
2975 * a device replace operation that replaces the device object associated
2976 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2977 */
2978 mutex_lock(&fs_devices->device_list_mutex);
2979 for (i = 0; i < map->num_stripes; i++) {
2980 struct btrfs_device *device = map->stripes[i].dev;
2981 ret = btrfs_free_dev_extent(trans, device,
2982 map->stripes[i].physical,
2983 &dev_extent_len);
2984 if (ret) {
2985 mutex_unlock(&fs_devices->device_list_mutex);
2986 btrfs_abort_transaction(trans, ret);
2987 goto out;
2988 }
2989
2990 if (device->bytes_used > 0) {
2991 mutex_lock(&fs_info->chunk_mutex);
2992 btrfs_device_set_bytes_used(device,
2993 device->bytes_used - dev_extent_len);
2994 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2995 btrfs_clear_space_info_full(fs_info);
2996 mutex_unlock(&fs_info->chunk_mutex);
2997 }
2998
2999 ret = btrfs_update_device(trans, device);
3000 if (ret) {
3001 mutex_unlock(&fs_devices->device_list_mutex);
3002 btrfs_abort_transaction(trans, ret);
3003 goto out;
3004 }
3005 }
3006 mutex_unlock(&fs_devices->device_list_mutex);
3007
3008 ret = btrfs_free_chunk(trans, chunk_offset);
3009 if (ret) {
3010 btrfs_abort_transaction(trans, ret);
3011 goto out;
3012 }
3013
3014 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3015
3016 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3017 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3018 if (ret) {
3019 btrfs_abort_transaction(trans, ret);
3020 goto out;
3021 }
3022 }
3023
3024 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3025 if (ret) {
3026 btrfs_abort_transaction(trans, ret);
3027 goto out;
3028 }
3029
3030 out:
3031 /* once for us */
3032 free_extent_map(em);
3033 return ret;
3034 }
3035
3036 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3037 {
3038 struct btrfs_root *root = fs_info->chunk_root;
3039 struct btrfs_trans_handle *trans;
3040 struct btrfs_block_group *block_group;
3041 int ret;
3042
3043 /*
3044 * Prevent races with automatic removal of unused block groups.
3045 * After we relocate and before we remove the chunk with offset
3046 * chunk_offset, automatic removal of the block group can kick in,
3047 * resulting in a failure when calling btrfs_remove_chunk() below.
3048 *
3049 * Make sure to acquire this mutex before doing a tree search (dev
3050 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3051 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3052 * we release the path used to search the chunk/dev tree and before
3053 * the current task acquires this mutex and calls us.
3054 */
3055 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3056
3057 /* step one, relocate all the extents inside this chunk */
3058 btrfs_scrub_pause(fs_info);
3059 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3060 btrfs_scrub_continue(fs_info);
3061 if (ret)
3062 return ret;
3063
3064 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3065 if (!block_group)
3066 return -ENOENT;
3067 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3068 btrfs_put_block_group(block_group);
3069
3070 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3071 chunk_offset);
3072 if (IS_ERR(trans)) {
3073 ret = PTR_ERR(trans);
3074 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3075 return ret;
3076 }
3077
3078 /*
3079 * step two, delete the device extents and the
3080 * chunk tree entries
3081 */
3082 ret = btrfs_remove_chunk(trans, chunk_offset);
3083 btrfs_end_transaction(trans);
3084 return ret;
3085 }
3086
3087 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3088 {
3089 struct btrfs_root *chunk_root = fs_info->chunk_root;
3090 struct btrfs_path *path;
3091 struct extent_buffer *leaf;
3092 struct btrfs_chunk *chunk;
3093 struct btrfs_key key;
3094 struct btrfs_key found_key;
3095 u64 chunk_type;
3096 bool retried = false;
3097 int failed = 0;
3098 int ret;
3099
3100 path = btrfs_alloc_path();
3101 if (!path)
3102 return -ENOMEM;
3103
3104 again:
3105 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3106 key.offset = (u64)-1;
3107 key.type = BTRFS_CHUNK_ITEM_KEY;
3108
3109 while (1) {
3110 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3111 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3112 if (ret < 0) {
3113 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3114 goto error;
3115 }
3116 BUG_ON(ret == 0); /* Corruption */
3117
3118 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3119 key.type);
3120 if (ret)
3121 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3122 if (ret < 0)
3123 goto error;
3124 if (ret > 0)
3125 break;
3126
3127 leaf = path->nodes[0];
3128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3129
3130 chunk = btrfs_item_ptr(leaf, path->slots[0],
3131 struct btrfs_chunk);
3132 chunk_type = btrfs_chunk_type(leaf, chunk);
3133 btrfs_release_path(path);
3134
3135 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3136 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3137 if (ret == -ENOSPC)
3138 failed++;
3139 else
3140 BUG_ON(ret);
3141 }
3142 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3143
3144 if (found_key.offset == 0)
3145 break;
3146 key.offset = found_key.offset - 1;
3147 }
3148 ret = 0;
3149 if (failed && !retried) {
3150 failed = 0;
3151 retried = true;
3152 goto again;
3153 } else if (WARN_ON(failed && retried)) {
3154 ret = -ENOSPC;
3155 }
3156 error:
3157 btrfs_free_path(path);
3158 return ret;
3159 }
3160
3161 /*
3162 * return 1 : allocate a data chunk successfully,
3163 * return <0: errors during allocating a data chunk,
3164 * return 0 : no need to allocate a data chunk.
3165 */
3166 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3167 u64 chunk_offset)
3168 {
3169 struct btrfs_block_group *cache;
3170 u64 bytes_used;
3171 u64 chunk_type;
3172
3173 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3174 ASSERT(cache);
3175 chunk_type = cache->flags;
3176 btrfs_put_block_group(cache);
3177
3178 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3179 return 0;
3180
3181 spin_lock(&fs_info->data_sinfo->lock);
3182 bytes_used = fs_info->data_sinfo->bytes_used;
3183 spin_unlock(&fs_info->data_sinfo->lock);
3184
3185 if (!bytes_used) {
3186 struct btrfs_trans_handle *trans;
3187 int ret;
3188
3189 trans = btrfs_join_transaction(fs_info->tree_root);
3190 if (IS_ERR(trans))
3191 return PTR_ERR(trans);
3192
3193 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3194 btrfs_end_transaction(trans);
3195 if (ret < 0)
3196 return ret;
3197 return 1;
3198 }
3199
3200 return 0;
3201 }
3202
3203 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3204 struct btrfs_balance_control *bctl)
3205 {
3206 struct btrfs_root *root = fs_info->tree_root;
3207 struct btrfs_trans_handle *trans;
3208 struct btrfs_balance_item *item;
3209 struct btrfs_disk_balance_args disk_bargs;
3210 struct btrfs_path *path;
3211 struct extent_buffer *leaf;
3212 struct btrfs_key key;
3213 int ret, err;
3214
3215 path = btrfs_alloc_path();
3216 if (!path)
3217 return -ENOMEM;
3218
3219 trans = btrfs_start_transaction(root, 0);
3220 if (IS_ERR(trans)) {
3221 btrfs_free_path(path);
3222 return PTR_ERR(trans);
3223 }
3224
3225 key.objectid = BTRFS_BALANCE_OBJECTID;
3226 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3227 key.offset = 0;
3228
3229 ret = btrfs_insert_empty_item(trans, root, path, &key,
3230 sizeof(*item));
3231 if (ret)
3232 goto out;
3233
3234 leaf = path->nodes[0];
3235 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3236
3237 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3238
3239 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3240 btrfs_set_balance_data(leaf, item, &disk_bargs);
3241 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3242 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3243 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3244 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3245
3246 btrfs_set_balance_flags(leaf, item, bctl->flags);
3247
3248 btrfs_mark_buffer_dirty(leaf);
3249 out:
3250 btrfs_free_path(path);
3251 err = btrfs_commit_transaction(trans);
3252 if (err && !ret)
3253 ret = err;
3254 return ret;
3255 }
3256
3257 static int del_balance_item(struct btrfs_fs_info *fs_info)
3258 {
3259 struct btrfs_root *root = fs_info->tree_root;
3260 struct btrfs_trans_handle *trans;
3261 struct btrfs_path *path;
3262 struct btrfs_key key;
3263 int ret, err;
3264
3265 path = btrfs_alloc_path();
3266 if (!path)
3267 return -ENOMEM;
3268
3269 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3270 if (IS_ERR(trans)) {
3271 btrfs_free_path(path);
3272 return PTR_ERR(trans);
3273 }
3274
3275 key.objectid = BTRFS_BALANCE_OBJECTID;
3276 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3277 key.offset = 0;
3278
3279 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3280 if (ret < 0)
3281 goto out;
3282 if (ret > 0) {
3283 ret = -ENOENT;
3284 goto out;
3285 }
3286
3287 ret = btrfs_del_item(trans, root, path);
3288 out:
3289 btrfs_free_path(path);
3290 err = btrfs_commit_transaction(trans);
3291 if (err && !ret)
3292 ret = err;
3293 return ret;
3294 }
3295
3296 /*
3297 * This is a heuristic used to reduce the number of chunks balanced on
3298 * resume after balance was interrupted.
3299 */
3300 static void update_balance_args(struct btrfs_balance_control *bctl)
3301 {
3302 /*
3303 * Turn on soft mode for chunk types that were being converted.
3304 */
3305 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3306 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3307 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3308 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3309 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3310 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3311
3312 /*
3313 * Turn on usage filter if is not already used. The idea is
3314 * that chunks that we have already balanced should be
3315 * reasonably full. Don't do it for chunks that are being
3316 * converted - that will keep us from relocating unconverted
3317 * (albeit full) chunks.
3318 */
3319 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3320 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3321 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3322 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3323 bctl->data.usage = 90;
3324 }
3325 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3326 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3327 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3328 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3329 bctl->sys.usage = 90;
3330 }
3331 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3332 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3333 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3334 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3335 bctl->meta.usage = 90;
3336 }
3337 }
3338
3339 /*
3340 * Clear the balance status in fs_info and delete the balance item from disk.
3341 */
3342 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3343 {
3344 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3345 int ret;
3346
3347 BUG_ON(!fs_info->balance_ctl);
3348
3349 spin_lock(&fs_info->balance_lock);
3350 fs_info->balance_ctl = NULL;
3351 spin_unlock(&fs_info->balance_lock);
3352
3353 kfree(bctl);
3354 ret = del_balance_item(fs_info);
3355 if (ret)
3356 btrfs_handle_fs_error(fs_info, ret, NULL);
3357 }
3358
3359 /*
3360 * Balance filters. Return 1 if chunk should be filtered out
3361 * (should not be balanced).
3362 */
3363 static int chunk_profiles_filter(u64 chunk_type,
3364 struct btrfs_balance_args *bargs)
3365 {
3366 chunk_type = chunk_to_extended(chunk_type) &
3367 BTRFS_EXTENDED_PROFILE_MASK;
3368
3369 if (bargs->profiles & chunk_type)
3370 return 0;
3371
3372 return 1;
3373 }
3374
3375 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3376 struct btrfs_balance_args *bargs)
3377 {
3378 struct btrfs_block_group *cache;
3379 u64 chunk_used;
3380 u64 user_thresh_min;
3381 u64 user_thresh_max;
3382 int ret = 1;
3383
3384 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3385 chunk_used = cache->used;
3386
3387 if (bargs->usage_min == 0)
3388 user_thresh_min = 0;
3389 else
3390 user_thresh_min = div_factor_fine(cache->length,
3391 bargs->usage_min);
3392
3393 if (bargs->usage_max == 0)
3394 user_thresh_max = 1;
3395 else if (bargs->usage_max > 100)
3396 user_thresh_max = cache->length;
3397 else
3398 user_thresh_max = div_factor_fine(cache->length,
3399 bargs->usage_max);
3400
3401 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3402 ret = 0;
3403
3404 btrfs_put_block_group(cache);
3405 return ret;
3406 }
3407
3408 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3409 u64 chunk_offset, struct btrfs_balance_args *bargs)
3410 {
3411 struct btrfs_block_group *cache;
3412 u64 chunk_used, user_thresh;
3413 int ret = 1;
3414
3415 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3416 chunk_used = cache->used;
3417
3418 if (bargs->usage_min == 0)
3419 user_thresh = 1;
3420 else if (bargs->usage > 100)
3421 user_thresh = cache->length;
3422 else
3423 user_thresh = div_factor_fine(cache->length, bargs->usage);
3424
3425 if (chunk_used < user_thresh)
3426 ret = 0;
3427
3428 btrfs_put_block_group(cache);
3429 return ret;
3430 }
3431
3432 static int chunk_devid_filter(struct extent_buffer *leaf,
3433 struct btrfs_chunk *chunk,
3434 struct btrfs_balance_args *bargs)
3435 {
3436 struct btrfs_stripe *stripe;
3437 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3438 int i;
3439
3440 for (i = 0; i < num_stripes; i++) {
3441 stripe = btrfs_stripe_nr(chunk, i);
3442 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3443 return 0;
3444 }
3445
3446 return 1;
3447 }
3448
3449 static u64 calc_data_stripes(u64 type, int num_stripes)
3450 {
3451 const int index = btrfs_bg_flags_to_raid_index(type);
3452 const int ncopies = btrfs_raid_array[index].ncopies;
3453 const int nparity = btrfs_raid_array[index].nparity;
3454
3455 if (nparity)
3456 return num_stripes - nparity;
3457 else
3458 return num_stripes / ncopies;
3459 }
3460
3461 /* [pstart, pend) */
3462 static int chunk_drange_filter(struct extent_buffer *leaf,
3463 struct btrfs_chunk *chunk,
3464 struct btrfs_balance_args *bargs)
3465 {
3466 struct btrfs_stripe *stripe;
3467 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3468 u64 stripe_offset;
3469 u64 stripe_length;
3470 u64 type;
3471 int factor;
3472 int i;
3473
3474 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3475 return 0;
3476
3477 type = btrfs_chunk_type(leaf, chunk);
3478 factor = calc_data_stripes(type, num_stripes);
3479
3480 for (i = 0; i < num_stripes; i++) {
3481 stripe = btrfs_stripe_nr(chunk, i);
3482 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3483 continue;
3484
3485 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3486 stripe_length = btrfs_chunk_length(leaf, chunk);
3487 stripe_length = div_u64(stripe_length, factor);
3488
3489 if (stripe_offset < bargs->pend &&
3490 stripe_offset + stripe_length > bargs->pstart)
3491 return 0;
3492 }
3493
3494 return 1;
3495 }
3496
3497 /* [vstart, vend) */
3498 static int chunk_vrange_filter(struct extent_buffer *leaf,
3499 struct btrfs_chunk *chunk,
3500 u64 chunk_offset,
3501 struct btrfs_balance_args *bargs)
3502 {
3503 if (chunk_offset < bargs->vend &&
3504 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3505 /* at least part of the chunk is inside this vrange */
3506 return 0;
3507
3508 return 1;
3509 }
3510
3511 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3512 struct btrfs_chunk *chunk,
3513 struct btrfs_balance_args *bargs)
3514 {
3515 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3516
3517 if (bargs->stripes_min <= num_stripes
3518 && num_stripes <= bargs->stripes_max)
3519 return 0;
3520
3521 return 1;
3522 }
3523
3524 static int chunk_soft_convert_filter(u64 chunk_type,
3525 struct btrfs_balance_args *bargs)
3526 {
3527 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3528 return 0;
3529
3530 chunk_type = chunk_to_extended(chunk_type) &
3531 BTRFS_EXTENDED_PROFILE_MASK;
3532
3533 if (bargs->target == chunk_type)
3534 return 1;
3535
3536 return 0;
3537 }
3538
3539 static int should_balance_chunk(struct extent_buffer *leaf,
3540 struct btrfs_chunk *chunk, u64 chunk_offset)
3541 {
3542 struct btrfs_fs_info *fs_info = leaf->fs_info;
3543 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3544 struct btrfs_balance_args *bargs = NULL;
3545 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3546
3547 /* type filter */
3548 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3549 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3550 return 0;
3551 }
3552
3553 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3554 bargs = &bctl->data;
3555 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3556 bargs = &bctl->sys;
3557 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3558 bargs = &bctl->meta;
3559
3560 /* profiles filter */
3561 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3562 chunk_profiles_filter(chunk_type, bargs)) {
3563 return 0;
3564 }
3565
3566 /* usage filter */
3567 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3568 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3569 return 0;
3570 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3571 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3572 return 0;
3573 }
3574
3575 /* devid filter */
3576 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3577 chunk_devid_filter(leaf, chunk, bargs)) {
3578 return 0;
3579 }
3580
3581 /* drange filter, makes sense only with devid filter */
3582 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3583 chunk_drange_filter(leaf, chunk, bargs)) {
3584 return 0;
3585 }
3586
3587 /* vrange filter */
3588 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3589 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3590 return 0;
3591 }
3592
3593 /* stripes filter */
3594 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3595 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3596 return 0;
3597 }
3598
3599 /* soft profile changing mode */
3600 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3601 chunk_soft_convert_filter(chunk_type, bargs)) {
3602 return 0;
3603 }
3604
3605 /*
3606 * limited by count, must be the last filter
3607 */
3608 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3609 if (bargs->limit == 0)
3610 return 0;
3611 else
3612 bargs->limit--;
3613 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3614 /*
3615 * Same logic as the 'limit' filter; the minimum cannot be
3616 * determined here because we do not have the global information
3617 * about the count of all chunks that satisfy the filters.
3618 */
3619 if (bargs->limit_max == 0)
3620 return 0;
3621 else
3622 bargs->limit_max--;
3623 }
3624
3625 return 1;
3626 }
3627
3628 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3629 {
3630 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3631 struct btrfs_root *chunk_root = fs_info->chunk_root;
3632 u64 chunk_type;
3633 struct btrfs_chunk *chunk;
3634 struct btrfs_path *path = NULL;
3635 struct btrfs_key key;
3636 struct btrfs_key found_key;
3637 struct extent_buffer *leaf;
3638 int slot;
3639 int ret;
3640 int enospc_errors = 0;
3641 bool counting = true;
3642 /* The single value limit and min/max limits use the same bytes in the */
3643 u64 limit_data = bctl->data.limit;
3644 u64 limit_meta = bctl->meta.limit;
3645 u64 limit_sys = bctl->sys.limit;
3646 u32 count_data = 0;
3647 u32 count_meta = 0;
3648 u32 count_sys = 0;
3649 int chunk_reserved = 0;
3650
3651 path = btrfs_alloc_path();
3652 if (!path) {
3653 ret = -ENOMEM;
3654 goto error;
3655 }
3656
3657 /* zero out stat counters */
3658 spin_lock(&fs_info->balance_lock);
3659 memset(&bctl->stat, 0, sizeof(bctl->stat));
3660 spin_unlock(&fs_info->balance_lock);
3661 again:
3662 if (!counting) {
3663 /*
3664 * The single value limit and min/max limits use the same bytes
3665 * in the
3666 */
3667 bctl->data.limit = limit_data;
3668 bctl->meta.limit = limit_meta;
3669 bctl->sys.limit = limit_sys;
3670 }
3671 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3672 key.offset = (u64)-1;
3673 key.type = BTRFS_CHUNK_ITEM_KEY;
3674
3675 while (1) {
3676 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3677 atomic_read(&fs_info->balance_cancel_req)) {
3678 ret = -ECANCELED;
3679 goto error;
3680 }
3681
3682 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3683 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3684 if (ret < 0) {
3685 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3686 goto error;
3687 }
3688
3689 /*
3690 * this shouldn't happen, it means the last relocate
3691 * failed
3692 */
3693 if (ret == 0)
3694 BUG(); /* FIXME break ? */
3695
3696 ret = btrfs_previous_item(chunk_root, path, 0,
3697 BTRFS_CHUNK_ITEM_KEY);
3698 if (ret) {
3699 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700 ret = 0;
3701 break;
3702 }
3703
3704 leaf = path->nodes[0];
3705 slot = path->slots[0];
3706 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707
3708 if (found_key.objectid != key.objectid) {
3709 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3710 break;
3711 }
3712
3713 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3714 chunk_type = btrfs_chunk_type(leaf, chunk);
3715
3716 if (!counting) {
3717 spin_lock(&fs_info->balance_lock);
3718 bctl->stat.considered++;
3719 spin_unlock(&fs_info->balance_lock);
3720 }
3721
3722 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3723
3724 btrfs_release_path(path);
3725 if (!ret) {
3726 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3727 goto loop;
3728 }
3729
3730 if (counting) {
3731 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3732 spin_lock(&fs_info->balance_lock);
3733 bctl->stat.expected++;
3734 spin_unlock(&fs_info->balance_lock);
3735
3736 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3737 count_data++;
3738 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3739 count_sys++;
3740 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3741 count_meta++;
3742
3743 goto loop;
3744 }
3745
3746 /*
3747 * Apply limit_min filter, no need to check if the LIMITS
3748 * filter is used, limit_min is 0 by default
3749 */
3750 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3751 count_data < bctl->data.limit_min)
3752 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3753 count_meta < bctl->meta.limit_min)
3754 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3755 count_sys < bctl->sys.limit_min)) {
3756 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757 goto loop;
3758 }
3759
3760 if (!chunk_reserved) {
3761 /*
3762 * We may be relocating the only data chunk we have,
3763 * which could potentially end up with losing data's
3764 * raid profile, so lets allocate an empty one in
3765 * advance.
3766 */
3767 ret = btrfs_may_alloc_data_chunk(fs_info,
3768 found_key.offset);
3769 if (ret < 0) {
3770 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3771 goto error;
3772 } else if (ret == 1) {
3773 chunk_reserved = 1;
3774 }
3775 }
3776
3777 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3778 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3779 if (ret == -ENOSPC) {
3780 enospc_errors++;
3781 } else if (ret == -ETXTBSY) {
3782 btrfs_info(fs_info,
3783 "skipping relocation of block group %llu due to active swapfile",
3784 found_key.offset);
3785 ret = 0;
3786 } else if (ret) {
3787 goto error;
3788 } else {
3789 spin_lock(&fs_info->balance_lock);
3790 bctl->stat.completed++;
3791 spin_unlock(&fs_info->balance_lock);
3792 }
3793 loop:
3794 if (found_key.offset == 0)
3795 break;
3796 key.offset = found_key.offset - 1;
3797 }
3798
3799 if (counting) {
3800 btrfs_release_path(path);
3801 counting = false;
3802 goto again;
3803 }
3804 error:
3805 btrfs_free_path(path);
3806 if (enospc_errors) {
3807 btrfs_info(fs_info, "%d enospc errors during balance",
3808 enospc_errors);
3809 if (!ret)
3810 ret = -ENOSPC;
3811 }
3812
3813 return ret;
3814 }
3815
3816 /**
3817 * alloc_profile_is_valid - see if a given profile is valid and reduced
3818 * @flags: profile to validate
3819 * @extended: if true @flags is treated as an extended profile
3820 */
3821 static int alloc_profile_is_valid(u64 flags, int extended)
3822 {
3823 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3824 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3825
3826 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3827
3828 /* 1) check that all other bits are zeroed */
3829 if (flags & ~mask)
3830 return 0;
3831
3832 /* 2) see if profile is reduced */
3833 if (flags == 0)
3834 return !extended; /* "0" is valid for usual profiles */
3835
3836 return has_single_bit_set(flags);
3837 }
3838
3839 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3840 {
3841 /* cancel requested || normal exit path */
3842 return atomic_read(&fs_info->balance_cancel_req) ||
3843 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3844 atomic_read(&fs_info->balance_cancel_req) == 0);
3845 }
3846
3847 /*
3848 * Validate target profile against allowed profiles and return true if it's OK.
3849 * Otherwise print the error message and return false.
3850 */
3851 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3852 const struct btrfs_balance_args *bargs,
3853 u64 allowed, const char *type)
3854 {
3855 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3856 return true;
3857
3858 /* Profile is valid and does not have bits outside of the allowed set */
3859 if (alloc_profile_is_valid(bargs->target, 1) &&
3860 (bargs->target & ~allowed) == 0)
3861 return true;
3862
3863 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3864 type, btrfs_bg_type_to_raid_name(bargs->target));
3865 return false;
3866 }
3867
3868 /*
3869 * Fill @buf with textual description of balance filter flags @bargs, up to
3870 * @size_buf including the terminating null. The output may be trimmed if it
3871 * does not fit into the provided buffer.
3872 */
3873 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3874 u32 size_buf)
3875 {
3876 int ret;
3877 u32 size_bp = size_buf;
3878 char *bp = buf;
3879 u64 flags = bargs->flags;
3880 char tmp_buf[128] = {'\0'};
3881
3882 if (!flags)
3883 return;
3884
3885 #define CHECK_APPEND_NOARG(a) \
3886 do { \
3887 ret = snprintf(bp, size_bp, (a)); \
3888 if (ret < 0 || ret >= size_bp) \
3889 goto out_overflow; \
3890 size_bp -= ret; \
3891 bp += ret; \
3892 } while (0)
3893
3894 #define CHECK_APPEND_1ARG(a, v1) \
3895 do { \
3896 ret = snprintf(bp, size_bp, (a), (v1)); \
3897 if (ret < 0 || ret >= size_bp) \
3898 goto out_overflow; \
3899 size_bp -= ret; \
3900 bp += ret; \
3901 } while (0)
3902
3903 #define CHECK_APPEND_2ARG(a, v1, v2) \
3904 do { \
3905 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3906 if (ret < 0 || ret >= size_bp) \
3907 goto out_overflow; \
3908 size_bp -= ret; \
3909 bp += ret; \
3910 } while (0)
3911
3912 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3913 CHECK_APPEND_1ARG("convert=%s,",
3914 btrfs_bg_type_to_raid_name(bargs->target));
3915
3916 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3917 CHECK_APPEND_NOARG("soft,");
3918
3919 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3920 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3921 sizeof(tmp_buf));
3922 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3923 }
3924
3925 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3926 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3927
3928 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3929 CHECK_APPEND_2ARG("usage=%u..%u,",
3930 bargs->usage_min, bargs->usage_max);
3931
3932 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3933 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3934
3935 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3936 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3937 bargs->pstart, bargs->pend);
3938
3939 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3940 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3941 bargs->vstart, bargs->vend);
3942
3943 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3944 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3945
3946 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3947 CHECK_APPEND_2ARG("limit=%u..%u,",
3948 bargs->limit_min, bargs->limit_max);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3951 CHECK_APPEND_2ARG("stripes=%u..%u,",
3952 bargs->stripes_min, bargs->stripes_max);
3953
3954 #undef CHECK_APPEND_2ARG
3955 #undef CHECK_APPEND_1ARG
3956 #undef CHECK_APPEND_NOARG
3957
3958 out_overflow:
3959
3960 if (size_bp < size_buf)
3961 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3962 else
3963 buf[0] = '\0';
3964 }
3965
3966 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3967 {
3968 u32 size_buf = 1024;
3969 char tmp_buf[192] = {'\0'};
3970 char *buf;
3971 char *bp;
3972 u32 size_bp = size_buf;
3973 int ret;
3974 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3975
3976 buf = kzalloc(size_buf, GFP_KERNEL);
3977 if (!buf)
3978 return;
3979
3980 bp = buf;
3981
3982 #define CHECK_APPEND_1ARG(a, v1) \
3983 do { \
3984 ret = snprintf(bp, size_bp, (a), (v1)); \
3985 if (ret < 0 || ret >= size_bp) \
3986 goto out_overflow; \
3987 size_bp -= ret; \
3988 bp += ret; \
3989 } while (0)
3990
3991 if (bctl->flags & BTRFS_BALANCE_FORCE)
3992 CHECK_APPEND_1ARG("%s", "-f ");
3993
3994 if (bctl->flags & BTRFS_BALANCE_DATA) {
3995 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3996 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3997 }
3998
3999 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4000 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4001 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4002 }
4003
4004 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4005 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4006 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4007 }
4008
4009 #undef CHECK_APPEND_1ARG
4010
4011 out_overflow:
4012
4013 if (size_bp < size_buf)
4014 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4015 btrfs_info(fs_info, "balance: %s %s",
4016 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4017 "resume" : "start", buf);
4018
4019 kfree(buf);
4020 }
4021
4022 /*
4023 * Should be called with balance mutexe held
4024 */
4025 int btrfs_balance(struct btrfs_fs_info *fs_info,
4026 struct btrfs_balance_control *bctl,
4027 struct btrfs_ioctl_balance_args *bargs)
4028 {
4029 u64 meta_target, data_target;
4030 u64 allowed;
4031 int mixed = 0;
4032 int ret;
4033 u64 num_devices;
4034 unsigned seq;
4035 bool reducing_redundancy;
4036 int i;
4037
4038 if (btrfs_fs_closing(fs_info) ||
4039 atomic_read(&fs_info->balance_pause_req) ||
4040 btrfs_should_cancel_balance(fs_info)) {
4041 ret = -EINVAL;
4042 goto out;
4043 }
4044
4045 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4046 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4047 mixed = 1;
4048
4049 /*
4050 * In case of mixed groups both data and meta should be picked,
4051 * and identical options should be given for both of them.
4052 */
4053 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4054 if (mixed && (bctl->flags & allowed)) {
4055 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4056 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4057 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4058 btrfs_err(fs_info,
4059 "balance: mixed groups data and metadata options must be the same");
4060 ret = -EINVAL;
4061 goto out;
4062 }
4063 }
4064
4065 /*
4066 * rw_devices will not change at the moment, device add/delete/replace
4067 * are exclusive
4068 */
4069 num_devices = fs_info->fs_devices->rw_devices;
4070
4071 /*
4072 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073 * special bit for it, to make it easier to distinguish. Thus we need
4074 * to set it manually, or balance would refuse the profile.
4075 */
4076 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078 if (num_devices >= btrfs_raid_array[i].devs_min)
4079 allowed |= btrfs_raid_array[i].bg_flag;
4080
4081 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4082 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4083 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4084 ret = -EINVAL;
4085 goto out;
4086 }
4087
4088 /*
4089 * Allow to reduce metadata or system integrity only if force set for
4090 * profiles with redundancy (copies, parity)
4091 */
4092 allowed = 0;
4093 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4094 if (btrfs_raid_array[i].ncopies >= 2 ||
4095 btrfs_raid_array[i].tolerated_failures >= 1)
4096 allowed |= btrfs_raid_array[i].bg_flag;
4097 }
4098 do {
4099 seq = read_seqbegin(&fs_info->profiles_lock);
4100
4101 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4102 (fs_info->avail_system_alloc_bits & allowed) &&
4103 !(bctl->sys.target & allowed)) ||
4104 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4105 (fs_info->avail_metadata_alloc_bits & allowed) &&
4106 !(bctl->meta.target & allowed)))
4107 reducing_redundancy = true;
4108 else
4109 reducing_redundancy = false;
4110
4111 /* if we're not converting, the target field is uninitialized */
4112 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4113 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4114 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4115 bctl->data.target : fs_info->avail_data_alloc_bits;
4116 } while (read_seqretry(&fs_info->profiles_lock, seq));
4117
4118 if (reducing_redundancy) {
4119 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4120 btrfs_info(fs_info,
4121 "balance: force reducing metadata redundancy");
4122 } else {
4123 btrfs_err(fs_info,
4124 "balance: reduces metadata redundancy, use --force if you want this");
4125 ret = -EINVAL;
4126 goto out;
4127 }
4128 }
4129
4130 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4131 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4132 btrfs_warn(fs_info,
4133 "balance: metadata profile %s has lower redundancy than data profile %s",
4134 btrfs_bg_type_to_raid_name(meta_target),
4135 btrfs_bg_type_to_raid_name(data_target));
4136 }
4137
4138 if (fs_info->send_in_progress) {
4139 btrfs_warn_rl(fs_info,
4140 "cannot run balance while send operations are in progress (%d in progress)",
4141 fs_info->send_in_progress);
4142 ret = -EAGAIN;
4143 goto out;
4144 }
4145
4146 ret = insert_balance_item(fs_info, bctl);
4147 if (ret && ret != -EEXIST)
4148 goto out;
4149
4150 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4151 BUG_ON(ret == -EEXIST);
4152 BUG_ON(fs_info->balance_ctl);
4153 spin_lock(&fs_info->balance_lock);
4154 fs_info->balance_ctl = bctl;
4155 spin_unlock(&fs_info->balance_lock);
4156 } else {
4157 BUG_ON(ret != -EEXIST);
4158 spin_lock(&fs_info->balance_lock);
4159 update_balance_args(bctl);
4160 spin_unlock(&fs_info->balance_lock);
4161 }
4162
4163 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4164 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4165 describe_balance_start_or_resume(fs_info);
4166 mutex_unlock(&fs_info->balance_mutex);
4167
4168 ret = __btrfs_balance(fs_info);
4169
4170 mutex_lock(&fs_info->balance_mutex);
4171 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4172 btrfs_info(fs_info, "balance: paused");
4173 /*
4174 * Balance can be canceled by:
4175 *
4176 * - Regular cancel request
4177 * Then ret == -ECANCELED and balance_cancel_req > 0
4178 *
4179 * - Fatal signal to "btrfs" process
4180 * Either the signal caught by wait_reserve_ticket() and callers
4181 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4182 * got -ECANCELED.
4183 * Either way, in this case balance_cancel_req = 0, and
4184 * ret == -EINTR or ret == -ECANCELED.
4185 *
4186 * So here we only check the return value to catch canceled balance.
4187 */
4188 else if (ret == -ECANCELED || ret == -EINTR)
4189 btrfs_info(fs_info, "balance: canceled");
4190 else
4191 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
4193 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194
4195 if (bargs) {
4196 memset(bargs, 0, sizeof(*bargs));
4197 btrfs_update_ioctl_balance_args(fs_info, bargs);
4198 }
4199
4200 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201 balance_need_close(fs_info)) {
4202 reset_balance_state(fs_info);
4203 btrfs_exclop_finish(fs_info);
4204 }
4205
4206 wake_up(&fs_info->balance_wait_q);
4207
4208 return ret;
4209 out:
4210 if (bctl->flags & BTRFS_BALANCE_RESUME)
4211 reset_balance_state(fs_info);
4212 else
4213 kfree(bctl);
4214 btrfs_exclop_finish(fs_info);
4215
4216 return ret;
4217 }
4218
4219 static int balance_kthread(void *data)
4220 {
4221 struct btrfs_fs_info *fs_info = data;
4222 int ret = 0;
4223
4224 mutex_lock(&fs_info->balance_mutex);
4225 if (fs_info->balance_ctl)
4226 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227 mutex_unlock(&fs_info->balance_mutex);
4228
4229 return ret;
4230 }
4231
4232 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233 {
4234 struct task_struct *tsk;
4235
4236 mutex_lock(&fs_info->balance_mutex);
4237 if (!fs_info->balance_ctl) {
4238 mutex_unlock(&fs_info->balance_mutex);
4239 return 0;
4240 }
4241 mutex_unlock(&fs_info->balance_mutex);
4242
4243 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244 btrfs_info(fs_info, "balance: resume skipped");
4245 return 0;
4246 }
4247
4248 /*
4249 * A ro->rw remount sequence should continue with the paused balance
4250 * regardless of who pauses it, system or the user as of now, so set
4251 * the resume flag.
4252 */
4253 spin_lock(&fs_info->balance_lock);
4254 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255 spin_unlock(&fs_info->balance_lock);
4256
4257 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258 return PTR_ERR_OR_ZERO(tsk);
4259 }
4260
4261 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262 {
4263 struct btrfs_balance_control *bctl;
4264 struct btrfs_balance_item *item;
4265 struct btrfs_disk_balance_args disk_bargs;
4266 struct btrfs_path *path;
4267 struct extent_buffer *leaf;
4268 struct btrfs_key key;
4269 int ret;
4270
4271 path = btrfs_alloc_path();
4272 if (!path)
4273 return -ENOMEM;
4274
4275 key.objectid = BTRFS_BALANCE_OBJECTID;
4276 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277 key.offset = 0;
4278
4279 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280 if (ret < 0)
4281 goto out;
4282 if (ret > 0) { /* ret = -ENOENT; */
4283 ret = 0;
4284 goto out;
4285 }
4286
4287 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288 if (!bctl) {
4289 ret = -ENOMEM;
4290 goto out;
4291 }
4292
4293 leaf = path->nodes[0];
4294 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
4296 bctl->flags = btrfs_balance_flags(leaf, item);
4297 bctl->flags |= BTRFS_BALANCE_RESUME;
4298
4299 btrfs_balance_data(leaf, item, &disk_bargs);
4300 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301 btrfs_balance_meta(leaf, item, &disk_bargs);
4302 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303 btrfs_balance_sys(leaf, item, &disk_bargs);
4304 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
4306 /*
4307 * This should never happen, as the paused balance state is recovered
4308 * during mount without any chance of other exclusive ops to collide.
4309 *
4310 * This gives the exclusive op status to balance and keeps in paused
4311 * state until user intervention (cancel or umount). If the ownership
4312 * cannot be assigned, show a message but do not fail. The balance
4313 * is in a paused state and must have fs_info::balance_ctl properly
4314 * set up.
4315 */
4316 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4317 btrfs_warn(fs_info,
4318 "balance: cannot set exclusive op status, resume manually");
4319
4320 btrfs_release_path(path);
4321
4322 mutex_lock(&fs_info->balance_mutex);
4323 BUG_ON(fs_info->balance_ctl);
4324 spin_lock(&fs_info->balance_lock);
4325 fs_info->balance_ctl = bctl;
4326 spin_unlock(&fs_info->balance_lock);
4327 mutex_unlock(&fs_info->balance_mutex);
4328 out:
4329 btrfs_free_path(path);
4330 return ret;
4331 }
4332
4333 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4334 {
4335 int ret = 0;
4336
4337 mutex_lock(&fs_info->balance_mutex);
4338 if (!fs_info->balance_ctl) {
4339 mutex_unlock(&fs_info->balance_mutex);
4340 return -ENOTCONN;
4341 }
4342
4343 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4344 atomic_inc(&fs_info->balance_pause_req);
4345 mutex_unlock(&fs_info->balance_mutex);
4346
4347 wait_event(fs_info->balance_wait_q,
4348 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4349
4350 mutex_lock(&fs_info->balance_mutex);
4351 /* we are good with balance_ctl ripped off from under us */
4352 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4353 atomic_dec(&fs_info->balance_pause_req);
4354 } else {
4355 ret = -ENOTCONN;
4356 }
4357
4358 mutex_unlock(&fs_info->balance_mutex);
4359 return ret;
4360 }
4361
4362 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4363 {
4364 mutex_lock(&fs_info->balance_mutex);
4365 if (!fs_info->balance_ctl) {
4366 mutex_unlock(&fs_info->balance_mutex);
4367 return -ENOTCONN;
4368 }
4369
4370 /*
4371 * A paused balance with the item stored on disk can be resumed at
4372 * mount time if the mount is read-write. Otherwise it's still paused
4373 * and we must not allow cancelling as it deletes the item.
4374 */
4375 if (sb_rdonly(fs_info->sb)) {
4376 mutex_unlock(&fs_info->balance_mutex);
4377 return -EROFS;
4378 }
4379
4380 atomic_inc(&fs_info->balance_cancel_req);
4381 /*
4382 * if we are running just wait and return, balance item is
4383 * deleted in btrfs_balance in this case
4384 */
4385 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4386 mutex_unlock(&fs_info->balance_mutex);
4387 wait_event(fs_info->balance_wait_q,
4388 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4389 mutex_lock(&fs_info->balance_mutex);
4390 } else {
4391 mutex_unlock(&fs_info->balance_mutex);
4392 /*
4393 * Lock released to allow other waiters to continue, we'll
4394 * reexamine the status again.
4395 */
4396 mutex_lock(&fs_info->balance_mutex);
4397
4398 if (fs_info->balance_ctl) {
4399 reset_balance_state(fs_info);
4400 btrfs_exclop_finish(fs_info);
4401 btrfs_info(fs_info, "balance: canceled");
4402 }
4403 }
4404
4405 BUG_ON(fs_info->balance_ctl ||
4406 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4407 atomic_dec(&fs_info->balance_cancel_req);
4408 mutex_unlock(&fs_info->balance_mutex);
4409 return 0;
4410 }
4411
4412 int btrfs_uuid_scan_kthread(void *data)
4413 {
4414 struct btrfs_fs_info *fs_info = data;
4415 struct btrfs_root *root = fs_info->tree_root;
4416 struct btrfs_key key;
4417 struct btrfs_path *path = NULL;
4418 int ret = 0;
4419 struct extent_buffer *eb;
4420 int slot;
4421 struct btrfs_root_item root_item;
4422 u32 item_size;
4423 struct btrfs_trans_handle *trans = NULL;
4424 bool closing = false;
4425
4426 path = btrfs_alloc_path();
4427 if (!path) {
4428 ret = -ENOMEM;
4429 goto out;
4430 }
4431
4432 key.objectid = 0;
4433 key.type = BTRFS_ROOT_ITEM_KEY;
4434 key.offset = 0;
4435
4436 while (1) {
4437 if (btrfs_fs_closing(fs_info)) {
4438 closing = true;
4439 break;
4440 }
4441 ret = btrfs_search_forward(root, &key, path,
4442 BTRFS_OLDEST_GENERATION);
4443 if (ret) {
4444 if (ret > 0)
4445 ret = 0;
4446 break;
4447 }
4448
4449 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4450 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4451 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4452 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4453 goto skip;
4454
4455 eb = path->nodes[0];
4456 slot = path->slots[0];
4457 item_size = btrfs_item_size_nr(eb, slot);
4458 if (item_size < sizeof(root_item))
4459 goto skip;
4460
4461 read_extent_buffer(eb, &root_item,
4462 btrfs_item_ptr_offset(eb, slot),
4463 (int)sizeof(root_item));
4464 if (btrfs_root_refs(&root_item) == 0)
4465 goto skip;
4466
4467 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4468 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4469 if (trans)
4470 goto update_tree;
4471
4472 btrfs_release_path(path);
4473 /*
4474 * 1 - subvol uuid item
4475 * 1 - received_subvol uuid item
4476 */
4477 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4478 if (IS_ERR(trans)) {
4479 ret = PTR_ERR(trans);
4480 break;
4481 }
4482 continue;
4483 } else {
4484 goto skip;
4485 }
4486 update_tree:
4487 btrfs_release_path(path);
4488 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4489 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4490 BTRFS_UUID_KEY_SUBVOL,
4491 key.objectid);
4492 if (ret < 0) {
4493 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4494 ret);
4495 break;
4496 }
4497 }
4498
4499 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4500 ret = btrfs_uuid_tree_add(trans,
4501 root_item.received_uuid,
4502 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4503 key.objectid);
4504 if (ret < 0) {
4505 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4506 ret);
4507 break;
4508 }
4509 }
4510
4511 skip:
4512 btrfs_release_path(path);
4513 if (trans) {
4514 ret = btrfs_end_transaction(trans);
4515 trans = NULL;
4516 if (ret)
4517 break;
4518 }
4519
4520 if (key.offset < (u64)-1) {
4521 key.offset++;
4522 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4523 key.offset = 0;
4524 key.type = BTRFS_ROOT_ITEM_KEY;
4525 } else if (key.objectid < (u64)-1) {
4526 key.offset = 0;
4527 key.type = BTRFS_ROOT_ITEM_KEY;
4528 key.objectid++;
4529 } else {
4530 break;
4531 }
4532 cond_resched();
4533 }
4534
4535 out:
4536 btrfs_free_path(path);
4537 if (trans && !IS_ERR(trans))
4538 btrfs_end_transaction(trans);
4539 if (ret)
4540 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4541 else if (!closing)
4542 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4543 up(&fs_info->uuid_tree_rescan_sem);
4544 return 0;
4545 }
4546
4547 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4548 {
4549 struct btrfs_trans_handle *trans;
4550 struct btrfs_root *tree_root = fs_info->tree_root;
4551 struct btrfs_root *uuid_root;
4552 struct task_struct *task;
4553 int ret;
4554
4555 /*
4556 * 1 - root node
4557 * 1 - root item
4558 */
4559 trans = btrfs_start_transaction(tree_root, 2);
4560 if (IS_ERR(trans))
4561 return PTR_ERR(trans);
4562
4563 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4564 if (IS_ERR(uuid_root)) {
4565 ret = PTR_ERR(uuid_root);
4566 btrfs_abort_transaction(trans, ret);
4567 btrfs_end_transaction(trans);
4568 return ret;
4569 }
4570
4571 fs_info->uuid_root = uuid_root;
4572
4573 ret = btrfs_commit_transaction(trans);
4574 if (ret)
4575 return ret;
4576
4577 down(&fs_info->uuid_tree_rescan_sem);
4578 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4579 if (IS_ERR(task)) {
4580 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4581 btrfs_warn(fs_info, "failed to start uuid_scan task");
4582 up(&fs_info->uuid_tree_rescan_sem);
4583 return PTR_ERR(task);
4584 }
4585
4586 return 0;
4587 }
4588
4589 /*
4590 * shrinking a device means finding all of the device extents past
4591 * the new size, and then following the back refs to the chunks.
4592 * The chunk relocation code actually frees the device extent
4593 */
4594 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4595 {
4596 struct btrfs_fs_info *fs_info = device->fs_info;
4597 struct btrfs_root *root = fs_info->dev_root;
4598 struct btrfs_trans_handle *trans;
4599 struct btrfs_dev_extent *dev_extent = NULL;
4600 struct btrfs_path *path;
4601 u64 length;
4602 u64 chunk_offset;
4603 int ret;
4604 int slot;
4605 int failed = 0;
4606 bool retried = false;
4607 struct extent_buffer *l;
4608 struct btrfs_key key;
4609 struct btrfs_super_block *super_copy = fs_info->super_copy;
4610 u64 old_total = btrfs_super_total_bytes(super_copy);
4611 u64 old_size = btrfs_device_get_total_bytes(device);
4612 u64 diff;
4613 u64 start;
4614
4615 new_size = round_down(new_size, fs_info->sectorsize);
4616 start = new_size;
4617 diff = round_down(old_size - new_size, fs_info->sectorsize);
4618
4619 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4620 return -EINVAL;
4621
4622 path = btrfs_alloc_path();
4623 if (!path)
4624 return -ENOMEM;
4625
4626 path->reada = READA_BACK;
4627
4628 trans = btrfs_start_transaction(root, 0);
4629 if (IS_ERR(trans)) {
4630 btrfs_free_path(path);
4631 return PTR_ERR(trans);
4632 }
4633
4634 mutex_lock(&fs_info->chunk_mutex);
4635
4636 btrfs_device_set_total_bytes(device, new_size);
4637 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4638 device->fs_devices->total_rw_bytes -= diff;
4639 atomic64_sub(diff, &fs_info->free_chunk_space);
4640 }
4641
4642 /*
4643 * Once the device's size has been set to the new size, ensure all
4644 * in-memory chunks are synced to disk so that the loop below sees them
4645 * and relocates them accordingly.
4646 */
4647 if (contains_pending_extent(device, &start, diff)) {
4648 mutex_unlock(&fs_info->chunk_mutex);
4649 ret = btrfs_commit_transaction(trans);
4650 if (ret)
4651 goto done;
4652 } else {
4653 mutex_unlock(&fs_info->chunk_mutex);
4654 btrfs_end_transaction(trans);
4655 }
4656
4657 again:
4658 key.objectid = device->devid;
4659 key.offset = (u64)-1;
4660 key.type = BTRFS_DEV_EXTENT_KEY;
4661
4662 do {
4663 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4664 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4665 if (ret < 0) {
4666 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4667 goto done;
4668 }
4669
4670 ret = btrfs_previous_item(root, path, 0, key.type);
4671 if (ret)
4672 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4673 if (ret < 0)
4674 goto done;
4675 if (ret) {
4676 ret = 0;
4677 btrfs_release_path(path);
4678 break;
4679 }
4680
4681 l = path->nodes[0];
4682 slot = path->slots[0];
4683 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4684
4685 if (key.objectid != device->devid) {
4686 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4687 btrfs_release_path(path);
4688 break;
4689 }
4690
4691 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4692 length = btrfs_dev_extent_length(l, dev_extent);
4693
4694 if (key.offset + length <= new_size) {
4695 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4696 btrfs_release_path(path);
4697 break;
4698 }
4699
4700 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4701 btrfs_release_path(path);
4702
4703 /*
4704 * We may be relocating the only data chunk we have,
4705 * which could potentially end up with losing data's
4706 * raid profile, so lets allocate an empty one in
4707 * advance.
4708 */
4709 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4710 if (ret < 0) {
4711 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4712 goto done;
4713 }
4714
4715 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4716 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4717 if (ret == -ENOSPC) {
4718 failed++;
4719 } else if (ret) {
4720 if (ret == -ETXTBSY) {
4721 btrfs_warn(fs_info,
4722 "could not shrink block group %llu due to active swapfile",
4723 chunk_offset);
4724 }
4725 goto done;
4726 }
4727 } while (key.offset-- > 0);
4728
4729 if (failed && !retried) {
4730 failed = 0;
4731 retried = true;
4732 goto again;
4733 } else if (failed && retried) {
4734 ret = -ENOSPC;
4735 goto done;
4736 }
4737
4738 /* Shrinking succeeded, else we would be at "done". */
4739 trans = btrfs_start_transaction(root, 0);
4740 if (IS_ERR(trans)) {
4741 ret = PTR_ERR(trans);
4742 goto done;
4743 }
4744
4745 mutex_lock(&fs_info->chunk_mutex);
4746 /* Clear all state bits beyond the shrunk device size */
4747 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4748 CHUNK_STATE_MASK);
4749
4750 btrfs_device_set_disk_total_bytes(device, new_size);
4751 if (list_empty(&device->post_commit_list))
4752 list_add_tail(&device->post_commit_list,
4753 &trans->transaction->dev_update_list);
4754
4755 WARN_ON(diff > old_total);
4756 btrfs_set_super_total_bytes(super_copy,
4757 round_down(old_total - diff, fs_info->sectorsize));
4758 mutex_unlock(&fs_info->chunk_mutex);
4759
4760 /* Now btrfs_update_device() will change the on-disk size. */
4761 ret = btrfs_update_device(trans, device);
4762 if (ret < 0) {
4763 btrfs_abort_transaction(trans, ret);
4764 btrfs_end_transaction(trans);
4765 } else {
4766 ret = btrfs_commit_transaction(trans);
4767 }
4768 done:
4769 btrfs_free_path(path);
4770 if (ret) {
4771 mutex_lock(&fs_info->chunk_mutex);
4772 btrfs_device_set_total_bytes(device, old_size);
4773 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4774 device->fs_devices->total_rw_bytes += diff;
4775 atomic64_add(diff, &fs_info->free_chunk_space);
4776 mutex_unlock(&fs_info->chunk_mutex);
4777 }
4778 return ret;
4779 }
4780
4781 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4782 struct btrfs_key *key,
4783 struct btrfs_chunk *chunk, int item_size)
4784 {
4785 struct btrfs_super_block *super_copy = fs_info->super_copy;
4786 struct btrfs_disk_key disk_key;
4787 u32 array_size;
4788 u8 *ptr;
4789
4790 mutex_lock(&fs_info->chunk_mutex);
4791 array_size = btrfs_super_sys_array_size(super_copy);
4792 if (array_size + item_size + sizeof(disk_key)
4793 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4794 mutex_unlock(&fs_info->chunk_mutex);
4795 return -EFBIG;
4796 }
4797
4798 ptr = super_copy->sys_chunk_array + array_size;
4799 btrfs_cpu_key_to_disk(&disk_key, key);
4800 memcpy(ptr, &disk_key, sizeof(disk_key));
4801 ptr += sizeof(disk_key);
4802 memcpy(ptr, chunk, item_size);
4803 item_size += sizeof(disk_key);
4804 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4805 mutex_unlock(&fs_info->chunk_mutex);
4806
4807 return 0;
4808 }
4809
4810 /*
4811 * sort the devices in descending order by max_avail, total_avail
4812 */
4813 static int btrfs_cmp_device_info(const void *a, const void *b)
4814 {
4815 const struct btrfs_device_info *di_a = a;
4816 const struct btrfs_device_info *di_b = b;
4817
4818 if (di_a->max_avail > di_b->max_avail)
4819 return -1;
4820 if (di_a->max_avail < di_b->max_avail)
4821 return 1;
4822 if (di_a->total_avail > di_b->total_avail)
4823 return -1;
4824 if (di_a->total_avail < di_b->total_avail)
4825 return 1;
4826 return 0;
4827 }
4828
4829 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4830 {
4831 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4832 return;
4833
4834 btrfs_set_fs_incompat(info, RAID56);
4835 }
4836
4837 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4838 {
4839 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4840 return;
4841
4842 btrfs_set_fs_incompat(info, RAID1C34);
4843 }
4844
4845 /*
4846 * Structure used internally for __btrfs_alloc_chunk() function.
4847 * Wraps needed parameters.
4848 */
4849 struct alloc_chunk_ctl {
4850 u64 start;
4851 u64 type;
4852 /* Total number of stripes to allocate */
4853 int num_stripes;
4854 /* sub_stripes info for map */
4855 int sub_stripes;
4856 /* Stripes per device */
4857 int dev_stripes;
4858 /* Maximum number of devices to use */
4859 int devs_max;
4860 /* Minimum number of devices to use */
4861 int devs_min;
4862 /* ndevs has to be a multiple of this */
4863 int devs_increment;
4864 /* Number of copies */
4865 int ncopies;
4866 /* Number of stripes worth of bytes to store parity information */
4867 int nparity;
4868 u64 max_stripe_size;
4869 u64 max_chunk_size;
4870 u64 dev_extent_min;
4871 u64 stripe_size;
4872 u64 chunk_size;
4873 int ndevs;
4874 };
4875
4876 static void init_alloc_chunk_ctl_policy_regular(
4877 struct btrfs_fs_devices *fs_devices,
4878 struct alloc_chunk_ctl *ctl)
4879 {
4880 u64 type = ctl->type;
4881
4882 if (type & BTRFS_BLOCK_GROUP_DATA) {
4883 ctl->max_stripe_size = SZ_1G;
4884 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4885 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4886 /* For larger filesystems, use larger metadata chunks */
4887 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4888 ctl->max_stripe_size = SZ_1G;
4889 else
4890 ctl->max_stripe_size = SZ_256M;
4891 ctl->max_chunk_size = ctl->max_stripe_size;
4892 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4893 ctl->max_stripe_size = SZ_32M;
4894 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4895 ctl->devs_max = min_t(int, ctl->devs_max,
4896 BTRFS_MAX_DEVS_SYS_CHUNK);
4897 } else {
4898 BUG();
4899 }
4900
4901 /* We don't want a chunk larger than 10% of writable space */
4902 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4903 ctl->max_chunk_size);
4904 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4905 }
4906
4907 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4908 struct alloc_chunk_ctl *ctl)
4909 {
4910 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4911
4912 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4913 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4914 ctl->devs_max = btrfs_raid_array[index].devs_max;
4915 if (!ctl->devs_max)
4916 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4917 ctl->devs_min = btrfs_raid_array[index].devs_min;
4918 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4919 ctl->ncopies = btrfs_raid_array[index].ncopies;
4920 ctl->nparity = btrfs_raid_array[index].nparity;
4921 ctl->ndevs = 0;
4922
4923 switch (fs_devices->chunk_alloc_policy) {
4924 case BTRFS_CHUNK_ALLOC_REGULAR:
4925 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4926 break;
4927 default:
4928 BUG();
4929 }
4930 }
4931
4932 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4933 struct alloc_chunk_ctl *ctl,
4934 struct btrfs_device_info *devices_info)
4935 {
4936 struct btrfs_fs_info *info = fs_devices->fs_info;
4937 struct btrfs_device *device;
4938 u64 total_avail;
4939 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4940 int ret;
4941 int ndevs = 0;
4942 u64 max_avail;
4943 u64 dev_offset;
4944
4945 /*
4946 * in the first pass through the devices list, we gather information
4947 * about the available holes on each device.
4948 */
4949 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4950 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4951 WARN(1, KERN_ERR
4952 "BTRFS: read-only device in alloc_list\n");
4953 continue;
4954 }
4955
4956 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4957 &device->dev_state) ||
4958 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4959 continue;
4960
4961 if (device->total_bytes > device->bytes_used)
4962 total_avail = device->total_bytes - device->bytes_used;
4963 else
4964 total_avail = 0;
4965
4966 /* If there is no space on this device, skip it. */
4967 if (total_avail < ctl->dev_extent_min)
4968 continue;
4969
4970 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4971 &max_avail);
4972 if (ret && ret != -ENOSPC)
4973 return ret;
4974
4975 if (ret == 0)
4976 max_avail = dev_extent_want;
4977
4978 if (max_avail < ctl->dev_extent_min) {
4979 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4980 btrfs_debug(info,
4981 "%s: devid %llu has no free space, have=%llu want=%llu",
4982 __func__, device->devid, max_avail,
4983 ctl->dev_extent_min);
4984 continue;
4985 }
4986
4987 if (ndevs == fs_devices->rw_devices) {
4988 WARN(1, "%s: found more than %llu devices\n",
4989 __func__, fs_devices->rw_devices);
4990 break;
4991 }
4992 devices_info[ndevs].dev_offset = dev_offset;
4993 devices_info[ndevs].max_avail = max_avail;
4994 devices_info[ndevs].total_avail = total_avail;
4995 devices_info[ndevs].dev = device;
4996 ++ndevs;
4997 }
4998 ctl->ndevs = ndevs;
4999
5000 /*
5001 * now sort the devices by hole size / available space
5002 */
5003 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5004 btrfs_cmp_device_info, NULL);
5005
5006 return 0;
5007 }
5008
5009 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5010 struct btrfs_device_info *devices_info)
5011 {
5012 /* Number of stripes that count for block group size */
5013 int data_stripes;
5014
5015 /*
5016 * The primary goal is to maximize the number of stripes, so use as
5017 * many devices as possible, even if the stripes are not maximum sized.
5018 *
5019 * The DUP profile stores more than one stripe per device, the
5020 * max_avail is the total size so we have to adjust.
5021 */
5022 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5023 ctl->dev_stripes);
5024 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5025
5026 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5027 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5028
5029 /*
5030 * Use the number of data stripes to figure out how big this chunk is
5031 * really going to be in terms of logical address space, and compare
5032 * that answer with the max chunk size. If it's higher, we try to
5033 * reduce stripe_size.
5034 */
5035 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5036 /*
5037 * Reduce stripe_size, round it up to a 16MB boundary again and
5038 * then use it, unless it ends up being even bigger than the
5039 * previous value we had already.
5040 */
5041 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5042 data_stripes), SZ_16M),
5043 ctl->stripe_size);
5044 }
5045
5046 /* Align to BTRFS_STRIPE_LEN */
5047 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5048 ctl->chunk_size = ctl->stripe_size * data_stripes;
5049
5050 return 0;
5051 }
5052
5053 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5054 struct alloc_chunk_ctl *ctl,
5055 struct btrfs_device_info *devices_info)
5056 {
5057 struct btrfs_fs_info *info = fs_devices->fs_info;
5058
5059 /*
5060 * Round down to number of usable stripes, devs_increment can be any
5061 * number so we can't use round_down() that requires power of 2, while
5062 * rounddown is safe.
5063 */
5064 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5065
5066 if (ctl->ndevs < ctl->devs_min) {
5067 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5068 btrfs_debug(info,
5069 "%s: not enough devices with free space: have=%d minimum required=%d",
5070 __func__, ctl->ndevs, ctl->devs_min);
5071 }
5072 return -ENOSPC;
5073 }
5074
5075 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5076
5077 switch (fs_devices->chunk_alloc_policy) {
5078 case BTRFS_CHUNK_ALLOC_REGULAR:
5079 return decide_stripe_size_regular(ctl, devices_info);
5080 default:
5081 BUG();
5082 }
5083 }
5084
5085 static int create_chunk(struct btrfs_trans_handle *trans,
5086 struct alloc_chunk_ctl *ctl,
5087 struct btrfs_device_info *devices_info)
5088 {
5089 struct btrfs_fs_info *info = trans->fs_info;
5090 struct map_lookup *map = NULL;
5091 struct extent_map_tree *em_tree;
5092 struct extent_map *em;
5093 u64 start = ctl->start;
5094 u64 type = ctl->type;
5095 int ret;
5096 int i;
5097 int j;
5098
5099 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5100 if (!map)
5101 return -ENOMEM;
5102 map->num_stripes = ctl->num_stripes;
5103
5104 for (i = 0; i < ctl->ndevs; ++i) {
5105 for (j = 0; j < ctl->dev_stripes; ++j) {
5106 int s = i * ctl->dev_stripes + j;
5107 map->stripes[s].dev = devices_info[i].dev;
5108 map->stripes[s].physical = devices_info[i].dev_offset +
5109 j * ctl->stripe_size;
5110 }
5111 }
5112 map->stripe_len = BTRFS_STRIPE_LEN;
5113 map->io_align = BTRFS_STRIPE_LEN;
5114 map->io_width = BTRFS_STRIPE_LEN;
5115 map->type = type;
5116 map->sub_stripes = ctl->sub_stripes;
5117
5118 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5119
5120 em = alloc_extent_map();
5121 if (!em) {
5122 kfree(map);
5123 return -ENOMEM;
5124 }
5125 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5126 em->map_lookup = map;
5127 em->start = start;
5128 em->len = ctl->chunk_size;
5129 em->block_start = 0;
5130 em->block_len = em->len;
5131 em->orig_block_len = ctl->stripe_size;
5132
5133 em_tree = &info->mapping_tree;
5134 write_lock(&em_tree->lock);
5135 ret = add_extent_mapping(em_tree, em, 0);
5136 if (ret) {
5137 write_unlock(&em_tree->lock);
5138 free_extent_map(em);
5139 return ret;
5140 }
5141 write_unlock(&em_tree->lock);
5142
5143 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5144 if (ret)
5145 goto error_del_extent;
5146
5147 for (i = 0; i < map->num_stripes; i++) {
5148 struct btrfs_device *dev = map->stripes[i].dev;
5149
5150 btrfs_device_set_bytes_used(dev,
5151 dev->bytes_used + ctl->stripe_size);
5152 if (list_empty(&dev->post_commit_list))
5153 list_add_tail(&dev->post_commit_list,
5154 &trans->transaction->dev_update_list);
5155 }
5156
5157 atomic64_sub(ctl->stripe_size * map->num_stripes,
5158 &info->free_chunk_space);
5159
5160 free_extent_map(em);
5161 check_raid56_incompat_flag(info, type);
5162 check_raid1c34_incompat_flag(info, type);
5163
5164 return 0;
5165
5166 error_del_extent:
5167 write_lock(&em_tree->lock);
5168 remove_extent_mapping(em_tree, em);
5169 write_unlock(&em_tree->lock);
5170
5171 /* One for our allocation */
5172 free_extent_map(em);
5173 /* One for the tree reference */
5174 free_extent_map(em);
5175
5176 return ret;
5177 }
5178
5179 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5180 {
5181 struct btrfs_fs_info *info = trans->fs_info;
5182 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5183 struct btrfs_device_info *devices_info = NULL;
5184 struct alloc_chunk_ctl ctl;
5185 int ret;
5186
5187 lockdep_assert_held(&info->chunk_mutex);
5188
5189 if (!alloc_profile_is_valid(type, 0)) {
5190 ASSERT(0);
5191 return -EINVAL;
5192 }
5193
5194 if (list_empty(&fs_devices->alloc_list)) {
5195 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5196 btrfs_debug(info, "%s: no writable device", __func__);
5197 return -ENOSPC;
5198 }
5199
5200 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5201 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5202 ASSERT(0);
5203 return -EINVAL;
5204 }
5205
5206 ctl.start = find_next_chunk(info);
5207 ctl.type = type;
5208 init_alloc_chunk_ctl(fs_devices, &ctl);
5209
5210 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5211 GFP_NOFS);
5212 if (!devices_info)
5213 return -ENOMEM;
5214
5215 ret = gather_device_info(fs_devices, &ctl, devices_info);
5216 if (ret < 0)
5217 goto out;
5218
5219 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5220 if (ret < 0)
5221 goto out;
5222
5223 ret = create_chunk(trans, &ctl, devices_info);
5224
5225 out:
5226 kfree(devices_info);
5227 return ret;
5228 }
5229
5230 /*
5231 * Chunk allocation falls into two parts. The first part does work
5232 * that makes the new allocated chunk usable, but does not do any operation
5233 * that modifies the chunk tree. The second part does the work that
5234 * requires modifying the chunk tree. This division is important for the
5235 * bootstrap process of adding storage to a seed btrfs.
5236 */
5237 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5238 u64 chunk_offset, u64 chunk_size)
5239 {
5240 struct btrfs_fs_info *fs_info = trans->fs_info;
5241 struct btrfs_root *extent_root = fs_info->extent_root;
5242 struct btrfs_root *chunk_root = fs_info->chunk_root;
5243 struct btrfs_key key;
5244 struct btrfs_device *device;
5245 struct btrfs_chunk *chunk;
5246 struct btrfs_stripe *stripe;
5247 struct extent_map *em;
5248 struct map_lookup *map;
5249 size_t item_size;
5250 u64 dev_offset;
5251 u64 stripe_size;
5252 int i = 0;
5253 int ret = 0;
5254
5255 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5256 if (IS_ERR(em))
5257 return PTR_ERR(em);
5258
5259 map = em->map_lookup;
5260 item_size = btrfs_chunk_item_size(map->num_stripes);
5261 stripe_size = em->orig_block_len;
5262
5263 chunk = kzalloc(item_size, GFP_NOFS);
5264 if (!chunk) {
5265 ret = -ENOMEM;
5266 goto out;
5267 }
5268
5269 /*
5270 * Take the device list mutex to prevent races with the final phase of
5271 * a device replace operation that replaces the device object associated
5272 * with the map's stripes, because the device object's id can change
5273 * at any time during that final phase of the device replace operation
5274 * (dev-replace.c:btrfs_dev_replace_finishing()).
5275 */
5276 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5277 for (i = 0; i < map->num_stripes; i++) {
5278 device = map->stripes[i].dev;
5279 dev_offset = map->stripes[i].physical;
5280
5281 ret = btrfs_update_device(trans, device);
5282 if (ret)
5283 break;
5284 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5285 dev_offset, stripe_size);
5286 if (ret)
5287 break;
5288 }
5289 if (ret) {
5290 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5291 goto out;
5292 }
5293
5294 stripe = &chunk->stripe;
5295 for (i = 0; i < map->num_stripes; i++) {
5296 device = map->stripes[i].dev;
5297 dev_offset = map->stripes[i].physical;
5298
5299 btrfs_set_stack_stripe_devid(stripe, device->devid);
5300 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5301 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5302 stripe++;
5303 }
5304 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5305
5306 btrfs_set_stack_chunk_length(chunk, chunk_size);
5307 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5308 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5309 btrfs_set_stack_chunk_type(chunk, map->type);
5310 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5311 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5312 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5313 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5314 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5315
5316 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5317 key.type = BTRFS_CHUNK_ITEM_KEY;
5318 key.offset = chunk_offset;
5319
5320 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5321 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5322 /*
5323 * TODO: Cleanup of inserted chunk root in case of
5324 * failure.
5325 */
5326 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5327 }
5328
5329 out:
5330 kfree(chunk);
5331 free_extent_map(em);
5332 return ret;
5333 }
5334
5335 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5336 {
5337 struct btrfs_fs_info *fs_info = trans->fs_info;
5338 u64 alloc_profile;
5339 int ret;
5340
5341 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5342 ret = btrfs_alloc_chunk(trans, alloc_profile);
5343 if (ret)
5344 return ret;
5345
5346 alloc_profile = btrfs_system_alloc_profile(fs_info);
5347 ret = btrfs_alloc_chunk(trans, alloc_profile);
5348 return ret;
5349 }
5350
5351 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5352 {
5353 const int index = btrfs_bg_flags_to_raid_index(map->type);
5354
5355 return btrfs_raid_array[index].tolerated_failures;
5356 }
5357
5358 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5359 {
5360 struct extent_map *em;
5361 struct map_lookup *map;
5362 int readonly = 0;
5363 int miss_ndevs = 0;
5364 int i;
5365
5366 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5367 if (IS_ERR(em))
5368 return 1;
5369
5370 map = em->map_lookup;
5371 for (i = 0; i < map->num_stripes; i++) {
5372 if (test_bit(BTRFS_DEV_STATE_MISSING,
5373 &map->stripes[i].dev->dev_state)) {
5374 miss_ndevs++;
5375 continue;
5376 }
5377 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5378 &map->stripes[i].dev->dev_state)) {
5379 readonly = 1;
5380 goto end;
5381 }
5382 }
5383
5384 /*
5385 * If the number of missing devices is larger than max errors,
5386 * we can not write the data into that chunk successfully, so
5387 * set it readonly.
5388 */
5389 if (miss_ndevs > btrfs_chunk_max_errors(map))
5390 readonly = 1;
5391 end:
5392 free_extent_map(em);
5393 return readonly;
5394 }
5395
5396 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5397 {
5398 struct extent_map *em;
5399
5400 while (1) {
5401 write_lock(&tree->lock);
5402 em = lookup_extent_mapping(tree, 0, (u64)-1);
5403 if (em)
5404 remove_extent_mapping(tree, em);
5405 write_unlock(&tree->lock);
5406 if (!em)
5407 break;
5408 /* once for us */
5409 free_extent_map(em);
5410 /* once for the tree */
5411 free_extent_map(em);
5412 }
5413 }
5414
5415 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5416 {
5417 struct extent_map *em;
5418 struct map_lookup *map;
5419 int ret;
5420
5421 em = btrfs_get_chunk_map(fs_info, logical, len);
5422 if (IS_ERR(em))
5423 /*
5424 * We could return errors for these cases, but that could get
5425 * ugly and we'd probably do the same thing which is just not do
5426 * anything else and exit, so return 1 so the callers don't try
5427 * to use other copies.
5428 */
5429 return 1;
5430
5431 map = em->map_lookup;
5432 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5433 ret = map->num_stripes;
5434 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5435 ret = map->sub_stripes;
5436 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5437 ret = 2;
5438 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5439 /*
5440 * There could be two corrupted data stripes, we need
5441 * to loop retry in order to rebuild the correct data.
5442 *
5443 * Fail a stripe at a time on every retry except the
5444 * stripe under reconstruction.
5445 */
5446 ret = map->num_stripes;
5447 else
5448 ret = 1;
5449 free_extent_map(em);
5450
5451 down_read(&fs_info->dev_replace.rwsem);
5452 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5453 fs_info->dev_replace.tgtdev)
5454 ret++;
5455 up_read(&fs_info->dev_replace.rwsem);
5456
5457 return ret;
5458 }
5459
5460 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5461 u64 logical)
5462 {
5463 struct extent_map *em;
5464 struct map_lookup *map;
5465 unsigned long len = fs_info->sectorsize;
5466
5467 em = btrfs_get_chunk_map(fs_info, logical, len);
5468
5469 if (!WARN_ON(IS_ERR(em))) {
5470 map = em->map_lookup;
5471 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5472 len = map->stripe_len * nr_data_stripes(map);
5473 free_extent_map(em);
5474 }
5475 return len;
5476 }
5477
5478 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5479 {
5480 struct extent_map *em;
5481 struct map_lookup *map;
5482 int ret = 0;
5483
5484 em = btrfs_get_chunk_map(fs_info, logical, len);
5485
5486 if(!WARN_ON(IS_ERR(em))) {
5487 map = em->map_lookup;
5488 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5489 ret = 1;
5490 free_extent_map(em);
5491 }
5492 return ret;
5493 }
5494
5495 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5496 struct map_lookup *map, int first,
5497 int dev_replace_is_ongoing)
5498 {
5499 int i;
5500 int num_stripes;
5501 int preferred_mirror;
5502 int tolerance;
5503 struct btrfs_device *srcdev;
5504
5505 ASSERT((map->type &
5506 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5507
5508 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5509 num_stripes = map->sub_stripes;
5510 else
5511 num_stripes = map->num_stripes;
5512
5513 switch (fs_info->fs_devices->read_policy) {
5514 default:
5515 /* Shouldn't happen, just warn and use pid instead of failing */
5516 btrfs_warn_rl(fs_info,
5517 "unknown read_policy type %u, reset to pid",
5518 fs_info->fs_devices->read_policy);
5519 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5520 fallthrough;
5521 case BTRFS_READ_POLICY_PID:
5522 preferred_mirror = first + (current->pid % num_stripes);
5523 break;
5524 }
5525
5526 if (dev_replace_is_ongoing &&
5527 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5528 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5529 srcdev = fs_info->dev_replace.srcdev;
5530 else
5531 srcdev = NULL;
5532
5533 /*
5534 * try to avoid the drive that is the source drive for a
5535 * dev-replace procedure, only choose it if no other non-missing
5536 * mirror is available
5537 */
5538 for (tolerance = 0; tolerance < 2; tolerance++) {
5539 if (map->stripes[preferred_mirror].dev->bdev &&
5540 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5541 return preferred_mirror;
5542 for (i = first; i < first + num_stripes; i++) {
5543 if (map->stripes[i].dev->bdev &&
5544 (tolerance || map->stripes[i].dev != srcdev))
5545 return i;
5546 }
5547 }
5548
5549 /* we couldn't find one that doesn't fail. Just return something
5550 * and the io error handling code will clean up eventually
5551 */
5552 return preferred_mirror;
5553 }
5554
5555 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5556 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5557 {
5558 int i;
5559 int again = 1;
5560
5561 while (again) {
5562 again = 0;
5563 for (i = 0; i < num_stripes - 1; i++) {
5564 /* Swap if parity is on a smaller index */
5565 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5566 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5567 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5568 again = 1;
5569 }
5570 }
5571 }
5572 }
5573
5574 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5575 {
5576 struct btrfs_bio *bbio = kzalloc(
5577 /* the size of the btrfs_bio */
5578 sizeof(struct btrfs_bio) +
5579 /* plus the variable array for the stripes */
5580 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5581 /* plus the variable array for the tgt dev */
5582 sizeof(int) * (real_stripes) +
5583 /*
5584 * plus the raid_map, which includes both the tgt dev
5585 * and the stripes
5586 */
5587 sizeof(u64) * (total_stripes),
5588 GFP_NOFS|__GFP_NOFAIL);
5589
5590 atomic_set(&bbio->error, 0);
5591 refcount_set(&bbio->refs, 1);
5592
5593 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5594 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5595
5596 return bbio;
5597 }
5598
5599 void btrfs_get_bbio(struct btrfs_bio *bbio)
5600 {
5601 WARN_ON(!refcount_read(&bbio->refs));
5602 refcount_inc(&bbio->refs);
5603 }
5604
5605 void btrfs_put_bbio(struct btrfs_bio *bbio)
5606 {
5607 if (!bbio)
5608 return;
5609 if (refcount_dec_and_test(&bbio->refs))
5610 kfree(bbio);
5611 }
5612
5613 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5614 /*
5615 * Please note that, discard won't be sent to target device of device
5616 * replace.
5617 */
5618 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5619 u64 logical, u64 *length_ret,
5620 struct btrfs_bio **bbio_ret)
5621 {
5622 struct extent_map *em;
5623 struct map_lookup *map;
5624 struct btrfs_bio *bbio;
5625 u64 length = *length_ret;
5626 u64 offset;
5627 u64 stripe_nr;
5628 u64 stripe_nr_end;
5629 u64 stripe_end_offset;
5630 u64 stripe_cnt;
5631 u64 stripe_len;
5632 u64 stripe_offset;
5633 u64 num_stripes;
5634 u32 stripe_index;
5635 u32 factor = 0;
5636 u32 sub_stripes = 0;
5637 u64 stripes_per_dev = 0;
5638 u32 remaining_stripes = 0;
5639 u32 last_stripe = 0;
5640 int ret = 0;
5641 int i;
5642
5643 /* discard always return a bbio */
5644 ASSERT(bbio_ret);
5645
5646 em = btrfs_get_chunk_map(fs_info, logical, length);
5647 if (IS_ERR(em))
5648 return PTR_ERR(em);
5649
5650 map = em->map_lookup;
5651 /* we don't discard raid56 yet */
5652 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5653 ret = -EOPNOTSUPP;
5654 goto out;
5655 }
5656
5657 offset = logical - em->start;
5658 length = min_t(u64, em->start + em->len - logical, length);
5659 *length_ret = length;
5660
5661 stripe_len = map->stripe_len;
5662 /*
5663 * stripe_nr counts the total number of stripes we have to stride
5664 * to get to this block
5665 */
5666 stripe_nr = div64_u64(offset, stripe_len);
5667
5668 /* stripe_offset is the offset of this block in its stripe */
5669 stripe_offset = offset - stripe_nr * stripe_len;
5670
5671 stripe_nr_end = round_up(offset + length, map->stripe_len);
5672 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5673 stripe_cnt = stripe_nr_end - stripe_nr;
5674 stripe_end_offset = stripe_nr_end * map->stripe_len -
5675 (offset + length);
5676 /*
5677 * after this, stripe_nr is the number of stripes on this
5678 * device we have to walk to find the data, and stripe_index is
5679 * the number of our device in the stripe array
5680 */
5681 num_stripes = 1;
5682 stripe_index = 0;
5683 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5684 BTRFS_BLOCK_GROUP_RAID10)) {
5685 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5686 sub_stripes = 1;
5687 else
5688 sub_stripes = map->sub_stripes;
5689
5690 factor = map->num_stripes / sub_stripes;
5691 num_stripes = min_t(u64, map->num_stripes,
5692 sub_stripes * stripe_cnt);
5693 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5694 stripe_index *= sub_stripes;
5695 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5696 &remaining_stripes);
5697 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5698 last_stripe *= sub_stripes;
5699 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5700 BTRFS_BLOCK_GROUP_DUP)) {
5701 num_stripes = map->num_stripes;
5702 } else {
5703 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5704 &stripe_index);
5705 }
5706
5707 bbio = alloc_btrfs_bio(num_stripes, 0);
5708 if (!bbio) {
5709 ret = -ENOMEM;
5710 goto out;
5711 }
5712
5713 for (i = 0; i < num_stripes; i++) {
5714 bbio->stripes[i].physical =
5715 map->stripes[stripe_index].physical +
5716 stripe_offset + stripe_nr * map->stripe_len;
5717 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5718
5719 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5720 BTRFS_BLOCK_GROUP_RAID10)) {
5721 bbio->stripes[i].length = stripes_per_dev *
5722 map->stripe_len;
5723
5724 if (i / sub_stripes < remaining_stripes)
5725 bbio->stripes[i].length +=
5726 map->stripe_len;
5727
5728 /*
5729 * Special for the first stripe and
5730 * the last stripe:
5731 *
5732 * |-------|...|-------|
5733 * |----------|
5734 * off end_off
5735 */
5736 if (i < sub_stripes)
5737 bbio->stripes[i].length -=
5738 stripe_offset;
5739
5740 if (stripe_index >= last_stripe &&
5741 stripe_index <= (last_stripe +
5742 sub_stripes - 1))
5743 bbio->stripes[i].length -=
5744 stripe_end_offset;
5745
5746 if (i == sub_stripes - 1)
5747 stripe_offset = 0;
5748 } else {
5749 bbio->stripes[i].length = length;
5750 }
5751
5752 stripe_index++;
5753 if (stripe_index == map->num_stripes) {
5754 stripe_index = 0;
5755 stripe_nr++;
5756 }
5757 }
5758
5759 *bbio_ret = bbio;
5760 bbio->map_type = map->type;
5761 bbio->num_stripes = num_stripes;
5762 out:
5763 free_extent_map(em);
5764 return ret;
5765 }
5766
5767 /*
5768 * In dev-replace case, for repair case (that's the only case where the mirror
5769 * is selected explicitly when calling btrfs_map_block), blocks left of the
5770 * left cursor can also be read from the target drive.
5771 *
5772 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5773 * array of stripes.
5774 * For READ, it also needs to be supported using the same mirror number.
5775 *
5776 * If the requested block is not left of the left cursor, EIO is returned. This
5777 * can happen because btrfs_num_copies() returns one more in the dev-replace
5778 * case.
5779 */
5780 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5781 u64 logical, u64 length,
5782 u64 srcdev_devid, int *mirror_num,
5783 u64 *physical)
5784 {
5785 struct btrfs_bio *bbio = NULL;
5786 int num_stripes;
5787 int index_srcdev = 0;
5788 int found = 0;
5789 u64 physical_of_found = 0;
5790 int i;
5791 int ret = 0;
5792
5793 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5794 logical, &length, &bbio, 0, 0);
5795 if (ret) {
5796 ASSERT(bbio == NULL);
5797 return ret;
5798 }
5799
5800 num_stripes = bbio->num_stripes;
5801 if (*mirror_num > num_stripes) {
5802 /*
5803 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5804 * that means that the requested area is not left of the left
5805 * cursor
5806 */
5807 btrfs_put_bbio(bbio);
5808 return -EIO;
5809 }
5810
5811 /*
5812 * process the rest of the function using the mirror_num of the source
5813 * drive. Therefore look it up first. At the end, patch the device
5814 * pointer to the one of the target drive.
5815 */
5816 for (i = 0; i < num_stripes; i++) {
5817 if (bbio->stripes[i].dev->devid != srcdev_devid)
5818 continue;
5819
5820 /*
5821 * In case of DUP, in order to keep it simple, only add the
5822 * mirror with the lowest physical address
5823 */
5824 if (found &&
5825 physical_of_found <= bbio->stripes[i].physical)
5826 continue;
5827
5828 index_srcdev = i;
5829 found = 1;
5830 physical_of_found = bbio->stripes[i].physical;
5831 }
5832
5833 btrfs_put_bbio(bbio);
5834
5835 ASSERT(found);
5836 if (!found)
5837 return -EIO;
5838
5839 *mirror_num = index_srcdev + 1;
5840 *physical = physical_of_found;
5841 return ret;
5842 }
5843
5844 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5845 struct btrfs_bio **bbio_ret,
5846 struct btrfs_dev_replace *dev_replace,
5847 int *num_stripes_ret, int *max_errors_ret)
5848 {
5849 struct btrfs_bio *bbio = *bbio_ret;
5850 u64 srcdev_devid = dev_replace->srcdev->devid;
5851 int tgtdev_indexes = 0;
5852 int num_stripes = *num_stripes_ret;
5853 int max_errors = *max_errors_ret;
5854 int i;
5855
5856 if (op == BTRFS_MAP_WRITE) {
5857 int index_where_to_add;
5858
5859 /*
5860 * duplicate the write operations while the dev replace
5861 * procedure is running. Since the copying of the old disk to
5862 * the new disk takes place at run time while the filesystem is
5863 * mounted writable, the regular write operations to the old
5864 * disk have to be duplicated to go to the new disk as well.
5865 *
5866 * Note that device->missing is handled by the caller, and that
5867 * the write to the old disk is already set up in the stripes
5868 * array.
5869 */
5870 index_where_to_add = num_stripes;
5871 for (i = 0; i < num_stripes; i++) {
5872 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5873 /* write to new disk, too */
5874 struct btrfs_bio_stripe *new =
5875 bbio->stripes + index_where_to_add;
5876 struct btrfs_bio_stripe *old =
5877 bbio->stripes + i;
5878
5879 new->physical = old->physical;
5880 new->length = old->length;
5881 new->dev = dev_replace->tgtdev;
5882 bbio->tgtdev_map[i] = index_where_to_add;
5883 index_where_to_add++;
5884 max_errors++;
5885 tgtdev_indexes++;
5886 }
5887 }
5888 num_stripes = index_where_to_add;
5889 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5890 int index_srcdev = 0;
5891 int found = 0;
5892 u64 physical_of_found = 0;
5893
5894 /*
5895 * During the dev-replace procedure, the target drive can also
5896 * be used to read data in case it is needed to repair a corrupt
5897 * block elsewhere. This is possible if the requested area is
5898 * left of the left cursor. In this area, the target drive is a
5899 * full copy of the source drive.
5900 */
5901 for (i = 0; i < num_stripes; i++) {
5902 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5903 /*
5904 * In case of DUP, in order to keep it simple,
5905 * only add the mirror with the lowest physical
5906 * address
5907 */
5908 if (found &&
5909 physical_of_found <=
5910 bbio->stripes[i].physical)
5911 continue;
5912 index_srcdev = i;
5913 found = 1;
5914 physical_of_found = bbio->stripes[i].physical;
5915 }
5916 }
5917 if (found) {
5918 struct btrfs_bio_stripe *tgtdev_stripe =
5919 bbio->stripes + num_stripes;
5920
5921 tgtdev_stripe->physical = physical_of_found;
5922 tgtdev_stripe->length =
5923 bbio->stripes[index_srcdev].length;
5924 tgtdev_stripe->dev = dev_replace->tgtdev;
5925 bbio->tgtdev_map[index_srcdev] = num_stripes;
5926
5927 tgtdev_indexes++;
5928 num_stripes++;
5929 }
5930 }
5931
5932 *num_stripes_ret = num_stripes;
5933 *max_errors_ret = max_errors;
5934 bbio->num_tgtdevs = tgtdev_indexes;
5935 *bbio_ret = bbio;
5936 }
5937
5938 static bool need_full_stripe(enum btrfs_map_op op)
5939 {
5940 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5941 }
5942
5943 /*
5944 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5945 * tuple. This information is used to calculate how big a
5946 * particular bio can get before it straddles a stripe.
5947 *
5948 * @fs_info - the filesystem
5949 * @logical - address that we want to figure out the geometry of
5950 * @len - the length of IO we are going to perform, starting at @logical
5951 * @op - type of operation - write or read
5952 * @io_geom - pointer used to return values
5953 *
5954 * Returns < 0 in case a chunk for the given logical address cannot be found,
5955 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5956 */
5957 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5958 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5959 {
5960 struct extent_map *em;
5961 struct map_lookup *map;
5962 u64 offset;
5963 u64 stripe_offset;
5964 u64 stripe_nr;
5965 u64 stripe_len;
5966 u64 raid56_full_stripe_start = (u64)-1;
5967 int data_stripes;
5968 int ret = 0;
5969
5970 ASSERT(op != BTRFS_MAP_DISCARD);
5971
5972 em = btrfs_get_chunk_map(fs_info, logical, len);
5973 if (IS_ERR(em))
5974 return PTR_ERR(em);
5975
5976 map = em->map_lookup;
5977 /* Offset of this logical address in the chunk */
5978 offset = logical - em->start;
5979 /* Len of a stripe in a chunk */
5980 stripe_len = map->stripe_len;
5981 /* Stripe wher this block falls in */
5982 stripe_nr = div64_u64(offset, stripe_len);
5983 /* Offset of stripe in the chunk */
5984 stripe_offset = stripe_nr * stripe_len;
5985 if (offset < stripe_offset) {
5986 btrfs_crit(fs_info,
5987 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5988 stripe_offset, offset, em->start, logical, stripe_len);
5989 ret = -EINVAL;
5990 goto out;
5991 }
5992
5993 /* stripe_offset is the offset of this block in its stripe */
5994 stripe_offset = offset - stripe_offset;
5995 data_stripes = nr_data_stripes(map);
5996
5997 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5998 u64 max_len = stripe_len - stripe_offset;
5999
6000 /*
6001 * In case of raid56, we need to know the stripe aligned start
6002 */
6003 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6004 unsigned long full_stripe_len = stripe_len * data_stripes;
6005 raid56_full_stripe_start = offset;
6006
6007 /*
6008 * Allow a write of a full stripe, but make sure we
6009 * don't allow straddling of stripes
6010 */
6011 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6012 full_stripe_len);
6013 raid56_full_stripe_start *= full_stripe_len;
6014
6015 /*
6016 * For writes to RAID[56], allow a full stripeset across
6017 * all disks. For other RAID types and for RAID[56]
6018 * reads, just allow a single stripe (on a single disk).
6019 */
6020 if (op == BTRFS_MAP_WRITE) {
6021 max_len = stripe_len * data_stripes -
6022 (offset - raid56_full_stripe_start);
6023 }
6024 }
6025 len = min_t(u64, em->len - offset, max_len);
6026 } else {
6027 len = em->len - offset;
6028 }
6029
6030 io_geom->len = len;
6031 io_geom->offset = offset;
6032 io_geom->stripe_len = stripe_len;
6033 io_geom->stripe_nr = stripe_nr;
6034 io_geom->stripe_offset = stripe_offset;
6035 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6036
6037 out:
6038 /* once for us */
6039 free_extent_map(em);
6040 return ret;
6041 }
6042
6043 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6044 enum btrfs_map_op op,
6045 u64 logical, u64 *length,
6046 struct btrfs_bio **bbio_ret,
6047 int mirror_num, int need_raid_map)
6048 {
6049 struct extent_map *em;
6050 struct map_lookup *map;
6051 u64 stripe_offset;
6052 u64 stripe_nr;
6053 u64 stripe_len;
6054 u32 stripe_index;
6055 int data_stripes;
6056 int i;
6057 int ret = 0;
6058 int num_stripes;
6059 int max_errors = 0;
6060 int tgtdev_indexes = 0;
6061 struct btrfs_bio *bbio = NULL;
6062 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6063 int dev_replace_is_ongoing = 0;
6064 int num_alloc_stripes;
6065 int patch_the_first_stripe_for_dev_replace = 0;
6066 u64 physical_to_patch_in_first_stripe = 0;
6067 u64 raid56_full_stripe_start = (u64)-1;
6068 struct btrfs_io_geometry geom;
6069
6070 ASSERT(bbio_ret);
6071 ASSERT(op != BTRFS_MAP_DISCARD);
6072
6073 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6074 if (ret < 0)
6075 return ret;
6076
6077 em = btrfs_get_chunk_map(fs_info, logical, *length);
6078 ASSERT(!IS_ERR(em));
6079 map = em->map_lookup;
6080
6081 *length = geom.len;
6082 stripe_len = geom.stripe_len;
6083 stripe_nr = geom.stripe_nr;
6084 stripe_offset = geom.stripe_offset;
6085 raid56_full_stripe_start = geom.raid56_stripe_offset;
6086 data_stripes = nr_data_stripes(map);
6087
6088 down_read(&dev_replace->rwsem);
6089 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6090 /*
6091 * Hold the semaphore for read during the whole operation, write is
6092 * requested at commit time but must wait.
6093 */
6094 if (!dev_replace_is_ongoing)
6095 up_read(&dev_replace->rwsem);
6096
6097 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6098 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6099 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6100 dev_replace->srcdev->devid,
6101 &mirror_num,
6102 &physical_to_patch_in_first_stripe);
6103 if (ret)
6104 goto out;
6105 else
6106 patch_the_first_stripe_for_dev_replace = 1;
6107 } else if (mirror_num > map->num_stripes) {
6108 mirror_num = 0;
6109 }
6110
6111 num_stripes = 1;
6112 stripe_index = 0;
6113 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6114 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6115 &stripe_index);
6116 if (!need_full_stripe(op))
6117 mirror_num = 1;
6118 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6119 if (need_full_stripe(op))
6120 num_stripes = map->num_stripes;
6121 else if (mirror_num)
6122 stripe_index = mirror_num - 1;
6123 else {
6124 stripe_index = find_live_mirror(fs_info, map, 0,
6125 dev_replace_is_ongoing);
6126 mirror_num = stripe_index + 1;
6127 }
6128
6129 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6130 if (need_full_stripe(op)) {
6131 num_stripes = map->num_stripes;
6132 } else if (mirror_num) {
6133 stripe_index = mirror_num - 1;
6134 } else {
6135 mirror_num = 1;
6136 }
6137
6138 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6139 u32 factor = map->num_stripes / map->sub_stripes;
6140
6141 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6142 stripe_index *= map->sub_stripes;
6143
6144 if (need_full_stripe(op))
6145 num_stripes = map->sub_stripes;
6146 else if (mirror_num)
6147 stripe_index += mirror_num - 1;
6148 else {
6149 int old_stripe_index = stripe_index;
6150 stripe_index = find_live_mirror(fs_info, map,
6151 stripe_index,
6152 dev_replace_is_ongoing);
6153 mirror_num = stripe_index - old_stripe_index + 1;
6154 }
6155
6156 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6157 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6158 /* push stripe_nr back to the start of the full stripe */
6159 stripe_nr = div64_u64(raid56_full_stripe_start,
6160 stripe_len * data_stripes);
6161
6162 /* RAID[56] write or recovery. Return all stripes */
6163 num_stripes = map->num_stripes;
6164 max_errors = nr_parity_stripes(map);
6165
6166 *length = map->stripe_len;
6167 stripe_index = 0;
6168 stripe_offset = 0;
6169 } else {
6170 /*
6171 * Mirror #0 or #1 means the original data block.
6172 * Mirror #2 is RAID5 parity block.
6173 * Mirror #3 is RAID6 Q block.
6174 */
6175 stripe_nr = div_u64_rem(stripe_nr,
6176 data_stripes, &stripe_index);
6177 if (mirror_num > 1)
6178 stripe_index = data_stripes + mirror_num - 2;
6179
6180 /* We distribute the parity blocks across stripes */
6181 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6182 &stripe_index);
6183 if (!need_full_stripe(op) && mirror_num <= 1)
6184 mirror_num = 1;
6185 }
6186 } else {
6187 /*
6188 * after this, stripe_nr is the number of stripes on this
6189 * device we have to walk to find the data, and stripe_index is
6190 * the number of our device in the stripe array
6191 */
6192 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6193 &stripe_index);
6194 mirror_num = stripe_index + 1;
6195 }
6196 if (stripe_index >= map->num_stripes) {
6197 btrfs_crit(fs_info,
6198 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6199 stripe_index, map->num_stripes);
6200 ret = -EINVAL;
6201 goto out;
6202 }
6203
6204 num_alloc_stripes = num_stripes;
6205 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6206 if (op == BTRFS_MAP_WRITE)
6207 num_alloc_stripes <<= 1;
6208 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6209 num_alloc_stripes++;
6210 tgtdev_indexes = num_stripes;
6211 }
6212
6213 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6214 if (!bbio) {
6215 ret = -ENOMEM;
6216 goto out;
6217 }
6218
6219 for (i = 0; i < num_stripes; i++) {
6220 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6221 stripe_offset + stripe_nr * map->stripe_len;
6222 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6223 stripe_index++;
6224 }
6225
6226 /* build raid_map */
6227 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6228 (need_full_stripe(op) || mirror_num > 1)) {
6229 u64 tmp;
6230 unsigned rot;
6231
6232 /* Work out the disk rotation on this stripe-set */
6233 div_u64_rem(stripe_nr, num_stripes, &rot);
6234
6235 /* Fill in the logical address of each stripe */
6236 tmp = stripe_nr * data_stripes;
6237 for (i = 0; i < data_stripes; i++)
6238 bbio->raid_map[(i+rot) % num_stripes] =
6239 em->start + (tmp + i) * map->stripe_len;
6240
6241 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6242 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6243 bbio->raid_map[(i+rot+1) % num_stripes] =
6244 RAID6_Q_STRIPE;
6245
6246 sort_parity_stripes(bbio, num_stripes);
6247 }
6248
6249 if (need_full_stripe(op))
6250 max_errors = btrfs_chunk_max_errors(map);
6251
6252 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6253 need_full_stripe(op)) {
6254 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6255 &max_errors);
6256 }
6257
6258 *bbio_ret = bbio;
6259 bbio->map_type = map->type;
6260 bbio->num_stripes = num_stripes;
6261 bbio->max_errors = max_errors;
6262 bbio->mirror_num = mirror_num;
6263
6264 /*
6265 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6266 * mirror_num == num_stripes + 1 && dev_replace target drive is
6267 * available as a mirror
6268 */
6269 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6270 WARN_ON(num_stripes > 1);
6271 bbio->stripes[0].dev = dev_replace->tgtdev;
6272 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6273 bbio->mirror_num = map->num_stripes + 1;
6274 }
6275 out:
6276 if (dev_replace_is_ongoing) {
6277 lockdep_assert_held(&dev_replace->rwsem);
6278 /* Unlock and let waiting writers proceed */
6279 up_read(&dev_replace->rwsem);
6280 }
6281 free_extent_map(em);
6282 return ret;
6283 }
6284
6285 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6286 u64 logical, u64 *length,
6287 struct btrfs_bio **bbio_ret, int mirror_num)
6288 {
6289 if (op == BTRFS_MAP_DISCARD)
6290 return __btrfs_map_block_for_discard(fs_info, logical,
6291 length, bbio_ret);
6292
6293 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6294 mirror_num, 0);
6295 }
6296
6297 /* For Scrub/replace */
6298 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6299 u64 logical, u64 *length,
6300 struct btrfs_bio **bbio_ret)
6301 {
6302 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6303 }
6304
6305 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6306 {
6307 bio->bi_private = bbio->private;
6308 bio->bi_end_io = bbio->end_io;
6309 bio_endio(bio);
6310
6311 btrfs_put_bbio(bbio);
6312 }
6313
6314 static void btrfs_end_bio(struct bio *bio)
6315 {
6316 struct btrfs_bio *bbio = bio->bi_private;
6317 int is_orig_bio = 0;
6318
6319 if (bio->bi_status) {
6320 atomic_inc(&bbio->error);
6321 if (bio->bi_status == BLK_STS_IOERR ||
6322 bio->bi_status == BLK_STS_TARGET) {
6323 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6324
6325 ASSERT(dev->bdev);
6326 if (bio_op(bio) == REQ_OP_WRITE)
6327 btrfs_dev_stat_inc_and_print(dev,
6328 BTRFS_DEV_STAT_WRITE_ERRS);
6329 else if (!(bio->bi_opf & REQ_RAHEAD))
6330 btrfs_dev_stat_inc_and_print(dev,
6331 BTRFS_DEV_STAT_READ_ERRS);
6332 if (bio->bi_opf & REQ_PREFLUSH)
6333 btrfs_dev_stat_inc_and_print(dev,
6334 BTRFS_DEV_STAT_FLUSH_ERRS);
6335 }
6336 }
6337
6338 if (bio == bbio->orig_bio)
6339 is_orig_bio = 1;
6340
6341 btrfs_bio_counter_dec(bbio->fs_info);
6342
6343 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6344 if (!is_orig_bio) {
6345 bio_put(bio);
6346 bio = bbio->orig_bio;
6347 }
6348
6349 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6350 /* only send an error to the higher layers if it is
6351 * beyond the tolerance of the btrfs bio
6352 */
6353 if (atomic_read(&bbio->error) > bbio->max_errors) {
6354 bio->bi_status = BLK_STS_IOERR;
6355 } else {
6356 /*
6357 * this bio is actually up to date, we didn't
6358 * go over the max number of errors
6359 */
6360 bio->bi_status = BLK_STS_OK;
6361 }
6362
6363 btrfs_end_bbio(bbio, bio);
6364 } else if (!is_orig_bio) {
6365 bio_put(bio);
6366 }
6367 }
6368
6369 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6370 u64 physical, struct btrfs_device *dev)
6371 {
6372 struct btrfs_fs_info *fs_info = bbio->fs_info;
6373
6374 bio->bi_private = bbio;
6375 btrfs_io_bio(bio)->device = dev;
6376 bio->bi_end_io = btrfs_end_bio;
6377 bio->bi_iter.bi_sector = physical >> 9;
6378 btrfs_debug_in_rcu(fs_info,
6379 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6380 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6381 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6382 dev->devid, bio->bi_iter.bi_size);
6383 bio_set_dev(bio, dev->bdev);
6384
6385 btrfs_bio_counter_inc_noblocked(fs_info);
6386
6387 btrfsic_submit_bio(bio);
6388 }
6389
6390 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6391 {
6392 atomic_inc(&bbio->error);
6393 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394 /* Should be the original bio. */
6395 WARN_ON(bio != bbio->orig_bio);
6396
6397 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6398 bio->bi_iter.bi_sector = logical >> 9;
6399 if (atomic_read(&bbio->error) > bbio->max_errors)
6400 bio->bi_status = BLK_STS_IOERR;
6401 else
6402 bio->bi_status = BLK_STS_OK;
6403 btrfs_end_bbio(bbio, bio);
6404 }
6405 }
6406
6407 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6408 int mirror_num)
6409 {
6410 struct btrfs_device *dev;
6411 struct bio *first_bio = bio;
6412 u64 logical = bio->bi_iter.bi_sector << 9;
6413 u64 length = 0;
6414 u64 map_length;
6415 int ret;
6416 int dev_nr;
6417 int total_devs;
6418 struct btrfs_bio *bbio = NULL;
6419
6420 length = bio->bi_iter.bi_size;
6421 map_length = length;
6422
6423 btrfs_bio_counter_inc_blocked(fs_info);
6424 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6425 &map_length, &bbio, mirror_num, 1);
6426 if (ret) {
6427 btrfs_bio_counter_dec(fs_info);
6428 return errno_to_blk_status(ret);
6429 }
6430
6431 total_devs = bbio->num_stripes;
6432 bbio->orig_bio = first_bio;
6433 bbio->private = first_bio->bi_private;
6434 bbio->end_io = first_bio->bi_end_io;
6435 bbio->fs_info = fs_info;
6436 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6437
6438 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6439 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6440 /* In this case, map_length has been set to the length of
6441 a single stripe; not the whole write */
6442 if (bio_op(bio) == REQ_OP_WRITE) {
6443 ret = raid56_parity_write(fs_info, bio, bbio,
6444 map_length);
6445 } else {
6446 ret = raid56_parity_recover(fs_info, bio, bbio,
6447 map_length, mirror_num, 1);
6448 }
6449
6450 btrfs_bio_counter_dec(fs_info);
6451 return errno_to_blk_status(ret);
6452 }
6453
6454 if (map_length < length) {
6455 btrfs_crit(fs_info,
6456 "mapping failed logical %llu bio len %llu len %llu",
6457 logical, length, map_length);
6458 BUG();
6459 }
6460
6461 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6462 dev = bbio->stripes[dev_nr].dev;
6463 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6464 &dev->dev_state) ||
6465 (bio_op(first_bio) == REQ_OP_WRITE &&
6466 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6467 bbio_error(bbio, first_bio, logical);
6468 continue;
6469 }
6470
6471 if (dev_nr < total_devs - 1)
6472 bio = btrfs_bio_clone(first_bio);
6473 else
6474 bio = first_bio;
6475
6476 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6477 }
6478 btrfs_bio_counter_dec(fs_info);
6479 return BLK_STS_OK;
6480 }
6481
6482 /*
6483 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6484 * return NULL.
6485 *
6486 * If devid and uuid are both specified, the match must be exact, otherwise
6487 * only devid is used.
6488 *
6489 * If @seed is true, traverse through the seed devices.
6490 */
6491 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6492 u64 devid, u8 *uuid, u8 *fsid)
6493 {
6494 struct btrfs_device *device;
6495 struct btrfs_fs_devices *seed_devs;
6496
6497 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6498 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6499 if (device->devid == devid &&
6500 (!uuid || memcmp(device->uuid, uuid,
6501 BTRFS_UUID_SIZE) == 0))
6502 return device;
6503 }
6504 }
6505
6506 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6507 if (!fsid ||
6508 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6509 list_for_each_entry(device, &seed_devs->devices,
6510 dev_list) {
6511 if (device->devid == devid &&
6512 (!uuid || memcmp(device->uuid, uuid,
6513 BTRFS_UUID_SIZE) == 0))
6514 return device;
6515 }
6516 }
6517 }
6518
6519 return NULL;
6520 }
6521
6522 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6523 u64 devid, u8 *dev_uuid)
6524 {
6525 struct btrfs_device *device;
6526 unsigned int nofs_flag;
6527
6528 /*
6529 * We call this under the chunk_mutex, so we want to use NOFS for this
6530 * allocation, however we don't want to change btrfs_alloc_device() to
6531 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6532 * places.
6533 */
6534 nofs_flag = memalloc_nofs_save();
6535 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6536 memalloc_nofs_restore(nofs_flag);
6537 if (IS_ERR(device))
6538 return device;
6539
6540 list_add(&device->dev_list, &fs_devices->devices);
6541 device->fs_devices = fs_devices;
6542 fs_devices->num_devices++;
6543
6544 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6545 fs_devices->missing_devices++;
6546
6547 return device;
6548 }
6549
6550 /**
6551 * btrfs_alloc_device - allocate struct btrfs_device
6552 * @fs_info: used only for generating a new devid, can be NULL if
6553 * devid is provided (i.e. @devid != NULL).
6554 * @devid: a pointer to devid for this device. If NULL a new devid
6555 * is generated.
6556 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6557 * is generated.
6558 *
6559 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6560 * on error. Returned struct is not linked onto any lists and must be
6561 * destroyed with btrfs_free_device.
6562 */
6563 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6564 const u64 *devid,
6565 const u8 *uuid)
6566 {
6567 struct btrfs_device *dev;
6568 u64 tmp;
6569
6570 if (WARN_ON(!devid && !fs_info))
6571 return ERR_PTR(-EINVAL);
6572
6573 dev = __alloc_device(fs_info);
6574 if (IS_ERR(dev))
6575 return dev;
6576
6577 if (devid)
6578 tmp = *devid;
6579 else {
6580 int ret;
6581
6582 ret = find_next_devid(fs_info, &tmp);
6583 if (ret) {
6584 btrfs_free_device(dev);
6585 return ERR_PTR(ret);
6586 }
6587 }
6588 dev->devid = tmp;
6589
6590 if (uuid)
6591 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6592 else
6593 generate_random_uuid(dev->uuid);
6594
6595 return dev;
6596 }
6597
6598 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6599 u64 devid, u8 *uuid, bool error)
6600 {
6601 if (error)
6602 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6603 devid, uuid);
6604 else
6605 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6606 devid, uuid);
6607 }
6608
6609 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6610 {
6611 int index = btrfs_bg_flags_to_raid_index(type);
6612 int ncopies = btrfs_raid_array[index].ncopies;
6613 const int nparity = btrfs_raid_array[index].nparity;
6614 int data_stripes;
6615
6616 if (nparity)
6617 data_stripes = num_stripes - nparity;
6618 else
6619 data_stripes = num_stripes / ncopies;
6620
6621 return div_u64(chunk_len, data_stripes);
6622 }
6623
6624 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6625 struct btrfs_chunk *chunk)
6626 {
6627 struct btrfs_fs_info *fs_info = leaf->fs_info;
6628 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6629 struct map_lookup *map;
6630 struct extent_map *em;
6631 u64 logical;
6632 u64 length;
6633 u64 devid;
6634 u8 uuid[BTRFS_UUID_SIZE];
6635 int num_stripes;
6636 int ret;
6637 int i;
6638
6639 logical = key->offset;
6640 length = btrfs_chunk_length(leaf, chunk);
6641 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6642
6643 /*
6644 * Only need to verify chunk item if we're reading from sys chunk array,
6645 * as chunk item in tree block is already verified by tree-checker.
6646 */
6647 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6648 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6649 if (ret)
6650 return ret;
6651 }
6652
6653 read_lock(&map_tree->lock);
6654 em = lookup_extent_mapping(map_tree, logical, 1);
6655 read_unlock(&map_tree->lock);
6656
6657 /* already mapped? */
6658 if (em && em->start <= logical && em->start + em->len > logical) {
6659 free_extent_map(em);
6660 return 0;
6661 } else if (em) {
6662 free_extent_map(em);
6663 }
6664
6665 em = alloc_extent_map();
6666 if (!em)
6667 return -ENOMEM;
6668 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6669 if (!map) {
6670 free_extent_map(em);
6671 return -ENOMEM;
6672 }
6673
6674 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6675 em->map_lookup = map;
6676 em->start = logical;
6677 em->len = length;
6678 em->orig_start = 0;
6679 em->block_start = 0;
6680 em->block_len = em->len;
6681
6682 map->num_stripes = num_stripes;
6683 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6684 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6685 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6686 map->type = btrfs_chunk_type(leaf, chunk);
6687 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6688 map->verified_stripes = 0;
6689 em->orig_block_len = calc_stripe_length(map->type, em->len,
6690 map->num_stripes);
6691 for (i = 0; i < num_stripes; i++) {
6692 map->stripes[i].physical =
6693 btrfs_stripe_offset_nr(leaf, chunk, i);
6694 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6695 read_extent_buffer(leaf, uuid, (unsigned long)
6696 btrfs_stripe_dev_uuid_nr(chunk, i),
6697 BTRFS_UUID_SIZE);
6698 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6699 devid, uuid, NULL);
6700 if (!map->stripes[i].dev &&
6701 !btrfs_test_opt(fs_info, DEGRADED)) {
6702 free_extent_map(em);
6703 btrfs_report_missing_device(fs_info, devid, uuid, true);
6704 return -ENOENT;
6705 }
6706 if (!map->stripes[i].dev) {
6707 map->stripes[i].dev =
6708 add_missing_dev(fs_info->fs_devices, devid,
6709 uuid);
6710 if (IS_ERR(map->stripes[i].dev)) {
6711 free_extent_map(em);
6712 btrfs_err(fs_info,
6713 "failed to init missing dev %llu: %ld",
6714 devid, PTR_ERR(map->stripes[i].dev));
6715 return PTR_ERR(map->stripes[i].dev);
6716 }
6717 btrfs_report_missing_device(fs_info, devid, uuid, false);
6718 }
6719 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6720 &(map->stripes[i].dev->dev_state));
6721
6722 }
6723
6724 write_lock(&map_tree->lock);
6725 ret = add_extent_mapping(map_tree, em, 0);
6726 write_unlock(&map_tree->lock);
6727 if (ret < 0) {
6728 btrfs_err(fs_info,
6729 "failed to add chunk map, start=%llu len=%llu: %d",
6730 em->start, em->len, ret);
6731 }
6732 free_extent_map(em);
6733
6734 return ret;
6735 }
6736
6737 static void fill_device_from_item(struct extent_buffer *leaf,
6738 struct btrfs_dev_item *dev_item,
6739 struct btrfs_device *device)
6740 {
6741 unsigned long ptr;
6742
6743 device->devid = btrfs_device_id(leaf, dev_item);
6744 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6745 device->total_bytes = device->disk_total_bytes;
6746 device->commit_total_bytes = device->disk_total_bytes;
6747 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6748 device->commit_bytes_used = device->bytes_used;
6749 device->type = btrfs_device_type(leaf, dev_item);
6750 device->io_align = btrfs_device_io_align(leaf, dev_item);
6751 device->io_width = btrfs_device_io_width(leaf, dev_item);
6752 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6753 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6754 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6755
6756 ptr = btrfs_device_uuid(dev_item);
6757 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6758 }
6759
6760 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6761 u8 *fsid)
6762 {
6763 struct btrfs_fs_devices *fs_devices;
6764 int ret;
6765
6766 lockdep_assert_held(&uuid_mutex);
6767 ASSERT(fsid);
6768
6769 /* This will match only for multi-device seed fs */
6770 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6771 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6772 return fs_devices;
6773
6774
6775 fs_devices = find_fsid(fsid, NULL);
6776 if (!fs_devices) {
6777 if (!btrfs_test_opt(fs_info, DEGRADED))
6778 return ERR_PTR(-ENOENT);
6779
6780 fs_devices = alloc_fs_devices(fsid, NULL);
6781 if (IS_ERR(fs_devices))
6782 return fs_devices;
6783
6784 fs_devices->seeding = true;
6785 fs_devices->opened = 1;
6786 return fs_devices;
6787 }
6788
6789 /*
6790 * Upon first call for a seed fs fsid, just create a private copy of the
6791 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6792 */
6793 fs_devices = clone_fs_devices(fs_devices);
6794 if (IS_ERR(fs_devices))
6795 return fs_devices;
6796
6797 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6798 if (ret) {
6799 free_fs_devices(fs_devices);
6800 return ERR_PTR(ret);
6801 }
6802
6803 if (!fs_devices->seeding) {
6804 close_fs_devices(fs_devices);
6805 free_fs_devices(fs_devices);
6806 return ERR_PTR(-EINVAL);
6807 }
6808
6809 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6810
6811 return fs_devices;
6812 }
6813
6814 static int read_one_dev(struct extent_buffer *leaf,
6815 struct btrfs_dev_item *dev_item)
6816 {
6817 struct btrfs_fs_info *fs_info = leaf->fs_info;
6818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6819 struct btrfs_device *device;
6820 u64 devid;
6821 int ret;
6822 u8 fs_uuid[BTRFS_FSID_SIZE];
6823 u8 dev_uuid[BTRFS_UUID_SIZE];
6824
6825 devid = btrfs_device_id(leaf, dev_item);
6826 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6827 BTRFS_UUID_SIZE);
6828 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6829 BTRFS_FSID_SIZE);
6830
6831 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6832 fs_devices = open_seed_devices(fs_info, fs_uuid);
6833 if (IS_ERR(fs_devices))
6834 return PTR_ERR(fs_devices);
6835 }
6836
6837 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6838 fs_uuid);
6839 if (!device) {
6840 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6841 btrfs_report_missing_device(fs_info, devid,
6842 dev_uuid, true);
6843 return -ENOENT;
6844 }
6845
6846 device = add_missing_dev(fs_devices, devid, dev_uuid);
6847 if (IS_ERR(device)) {
6848 btrfs_err(fs_info,
6849 "failed to add missing dev %llu: %ld",
6850 devid, PTR_ERR(device));
6851 return PTR_ERR(device);
6852 }
6853 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6854 } else {
6855 if (!device->bdev) {
6856 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6857 btrfs_report_missing_device(fs_info,
6858 devid, dev_uuid, true);
6859 return -ENOENT;
6860 }
6861 btrfs_report_missing_device(fs_info, devid,
6862 dev_uuid, false);
6863 }
6864
6865 if (!device->bdev &&
6866 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6867 /*
6868 * this happens when a device that was properly setup
6869 * in the device info lists suddenly goes bad.
6870 * device->bdev is NULL, and so we have to set
6871 * device->missing to one here
6872 */
6873 device->fs_devices->missing_devices++;
6874 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6875 }
6876
6877 /* Move the device to its own fs_devices */
6878 if (device->fs_devices != fs_devices) {
6879 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6880 &device->dev_state));
6881
6882 list_move(&device->dev_list, &fs_devices->devices);
6883 device->fs_devices->num_devices--;
6884 fs_devices->num_devices++;
6885
6886 device->fs_devices->missing_devices--;
6887 fs_devices->missing_devices++;
6888
6889 device->fs_devices = fs_devices;
6890 }
6891 }
6892
6893 if (device->fs_devices != fs_info->fs_devices) {
6894 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6895 if (device->generation !=
6896 btrfs_device_generation(leaf, dev_item))
6897 return -EINVAL;
6898 }
6899
6900 fill_device_from_item(leaf, dev_item, device);
6901 if (device->bdev) {
6902 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
6903
6904 if (device->total_bytes > max_total_bytes) {
6905 btrfs_err(fs_info,
6906 "device total_bytes should be at most %llu but found %llu",
6907 max_total_bytes, device->total_bytes);
6908 return -EINVAL;
6909 }
6910 }
6911 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6912 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6913 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6914 device->fs_devices->total_rw_bytes += device->total_bytes;
6915 atomic64_add(device->total_bytes - device->bytes_used,
6916 &fs_info->free_chunk_space);
6917 }
6918 ret = 0;
6919 return ret;
6920 }
6921
6922 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6923 {
6924 struct btrfs_root *root = fs_info->tree_root;
6925 struct btrfs_super_block *super_copy = fs_info->super_copy;
6926 struct extent_buffer *sb;
6927 struct btrfs_disk_key *disk_key;
6928 struct btrfs_chunk *chunk;
6929 u8 *array_ptr;
6930 unsigned long sb_array_offset;
6931 int ret = 0;
6932 u32 num_stripes;
6933 u32 array_size;
6934 u32 len = 0;
6935 u32 cur_offset;
6936 u64 type;
6937 struct btrfs_key key;
6938
6939 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6940 /*
6941 * This will create extent buffer of nodesize, superblock size is
6942 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6943 * overallocate but we can keep it as-is, only the first page is used.
6944 */
6945 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
6946 root->root_key.objectid, 0);
6947 if (IS_ERR(sb))
6948 return PTR_ERR(sb);
6949 set_extent_buffer_uptodate(sb);
6950 /*
6951 * The sb extent buffer is artificial and just used to read the system array.
6952 * set_extent_buffer_uptodate() call does not properly mark all it's
6953 * pages up-to-date when the page is larger: extent does not cover the
6954 * whole page and consequently check_page_uptodate does not find all
6955 * the page's extents up-to-date (the hole beyond sb),
6956 * write_extent_buffer then triggers a WARN_ON.
6957 *
6958 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6959 * but sb spans only this function. Add an explicit SetPageUptodate call
6960 * to silence the warning eg. on PowerPC 64.
6961 */
6962 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6963 SetPageUptodate(sb->pages[0]);
6964
6965 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6966 array_size = btrfs_super_sys_array_size(super_copy);
6967
6968 array_ptr = super_copy->sys_chunk_array;
6969 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6970 cur_offset = 0;
6971
6972 while (cur_offset < array_size) {
6973 disk_key = (struct btrfs_disk_key *)array_ptr;
6974 len = sizeof(*disk_key);
6975 if (cur_offset + len > array_size)
6976 goto out_short_read;
6977
6978 btrfs_disk_key_to_cpu(&key, disk_key);
6979
6980 array_ptr += len;
6981 sb_array_offset += len;
6982 cur_offset += len;
6983
6984 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6985 btrfs_err(fs_info,
6986 "unexpected item type %u in sys_array at offset %u",
6987 (u32)key.type, cur_offset);
6988 ret = -EIO;
6989 break;
6990 }
6991
6992 chunk = (struct btrfs_chunk *)sb_array_offset;
6993 /*
6994 * At least one btrfs_chunk with one stripe must be present,
6995 * exact stripe count check comes afterwards
6996 */
6997 len = btrfs_chunk_item_size(1);
6998 if (cur_offset + len > array_size)
6999 goto out_short_read;
7000
7001 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7002 if (!num_stripes) {
7003 btrfs_err(fs_info,
7004 "invalid number of stripes %u in sys_array at offset %u",
7005 num_stripes, cur_offset);
7006 ret = -EIO;
7007 break;
7008 }
7009
7010 type = btrfs_chunk_type(sb, chunk);
7011 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7012 btrfs_err(fs_info,
7013 "invalid chunk type %llu in sys_array at offset %u",
7014 type, cur_offset);
7015 ret = -EIO;
7016 break;
7017 }
7018
7019 len = btrfs_chunk_item_size(num_stripes);
7020 if (cur_offset + len > array_size)
7021 goto out_short_read;
7022
7023 ret = read_one_chunk(&key, sb, chunk);
7024 if (ret)
7025 break;
7026
7027 array_ptr += len;
7028 sb_array_offset += len;
7029 cur_offset += len;
7030 }
7031 clear_extent_buffer_uptodate(sb);
7032 free_extent_buffer_stale(sb);
7033 return ret;
7034
7035 out_short_read:
7036 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7037 len, cur_offset);
7038 clear_extent_buffer_uptodate(sb);
7039 free_extent_buffer_stale(sb);
7040 return -EIO;
7041 }
7042
7043 /*
7044 * Check if all chunks in the fs are OK for read-write degraded mount
7045 *
7046 * If the @failing_dev is specified, it's accounted as missing.
7047 *
7048 * Return true if all chunks meet the minimal RW mount requirements.
7049 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7050 */
7051 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7052 struct btrfs_device *failing_dev)
7053 {
7054 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7055 struct extent_map *em;
7056 u64 next_start = 0;
7057 bool ret = true;
7058
7059 read_lock(&map_tree->lock);
7060 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7061 read_unlock(&map_tree->lock);
7062 /* No chunk at all? Return false anyway */
7063 if (!em) {
7064 ret = false;
7065 goto out;
7066 }
7067 while (em) {
7068 struct map_lookup *map;
7069 int missing = 0;
7070 int max_tolerated;
7071 int i;
7072
7073 map = em->map_lookup;
7074 max_tolerated =
7075 btrfs_get_num_tolerated_disk_barrier_failures(
7076 map->type);
7077 for (i = 0; i < map->num_stripes; i++) {
7078 struct btrfs_device *dev = map->stripes[i].dev;
7079
7080 if (!dev || !dev->bdev ||
7081 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7082 dev->last_flush_error)
7083 missing++;
7084 else if (failing_dev && failing_dev == dev)
7085 missing++;
7086 }
7087 if (missing > max_tolerated) {
7088 if (!failing_dev)
7089 btrfs_warn(fs_info,
7090 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7091 em->start, missing, max_tolerated);
7092 free_extent_map(em);
7093 ret = false;
7094 goto out;
7095 }
7096 next_start = extent_map_end(em);
7097 free_extent_map(em);
7098
7099 read_lock(&map_tree->lock);
7100 em = lookup_extent_mapping(map_tree, next_start,
7101 (u64)(-1) - next_start);
7102 read_unlock(&map_tree->lock);
7103 }
7104 out:
7105 return ret;
7106 }
7107
7108 static void readahead_tree_node_children(struct extent_buffer *node)
7109 {
7110 int i;
7111 const int nr_items = btrfs_header_nritems(node);
7112
7113 for (i = 0; i < nr_items; i++)
7114 btrfs_readahead_node_child(node, i);
7115 }
7116
7117 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7118 {
7119 struct btrfs_root *root = fs_info->chunk_root;
7120 struct btrfs_path *path;
7121 struct extent_buffer *leaf;
7122 struct btrfs_key key;
7123 struct btrfs_key found_key;
7124 int ret;
7125 int slot;
7126 u64 total_dev = 0;
7127 u64 last_ra_node = 0;
7128
7129 path = btrfs_alloc_path();
7130 if (!path)
7131 return -ENOMEM;
7132
7133 /*
7134 * uuid_mutex is needed only if we are mounting a sprout FS
7135 * otherwise we don't need it.
7136 */
7137 mutex_lock(&uuid_mutex);
7138
7139 /*
7140 * It is possible for mount and umount to race in such a way that
7141 * we execute this code path, but open_fs_devices failed to clear
7142 * total_rw_bytes. We certainly want it cleared before reading the
7143 * device items, so clear it here.
7144 */
7145 fs_info->fs_devices->total_rw_bytes = 0;
7146
7147 /*
7148 * Read all device items, and then all the chunk items. All
7149 * device items are found before any chunk item (their object id
7150 * is smaller than the lowest possible object id for a chunk
7151 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7152 */
7153 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7154 key.offset = 0;
7155 key.type = 0;
7156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7157 if (ret < 0)
7158 goto error;
7159 while (1) {
7160 struct extent_buffer *node;
7161
7162 leaf = path->nodes[0];
7163 slot = path->slots[0];
7164 if (slot >= btrfs_header_nritems(leaf)) {
7165 ret = btrfs_next_leaf(root, path);
7166 if (ret == 0)
7167 continue;
7168 if (ret < 0)
7169 goto error;
7170 break;
7171 }
7172 /*
7173 * The nodes on level 1 are not locked but we don't need to do
7174 * that during mount time as nothing else can access the tree
7175 */
7176 node = path->nodes[1];
7177 if (node) {
7178 if (last_ra_node != node->start) {
7179 readahead_tree_node_children(node);
7180 last_ra_node = node->start;
7181 }
7182 }
7183 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7184 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7185 struct btrfs_dev_item *dev_item;
7186 dev_item = btrfs_item_ptr(leaf, slot,
7187 struct btrfs_dev_item);
7188 ret = read_one_dev(leaf, dev_item);
7189 if (ret)
7190 goto error;
7191 total_dev++;
7192 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7193 struct btrfs_chunk *chunk;
7194 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7195 mutex_lock(&fs_info->chunk_mutex);
7196 ret = read_one_chunk(&found_key, leaf, chunk);
7197 mutex_unlock(&fs_info->chunk_mutex);
7198 if (ret)
7199 goto error;
7200 }
7201 path->slots[0]++;
7202 }
7203
7204 /*
7205 * After loading chunk tree, we've got all device information,
7206 * do another round of validation checks.
7207 */
7208 if (total_dev != fs_info->fs_devices->total_devices) {
7209 btrfs_err(fs_info,
7210 "super_num_devices %llu mismatch with num_devices %llu found here",
7211 btrfs_super_num_devices(fs_info->super_copy),
7212 total_dev);
7213 ret = -EINVAL;
7214 goto error;
7215 }
7216 if (btrfs_super_total_bytes(fs_info->super_copy) <
7217 fs_info->fs_devices->total_rw_bytes) {
7218 btrfs_err(fs_info,
7219 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7220 btrfs_super_total_bytes(fs_info->super_copy),
7221 fs_info->fs_devices->total_rw_bytes);
7222 ret = -EINVAL;
7223 goto error;
7224 }
7225 ret = 0;
7226 error:
7227 mutex_unlock(&uuid_mutex);
7228
7229 btrfs_free_path(path);
7230 return ret;
7231 }
7232
7233 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7234 {
7235 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7236 struct btrfs_device *device;
7237
7238 fs_devices->fs_info = fs_info;
7239
7240 mutex_lock(&fs_devices->device_list_mutex);
7241 list_for_each_entry(device, &fs_devices->devices, dev_list)
7242 device->fs_info = fs_info;
7243
7244 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7245 list_for_each_entry(device, &seed_devs->devices, dev_list)
7246 device->fs_info = fs_info;
7247
7248 seed_devs->fs_info = fs_info;
7249 }
7250 mutex_unlock(&fs_devices->device_list_mutex);
7251 }
7252
7253 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7254 const struct btrfs_dev_stats_item *ptr,
7255 int index)
7256 {
7257 u64 val;
7258
7259 read_extent_buffer(eb, &val,
7260 offsetof(struct btrfs_dev_stats_item, values) +
7261 ((unsigned long)ptr) + (index * sizeof(u64)),
7262 sizeof(val));
7263 return val;
7264 }
7265
7266 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7267 struct btrfs_dev_stats_item *ptr,
7268 int index, u64 val)
7269 {
7270 write_extent_buffer(eb, &val,
7271 offsetof(struct btrfs_dev_stats_item, values) +
7272 ((unsigned long)ptr) + (index * sizeof(u64)),
7273 sizeof(val));
7274 }
7275
7276 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7277 struct btrfs_path *path)
7278 {
7279 struct btrfs_dev_stats_item *ptr;
7280 struct extent_buffer *eb;
7281 struct btrfs_key key;
7282 int item_size;
7283 int i, ret, slot;
7284
7285 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7286 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7287 key.offset = device->devid;
7288 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7289 if (ret) {
7290 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7291 btrfs_dev_stat_set(device, i, 0);
7292 device->dev_stats_valid = 1;
7293 btrfs_release_path(path);
7294 return ret < 0 ? ret : 0;
7295 }
7296 slot = path->slots[0];
7297 eb = path->nodes[0];
7298 item_size = btrfs_item_size_nr(eb, slot);
7299
7300 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7301
7302 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7303 if (item_size >= (1 + i) * sizeof(__le64))
7304 btrfs_dev_stat_set(device, i,
7305 btrfs_dev_stats_value(eb, ptr, i));
7306 else
7307 btrfs_dev_stat_set(device, i, 0);
7308 }
7309
7310 device->dev_stats_valid = 1;
7311 btrfs_dev_stat_print_on_load(device);
7312 btrfs_release_path(path);
7313
7314 return 0;
7315 }
7316
7317 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7318 {
7319 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7320 struct btrfs_device *device;
7321 struct btrfs_path *path = NULL;
7322 int ret = 0;
7323
7324 path = btrfs_alloc_path();
7325 if (!path)
7326 return -ENOMEM;
7327
7328 mutex_lock(&fs_devices->device_list_mutex);
7329 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7330 ret = btrfs_device_init_dev_stats(device, path);
7331 if (ret)
7332 goto out;
7333 }
7334 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7335 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7336 ret = btrfs_device_init_dev_stats(device, path);
7337 if (ret)
7338 goto out;
7339 }
7340 }
7341 out:
7342 mutex_unlock(&fs_devices->device_list_mutex);
7343
7344 btrfs_free_path(path);
7345 return ret;
7346 }
7347
7348 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7349 struct btrfs_device *device)
7350 {
7351 struct btrfs_fs_info *fs_info = trans->fs_info;
7352 struct btrfs_root *dev_root = fs_info->dev_root;
7353 struct btrfs_path *path;
7354 struct btrfs_key key;
7355 struct extent_buffer *eb;
7356 struct btrfs_dev_stats_item *ptr;
7357 int ret;
7358 int i;
7359
7360 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7361 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7362 key.offset = device->devid;
7363
7364 path = btrfs_alloc_path();
7365 if (!path)
7366 return -ENOMEM;
7367 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7368 if (ret < 0) {
7369 btrfs_warn_in_rcu(fs_info,
7370 "error %d while searching for dev_stats item for device %s",
7371 ret, rcu_str_deref(device->name));
7372 goto out;
7373 }
7374
7375 if (ret == 0 &&
7376 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7377 /* need to delete old one and insert a new one */
7378 ret = btrfs_del_item(trans, dev_root, path);
7379 if (ret != 0) {
7380 btrfs_warn_in_rcu(fs_info,
7381 "delete too small dev_stats item for device %s failed %d",
7382 rcu_str_deref(device->name), ret);
7383 goto out;
7384 }
7385 ret = 1;
7386 }
7387
7388 if (ret == 1) {
7389 /* need to insert a new item */
7390 btrfs_release_path(path);
7391 ret = btrfs_insert_empty_item(trans, dev_root, path,
7392 &key, sizeof(*ptr));
7393 if (ret < 0) {
7394 btrfs_warn_in_rcu(fs_info,
7395 "insert dev_stats item for device %s failed %d",
7396 rcu_str_deref(device->name), ret);
7397 goto out;
7398 }
7399 }
7400
7401 eb = path->nodes[0];
7402 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7403 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7404 btrfs_set_dev_stats_value(eb, ptr, i,
7405 btrfs_dev_stat_read(device, i));
7406 btrfs_mark_buffer_dirty(eb);
7407
7408 out:
7409 btrfs_free_path(path);
7410 return ret;
7411 }
7412
7413 /*
7414 * called from commit_transaction. Writes all changed device stats to disk.
7415 */
7416 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7417 {
7418 struct btrfs_fs_info *fs_info = trans->fs_info;
7419 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7420 struct btrfs_device *device;
7421 int stats_cnt;
7422 int ret = 0;
7423
7424 mutex_lock(&fs_devices->device_list_mutex);
7425 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7426 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7427 if (!device->dev_stats_valid || stats_cnt == 0)
7428 continue;
7429
7430
7431 /*
7432 * There is a LOAD-LOAD control dependency between the value of
7433 * dev_stats_ccnt and updating the on-disk values which requires
7434 * reading the in-memory counters. Such control dependencies
7435 * require explicit read memory barriers.
7436 *
7437 * This memory barriers pairs with smp_mb__before_atomic in
7438 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7439 * barrier implied by atomic_xchg in
7440 * btrfs_dev_stats_read_and_reset
7441 */
7442 smp_rmb();
7443
7444 ret = update_dev_stat_item(trans, device);
7445 if (!ret)
7446 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7447 }
7448 mutex_unlock(&fs_devices->device_list_mutex);
7449
7450 return ret;
7451 }
7452
7453 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7454 {
7455 btrfs_dev_stat_inc(dev, index);
7456 btrfs_dev_stat_print_on_error(dev);
7457 }
7458
7459 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7460 {
7461 if (!dev->dev_stats_valid)
7462 return;
7463 btrfs_err_rl_in_rcu(dev->fs_info,
7464 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7465 rcu_str_deref(dev->name),
7466 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7467 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7468 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7469 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7470 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7471 }
7472
7473 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7474 {
7475 int i;
7476
7477 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7478 if (btrfs_dev_stat_read(dev, i) != 0)
7479 break;
7480 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7481 return; /* all values == 0, suppress message */
7482
7483 btrfs_info_in_rcu(dev->fs_info,
7484 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7485 rcu_str_deref(dev->name),
7486 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7487 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7488 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7489 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7490 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7491 }
7492
7493 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7494 struct btrfs_ioctl_get_dev_stats *stats)
7495 {
7496 struct btrfs_device *dev;
7497 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7498 int i;
7499
7500 mutex_lock(&fs_devices->device_list_mutex);
7501 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7502 mutex_unlock(&fs_devices->device_list_mutex);
7503
7504 if (!dev) {
7505 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7506 return -ENODEV;
7507 } else if (!dev->dev_stats_valid) {
7508 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7509 return -ENODEV;
7510 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7511 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7512 if (stats->nr_items > i)
7513 stats->values[i] =
7514 btrfs_dev_stat_read_and_reset(dev, i);
7515 else
7516 btrfs_dev_stat_set(dev, i, 0);
7517 }
7518 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7519 current->comm, task_pid_nr(current));
7520 } else {
7521 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7522 if (stats->nr_items > i)
7523 stats->values[i] = btrfs_dev_stat_read(dev, i);
7524 }
7525 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7526 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7527 return 0;
7528 }
7529
7530 /*
7531 * Update the size and bytes used for each device where it changed. This is
7532 * delayed since we would otherwise get errors while writing out the
7533 * superblocks.
7534 *
7535 * Must be invoked during transaction commit.
7536 */
7537 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7538 {
7539 struct btrfs_device *curr, *next;
7540
7541 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7542
7543 if (list_empty(&trans->dev_update_list))
7544 return;
7545
7546 /*
7547 * We don't need the device_list_mutex here. This list is owned by the
7548 * transaction and the transaction must complete before the device is
7549 * released.
7550 */
7551 mutex_lock(&trans->fs_info->chunk_mutex);
7552 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7553 post_commit_list) {
7554 list_del_init(&curr->post_commit_list);
7555 curr->commit_total_bytes = curr->disk_total_bytes;
7556 curr->commit_bytes_used = curr->bytes_used;
7557 }
7558 mutex_unlock(&trans->fs_info->chunk_mutex);
7559 }
7560
7561 /*
7562 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7563 */
7564 int btrfs_bg_type_to_factor(u64 flags)
7565 {
7566 const int index = btrfs_bg_flags_to_raid_index(flags);
7567
7568 return btrfs_raid_array[index].ncopies;
7569 }
7570
7571
7572
7573 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7574 u64 chunk_offset, u64 devid,
7575 u64 physical_offset, u64 physical_len)
7576 {
7577 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7578 struct extent_map *em;
7579 struct map_lookup *map;
7580 struct btrfs_device *dev;
7581 u64 stripe_len;
7582 bool found = false;
7583 int ret = 0;
7584 int i;
7585
7586 read_lock(&em_tree->lock);
7587 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7588 read_unlock(&em_tree->lock);
7589
7590 if (!em) {
7591 btrfs_err(fs_info,
7592 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7593 physical_offset, devid);
7594 ret = -EUCLEAN;
7595 goto out;
7596 }
7597
7598 map = em->map_lookup;
7599 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7600 if (physical_len != stripe_len) {
7601 btrfs_err(fs_info,
7602 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7603 physical_offset, devid, em->start, physical_len,
7604 stripe_len);
7605 ret = -EUCLEAN;
7606 goto out;
7607 }
7608
7609 for (i = 0; i < map->num_stripes; i++) {
7610 if (map->stripes[i].dev->devid == devid &&
7611 map->stripes[i].physical == physical_offset) {
7612 found = true;
7613 if (map->verified_stripes >= map->num_stripes) {
7614 btrfs_err(fs_info,
7615 "too many dev extents for chunk %llu found",
7616 em->start);
7617 ret = -EUCLEAN;
7618 goto out;
7619 }
7620 map->verified_stripes++;
7621 break;
7622 }
7623 }
7624 if (!found) {
7625 btrfs_err(fs_info,
7626 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7627 physical_offset, devid);
7628 ret = -EUCLEAN;
7629 }
7630
7631 /* Make sure no dev extent is beyond device bondary */
7632 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7633 if (!dev) {
7634 btrfs_err(fs_info, "failed to find devid %llu", devid);
7635 ret = -EUCLEAN;
7636 goto out;
7637 }
7638
7639 if (physical_offset + physical_len > dev->disk_total_bytes) {
7640 btrfs_err(fs_info,
7641 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7642 devid, physical_offset, physical_len,
7643 dev->disk_total_bytes);
7644 ret = -EUCLEAN;
7645 goto out;
7646 }
7647 out:
7648 free_extent_map(em);
7649 return ret;
7650 }
7651
7652 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7653 {
7654 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7655 struct extent_map *em;
7656 struct rb_node *node;
7657 int ret = 0;
7658
7659 read_lock(&em_tree->lock);
7660 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7661 em = rb_entry(node, struct extent_map, rb_node);
7662 if (em->map_lookup->num_stripes !=
7663 em->map_lookup->verified_stripes) {
7664 btrfs_err(fs_info,
7665 "chunk %llu has missing dev extent, have %d expect %d",
7666 em->start, em->map_lookup->verified_stripes,
7667 em->map_lookup->num_stripes);
7668 ret = -EUCLEAN;
7669 goto out;
7670 }
7671 }
7672 out:
7673 read_unlock(&em_tree->lock);
7674 return ret;
7675 }
7676
7677 /*
7678 * Ensure that all dev extents are mapped to correct chunk, otherwise
7679 * later chunk allocation/free would cause unexpected behavior.
7680 *
7681 * NOTE: This will iterate through the whole device tree, which should be of
7682 * the same size level as the chunk tree. This slightly increases mount time.
7683 */
7684 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7685 {
7686 struct btrfs_path *path;
7687 struct btrfs_root *root = fs_info->dev_root;
7688 struct btrfs_key key;
7689 u64 prev_devid = 0;
7690 u64 prev_dev_ext_end = 0;
7691 int ret = 0;
7692
7693 /*
7694 * We don't have a dev_root because we mounted with ignorebadroots and
7695 * failed to load the root, so we want to skip the verification in this
7696 * case for sure.
7697 *
7698 * However if the dev root is fine, but the tree itself is corrupted
7699 * we'd still fail to mount. This verification is only to make sure
7700 * writes can happen safely, so instead just bypass this check
7701 * completely in the case of IGNOREBADROOTS.
7702 */
7703 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7704 return 0;
7705
7706 key.objectid = 1;
7707 key.type = BTRFS_DEV_EXTENT_KEY;
7708 key.offset = 0;
7709
7710 path = btrfs_alloc_path();
7711 if (!path)
7712 return -ENOMEM;
7713
7714 path->reada = READA_FORWARD;
7715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7716 if (ret < 0)
7717 goto out;
7718
7719 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7720 ret = btrfs_next_item(root, path);
7721 if (ret < 0)
7722 goto out;
7723 /* No dev extents at all? Not good */
7724 if (ret > 0) {
7725 ret = -EUCLEAN;
7726 goto out;
7727 }
7728 }
7729 while (1) {
7730 struct extent_buffer *leaf = path->nodes[0];
7731 struct btrfs_dev_extent *dext;
7732 int slot = path->slots[0];
7733 u64 chunk_offset;
7734 u64 physical_offset;
7735 u64 physical_len;
7736 u64 devid;
7737
7738 btrfs_item_key_to_cpu(leaf, &key, slot);
7739 if (key.type != BTRFS_DEV_EXTENT_KEY)
7740 break;
7741 devid = key.objectid;
7742 physical_offset = key.offset;
7743
7744 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7745 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7746 physical_len = btrfs_dev_extent_length(leaf, dext);
7747
7748 /* Check if this dev extent overlaps with the previous one */
7749 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7750 btrfs_err(fs_info,
7751 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7752 devid, physical_offset, prev_dev_ext_end);
7753 ret = -EUCLEAN;
7754 goto out;
7755 }
7756
7757 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7758 physical_offset, physical_len);
7759 if (ret < 0)
7760 goto out;
7761 prev_devid = devid;
7762 prev_dev_ext_end = physical_offset + physical_len;
7763
7764 ret = btrfs_next_item(root, path);
7765 if (ret < 0)
7766 goto out;
7767 if (ret > 0) {
7768 ret = 0;
7769 break;
7770 }
7771 }
7772
7773 /* Ensure all chunks have corresponding dev extents */
7774 ret = verify_chunk_dev_extent_mapping(fs_info);
7775 out:
7776 btrfs_free_path(path);
7777 return ret;
7778 }
7779
7780 /*
7781 * Check whether the given block group or device is pinned by any inode being
7782 * used as a swapfile.
7783 */
7784 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7785 {
7786 struct btrfs_swapfile_pin *sp;
7787 struct rb_node *node;
7788
7789 spin_lock(&fs_info->swapfile_pins_lock);
7790 node = fs_info->swapfile_pins.rb_node;
7791 while (node) {
7792 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7793 if (ptr < sp->ptr)
7794 node = node->rb_left;
7795 else if (ptr > sp->ptr)
7796 node = node->rb_right;
7797 else
7798 break;
7799 }
7800 spin_unlock(&fs_info->swapfile_pins_lock);
7801 return node != NULL;
7802 }