]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/volumes.c
Merge tag 'linux-kselftest-kunit-fixes-5.10-rc3' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 [BTRFS_RAID_RAID10] = {
37 .sub_stripes = 2,
38 .dev_stripes = 1,
39 .devs_max = 0, /* 0 == as many as possible */
40 .devs_min = 4,
41 .tolerated_failures = 1,
42 .devs_increment = 2,
43 .ncopies = 2,
44 .nparity = 0,
45 .raid_name = "raid10",
46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 },
49 [BTRFS_RAID_RAID1] = {
50 .sub_stripes = 1,
51 .dev_stripes = 1,
52 .devs_max = 2,
53 .devs_min = 2,
54 .tolerated_failures = 1,
55 .devs_increment = 2,
56 .ncopies = 2,
57 .nparity = 0,
58 .raid_name = "raid1",
59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 },
62 [BTRFS_RAID_RAID1C3] = {
63 .sub_stripes = 1,
64 .dev_stripes = 1,
65 .devs_max = 3,
66 .devs_min = 3,
67 .tolerated_failures = 2,
68 .devs_increment = 3,
69 .ncopies = 3,
70 .nparity = 0,
71 .raid_name = "raid1c3",
72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 },
75 [BTRFS_RAID_RAID1C4] = {
76 .sub_stripes = 1,
77 .dev_stripes = 1,
78 .devs_max = 4,
79 .devs_min = 4,
80 .tolerated_failures = 3,
81 .devs_increment = 4,
82 .ncopies = 4,
83 .nparity = 0,
84 .raid_name = "raid1c4",
85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 },
88 [BTRFS_RAID_DUP] = {
89 .sub_stripes = 1,
90 .dev_stripes = 2,
91 .devs_max = 1,
92 .devs_min = 1,
93 .tolerated_failures = 0,
94 .devs_increment = 1,
95 .ncopies = 2,
96 .nparity = 0,
97 .raid_name = "dup",
98 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
99 .mindev_error = 0,
100 },
101 [BTRFS_RAID_RAID0] = {
102 .sub_stripes = 1,
103 .dev_stripes = 1,
104 .devs_max = 0,
105 .devs_min = 2,
106 .tolerated_failures = 0,
107 .devs_increment = 1,
108 .ncopies = 1,
109 .nparity = 0,
110 .raid_name = "raid0",
111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
112 .mindev_error = 0,
113 },
114 [BTRFS_RAID_SINGLE] = {
115 .sub_stripes = 1,
116 .dev_stripes = 1,
117 .devs_max = 1,
118 .devs_min = 1,
119 .tolerated_failures = 0,
120 .devs_increment = 1,
121 .ncopies = 1,
122 .nparity = 0,
123 .raid_name = "single",
124 .bg_flag = 0,
125 .mindev_error = 0,
126 },
127 [BTRFS_RAID_RAID5] = {
128 .sub_stripes = 1,
129 .dev_stripes = 1,
130 .devs_max = 0,
131 .devs_min = 2,
132 .tolerated_failures = 1,
133 .devs_increment = 1,
134 .ncopies = 1,
135 .nparity = 1,
136 .raid_name = "raid5",
137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 },
140 [BTRFS_RAID_RAID6] = {
141 .sub_stripes = 1,
142 .dev_stripes = 1,
143 .devs_max = 0,
144 .devs_min = 3,
145 .tolerated_failures = 2,
146 .devs_increment = 1,
147 .ncopies = 1,
148 .nparity = 2,
149 .raid_name = "raid6",
150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 },
153 };
154
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 const int index = btrfs_bg_flags_to_raid_index(flags);
158
159 if (index >= BTRFS_NR_RAID_TYPES)
160 return NULL;
161
162 return btrfs_raid_array[index].raid_name;
163 }
164
165 /*
166 * Fill @buf with textual description of @bg_flags, no more than @size_buf
167 * bytes including terminating null byte.
168 */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 int i;
172 int ret;
173 char *bp = buf;
174 u64 flags = bg_flags;
175 u32 size_bp = size_buf;
176
177 if (!flags) {
178 strcpy(bp, "NONE");
179 return;
180 }
181
182 #define DESCRIBE_FLAG(flag, desc) \
183 do { \
184 if (flags & (flag)) { \
185 ret = snprintf(bp, size_bp, "%s|", (desc)); \
186 if (ret < 0 || ret >= size_bp) \
187 goto out_overflow; \
188 size_bp -= ret; \
189 bp += ret; \
190 flags &= ~(flag); \
191 } \
192 } while (0)
193
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203
204 if (flags) {
205 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 size_bp -= ret;
207 }
208
209 if (size_bp < size_buf)
210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212 /*
213 * The text is trimmed, it's up to the caller to provide sufficiently
214 * large buffer
215 */
216 out_overflow:;
217 }
218
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 enum btrfs_map_op op,
225 u64 logical, u64 *length,
226 struct btrfs_bio **bbio_ret,
227 int mirror_num, int need_raid_map);
228
229 /*
230 * Device locking
231 * ==============
232 *
233 * There are several mutexes that protect manipulation of devices and low-level
234 * structures like chunks but not block groups, extents or files
235 *
236 * uuid_mutex (global lock)
237 * ------------------------
238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240 * device) or requested by the device= mount option
241 *
242 * the mutex can be very coarse and can cover long-running operations
243 *
244 * protects: updates to fs_devices counters like missing devices, rw devices,
245 * seeding, structure cloning, opening/closing devices at mount/umount time
246 *
247 * global::fs_devs - add, remove, updates to the global list
248 *
249 * does not protect: manipulation of the fs_devices::devices list in general
250 * but in mount context it could be used to exclude list modifications by eg.
251 * scan ioctl
252 *
253 * btrfs_device::name - renames (write side), read is RCU
254 *
255 * fs_devices::device_list_mutex (per-fs, with RCU)
256 * ------------------------------------------------
257 * protects updates to fs_devices::devices, ie. adding and deleting
258 *
259 * simple list traversal with read-only actions can be done with RCU protection
260 *
261 * may be used to exclude some operations from running concurrently without any
262 * modifications to the list (see write_all_supers)
263 *
264 * Is not required at mount and close times, because our device list is
265 * protected by the uuid_mutex at that point.
266 *
267 * balance_mutex
268 * -------------
269 * protects balance structures (status, state) and context accessed from
270 * several places (internally, ioctl)
271 *
272 * chunk_mutex
273 * -----------
274 * protects chunks, adding or removing during allocation, trim or when a new
275 * device is added/removed. Additionally it also protects post_commit_list of
276 * individual devices, since they can be added to the transaction's
277 * post_commit_list only with chunk_mutex held.
278 *
279 * cleaner_mutex
280 * -------------
281 * a big lock that is held by the cleaner thread and prevents running subvolume
282 * cleaning together with relocation or delayed iputs
283 *
284 *
285 * Lock nesting
286 * ============
287 *
288 * uuid_mutex
289 * device_list_mutex
290 * chunk_mutex
291 * balance_mutex
292 *
293 *
294 * Exclusive operations
295 * ====================
296 *
297 * Maintains the exclusivity of the following operations that apply to the
298 * whole filesystem and cannot run in parallel.
299 *
300 * - Balance (*)
301 * - Device add
302 * - Device remove
303 * - Device replace (*)
304 * - Resize
305 *
306 * The device operations (as above) can be in one of the following states:
307 *
308 * - Running state
309 * - Paused state
310 * - Completed state
311 *
312 * Only device operations marked with (*) can go into the Paused state for the
313 * following reasons:
314 *
315 * - ioctl (only Balance can be Paused through ioctl)
316 * - filesystem remounted as read-only
317 * - filesystem unmounted and mounted as read-only
318 * - system power-cycle and filesystem mounted as read-only
319 * - filesystem or device errors leading to forced read-only
320 *
321 * The status of exclusive operation is set and cleared atomically.
322 * During the course of Paused state, fs_info::exclusive_operation remains set.
323 * A device operation in Paused or Running state can be canceled or resumed
324 * either by ioctl (Balance only) or when remounted as read-write.
325 * The exclusive status is cleared when the device operation is canceled or
326 * completed.
327 */
328
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 return &fs_uuids;
334 }
335
336 /*
337 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
340 *
341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342 * The returned struct is not linked onto any lists and can be destroyed with
343 * kfree() right away.
344 */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 const u8 *metadata_fsid)
347 {
348 struct btrfs_fs_devices *fs_devs;
349
350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 if (!fs_devs)
352 return ERR_PTR(-ENOMEM);
353
354 mutex_init(&fs_devs->device_list_mutex);
355
356 INIT_LIST_HEAD(&fs_devs->devices);
357 INIT_LIST_HEAD(&fs_devs->alloc_list);
358 INIT_LIST_HEAD(&fs_devs->fs_list);
359 INIT_LIST_HEAD(&fs_devs->seed_list);
360 if (fsid)
361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
362
363 if (metadata_fsid)
364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
365 else if (fsid)
366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
367
368 return fs_devs;
369 }
370
371 void btrfs_free_device(struct btrfs_device *device)
372 {
373 WARN_ON(!list_empty(&device->post_commit_list));
374 rcu_string_free(device->name);
375 extent_io_tree_release(&device->alloc_state);
376 bio_put(device->flush_bio);
377 kfree(device);
378 }
379
380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
381 {
382 struct btrfs_device *device;
383 WARN_ON(fs_devices->opened);
384 while (!list_empty(&fs_devices->devices)) {
385 device = list_entry(fs_devices->devices.next,
386 struct btrfs_device, dev_list);
387 list_del(&device->dev_list);
388 btrfs_free_device(device);
389 }
390 kfree(fs_devices);
391 }
392
393 void __exit btrfs_cleanup_fs_uuids(void)
394 {
395 struct btrfs_fs_devices *fs_devices;
396
397 while (!list_empty(&fs_uuids)) {
398 fs_devices = list_entry(fs_uuids.next,
399 struct btrfs_fs_devices, fs_list);
400 list_del(&fs_devices->fs_list);
401 free_fs_devices(fs_devices);
402 }
403 }
404
405 /*
406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
407 * Returned struct is not linked onto any lists and must be destroyed using
408 * btrfs_free_device.
409 */
410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 {
412 struct btrfs_device *dev;
413
414 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 if (!dev)
416 return ERR_PTR(-ENOMEM);
417
418 /*
419 * Preallocate a bio that's always going to be used for flushing device
420 * barriers and matches the device lifespan
421 */
422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
423 if (!dev->flush_bio) {
424 kfree(dev);
425 return ERR_PTR(-ENOMEM);
426 }
427
428 INIT_LIST_HEAD(&dev->dev_list);
429 INIT_LIST_HEAD(&dev->dev_alloc_list);
430 INIT_LIST_HEAD(&dev->post_commit_list);
431
432 atomic_set(&dev->reada_in_flight, 0);
433 atomic_set(&dev->dev_stats_ccnt, 0);
434 btrfs_device_data_ordered_init(dev, fs_info);
435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 extent_io_tree_init(fs_info, &dev->alloc_state,
438 IO_TREE_DEVICE_ALLOC_STATE, NULL);
439
440 return dev;
441 }
442
443 static noinline struct btrfs_fs_devices *find_fsid(
444 const u8 *fsid, const u8 *metadata_fsid)
445 {
446 struct btrfs_fs_devices *fs_devices;
447
448 ASSERT(fsid);
449
450 /* Handle non-split brain cases */
451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 if (metadata_fsid) {
453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 BTRFS_FSID_SIZE) == 0)
456 return fs_devices;
457 } else {
458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 return fs_devices;
460 }
461 }
462 return NULL;
463 }
464
465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
466 struct btrfs_super_block *disk_super)
467 {
468
469 struct btrfs_fs_devices *fs_devices;
470
471 /*
472 * Handle scanned device having completed its fsid change but
473 * belonging to a fs_devices that was created by first scanning
474 * a device which didn't have its fsid/metadata_uuid changed
475 * at all and the CHANGING_FSID_V2 flag set.
476 */
477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 if (fs_devices->fsid_change &&
479 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
480 BTRFS_FSID_SIZE) == 0 &&
481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
482 BTRFS_FSID_SIZE) == 0) {
483 return fs_devices;
484 }
485 }
486 /*
487 * Handle scanned device having completed its fsid change but
488 * belonging to a fs_devices that was created by a device that
489 * has an outdated pair of fsid/metadata_uuid and
490 * CHANGING_FSID_V2 flag set.
491 */
492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
493 if (fs_devices->fsid_change &&
494 memcmp(fs_devices->metadata_uuid,
495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
497 BTRFS_FSID_SIZE) == 0) {
498 return fs_devices;
499 }
500 }
501
502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
503 }
504
505
506 static int
507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
508 int flush, struct block_device **bdev,
509 struct btrfs_super_block **disk_super)
510 {
511 int ret;
512
513 *bdev = blkdev_get_by_path(device_path, flags, holder);
514
515 if (IS_ERR(*bdev)) {
516 ret = PTR_ERR(*bdev);
517 goto error;
518 }
519
520 if (flush)
521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 if (ret) {
524 blkdev_put(*bdev, flags);
525 goto error;
526 }
527 invalidate_bdev(*bdev);
528 *disk_super = btrfs_read_dev_super(*bdev);
529 if (IS_ERR(*disk_super)) {
530 ret = PTR_ERR(*disk_super);
531 blkdev_put(*bdev, flags);
532 goto error;
533 }
534
535 return 0;
536
537 error:
538 *bdev = NULL;
539 return ret;
540 }
541
542 static bool device_path_matched(const char *path, struct btrfs_device *device)
543 {
544 int found;
545
546 rcu_read_lock();
547 found = strcmp(rcu_str_deref(device->name), path);
548 rcu_read_unlock();
549
550 return found == 0;
551 }
552
553 /*
554 * Search and remove all stale (devices which are not mounted) devices.
555 * When both inputs are NULL, it will search and release all stale devices.
556 * path: Optional. When provided will it release all unmounted devices
557 * matching this path only.
558 * skip_dev: Optional. Will skip this device when searching for the stale
559 * devices.
560 * Return: 0 for success or if @path is NULL.
561 * -EBUSY if @path is a mounted device.
562 * -ENOENT if @path does not match any device in the list.
563 */
564 static int btrfs_free_stale_devices(const char *path,
565 struct btrfs_device *skip_device)
566 {
567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
568 struct btrfs_device *device, *tmp_device;
569 int ret = 0;
570
571 if (path)
572 ret = -ENOENT;
573
574 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
575
576 mutex_lock(&fs_devices->device_list_mutex);
577 list_for_each_entry_safe(device, tmp_device,
578 &fs_devices->devices, dev_list) {
579 if (skip_device && skip_device == device)
580 continue;
581 if (path && !device->name)
582 continue;
583 if (path && !device_path_matched(path, device))
584 continue;
585 if (fs_devices->opened) {
586 /* for an already deleted device return 0 */
587 if (path && ret != 0)
588 ret = -EBUSY;
589 break;
590 }
591
592 /* delete the stale device */
593 fs_devices->num_devices--;
594 list_del(&device->dev_list);
595 btrfs_free_device(device);
596
597 ret = 0;
598 }
599 mutex_unlock(&fs_devices->device_list_mutex);
600
601 if (fs_devices->num_devices == 0) {
602 btrfs_sysfs_remove_fsid(fs_devices);
603 list_del(&fs_devices->fs_list);
604 free_fs_devices(fs_devices);
605 }
606 }
607
608 return ret;
609 }
610
611 /*
612 * This is only used on mount, and we are protected from competing things
613 * messing with our fs_devices by the uuid_mutex, thus we do not need the
614 * fs_devices->device_list_mutex here.
615 */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 struct btrfs_device *device, fmode_t flags,
618 void *holder)
619 {
620 struct request_queue *q;
621 struct block_device *bdev;
622 struct btrfs_super_block *disk_super;
623 u64 devid;
624 int ret;
625
626 if (device->bdev)
627 return -EINVAL;
628 if (!device->name)
629 return -EINVAL;
630
631 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 &bdev, &disk_super);
633 if (ret)
634 return ret;
635
636 devid = btrfs_stack_device_id(&disk_super->dev_item);
637 if (devid != device->devid)
638 goto error_free_page;
639
640 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 goto error_free_page;
642
643 device->generation = btrfs_super_generation(disk_super);
644
645 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 if (btrfs_super_incompat_flags(disk_super) &
647 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 pr_err(
649 "BTRFS: Invalid seeding and uuid-changed device detected\n");
650 goto error_free_page;
651 }
652
653 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 fs_devices->seeding = true;
655 } else {
656 if (bdev_read_only(bdev))
657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 else
659 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 }
661
662 q = bdev_get_queue(bdev);
663 if (!blk_queue_nonrot(q))
664 fs_devices->rotating = true;
665
666 device->bdev = bdev;
667 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 device->mode = flags;
669
670 fs_devices->open_devices++;
671 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 fs_devices->rw_devices++;
674 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 }
676 btrfs_release_disk_super(disk_super);
677
678 return 0;
679
680 error_free_page:
681 btrfs_release_disk_super(disk_super);
682 blkdev_put(bdev, flags);
683
684 return -EINVAL;
685 }
686
687 /*
688 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689 * being created with a disk that has already completed its fsid change. Such
690 * disk can belong to an fs which has its FSID changed or to one which doesn't.
691 * Handle both cases here.
692 */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 struct btrfs_super_block *disk_super)
695 {
696 struct btrfs_fs_devices *fs_devices;
697
698 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 BTRFS_FSID_SIZE) != 0 &&
701 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 return fs_devices;
704 }
705 }
706
707 return find_fsid(disk_super->fsid, NULL);
708 }
709
710
711 static struct btrfs_fs_devices *find_fsid_changed(
712 struct btrfs_super_block *disk_super)
713 {
714 struct btrfs_fs_devices *fs_devices;
715
716 /*
717 * Handles the case where scanned device is part of an fs that had
718 * multiple successful changes of FSID but curently device didn't
719 * observe it. Meaning our fsid will be different than theirs. We need
720 * to handle two subcases :
721 * 1 - The fs still continues to have different METADATA/FSID uuids.
722 * 2 - The fs is switched back to its original FSID (METADATA/FSID
723 * are equal).
724 */
725 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 /* Changed UUIDs */
727 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 BTRFS_FSID_SIZE) != 0 &&
729 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 BTRFS_FSID_SIZE) == 0 &&
731 memcmp(fs_devices->fsid, disk_super->fsid,
732 BTRFS_FSID_SIZE) != 0)
733 return fs_devices;
734
735 /* Unchanged UUIDs */
736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 BTRFS_FSID_SIZE) == 0 &&
738 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 BTRFS_FSID_SIZE) == 0)
740 return fs_devices;
741 }
742
743 return NULL;
744 }
745
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 struct btrfs_super_block *disk_super)
748 {
749 struct btrfs_fs_devices *fs_devices;
750
751 /*
752 * Handle the case where the scanned device is part of an fs whose last
753 * metadata UUID change reverted it to the original FSID. At the same
754 * time * fs_devices was first created by another constitutent device
755 * which didn't fully observe the operation. This results in an
756 * btrfs_fs_devices created with metadata/fsid different AND
757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 * fs_devices equal to the FSID of the disk.
759 */
760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 BTRFS_FSID_SIZE) != 0 &&
763 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 BTRFS_FSID_SIZE) == 0 &&
765 fs_devices->fsid_change)
766 return fs_devices;
767 }
768
769 return NULL;
770 }
771 /*
772 * Add new device to list of registered devices
773 *
774 * Returns:
775 * device pointer which was just added or updated when successful
776 * error pointer when failed
777 */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779 struct btrfs_super_block *disk_super,
780 bool *new_device_added)
781 {
782 struct btrfs_device *device;
783 struct btrfs_fs_devices *fs_devices = NULL;
784 struct rcu_string *name;
785 u64 found_transid = btrfs_super_generation(disk_super);
786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791
792 if (fsid_change_in_progress) {
793 if (!has_metadata_uuid)
794 fs_devices = find_fsid_inprogress(disk_super);
795 else
796 fs_devices = find_fsid_changed(disk_super);
797 } else if (has_metadata_uuid) {
798 fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 } else {
800 fs_devices = find_fsid_reverted_metadata(disk_super);
801 if (!fs_devices)
802 fs_devices = find_fsid(disk_super->fsid, NULL);
803 }
804
805
806 if (!fs_devices) {
807 if (has_metadata_uuid)
808 fs_devices = alloc_fs_devices(disk_super->fsid,
809 disk_super->metadata_uuid);
810 else
811 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812
813 if (IS_ERR(fs_devices))
814 return ERR_CAST(fs_devices);
815
816 fs_devices->fsid_change = fsid_change_in_progress;
817
818 mutex_lock(&fs_devices->device_list_mutex);
819 list_add(&fs_devices->fs_list, &fs_uuids);
820
821 device = NULL;
822 } else {
823 mutex_lock(&fs_devices->device_list_mutex);
824 device = btrfs_find_device(fs_devices, devid,
825 disk_super->dev_item.uuid, NULL, false);
826
827 /*
828 * If this disk has been pulled into an fs devices created by
829 * a device which had the CHANGING_FSID_V2 flag then replace the
830 * metadata_uuid/fsid values of the fs_devices.
831 */
832 if (fs_devices->fsid_change &&
833 found_transid > fs_devices->latest_generation) {
834 memcpy(fs_devices->fsid, disk_super->fsid,
835 BTRFS_FSID_SIZE);
836
837 if (has_metadata_uuid)
838 memcpy(fs_devices->metadata_uuid,
839 disk_super->metadata_uuid,
840 BTRFS_FSID_SIZE);
841 else
842 memcpy(fs_devices->metadata_uuid,
843 disk_super->fsid, BTRFS_FSID_SIZE);
844
845 fs_devices->fsid_change = false;
846 }
847 }
848
849 if (!device) {
850 if (fs_devices->opened) {
851 mutex_unlock(&fs_devices->device_list_mutex);
852 return ERR_PTR(-EBUSY);
853 }
854
855 device = btrfs_alloc_device(NULL, &devid,
856 disk_super->dev_item.uuid);
857 if (IS_ERR(device)) {
858 mutex_unlock(&fs_devices->device_list_mutex);
859 /* we can safely leave the fs_devices entry around */
860 return device;
861 }
862
863 name = rcu_string_strdup(path, GFP_NOFS);
864 if (!name) {
865 btrfs_free_device(device);
866 mutex_unlock(&fs_devices->device_list_mutex);
867 return ERR_PTR(-ENOMEM);
868 }
869 rcu_assign_pointer(device->name, name);
870
871 list_add_rcu(&device->dev_list, &fs_devices->devices);
872 fs_devices->num_devices++;
873
874 device->fs_devices = fs_devices;
875 *new_device_added = true;
876
877 if (disk_super->label[0])
878 pr_info(
879 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 disk_super->label, devid, found_transid, path,
881 current->comm, task_pid_nr(current));
882 else
883 pr_info(
884 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 disk_super->fsid, devid, found_transid, path,
886 current->comm, task_pid_nr(current));
887
888 } else if (!device->name || strcmp(device->name->str, path)) {
889 /*
890 * When FS is already mounted.
891 * 1. If you are here and if the device->name is NULL that
892 * means this device was missing at time of FS mount.
893 * 2. If you are here and if the device->name is different
894 * from 'path' that means either
895 * a. The same device disappeared and reappeared with
896 * different name. or
897 * b. The missing-disk-which-was-replaced, has
898 * reappeared now.
899 *
900 * We must allow 1 and 2a above. But 2b would be a spurious
901 * and unintentional.
902 *
903 * Further in case of 1 and 2a above, the disk at 'path'
904 * would have missed some transaction when it was away and
905 * in case of 2a the stale bdev has to be updated as well.
906 * 2b must not be allowed at all time.
907 */
908
909 /*
910 * For now, we do allow update to btrfs_fs_device through the
911 * btrfs dev scan cli after FS has been mounted. We're still
912 * tracking a problem where systems fail mount by subvolume id
913 * when we reject replacement on a mounted FS.
914 */
915 if (!fs_devices->opened && found_transid < device->generation) {
916 /*
917 * That is if the FS is _not_ mounted and if you
918 * are here, that means there is more than one
919 * disk with same uuid and devid.We keep the one
920 * with larger generation number or the last-in if
921 * generation are equal.
922 */
923 mutex_unlock(&fs_devices->device_list_mutex);
924 return ERR_PTR(-EEXIST);
925 }
926
927 /*
928 * We are going to replace the device path for a given devid,
929 * make sure it's the same device if the device is mounted
930 */
931 if (device->bdev) {
932 struct block_device *path_bdev;
933
934 path_bdev = lookup_bdev(path);
935 if (IS_ERR(path_bdev)) {
936 mutex_unlock(&fs_devices->device_list_mutex);
937 return ERR_CAST(path_bdev);
938 }
939
940 if (device->bdev != path_bdev) {
941 bdput(path_bdev);
942 mutex_unlock(&fs_devices->device_list_mutex);
943 btrfs_warn_in_rcu(device->fs_info,
944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
945 path, devid, found_transid,
946 current->comm,
947 task_pid_nr(current));
948 return ERR_PTR(-EEXIST);
949 }
950 bdput(path_bdev);
951 btrfs_info_in_rcu(device->fs_info,
952 "devid %llu device path %s changed to %s scanned by %s (%d)",
953 devid, rcu_str_deref(device->name),
954 path, current->comm,
955 task_pid_nr(current));
956 }
957
958 name = rcu_string_strdup(path, GFP_NOFS);
959 if (!name) {
960 mutex_unlock(&fs_devices->device_list_mutex);
961 return ERR_PTR(-ENOMEM);
962 }
963 rcu_string_free(device->name);
964 rcu_assign_pointer(device->name, name);
965 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966 fs_devices->missing_devices--;
967 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968 }
969 }
970
971 /*
972 * Unmount does not free the btrfs_device struct but would zero
973 * generation along with most of the other members. So just update
974 * it back. We need it to pick the disk with largest generation
975 * (as above).
976 */
977 if (!fs_devices->opened) {
978 device->generation = found_transid;
979 fs_devices->latest_generation = max_t(u64, found_transid,
980 fs_devices->latest_generation);
981 }
982
983 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
984
985 mutex_unlock(&fs_devices->device_list_mutex);
986 return device;
987 }
988
989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
990 {
991 struct btrfs_fs_devices *fs_devices;
992 struct btrfs_device *device;
993 struct btrfs_device *orig_dev;
994 int ret = 0;
995
996 fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 if (IS_ERR(fs_devices))
998 return fs_devices;
999
1000 mutex_lock(&orig->device_list_mutex);
1001 fs_devices->total_devices = orig->total_devices;
1002
1003 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 struct rcu_string *name;
1005
1006 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1007 orig_dev->uuid);
1008 if (IS_ERR(device)) {
1009 ret = PTR_ERR(device);
1010 goto error;
1011 }
1012
1013 /*
1014 * This is ok to do without rcu read locked because we hold the
1015 * uuid mutex so nothing we touch in here is going to disappear.
1016 */
1017 if (orig_dev->name) {
1018 name = rcu_string_strdup(orig_dev->name->str,
1019 GFP_KERNEL);
1020 if (!name) {
1021 btrfs_free_device(device);
1022 ret = -ENOMEM;
1023 goto error;
1024 }
1025 rcu_assign_pointer(device->name, name);
1026 }
1027
1028 list_add(&device->dev_list, &fs_devices->devices);
1029 device->fs_devices = fs_devices;
1030 fs_devices->num_devices++;
1031 }
1032 mutex_unlock(&orig->device_list_mutex);
1033 return fs_devices;
1034 error:
1035 mutex_unlock(&orig->device_list_mutex);
1036 free_fs_devices(fs_devices);
1037 return ERR_PTR(ret);
1038 }
1039
1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1041 int step, struct btrfs_device **latest_dev)
1042 {
1043 struct btrfs_device *device, *next;
1044
1045 /* This is the initialized path, it is safe to release the devices. */
1046 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049 &device->dev_state) &&
1050 !test_bit(BTRFS_DEV_STATE_MISSING,
1051 &device->dev_state) &&
1052 (!*latest_dev ||
1053 device->generation > (*latest_dev)->generation)) {
1054 *latest_dev = device;
1055 }
1056 continue;
1057 }
1058
1059 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1060 /*
1061 * In the first step, keep the device which has
1062 * the correct fsid and the devid that is used
1063 * for the dev_replace procedure.
1064 * In the second step, the dev_replace state is
1065 * read from the device tree and it is known
1066 * whether the procedure is really active or
1067 * not, which means whether this device is
1068 * used or whether it should be removed.
1069 */
1070 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1071 &device->dev_state)) {
1072 continue;
1073 }
1074 }
1075 if (device->bdev) {
1076 blkdev_put(device->bdev, device->mode);
1077 device->bdev = NULL;
1078 fs_devices->open_devices--;
1079 }
1080 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1081 list_del_init(&device->dev_alloc_list);
1082 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1083 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1084 &device->dev_state))
1085 fs_devices->rw_devices--;
1086 }
1087 list_del_init(&device->dev_list);
1088 fs_devices->num_devices--;
1089 btrfs_free_device(device);
1090 }
1091
1092 }
1093
1094 /*
1095 * After we have read the system tree and know devids belonging to this
1096 * filesystem, remove the device which does not belong there.
1097 */
1098 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1099 {
1100 struct btrfs_device *latest_dev = NULL;
1101 struct btrfs_fs_devices *seed_dev;
1102
1103 mutex_lock(&uuid_mutex);
1104 __btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1105
1106 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1107 __btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1108
1109 fs_devices->latest_bdev = latest_dev->bdev;
1110
1111 mutex_unlock(&uuid_mutex);
1112 }
1113
1114 static void btrfs_close_bdev(struct btrfs_device *device)
1115 {
1116 if (!device->bdev)
1117 return;
1118
1119 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1120 sync_blockdev(device->bdev);
1121 invalidate_bdev(device->bdev);
1122 }
1123
1124 blkdev_put(device->bdev, device->mode);
1125 }
1126
1127 static void btrfs_close_one_device(struct btrfs_device *device)
1128 {
1129 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1130
1131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1132 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1133 list_del_init(&device->dev_alloc_list);
1134 fs_devices->rw_devices--;
1135 }
1136
1137 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1138 fs_devices->missing_devices--;
1139
1140 btrfs_close_bdev(device);
1141 if (device->bdev) {
1142 fs_devices->open_devices--;
1143 device->bdev = NULL;
1144 }
1145 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1146
1147 device->fs_info = NULL;
1148 atomic_set(&device->dev_stats_ccnt, 0);
1149 extent_io_tree_release(&device->alloc_state);
1150
1151 /* Verify the device is back in a pristine state */
1152 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 ASSERT(list_empty(&device->dev_alloc_list));
1155 ASSERT(list_empty(&device->post_commit_list));
1156 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 }
1158
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176 }
1177
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened)
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189 close_fs_devices(fs_devices);
1190 list_del(&fs_devices->seed_list);
1191 free_fs_devices(fs_devices);
1192 }
1193 mutex_unlock(&uuid_mutex);
1194 }
1195
1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1197 fmode_t flags, void *holder)
1198 {
1199 struct btrfs_device *device;
1200 struct btrfs_device *latest_dev = NULL;
1201 struct btrfs_device *tmp_device;
1202
1203 flags |= FMODE_EXCL;
1204
1205 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206 dev_list) {
1207 int ret;
1208
1209 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1210 if (ret == 0 &&
1211 (!latest_dev || device->generation > latest_dev->generation)) {
1212 latest_dev = device;
1213 } else if (ret == -ENODATA) {
1214 fs_devices->num_devices--;
1215 list_del(&device->dev_list);
1216 btrfs_free_device(device);
1217 }
1218 }
1219 if (fs_devices->open_devices == 0)
1220 return -EINVAL;
1221
1222 fs_devices->opened = 1;
1223 fs_devices->latest_bdev = latest_dev->bdev;
1224 fs_devices->total_rw_bytes = 0;
1225 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226
1227 return 0;
1228 }
1229
1230 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1231 {
1232 struct btrfs_device *dev1, *dev2;
1233
1234 dev1 = list_entry(a, struct btrfs_device, dev_list);
1235 dev2 = list_entry(b, struct btrfs_device, dev_list);
1236
1237 if (dev1->devid < dev2->devid)
1238 return -1;
1239 else if (dev1->devid > dev2->devid)
1240 return 1;
1241 return 0;
1242 }
1243
1244 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1245 fmode_t flags, void *holder)
1246 {
1247 int ret;
1248
1249 lockdep_assert_held(&uuid_mutex);
1250 /*
1251 * The device_list_mutex cannot be taken here in case opening the
1252 * underlying device takes further locks like bd_mutex.
1253 *
1254 * We also don't need the lock here as this is called during mount and
1255 * exclusion is provided by uuid_mutex
1256 */
1257
1258 if (fs_devices->opened) {
1259 fs_devices->opened++;
1260 ret = 0;
1261 } else {
1262 list_sort(NULL, &fs_devices->devices, devid_cmp);
1263 ret = open_fs_devices(fs_devices, flags, holder);
1264 }
1265
1266 return ret;
1267 }
1268
1269 void btrfs_release_disk_super(struct btrfs_super_block *super)
1270 {
1271 struct page *page = virt_to_page(super);
1272
1273 put_page(page);
1274 }
1275
1276 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1277 u64 bytenr)
1278 {
1279 struct btrfs_super_block *disk_super;
1280 struct page *page;
1281 void *p;
1282 pgoff_t index;
1283
1284 /* make sure our super fits in the device */
1285 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1286 return ERR_PTR(-EINVAL);
1287
1288 /* make sure our super fits in the page */
1289 if (sizeof(*disk_super) > PAGE_SIZE)
1290 return ERR_PTR(-EINVAL);
1291
1292 /* make sure our super doesn't straddle pages on disk */
1293 index = bytenr >> PAGE_SHIFT;
1294 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1295 return ERR_PTR(-EINVAL);
1296
1297 /* pull in the page with our super */
1298 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1299
1300 if (IS_ERR(page))
1301 return ERR_CAST(page);
1302
1303 p = page_address(page);
1304
1305 /* align our pointer to the offset of the super block */
1306 disk_super = p + offset_in_page(bytenr);
1307
1308 if (btrfs_super_bytenr(disk_super) != bytenr ||
1309 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1310 btrfs_release_disk_super(p);
1311 return ERR_PTR(-EINVAL);
1312 }
1313
1314 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1315 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1316
1317 return disk_super;
1318 }
1319
1320 int btrfs_forget_devices(const char *path)
1321 {
1322 int ret;
1323
1324 mutex_lock(&uuid_mutex);
1325 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1326 mutex_unlock(&uuid_mutex);
1327
1328 return ret;
1329 }
1330
1331 /*
1332 * Look for a btrfs signature on a device. This may be called out of the mount path
1333 * and we are not allowed to call set_blocksize during the scan. The superblock
1334 * is read via pagecache
1335 */
1336 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1337 void *holder)
1338 {
1339 struct btrfs_super_block *disk_super;
1340 bool new_device_added = false;
1341 struct btrfs_device *device = NULL;
1342 struct block_device *bdev;
1343 u64 bytenr;
1344
1345 lockdep_assert_held(&uuid_mutex);
1346
1347 /*
1348 * we would like to check all the supers, but that would make
1349 * a btrfs mount succeed after a mkfs from a different FS.
1350 * So, we need to add a special mount option to scan for
1351 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1352 */
1353 bytenr = btrfs_sb_offset(0);
1354 flags |= FMODE_EXCL;
1355
1356 bdev = blkdev_get_by_path(path, flags, holder);
1357 if (IS_ERR(bdev))
1358 return ERR_CAST(bdev);
1359
1360 disk_super = btrfs_read_disk_super(bdev, bytenr);
1361 if (IS_ERR(disk_super)) {
1362 device = ERR_CAST(disk_super);
1363 goto error_bdev_put;
1364 }
1365
1366 device = device_list_add(path, disk_super, &new_device_added);
1367 if (!IS_ERR(device)) {
1368 if (new_device_added)
1369 btrfs_free_stale_devices(path, device);
1370 }
1371
1372 btrfs_release_disk_super(disk_super);
1373
1374 error_bdev_put:
1375 blkdev_put(bdev, flags);
1376
1377 return device;
1378 }
1379
1380 /*
1381 * Try to find a chunk that intersects [start, start + len] range and when one
1382 * such is found, record the end of it in *start
1383 */
1384 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1385 u64 len)
1386 {
1387 u64 physical_start, physical_end;
1388
1389 lockdep_assert_held(&device->fs_info->chunk_mutex);
1390
1391 if (!find_first_extent_bit(&device->alloc_state, *start,
1392 &physical_start, &physical_end,
1393 CHUNK_ALLOCATED, NULL)) {
1394
1395 if (in_range(physical_start, *start, len) ||
1396 in_range(*start, physical_start,
1397 physical_end - physical_start)) {
1398 *start = physical_end + 1;
1399 return true;
1400 }
1401 }
1402 return false;
1403 }
1404
1405 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1406 {
1407 switch (device->fs_devices->chunk_alloc_policy) {
1408 case BTRFS_CHUNK_ALLOC_REGULAR:
1409 /*
1410 * We don't want to overwrite the superblock on the drive nor
1411 * any area used by the boot loader (grub for example), so we
1412 * make sure to start at an offset of at least 1MB.
1413 */
1414 return max_t(u64, start, SZ_1M);
1415 default:
1416 BUG();
1417 }
1418 }
1419
1420 /**
1421 * dev_extent_hole_check - check if specified hole is suitable for allocation
1422 * @device: the device which we have the hole
1423 * @hole_start: starting position of the hole
1424 * @hole_size: the size of the hole
1425 * @num_bytes: the size of the free space that we need
1426 *
1427 * This function may modify @hole_start and @hole_end to reflect the suitable
1428 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1429 */
1430 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1431 u64 *hole_size, u64 num_bytes)
1432 {
1433 bool changed = false;
1434 u64 hole_end = *hole_start + *hole_size;
1435
1436 /*
1437 * Check before we set max_hole_start, otherwise we could end up
1438 * sending back this offset anyway.
1439 */
1440 if (contains_pending_extent(device, hole_start, *hole_size)) {
1441 if (hole_end >= *hole_start)
1442 *hole_size = hole_end - *hole_start;
1443 else
1444 *hole_size = 0;
1445 changed = true;
1446 }
1447
1448 switch (device->fs_devices->chunk_alloc_policy) {
1449 case BTRFS_CHUNK_ALLOC_REGULAR:
1450 /* No extra check */
1451 break;
1452 default:
1453 BUG();
1454 }
1455
1456 return changed;
1457 }
1458
1459 /*
1460 * find_free_dev_extent_start - find free space in the specified device
1461 * @device: the device which we search the free space in
1462 * @num_bytes: the size of the free space that we need
1463 * @search_start: the position from which to begin the search
1464 * @start: store the start of the free space.
1465 * @len: the size of the free space. that we find, or the size
1466 * of the max free space if we don't find suitable free space
1467 *
1468 * this uses a pretty simple search, the expectation is that it is
1469 * called very infrequently and that a given device has a small number
1470 * of extents
1471 *
1472 * @start is used to store the start of the free space if we find. But if we
1473 * don't find suitable free space, it will be used to store the start position
1474 * of the max free space.
1475 *
1476 * @len is used to store the size of the free space that we find.
1477 * But if we don't find suitable free space, it is used to store the size of
1478 * the max free space.
1479 *
1480 * NOTE: This function will search *commit* root of device tree, and does extra
1481 * check to ensure dev extents are not double allocated.
1482 * This makes the function safe to allocate dev extents but may not report
1483 * correct usable device space, as device extent freed in current transaction
1484 * is not reported as avaiable.
1485 */
1486 static int find_free_dev_extent_start(struct btrfs_device *device,
1487 u64 num_bytes, u64 search_start, u64 *start,
1488 u64 *len)
1489 {
1490 struct btrfs_fs_info *fs_info = device->fs_info;
1491 struct btrfs_root *root = fs_info->dev_root;
1492 struct btrfs_key key;
1493 struct btrfs_dev_extent *dev_extent;
1494 struct btrfs_path *path;
1495 u64 hole_size;
1496 u64 max_hole_start;
1497 u64 max_hole_size;
1498 u64 extent_end;
1499 u64 search_end = device->total_bytes;
1500 int ret;
1501 int slot;
1502 struct extent_buffer *l;
1503
1504 search_start = dev_extent_search_start(device, search_start);
1505
1506 path = btrfs_alloc_path();
1507 if (!path)
1508 return -ENOMEM;
1509
1510 max_hole_start = search_start;
1511 max_hole_size = 0;
1512
1513 again:
1514 if (search_start >= search_end ||
1515 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1516 ret = -ENOSPC;
1517 goto out;
1518 }
1519
1520 path->reada = READA_FORWARD;
1521 path->search_commit_root = 1;
1522 path->skip_locking = 1;
1523
1524 key.objectid = device->devid;
1525 key.offset = search_start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
1527
1528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1529 if (ret < 0)
1530 goto out;
1531 if (ret > 0) {
1532 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1533 if (ret < 0)
1534 goto out;
1535 }
1536
1537 while (1) {
1538 l = path->nodes[0];
1539 slot = path->slots[0];
1540 if (slot >= btrfs_header_nritems(l)) {
1541 ret = btrfs_next_leaf(root, path);
1542 if (ret == 0)
1543 continue;
1544 if (ret < 0)
1545 goto out;
1546
1547 break;
1548 }
1549 btrfs_item_key_to_cpu(l, &key, slot);
1550
1551 if (key.objectid < device->devid)
1552 goto next;
1553
1554 if (key.objectid > device->devid)
1555 break;
1556
1557 if (key.type != BTRFS_DEV_EXTENT_KEY)
1558 goto next;
1559
1560 if (key.offset > search_start) {
1561 hole_size = key.offset - search_start;
1562 dev_extent_hole_check(device, &search_start, &hole_size,
1563 num_bytes);
1564
1565 if (hole_size > max_hole_size) {
1566 max_hole_start = search_start;
1567 max_hole_size = hole_size;
1568 }
1569
1570 /*
1571 * If this free space is greater than which we need,
1572 * it must be the max free space that we have found
1573 * until now, so max_hole_start must point to the start
1574 * of this free space and the length of this free space
1575 * is stored in max_hole_size. Thus, we return
1576 * max_hole_start and max_hole_size and go back to the
1577 * caller.
1578 */
1579 if (hole_size >= num_bytes) {
1580 ret = 0;
1581 goto out;
1582 }
1583 }
1584
1585 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1586 extent_end = key.offset + btrfs_dev_extent_length(l,
1587 dev_extent);
1588 if (extent_end > search_start)
1589 search_start = extent_end;
1590 next:
1591 path->slots[0]++;
1592 cond_resched();
1593 }
1594
1595 /*
1596 * At this point, search_start should be the end of
1597 * allocated dev extents, and when shrinking the device,
1598 * search_end may be smaller than search_start.
1599 */
1600 if (search_end > search_start) {
1601 hole_size = search_end - search_start;
1602 if (dev_extent_hole_check(device, &search_start, &hole_size,
1603 num_bytes)) {
1604 btrfs_release_path(path);
1605 goto again;
1606 }
1607
1608 if (hole_size > max_hole_size) {
1609 max_hole_start = search_start;
1610 max_hole_size = hole_size;
1611 }
1612 }
1613
1614 /* See above. */
1615 if (max_hole_size < num_bytes)
1616 ret = -ENOSPC;
1617 else
1618 ret = 0;
1619
1620 out:
1621 btrfs_free_path(path);
1622 *start = max_hole_start;
1623 if (len)
1624 *len = max_hole_size;
1625 return ret;
1626 }
1627
1628 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1629 u64 *start, u64 *len)
1630 {
1631 /* FIXME use last free of some kind */
1632 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1633 }
1634
1635 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1636 struct btrfs_device *device,
1637 u64 start, u64 *dev_extent_len)
1638 {
1639 struct btrfs_fs_info *fs_info = device->fs_info;
1640 struct btrfs_root *root = fs_info->dev_root;
1641 int ret;
1642 struct btrfs_path *path;
1643 struct btrfs_key key;
1644 struct btrfs_key found_key;
1645 struct extent_buffer *leaf = NULL;
1646 struct btrfs_dev_extent *extent = NULL;
1647
1648 path = btrfs_alloc_path();
1649 if (!path)
1650 return -ENOMEM;
1651
1652 key.objectid = device->devid;
1653 key.offset = start;
1654 key.type = BTRFS_DEV_EXTENT_KEY;
1655 again:
1656 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1657 if (ret > 0) {
1658 ret = btrfs_previous_item(root, path, key.objectid,
1659 BTRFS_DEV_EXTENT_KEY);
1660 if (ret)
1661 goto out;
1662 leaf = path->nodes[0];
1663 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1664 extent = btrfs_item_ptr(leaf, path->slots[0],
1665 struct btrfs_dev_extent);
1666 BUG_ON(found_key.offset > start || found_key.offset +
1667 btrfs_dev_extent_length(leaf, extent) < start);
1668 key = found_key;
1669 btrfs_release_path(path);
1670 goto again;
1671 } else if (ret == 0) {
1672 leaf = path->nodes[0];
1673 extent = btrfs_item_ptr(leaf, path->slots[0],
1674 struct btrfs_dev_extent);
1675 } else {
1676 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1677 goto out;
1678 }
1679
1680 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1681
1682 ret = btrfs_del_item(trans, root, path);
1683 if (ret) {
1684 btrfs_handle_fs_error(fs_info, ret,
1685 "Failed to remove dev extent item");
1686 } else {
1687 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1688 }
1689 out:
1690 btrfs_free_path(path);
1691 return ret;
1692 }
1693
1694 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1695 struct btrfs_device *device,
1696 u64 chunk_offset, u64 start, u64 num_bytes)
1697 {
1698 int ret;
1699 struct btrfs_path *path;
1700 struct btrfs_fs_info *fs_info = device->fs_info;
1701 struct btrfs_root *root = fs_info->dev_root;
1702 struct btrfs_dev_extent *extent;
1703 struct extent_buffer *leaf;
1704 struct btrfs_key key;
1705
1706 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1707 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1708 path = btrfs_alloc_path();
1709 if (!path)
1710 return -ENOMEM;
1711
1712 key.objectid = device->devid;
1713 key.offset = start;
1714 key.type = BTRFS_DEV_EXTENT_KEY;
1715 ret = btrfs_insert_empty_item(trans, root, path, &key,
1716 sizeof(*extent));
1717 if (ret)
1718 goto out;
1719
1720 leaf = path->nodes[0];
1721 extent = btrfs_item_ptr(leaf, path->slots[0],
1722 struct btrfs_dev_extent);
1723 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1724 BTRFS_CHUNK_TREE_OBJECTID);
1725 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1726 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1727 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1728
1729 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1730 btrfs_mark_buffer_dirty(leaf);
1731 out:
1732 btrfs_free_path(path);
1733 return ret;
1734 }
1735
1736 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1737 {
1738 struct extent_map_tree *em_tree;
1739 struct extent_map *em;
1740 struct rb_node *n;
1741 u64 ret = 0;
1742
1743 em_tree = &fs_info->mapping_tree;
1744 read_lock(&em_tree->lock);
1745 n = rb_last(&em_tree->map.rb_root);
1746 if (n) {
1747 em = rb_entry(n, struct extent_map, rb_node);
1748 ret = em->start + em->len;
1749 }
1750 read_unlock(&em_tree->lock);
1751
1752 return ret;
1753 }
1754
1755 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1756 u64 *devid_ret)
1757 {
1758 int ret;
1759 struct btrfs_key key;
1760 struct btrfs_key found_key;
1761 struct btrfs_path *path;
1762
1763 path = btrfs_alloc_path();
1764 if (!path)
1765 return -ENOMEM;
1766
1767 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1768 key.type = BTRFS_DEV_ITEM_KEY;
1769 key.offset = (u64)-1;
1770
1771 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1772 if (ret < 0)
1773 goto error;
1774
1775 if (ret == 0) {
1776 /* Corruption */
1777 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1778 ret = -EUCLEAN;
1779 goto error;
1780 }
1781
1782 ret = btrfs_previous_item(fs_info->chunk_root, path,
1783 BTRFS_DEV_ITEMS_OBJECTID,
1784 BTRFS_DEV_ITEM_KEY);
1785 if (ret) {
1786 *devid_ret = 1;
1787 } else {
1788 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1789 path->slots[0]);
1790 *devid_ret = found_key.offset + 1;
1791 }
1792 ret = 0;
1793 error:
1794 btrfs_free_path(path);
1795 return ret;
1796 }
1797
1798 /*
1799 * the device information is stored in the chunk root
1800 * the btrfs_device struct should be fully filled in
1801 */
1802 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1803 struct btrfs_device *device)
1804 {
1805 int ret;
1806 struct btrfs_path *path;
1807 struct btrfs_dev_item *dev_item;
1808 struct extent_buffer *leaf;
1809 struct btrfs_key key;
1810 unsigned long ptr;
1811
1812 path = btrfs_alloc_path();
1813 if (!path)
1814 return -ENOMEM;
1815
1816 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1817 key.type = BTRFS_DEV_ITEM_KEY;
1818 key.offset = device->devid;
1819
1820 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1821 &key, sizeof(*dev_item));
1822 if (ret)
1823 goto out;
1824
1825 leaf = path->nodes[0];
1826 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1827
1828 btrfs_set_device_id(leaf, dev_item, device->devid);
1829 btrfs_set_device_generation(leaf, dev_item, 0);
1830 btrfs_set_device_type(leaf, dev_item, device->type);
1831 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1832 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1833 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1834 btrfs_set_device_total_bytes(leaf, dev_item,
1835 btrfs_device_get_disk_total_bytes(device));
1836 btrfs_set_device_bytes_used(leaf, dev_item,
1837 btrfs_device_get_bytes_used(device));
1838 btrfs_set_device_group(leaf, dev_item, 0);
1839 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1840 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1841 btrfs_set_device_start_offset(leaf, dev_item, 0);
1842
1843 ptr = btrfs_device_uuid(dev_item);
1844 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1845 ptr = btrfs_device_fsid(dev_item);
1846 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1847 ptr, BTRFS_FSID_SIZE);
1848 btrfs_mark_buffer_dirty(leaf);
1849
1850 ret = 0;
1851 out:
1852 btrfs_free_path(path);
1853 return ret;
1854 }
1855
1856 /*
1857 * Function to update ctime/mtime for a given device path.
1858 * Mainly used for ctime/mtime based probe like libblkid.
1859 */
1860 static void update_dev_time(const char *path_name)
1861 {
1862 struct file *filp;
1863
1864 filp = filp_open(path_name, O_RDWR, 0);
1865 if (IS_ERR(filp))
1866 return;
1867 file_update_time(filp);
1868 filp_close(filp, NULL);
1869 }
1870
1871 static int btrfs_rm_dev_item(struct btrfs_device *device)
1872 {
1873 struct btrfs_root *root = device->fs_info->chunk_root;
1874 int ret;
1875 struct btrfs_path *path;
1876 struct btrfs_key key;
1877 struct btrfs_trans_handle *trans;
1878
1879 path = btrfs_alloc_path();
1880 if (!path)
1881 return -ENOMEM;
1882
1883 trans = btrfs_start_transaction(root, 0);
1884 if (IS_ERR(trans)) {
1885 btrfs_free_path(path);
1886 return PTR_ERR(trans);
1887 }
1888 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1889 key.type = BTRFS_DEV_ITEM_KEY;
1890 key.offset = device->devid;
1891
1892 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1893 if (ret) {
1894 if (ret > 0)
1895 ret = -ENOENT;
1896 btrfs_abort_transaction(trans, ret);
1897 btrfs_end_transaction(trans);
1898 goto out;
1899 }
1900
1901 ret = btrfs_del_item(trans, root, path);
1902 if (ret) {
1903 btrfs_abort_transaction(trans, ret);
1904 btrfs_end_transaction(trans);
1905 }
1906
1907 out:
1908 btrfs_free_path(path);
1909 if (!ret)
1910 ret = btrfs_commit_transaction(trans);
1911 return ret;
1912 }
1913
1914 /*
1915 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1916 * filesystem. It's up to the caller to adjust that number regarding eg. device
1917 * replace.
1918 */
1919 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1920 u64 num_devices)
1921 {
1922 u64 all_avail;
1923 unsigned seq;
1924 int i;
1925
1926 do {
1927 seq = read_seqbegin(&fs_info->profiles_lock);
1928
1929 all_avail = fs_info->avail_data_alloc_bits |
1930 fs_info->avail_system_alloc_bits |
1931 fs_info->avail_metadata_alloc_bits;
1932 } while (read_seqretry(&fs_info->profiles_lock, seq));
1933
1934 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1935 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1936 continue;
1937
1938 if (num_devices < btrfs_raid_array[i].devs_min) {
1939 int ret = btrfs_raid_array[i].mindev_error;
1940
1941 if (ret)
1942 return ret;
1943 }
1944 }
1945
1946 return 0;
1947 }
1948
1949 static struct btrfs_device * btrfs_find_next_active_device(
1950 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1951 {
1952 struct btrfs_device *next_device;
1953
1954 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1955 if (next_device != device &&
1956 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1957 && next_device->bdev)
1958 return next_device;
1959 }
1960
1961 return NULL;
1962 }
1963
1964 /*
1965 * Helper function to check if the given device is part of s_bdev / latest_bdev
1966 * and replace it with the provided or the next active device, in the context
1967 * where this function called, there should be always be another device (or
1968 * this_dev) which is active.
1969 */
1970 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1971 struct btrfs_device *next_device)
1972 {
1973 struct btrfs_fs_info *fs_info = device->fs_info;
1974
1975 if (!next_device)
1976 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1977 device);
1978 ASSERT(next_device);
1979
1980 if (fs_info->sb->s_bdev &&
1981 (fs_info->sb->s_bdev == device->bdev))
1982 fs_info->sb->s_bdev = next_device->bdev;
1983
1984 if (fs_info->fs_devices->latest_bdev == device->bdev)
1985 fs_info->fs_devices->latest_bdev = next_device->bdev;
1986 }
1987
1988 /*
1989 * Return btrfs_fs_devices::num_devices excluding the device that's being
1990 * currently replaced.
1991 */
1992 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1993 {
1994 u64 num_devices = fs_info->fs_devices->num_devices;
1995
1996 down_read(&fs_info->dev_replace.rwsem);
1997 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1998 ASSERT(num_devices > 1);
1999 num_devices--;
2000 }
2001 up_read(&fs_info->dev_replace.rwsem);
2002
2003 return num_devices;
2004 }
2005
2006 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2007 struct block_device *bdev,
2008 const char *device_path)
2009 {
2010 struct btrfs_super_block *disk_super;
2011 int copy_num;
2012
2013 if (!bdev)
2014 return;
2015
2016 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2017 struct page *page;
2018 int ret;
2019
2020 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2021 if (IS_ERR(disk_super))
2022 continue;
2023
2024 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2025
2026 page = virt_to_page(disk_super);
2027 set_page_dirty(page);
2028 lock_page(page);
2029 /* write_on_page() unlocks the page */
2030 ret = write_one_page(page);
2031 if (ret)
2032 btrfs_warn(fs_info,
2033 "error clearing superblock number %d (%d)",
2034 copy_num, ret);
2035 btrfs_release_disk_super(disk_super);
2036
2037 }
2038
2039 /* Notify udev that device has changed */
2040 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2041
2042 /* Update ctime/mtime for device path for libblkid */
2043 update_dev_time(device_path);
2044 }
2045
2046 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2047 u64 devid)
2048 {
2049 struct btrfs_device *device;
2050 struct btrfs_fs_devices *cur_devices;
2051 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2052 u64 num_devices;
2053 int ret = 0;
2054
2055 mutex_lock(&uuid_mutex);
2056
2057 num_devices = btrfs_num_devices(fs_info);
2058
2059 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2060 if (ret)
2061 goto out;
2062
2063 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2064
2065 if (IS_ERR(device)) {
2066 if (PTR_ERR(device) == -ENOENT &&
2067 strcmp(device_path, "missing") == 0)
2068 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2069 else
2070 ret = PTR_ERR(device);
2071 goto out;
2072 }
2073
2074 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2075 btrfs_warn_in_rcu(fs_info,
2076 "cannot remove device %s (devid %llu) due to active swapfile",
2077 rcu_str_deref(device->name), device->devid);
2078 ret = -ETXTBSY;
2079 goto out;
2080 }
2081
2082 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2083 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2084 goto out;
2085 }
2086
2087 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2088 fs_info->fs_devices->rw_devices == 1) {
2089 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2090 goto out;
2091 }
2092
2093 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2094 mutex_lock(&fs_info->chunk_mutex);
2095 list_del_init(&device->dev_alloc_list);
2096 device->fs_devices->rw_devices--;
2097 mutex_unlock(&fs_info->chunk_mutex);
2098 }
2099
2100 mutex_unlock(&uuid_mutex);
2101 ret = btrfs_shrink_device(device, 0);
2102 if (!ret)
2103 btrfs_reada_remove_dev(device);
2104 mutex_lock(&uuid_mutex);
2105 if (ret)
2106 goto error_undo;
2107
2108 /*
2109 * TODO: the superblock still includes this device in its num_devices
2110 * counter although write_all_supers() is not locked out. This
2111 * could give a filesystem state which requires a degraded mount.
2112 */
2113 ret = btrfs_rm_dev_item(device);
2114 if (ret)
2115 goto error_undo;
2116
2117 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2118 btrfs_scrub_cancel_dev(device);
2119
2120 /*
2121 * the device list mutex makes sure that we don't change
2122 * the device list while someone else is writing out all
2123 * the device supers. Whoever is writing all supers, should
2124 * lock the device list mutex before getting the number of
2125 * devices in the super block (super_copy). Conversely,
2126 * whoever updates the number of devices in the super block
2127 * (super_copy) should hold the device list mutex.
2128 */
2129
2130 /*
2131 * In normal cases the cur_devices == fs_devices. But in case
2132 * of deleting a seed device, the cur_devices should point to
2133 * its own fs_devices listed under the fs_devices->seed.
2134 */
2135 cur_devices = device->fs_devices;
2136 mutex_lock(&fs_devices->device_list_mutex);
2137 list_del_rcu(&device->dev_list);
2138
2139 cur_devices->num_devices--;
2140 cur_devices->total_devices--;
2141 /* Update total_devices of the parent fs_devices if it's seed */
2142 if (cur_devices != fs_devices)
2143 fs_devices->total_devices--;
2144
2145 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2146 cur_devices->missing_devices--;
2147
2148 btrfs_assign_next_active_device(device, NULL);
2149
2150 if (device->bdev) {
2151 cur_devices->open_devices--;
2152 /* remove sysfs entry */
2153 btrfs_sysfs_remove_device(device);
2154 }
2155
2156 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2157 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2158 mutex_unlock(&fs_devices->device_list_mutex);
2159
2160 /*
2161 * at this point, the device is zero sized and detached from
2162 * the devices list. All that's left is to zero out the old
2163 * supers and free the device.
2164 */
2165 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2166 btrfs_scratch_superblocks(fs_info, device->bdev,
2167 device->name->str);
2168
2169 btrfs_close_bdev(device);
2170 synchronize_rcu();
2171 btrfs_free_device(device);
2172
2173 if (cur_devices->open_devices == 0) {
2174 list_del_init(&cur_devices->seed_list);
2175 close_fs_devices(cur_devices);
2176 free_fs_devices(cur_devices);
2177 }
2178
2179 out:
2180 mutex_unlock(&uuid_mutex);
2181 return ret;
2182
2183 error_undo:
2184 btrfs_reada_undo_remove_dev(device);
2185 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186 mutex_lock(&fs_info->chunk_mutex);
2187 list_add(&device->dev_alloc_list,
2188 &fs_devices->alloc_list);
2189 device->fs_devices->rw_devices++;
2190 mutex_unlock(&fs_info->chunk_mutex);
2191 }
2192 goto out;
2193 }
2194
2195 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2196 {
2197 struct btrfs_fs_devices *fs_devices;
2198
2199 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2200
2201 /*
2202 * in case of fs with no seed, srcdev->fs_devices will point
2203 * to fs_devices of fs_info. However when the dev being replaced is
2204 * a seed dev it will point to the seed's local fs_devices. In short
2205 * srcdev will have its correct fs_devices in both the cases.
2206 */
2207 fs_devices = srcdev->fs_devices;
2208
2209 list_del_rcu(&srcdev->dev_list);
2210 list_del(&srcdev->dev_alloc_list);
2211 fs_devices->num_devices--;
2212 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2213 fs_devices->missing_devices--;
2214
2215 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2216 fs_devices->rw_devices--;
2217
2218 if (srcdev->bdev)
2219 fs_devices->open_devices--;
2220 }
2221
2222 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2223 {
2224 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2225
2226 mutex_lock(&uuid_mutex);
2227
2228 btrfs_close_bdev(srcdev);
2229 synchronize_rcu();
2230 btrfs_free_device(srcdev);
2231
2232 /* if this is no devs we rather delete the fs_devices */
2233 if (!fs_devices->num_devices) {
2234 /*
2235 * On a mounted FS, num_devices can't be zero unless it's a
2236 * seed. In case of a seed device being replaced, the replace
2237 * target added to the sprout FS, so there will be no more
2238 * device left under the seed FS.
2239 */
2240 ASSERT(fs_devices->seeding);
2241
2242 list_del_init(&fs_devices->seed_list);
2243 close_fs_devices(fs_devices);
2244 free_fs_devices(fs_devices);
2245 }
2246 mutex_unlock(&uuid_mutex);
2247 }
2248
2249 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2250 {
2251 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2252
2253 mutex_lock(&fs_devices->device_list_mutex);
2254
2255 btrfs_sysfs_remove_device(tgtdev);
2256
2257 if (tgtdev->bdev)
2258 fs_devices->open_devices--;
2259
2260 fs_devices->num_devices--;
2261
2262 btrfs_assign_next_active_device(tgtdev, NULL);
2263
2264 list_del_rcu(&tgtdev->dev_list);
2265
2266 mutex_unlock(&fs_devices->device_list_mutex);
2267
2268 /*
2269 * The update_dev_time() with in btrfs_scratch_superblocks()
2270 * may lead to a call to btrfs_show_devname() which will try
2271 * to hold device_list_mutex. And here this device
2272 * is already out of device list, so we don't have to hold
2273 * the device_list_mutex lock.
2274 */
2275 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2276 tgtdev->name->str);
2277
2278 btrfs_close_bdev(tgtdev);
2279 synchronize_rcu();
2280 btrfs_free_device(tgtdev);
2281 }
2282
2283 static struct btrfs_device *btrfs_find_device_by_path(
2284 struct btrfs_fs_info *fs_info, const char *device_path)
2285 {
2286 int ret = 0;
2287 struct btrfs_super_block *disk_super;
2288 u64 devid;
2289 u8 *dev_uuid;
2290 struct block_device *bdev;
2291 struct btrfs_device *device;
2292
2293 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2294 fs_info->bdev_holder, 0, &bdev, &disk_super);
2295 if (ret)
2296 return ERR_PTR(ret);
2297
2298 devid = btrfs_stack_device_id(&disk_super->dev_item);
2299 dev_uuid = disk_super->dev_item.uuid;
2300 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2301 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2302 disk_super->metadata_uuid, true);
2303 else
2304 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2305 disk_super->fsid, true);
2306
2307 btrfs_release_disk_super(disk_super);
2308 if (!device)
2309 device = ERR_PTR(-ENOENT);
2310 blkdev_put(bdev, FMODE_READ);
2311 return device;
2312 }
2313
2314 /*
2315 * Lookup a device given by device id, or the path if the id is 0.
2316 */
2317 struct btrfs_device *btrfs_find_device_by_devspec(
2318 struct btrfs_fs_info *fs_info, u64 devid,
2319 const char *device_path)
2320 {
2321 struct btrfs_device *device;
2322
2323 if (devid) {
2324 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2325 NULL, true);
2326 if (!device)
2327 return ERR_PTR(-ENOENT);
2328 return device;
2329 }
2330
2331 if (!device_path || !device_path[0])
2332 return ERR_PTR(-EINVAL);
2333
2334 if (strcmp(device_path, "missing") == 0) {
2335 /* Find first missing device */
2336 list_for_each_entry(device, &fs_info->fs_devices->devices,
2337 dev_list) {
2338 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2339 &device->dev_state) && !device->bdev)
2340 return device;
2341 }
2342 return ERR_PTR(-ENOENT);
2343 }
2344
2345 return btrfs_find_device_by_path(fs_info, device_path);
2346 }
2347
2348 /*
2349 * does all the dirty work required for changing file system's UUID.
2350 */
2351 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2352 {
2353 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2354 struct btrfs_fs_devices *old_devices;
2355 struct btrfs_fs_devices *seed_devices;
2356 struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 struct btrfs_device *device;
2358 u64 super_flags;
2359
2360 lockdep_assert_held(&uuid_mutex);
2361 if (!fs_devices->seeding)
2362 return -EINVAL;
2363
2364 /*
2365 * Private copy of the seed devices, anchored at
2366 * fs_info->fs_devices->seed_list
2367 */
2368 seed_devices = alloc_fs_devices(NULL, NULL);
2369 if (IS_ERR(seed_devices))
2370 return PTR_ERR(seed_devices);
2371
2372 /*
2373 * It's necessary to retain a copy of the original seed fs_devices in
2374 * fs_uuids so that filesystems which have been seeded can successfully
2375 * reference the seed device from open_seed_devices. This also supports
2376 * multiple fs seed.
2377 */
2378 old_devices = clone_fs_devices(fs_devices);
2379 if (IS_ERR(old_devices)) {
2380 kfree(seed_devices);
2381 return PTR_ERR(old_devices);
2382 }
2383
2384 list_add(&old_devices->fs_list, &fs_uuids);
2385
2386 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2387 seed_devices->opened = 1;
2388 INIT_LIST_HEAD(&seed_devices->devices);
2389 INIT_LIST_HEAD(&seed_devices->alloc_list);
2390 mutex_init(&seed_devices->device_list_mutex);
2391
2392 mutex_lock(&fs_devices->device_list_mutex);
2393 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2394 synchronize_rcu);
2395 list_for_each_entry(device, &seed_devices->devices, dev_list)
2396 device->fs_devices = seed_devices;
2397
2398 fs_devices->seeding = false;
2399 fs_devices->num_devices = 0;
2400 fs_devices->open_devices = 0;
2401 fs_devices->missing_devices = 0;
2402 fs_devices->rotating = false;
2403 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2404
2405 generate_random_uuid(fs_devices->fsid);
2406 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2407 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2408 mutex_unlock(&fs_devices->device_list_mutex);
2409
2410 super_flags = btrfs_super_flags(disk_super) &
2411 ~BTRFS_SUPER_FLAG_SEEDING;
2412 btrfs_set_super_flags(disk_super, super_flags);
2413
2414 return 0;
2415 }
2416
2417 /*
2418 * Store the expected generation for seed devices in device items.
2419 */
2420 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2421 {
2422 struct btrfs_fs_info *fs_info = trans->fs_info;
2423 struct btrfs_root *root = fs_info->chunk_root;
2424 struct btrfs_path *path;
2425 struct extent_buffer *leaf;
2426 struct btrfs_dev_item *dev_item;
2427 struct btrfs_device *device;
2428 struct btrfs_key key;
2429 u8 fs_uuid[BTRFS_FSID_SIZE];
2430 u8 dev_uuid[BTRFS_UUID_SIZE];
2431 u64 devid;
2432 int ret;
2433
2434 path = btrfs_alloc_path();
2435 if (!path)
2436 return -ENOMEM;
2437
2438 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2439 key.offset = 0;
2440 key.type = BTRFS_DEV_ITEM_KEY;
2441
2442 while (1) {
2443 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2444 if (ret < 0)
2445 goto error;
2446
2447 leaf = path->nodes[0];
2448 next_slot:
2449 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2450 ret = btrfs_next_leaf(root, path);
2451 if (ret > 0)
2452 break;
2453 if (ret < 0)
2454 goto error;
2455 leaf = path->nodes[0];
2456 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2457 btrfs_release_path(path);
2458 continue;
2459 }
2460
2461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2462 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2463 key.type != BTRFS_DEV_ITEM_KEY)
2464 break;
2465
2466 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2467 struct btrfs_dev_item);
2468 devid = btrfs_device_id(leaf, dev_item);
2469 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2470 BTRFS_UUID_SIZE);
2471 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2472 BTRFS_FSID_SIZE);
2473 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2474 fs_uuid, true);
2475 BUG_ON(!device); /* Logic error */
2476
2477 if (device->fs_devices->seeding) {
2478 btrfs_set_device_generation(leaf, dev_item,
2479 device->generation);
2480 btrfs_mark_buffer_dirty(leaf);
2481 }
2482
2483 path->slots[0]++;
2484 goto next_slot;
2485 }
2486 ret = 0;
2487 error:
2488 btrfs_free_path(path);
2489 return ret;
2490 }
2491
2492 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2493 {
2494 struct btrfs_root *root = fs_info->dev_root;
2495 struct request_queue *q;
2496 struct btrfs_trans_handle *trans;
2497 struct btrfs_device *device;
2498 struct block_device *bdev;
2499 struct super_block *sb = fs_info->sb;
2500 struct rcu_string *name;
2501 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2502 u64 orig_super_total_bytes;
2503 u64 orig_super_num_devices;
2504 int seeding_dev = 0;
2505 int ret = 0;
2506 bool locked = false;
2507
2508 if (sb_rdonly(sb) && !fs_devices->seeding)
2509 return -EROFS;
2510
2511 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2512 fs_info->bdev_holder);
2513 if (IS_ERR(bdev))
2514 return PTR_ERR(bdev);
2515
2516 if (fs_devices->seeding) {
2517 seeding_dev = 1;
2518 down_write(&sb->s_umount);
2519 mutex_lock(&uuid_mutex);
2520 locked = true;
2521 }
2522
2523 sync_blockdev(bdev);
2524
2525 rcu_read_lock();
2526 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2527 if (device->bdev == bdev) {
2528 ret = -EEXIST;
2529 rcu_read_unlock();
2530 goto error;
2531 }
2532 }
2533 rcu_read_unlock();
2534
2535 device = btrfs_alloc_device(fs_info, NULL, NULL);
2536 if (IS_ERR(device)) {
2537 /* we can safely leave the fs_devices entry around */
2538 ret = PTR_ERR(device);
2539 goto error;
2540 }
2541
2542 name = rcu_string_strdup(device_path, GFP_KERNEL);
2543 if (!name) {
2544 ret = -ENOMEM;
2545 goto error_free_device;
2546 }
2547 rcu_assign_pointer(device->name, name);
2548
2549 trans = btrfs_start_transaction(root, 0);
2550 if (IS_ERR(trans)) {
2551 ret = PTR_ERR(trans);
2552 goto error_free_device;
2553 }
2554
2555 q = bdev_get_queue(bdev);
2556 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2557 device->generation = trans->transid;
2558 device->io_width = fs_info->sectorsize;
2559 device->io_align = fs_info->sectorsize;
2560 device->sector_size = fs_info->sectorsize;
2561 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2562 fs_info->sectorsize);
2563 device->disk_total_bytes = device->total_bytes;
2564 device->commit_total_bytes = device->total_bytes;
2565 device->fs_info = fs_info;
2566 device->bdev = bdev;
2567 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2568 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2569 device->mode = FMODE_EXCL;
2570 device->dev_stats_valid = 1;
2571 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2572
2573 if (seeding_dev) {
2574 sb->s_flags &= ~SB_RDONLY;
2575 ret = btrfs_prepare_sprout(fs_info);
2576 if (ret) {
2577 btrfs_abort_transaction(trans, ret);
2578 goto error_trans;
2579 }
2580 }
2581
2582 device->fs_devices = fs_devices;
2583
2584 mutex_lock(&fs_devices->device_list_mutex);
2585 mutex_lock(&fs_info->chunk_mutex);
2586 list_add_rcu(&device->dev_list, &fs_devices->devices);
2587 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2588 fs_devices->num_devices++;
2589 fs_devices->open_devices++;
2590 fs_devices->rw_devices++;
2591 fs_devices->total_devices++;
2592 fs_devices->total_rw_bytes += device->total_bytes;
2593
2594 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2595
2596 if (!blk_queue_nonrot(q))
2597 fs_devices->rotating = true;
2598
2599 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2600 btrfs_set_super_total_bytes(fs_info->super_copy,
2601 round_down(orig_super_total_bytes + device->total_bytes,
2602 fs_info->sectorsize));
2603
2604 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2605 btrfs_set_super_num_devices(fs_info->super_copy,
2606 orig_super_num_devices + 1);
2607
2608 /*
2609 * we've got more storage, clear any full flags on the space
2610 * infos
2611 */
2612 btrfs_clear_space_info_full(fs_info);
2613
2614 mutex_unlock(&fs_info->chunk_mutex);
2615
2616 /* Add sysfs device entry */
2617 btrfs_sysfs_add_device(device);
2618
2619 mutex_unlock(&fs_devices->device_list_mutex);
2620
2621 if (seeding_dev) {
2622 mutex_lock(&fs_info->chunk_mutex);
2623 ret = init_first_rw_device(trans);
2624 mutex_unlock(&fs_info->chunk_mutex);
2625 if (ret) {
2626 btrfs_abort_transaction(trans, ret);
2627 goto error_sysfs;
2628 }
2629 }
2630
2631 ret = btrfs_add_dev_item(trans, device);
2632 if (ret) {
2633 btrfs_abort_transaction(trans, ret);
2634 goto error_sysfs;
2635 }
2636
2637 if (seeding_dev) {
2638 ret = btrfs_finish_sprout(trans);
2639 if (ret) {
2640 btrfs_abort_transaction(trans, ret);
2641 goto error_sysfs;
2642 }
2643
2644 /*
2645 * fs_devices now represents the newly sprouted filesystem and
2646 * its fsid has been changed by btrfs_prepare_sprout
2647 */
2648 btrfs_sysfs_update_sprout_fsid(fs_devices);
2649 }
2650
2651 ret = btrfs_commit_transaction(trans);
2652
2653 if (seeding_dev) {
2654 mutex_unlock(&uuid_mutex);
2655 up_write(&sb->s_umount);
2656 locked = false;
2657
2658 if (ret) /* transaction commit */
2659 return ret;
2660
2661 ret = btrfs_relocate_sys_chunks(fs_info);
2662 if (ret < 0)
2663 btrfs_handle_fs_error(fs_info, ret,
2664 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2665 trans = btrfs_attach_transaction(root);
2666 if (IS_ERR(trans)) {
2667 if (PTR_ERR(trans) == -ENOENT)
2668 return 0;
2669 ret = PTR_ERR(trans);
2670 trans = NULL;
2671 goto error_sysfs;
2672 }
2673 ret = btrfs_commit_transaction(trans);
2674 }
2675
2676 /*
2677 * Now that we have written a new super block to this device, check all
2678 * other fs_devices list if device_path alienates any other scanned
2679 * device.
2680 * We can ignore the return value as it typically returns -EINVAL and
2681 * only succeeds if the device was an alien.
2682 */
2683 btrfs_forget_devices(device_path);
2684
2685 /* Update ctime/mtime for blkid or udev */
2686 update_dev_time(device_path);
2687
2688 return ret;
2689
2690 error_sysfs:
2691 btrfs_sysfs_remove_device(device);
2692 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2693 mutex_lock(&fs_info->chunk_mutex);
2694 list_del_rcu(&device->dev_list);
2695 list_del(&device->dev_alloc_list);
2696 fs_info->fs_devices->num_devices--;
2697 fs_info->fs_devices->open_devices--;
2698 fs_info->fs_devices->rw_devices--;
2699 fs_info->fs_devices->total_devices--;
2700 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2701 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2702 btrfs_set_super_total_bytes(fs_info->super_copy,
2703 orig_super_total_bytes);
2704 btrfs_set_super_num_devices(fs_info->super_copy,
2705 orig_super_num_devices);
2706 mutex_unlock(&fs_info->chunk_mutex);
2707 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2708 error_trans:
2709 if (seeding_dev)
2710 sb->s_flags |= SB_RDONLY;
2711 if (trans)
2712 btrfs_end_transaction(trans);
2713 error_free_device:
2714 btrfs_free_device(device);
2715 error:
2716 blkdev_put(bdev, FMODE_EXCL);
2717 if (locked) {
2718 mutex_unlock(&uuid_mutex);
2719 up_write(&sb->s_umount);
2720 }
2721 return ret;
2722 }
2723
2724 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2725 struct btrfs_device *device)
2726 {
2727 int ret;
2728 struct btrfs_path *path;
2729 struct btrfs_root *root = device->fs_info->chunk_root;
2730 struct btrfs_dev_item *dev_item;
2731 struct extent_buffer *leaf;
2732 struct btrfs_key key;
2733
2734 path = btrfs_alloc_path();
2735 if (!path)
2736 return -ENOMEM;
2737
2738 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2739 key.type = BTRFS_DEV_ITEM_KEY;
2740 key.offset = device->devid;
2741
2742 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2743 if (ret < 0)
2744 goto out;
2745
2746 if (ret > 0) {
2747 ret = -ENOENT;
2748 goto out;
2749 }
2750
2751 leaf = path->nodes[0];
2752 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2753
2754 btrfs_set_device_id(leaf, dev_item, device->devid);
2755 btrfs_set_device_type(leaf, dev_item, device->type);
2756 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2757 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2758 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2759 btrfs_set_device_total_bytes(leaf, dev_item,
2760 btrfs_device_get_disk_total_bytes(device));
2761 btrfs_set_device_bytes_used(leaf, dev_item,
2762 btrfs_device_get_bytes_used(device));
2763 btrfs_mark_buffer_dirty(leaf);
2764
2765 out:
2766 btrfs_free_path(path);
2767 return ret;
2768 }
2769
2770 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2771 struct btrfs_device *device, u64 new_size)
2772 {
2773 struct btrfs_fs_info *fs_info = device->fs_info;
2774 struct btrfs_super_block *super_copy = fs_info->super_copy;
2775 u64 old_total;
2776 u64 diff;
2777
2778 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2779 return -EACCES;
2780
2781 new_size = round_down(new_size, fs_info->sectorsize);
2782
2783 mutex_lock(&fs_info->chunk_mutex);
2784 old_total = btrfs_super_total_bytes(super_copy);
2785 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2786
2787 if (new_size <= device->total_bytes ||
2788 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2789 mutex_unlock(&fs_info->chunk_mutex);
2790 return -EINVAL;
2791 }
2792
2793 btrfs_set_super_total_bytes(super_copy,
2794 round_down(old_total + diff, fs_info->sectorsize));
2795 device->fs_devices->total_rw_bytes += diff;
2796
2797 btrfs_device_set_total_bytes(device, new_size);
2798 btrfs_device_set_disk_total_bytes(device, new_size);
2799 btrfs_clear_space_info_full(device->fs_info);
2800 if (list_empty(&device->post_commit_list))
2801 list_add_tail(&device->post_commit_list,
2802 &trans->transaction->dev_update_list);
2803 mutex_unlock(&fs_info->chunk_mutex);
2804
2805 return btrfs_update_device(trans, device);
2806 }
2807
2808 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2809 {
2810 struct btrfs_fs_info *fs_info = trans->fs_info;
2811 struct btrfs_root *root = fs_info->chunk_root;
2812 int ret;
2813 struct btrfs_path *path;
2814 struct btrfs_key key;
2815
2816 path = btrfs_alloc_path();
2817 if (!path)
2818 return -ENOMEM;
2819
2820 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2821 key.offset = chunk_offset;
2822 key.type = BTRFS_CHUNK_ITEM_KEY;
2823
2824 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2825 if (ret < 0)
2826 goto out;
2827 else if (ret > 0) { /* Logic error or corruption */
2828 btrfs_handle_fs_error(fs_info, -ENOENT,
2829 "Failed lookup while freeing chunk.");
2830 ret = -ENOENT;
2831 goto out;
2832 }
2833
2834 ret = btrfs_del_item(trans, root, path);
2835 if (ret < 0)
2836 btrfs_handle_fs_error(fs_info, ret,
2837 "Failed to delete chunk item.");
2838 out:
2839 btrfs_free_path(path);
2840 return ret;
2841 }
2842
2843 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2844 {
2845 struct btrfs_super_block *super_copy = fs_info->super_copy;
2846 struct btrfs_disk_key *disk_key;
2847 struct btrfs_chunk *chunk;
2848 u8 *ptr;
2849 int ret = 0;
2850 u32 num_stripes;
2851 u32 array_size;
2852 u32 len = 0;
2853 u32 cur;
2854 struct btrfs_key key;
2855
2856 mutex_lock(&fs_info->chunk_mutex);
2857 array_size = btrfs_super_sys_array_size(super_copy);
2858
2859 ptr = super_copy->sys_chunk_array;
2860 cur = 0;
2861
2862 while (cur < array_size) {
2863 disk_key = (struct btrfs_disk_key *)ptr;
2864 btrfs_disk_key_to_cpu(&key, disk_key);
2865
2866 len = sizeof(*disk_key);
2867
2868 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2869 chunk = (struct btrfs_chunk *)(ptr + len);
2870 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2871 len += btrfs_chunk_item_size(num_stripes);
2872 } else {
2873 ret = -EIO;
2874 break;
2875 }
2876 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2877 key.offset == chunk_offset) {
2878 memmove(ptr, ptr + len, array_size - (cur + len));
2879 array_size -= len;
2880 btrfs_set_super_sys_array_size(super_copy, array_size);
2881 } else {
2882 ptr += len;
2883 cur += len;
2884 }
2885 }
2886 mutex_unlock(&fs_info->chunk_mutex);
2887 return ret;
2888 }
2889
2890 /*
2891 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2892 * @logical: Logical block offset in bytes.
2893 * @length: Length of extent in bytes.
2894 *
2895 * Return: Chunk mapping or ERR_PTR.
2896 */
2897 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2898 u64 logical, u64 length)
2899 {
2900 struct extent_map_tree *em_tree;
2901 struct extent_map *em;
2902
2903 em_tree = &fs_info->mapping_tree;
2904 read_lock(&em_tree->lock);
2905 em = lookup_extent_mapping(em_tree, logical, length);
2906 read_unlock(&em_tree->lock);
2907
2908 if (!em) {
2909 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2910 logical, length);
2911 return ERR_PTR(-EINVAL);
2912 }
2913
2914 if (em->start > logical || em->start + em->len < logical) {
2915 btrfs_crit(fs_info,
2916 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2917 logical, length, em->start, em->start + em->len);
2918 free_extent_map(em);
2919 return ERR_PTR(-EINVAL);
2920 }
2921
2922 /* callers are responsible for dropping em's ref. */
2923 return em;
2924 }
2925
2926 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2927 {
2928 struct btrfs_fs_info *fs_info = trans->fs_info;
2929 struct extent_map *em;
2930 struct map_lookup *map;
2931 u64 dev_extent_len = 0;
2932 int i, ret = 0;
2933 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2934
2935 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2936 if (IS_ERR(em)) {
2937 /*
2938 * This is a logic error, but we don't want to just rely on the
2939 * user having built with ASSERT enabled, so if ASSERT doesn't
2940 * do anything we still error out.
2941 */
2942 ASSERT(0);
2943 return PTR_ERR(em);
2944 }
2945 map = em->map_lookup;
2946 mutex_lock(&fs_info->chunk_mutex);
2947 check_system_chunk(trans, map->type);
2948 mutex_unlock(&fs_info->chunk_mutex);
2949
2950 /*
2951 * Take the device list mutex to prevent races with the final phase of
2952 * a device replace operation that replaces the device object associated
2953 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2954 */
2955 mutex_lock(&fs_devices->device_list_mutex);
2956 for (i = 0; i < map->num_stripes; i++) {
2957 struct btrfs_device *device = map->stripes[i].dev;
2958 ret = btrfs_free_dev_extent(trans, device,
2959 map->stripes[i].physical,
2960 &dev_extent_len);
2961 if (ret) {
2962 mutex_unlock(&fs_devices->device_list_mutex);
2963 btrfs_abort_transaction(trans, ret);
2964 goto out;
2965 }
2966
2967 if (device->bytes_used > 0) {
2968 mutex_lock(&fs_info->chunk_mutex);
2969 btrfs_device_set_bytes_used(device,
2970 device->bytes_used - dev_extent_len);
2971 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2972 btrfs_clear_space_info_full(fs_info);
2973 mutex_unlock(&fs_info->chunk_mutex);
2974 }
2975
2976 ret = btrfs_update_device(trans, device);
2977 if (ret) {
2978 mutex_unlock(&fs_devices->device_list_mutex);
2979 btrfs_abort_transaction(trans, ret);
2980 goto out;
2981 }
2982 }
2983 mutex_unlock(&fs_devices->device_list_mutex);
2984
2985 ret = btrfs_free_chunk(trans, chunk_offset);
2986 if (ret) {
2987 btrfs_abort_transaction(trans, ret);
2988 goto out;
2989 }
2990
2991 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2992
2993 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2994 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2995 if (ret) {
2996 btrfs_abort_transaction(trans, ret);
2997 goto out;
2998 }
2999 }
3000
3001 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3002 if (ret) {
3003 btrfs_abort_transaction(trans, ret);
3004 goto out;
3005 }
3006
3007 out:
3008 /* once for us */
3009 free_extent_map(em);
3010 return ret;
3011 }
3012
3013 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3014 {
3015 struct btrfs_root *root = fs_info->chunk_root;
3016 struct btrfs_trans_handle *trans;
3017 struct btrfs_block_group *block_group;
3018 int ret;
3019
3020 /*
3021 * Prevent races with automatic removal of unused block groups.
3022 * After we relocate and before we remove the chunk with offset
3023 * chunk_offset, automatic removal of the block group can kick in,
3024 * resulting in a failure when calling btrfs_remove_chunk() below.
3025 *
3026 * Make sure to acquire this mutex before doing a tree search (dev
3027 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3028 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3029 * we release the path used to search the chunk/dev tree and before
3030 * the current task acquires this mutex and calls us.
3031 */
3032 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3033
3034 /* step one, relocate all the extents inside this chunk */
3035 btrfs_scrub_pause(fs_info);
3036 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3037 btrfs_scrub_continue(fs_info);
3038 if (ret)
3039 return ret;
3040
3041 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3042 if (!block_group)
3043 return -ENOENT;
3044 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3045 btrfs_put_block_group(block_group);
3046
3047 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3048 chunk_offset);
3049 if (IS_ERR(trans)) {
3050 ret = PTR_ERR(trans);
3051 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3052 return ret;
3053 }
3054
3055 /*
3056 * step two, delete the device extents and the
3057 * chunk tree entries
3058 */
3059 ret = btrfs_remove_chunk(trans, chunk_offset);
3060 btrfs_end_transaction(trans);
3061 return ret;
3062 }
3063
3064 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3065 {
3066 struct btrfs_root *chunk_root = fs_info->chunk_root;
3067 struct btrfs_path *path;
3068 struct extent_buffer *leaf;
3069 struct btrfs_chunk *chunk;
3070 struct btrfs_key key;
3071 struct btrfs_key found_key;
3072 u64 chunk_type;
3073 bool retried = false;
3074 int failed = 0;
3075 int ret;
3076
3077 path = btrfs_alloc_path();
3078 if (!path)
3079 return -ENOMEM;
3080
3081 again:
3082 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3083 key.offset = (u64)-1;
3084 key.type = BTRFS_CHUNK_ITEM_KEY;
3085
3086 while (1) {
3087 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3088 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3089 if (ret < 0) {
3090 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3091 goto error;
3092 }
3093 BUG_ON(ret == 0); /* Corruption */
3094
3095 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3096 key.type);
3097 if (ret)
3098 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3099 if (ret < 0)
3100 goto error;
3101 if (ret > 0)
3102 break;
3103
3104 leaf = path->nodes[0];
3105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3106
3107 chunk = btrfs_item_ptr(leaf, path->slots[0],
3108 struct btrfs_chunk);
3109 chunk_type = btrfs_chunk_type(leaf, chunk);
3110 btrfs_release_path(path);
3111
3112 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3113 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3114 if (ret == -ENOSPC)
3115 failed++;
3116 else
3117 BUG_ON(ret);
3118 }
3119 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3120
3121 if (found_key.offset == 0)
3122 break;
3123 key.offset = found_key.offset - 1;
3124 }
3125 ret = 0;
3126 if (failed && !retried) {
3127 failed = 0;
3128 retried = true;
3129 goto again;
3130 } else if (WARN_ON(failed && retried)) {
3131 ret = -ENOSPC;
3132 }
3133 error:
3134 btrfs_free_path(path);
3135 return ret;
3136 }
3137
3138 /*
3139 * return 1 : allocate a data chunk successfully,
3140 * return <0: errors during allocating a data chunk,
3141 * return 0 : no need to allocate a data chunk.
3142 */
3143 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3144 u64 chunk_offset)
3145 {
3146 struct btrfs_block_group *cache;
3147 u64 bytes_used;
3148 u64 chunk_type;
3149
3150 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3151 ASSERT(cache);
3152 chunk_type = cache->flags;
3153 btrfs_put_block_group(cache);
3154
3155 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3156 return 0;
3157
3158 spin_lock(&fs_info->data_sinfo->lock);
3159 bytes_used = fs_info->data_sinfo->bytes_used;
3160 spin_unlock(&fs_info->data_sinfo->lock);
3161
3162 if (!bytes_used) {
3163 struct btrfs_trans_handle *trans;
3164 int ret;
3165
3166 trans = btrfs_join_transaction(fs_info->tree_root);
3167 if (IS_ERR(trans))
3168 return PTR_ERR(trans);
3169
3170 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3171 btrfs_end_transaction(trans);
3172 if (ret < 0)
3173 return ret;
3174 return 1;
3175 }
3176
3177 return 0;
3178 }
3179
3180 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3181 struct btrfs_balance_control *bctl)
3182 {
3183 struct btrfs_root *root = fs_info->tree_root;
3184 struct btrfs_trans_handle *trans;
3185 struct btrfs_balance_item *item;
3186 struct btrfs_disk_balance_args disk_bargs;
3187 struct btrfs_path *path;
3188 struct extent_buffer *leaf;
3189 struct btrfs_key key;
3190 int ret, err;
3191
3192 path = btrfs_alloc_path();
3193 if (!path)
3194 return -ENOMEM;
3195
3196 trans = btrfs_start_transaction(root, 0);
3197 if (IS_ERR(trans)) {
3198 btrfs_free_path(path);
3199 return PTR_ERR(trans);
3200 }
3201
3202 key.objectid = BTRFS_BALANCE_OBJECTID;
3203 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3204 key.offset = 0;
3205
3206 ret = btrfs_insert_empty_item(trans, root, path, &key,
3207 sizeof(*item));
3208 if (ret)
3209 goto out;
3210
3211 leaf = path->nodes[0];
3212 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3213
3214 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3215
3216 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3217 btrfs_set_balance_data(leaf, item, &disk_bargs);
3218 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3219 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3220 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3221 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3222
3223 btrfs_set_balance_flags(leaf, item, bctl->flags);
3224
3225 btrfs_mark_buffer_dirty(leaf);
3226 out:
3227 btrfs_free_path(path);
3228 err = btrfs_commit_transaction(trans);
3229 if (err && !ret)
3230 ret = err;
3231 return ret;
3232 }
3233
3234 static int del_balance_item(struct btrfs_fs_info *fs_info)
3235 {
3236 struct btrfs_root *root = fs_info->tree_root;
3237 struct btrfs_trans_handle *trans;
3238 struct btrfs_path *path;
3239 struct btrfs_key key;
3240 int ret, err;
3241
3242 path = btrfs_alloc_path();
3243 if (!path)
3244 return -ENOMEM;
3245
3246 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3247 if (IS_ERR(trans)) {
3248 btrfs_free_path(path);
3249 return PTR_ERR(trans);
3250 }
3251
3252 key.objectid = BTRFS_BALANCE_OBJECTID;
3253 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3254 key.offset = 0;
3255
3256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3257 if (ret < 0)
3258 goto out;
3259 if (ret > 0) {
3260 ret = -ENOENT;
3261 goto out;
3262 }
3263
3264 ret = btrfs_del_item(trans, root, path);
3265 out:
3266 btrfs_free_path(path);
3267 err = btrfs_commit_transaction(trans);
3268 if (err && !ret)
3269 ret = err;
3270 return ret;
3271 }
3272
3273 /*
3274 * This is a heuristic used to reduce the number of chunks balanced on
3275 * resume after balance was interrupted.
3276 */
3277 static void update_balance_args(struct btrfs_balance_control *bctl)
3278 {
3279 /*
3280 * Turn on soft mode for chunk types that were being converted.
3281 */
3282 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3283 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3284 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3285 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3286 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3287 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3288
3289 /*
3290 * Turn on usage filter if is not already used. The idea is
3291 * that chunks that we have already balanced should be
3292 * reasonably full. Don't do it for chunks that are being
3293 * converted - that will keep us from relocating unconverted
3294 * (albeit full) chunks.
3295 */
3296 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3298 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3299 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3300 bctl->data.usage = 90;
3301 }
3302 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3303 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3304 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3305 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3306 bctl->sys.usage = 90;
3307 }
3308 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3309 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3310 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3311 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3312 bctl->meta.usage = 90;
3313 }
3314 }
3315
3316 /*
3317 * Clear the balance status in fs_info and delete the balance item from disk.
3318 */
3319 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3320 {
3321 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3322 int ret;
3323
3324 BUG_ON(!fs_info->balance_ctl);
3325
3326 spin_lock(&fs_info->balance_lock);
3327 fs_info->balance_ctl = NULL;
3328 spin_unlock(&fs_info->balance_lock);
3329
3330 kfree(bctl);
3331 ret = del_balance_item(fs_info);
3332 if (ret)
3333 btrfs_handle_fs_error(fs_info, ret, NULL);
3334 }
3335
3336 /*
3337 * Balance filters. Return 1 if chunk should be filtered out
3338 * (should not be balanced).
3339 */
3340 static int chunk_profiles_filter(u64 chunk_type,
3341 struct btrfs_balance_args *bargs)
3342 {
3343 chunk_type = chunk_to_extended(chunk_type) &
3344 BTRFS_EXTENDED_PROFILE_MASK;
3345
3346 if (bargs->profiles & chunk_type)
3347 return 0;
3348
3349 return 1;
3350 }
3351
3352 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3353 struct btrfs_balance_args *bargs)
3354 {
3355 struct btrfs_block_group *cache;
3356 u64 chunk_used;
3357 u64 user_thresh_min;
3358 u64 user_thresh_max;
3359 int ret = 1;
3360
3361 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3362 chunk_used = cache->used;
3363
3364 if (bargs->usage_min == 0)
3365 user_thresh_min = 0;
3366 else
3367 user_thresh_min = div_factor_fine(cache->length,
3368 bargs->usage_min);
3369
3370 if (bargs->usage_max == 0)
3371 user_thresh_max = 1;
3372 else if (bargs->usage_max > 100)
3373 user_thresh_max = cache->length;
3374 else
3375 user_thresh_max = div_factor_fine(cache->length,
3376 bargs->usage_max);
3377
3378 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3379 ret = 0;
3380
3381 btrfs_put_block_group(cache);
3382 return ret;
3383 }
3384
3385 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3386 u64 chunk_offset, struct btrfs_balance_args *bargs)
3387 {
3388 struct btrfs_block_group *cache;
3389 u64 chunk_used, user_thresh;
3390 int ret = 1;
3391
3392 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3393 chunk_used = cache->used;
3394
3395 if (bargs->usage_min == 0)
3396 user_thresh = 1;
3397 else if (bargs->usage > 100)
3398 user_thresh = cache->length;
3399 else
3400 user_thresh = div_factor_fine(cache->length, bargs->usage);
3401
3402 if (chunk_used < user_thresh)
3403 ret = 0;
3404
3405 btrfs_put_block_group(cache);
3406 return ret;
3407 }
3408
3409 static int chunk_devid_filter(struct extent_buffer *leaf,
3410 struct btrfs_chunk *chunk,
3411 struct btrfs_balance_args *bargs)
3412 {
3413 struct btrfs_stripe *stripe;
3414 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3415 int i;
3416
3417 for (i = 0; i < num_stripes; i++) {
3418 stripe = btrfs_stripe_nr(chunk, i);
3419 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3420 return 0;
3421 }
3422
3423 return 1;
3424 }
3425
3426 static u64 calc_data_stripes(u64 type, int num_stripes)
3427 {
3428 const int index = btrfs_bg_flags_to_raid_index(type);
3429 const int ncopies = btrfs_raid_array[index].ncopies;
3430 const int nparity = btrfs_raid_array[index].nparity;
3431
3432 if (nparity)
3433 return num_stripes - nparity;
3434 else
3435 return num_stripes / ncopies;
3436 }
3437
3438 /* [pstart, pend) */
3439 static int chunk_drange_filter(struct extent_buffer *leaf,
3440 struct btrfs_chunk *chunk,
3441 struct btrfs_balance_args *bargs)
3442 {
3443 struct btrfs_stripe *stripe;
3444 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3445 u64 stripe_offset;
3446 u64 stripe_length;
3447 u64 type;
3448 int factor;
3449 int i;
3450
3451 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3452 return 0;
3453
3454 type = btrfs_chunk_type(leaf, chunk);
3455 factor = calc_data_stripes(type, num_stripes);
3456
3457 for (i = 0; i < num_stripes; i++) {
3458 stripe = btrfs_stripe_nr(chunk, i);
3459 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3460 continue;
3461
3462 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3463 stripe_length = btrfs_chunk_length(leaf, chunk);
3464 stripe_length = div_u64(stripe_length, factor);
3465
3466 if (stripe_offset < bargs->pend &&
3467 stripe_offset + stripe_length > bargs->pstart)
3468 return 0;
3469 }
3470
3471 return 1;
3472 }
3473
3474 /* [vstart, vend) */
3475 static int chunk_vrange_filter(struct extent_buffer *leaf,
3476 struct btrfs_chunk *chunk,
3477 u64 chunk_offset,
3478 struct btrfs_balance_args *bargs)
3479 {
3480 if (chunk_offset < bargs->vend &&
3481 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3482 /* at least part of the chunk is inside this vrange */
3483 return 0;
3484
3485 return 1;
3486 }
3487
3488 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3489 struct btrfs_chunk *chunk,
3490 struct btrfs_balance_args *bargs)
3491 {
3492 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3493
3494 if (bargs->stripes_min <= num_stripes
3495 && num_stripes <= bargs->stripes_max)
3496 return 0;
3497
3498 return 1;
3499 }
3500
3501 static int chunk_soft_convert_filter(u64 chunk_type,
3502 struct btrfs_balance_args *bargs)
3503 {
3504 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3505 return 0;
3506
3507 chunk_type = chunk_to_extended(chunk_type) &
3508 BTRFS_EXTENDED_PROFILE_MASK;
3509
3510 if (bargs->target == chunk_type)
3511 return 1;
3512
3513 return 0;
3514 }
3515
3516 static int should_balance_chunk(struct extent_buffer *leaf,
3517 struct btrfs_chunk *chunk, u64 chunk_offset)
3518 {
3519 struct btrfs_fs_info *fs_info = leaf->fs_info;
3520 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3521 struct btrfs_balance_args *bargs = NULL;
3522 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3523
3524 /* type filter */
3525 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3526 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3527 return 0;
3528 }
3529
3530 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3531 bargs = &bctl->data;
3532 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3533 bargs = &bctl->sys;
3534 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3535 bargs = &bctl->meta;
3536
3537 /* profiles filter */
3538 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3539 chunk_profiles_filter(chunk_type, bargs)) {
3540 return 0;
3541 }
3542
3543 /* usage filter */
3544 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3545 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3546 return 0;
3547 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3548 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3549 return 0;
3550 }
3551
3552 /* devid filter */
3553 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3554 chunk_devid_filter(leaf, chunk, bargs)) {
3555 return 0;
3556 }
3557
3558 /* drange filter, makes sense only with devid filter */
3559 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3560 chunk_drange_filter(leaf, chunk, bargs)) {
3561 return 0;
3562 }
3563
3564 /* vrange filter */
3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3566 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3567 return 0;
3568 }
3569
3570 /* stripes filter */
3571 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3572 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3573 return 0;
3574 }
3575
3576 /* soft profile changing mode */
3577 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3578 chunk_soft_convert_filter(chunk_type, bargs)) {
3579 return 0;
3580 }
3581
3582 /*
3583 * limited by count, must be the last filter
3584 */
3585 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3586 if (bargs->limit == 0)
3587 return 0;
3588 else
3589 bargs->limit--;
3590 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3591 /*
3592 * Same logic as the 'limit' filter; the minimum cannot be
3593 * determined here because we do not have the global information
3594 * about the count of all chunks that satisfy the filters.
3595 */
3596 if (bargs->limit_max == 0)
3597 return 0;
3598 else
3599 bargs->limit_max--;
3600 }
3601
3602 return 1;
3603 }
3604
3605 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3606 {
3607 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3608 struct btrfs_root *chunk_root = fs_info->chunk_root;
3609 u64 chunk_type;
3610 struct btrfs_chunk *chunk;
3611 struct btrfs_path *path = NULL;
3612 struct btrfs_key key;
3613 struct btrfs_key found_key;
3614 struct extent_buffer *leaf;
3615 int slot;
3616 int ret;
3617 int enospc_errors = 0;
3618 bool counting = true;
3619 /* The single value limit and min/max limits use the same bytes in the */
3620 u64 limit_data = bctl->data.limit;
3621 u64 limit_meta = bctl->meta.limit;
3622 u64 limit_sys = bctl->sys.limit;
3623 u32 count_data = 0;
3624 u32 count_meta = 0;
3625 u32 count_sys = 0;
3626 int chunk_reserved = 0;
3627
3628 path = btrfs_alloc_path();
3629 if (!path) {
3630 ret = -ENOMEM;
3631 goto error;
3632 }
3633
3634 /* zero out stat counters */
3635 spin_lock(&fs_info->balance_lock);
3636 memset(&bctl->stat, 0, sizeof(bctl->stat));
3637 spin_unlock(&fs_info->balance_lock);
3638 again:
3639 if (!counting) {
3640 /*
3641 * The single value limit and min/max limits use the same bytes
3642 * in the
3643 */
3644 bctl->data.limit = limit_data;
3645 bctl->meta.limit = limit_meta;
3646 bctl->sys.limit = limit_sys;
3647 }
3648 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3649 key.offset = (u64)-1;
3650 key.type = BTRFS_CHUNK_ITEM_KEY;
3651
3652 while (1) {
3653 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3654 atomic_read(&fs_info->balance_cancel_req)) {
3655 ret = -ECANCELED;
3656 goto error;
3657 }
3658
3659 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3660 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3661 if (ret < 0) {
3662 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3663 goto error;
3664 }
3665
3666 /*
3667 * this shouldn't happen, it means the last relocate
3668 * failed
3669 */
3670 if (ret == 0)
3671 BUG(); /* FIXME break ? */
3672
3673 ret = btrfs_previous_item(chunk_root, path, 0,
3674 BTRFS_CHUNK_ITEM_KEY);
3675 if (ret) {
3676 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677 ret = 0;
3678 break;
3679 }
3680
3681 leaf = path->nodes[0];
3682 slot = path->slots[0];
3683 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3684
3685 if (found_key.objectid != key.objectid) {
3686 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3687 break;
3688 }
3689
3690 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3691 chunk_type = btrfs_chunk_type(leaf, chunk);
3692
3693 if (!counting) {
3694 spin_lock(&fs_info->balance_lock);
3695 bctl->stat.considered++;
3696 spin_unlock(&fs_info->balance_lock);
3697 }
3698
3699 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3700
3701 btrfs_release_path(path);
3702 if (!ret) {
3703 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3704 goto loop;
3705 }
3706
3707 if (counting) {
3708 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3709 spin_lock(&fs_info->balance_lock);
3710 bctl->stat.expected++;
3711 spin_unlock(&fs_info->balance_lock);
3712
3713 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3714 count_data++;
3715 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3716 count_sys++;
3717 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3718 count_meta++;
3719
3720 goto loop;
3721 }
3722
3723 /*
3724 * Apply limit_min filter, no need to check if the LIMITS
3725 * filter is used, limit_min is 0 by default
3726 */
3727 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3728 count_data < bctl->data.limit_min)
3729 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3730 count_meta < bctl->meta.limit_min)
3731 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3732 count_sys < bctl->sys.limit_min)) {
3733 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3734 goto loop;
3735 }
3736
3737 if (!chunk_reserved) {
3738 /*
3739 * We may be relocating the only data chunk we have,
3740 * which could potentially end up with losing data's
3741 * raid profile, so lets allocate an empty one in
3742 * advance.
3743 */
3744 ret = btrfs_may_alloc_data_chunk(fs_info,
3745 found_key.offset);
3746 if (ret < 0) {
3747 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3748 goto error;
3749 } else if (ret == 1) {
3750 chunk_reserved = 1;
3751 }
3752 }
3753
3754 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3755 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3756 if (ret == -ENOSPC) {
3757 enospc_errors++;
3758 } else if (ret == -ETXTBSY) {
3759 btrfs_info(fs_info,
3760 "skipping relocation of block group %llu due to active swapfile",
3761 found_key.offset);
3762 ret = 0;
3763 } else if (ret) {
3764 goto error;
3765 } else {
3766 spin_lock(&fs_info->balance_lock);
3767 bctl->stat.completed++;
3768 spin_unlock(&fs_info->balance_lock);
3769 }
3770 loop:
3771 if (found_key.offset == 0)
3772 break;
3773 key.offset = found_key.offset - 1;
3774 }
3775
3776 if (counting) {
3777 btrfs_release_path(path);
3778 counting = false;
3779 goto again;
3780 }
3781 error:
3782 btrfs_free_path(path);
3783 if (enospc_errors) {
3784 btrfs_info(fs_info, "%d enospc errors during balance",
3785 enospc_errors);
3786 if (!ret)
3787 ret = -ENOSPC;
3788 }
3789
3790 return ret;
3791 }
3792
3793 /**
3794 * alloc_profile_is_valid - see if a given profile is valid and reduced
3795 * @flags: profile to validate
3796 * @extended: if true @flags is treated as an extended profile
3797 */
3798 static int alloc_profile_is_valid(u64 flags, int extended)
3799 {
3800 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3801 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3802
3803 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3804
3805 /* 1) check that all other bits are zeroed */
3806 if (flags & ~mask)
3807 return 0;
3808
3809 /* 2) see if profile is reduced */
3810 if (flags == 0)
3811 return !extended; /* "0" is valid for usual profiles */
3812
3813 return has_single_bit_set(flags);
3814 }
3815
3816 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3817 {
3818 /* cancel requested || normal exit path */
3819 return atomic_read(&fs_info->balance_cancel_req) ||
3820 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3821 atomic_read(&fs_info->balance_cancel_req) == 0);
3822 }
3823
3824 /*
3825 * Validate target profile against allowed profiles and return true if it's OK.
3826 * Otherwise print the error message and return false.
3827 */
3828 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3829 const struct btrfs_balance_args *bargs,
3830 u64 allowed, const char *type)
3831 {
3832 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3833 return true;
3834
3835 /* Profile is valid and does not have bits outside of the allowed set */
3836 if (alloc_profile_is_valid(bargs->target, 1) &&
3837 (bargs->target & ~allowed) == 0)
3838 return true;
3839
3840 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3841 type, btrfs_bg_type_to_raid_name(bargs->target));
3842 return false;
3843 }
3844
3845 /*
3846 * Fill @buf with textual description of balance filter flags @bargs, up to
3847 * @size_buf including the terminating null. The output may be trimmed if it
3848 * does not fit into the provided buffer.
3849 */
3850 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3851 u32 size_buf)
3852 {
3853 int ret;
3854 u32 size_bp = size_buf;
3855 char *bp = buf;
3856 u64 flags = bargs->flags;
3857 char tmp_buf[128] = {'\0'};
3858
3859 if (!flags)
3860 return;
3861
3862 #define CHECK_APPEND_NOARG(a) \
3863 do { \
3864 ret = snprintf(bp, size_bp, (a)); \
3865 if (ret < 0 || ret >= size_bp) \
3866 goto out_overflow; \
3867 size_bp -= ret; \
3868 bp += ret; \
3869 } while (0)
3870
3871 #define CHECK_APPEND_1ARG(a, v1) \
3872 do { \
3873 ret = snprintf(bp, size_bp, (a), (v1)); \
3874 if (ret < 0 || ret >= size_bp) \
3875 goto out_overflow; \
3876 size_bp -= ret; \
3877 bp += ret; \
3878 } while (0)
3879
3880 #define CHECK_APPEND_2ARG(a, v1, v2) \
3881 do { \
3882 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3883 if (ret < 0 || ret >= size_bp) \
3884 goto out_overflow; \
3885 size_bp -= ret; \
3886 bp += ret; \
3887 } while (0)
3888
3889 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3890 CHECK_APPEND_1ARG("convert=%s,",
3891 btrfs_bg_type_to_raid_name(bargs->target));
3892
3893 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3894 CHECK_APPEND_NOARG("soft,");
3895
3896 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3897 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3898 sizeof(tmp_buf));
3899 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3900 }
3901
3902 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3903 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3904
3905 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3906 CHECK_APPEND_2ARG("usage=%u..%u,",
3907 bargs->usage_min, bargs->usage_max);
3908
3909 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3910 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3911
3912 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3913 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3914 bargs->pstart, bargs->pend);
3915
3916 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3917 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3918 bargs->vstart, bargs->vend);
3919
3920 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3921 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3922
3923 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3924 CHECK_APPEND_2ARG("limit=%u..%u,",
3925 bargs->limit_min, bargs->limit_max);
3926
3927 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3928 CHECK_APPEND_2ARG("stripes=%u..%u,",
3929 bargs->stripes_min, bargs->stripes_max);
3930
3931 #undef CHECK_APPEND_2ARG
3932 #undef CHECK_APPEND_1ARG
3933 #undef CHECK_APPEND_NOARG
3934
3935 out_overflow:
3936
3937 if (size_bp < size_buf)
3938 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3939 else
3940 buf[0] = '\0';
3941 }
3942
3943 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3944 {
3945 u32 size_buf = 1024;
3946 char tmp_buf[192] = {'\0'};
3947 char *buf;
3948 char *bp;
3949 u32 size_bp = size_buf;
3950 int ret;
3951 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3952
3953 buf = kzalloc(size_buf, GFP_KERNEL);
3954 if (!buf)
3955 return;
3956
3957 bp = buf;
3958
3959 #define CHECK_APPEND_1ARG(a, v1) \
3960 do { \
3961 ret = snprintf(bp, size_bp, (a), (v1)); \
3962 if (ret < 0 || ret >= size_bp) \
3963 goto out_overflow; \
3964 size_bp -= ret; \
3965 bp += ret; \
3966 } while (0)
3967
3968 if (bctl->flags & BTRFS_BALANCE_FORCE)
3969 CHECK_APPEND_1ARG("%s", "-f ");
3970
3971 if (bctl->flags & BTRFS_BALANCE_DATA) {
3972 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3973 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3974 }
3975
3976 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3977 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3978 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3979 }
3980
3981 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3982 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3983 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3984 }
3985
3986 #undef CHECK_APPEND_1ARG
3987
3988 out_overflow:
3989
3990 if (size_bp < size_buf)
3991 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3992 btrfs_info(fs_info, "balance: %s %s",
3993 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3994 "resume" : "start", buf);
3995
3996 kfree(buf);
3997 }
3998
3999 /*
4000 * Should be called with balance mutexe held
4001 */
4002 int btrfs_balance(struct btrfs_fs_info *fs_info,
4003 struct btrfs_balance_control *bctl,
4004 struct btrfs_ioctl_balance_args *bargs)
4005 {
4006 u64 meta_target, data_target;
4007 u64 allowed;
4008 int mixed = 0;
4009 int ret;
4010 u64 num_devices;
4011 unsigned seq;
4012 bool reducing_redundancy;
4013 int i;
4014
4015 if (btrfs_fs_closing(fs_info) ||
4016 atomic_read(&fs_info->balance_pause_req) ||
4017 btrfs_should_cancel_balance(fs_info)) {
4018 ret = -EINVAL;
4019 goto out;
4020 }
4021
4022 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4023 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4024 mixed = 1;
4025
4026 /*
4027 * In case of mixed groups both data and meta should be picked,
4028 * and identical options should be given for both of them.
4029 */
4030 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4031 if (mixed && (bctl->flags & allowed)) {
4032 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4033 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4034 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4035 btrfs_err(fs_info,
4036 "balance: mixed groups data and metadata options must be the same");
4037 ret = -EINVAL;
4038 goto out;
4039 }
4040 }
4041
4042 /*
4043 * rw_devices will not change at the moment, device add/delete/replace
4044 * are exclusive
4045 */
4046 num_devices = fs_info->fs_devices->rw_devices;
4047
4048 /*
4049 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4050 * special bit for it, to make it easier to distinguish. Thus we need
4051 * to set it manually, or balance would refuse the profile.
4052 */
4053 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4054 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4055 if (num_devices >= btrfs_raid_array[i].devs_min)
4056 allowed |= btrfs_raid_array[i].bg_flag;
4057
4058 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4059 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4060 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4061 ret = -EINVAL;
4062 goto out;
4063 }
4064
4065 /*
4066 * Allow to reduce metadata or system integrity only if force set for
4067 * profiles with redundancy (copies, parity)
4068 */
4069 allowed = 0;
4070 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4071 if (btrfs_raid_array[i].ncopies >= 2 ||
4072 btrfs_raid_array[i].tolerated_failures >= 1)
4073 allowed |= btrfs_raid_array[i].bg_flag;
4074 }
4075 do {
4076 seq = read_seqbegin(&fs_info->profiles_lock);
4077
4078 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4079 (fs_info->avail_system_alloc_bits & allowed) &&
4080 !(bctl->sys.target & allowed)) ||
4081 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4082 (fs_info->avail_metadata_alloc_bits & allowed) &&
4083 !(bctl->meta.target & allowed)))
4084 reducing_redundancy = true;
4085 else
4086 reducing_redundancy = false;
4087
4088 /* if we're not converting, the target field is uninitialized */
4089 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4090 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4091 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4092 bctl->data.target : fs_info->avail_data_alloc_bits;
4093 } while (read_seqretry(&fs_info->profiles_lock, seq));
4094
4095 if (reducing_redundancy) {
4096 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4097 btrfs_info(fs_info,
4098 "balance: force reducing metadata redundancy");
4099 } else {
4100 btrfs_err(fs_info,
4101 "balance: reduces metadata redundancy, use --force if you want this");
4102 ret = -EINVAL;
4103 goto out;
4104 }
4105 }
4106
4107 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4108 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4109 btrfs_warn(fs_info,
4110 "balance: metadata profile %s has lower redundancy than data profile %s",
4111 btrfs_bg_type_to_raid_name(meta_target),
4112 btrfs_bg_type_to_raid_name(data_target));
4113 }
4114
4115 if (fs_info->send_in_progress) {
4116 btrfs_warn_rl(fs_info,
4117 "cannot run balance while send operations are in progress (%d in progress)",
4118 fs_info->send_in_progress);
4119 ret = -EAGAIN;
4120 goto out;
4121 }
4122
4123 ret = insert_balance_item(fs_info, bctl);
4124 if (ret && ret != -EEXIST)
4125 goto out;
4126
4127 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4128 BUG_ON(ret == -EEXIST);
4129 BUG_ON(fs_info->balance_ctl);
4130 spin_lock(&fs_info->balance_lock);
4131 fs_info->balance_ctl = bctl;
4132 spin_unlock(&fs_info->balance_lock);
4133 } else {
4134 BUG_ON(ret != -EEXIST);
4135 spin_lock(&fs_info->balance_lock);
4136 update_balance_args(bctl);
4137 spin_unlock(&fs_info->balance_lock);
4138 }
4139
4140 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4141 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4142 describe_balance_start_or_resume(fs_info);
4143 mutex_unlock(&fs_info->balance_mutex);
4144
4145 ret = __btrfs_balance(fs_info);
4146
4147 mutex_lock(&fs_info->balance_mutex);
4148 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4149 btrfs_info(fs_info, "balance: paused");
4150 /*
4151 * Balance can be canceled by:
4152 *
4153 * - Regular cancel request
4154 * Then ret == -ECANCELED and balance_cancel_req > 0
4155 *
4156 * - Fatal signal to "btrfs" process
4157 * Either the signal caught by wait_reserve_ticket() and callers
4158 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4159 * got -ECANCELED.
4160 * Either way, in this case balance_cancel_req = 0, and
4161 * ret == -EINTR or ret == -ECANCELED.
4162 *
4163 * So here we only check the return value to catch canceled balance.
4164 */
4165 else if (ret == -ECANCELED || ret == -EINTR)
4166 btrfs_info(fs_info, "balance: canceled");
4167 else
4168 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4169
4170 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4171
4172 if (bargs) {
4173 memset(bargs, 0, sizeof(*bargs));
4174 btrfs_update_ioctl_balance_args(fs_info, bargs);
4175 }
4176
4177 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4178 balance_need_close(fs_info)) {
4179 reset_balance_state(fs_info);
4180 btrfs_exclop_finish(fs_info);
4181 }
4182
4183 wake_up(&fs_info->balance_wait_q);
4184
4185 return ret;
4186 out:
4187 if (bctl->flags & BTRFS_BALANCE_RESUME)
4188 reset_balance_state(fs_info);
4189 else
4190 kfree(bctl);
4191 btrfs_exclop_finish(fs_info);
4192
4193 return ret;
4194 }
4195
4196 static int balance_kthread(void *data)
4197 {
4198 struct btrfs_fs_info *fs_info = data;
4199 int ret = 0;
4200
4201 mutex_lock(&fs_info->balance_mutex);
4202 if (fs_info->balance_ctl)
4203 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4204 mutex_unlock(&fs_info->balance_mutex);
4205
4206 return ret;
4207 }
4208
4209 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4210 {
4211 struct task_struct *tsk;
4212
4213 mutex_lock(&fs_info->balance_mutex);
4214 if (!fs_info->balance_ctl) {
4215 mutex_unlock(&fs_info->balance_mutex);
4216 return 0;
4217 }
4218 mutex_unlock(&fs_info->balance_mutex);
4219
4220 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4221 btrfs_info(fs_info, "balance: resume skipped");
4222 return 0;
4223 }
4224
4225 /*
4226 * A ro->rw remount sequence should continue with the paused balance
4227 * regardless of who pauses it, system or the user as of now, so set
4228 * the resume flag.
4229 */
4230 spin_lock(&fs_info->balance_lock);
4231 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4232 spin_unlock(&fs_info->balance_lock);
4233
4234 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4235 return PTR_ERR_OR_ZERO(tsk);
4236 }
4237
4238 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4239 {
4240 struct btrfs_balance_control *bctl;
4241 struct btrfs_balance_item *item;
4242 struct btrfs_disk_balance_args disk_bargs;
4243 struct btrfs_path *path;
4244 struct extent_buffer *leaf;
4245 struct btrfs_key key;
4246 int ret;
4247
4248 path = btrfs_alloc_path();
4249 if (!path)
4250 return -ENOMEM;
4251
4252 key.objectid = BTRFS_BALANCE_OBJECTID;
4253 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4254 key.offset = 0;
4255
4256 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4257 if (ret < 0)
4258 goto out;
4259 if (ret > 0) { /* ret = -ENOENT; */
4260 ret = 0;
4261 goto out;
4262 }
4263
4264 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4265 if (!bctl) {
4266 ret = -ENOMEM;
4267 goto out;
4268 }
4269
4270 leaf = path->nodes[0];
4271 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4272
4273 bctl->flags = btrfs_balance_flags(leaf, item);
4274 bctl->flags |= BTRFS_BALANCE_RESUME;
4275
4276 btrfs_balance_data(leaf, item, &disk_bargs);
4277 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4278 btrfs_balance_meta(leaf, item, &disk_bargs);
4279 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4280 btrfs_balance_sys(leaf, item, &disk_bargs);
4281 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4282
4283 /*
4284 * This should never happen, as the paused balance state is recovered
4285 * during mount without any chance of other exclusive ops to collide.
4286 *
4287 * This gives the exclusive op status to balance and keeps in paused
4288 * state until user intervention (cancel or umount). If the ownership
4289 * cannot be assigned, show a message but do not fail. The balance
4290 * is in a paused state and must have fs_info::balance_ctl properly
4291 * set up.
4292 */
4293 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4294 btrfs_warn(fs_info,
4295 "balance: cannot set exclusive op status, resume manually");
4296
4297 mutex_lock(&fs_info->balance_mutex);
4298 BUG_ON(fs_info->balance_ctl);
4299 spin_lock(&fs_info->balance_lock);
4300 fs_info->balance_ctl = bctl;
4301 spin_unlock(&fs_info->balance_lock);
4302 mutex_unlock(&fs_info->balance_mutex);
4303 out:
4304 btrfs_free_path(path);
4305 return ret;
4306 }
4307
4308 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4309 {
4310 int ret = 0;
4311
4312 mutex_lock(&fs_info->balance_mutex);
4313 if (!fs_info->balance_ctl) {
4314 mutex_unlock(&fs_info->balance_mutex);
4315 return -ENOTCONN;
4316 }
4317
4318 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4319 atomic_inc(&fs_info->balance_pause_req);
4320 mutex_unlock(&fs_info->balance_mutex);
4321
4322 wait_event(fs_info->balance_wait_q,
4323 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4324
4325 mutex_lock(&fs_info->balance_mutex);
4326 /* we are good with balance_ctl ripped off from under us */
4327 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4328 atomic_dec(&fs_info->balance_pause_req);
4329 } else {
4330 ret = -ENOTCONN;
4331 }
4332
4333 mutex_unlock(&fs_info->balance_mutex);
4334 return ret;
4335 }
4336
4337 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4338 {
4339 mutex_lock(&fs_info->balance_mutex);
4340 if (!fs_info->balance_ctl) {
4341 mutex_unlock(&fs_info->balance_mutex);
4342 return -ENOTCONN;
4343 }
4344
4345 /*
4346 * A paused balance with the item stored on disk can be resumed at
4347 * mount time if the mount is read-write. Otherwise it's still paused
4348 * and we must not allow cancelling as it deletes the item.
4349 */
4350 if (sb_rdonly(fs_info->sb)) {
4351 mutex_unlock(&fs_info->balance_mutex);
4352 return -EROFS;
4353 }
4354
4355 atomic_inc(&fs_info->balance_cancel_req);
4356 /*
4357 * if we are running just wait and return, balance item is
4358 * deleted in btrfs_balance in this case
4359 */
4360 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4361 mutex_unlock(&fs_info->balance_mutex);
4362 wait_event(fs_info->balance_wait_q,
4363 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4364 mutex_lock(&fs_info->balance_mutex);
4365 } else {
4366 mutex_unlock(&fs_info->balance_mutex);
4367 /*
4368 * Lock released to allow other waiters to continue, we'll
4369 * reexamine the status again.
4370 */
4371 mutex_lock(&fs_info->balance_mutex);
4372
4373 if (fs_info->balance_ctl) {
4374 reset_balance_state(fs_info);
4375 btrfs_exclop_finish(fs_info);
4376 btrfs_info(fs_info, "balance: canceled");
4377 }
4378 }
4379
4380 BUG_ON(fs_info->balance_ctl ||
4381 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4382 atomic_dec(&fs_info->balance_cancel_req);
4383 mutex_unlock(&fs_info->balance_mutex);
4384 return 0;
4385 }
4386
4387 int btrfs_uuid_scan_kthread(void *data)
4388 {
4389 struct btrfs_fs_info *fs_info = data;
4390 struct btrfs_root *root = fs_info->tree_root;
4391 struct btrfs_key key;
4392 struct btrfs_path *path = NULL;
4393 int ret = 0;
4394 struct extent_buffer *eb;
4395 int slot;
4396 struct btrfs_root_item root_item;
4397 u32 item_size;
4398 struct btrfs_trans_handle *trans = NULL;
4399 bool closing = false;
4400
4401 path = btrfs_alloc_path();
4402 if (!path) {
4403 ret = -ENOMEM;
4404 goto out;
4405 }
4406
4407 key.objectid = 0;
4408 key.type = BTRFS_ROOT_ITEM_KEY;
4409 key.offset = 0;
4410
4411 while (1) {
4412 if (btrfs_fs_closing(fs_info)) {
4413 closing = true;
4414 break;
4415 }
4416 ret = btrfs_search_forward(root, &key, path,
4417 BTRFS_OLDEST_GENERATION);
4418 if (ret) {
4419 if (ret > 0)
4420 ret = 0;
4421 break;
4422 }
4423
4424 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4425 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4426 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4427 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4428 goto skip;
4429
4430 eb = path->nodes[0];
4431 slot = path->slots[0];
4432 item_size = btrfs_item_size_nr(eb, slot);
4433 if (item_size < sizeof(root_item))
4434 goto skip;
4435
4436 read_extent_buffer(eb, &root_item,
4437 btrfs_item_ptr_offset(eb, slot),
4438 (int)sizeof(root_item));
4439 if (btrfs_root_refs(&root_item) == 0)
4440 goto skip;
4441
4442 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4443 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4444 if (trans)
4445 goto update_tree;
4446
4447 btrfs_release_path(path);
4448 /*
4449 * 1 - subvol uuid item
4450 * 1 - received_subvol uuid item
4451 */
4452 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4453 if (IS_ERR(trans)) {
4454 ret = PTR_ERR(trans);
4455 break;
4456 }
4457 continue;
4458 } else {
4459 goto skip;
4460 }
4461 update_tree:
4462 btrfs_release_path(path);
4463 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4464 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4465 BTRFS_UUID_KEY_SUBVOL,
4466 key.objectid);
4467 if (ret < 0) {
4468 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4469 ret);
4470 break;
4471 }
4472 }
4473
4474 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4475 ret = btrfs_uuid_tree_add(trans,
4476 root_item.received_uuid,
4477 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4478 key.objectid);
4479 if (ret < 0) {
4480 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4481 ret);
4482 break;
4483 }
4484 }
4485
4486 skip:
4487 btrfs_release_path(path);
4488 if (trans) {
4489 ret = btrfs_end_transaction(trans);
4490 trans = NULL;
4491 if (ret)
4492 break;
4493 }
4494
4495 if (key.offset < (u64)-1) {
4496 key.offset++;
4497 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4498 key.offset = 0;
4499 key.type = BTRFS_ROOT_ITEM_KEY;
4500 } else if (key.objectid < (u64)-1) {
4501 key.offset = 0;
4502 key.type = BTRFS_ROOT_ITEM_KEY;
4503 key.objectid++;
4504 } else {
4505 break;
4506 }
4507 cond_resched();
4508 }
4509
4510 out:
4511 btrfs_free_path(path);
4512 if (trans && !IS_ERR(trans))
4513 btrfs_end_transaction(trans);
4514 if (ret)
4515 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4516 else if (!closing)
4517 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4518 up(&fs_info->uuid_tree_rescan_sem);
4519 return 0;
4520 }
4521
4522 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4523 {
4524 struct btrfs_trans_handle *trans;
4525 struct btrfs_root *tree_root = fs_info->tree_root;
4526 struct btrfs_root *uuid_root;
4527 struct task_struct *task;
4528 int ret;
4529
4530 /*
4531 * 1 - root node
4532 * 1 - root item
4533 */
4534 trans = btrfs_start_transaction(tree_root, 2);
4535 if (IS_ERR(trans))
4536 return PTR_ERR(trans);
4537
4538 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4539 if (IS_ERR(uuid_root)) {
4540 ret = PTR_ERR(uuid_root);
4541 btrfs_abort_transaction(trans, ret);
4542 btrfs_end_transaction(trans);
4543 return ret;
4544 }
4545
4546 fs_info->uuid_root = uuid_root;
4547
4548 ret = btrfs_commit_transaction(trans);
4549 if (ret)
4550 return ret;
4551
4552 down(&fs_info->uuid_tree_rescan_sem);
4553 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4554 if (IS_ERR(task)) {
4555 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4556 btrfs_warn(fs_info, "failed to start uuid_scan task");
4557 up(&fs_info->uuid_tree_rescan_sem);
4558 return PTR_ERR(task);
4559 }
4560
4561 return 0;
4562 }
4563
4564 /*
4565 * shrinking a device means finding all of the device extents past
4566 * the new size, and then following the back refs to the chunks.
4567 * The chunk relocation code actually frees the device extent
4568 */
4569 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4570 {
4571 struct btrfs_fs_info *fs_info = device->fs_info;
4572 struct btrfs_root *root = fs_info->dev_root;
4573 struct btrfs_trans_handle *trans;
4574 struct btrfs_dev_extent *dev_extent = NULL;
4575 struct btrfs_path *path;
4576 u64 length;
4577 u64 chunk_offset;
4578 int ret;
4579 int slot;
4580 int failed = 0;
4581 bool retried = false;
4582 struct extent_buffer *l;
4583 struct btrfs_key key;
4584 struct btrfs_super_block *super_copy = fs_info->super_copy;
4585 u64 old_total = btrfs_super_total_bytes(super_copy);
4586 u64 old_size = btrfs_device_get_total_bytes(device);
4587 u64 diff;
4588 u64 start;
4589
4590 new_size = round_down(new_size, fs_info->sectorsize);
4591 start = new_size;
4592 diff = round_down(old_size - new_size, fs_info->sectorsize);
4593
4594 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4595 return -EINVAL;
4596
4597 path = btrfs_alloc_path();
4598 if (!path)
4599 return -ENOMEM;
4600
4601 path->reada = READA_BACK;
4602
4603 trans = btrfs_start_transaction(root, 0);
4604 if (IS_ERR(trans)) {
4605 btrfs_free_path(path);
4606 return PTR_ERR(trans);
4607 }
4608
4609 mutex_lock(&fs_info->chunk_mutex);
4610
4611 btrfs_device_set_total_bytes(device, new_size);
4612 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4613 device->fs_devices->total_rw_bytes -= diff;
4614 atomic64_sub(diff, &fs_info->free_chunk_space);
4615 }
4616
4617 /*
4618 * Once the device's size has been set to the new size, ensure all
4619 * in-memory chunks are synced to disk so that the loop below sees them
4620 * and relocates them accordingly.
4621 */
4622 if (contains_pending_extent(device, &start, diff)) {
4623 mutex_unlock(&fs_info->chunk_mutex);
4624 ret = btrfs_commit_transaction(trans);
4625 if (ret)
4626 goto done;
4627 } else {
4628 mutex_unlock(&fs_info->chunk_mutex);
4629 btrfs_end_transaction(trans);
4630 }
4631
4632 again:
4633 key.objectid = device->devid;
4634 key.offset = (u64)-1;
4635 key.type = BTRFS_DEV_EXTENT_KEY;
4636
4637 do {
4638 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4639 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4640 if (ret < 0) {
4641 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4642 goto done;
4643 }
4644
4645 ret = btrfs_previous_item(root, path, 0, key.type);
4646 if (ret)
4647 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4648 if (ret < 0)
4649 goto done;
4650 if (ret) {
4651 ret = 0;
4652 btrfs_release_path(path);
4653 break;
4654 }
4655
4656 l = path->nodes[0];
4657 slot = path->slots[0];
4658 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4659
4660 if (key.objectid != device->devid) {
4661 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4662 btrfs_release_path(path);
4663 break;
4664 }
4665
4666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4667 length = btrfs_dev_extent_length(l, dev_extent);
4668
4669 if (key.offset + length <= new_size) {
4670 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4671 btrfs_release_path(path);
4672 break;
4673 }
4674
4675 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4676 btrfs_release_path(path);
4677
4678 /*
4679 * We may be relocating the only data chunk we have,
4680 * which could potentially end up with losing data's
4681 * raid profile, so lets allocate an empty one in
4682 * advance.
4683 */
4684 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4685 if (ret < 0) {
4686 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4687 goto done;
4688 }
4689
4690 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4691 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4692 if (ret == -ENOSPC) {
4693 failed++;
4694 } else if (ret) {
4695 if (ret == -ETXTBSY) {
4696 btrfs_warn(fs_info,
4697 "could not shrink block group %llu due to active swapfile",
4698 chunk_offset);
4699 }
4700 goto done;
4701 }
4702 } while (key.offset-- > 0);
4703
4704 if (failed && !retried) {
4705 failed = 0;
4706 retried = true;
4707 goto again;
4708 } else if (failed && retried) {
4709 ret = -ENOSPC;
4710 goto done;
4711 }
4712
4713 /* Shrinking succeeded, else we would be at "done". */
4714 trans = btrfs_start_transaction(root, 0);
4715 if (IS_ERR(trans)) {
4716 ret = PTR_ERR(trans);
4717 goto done;
4718 }
4719
4720 mutex_lock(&fs_info->chunk_mutex);
4721 /* Clear all state bits beyond the shrunk device size */
4722 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4723 CHUNK_STATE_MASK);
4724
4725 btrfs_device_set_disk_total_bytes(device, new_size);
4726 if (list_empty(&device->post_commit_list))
4727 list_add_tail(&device->post_commit_list,
4728 &trans->transaction->dev_update_list);
4729
4730 WARN_ON(diff > old_total);
4731 btrfs_set_super_total_bytes(super_copy,
4732 round_down(old_total - diff, fs_info->sectorsize));
4733 mutex_unlock(&fs_info->chunk_mutex);
4734
4735 /* Now btrfs_update_device() will change the on-disk size. */
4736 ret = btrfs_update_device(trans, device);
4737 if (ret < 0) {
4738 btrfs_abort_transaction(trans, ret);
4739 btrfs_end_transaction(trans);
4740 } else {
4741 ret = btrfs_commit_transaction(trans);
4742 }
4743 done:
4744 btrfs_free_path(path);
4745 if (ret) {
4746 mutex_lock(&fs_info->chunk_mutex);
4747 btrfs_device_set_total_bytes(device, old_size);
4748 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4749 device->fs_devices->total_rw_bytes += diff;
4750 atomic64_add(diff, &fs_info->free_chunk_space);
4751 mutex_unlock(&fs_info->chunk_mutex);
4752 }
4753 return ret;
4754 }
4755
4756 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4757 struct btrfs_key *key,
4758 struct btrfs_chunk *chunk, int item_size)
4759 {
4760 struct btrfs_super_block *super_copy = fs_info->super_copy;
4761 struct btrfs_disk_key disk_key;
4762 u32 array_size;
4763 u8 *ptr;
4764
4765 mutex_lock(&fs_info->chunk_mutex);
4766 array_size = btrfs_super_sys_array_size(super_copy);
4767 if (array_size + item_size + sizeof(disk_key)
4768 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4769 mutex_unlock(&fs_info->chunk_mutex);
4770 return -EFBIG;
4771 }
4772
4773 ptr = super_copy->sys_chunk_array + array_size;
4774 btrfs_cpu_key_to_disk(&disk_key, key);
4775 memcpy(ptr, &disk_key, sizeof(disk_key));
4776 ptr += sizeof(disk_key);
4777 memcpy(ptr, chunk, item_size);
4778 item_size += sizeof(disk_key);
4779 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4780 mutex_unlock(&fs_info->chunk_mutex);
4781
4782 return 0;
4783 }
4784
4785 /*
4786 * sort the devices in descending order by max_avail, total_avail
4787 */
4788 static int btrfs_cmp_device_info(const void *a, const void *b)
4789 {
4790 const struct btrfs_device_info *di_a = a;
4791 const struct btrfs_device_info *di_b = b;
4792
4793 if (di_a->max_avail > di_b->max_avail)
4794 return -1;
4795 if (di_a->max_avail < di_b->max_avail)
4796 return 1;
4797 if (di_a->total_avail > di_b->total_avail)
4798 return -1;
4799 if (di_a->total_avail < di_b->total_avail)
4800 return 1;
4801 return 0;
4802 }
4803
4804 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4805 {
4806 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4807 return;
4808
4809 btrfs_set_fs_incompat(info, RAID56);
4810 }
4811
4812 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4813 {
4814 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4815 return;
4816
4817 btrfs_set_fs_incompat(info, RAID1C34);
4818 }
4819
4820 /*
4821 * Structure used internally for __btrfs_alloc_chunk() function.
4822 * Wraps needed parameters.
4823 */
4824 struct alloc_chunk_ctl {
4825 u64 start;
4826 u64 type;
4827 /* Total number of stripes to allocate */
4828 int num_stripes;
4829 /* sub_stripes info for map */
4830 int sub_stripes;
4831 /* Stripes per device */
4832 int dev_stripes;
4833 /* Maximum number of devices to use */
4834 int devs_max;
4835 /* Minimum number of devices to use */
4836 int devs_min;
4837 /* ndevs has to be a multiple of this */
4838 int devs_increment;
4839 /* Number of copies */
4840 int ncopies;
4841 /* Number of stripes worth of bytes to store parity information */
4842 int nparity;
4843 u64 max_stripe_size;
4844 u64 max_chunk_size;
4845 u64 dev_extent_min;
4846 u64 stripe_size;
4847 u64 chunk_size;
4848 int ndevs;
4849 };
4850
4851 static void init_alloc_chunk_ctl_policy_regular(
4852 struct btrfs_fs_devices *fs_devices,
4853 struct alloc_chunk_ctl *ctl)
4854 {
4855 u64 type = ctl->type;
4856
4857 if (type & BTRFS_BLOCK_GROUP_DATA) {
4858 ctl->max_stripe_size = SZ_1G;
4859 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4860 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4861 /* For larger filesystems, use larger metadata chunks */
4862 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4863 ctl->max_stripe_size = SZ_1G;
4864 else
4865 ctl->max_stripe_size = SZ_256M;
4866 ctl->max_chunk_size = ctl->max_stripe_size;
4867 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4868 ctl->max_stripe_size = SZ_32M;
4869 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4870 ctl->devs_max = min_t(int, ctl->devs_max,
4871 BTRFS_MAX_DEVS_SYS_CHUNK);
4872 } else {
4873 BUG();
4874 }
4875
4876 /* We don't want a chunk larger than 10% of writable space */
4877 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4878 ctl->max_chunk_size);
4879 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4880 }
4881
4882 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4883 struct alloc_chunk_ctl *ctl)
4884 {
4885 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4886
4887 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4888 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4889 ctl->devs_max = btrfs_raid_array[index].devs_max;
4890 if (!ctl->devs_max)
4891 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4892 ctl->devs_min = btrfs_raid_array[index].devs_min;
4893 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4894 ctl->ncopies = btrfs_raid_array[index].ncopies;
4895 ctl->nparity = btrfs_raid_array[index].nparity;
4896 ctl->ndevs = 0;
4897
4898 switch (fs_devices->chunk_alloc_policy) {
4899 case BTRFS_CHUNK_ALLOC_REGULAR:
4900 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4901 break;
4902 default:
4903 BUG();
4904 }
4905 }
4906
4907 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4908 struct alloc_chunk_ctl *ctl,
4909 struct btrfs_device_info *devices_info)
4910 {
4911 struct btrfs_fs_info *info = fs_devices->fs_info;
4912 struct btrfs_device *device;
4913 u64 total_avail;
4914 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4915 int ret;
4916 int ndevs = 0;
4917 u64 max_avail;
4918 u64 dev_offset;
4919
4920 /*
4921 * in the first pass through the devices list, we gather information
4922 * about the available holes on each device.
4923 */
4924 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4925 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4926 WARN(1, KERN_ERR
4927 "BTRFS: read-only device in alloc_list\n");
4928 continue;
4929 }
4930
4931 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4932 &device->dev_state) ||
4933 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4934 continue;
4935
4936 if (device->total_bytes > device->bytes_used)
4937 total_avail = device->total_bytes - device->bytes_used;
4938 else
4939 total_avail = 0;
4940
4941 /* If there is no space on this device, skip it. */
4942 if (total_avail < ctl->dev_extent_min)
4943 continue;
4944
4945 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4946 &max_avail);
4947 if (ret && ret != -ENOSPC)
4948 return ret;
4949
4950 if (ret == 0)
4951 max_avail = dev_extent_want;
4952
4953 if (max_avail < ctl->dev_extent_min) {
4954 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4955 btrfs_debug(info,
4956 "%s: devid %llu has no free space, have=%llu want=%llu",
4957 __func__, device->devid, max_avail,
4958 ctl->dev_extent_min);
4959 continue;
4960 }
4961
4962 if (ndevs == fs_devices->rw_devices) {
4963 WARN(1, "%s: found more than %llu devices\n",
4964 __func__, fs_devices->rw_devices);
4965 break;
4966 }
4967 devices_info[ndevs].dev_offset = dev_offset;
4968 devices_info[ndevs].max_avail = max_avail;
4969 devices_info[ndevs].total_avail = total_avail;
4970 devices_info[ndevs].dev = device;
4971 ++ndevs;
4972 }
4973 ctl->ndevs = ndevs;
4974
4975 /*
4976 * now sort the devices by hole size / available space
4977 */
4978 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4979 btrfs_cmp_device_info, NULL);
4980
4981 return 0;
4982 }
4983
4984 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4985 struct btrfs_device_info *devices_info)
4986 {
4987 /* Number of stripes that count for block group size */
4988 int data_stripes;
4989
4990 /*
4991 * The primary goal is to maximize the number of stripes, so use as
4992 * many devices as possible, even if the stripes are not maximum sized.
4993 *
4994 * The DUP profile stores more than one stripe per device, the
4995 * max_avail is the total size so we have to adjust.
4996 */
4997 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4998 ctl->dev_stripes);
4999 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5000
5001 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5002 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5003
5004 /*
5005 * Use the number of data stripes to figure out how big this chunk is
5006 * really going to be in terms of logical address space, and compare
5007 * that answer with the max chunk size. If it's higher, we try to
5008 * reduce stripe_size.
5009 */
5010 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5011 /*
5012 * Reduce stripe_size, round it up to a 16MB boundary again and
5013 * then use it, unless it ends up being even bigger than the
5014 * previous value we had already.
5015 */
5016 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5017 data_stripes), SZ_16M),
5018 ctl->stripe_size);
5019 }
5020
5021 /* Align to BTRFS_STRIPE_LEN */
5022 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5023 ctl->chunk_size = ctl->stripe_size * data_stripes;
5024
5025 return 0;
5026 }
5027
5028 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5029 struct alloc_chunk_ctl *ctl,
5030 struct btrfs_device_info *devices_info)
5031 {
5032 struct btrfs_fs_info *info = fs_devices->fs_info;
5033
5034 /*
5035 * Round down to number of usable stripes, devs_increment can be any
5036 * number so we can't use round_down() that requires power of 2, while
5037 * rounddown is safe.
5038 */
5039 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5040
5041 if (ctl->ndevs < ctl->devs_min) {
5042 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5043 btrfs_debug(info,
5044 "%s: not enough devices with free space: have=%d minimum required=%d",
5045 __func__, ctl->ndevs, ctl->devs_min);
5046 }
5047 return -ENOSPC;
5048 }
5049
5050 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5051
5052 switch (fs_devices->chunk_alloc_policy) {
5053 case BTRFS_CHUNK_ALLOC_REGULAR:
5054 return decide_stripe_size_regular(ctl, devices_info);
5055 default:
5056 BUG();
5057 }
5058 }
5059
5060 static int create_chunk(struct btrfs_trans_handle *trans,
5061 struct alloc_chunk_ctl *ctl,
5062 struct btrfs_device_info *devices_info)
5063 {
5064 struct btrfs_fs_info *info = trans->fs_info;
5065 struct map_lookup *map = NULL;
5066 struct extent_map_tree *em_tree;
5067 struct extent_map *em;
5068 u64 start = ctl->start;
5069 u64 type = ctl->type;
5070 int ret;
5071 int i;
5072 int j;
5073
5074 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5075 if (!map)
5076 return -ENOMEM;
5077 map->num_stripes = ctl->num_stripes;
5078
5079 for (i = 0; i < ctl->ndevs; ++i) {
5080 for (j = 0; j < ctl->dev_stripes; ++j) {
5081 int s = i * ctl->dev_stripes + j;
5082 map->stripes[s].dev = devices_info[i].dev;
5083 map->stripes[s].physical = devices_info[i].dev_offset +
5084 j * ctl->stripe_size;
5085 }
5086 }
5087 map->stripe_len = BTRFS_STRIPE_LEN;
5088 map->io_align = BTRFS_STRIPE_LEN;
5089 map->io_width = BTRFS_STRIPE_LEN;
5090 map->type = type;
5091 map->sub_stripes = ctl->sub_stripes;
5092
5093 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5094
5095 em = alloc_extent_map();
5096 if (!em) {
5097 kfree(map);
5098 return -ENOMEM;
5099 }
5100 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5101 em->map_lookup = map;
5102 em->start = start;
5103 em->len = ctl->chunk_size;
5104 em->block_start = 0;
5105 em->block_len = em->len;
5106 em->orig_block_len = ctl->stripe_size;
5107
5108 em_tree = &info->mapping_tree;
5109 write_lock(&em_tree->lock);
5110 ret = add_extent_mapping(em_tree, em, 0);
5111 if (ret) {
5112 write_unlock(&em_tree->lock);
5113 free_extent_map(em);
5114 return ret;
5115 }
5116 write_unlock(&em_tree->lock);
5117
5118 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5119 if (ret)
5120 goto error_del_extent;
5121
5122 for (i = 0; i < map->num_stripes; i++) {
5123 struct btrfs_device *dev = map->stripes[i].dev;
5124
5125 btrfs_device_set_bytes_used(dev,
5126 dev->bytes_used + ctl->stripe_size);
5127 if (list_empty(&dev->post_commit_list))
5128 list_add_tail(&dev->post_commit_list,
5129 &trans->transaction->dev_update_list);
5130 }
5131
5132 atomic64_sub(ctl->stripe_size * map->num_stripes,
5133 &info->free_chunk_space);
5134
5135 free_extent_map(em);
5136 check_raid56_incompat_flag(info, type);
5137 check_raid1c34_incompat_flag(info, type);
5138
5139 return 0;
5140
5141 error_del_extent:
5142 write_lock(&em_tree->lock);
5143 remove_extent_mapping(em_tree, em);
5144 write_unlock(&em_tree->lock);
5145
5146 /* One for our allocation */
5147 free_extent_map(em);
5148 /* One for the tree reference */
5149 free_extent_map(em);
5150
5151 return ret;
5152 }
5153
5154 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5155 {
5156 struct btrfs_fs_info *info = trans->fs_info;
5157 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5158 struct btrfs_device_info *devices_info = NULL;
5159 struct alloc_chunk_ctl ctl;
5160 int ret;
5161
5162 lockdep_assert_held(&info->chunk_mutex);
5163
5164 if (!alloc_profile_is_valid(type, 0)) {
5165 ASSERT(0);
5166 return -EINVAL;
5167 }
5168
5169 if (list_empty(&fs_devices->alloc_list)) {
5170 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5171 btrfs_debug(info, "%s: no writable device", __func__);
5172 return -ENOSPC;
5173 }
5174
5175 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5176 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5177 ASSERT(0);
5178 return -EINVAL;
5179 }
5180
5181 ctl.start = find_next_chunk(info);
5182 ctl.type = type;
5183 init_alloc_chunk_ctl(fs_devices, &ctl);
5184
5185 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5186 GFP_NOFS);
5187 if (!devices_info)
5188 return -ENOMEM;
5189
5190 ret = gather_device_info(fs_devices, &ctl, devices_info);
5191 if (ret < 0)
5192 goto out;
5193
5194 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5195 if (ret < 0)
5196 goto out;
5197
5198 ret = create_chunk(trans, &ctl, devices_info);
5199
5200 out:
5201 kfree(devices_info);
5202 return ret;
5203 }
5204
5205 /*
5206 * Chunk allocation falls into two parts. The first part does work
5207 * that makes the new allocated chunk usable, but does not do any operation
5208 * that modifies the chunk tree. The second part does the work that
5209 * requires modifying the chunk tree. This division is important for the
5210 * bootstrap process of adding storage to a seed btrfs.
5211 */
5212 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5213 u64 chunk_offset, u64 chunk_size)
5214 {
5215 struct btrfs_fs_info *fs_info = trans->fs_info;
5216 struct btrfs_root *extent_root = fs_info->extent_root;
5217 struct btrfs_root *chunk_root = fs_info->chunk_root;
5218 struct btrfs_key key;
5219 struct btrfs_device *device;
5220 struct btrfs_chunk *chunk;
5221 struct btrfs_stripe *stripe;
5222 struct extent_map *em;
5223 struct map_lookup *map;
5224 size_t item_size;
5225 u64 dev_offset;
5226 u64 stripe_size;
5227 int i = 0;
5228 int ret = 0;
5229
5230 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5231 if (IS_ERR(em))
5232 return PTR_ERR(em);
5233
5234 map = em->map_lookup;
5235 item_size = btrfs_chunk_item_size(map->num_stripes);
5236 stripe_size = em->orig_block_len;
5237
5238 chunk = kzalloc(item_size, GFP_NOFS);
5239 if (!chunk) {
5240 ret = -ENOMEM;
5241 goto out;
5242 }
5243
5244 /*
5245 * Take the device list mutex to prevent races with the final phase of
5246 * a device replace operation that replaces the device object associated
5247 * with the map's stripes, because the device object's id can change
5248 * at any time during that final phase of the device replace operation
5249 * (dev-replace.c:btrfs_dev_replace_finishing()).
5250 */
5251 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5252 for (i = 0; i < map->num_stripes; i++) {
5253 device = map->stripes[i].dev;
5254 dev_offset = map->stripes[i].physical;
5255
5256 ret = btrfs_update_device(trans, device);
5257 if (ret)
5258 break;
5259 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5260 dev_offset, stripe_size);
5261 if (ret)
5262 break;
5263 }
5264 if (ret) {
5265 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5266 goto out;
5267 }
5268
5269 stripe = &chunk->stripe;
5270 for (i = 0; i < map->num_stripes; i++) {
5271 device = map->stripes[i].dev;
5272 dev_offset = map->stripes[i].physical;
5273
5274 btrfs_set_stack_stripe_devid(stripe, device->devid);
5275 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5276 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5277 stripe++;
5278 }
5279 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5280
5281 btrfs_set_stack_chunk_length(chunk, chunk_size);
5282 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5283 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5284 btrfs_set_stack_chunk_type(chunk, map->type);
5285 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5286 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5287 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5288 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5289 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5290
5291 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5292 key.type = BTRFS_CHUNK_ITEM_KEY;
5293 key.offset = chunk_offset;
5294
5295 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5296 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5297 /*
5298 * TODO: Cleanup of inserted chunk root in case of
5299 * failure.
5300 */
5301 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5302 }
5303
5304 out:
5305 kfree(chunk);
5306 free_extent_map(em);
5307 return ret;
5308 }
5309
5310 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5311 {
5312 struct btrfs_fs_info *fs_info = trans->fs_info;
5313 u64 alloc_profile;
5314 int ret;
5315
5316 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5317 ret = btrfs_alloc_chunk(trans, alloc_profile);
5318 if (ret)
5319 return ret;
5320
5321 alloc_profile = btrfs_system_alloc_profile(fs_info);
5322 ret = btrfs_alloc_chunk(trans, alloc_profile);
5323 return ret;
5324 }
5325
5326 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5327 {
5328 const int index = btrfs_bg_flags_to_raid_index(map->type);
5329
5330 return btrfs_raid_array[index].tolerated_failures;
5331 }
5332
5333 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5334 {
5335 struct extent_map *em;
5336 struct map_lookup *map;
5337 int readonly = 0;
5338 int miss_ndevs = 0;
5339 int i;
5340
5341 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5342 if (IS_ERR(em))
5343 return 1;
5344
5345 map = em->map_lookup;
5346 for (i = 0; i < map->num_stripes; i++) {
5347 if (test_bit(BTRFS_DEV_STATE_MISSING,
5348 &map->stripes[i].dev->dev_state)) {
5349 miss_ndevs++;
5350 continue;
5351 }
5352 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5353 &map->stripes[i].dev->dev_state)) {
5354 readonly = 1;
5355 goto end;
5356 }
5357 }
5358
5359 /*
5360 * If the number of missing devices is larger than max errors,
5361 * we can not write the data into that chunk successfully, so
5362 * set it readonly.
5363 */
5364 if (miss_ndevs > btrfs_chunk_max_errors(map))
5365 readonly = 1;
5366 end:
5367 free_extent_map(em);
5368 return readonly;
5369 }
5370
5371 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5372 {
5373 struct extent_map *em;
5374
5375 while (1) {
5376 write_lock(&tree->lock);
5377 em = lookup_extent_mapping(tree, 0, (u64)-1);
5378 if (em)
5379 remove_extent_mapping(tree, em);
5380 write_unlock(&tree->lock);
5381 if (!em)
5382 break;
5383 /* once for us */
5384 free_extent_map(em);
5385 /* once for the tree */
5386 free_extent_map(em);
5387 }
5388 }
5389
5390 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5391 {
5392 struct extent_map *em;
5393 struct map_lookup *map;
5394 int ret;
5395
5396 em = btrfs_get_chunk_map(fs_info, logical, len);
5397 if (IS_ERR(em))
5398 /*
5399 * We could return errors for these cases, but that could get
5400 * ugly and we'd probably do the same thing which is just not do
5401 * anything else and exit, so return 1 so the callers don't try
5402 * to use other copies.
5403 */
5404 return 1;
5405
5406 map = em->map_lookup;
5407 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5408 ret = map->num_stripes;
5409 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5410 ret = map->sub_stripes;
5411 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5412 ret = 2;
5413 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5414 /*
5415 * There could be two corrupted data stripes, we need
5416 * to loop retry in order to rebuild the correct data.
5417 *
5418 * Fail a stripe at a time on every retry except the
5419 * stripe under reconstruction.
5420 */
5421 ret = map->num_stripes;
5422 else
5423 ret = 1;
5424 free_extent_map(em);
5425
5426 down_read(&fs_info->dev_replace.rwsem);
5427 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5428 fs_info->dev_replace.tgtdev)
5429 ret++;
5430 up_read(&fs_info->dev_replace.rwsem);
5431
5432 return ret;
5433 }
5434
5435 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5436 u64 logical)
5437 {
5438 struct extent_map *em;
5439 struct map_lookup *map;
5440 unsigned long len = fs_info->sectorsize;
5441
5442 em = btrfs_get_chunk_map(fs_info, logical, len);
5443
5444 if (!WARN_ON(IS_ERR(em))) {
5445 map = em->map_lookup;
5446 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5447 len = map->stripe_len * nr_data_stripes(map);
5448 free_extent_map(em);
5449 }
5450 return len;
5451 }
5452
5453 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5454 {
5455 struct extent_map *em;
5456 struct map_lookup *map;
5457 int ret = 0;
5458
5459 em = btrfs_get_chunk_map(fs_info, logical, len);
5460
5461 if(!WARN_ON(IS_ERR(em))) {
5462 map = em->map_lookup;
5463 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5464 ret = 1;
5465 free_extent_map(em);
5466 }
5467 return ret;
5468 }
5469
5470 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5471 struct map_lookup *map, int first,
5472 int dev_replace_is_ongoing)
5473 {
5474 int i;
5475 int num_stripes;
5476 int preferred_mirror;
5477 int tolerance;
5478 struct btrfs_device *srcdev;
5479
5480 ASSERT((map->type &
5481 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5482
5483 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5484 num_stripes = map->sub_stripes;
5485 else
5486 num_stripes = map->num_stripes;
5487
5488 preferred_mirror = first + current->pid % num_stripes;
5489
5490 if (dev_replace_is_ongoing &&
5491 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5492 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5493 srcdev = fs_info->dev_replace.srcdev;
5494 else
5495 srcdev = NULL;
5496
5497 /*
5498 * try to avoid the drive that is the source drive for a
5499 * dev-replace procedure, only choose it if no other non-missing
5500 * mirror is available
5501 */
5502 for (tolerance = 0; tolerance < 2; tolerance++) {
5503 if (map->stripes[preferred_mirror].dev->bdev &&
5504 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5505 return preferred_mirror;
5506 for (i = first; i < first + num_stripes; i++) {
5507 if (map->stripes[i].dev->bdev &&
5508 (tolerance || map->stripes[i].dev != srcdev))
5509 return i;
5510 }
5511 }
5512
5513 /* we couldn't find one that doesn't fail. Just return something
5514 * and the io error handling code will clean up eventually
5515 */
5516 return preferred_mirror;
5517 }
5518
5519 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5520 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5521 {
5522 int i;
5523 int again = 1;
5524
5525 while (again) {
5526 again = 0;
5527 for (i = 0; i < num_stripes - 1; i++) {
5528 /* Swap if parity is on a smaller index */
5529 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5530 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5531 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5532 again = 1;
5533 }
5534 }
5535 }
5536 }
5537
5538 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5539 {
5540 struct btrfs_bio *bbio = kzalloc(
5541 /* the size of the btrfs_bio */
5542 sizeof(struct btrfs_bio) +
5543 /* plus the variable array for the stripes */
5544 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5545 /* plus the variable array for the tgt dev */
5546 sizeof(int) * (real_stripes) +
5547 /*
5548 * plus the raid_map, which includes both the tgt dev
5549 * and the stripes
5550 */
5551 sizeof(u64) * (total_stripes),
5552 GFP_NOFS|__GFP_NOFAIL);
5553
5554 atomic_set(&bbio->error, 0);
5555 refcount_set(&bbio->refs, 1);
5556
5557 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5558 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5559
5560 return bbio;
5561 }
5562
5563 void btrfs_get_bbio(struct btrfs_bio *bbio)
5564 {
5565 WARN_ON(!refcount_read(&bbio->refs));
5566 refcount_inc(&bbio->refs);
5567 }
5568
5569 void btrfs_put_bbio(struct btrfs_bio *bbio)
5570 {
5571 if (!bbio)
5572 return;
5573 if (refcount_dec_and_test(&bbio->refs))
5574 kfree(bbio);
5575 }
5576
5577 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5578 /*
5579 * Please note that, discard won't be sent to target device of device
5580 * replace.
5581 */
5582 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5583 u64 logical, u64 *length_ret,
5584 struct btrfs_bio **bbio_ret)
5585 {
5586 struct extent_map *em;
5587 struct map_lookup *map;
5588 struct btrfs_bio *bbio;
5589 u64 length = *length_ret;
5590 u64 offset;
5591 u64 stripe_nr;
5592 u64 stripe_nr_end;
5593 u64 stripe_end_offset;
5594 u64 stripe_cnt;
5595 u64 stripe_len;
5596 u64 stripe_offset;
5597 u64 num_stripes;
5598 u32 stripe_index;
5599 u32 factor = 0;
5600 u32 sub_stripes = 0;
5601 u64 stripes_per_dev = 0;
5602 u32 remaining_stripes = 0;
5603 u32 last_stripe = 0;
5604 int ret = 0;
5605 int i;
5606
5607 /* discard always return a bbio */
5608 ASSERT(bbio_ret);
5609
5610 em = btrfs_get_chunk_map(fs_info, logical, length);
5611 if (IS_ERR(em))
5612 return PTR_ERR(em);
5613
5614 map = em->map_lookup;
5615 /* we don't discard raid56 yet */
5616 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5617 ret = -EOPNOTSUPP;
5618 goto out;
5619 }
5620
5621 offset = logical - em->start;
5622 length = min_t(u64, em->start + em->len - logical, length);
5623 *length_ret = length;
5624
5625 stripe_len = map->stripe_len;
5626 /*
5627 * stripe_nr counts the total number of stripes we have to stride
5628 * to get to this block
5629 */
5630 stripe_nr = div64_u64(offset, stripe_len);
5631
5632 /* stripe_offset is the offset of this block in its stripe */
5633 stripe_offset = offset - stripe_nr * stripe_len;
5634
5635 stripe_nr_end = round_up(offset + length, map->stripe_len);
5636 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5637 stripe_cnt = stripe_nr_end - stripe_nr;
5638 stripe_end_offset = stripe_nr_end * map->stripe_len -
5639 (offset + length);
5640 /*
5641 * after this, stripe_nr is the number of stripes on this
5642 * device we have to walk to find the data, and stripe_index is
5643 * the number of our device in the stripe array
5644 */
5645 num_stripes = 1;
5646 stripe_index = 0;
5647 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5648 BTRFS_BLOCK_GROUP_RAID10)) {
5649 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5650 sub_stripes = 1;
5651 else
5652 sub_stripes = map->sub_stripes;
5653
5654 factor = map->num_stripes / sub_stripes;
5655 num_stripes = min_t(u64, map->num_stripes,
5656 sub_stripes * stripe_cnt);
5657 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5658 stripe_index *= sub_stripes;
5659 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5660 &remaining_stripes);
5661 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5662 last_stripe *= sub_stripes;
5663 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5664 BTRFS_BLOCK_GROUP_DUP)) {
5665 num_stripes = map->num_stripes;
5666 } else {
5667 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5668 &stripe_index);
5669 }
5670
5671 bbio = alloc_btrfs_bio(num_stripes, 0);
5672 if (!bbio) {
5673 ret = -ENOMEM;
5674 goto out;
5675 }
5676
5677 for (i = 0; i < num_stripes; i++) {
5678 bbio->stripes[i].physical =
5679 map->stripes[stripe_index].physical +
5680 stripe_offset + stripe_nr * map->stripe_len;
5681 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5682
5683 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5684 BTRFS_BLOCK_GROUP_RAID10)) {
5685 bbio->stripes[i].length = stripes_per_dev *
5686 map->stripe_len;
5687
5688 if (i / sub_stripes < remaining_stripes)
5689 bbio->stripes[i].length +=
5690 map->stripe_len;
5691
5692 /*
5693 * Special for the first stripe and
5694 * the last stripe:
5695 *
5696 * |-------|...|-------|
5697 * |----------|
5698 * off end_off
5699 */
5700 if (i < sub_stripes)
5701 bbio->stripes[i].length -=
5702 stripe_offset;
5703
5704 if (stripe_index >= last_stripe &&
5705 stripe_index <= (last_stripe +
5706 sub_stripes - 1))
5707 bbio->stripes[i].length -=
5708 stripe_end_offset;
5709
5710 if (i == sub_stripes - 1)
5711 stripe_offset = 0;
5712 } else {
5713 bbio->stripes[i].length = length;
5714 }
5715
5716 stripe_index++;
5717 if (stripe_index == map->num_stripes) {
5718 stripe_index = 0;
5719 stripe_nr++;
5720 }
5721 }
5722
5723 *bbio_ret = bbio;
5724 bbio->map_type = map->type;
5725 bbio->num_stripes = num_stripes;
5726 out:
5727 free_extent_map(em);
5728 return ret;
5729 }
5730
5731 /*
5732 * In dev-replace case, for repair case (that's the only case where the mirror
5733 * is selected explicitly when calling btrfs_map_block), blocks left of the
5734 * left cursor can also be read from the target drive.
5735 *
5736 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5737 * array of stripes.
5738 * For READ, it also needs to be supported using the same mirror number.
5739 *
5740 * If the requested block is not left of the left cursor, EIO is returned. This
5741 * can happen because btrfs_num_copies() returns one more in the dev-replace
5742 * case.
5743 */
5744 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5745 u64 logical, u64 length,
5746 u64 srcdev_devid, int *mirror_num,
5747 u64 *physical)
5748 {
5749 struct btrfs_bio *bbio = NULL;
5750 int num_stripes;
5751 int index_srcdev = 0;
5752 int found = 0;
5753 u64 physical_of_found = 0;
5754 int i;
5755 int ret = 0;
5756
5757 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5758 logical, &length, &bbio, 0, 0);
5759 if (ret) {
5760 ASSERT(bbio == NULL);
5761 return ret;
5762 }
5763
5764 num_stripes = bbio->num_stripes;
5765 if (*mirror_num > num_stripes) {
5766 /*
5767 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5768 * that means that the requested area is not left of the left
5769 * cursor
5770 */
5771 btrfs_put_bbio(bbio);
5772 return -EIO;
5773 }
5774
5775 /*
5776 * process the rest of the function using the mirror_num of the source
5777 * drive. Therefore look it up first. At the end, patch the device
5778 * pointer to the one of the target drive.
5779 */
5780 for (i = 0; i < num_stripes; i++) {
5781 if (bbio->stripes[i].dev->devid != srcdev_devid)
5782 continue;
5783
5784 /*
5785 * In case of DUP, in order to keep it simple, only add the
5786 * mirror with the lowest physical address
5787 */
5788 if (found &&
5789 physical_of_found <= bbio->stripes[i].physical)
5790 continue;
5791
5792 index_srcdev = i;
5793 found = 1;
5794 physical_of_found = bbio->stripes[i].physical;
5795 }
5796
5797 btrfs_put_bbio(bbio);
5798
5799 ASSERT(found);
5800 if (!found)
5801 return -EIO;
5802
5803 *mirror_num = index_srcdev + 1;
5804 *physical = physical_of_found;
5805 return ret;
5806 }
5807
5808 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5809 struct btrfs_bio **bbio_ret,
5810 struct btrfs_dev_replace *dev_replace,
5811 int *num_stripes_ret, int *max_errors_ret)
5812 {
5813 struct btrfs_bio *bbio = *bbio_ret;
5814 u64 srcdev_devid = dev_replace->srcdev->devid;
5815 int tgtdev_indexes = 0;
5816 int num_stripes = *num_stripes_ret;
5817 int max_errors = *max_errors_ret;
5818 int i;
5819
5820 if (op == BTRFS_MAP_WRITE) {
5821 int index_where_to_add;
5822
5823 /*
5824 * duplicate the write operations while the dev replace
5825 * procedure is running. Since the copying of the old disk to
5826 * the new disk takes place at run time while the filesystem is
5827 * mounted writable, the regular write operations to the old
5828 * disk have to be duplicated to go to the new disk as well.
5829 *
5830 * Note that device->missing is handled by the caller, and that
5831 * the write to the old disk is already set up in the stripes
5832 * array.
5833 */
5834 index_where_to_add = num_stripes;
5835 for (i = 0; i < num_stripes; i++) {
5836 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5837 /* write to new disk, too */
5838 struct btrfs_bio_stripe *new =
5839 bbio->stripes + index_where_to_add;
5840 struct btrfs_bio_stripe *old =
5841 bbio->stripes + i;
5842
5843 new->physical = old->physical;
5844 new->length = old->length;
5845 new->dev = dev_replace->tgtdev;
5846 bbio->tgtdev_map[i] = index_where_to_add;
5847 index_where_to_add++;
5848 max_errors++;
5849 tgtdev_indexes++;
5850 }
5851 }
5852 num_stripes = index_where_to_add;
5853 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5854 int index_srcdev = 0;
5855 int found = 0;
5856 u64 physical_of_found = 0;
5857
5858 /*
5859 * During the dev-replace procedure, the target drive can also
5860 * be used to read data in case it is needed to repair a corrupt
5861 * block elsewhere. This is possible if the requested area is
5862 * left of the left cursor. In this area, the target drive is a
5863 * full copy of the source drive.
5864 */
5865 for (i = 0; i < num_stripes; i++) {
5866 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5867 /*
5868 * In case of DUP, in order to keep it simple,
5869 * only add the mirror with the lowest physical
5870 * address
5871 */
5872 if (found &&
5873 physical_of_found <=
5874 bbio->stripes[i].physical)
5875 continue;
5876 index_srcdev = i;
5877 found = 1;
5878 physical_of_found = bbio->stripes[i].physical;
5879 }
5880 }
5881 if (found) {
5882 struct btrfs_bio_stripe *tgtdev_stripe =
5883 bbio->stripes + num_stripes;
5884
5885 tgtdev_stripe->physical = physical_of_found;
5886 tgtdev_stripe->length =
5887 bbio->stripes[index_srcdev].length;
5888 tgtdev_stripe->dev = dev_replace->tgtdev;
5889 bbio->tgtdev_map[index_srcdev] = num_stripes;
5890
5891 tgtdev_indexes++;
5892 num_stripes++;
5893 }
5894 }
5895
5896 *num_stripes_ret = num_stripes;
5897 *max_errors_ret = max_errors;
5898 bbio->num_tgtdevs = tgtdev_indexes;
5899 *bbio_ret = bbio;
5900 }
5901
5902 static bool need_full_stripe(enum btrfs_map_op op)
5903 {
5904 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5905 }
5906
5907 /*
5908 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5909 * tuple. This information is used to calculate how big a
5910 * particular bio can get before it straddles a stripe.
5911 *
5912 * @fs_info - the filesystem
5913 * @logical - address that we want to figure out the geometry of
5914 * @len - the length of IO we are going to perform, starting at @logical
5915 * @op - type of operation - write or read
5916 * @io_geom - pointer used to return values
5917 *
5918 * Returns < 0 in case a chunk for the given logical address cannot be found,
5919 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5920 */
5921 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5922 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5923 {
5924 struct extent_map *em;
5925 struct map_lookup *map;
5926 u64 offset;
5927 u64 stripe_offset;
5928 u64 stripe_nr;
5929 u64 stripe_len;
5930 u64 raid56_full_stripe_start = (u64)-1;
5931 int data_stripes;
5932 int ret = 0;
5933
5934 ASSERT(op != BTRFS_MAP_DISCARD);
5935
5936 em = btrfs_get_chunk_map(fs_info, logical, len);
5937 if (IS_ERR(em))
5938 return PTR_ERR(em);
5939
5940 map = em->map_lookup;
5941 /* Offset of this logical address in the chunk */
5942 offset = logical - em->start;
5943 /* Len of a stripe in a chunk */
5944 stripe_len = map->stripe_len;
5945 /* Stripe wher this block falls in */
5946 stripe_nr = div64_u64(offset, stripe_len);
5947 /* Offset of stripe in the chunk */
5948 stripe_offset = stripe_nr * stripe_len;
5949 if (offset < stripe_offset) {
5950 btrfs_crit(fs_info,
5951 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5952 stripe_offset, offset, em->start, logical, stripe_len);
5953 ret = -EINVAL;
5954 goto out;
5955 }
5956
5957 /* stripe_offset is the offset of this block in its stripe */
5958 stripe_offset = offset - stripe_offset;
5959 data_stripes = nr_data_stripes(map);
5960
5961 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5962 u64 max_len = stripe_len - stripe_offset;
5963
5964 /*
5965 * In case of raid56, we need to know the stripe aligned start
5966 */
5967 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5968 unsigned long full_stripe_len = stripe_len * data_stripes;
5969 raid56_full_stripe_start = offset;
5970
5971 /*
5972 * Allow a write of a full stripe, but make sure we
5973 * don't allow straddling of stripes
5974 */
5975 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5976 full_stripe_len);
5977 raid56_full_stripe_start *= full_stripe_len;
5978
5979 /*
5980 * For writes to RAID[56], allow a full stripeset across
5981 * all disks. For other RAID types and for RAID[56]
5982 * reads, just allow a single stripe (on a single disk).
5983 */
5984 if (op == BTRFS_MAP_WRITE) {
5985 max_len = stripe_len * data_stripes -
5986 (offset - raid56_full_stripe_start);
5987 }
5988 }
5989 len = min_t(u64, em->len - offset, max_len);
5990 } else {
5991 len = em->len - offset;
5992 }
5993
5994 io_geom->len = len;
5995 io_geom->offset = offset;
5996 io_geom->stripe_len = stripe_len;
5997 io_geom->stripe_nr = stripe_nr;
5998 io_geom->stripe_offset = stripe_offset;
5999 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6000
6001 out:
6002 /* once for us */
6003 free_extent_map(em);
6004 return ret;
6005 }
6006
6007 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6008 enum btrfs_map_op op,
6009 u64 logical, u64 *length,
6010 struct btrfs_bio **bbio_ret,
6011 int mirror_num, int need_raid_map)
6012 {
6013 struct extent_map *em;
6014 struct map_lookup *map;
6015 u64 stripe_offset;
6016 u64 stripe_nr;
6017 u64 stripe_len;
6018 u32 stripe_index;
6019 int data_stripes;
6020 int i;
6021 int ret = 0;
6022 int num_stripes;
6023 int max_errors = 0;
6024 int tgtdev_indexes = 0;
6025 struct btrfs_bio *bbio = NULL;
6026 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6027 int dev_replace_is_ongoing = 0;
6028 int num_alloc_stripes;
6029 int patch_the_first_stripe_for_dev_replace = 0;
6030 u64 physical_to_patch_in_first_stripe = 0;
6031 u64 raid56_full_stripe_start = (u64)-1;
6032 struct btrfs_io_geometry geom;
6033
6034 ASSERT(bbio_ret);
6035 ASSERT(op != BTRFS_MAP_DISCARD);
6036
6037 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6038 if (ret < 0)
6039 return ret;
6040
6041 em = btrfs_get_chunk_map(fs_info, logical, *length);
6042 ASSERT(!IS_ERR(em));
6043 map = em->map_lookup;
6044
6045 *length = geom.len;
6046 stripe_len = geom.stripe_len;
6047 stripe_nr = geom.stripe_nr;
6048 stripe_offset = geom.stripe_offset;
6049 raid56_full_stripe_start = geom.raid56_stripe_offset;
6050 data_stripes = nr_data_stripes(map);
6051
6052 down_read(&dev_replace->rwsem);
6053 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6054 /*
6055 * Hold the semaphore for read during the whole operation, write is
6056 * requested at commit time but must wait.
6057 */
6058 if (!dev_replace_is_ongoing)
6059 up_read(&dev_replace->rwsem);
6060
6061 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6062 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6063 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6064 dev_replace->srcdev->devid,
6065 &mirror_num,
6066 &physical_to_patch_in_first_stripe);
6067 if (ret)
6068 goto out;
6069 else
6070 patch_the_first_stripe_for_dev_replace = 1;
6071 } else if (mirror_num > map->num_stripes) {
6072 mirror_num = 0;
6073 }
6074
6075 num_stripes = 1;
6076 stripe_index = 0;
6077 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6078 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6079 &stripe_index);
6080 if (!need_full_stripe(op))
6081 mirror_num = 1;
6082 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6083 if (need_full_stripe(op))
6084 num_stripes = map->num_stripes;
6085 else if (mirror_num)
6086 stripe_index = mirror_num - 1;
6087 else {
6088 stripe_index = find_live_mirror(fs_info, map, 0,
6089 dev_replace_is_ongoing);
6090 mirror_num = stripe_index + 1;
6091 }
6092
6093 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6094 if (need_full_stripe(op)) {
6095 num_stripes = map->num_stripes;
6096 } else if (mirror_num) {
6097 stripe_index = mirror_num - 1;
6098 } else {
6099 mirror_num = 1;
6100 }
6101
6102 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6103 u32 factor = map->num_stripes / map->sub_stripes;
6104
6105 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6106 stripe_index *= map->sub_stripes;
6107
6108 if (need_full_stripe(op))
6109 num_stripes = map->sub_stripes;
6110 else if (mirror_num)
6111 stripe_index += mirror_num - 1;
6112 else {
6113 int old_stripe_index = stripe_index;
6114 stripe_index = find_live_mirror(fs_info, map,
6115 stripe_index,
6116 dev_replace_is_ongoing);
6117 mirror_num = stripe_index - old_stripe_index + 1;
6118 }
6119
6120 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6121 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6122 /* push stripe_nr back to the start of the full stripe */
6123 stripe_nr = div64_u64(raid56_full_stripe_start,
6124 stripe_len * data_stripes);
6125
6126 /* RAID[56] write or recovery. Return all stripes */
6127 num_stripes = map->num_stripes;
6128 max_errors = nr_parity_stripes(map);
6129
6130 *length = map->stripe_len;
6131 stripe_index = 0;
6132 stripe_offset = 0;
6133 } else {
6134 /*
6135 * Mirror #0 or #1 means the original data block.
6136 * Mirror #2 is RAID5 parity block.
6137 * Mirror #3 is RAID6 Q block.
6138 */
6139 stripe_nr = div_u64_rem(stripe_nr,
6140 data_stripes, &stripe_index);
6141 if (mirror_num > 1)
6142 stripe_index = data_stripes + mirror_num - 2;
6143
6144 /* We distribute the parity blocks across stripes */
6145 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6146 &stripe_index);
6147 if (!need_full_stripe(op) && mirror_num <= 1)
6148 mirror_num = 1;
6149 }
6150 } else {
6151 /*
6152 * after this, stripe_nr is the number of stripes on this
6153 * device we have to walk to find the data, and stripe_index is
6154 * the number of our device in the stripe array
6155 */
6156 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6157 &stripe_index);
6158 mirror_num = stripe_index + 1;
6159 }
6160 if (stripe_index >= map->num_stripes) {
6161 btrfs_crit(fs_info,
6162 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6163 stripe_index, map->num_stripes);
6164 ret = -EINVAL;
6165 goto out;
6166 }
6167
6168 num_alloc_stripes = num_stripes;
6169 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6170 if (op == BTRFS_MAP_WRITE)
6171 num_alloc_stripes <<= 1;
6172 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6173 num_alloc_stripes++;
6174 tgtdev_indexes = num_stripes;
6175 }
6176
6177 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6178 if (!bbio) {
6179 ret = -ENOMEM;
6180 goto out;
6181 }
6182
6183 for (i = 0; i < num_stripes; i++) {
6184 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6185 stripe_offset + stripe_nr * map->stripe_len;
6186 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6187 stripe_index++;
6188 }
6189
6190 /* build raid_map */
6191 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6192 (need_full_stripe(op) || mirror_num > 1)) {
6193 u64 tmp;
6194 unsigned rot;
6195
6196 /* Work out the disk rotation on this stripe-set */
6197 div_u64_rem(stripe_nr, num_stripes, &rot);
6198
6199 /* Fill in the logical address of each stripe */
6200 tmp = stripe_nr * data_stripes;
6201 for (i = 0; i < data_stripes; i++)
6202 bbio->raid_map[(i+rot) % num_stripes] =
6203 em->start + (tmp + i) * map->stripe_len;
6204
6205 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6206 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6207 bbio->raid_map[(i+rot+1) % num_stripes] =
6208 RAID6_Q_STRIPE;
6209
6210 sort_parity_stripes(bbio, num_stripes);
6211 }
6212
6213 if (need_full_stripe(op))
6214 max_errors = btrfs_chunk_max_errors(map);
6215
6216 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6217 need_full_stripe(op)) {
6218 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6219 &max_errors);
6220 }
6221
6222 *bbio_ret = bbio;
6223 bbio->map_type = map->type;
6224 bbio->num_stripes = num_stripes;
6225 bbio->max_errors = max_errors;
6226 bbio->mirror_num = mirror_num;
6227
6228 /*
6229 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6230 * mirror_num == num_stripes + 1 && dev_replace target drive is
6231 * available as a mirror
6232 */
6233 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6234 WARN_ON(num_stripes > 1);
6235 bbio->stripes[0].dev = dev_replace->tgtdev;
6236 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6237 bbio->mirror_num = map->num_stripes + 1;
6238 }
6239 out:
6240 if (dev_replace_is_ongoing) {
6241 lockdep_assert_held(&dev_replace->rwsem);
6242 /* Unlock and let waiting writers proceed */
6243 up_read(&dev_replace->rwsem);
6244 }
6245 free_extent_map(em);
6246 return ret;
6247 }
6248
6249 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6250 u64 logical, u64 *length,
6251 struct btrfs_bio **bbio_ret, int mirror_num)
6252 {
6253 if (op == BTRFS_MAP_DISCARD)
6254 return __btrfs_map_block_for_discard(fs_info, logical,
6255 length, bbio_ret);
6256
6257 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6258 mirror_num, 0);
6259 }
6260
6261 /* For Scrub/replace */
6262 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6263 u64 logical, u64 *length,
6264 struct btrfs_bio **bbio_ret)
6265 {
6266 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6267 }
6268
6269 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6270 {
6271 bio->bi_private = bbio->private;
6272 bio->bi_end_io = bbio->end_io;
6273 bio_endio(bio);
6274
6275 btrfs_put_bbio(bbio);
6276 }
6277
6278 static void btrfs_end_bio(struct bio *bio)
6279 {
6280 struct btrfs_bio *bbio = bio->bi_private;
6281 int is_orig_bio = 0;
6282
6283 if (bio->bi_status) {
6284 atomic_inc(&bbio->error);
6285 if (bio->bi_status == BLK_STS_IOERR ||
6286 bio->bi_status == BLK_STS_TARGET) {
6287 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6288
6289 ASSERT(dev->bdev);
6290 if (bio_op(bio) == REQ_OP_WRITE)
6291 btrfs_dev_stat_inc_and_print(dev,
6292 BTRFS_DEV_STAT_WRITE_ERRS);
6293 else if (!(bio->bi_opf & REQ_RAHEAD))
6294 btrfs_dev_stat_inc_and_print(dev,
6295 BTRFS_DEV_STAT_READ_ERRS);
6296 if (bio->bi_opf & REQ_PREFLUSH)
6297 btrfs_dev_stat_inc_and_print(dev,
6298 BTRFS_DEV_STAT_FLUSH_ERRS);
6299 }
6300 }
6301
6302 if (bio == bbio->orig_bio)
6303 is_orig_bio = 1;
6304
6305 btrfs_bio_counter_dec(bbio->fs_info);
6306
6307 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6308 if (!is_orig_bio) {
6309 bio_put(bio);
6310 bio = bbio->orig_bio;
6311 }
6312
6313 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6314 /* only send an error to the higher layers if it is
6315 * beyond the tolerance of the btrfs bio
6316 */
6317 if (atomic_read(&bbio->error) > bbio->max_errors) {
6318 bio->bi_status = BLK_STS_IOERR;
6319 } else {
6320 /*
6321 * this bio is actually up to date, we didn't
6322 * go over the max number of errors
6323 */
6324 bio->bi_status = BLK_STS_OK;
6325 }
6326
6327 btrfs_end_bbio(bbio, bio);
6328 } else if (!is_orig_bio) {
6329 bio_put(bio);
6330 }
6331 }
6332
6333 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6334 u64 physical, struct btrfs_device *dev)
6335 {
6336 struct btrfs_fs_info *fs_info = bbio->fs_info;
6337
6338 bio->bi_private = bbio;
6339 btrfs_io_bio(bio)->device = dev;
6340 bio->bi_end_io = btrfs_end_bio;
6341 bio->bi_iter.bi_sector = physical >> 9;
6342 btrfs_debug_in_rcu(fs_info,
6343 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6344 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6345 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6346 dev->devid, bio->bi_iter.bi_size);
6347 bio_set_dev(bio, dev->bdev);
6348
6349 btrfs_bio_counter_inc_noblocked(fs_info);
6350
6351 btrfsic_submit_bio(bio);
6352 }
6353
6354 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6355 {
6356 atomic_inc(&bbio->error);
6357 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6358 /* Should be the original bio. */
6359 WARN_ON(bio != bbio->orig_bio);
6360
6361 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6362 bio->bi_iter.bi_sector = logical >> 9;
6363 if (atomic_read(&bbio->error) > bbio->max_errors)
6364 bio->bi_status = BLK_STS_IOERR;
6365 else
6366 bio->bi_status = BLK_STS_OK;
6367 btrfs_end_bbio(bbio, bio);
6368 }
6369 }
6370
6371 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6372 int mirror_num)
6373 {
6374 struct btrfs_device *dev;
6375 struct bio *first_bio = bio;
6376 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6377 u64 length = 0;
6378 u64 map_length;
6379 int ret;
6380 int dev_nr;
6381 int total_devs;
6382 struct btrfs_bio *bbio = NULL;
6383
6384 length = bio->bi_iter.bi_size;
6385 map_length = length;
6386
6387 btrfs_bio_counter_inc_blocked(fs_info);
6388 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6389 &map_length, &bbio, mirror_num, 1);
6390 if (ret) {
6391 btrfs_bio_counter_dec(fs_info);
6392 return errno_to_blk_status(ret);
6393 }
6394
6395 total_devs = bbio->num_stripes;
6396 bbio->orig_bio = first_bio;
6397 bbio->private = first_bio->bi_private;
6398 bbio->end_io = first_bio->bi_end_io;
6399 bbio->fs_info = fs_info;
6400 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6401
6402 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6403 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6404 /* In this case, map_length has been set to the length of
6405 a single stripe; not the whole write */
6406 if (bio_op(bio) == REQ_OP_WRITE) {
6407 ret = raid56_parity_write(fs_info, bio, bbio,
6408 map_length);
6409 } else {
6410 ret = raid56_parity_recover(fs_info, bio, bbio,
6411 map_length, mirror_num, 1);
6412 }
6413
6414 btrfs_bio_counter_dec(fs_info);
6415 return errno_to_blk_status(ret);
6416 }
6417
6418 if (map_length < length) {
6419 btrfs_crit(fs_info,
6420 "mapping failed logical %llu bio len %llu len %llu",
6421 logical, length, map_length);
6422 BUG();
6423 }
6424
6425 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6426 dev = bbio->stripes[dev_nr].dev;
6427 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6428 &dev->dev_state) ||
6429 (bio_op(first_bio) == REQ_OP_WRITE &&
6430 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6431 bbio_error(bbio, first_bio, logical);
6432 continue;
6433 }
6434
6435 if (dev_nr < total_devs - 1)
6436 bio = btrfs_bio_clone(first_bio);
6437 else
6438 bio = first_bio;
6439
6440 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6441 }
6442 btrfs_bio_counter_dec(fs_info);
6443 return BLK_STS_OK;
6444 }
6445
6446 /*
6447 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6448 * return NULL.
6449 *
6450 * If devid and uuid are both specified, the match must be exact, otherwise
6451 * only devid is used.
6452 *
6453 * If @seed is true, traverse through the seed devices.
6454 */
6455 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6456 u64 devid, u8 *uuid, u8 *fsid,
6457 bool seed)
6458 {
6459 struct btrfs_device *device;
6460 struct btrfs_fs_devices *seed_devs;
6461
6462 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6463 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6464 if (device->devid == devid &&
6465 (!uuid || memcmp(device->uuid, uuid,
6466 BTRFS_UUID_SIZE) == 0))
6467 return device;
6468 }
6469 }
6470
6471 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6472 if (!fsid ||
6473 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6474 list_for_each_entry(device, &seed_devs->devices,
6475 dev_list) {
6476 if (device->devid == devid &&
6477 (!uuid || memcmp(device->uuid, uuid,
6478 BTRFS_UUID_SIZE) == 0))
6479 return device;
6480 }
6481 }
6482 }
6483
6484 return NULL;
6485 }
6486
6487 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6488 u64 devid, u8 *dev_uuid)
6489 {
6490 struct btrfs_device *device;
6491 unsigned int nofs_flag;
6492
6493 /*
6494 * We call this under the chunk_mutex, so we want to use NOFS for this
6495 * allocation, however we don't want to change btrfs_alloc_device() to
6496 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6497 * places.
6498 */
6499 nofs_flag = memalloc_nofs_save();
6500 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6501 memalloc_nofs_restore(nofs_flag);
6502 if (IS_ERR(device))
6503 return device;
6504
6505 list_add(&device->dev_list, &fs_devices->devices);
6506 device->fs_devices = fs_devices;
6507 fs_devices->num_devices++;
6508
6509 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6510 fs_devices->missing_devices++;
6511
6512 return device;
6513 }
6514
6515 /**
6516 * btrfs_alloc_device - allocate struct btrfs_device
6517 * @fs_info: used only for generating a new devid, can be NULL if
6518 * devid is provided (i.e. @devid != NULL).
6519 * @devid: a pointer to devid for this device. If NULL a new devid
6520 * is generated.
6521 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6522 * is generated.
6523 *
6524 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6525 * on error. Returned struct is not linked onto any lists and must be
6526 * destroyed with btrfs_free_device.
6527 */
6528 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6529 const u64 *devid,
6530 const u8 *uuid)
6531 {
6532 struct btrfs_device *dev;
6533 u64 tmp;
6534
6535 if (WARN_ON(!devid && !fs_info))
6536 return ERR_PTR(-EINVAL);
6537
6538 dev = __alloc_device(fs_info);
6539 if (IS_ERR(dev))
6540 return dev;
6541
6542 if (devid)
6543 tmp = *devid;
6544 else {
6545 int ret;
6546
6547 ret = find_next_devid(fs_info, &tmp);
6548 if (ret) {
6549 btrfs_free_device(dev);
6550 return ERR_PTR(ret);
6551 }
6552 }
6553 dev->devid = tmp;
6554
6555 if (uuid)
6556 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6557 else
6558 generate_random_uuid(dev->uuid);
6559
6560 return dev;
6561 }
6562
6563 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6564 u64 devid, u8 *uuid, bool error)
6565 {
6566 if (error)
6567 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6568 devid, uuid);
6569 else
6570 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6571 devid, uuid);
6572 }
6573
6574 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6575 {
6576 int index = btrfs_bg_flags_to_raid_index(type);
6577 int ncopies = btrfs_raid_array[index].ncopies;
6578 const int nparity = btrfs_raid_array[index].nparity;
6579 int data_stripes;
6580
6581 if (nparity)
6582 data_stripes = num_stripes - nparity;
6583 else
6584 data_stripes = num_stripes / ncopies;
6585
6586 return div_u64(chunk_len, data_stripes);
6587 }
6588
6589 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6590 struct btrfs_chunk *chunk)
6591 {
6592 struct btrfs_fs_info *fs_info = leaf->fs_info;
6593 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6594 struct map_lookup *map;
6595 struct extent_map *em;
6596 u64 logical;
6597 u64 length;
6598 u64 devid;
6599 u8 uuid[BTRFS_UUID_SIZE];
6600 int num_stripes;
6601 int ret;
6602 int i;
6603
6604 logical = key->offset;
6605 length = btrfs_chunk_length(leaf, chunk);
6606 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6607
6608 /*
6609 * Only need to verify chunk item if we're reading from sys chunk array,
6610 * as chunk item in tree block is already verified by tree-checker.
6611 */
6612 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6613 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6614 if (ret)
6615 return ret;
6616 }
6617
6618 read_lock(&map_tree->lock);
6619 em = lookup_extent_mapping(map_tree, logical, 1);
6620 read_unlock(&map_tree->lock);
6621
6622 /* already mapped? */
6623 if (em && em->start <= logical && em->start + em->len > logical) {
6624 free_extent_map(em);
6625 return 0;
6626 } else if (em) {
6627 free_extent_map(em);
6628 }
6629
6630 em = alloc_extent_map();
6631 if (!em)
6632 return -ENOMEM;
6633 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6634 if (!map) {
6635 free_extent_map(em);
6636 return -ENOMEM;
6637 }
6638
6639 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6640 em->map_lookup = map;
6641 em->start = logical;
6642 em->len = length;
6643 em->orig_start = 0;
6644 em->block_start = 0;
6645 em->block_len = em->len;
6646
6647 map->num_stripes = num_stripes;
6648 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6649 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6650 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6651 map->type = btrfs_chunk_type(leaf, chunk);
6652 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6653 map->verified_stripes = 0;
6654 em->orig_block_len = calc_stripe_length(map->type, em->len,
6655 map->num_stripes);
6656 for (i = 0; i < num_stripes; i++) {
6657 map->stripes[i].physical =
6658 btrfs_stripe_offset_nr(leaf, chunk, i);
6659 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6660 read_extent_buffer(leaf, uuid, (unsigned long)
6661 btrfs_stripe_dev_uuid_nr(chunk, i),
6662 BTRFS_UUID_SIZE);
6663 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6664 devid, uuid, NULL, true);
6665 if (!map->stripes[i].dev &&
6666 !btrfs_test_opt(fs_info, DEGRADED)) {
6667 free_extent_map(em);
6668 btrfs_report_missing_device(fs_info, devid, uuid, true);
6669 return -ENOENT;
6670 }
6671 if (!map->stripes[i].dev) {
6672 map->stripes[i].dev =
6673 add_missing_dev(fs_info->fs_devices, devid,
6674 uuid);
6675 if (IS_ERR(map->stripes[i].dev)) {
6676 free_extent_map(em);
6677 btrfs_err(fs_info,
6678 "failed to init missing dev %llu: %ld",
6679 devid, PTR_ERR(map->stripes[i].dev));
6680 return PTR_ERR(map->stripes[i].dev);
6681 }
6682 btrfs_report_missing_device(fs_info, devid, uuid, false);
6683 }
6684 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6685 &(map->stripes[i].dev->dev_state));
6686
6687 }
6688
6689 write_lock(&map_tree->lock);
6690 ret = add_extent_mapping(map_tree, em, 0);
6691 write_unlock(&map_tree->lock);
6692 if (ret < 0) {
6693 btrfs_err(fs_info,
6694 "failed to add chunk map, start=%llu len=%llu: %d",
6695 em->start, em->len, ret);
6696 }
6697 free_extent_map(em);
6698
6699 return ret;
6700 }
6701
6702 static void fill_device_from_item(struct extent_buffer *leaf,
6703 struct btrfs_dev_item *dev_item,
6704 struct btrfs_device *device)
6705 {
6706 unsigned long ptr;
6707
6708 device->devid = btrfs_device_id(leaf, dev_item);
6709 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6710 device->total_bytes = device->disk_total_bytes;
6711 device->commit_total_bytes = device->disk_total_bytes;
6712 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6713 device->commit_bytes_used = device->bytes_used;
6714 device->type = btrfs_device_type(leaf, dev_item);
6715 device->io_align = btrfs_device_io_align(leaf, dev_item);
6716 device->io_width = btrfs_device_io_width(leaf, dev_item);
6717 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6718 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6719 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6720
6721 ptr = btrfs_device_uuid(dev_item);
6722 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6723 }
6724
6725 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6726 u8 *fsid)
6727 {
6728 struct btrfs_fs_devices *fs_devices;
6729 int ret;
6730
6731 lockdep_assert_held(&uuid_mutex);
6732 ASSERT(fsid);
6733
6734 /* This will match only for multi-device seed fs */
6735 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6736 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6737 return fs_devices;
6738
6739
6740 fs_devices = find_fsid(fsid, NULL);
6741 if (!fs_devices) {
6742 if (!btrfs_test_opt(fs_info, DEGRADED))
6743 return ERR_PTR(-ENOENT);
6744
6745 fs_devices = alloc_fs_devices(fsid, NULL);
6746 if (IS_ERR(fs_devices))
6747 return fs_devices;
6748
6749 fs_devices->seeding = true;
6750 fs_devices->opened = 1;
6751 return fs_devices;
6752 }
6753
6754 /*
6755 * Upon first call for a seed fs fsid, just create a private copy of the
6756 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6757 */
6758 fs_devices = clone_fs_devices(fs_devices);
6759 if (IS_ERR(fs_devices))
6760 return fs_devices;
6761
6762 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6763 if (ret) {
6764 free_fs_devices(fs_devices);
6765 return ERR_PTR(ret);
6766 }
6767
6768 if (!fs_devices->seeding) {
6769 close_fs_devices(fs_devices);
6770 free_fs_devices(fs_devices);
6771 return ERR_PTR(-EINVAL);
6772 }
6773
6774 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6775
6776 return fs_devices;
6777 }
6778
6779 static int read_one_dev(struct extent_buffer *leaf,
6780 struct btrfs_dev_item *dev_item)
6781 {
6782 struct btrfs_fs_info *fs_info = leaf->fs_info;
6783 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6784 struct btrfs_device *device;
6785 u64 devid;
6786 int ret;
6787 u8 fs_uuid[BTRFS_FSID_SIZE];
6788 u8 dev_uuid[BTRFS_UUID_SIZE];
6789
6790 devid = btrfs_device_id(leaf, dev_item);
6791 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6792 BTRFS_UUID_SIZE);
6793 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6794 BTRFS_FSID_SIZE);
6795
6796 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6797 fs_devices = open_seed_devices(fs_info, fs_uuid);
6798 if (IS_ERR(fs_devices))
6799 return PTR_ERR(fs_devices);
6800 }
6801
6802 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6803 fs_uuid, true);
6804 if (!device) {
6805 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6806 btrfs_report_missing_device(fs_info, devid,
6807 dev_uuid, true);
6808 return -ENOENT;
6809 }
6810
6811 device = add_missing_dev(fs_devices, devid, dev_uuid);
6812 if (IS_ERR(device)) {
6813 btrfs_err(fs_info,
6814 "failed to add missing dev %llu: %ld",
6815 devid, PTR_ERR(device));
6816 return PTR_ERR(device);
6817 }
6818 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6819 } else {
6820 if (!device->bdev) {
6821 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6822 btrfs_report_missing_device(fs_info,
6823 devid, dev_uuid, true);
6824 return -ENOENT;
6825 }
6826 btrfs_report_missing_device(fs_info, devid,
6827 dev_uuid, false);
6828 }
6829
6830 if (!device->bdev &&
6831 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6832 /*
6833 * this happens when a device that was properly setup
6834 * in the device info lists suddenly goes bad.
6835 * device->bdev is NULL, and so we have to set
6836 * device->missing to one here
6837 */
6838 device->fs_devices->missing_devices++;
6839 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6840 }
6841
6842 /* Move the device to its own fs_devices */
6843 if (device->fs_devices != fs_devices) {
6844 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6845 &device->dev_state));
6846
6847 list_move(&device->dev_list, &fs_devices->devices);
6848 device->fs_devices->num_devices--;
6849 fs_devices->num_devices++;
6850
6851 device->fs_devices->missing_devices--;
6852 fs_devices->missing_devices++;
6853
6854 device->fs_devices = fs_devices;
6855 }
6856 }
6857
6858 if (device->fs_devices != fs_info->fs_devices) {
6859 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6860 if (device->generation !=
6861 btrfs_device_generation(leaf, dev_item))
6862 return -EINVAL;
6863 }
6864
6865 fill_device_from_item(leaf, dev_item, device);
6866 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6867 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6868 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6869 device->fs_devices->total_rw_bytes += device->total_bytes;
6870 atomic64_add(device->total_bytes - device->bytes_used,
6871 &fs_info->free_chunk_space);
6872 }
6873 ret = 0;
6874 return ret;
6875 }
6876
6877 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6878 {
6879 struct btrfs_root *root = fs_info->tree_root;
6880 struct btrfs_super_block *super_copy = fs_info->super_copy;
6881 struct extent_buffer *sb;
6882 struct btrfs_disk_key *disk_key;
6883 struct btrfs_chunk *chunk;
6884 u8 *array_ptr;
6885 unsigned long sb_array_offset;
6886 int ret = 0;
6887 u32 num_stripes;
6888 u32 array_size;
6889 u32 len = 0;
6890 u32 cur_offset;
6891 u64 type;
6892 struct btrfs_key key;
6893
6894 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6895 /*
6896 * This will create extent buffer of nodesize, superblock size is
6897 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6898 * overallocate but we can keep it as-is, only the first page is used.
6899 */
6900 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6901 if (IS_ERR(sb))
6902 return PTR_ERR(sb);
6903 set_extent_buffer_uptodate(sb);
6904 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6905 /*
6906 * The sb extent buffer is artificial and just used to read the system array.
6907 * set_extent_buffer_uptodate() call does not properly mark all it's
6908 * pages up-to-date when the page is larger: extent does not cover the
6909 * whole page and consequently check_page_uptodate does not find all
6910 * the page's extents up-to-date (the hole beyond sb),
6911 * write_extent_buffer then triggers a WARN_ON.
6912 *
6913 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6914 * but sb spans only this function. Add an explicit SetPageUptodate call
6915 * to silence the warning eg. on PowerPC 64.
6916 */
6917 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6918 SetPageUptodate(sb->pages[0]);
6919
6920 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6921 array_size = btrfs_super_sys_array_size(super_copy);
6922
6923 array_ptr = super_copy->sys_chunk_array;
6924 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6925 cur_offset = 0;
6926
6927 while (cur_offset < array_size) {
6928 disk_key = (struct btrfs_disk_key *)array_ptr;
6929 len = sizeof(*disk_key);
6930 if (cur_offset + len > array_size)
6931 goto out_short_read;
6932
6933 btrfs_disk_key_to_cpu(&key, disk_key);
6934
6935 array_ptr += len;
6936 sb_array_offset += len;
6937 cur_offset += len;
6938
6939 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6940 btrfs_err(fs_info,
6941 "unexpected item type %u in sys_array at offset %u",
6942 (u32)key.type, cur_offset);
6943 ret = -EIO;
6944 break;
6945 }
6946
6947 chunk = (struct btrfs_chunk *)sb_array_offset;
6948 /*
6949 * At least one btrfs_chunk with one stripe must be present,
6950 * exact stripe count check comes afterwards
6951 */
6952 len = btrfs_chunk_item_size(1);
6953 if (cur_offset + len > array_size)
6954 goto out_short_read;
6955
6956 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6957 if (!num_stripes) {
6958 btrfs_err(fs_info,
6959 "invalid number of stripes %u in sys_array at offset %u",
6960 num_stripes, cur_offset);
6961 ret = -EIO;
6962 break;
6963 }
6964
6965 type = btrfs_chunk_type(sb, chunk);
6966 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6967 btrfs_err(fs_info,
6968 "invalid chunk type %llu in sys_array at offset %u",
6969 type, cur_offset);
6970 ret = -EIO;
6971 break;
6972 }
6973
6974 len = btrfs_chunk_item_size(num_stripes);
6975 if (cur_offset + len > array_size)
6976 goto out_short_read;
6977
6978 ret = read_one_chunk(&key, sb, chunk);
6979 if (ret)
6980 break;
6981
6982 array_ptr += len;
6983 sb_array_offset += len;
6984 cur_offset += len;
6985 }
6986 clear_extent_buffer_uptodate(sb);
6987 free_extent_buffer_stale(sb);
6988 return ret;
6989
6990 out_short_read:
6991 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6992 len, cur_offset);
6993 clear_extent_buffer_uptodate(sb);
6994 free_extent_buffer_stale(sb);
6995 return -EIO;
6996 }
6997
6998 /*
6999 * Check if all chunks in the fs are OK for read-write degraded mount
7000 *
7001 * If the @failing_dev is specified, it's accounted as missing.
7002 *
7003 * Return true if all chunks meet the minimal RW mount requirements.
7004 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7005 */
7006 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7007 struct btrfs_device *failing_dev)
7008 {
7009 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7010 struct extent_map *em;
7011 u64 next_start = 0;
7012 bool ret = true;
7013
7014 read_lock(&map_tree->lock);
7015 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7016 read_unlock(&map_tree->lock);
7017 /* No chunk at all? Return false anyway */
7018 if (!em) {
7019 ret = false;
7020 goto out;
7021 }
7022 while (em) {
7023 struct map_lookup *map;
7024 int missing = 0;
7025 int max_tolerated;
7026 int i;
7027
7028 map = em->map_lookup;
7029 max_tolerated =
7030 btrfs_get_num_tolerated_disk_barrier_failures(
7031 map->type);
7032 for (i = 0; i < map->num_stripes; i++) {
7033 struct btrfs_device *dev = map->stripes[i].dev;
7034
7035 if (!dev || !dev->bdev ||
7036 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7037 dev->last_flush_error)
7038 missing++;
7039 else if (failing_dev && failing_dev == dev)
7040 missing++;
7041 }
7042 if (missing > max_tolerated) {
7043 if (!failing_dev)
7044 btrfs_warn(fs_info,
7045 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7046 em->start, missing, max_tolerated);
7047 free_extent_map(em);
7048 ret = false;
7049 goto out;
7050 }
7051 next_start = extent_map_end(em);
7052 free_extent_map(em);
7053
7054 read_lock(&map_tree->lock);
7055 em = lookup_extent_mapping(map_tree, next_start,
7056 (u64)(-1) - next_start);
7057 read_unlock(&map_tree->lock);
7058 }
7059 out:
7060 return ret;
7061 }
7062
7063 static void readahead_tree_node_children(struct extent_buffer *node)
7064 {
7065 int i;
7066 const int nr_items = btrfs_header_nritems(node);
7067
7068 for (i = 0; i < nr_items; i++) {
7069 u64 start;
7070
7071 start = btrfs_node_blockptr(node, i);
7072 readahead_tree_block(node->fs_info, start);
7073 }
7074 }
7075
7076 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7077 {
7078 struct btrfs_root *root = fs_info->chunk_root;
7079 struct btrfs_path *path;
7080 struct extent_buffer *leaf;
7081 struct btrfs_key key;
7082 struct btrfs_key found_key;
7083 int ret;
7084 int slot;
7085 u64 total_dev = 0;
7086 u64 last_ra_node = 0;
7087
7088 path = btrfs_alloc_path();
7089 if (!path)
7090 return -ENOMEM;
7091
7092 /*
7093 * uuid_mutex is needed only if we are mounting a sprout FS
7094 * otherwise we don't need it.
7095 */
7096 mutex_lock(&uuid_mutex);
7097
7098 /*
7099 * It is possible for mount and umount to race in such a way that
7100 * we execute this code path, but open_fs_devices failed to clear
7101 * total_rw_bytes. We certainly want it cleared before reading the
7102 * device items, so clear it here.
7103 */
7104 fs_info->fs_devices->total_rw_bytes = 0;
7105
7106 /*
7107 * Read all device items, and then all the chunk items. All
7108 * device items are found before any chunk item (their object id
7109 * is smaller than the lowest possible object id for a chunk
7110 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7111 */
7112 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7113 key.offset = 0;
7114 key.type = 0;
7115 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7116 if (ret < 0)
7117 goto error;
7118 while (1) {
7119 struct extent_buffer *node;
7120
7121 leaf = path->nodes[0];
7122 slot = path->slots[0];
7123 if (slot >= btrfs_header_nritems(leaf)) {
7124 ret = btrfs_next_leaf(root, path);
7125 if (ret == 0)
7126 continue;
7127 if (ret < 0)
7128 goto error;
7129 break;
7130 }
7131 /*
7132 * The nodes on level 1 are not locked but we don't need to do
7133 * that during mount time as nothing else can access the tree
7134 */
7135 node = path->nodes[1];
7136 if (node) {
7137 if (last_ra_node != node->start) {
7138 readahead_tree_node_children(node);
7139 last_ra_node = node->start;
7140 }
7141 }
7142 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7143 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7144 struct btrfs_dev_item *dev_item;
7145 dev_item = btrfs_item_ptr(leaf, slot,
7146 struct btrfs_dev_item);
7147 ret = read_one_dev(leaf, dev_item);
7148 if (ret)
7149 goto error;
7150 total_dev++;
7151 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7152 struct btrfs_chunk *chunk;
7153 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7154 mutex_lock(&fs_info->chunk_mutex);
7155 ret = read_one_chunk(&found_key, leaf, chunk);
7156 mutex_unlock(&fs_info->chunk_mutex);
7157 if (ret)
7158 goto error;
7159 }
7160 path->slots[0]++;
7161 }
7162
7163 /*
7164 * After loading chunk tree, we've got all device information,
7165 * do another round of validation checks.
7166 */
7167 if (total_dev != fs_info->fs_devices->total_devices) {
7168 btrfs_err(fs_info,
7169 "super_num_devices %llu mismatch with num_devices %llu found here",
7170 btrfs_super_num_devices(fs_info->super_copy),
7171 total_dev);
7172 ret = -EINVAL;
7173 goto error;
7174 }
7175 if (btrfs_super_total_bytes(fs_info->super_copy) <
7176 fs_info->fs_devices->total_rw_bytes) {
7177 btrfs_err(fs_info,
7178 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7179 btrfs_super_total_bytes(fs_info->super_copy),
7180 fs_info->fs_devices->total_rw_bytes);
7181 ret = -EINVAL;
7182 goto error;
7183 }
7184 ret = 0;
7185 error:
7186 mutex_unlock(&uuid_mutex);
7187
7188 btrfs_free_path(path);
7189 return ret;
7190 }
7191
7192 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7193 {
7194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7195 struct btrfs_device *device;
7196
7197 fs_devices->fs_info = fs_info;
7198
7199 mutex_lock(&fs_devices->device_list_mutex);
7200 list_for_each_entry(device, &fs_devices->devices, dev_list)
7201 device->fs_info = fs_info;
7202
7203 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7204 list_for_each_entry(device, &seed_devs->devices, dev_list)
7205 device->fs_info = fs_info;
7206
7207 seed_devs->fs_info = fs_info;
7208 }
7209 mutex_unlock(&fs_devices->device_list_mutex);
7210 }
7211
7212 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7213 const struct btrfs_dev_stats_item *ptr,
7214 int index)
7215 {
7216 u64 val;
7217
7218 read_extent_buffer(eb, &val,
7219 offsetof(struct btrfs_dev_stats_item, values) +
7220 ((unsigned long)ptr) + (index * sizeof(u64)),
7221 sizeof(val));
7222 return val;
7223 }
7224
7225 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7226 struct btrfs_dev_stats_item *ptr,
7227 int index, u64 val)
7228 {
7229 write_extent_buffer(eb, &val,
7230 offsetof(struct btrfs_dev_stats_item, values) +
7231 ((unsigned long)ptr) + (index * sizeof(u64)),
7232 sizeof(val));
7233 }
7234
7235 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7236 struct btrfs_path *path)
7237 {
7238 struct btrfs_dev_stats_item *ptr;
7239 struct extent_buffer *eb;
7240 struct btrfs_key key;
7241 int item_size;
7242 int i, ret, slot;
7243
7244 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7245 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7246 key.offset = device->devid;
7247 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7248 if (ret) {
7249 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7250 btrfs_dev_stat_set(device, i, 0);
7251 device->dev_stats_valid = 1;
7252 btrfs_release_path(path);
7253 return ret < 0 ? ret : 0;
7254 }
7255 slot = path->slots[0];
7256 eb = path->nodes[0];
7257 item_size = btrfs_item_size_nr(eb, slot);
7258
7259 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7260
7261 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7262 if (item_size >= (1 + i) * sizeof(__le64))
7263 btrfs_dev_stat_set(device, i,
7264 btrfs_dev_stats_value(eb, ptr, i));
7265 else
7266 btrfs_dev_stat_set(device, i, 0);
7267 }
7268
7269 device->dev_stats_valid = 1;
7270 btrfs_dev_stat_print_on_load(device);
7271 btrfs_release_path(path);
7272
7273 return 0;
7274 }
7275
7276 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7277 {
7278 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7279 struct btrfs_device *device;
7280 struct btrfs_path *path = NULL;
7281 int ret = 0;
7282
7283 path = btrfs_alloc_path();
7284 if (!path)
7285 return -ENOMEM;
7286
7287 mutex_lock(&fs_devices->device_list_mutex);
7288 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7289 ret = btrfs_device_init_dev_stats(device, path);
7290 if (ret)
7291 goto out;
7292 }
7293 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7294 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7295 ret = btrfs_device_init_dev_stats(device, path);
7296 if (ret)
7297 goto out;
7298 }
7299 }
7300 out:
7301 mutex_unlock(&fs_devices->device_list_mutex);
7302
7303 btrfs_free_path(path);
7304 return ret;
7305 }
7306
7307 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7308 struct btrfs_device *device)
7309 {
7310 struct btrfs_fs_info *fs_info = trans->fs_info;
7311 struct btrfs_root *dev_root = fs_info->dev_root;
7312 struct btrfs_path *path;
7313 struct btrfs_key key;
7314 struct extent_buffer *eb;
7315 struct btrfs_dev_stats_item *ptr;
7316 int ret;
7317 int i;
7318
7319 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7320 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7321 key.offset = device->devid;
7322
7323 path = btrfs_alloc_path();
7324 if (!path)
7325 return -ENOMEM;
7326 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7327 if (ret < 0) {
7328 btrfs_warn_in_rcu(fs_info,
7329 "error %d while searching for dev_stats item for device %s",
7330 ret, rcu_str_deref(device->name));
7331 goto out;
7332 }
7333
7334 if (ret == 0 &&
7335 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7336 /* need to delete old one and insert a new one */
7337 ret = btrfs_del_item(trans, dev_root, path);
7338 if (ret != 0) {
7339 btrfs_warn_in_rcu(fs_info,
7340 "delete too small dev_stats item for device %s failed %d",
7341 rcu_str_deref(device->name), ret);
7342 goto out;
7343 }
7344 ret = 1;
7345 }
7346
7347 if (ret == 1) {
7348 /* need to insert a new item */
7349 btrfs_release_path(path);
7350 ret = btrfs_insert_empty_item(trans, dev_root, path,
7351 &key, sizeof(*ptr));
7352 if (ret < 0) {
7353 btrfs_warn_in_rcu(fs_info,
7354 "insert dev_stats item for device %s failed %d",
7355 rcu_str_deref(device->name), ret);
7356 goto out;
7357 }
7358 }
7359
7360 eb = path->nodes[0];
7361 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7362 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7363 btrfs_set_dev_stats_value(eb, ptr, i,
7364 btrfs_dev_stat_read(device, i));
7365 btrfs_mark_buffer_dirty(eb);
7366
7367 out:
7368 btrfs_free_path(path);
7369 return ret;
7370 }
7371
7372 /*
7373 * called from commit_transaction. Writes all changed device stats to disk.
7374 */
7375 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7376 {
7377 struct btrfs_fs_info *fs_info = trans->fs_info;
7378 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7379 struct btrfs_device *device;
7380 int stats_cnt;
7381 int ret = 0;
7382
7383 mutex_lock(&fs_devices->device_list_mutex);
7384 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7385 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7386 if (!device->dev_stats_valid || stats_cnt == 0)
7387 continue;
7388
7389
7390 /*
7391 * There is a LOAD-LOAD control dependency between the value of
7392 * dev_stats_ccnt and updating the on-disk values which requires
7393 * reading the in-memory counters. Such control dependencies
7394 * require explicit read memory barriers.
7395 *
7396 * This memory barriers pairs with smp_mb__before_atomic in
7397 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7398 * barrier implied by atomic_xchg in
7399 * btrfs_dev_stats_read_and_reset
7400 */
7401 smp_rmb();
7402
7403 ret = update_dev_stat_item(trans, device);
7404 if (!ret)
7405 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7406 }
7407 mutex_unlock(&fs_devices->device_list_mutex);
7408
7409 return ret;
7410 }
7411
7412 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7413 {
7414 btrfs_dev_stat_inc(dev, index);
7415 btrfs_dev_stat_print_on_error(dev);
7416 }
7417
7418 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7419 {
7420 if (!dev->dev_stats_valid)
7421 return;
7422 btrfs_err_rl_in_rcu(dev->fs_info,
7423 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7424 rcu_str_deref(dev->name),
7425 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7426 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7427 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7428 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7429 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7430 }
7431
7432 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7433 {
7434 int i;
7435
7436 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7437 if (btrfs_dev_stat_read(dev, i) != 0)
7438 break;
7439 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7440 return; /* all values == 0, suppress message */
7441
7442 btrfs_info_in_rcu(dev->fs_info,
7443 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7444 rcu_str_deref(dev->name),
7445 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7446 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7447 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7448 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7449 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7450 }
7451
7452 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7453 struct btrfs_ioctl_get_dev_stats *stats)
7454 {
7455 struct btrfs_device *dev;
7456 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7457 int i;
7458
7459 mutex_lock(&fs_devices->device_list_mutex);
7460 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7461 true);
7462 mutex_unlock(&fs_devices->device_list_mutex);
7463
7464 if (!dev) {
7465 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7466 return -ENODEV;
7467 } else if (!dev->dev_stats_valid) {
7468 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7469 return -ENODEV;
7470 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7471 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7472 if (stats->nr_items > i)
7473 stats->values[i] =
7474 btrfs_dev_stat_read_and_reset(dev, i);
7475 else
7476 btrfs_dev_stat_set(dev, i, 0);
7477 }
7478 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7479 current->comm, task_pid_nr(current));
7480 } else {
7481 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7482 if (stats->nr_items > i)
7483 stats->values[i] = btrfs_dev_stat_read(dev, i);
7484 }
7485 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7486 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7487 return 0;
7488 }
7489
7490 /*
7491 * Update the size and bytes used for each device where it changed. This is
7492 * delayed since we would otherwise get errors while writing out the
7493 * superblocks.
7494 *
7495 * Must be invoked during transaction commit.
7496 */
7497 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7498 {
7499 struct btrfs_device *curr, *next;
7500
7501 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7502
7503 if (list_empty(&trans->dev_update_list))
7504 return;
7505
7506 /*
7507 * We don't need the device_list_mutex here. This list is owned by the
7508 * transaction and the transaction must complete before the device is
7509 * released.
7510 */
7511 mutex_lock(&trans->fs_info->chunk_mutex);
7512 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7513 post_commit_list) {
7514 list_del_init(&curr->post_commit_list);
7515 curr->commit_total_bytes = curr->disk_total_bytes;
7516 curr->commit_bytes_used = curr->bytes_used;
7517 }
7518 mutex_unlock(&trans->fs_info->chunk_mutex);
7519 }
7520
7521 /*
7522 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7523 */
7524 int btrfs_bg_type_to_factor(u64 flags)
7525 {
7526 const int index = btrfs_bg_flags_to_raid_index(flags);
7527
7528 return btrfs_raid_array[index].ncopies;
7529 }
7530
7531
7532
7533 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7534 u64 chunk_offset, u64 devid,
7535 u64 physical_offset, u64 physical_len)
7536 {
7537 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7538 struct extent_map *em;
7539 struct map_lookup *map;
7540 struct btrfs_device *dev;
7541 u64 stripe_len;
7542 bool found = false;
7543 int ret = 0;
7544 int i;
7545
7546 read_lock(&em_tree->lock);
7547 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7548 read_unlock(&em_tree->lock);
7549
7550 if (!em) {
7551 btrfs_err(fs_info,
7552 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7553 physical_offset, devid);
7554 ret = -EUCLEAN;
7555 goto out;
7556 }
7557
7558 map = em->map_lookup;
7559 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7560 if (physical_len != stripe_len) {
7561 btrfs_err(fs_info,
7562 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7563 physical_offset, devid, em->start, physical_len,
7564 stripe_len);
7565 ret = -EUCLEAN;
7566 goto out;
7567 }
7568
7569 for (i = 0; i < map->num_stripes; i++) {
7570 if (map->stripes[i].dev->devid == devid &&
7571 map->stripes[i].physical == physical_offset) {
7572 found = true;
7573 if (map->verified_stripes >= map->num_stripes) {
7574 btrfs_err(fs_info,
7575 "too many dev extents for chunk %llu found",
7576 em->start);
7577 ret = -EUCLEAN;
7578 goto out;
7579 }
7580 map->verified_stripes++;
7581 break;
7582 }
7583 }
7584 if (!found) {
7585 btrfs_err(fs_info,
7586 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7587 physical_offset, devid);
7588 ret = -EUCLEAN;
7589 }
7590
7591 /* Make sure no dev extent is beyond device bondary */
7592 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7593 if (!dev) {
7594 btrfs_err(fs_info, "failed to find devid %llu", devid);
7595 ret = -EUCLEAN;
7596 goto out;
7597 }
7598
7599 /* It's possible this device is a dummy for seed device */
7600 if (dev->disk_total_bytes == 0) {
7601 struct btrfs_fs_devices *devs;
7602
7603 devs = list_first_entry(&fs_info->fs_devices->seed_list,
7604 struct btrfs_fs_devices, seed_list);
7605 dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7606 if (!dev) {
7607 btrfs_err(fs_info, "failed to find seed devid %llu",
7608 devid);
7609 ret = -EUCLEAN;
7610 goto out;
7611 }
7612 }
7613
7614 if (physical_offset + physical_len > dev->disk_total_bytes) {
7615 btrfs_err(fs_info,
7616 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7617 devid, physical_offset, physical_len,
7618 dev->disk_total_bytes);
7619 ret = -EUCLEAN;
7620 goto out;
7621 }
7622 out:
7623 free_extent_map(em);
7624 return ret;
7625 }
7626
7627 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7628 {
7629 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7630 struct extent_map *em;
7631 struct rb_node *node;
7632 int ret = 0;
7633
7634 read_lock(&em_tree->lock);
7635 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7636 em = rb_entry(node, struct extent_map, rb_node);
7637 if (em->map_lookup->num_stripes !=
7638 em->map_lookup->verified_stripes) {
7639 btrfs_err(fs_info,
7640 "chunk %llu has missing dev extent, have %d expect %d",
7641 em->start, em->map_lookup->verified_stripes,
7642 em->map_lookup->num_stripes);
7643 ret = -EUCLEAN;
7644 goto out;
7645 }
7646 }
7647 out:
7648 read_unlock(&em_tree->lock);
7649 return ret;
7650 }
7651
7652 /*
7653 * Ensure that all dev extents are mapped to correct chunk, otherwise
7654 * later chunk allocation/free would cause unexpected behavior.
7655 *
7656 * NOTE: This will iterate through the whole device tree, which should be of
7657 * the same size level as the chunk tree. This slightly increases mount time.
7658 */
7659 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7660 {
7661 struct btrfs_path *path;
7662 struct btrfs_root *root = fs_info->dev_root;
7663 struct btrfs_key key;
7664 u64 prev_devid = 0;
7665 u64 prev_dev_ext_end = 0;
7666 int ret = 0;
7667
7668 key.objectid = 1;
7669 key.type = BTRFS_DEV_EXTENT_KEY;
7670 key.offset = 0;
7671
7672 path = btrfs_alloc_path();
7673 if (!path)
7674 return -ENOMEM;
7675
7676 path->reada = READA_FORWARD;
7677 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7678 if (ret < 0)
7679 goto out;
7680
7681 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7682 ret = btrfs_next_item(root, path);
7683 if (ret < 0)
7684 goto out;
7685 /* No dev extents at all? Not good */
7686 if (ret > 0) {
7687 ret = -EUCLEAN;
7688 goto out;
7689 }
7690 }
7691 while (1) {
7692 struct extent_buffer *leaf = path->nodes[0];
7693 struct btrfs_dev_extent *dext;
7694 int slot = path->slots[0];
7695 u64 chunk_offset;
7696 u64 physical_offset;
7697 u64 physical_len;
7698 u64 devid;
7699
7700 btrfs_item_key_to_cpu(leaf, &key, slot);
7701 if (key.type != BTRFS_DEV_EXTENT_KEY)
7702 break;
7703 devid = key.objectid;
7704 physical_offset = key.offset;
7705
7706 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7707 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7708 physical_len = btrfs_dev_extent_length(leaf, dext);
7709
7710 /* Check if this dev extent overlaps with the previous one */
7711 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7712 btrfs_err(fs_info,
7713 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7714 devid, physical_offset, prev_dev_ext_end);
7715 ret = -EUCLEAN;
7716 goto out;
7717 }
7718
7719 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7720 physical_offset, physical_len);
7721 if (ret < 0)
7722 goto out;
7723 prev_devid = devid;
7724 prev_dev_ext_end = physical_offset + physical_len;
7725
7726 ret = btrfs_next_item(root, path);
7727 if (ret < 0)
7728 goto out;
7729 if (ret > 0) {
7730 ret = 0;
7731 break;
7732 }
7733 }
7734
7735 /* Ensure all chunks have corresponding dev extents */
7736 ret = verify_chunk_dev_extent_mapping(fs_info);
7737 out:
7738 btrfs_free_path(path);
7739 return ret;
7740 }
7741
7742 /*
7743 * Check whether the given block group or device is pinned by any inode being
7744 * used as a swapfile.
7745 */
7746 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7747 {
7748 struct btrfs_swapfile_pin *sp;
7749 struct rb_node *node;
7750
7751 spin_lock(&fs_info->swapfile_pins_lock);
7752 node = fs_info->swapfile_pins.rb_node;
7753 while (node) {
7754 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7755 if (ptr < sp->ptr)
7756 node = node->rb_left;
7757 else if (ptr > sp->ptr)
7758 node = node->rb_right;
7759 else
7760 break;
7761 }
7762 spin_unlock(&fs_info->swapfile_pins_lock);
7763 return node != NULL;
7764 }