]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/volumes.c
Merge branch 'printk-rework' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
41 .devs_min = 4,
42 .tolerated_failures = 1,
43 .devs_increment = 2,
44 .ncopies = 2,
45 .nparity = 0,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
55 .tolerated_failures = 1,
56 .devs_increment = 2,
57 .ncopies = 2,
58 .nparity = 0,
59 .raid_name = "raid1",
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 },
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
66 .devs_max = 3,
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
71 .nparity = 0,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
79 .devs_max = 4,
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
84 .nparity = 0,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
94 .tolerated_failures = 0,
95 .devs_increment = 1,
96 .ncopies = 2,
97 .nparity = 0,
98 .raid_name = "dup",
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
100 .mindev_error = 0,
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
106 .devs_min = 2,
107 .tolerated_failures = 0,
108 .devs_increment = 1,
109 .ncopies = 1,
110 .nparity = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
113 .mindev_error = 0,
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
120 .tolerated_failures = 0,
121 .devs_increment = 1,
122 .ncopies = 1,
123 .nparity = 0,
124 .raid_name = "single",
125 .bg_flag = 0,
126 .mindev_error = 0,
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
133 .tolerated_failures = 1,
134 .devs_increment = 1,
135 .ncopies = 1,
136 .nparity = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
146 .tolerated_failures = 2,
147 .devs_increment = 1,
148 .ncopies = 1,
149 .nparity = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 },
154 };
155
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158 const int index = btrfs_bg_flags_to_raid_index(flags);
159
160 if (index >= BTRFS_NR_RAID_TYPES)
161 return NULL;
162
163 return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
169 */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172 int i;
173 int ret;
174 char *bp = buf;
175 u64 flags = bg_flags;
176 u32 size_bp = size_buf;
177
178 if (!flags) {
179 strcpy(bp, "NONE");
180 return;
181 }
182
183 #define DESCRIBE_FLAG(flag, desc) \
184 do { \
185 if (flags & (flag)) { \
186 ret = snprintf(bp, size_bp, "%s|", (desc)); \
187 if (ret < 0 || ret >= size_bp) \
188 goto out_overflow; \
189 size_bp -= ret; \
190 bp += ret; \
191 flags &= ~(flag); \
192 } \
193 } while (0)
194
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205 if (flags) {
206 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207 size_bp -= ret;
208 }
209
210 if (size_bp < size_buf)
211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213 /*
214 * The text is trimmed, it's up to the caller to provide sufficiently
215 * large buffer
216 */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 enum btrfs_map_op op,
226 u64 logical, u64 *length,
227 struct btrfs_bio **bbio_ret,
228 int mirror_num, int need_raid_map);
229
230 /*
231 * Device locking
232 * ==============
233 *
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
236 *
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
242 *
243 * the mutex can be very coarse and can cover long-running operations
244 *
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
247 *
248 * global::fs_devs - add, remove, updates to the global list
249 *
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
252 * scan ioctl
253 *
254 * btrfs_device::name - renames (write side), read is RCU
255 *
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
259 *
260 * simple list traversal with read-only actions can be done with RCU protection
261 *
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
264 *
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
267 *
268 * balance_mutex
269 * -------------
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
272 *
273 * chunk_mutex
274 * -----------
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
279 *
280 * cleaner_mutex
281 * -------------
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
284 *
285 *
286 * Lock nesting
287 * ============
288 *
289 * uuid_mutex
290 * device_list_mutex
291 * chunk_mutex
292 * balance_mutex
293 *
294 *
295 * Exclusive operations
296 * ====================
297 *
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
300 *
301 * - Balance (*)
302 * - Device add
303 * - Device remove
304 * - Device replace (*)
305 * - Resize
306 *
307 * The device operations (as above) can be in one of the following states:
308 *
309 * - Running state
310 * - Paused state
311 * - Completed state
312 *
313 * Only device operations marked with (*) can go into the Paused state for the
314 * following reasons:
315 *
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
321 *
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
327 * completed.
328 */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334 return &fs_uuids;
335 }
336
337 /*
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
341 *
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
345 */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 const u8 *metadata_fsid)
348 {
349 struct btrfs_fs_devices *fs_devs;
350
351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352 if (!fs_devs)
353 return ERR_PTR(-ENOMEM);
354
355 mutex_init(&fs_devs->device_list_mutex);
356
357 INIT_LIST_HEAD(&fs_devs->devices);
358 INIT_LIST_HEAD(&fs_devs->alloc_list);
359 INIT_LIST_HEAD(&fs_devs->fs_list);
360 INIT_LIST_HEAD(&fs_devs->seed_list);
361 if (fsid)
362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364 if (metadata_fsid)
365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366 else if (fsid)
367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369 return fs_devs;
370 }
371
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374 WARN_ON(!list_empty(&device->post_commit_list));
375 rcu_string_free(device->name);
376 extent_io_tree_release(&device->alloc_state);
377 bio_put(device->flush_bio);
378 btrfs_destroy_dev_zone_info(device);
379 kfree(device);
380 }
381
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384 struct btrfs_device *device;
385 WARN_ON(fs_devices->opened);
386 while (!list_empty(&fs_devices->devices)) {
387 device = list_entry(fs_devices->devices.next,
388 struct btrfs_device, dev_list);
389 list_del(&device->dev_list);
390 btrfs_free_device(device);
391 }
392 kfree(fs_devices);
393 }
394
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397 struct btrfs_fs_devices *fs_devices;
398
399 while (!list_empty(&fs_uuids)) {
400 fs_devices = list_entry(fs_uuids.next,
401 struct btrfs_fs_devices, fs_list);
402 list_del(&fs_devices->fs_list);
403 free_fs_devices(fs_devices);
404 }
405 }
406
407 /*
408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409 * Returned struct is not linked onto any lists and must be destroyed using
410 * btrfs_free_device.
411 */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414 struct btrfs_device *dev;
415
416 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417 if (!dev)
418 return ERR_PTR(-ENOMEM);
419
420 /*
421 * Preallocate a bio that's always going to be used for flushing device
422 * barriers and matches the device lifespan
423 */
424 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
425 if (!dev->flush_bio) {
426 kfree(dev);
427 return ERR_PTR(-ENOMEM);
428 }
429
430 INIT_LIST_HEAD(&dev->dev_list);
431 INIT_LIST_HEAD(&dev->dev_alloc_list);
432 INIT_LIST_HEAD(&dev->post_commit_list);
433
434 atomic_set(&dev->reada_in_flight, 0);
435 atomic_set(&dev->dev_stats_ccnt, 0);
436 btrfs_device_data_ordered_init(dev, fs_info);
437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439 extent_io_tree_init(fs_info, &dev->alloc_state,
440 IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442 return dev;
443 }
444
445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447 {
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
463 }
464 return NULL;
465 }
466
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468 struct btrfs_super_block *disk_super)
469 {
470
471 struct btrfs_fs_devices *fs_devices;
472
473 /*
474 * Handle scanned device having completed its fsid change but
475 * belonging to a fs_devices that was created by first scanning
476 * a device which didn't have its fsid/metadata_uuid changed
477 * at all and the CHANGING_FSID_V2 flag set.
478 */
479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480 if (fs_devices->fsid_change &&
481 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482 BTRFS_FSID_SIZE) == 0 &&
483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484 BTRFS_FSID_SIZE) == 0) {
485 return fs_devices;
486 }
487 }
488 /*
489 * Handle scanned device having completed its fsid change but
490 * belonging to a fs_devices that was created by a device that
491 * has an outdated pair of fsid/metadata_uuid and
492 * CHANGING_FSID_V2 flag set.
493 */
494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495 if (fs_devices->fsid_change &&
496 memcmp(fs_devices->metadata_uuid,
497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499 BTRFS_FSID_SIZE) == 0) {
500 return fs_devices;
501 }
502 }
503
504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506
507
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510 int flush, struct block_device **bdev,
511 struct btrfs_super_block **disk_super)
512 {
513 int ret;
514
515 *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517 if (IS_ERR(*bdev)) {
518 ret = PTR_ERR(*bdev);
519 goto error;
520 }
521
522 if (flush)
523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525 if (ret) {
526 blkdev_put(*bdev, flags);
527 goto error;
528 }
529 invalidate_bdev(*bdev);
530 *disk_super = btrfs_read_dev_super(*bdev);
531 if (IS_ERR(*disk_super)) {
532 ret = PTR_ERR(*disk_super);
533 blkdev_put(*bdev, flags);
534 goto error;
535 }
536
537 return 0;
538
539 error:
540 *bdev = NULL;
541 return ret;
542 }
543
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546 int found;
547
548 rcu_read_lock();
549 found = strcmp(rcu_str_deref(device->name), path);
550 rcu_read_unlock();
551
552 return found == 0;
553 }
554
555 /*
556 * Search and remove all stale (devices which are not mounted) devices.
557 * When both inputs are NULL, it will search and release all stale devices.
558 * path: Optional. When provided will it release all unmounted devices
559 * matching this path only.
560 * skip_dev: Optional. Will skip this device when searching for the stale
561 * devices.
562 * Return: 0 for success or if @path is NULL.
563 * -EBUSY if @path is a mounted device.
564 * -ENOENT if @path does not match any device in the list.
565 */
566 static int btrfs_free_stale_devices(const char *path,
567 struct btrfs_device *skip_device)
568 {
569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570 struct btrfs_device *device, *tmp_device;
571 int ret = 0;
572
573 if (path)
574 ret = -ENOENT;
575
576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578 mutex_lock(&fs_devices->device_list_mutex);
579 list_for_each_entry_safe(device, tmp_device,
580 &fs_devices->devices, dev_list) {
581 if (skip_device && skip_device == device)
582 continue;
583 if (path && !device->name)
584 continue;
585 if (path && !device_path_matched(path, device))
586 continue;
587 if (fs_devices->opened) {
588 /* for an already deleted device return 0 */
589 if (path && ret != 0)
590 ret = -EBUSY;
591 break;
592 }
593
594 /* delete the stale device */
595 fs_devices->num_devices--;
596 list_del(&device->dev_list);
597 btrfs_free_device(device);
598
599 ret = 0;
600 }
601 mutex_unlock(&fs_devices->device_list_mutex);
602
603 if (fs_devices->num_devices == 0) {
604 btrfs_sysfs_remove_fsid(fs_devices);
605 list_del(&fs_devices->fs_list);
606 free_fs_devices(fs_devices);
607 }
608 }
609
610 return ret;
611 }
612
613 /*
614 * This is only used on mount, and we are protected from competing things
615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
616 * fs_devices->device_list_mutex here.
617 */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619 struct btrfs_device *device, fmode_t flags,
620 void *holder)
621 {
622 struct request_queue *q;
623 struct block_device *bdev;
624 struct btrfs_super_block *disk_super;
625 u64 devid;
626 int ret;
627
628 if (device->bdev)
629 return -EINVAL;
630 if (!device->name)
631 return -EINVAL;
632
633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634 &bdev, &disk_super);
635 if (ret)
636 return ret;
637
638 devid = btrfs_stack_device_id(&disk_super->dev_item);
639 if (devid != device->devid)
640 goto error_free_page;
641
642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643 goto error_free_page;
644
645 device->generation = btrfs_super_generation(disk_super);
646
647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 if (btrfs_super_incompat_flags(disk_super) &
649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650 pr_err(
651 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652 goto error_free_page;
653 }
654
655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 fs_devices->seeding = true;
657 } else {
658 if (bdev_read_only(bdev))
659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 else
661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 }
663
664 q = bdev_get_queue(bdev);
665 if (!blk_queue_nonrot(q))
666 fs_devices->rotating = true;
667
668 device->bdev = bdev;
669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 device->mode = flags;
671
672 ret = btrfs_get_dev_zone_info(device);
673 if (ret != 0)
674 goto error_free_page;
675
676 fs_devices->open_devices++;
677 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
678 device->devid != BTRFS_DEV_REPLACE_DEVID) {
679 fs_devices->rw_devices++;
680 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
681 }
682 btrfs_release_disk_super(disk_super);
683
684 return 0;
685
686 error_free_page:
687 btrfs_release_disk_super(disk_super);
688 blkdev_put(bdev, flags);
689
690 return -EINVAL;
691 }
692
693 /*
694 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
695 * being created with a disk that has already completed its fsid change. Such
696 * disk can belong to an fs which has its FSID changed or to one which doesn't.
697 * Handle both cases here.
698 */
699 static struct btrfs_fs_devices *find_fsid_inprogress(
700 struct btrfs_super_block *disk_super)
701 {
702 struct btrfs_fs_devices *fs_devices;
703
704 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
705 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706 BTRFS_FSID_SIZE) != 0 &&
707 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
708 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
709 return fs_devices;
710 }
711 }
712
713 return find_fsid(disk_super->fsid, NULL);
714 }
715
716
717 static struct btrfs_fs_devices *find_fsid_changed(
718 struct btrfs_super_block *disk_super)
719 {
720 struct btrfs_fs_devices *fs_devices;
721
722 /*
723 * Handles the case where scanned device is part of an fs that had
724 * multiple successful changes of FSID but curently device didn't
725 * observe it. Meaning our fsid will be different than theirs. We need
726 * to handle two subcases :
727 * 1 - The fs still continues to have different METADATA/FSID uuids.
728 * 2 - The fs is switched back to its original FSID (METADATA/FSID
729 * are equal).
730 */
731 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
732 /* Changed UUIDs */
733 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
734 BTRFS_FSID_SIZE) != 0 &&
735 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
736 BTRFS_FSID_SIZE) == 0 &&
737 memcmp(fs_devices->fsid, disk_super->fsid,
738 BTRFS_FSID_SIZE) != 0)
739 return fs_devices;
740
741 /* Unchanged UUIDs */
742 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
743 BTRFS_FSID_SIZE) == 0 &&
744 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
745 BTRFS_FSID_SIZE) == 0)
746 return fs_devices;
747 }
748
749 return NULL;
750 }
751
752 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
753 struct btrfs_super_block *disk_super)
754 {
755 struct btrfs_fs_devices *fs_devices;
756
757 /*
758 * Handle the case where the scanned device is part of an fs whose last
759 * metadata UUID change reverted it to the original FSID. At the same
760 * time * fs_devices was first created by another constitutent device
761 * which didn't fully observe the operation. This results in an
762 * btrfs_fs_devices created with metadata/fsid different AND
763 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
764 * fs_devices equal to the FSID of the disk.
765 */
766 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
767 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
768 BTRFS_FSID_SIZE) != 0 &&
769 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
770 BTRFS_FSID_SIZE) == 0 &&
771 fs_devices->fsid_change)
772 return fs_devices;
773 }
774
775 return NULL;
776 }
777 /*
778 * Add new device to list of registered devices
779 *
780 * Returns:
781 * device pointer which was just added or updated when successful
782 * error pointer when failed
783 */
784 static noinline struct btrfs_device *device_list_add(const char *path,
785 struct btrfs_super_block *disk_super,
786 bool *new_device_added)
787 {
788 struct btrfs_device *device;
789 struct btrfs_fs_devices *fs_devices = NULL;
790 struct rcu_string *name;
791 u64 found_transid = btrfs_super_generation(disk_super);
792 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
795 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
796 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
797
798 if (fsid_change_in_progress) {
799 if (!has_metadata_uuid)
800 fs_devices = find_fsid_inprogress(disk_super);
801 else
802 fs_devices = find_fsid_changed(disk_super);
803 } else if (has_metadata_uuid) {
804 fs_devices = find_fsid_with_metadata_uuid(disk_super);
805 } else {
806 fs_devices = find_fsid_reverted_metadata(disk_super);
807 if (!fs_devices)
808 fs_devices = find_fsid(disk_super->fsid, NULL);
809 }
810
811
812 if (!fs_devices) {
813 if (has_metadata_uuid)
814 fs_devices = alloc_fs_devices(disk_super->fsid,
815 disk_super->metadata_uuid);
816 else
817 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
818
819 if (IS_ERR(fs_devices))
820 return ERR_CAST(fs_devices);
821
822 fs_devices->fsid_change = fsid_change_in_progress;
823
824 mutex_lock(&fs_devices->device_list_mutex);
825 list_add(&fs_devices->fs_list, &fs_uuids);
826
827 device = NULL;
828 } else {
829 mutex_lock(&fs_devices->device_list_mutex);
830 device = btrfs_find_device(fs_devices, devid,
831 disk_super->dev_item.uuid, NULL);
832
833 /*
834 * If this disk has been pulled into an fs devices created by
835 * a device which had the CHANGING_FSID_V2 flag then replace the
836 * metadata_uuid/fsid values of the fs_devices.
837 */
838 if (fs_devices->fsid_change &&
839 found_transid > fs_devices->latest_generation) {
840 memcpy(fs_devices->fsid, disk_super->fsid,
841 BTRFS_FSID_SIZE);
842
843 if (has_metadata_uuid)
844 memcpy(fs_devices->metadata_uuid,
845 disk_super->metadata_uuid,
846 BTRFS_FSID_SIZE);
847 else
848 memcpy(fs_devices->metadata_uuid,
849 disk_super->fsid, BTRFS_FSID_SIZE);
850
851 fs_devices->fsid_change = false;
852 }
853 }
854
855 if (!device) {
856 if (fs_devices->opened) {
857 mutex_unlock(&fs_devices->device_list_mutex);
858 return ERR_PTR(-EBUSY);
859 }
860
861 device = btrfs_alloc_device(NULL, &devid,
862 disk_super->dev_item.uuid);
863 if (IS_ERR(device)) {
864 mutex_unlock(&fs_devices->device_list_mutex);
865 /* we can safely leave the fs_devices entry around */
866 return device;
867 }
868
869 name = rcu_string_strdup(path, GFP_NOFS);
870 if (!name) {
871 btrfs_free_device(device);
872 mutex_unlock(&fs_devices->device_list_mutex);
873 return ERR_PTR(-ENOMEM);
874 }
875 rcu_assign_pointer(device->name, name);
876
877 list_add_rcu(&device->dev_list, &fs_devices->devices);
878 fs_devices->num_devices++;
879
880 device->fs_devices = fs_devices;
881 *new_device_added = true;
882
883 if (disk_super->label[0])
884 pr_info(
885 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
886 disk_super->label, devid, found_transid, path,
887 current->comm, task_pid_nr(current));
888 else
889 pr_info(
890 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
891 disk_super->fsid, devid, found_transid, path,
892 current->comm, task_pid_nr(current));
893
894 } else if (!device->name || strcmp(device->name->str, path)) {
895 /*
896 * When FS is already mounted.
897 * 1. If you are here and if the device->name is NULL that
898 * means this device was missing at time of FS mount.
899 * 2. If you are here and if the device->name is different
900 * from 'path' that means either
901 * a. The same device disappeared and reappeared with
902 * different name. or
903 * b. The missing-disk-which-was-replaced, has
904 * reappeared now.
905 *
906 * We must allow 1 and 2a above. But 2b would be a spurious
907 * and unintentional.
908 *
909 * Further in case of 1 and 2a above, the disk at 'path'
910 * would have missed some transaction when it was away and
911 * in case of 2a the stale bdev has to be updated as well.
912 * 2b must not be allowed at all time.
913 */
914
915 /*
916 * For now, we do allow update to btrfs_fs_device through the
917 * btrfs dev scan cli after FS has been mounted. We're still
918 * tracking a problem where systems fail mount by subvolume id
919 * when we reject replacement on a mounted FS.
920 */
921 if (!fs_devices->opened && found_transid < device->generation) {
922 /*
923 * That is if the FS is _not_ mounted and if you
924 * are here, that means there is more than one
925 * disk with same uuid and devid.We keep the one
926 * with larger generation number or the last-in if
927 * generation are equal.
928 */
929 mutex_unlock(&fs_devices->device_list_mutex);
930 return ERR_PTR(-EEXIST);
931 }
932
933 /*
934 * We are going to replace the device path for a given devid,
935 * make sure it's the same device if the device is mounted
936 */
937 if (device->bdev) {
938 int error;
939 dev_t path_dev;
940
941 error = lookup_bdev(path, &path_dev);
942 if (error) {
943 mutex_unlock(&fs_devices->device_list_mutex);
944 return ERR_PTR(error);
945 }
946
947 if (device->bdev->bd_dev != path_dev) {
948 mutex_unlock(&fs_devices->device_list_mutex);
949 /*
950 * device->fs_info may not be reliable here, so
951 * pass in a NULL instead. This avoids a
952 * possible use-after-free when the fs_info and
953 * fs_info->sb are already torn down.
954 */
955 btrfs_warn_in_rcu(NULL,
956 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
957 path, devid, found_transid,
958 current->comm,
959 task_pid_nr(current));
960 return ERR_PTR(-EEXIST);
961 }
962 btrfs_info_in_rcu(device->fs_info,
963 "devid %llu device path %s changed to %s scanned by %s (%d)",
964 devid, rcu_str_deref(device->name),
965 path, current->comm,
966 task_pid_nr(current));
967 }
968
969 name = rcu_string_strdup(path, GFP_NOFS);
970 if (!name) {
971 mutex_unlock(&fs_devices->device_list_mutex);
972 return ERR_PTR(-ENOMEM);
973 }
974 rcu_string_free(device->name);
975 rcu_assign_pointer(device->name, name);
976 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
977 fs_devices->missing_devices--;
978 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
979 }
980 }
981
982 /*
983 * Unmount does not free the btrfs_device struct but would zero
984 * generation along with most of the other members. So just update
985 * it back. We need it to pick the disk with largest generation
986 * (as above).
987 */
988 if (!fs_devices->opened) {
989 device->generation = found_transid;
990 fs_devices->latest_generation = max_t(u64, found_transid,
991 fs_devices->latest_generation);
992 }
993
994 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
995
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return device;
998 }
999
1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1001 {
1002 struct btrfs_fs_devices *fs_devices;
1003 struct btrfs_device *device;
1004 struct btrfs_device *orig_dev;
1005 int ret = 0;
1006
1007 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1008 if (IS_ERR(fs_devices))
1009 return fs_devices;
1010
1011 mutex_lock(&orig->device_list_mutex);
1012 fs_devices->total_devices = orig->total_devices;
1013
1014 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1015 struct rcu_string *name;
1016
1017 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1018 orig_dev->uuid);
1019 if (IS_ERR(device)) {
1020 ret = PTR_ERR(device);
1021 goto error;
1022 }
1023
1024 /*
1025 * This is ok to do without rcu read locked because we hold the
1026 * uuid mutex so nothing we touch in here is going to disappear.
1027 */
1028 if (orig_dev->name) {
1029 name = rcu_string_strdup(orig_dev->name->str,
1030 GFP_KERNEL);
1031 if (!name) {
1032 btrfs_free_device(device);
1033 ret = -ENOMEM;
1034 goto error;
1035 }
1036 rcu_assign_pointer(device->name, name);
1037 }
1038
1039 list_add(&device->dev_list, &fs_devices->devices);
1040 device->fs_devices = fs_devices;
1041 fs_devices->num_devices++;
1042 }
1043 mutex_unlock(&orig->device_list_mutex);
1044 return fs_devices;
1045 error:
1046 mutex_unlock(&orig->device_list_mutex);
1047 free_fs_devices(fs_devices);
1048 return ERR_PTR(ret);
1049 }
1050
1051 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1052 struct btrfs_device **latest_dev)
1053 {
1054 struct btrfs_device *device, *next;
1055
1056 /* This is the initialized path, it is safe to release the devices. */
1057 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1058 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1059 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1060 &device->dev_state) &&
1061 !test_bit(BTRFS_DEV_STATE_MISSING,
1062 &device->dev_state) &&
1063 (!*latest_dev ||
1064 device->generation > (*latest_dev)->generation)) {
1065 *latest_dev = device;
1066 }
1067 continue;
1068 }
1069
1070 /*
1071 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1072 * in btrfs_init_dev_replace() so just continue.
1073 */
1074 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1075 continue;
1076
1077 if (device->bdev) {
1078 blkdev_put(device->bdev, device->mode);
1079 device->bdev = NULL;
1080 fs_devices->open_devices--;
1081 }
1082 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1083 list_del_init(&device->dev_alloc_list);
1084 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1085 }
1086 list_del_init(&device->dev_list);
1087 fs_devices->num_devices--;
1088 btrfs_free_device(device);
1089 }
1090
1091 }
1092
1093 /*
1094 * After we have read the system tree and know devids belonging to this
1095 * filesystem, remove the device which does not belong there.
1096 */
1097 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1098 {
1099 struct btrfs_device *latest_dev = NULL;
1100 struct btrfs_fs_devices *seed_dev;
1101
1102 mutex_lock(&uuid_mutex);
1103 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1104
1105 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1106 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1107
1108 fs_devices->latest_bdev = latest_dev->bdev;
1109
1110 mutex_unlock(&uuid_mutex);
1111 }
1112
1113 static void btrfs_close_bdev(struct btrfs_device *device)
1114 {
1115 if (!device->bdev)
1116 return;
1117
1118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1119 sync_blockdev(device->bdev);
1120 invalidate_bdev(device->bdev);
1121 }
1122
1123 blkdev_put(device->bdev, device->mode);
1124 }
1125
1126 static void btrfs_close_one_device(struct btrfs_device *device)
1127 {
1128 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1129
1130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1131 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1132 list_del_init(&device->dev_alloc_list);
1133 fs_devices->rw_devices--;
1134 }
1135
1136 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1137 fs_devices->missing_devices--;
1138
1139 btrfs_close_bdev(device);
1140 if (device->bdev) {
1141 fs_devices->open_devices--;
1142 device->bdev = NULL;
1143 }
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 btrfs_destroy_dev_zone_info(device);
1146
1147 device->fs_info = NULL;
1148 atomic_set(&device->dev_stats_ccnt, 0);
1149 extent_io_tree_release(&device->alloc_state);
1150
1151 /* Verify the device is back in a pristine state */
1152 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 ASSERT(list_empty(&device->dev_alloc_list));
1155 ASSERT(list_empty(&device->post_commit_list));
1156 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 }
1158
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176 }
1177
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened)
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189 close_fs_devices(fs_devices);
1190 list_del(&fs_devices->seed_list);
1191 free_fs_devices(fs_devices);
1192 }
1193 mutex_unlock(&uuid_mutex);
1194 }
1195
1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1197 fmode_t flags, void *holder)
1198 {
1199 struct btrfs_device *device;
1200 struct btrfs_device *latest_dev = NULL;
1201 struct btrfs_device *tmp_device;
1202
1203 flags |= FMODE_EXCL;
1204
1205 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206 dev_list) {
1207 int ret;
1208
1209 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1210 if (ret == 0 &&
1211 (!latest_dev || device->generation > latest_dev->generation)) {
1212 latest_dev = device;
1213 } else if (ret == -ENODATA) {
1214 fs_devices->num_devices--;
1215 list_del(&device->dev_list);
1216 btrfs_free_device(device);
1217 }
1218 }
1219 if (fs_devices->open_devices == 0)
1220 return -EINVAL;
1221
1222 fs_devices->opened = 1;
1223 fs_devices->latest_bdev = latest_dev->bdev;
1224 fs_devices->total_rw_bytes = 0;
1225 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1227
1228 return 0;
1229 }
1230
1231 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1232 {
1233 struct btrfs_device *dev1, *dev2;
1234
1235 dev1 = list_entry(a, struct btrfs_device, dev_list);
1236 dev2 = list_entry(b, struct btrfs_device, dev_list);
1237
1238 if (dev1->devid < dev2->devid)
1239 return -1;
1240 else if (dev1->devid > dev2->devid)
1241 return 1;
1242 return 0;
1243 }
1244
1245 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1246 fmode_t flags, void *holder)
1247 {
1248 int ret;
1249
1250 lockdep_assert_held(&uuid_mutex);
1251 /*
1252 * The device_list_mutex cannot be taken here in case opening the
1253 * underlying device takes further locks like bd_mutex.
1254 *
1255 * We also don't need the lock here as this is called during mount and
1256 * exclusion is provided by uuid_mutex
1257 */
1258
1259 if (fs_devices->opened) {
1260 fs_devices->opened++;
1261 ret = 0;
1262 } else {
1263 list_sort(NULL, &fs_devices->devices, devid_cmp);
1264 ret = open_fs_devices(fs_devices, flags, holder);
1265 }
1266
1267 return ret;
1268 }
1269
1270 void btrfs_release_disk_super(struct btrfs_super_block *super)
1271 {
1272 struct page *page = virt_to_page(super);
1273
1274 put_page(page);
1275 }
1276
1277 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1278 u64 bytenr, u64 bytenr_orig)
1279 {
1280 struct btrfs_super_block *disk_super;
1281 struct page *page;
1282 void *p;
1283 pgoff_t index;
1284
1285 /* make sure our super fits in the device */
1286 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1287 return ERR_PTR(-EINVAL);
1288
1289 /* make sure our super fits in the page */
1290 if (sizeof(*disk_super) > PAGE_SIZE)
1291 return ERR_PTR(-EINVAL);
1292
1293 /* make sure our super doesn't straddle pages on disk */
1294 index = bytenr >> PAGE_SHIFT;
1295 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1296 return ERR_PTR(-EINVAL);
1297
1298 /* pull in the page with our super */
1299 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1300
1301 if (IS_ERR(page))
1302 return ERR_CAST(page);
1303
1304 p = page_address(page);
1305
1306 /* align our pointer to the offset of the super block */
1307 disk_super = p + offset_in_page(bytenr);
1308
1309 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1310 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1311 btrfs_release_disk_super(p);
1312 return ERR_PTR(-EINVAL);
1313 }
1314
1315 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1316 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1317
1318 return disk_super;
1319 }
1320
1321 int btrfs_forget_devices(const char *path)
1322 {
1323 int ret;
1324
1325 mutex_lock(&uuid_mutex);
1326 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1327 mutex_unlock(&uuid_mutex);
1328
1329 return ret;
1330 }
1331
1332 /*
1333 * Look for a btrfs signature on a device. This may be called out of the mount path
1334 * and we are not allowed to call set_blocksize during the scan. The superblock
1335 * is read via pagecache
1336 */
1337 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1338 void *holder)
1339 {
1340 struct btrfs_super_block *disk_super;
1341 bool new_device_added = false;
1342 struct btrfs_device *device = NULL;
1343 struct block_device *bdev;
1344 u64 bytenr, bytenr_orig;
1345 int ret;
1346
1347 lockdep_assert_held(&uuid_mutex);
1348
1349 /*
1350 * we would like to check all the supers, but that would make
1351 * a btrfs mount succeed after a mkfs from a different FS.
1352 * So, we need to add a special mount option to scan for
1353 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1354 */
1355 flags |= FMODE_EXCL;
1356
1357 bdev = blkdev_get_by_path(path, flags, holder);
1358 if (IS_ERR(bdev))
1359 return ERR_CAST(bdev);
1360
1361 bytenr_orig = btrfs_sb_offset(0);
1362 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1363 if (ret)
1364 return ERR_PTR(ret);
1365
1366 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1367 if (IS_ERR(disk_super)) {
1368 device = ERR_CAST(disk_super);
1369 goto error_bdev_put;
1370 }
1371
1372 device = device_list_add(path, disk_super, &new_device_added);
1373 if (!IS_ERR(device)) {
1374 if (new_device_added)
1375 btrfs_free_stale_devices(path, device);
1376 }
1377
1378 btrfs_release_disk_super(disk_super);
1379
1380 error_bdev_put:
1381 blkdev_put(bdev, flags);
1382
1383 return device;
1384 }
1385
1386 /*
1387 * Try to find a chunk that intersects [start, start + len] range and when one
1388 * such is found, record the end of it in *start
1389 */
1390 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1391 u64 len)
1392 {
1393 u64 physical_start, physical_end;
1394
1395 lockdep_assert_held(&device->fs_info->chunk_mutex);
1396
1397 if (!find_first_extent_bit(&device->alloc_state, *start,
1398 &physical_start, &physical_end,
1399 CHUNK_ALLOCATED, NULL)) {
1400
1401 if (in_range(physical_start, *start, len) ||
1402 in_range(*start, physical_start,
1403 physical_end - physical_start)) {
1404 *start = physical_end + 1;
1405 return true;
1406 }
1407 }
1408 return false;
1409 }
1410
1411 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1412 {
1413 switch (device->fs_devices->chunk_alloc_policy) {
1414 case BTRFS_CHUNK_ALLOC_REGULAR:
1415 /*
1416 * We don't want to overwrite the superblock on the drive nor
1417 * any area used by the boot loader (grub for example), so we
1418 * make sure to start at an offset of at least 1MB.
1419 */
1420 return max_t(u64, start, SZ_1M);
1421 default:
1422 BUG();
1423 }
1424 }
1425
1426 /**
1427 * dev_extent_hole_check - check if specified hole is suitable for allocation
1428 * @device: the device which we have the hole
1429 * @hole_start: starting position of the hole
1430 * @hole_size: the size of the hole
1431 * @num_bytes: the size of the free space that we need
1432 *
1433 * This function may modify @hole_start and @hole_end to reflect the suitable
1434 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1435 */
1436 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1437 u64 *hole_size, u64 num_bytes)
1438 {
1439 bool changed = false;
1440 u64 hole_end = *hole_start + *hole_size;
1441
1442 /*
1443 * Check before we set max_hole_start, otherwise we could end up
1444 * sending back this offset anyway.
1445 */
1446 if (contains_pending_extent(device, hole_start, *hole_size)) {
1447 if (hole_end >= *hole_start)
1448 *hole_size = hole_end - *hole_start;
1449 else
1450 *hole_size = 0;
1451 changed = true;
1452 }
1453
1454 switch (device->fs_devices->chunk_alloc_policy) {
1455 case BTRFS_CHUNK_ALLOC_REGULAR:
1456 /* No extra check */
1457 break;
1458 default:
1459 BUG();
1460 }
1461
1462 return changed;
1463 }
1464
1465 /*
1466 * find_free_dev_extent_start - find free space in the specified device
1467 * @device: the device which we search the free space in
1468 * @num_bytes: the size of the free space that we need
1469 * @search_start: the position from which to begin the search
1470 * @start: store the start of the free space.
1471 * @len: the size of the free space. that we find, or the size
1472 * of the max free space if we don't find suitable free space
1473 *
1474 * this uses a pretty simple search, the expectation is that it is
1475 * called very infrequently and that a given device has a small number
1476 * of extents
1477 *
1478 * @start is used to store the start of the free space if we find. But if we
1479 * don't find suitable free space, it will be used to store the start position
1480 * of the max free space.
1481 *
1482 * @len is used to store the size of the free space that we find.
1483 * But if we don't find suitable free space, it is used to store the size of
1484 * the max free space.
1485 *
1486 * NOTE: This function will search *commit* root of device tree, and does extra
1487 * check to ensure dev extents are not double allocated.
1488 * This makes the function safe to allocate dev extents but may not report
1489 * correct usable device space, as device extent freed in current transaction
1490 * is not reported as avaiable.
1491 */
1492 static int find_free_dev_extent_start(struct btrfs_device *device,
1493 u64 num_bytes, u64 search_start, u64 *start,
1494 u64 *len)
1495 {
1496 struct btrfs_fs_info *fs_info = device->fs_info;
1497 struct btrfs_root *root = fs_info->dev_root;
1498 struct btrfs_key key;
1499 struct btrfs_dev_extent *dev_extent;
1500 struct btrfs_path *path;
1501 u64 hole_size;
1502 u64 max_hole_start;
1503 u64 max_hole_size;
1504 u64 extent_end;
1505 u64 search_end = device->total_bytes;
1506 int ret;
1507 int slot;
1508 struct extent_buffer *l;
1509
1510 search_start = dev_extent_search_start(device, search_start);
1511
1512 path = btrfs_alloc_path();
1513 if (!path)
1514 return -ENOMEM;
1515
1516 max_hole_start = search_start;
1517 max_hole_size = 0;
1518
1519 again:
1520 if (search_start >= search_end ||
1521 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1522 ret = -ENOSPC;
1523 goto out;
1524 }
1525
1526 path->reada = READA_FORWARD;
1527 path->search_commit_root = 1;
1528 path->skip_locking = 1;
1529
1530 key.objectid = device->devid;
1531 key.offset = search_start;
1532 key.type = BTRFS_DEV_EXTENT_KEY;
1533
1534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1535 if (ret < 0)
1536 goto out;
1537 if (ret > 0) {
1538 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1539 if (ret < 0)
1540 goto out;
1541 }
1542
1543 while (1) {
1544 l = path->nodes[0];
1545 slot = path->slots[0];
1546 if (slot >= btrfs_header_nritems(l)) {
1547 ret = btrfs_next_leaf(root, path);
1548 if (ret == 0)
1549 continue;
1550 if (ret < 0)
1551 goto out;
1552
1553 break;
1554 }
1555 btrfs_item_key_to_cpu(l, &key, slot);
1556
1557 if (key.objectid < device->devid)
1558 goto next;
1559
1560 if (key.objectid > device->devid)
1561 break;
1562
1563 if (key.type != BTRFS_DEV_EXTENT_KEY)
1564 goto next;
1565
1566 if (key.offset > search_start) {
1567 hole_size = key.offset - search_start;
1568 dev_extent_hole_check(device, &search_start, &hole_size,
1569 num_bytes);
1570
1571 if (hole_size > max_hole_size) {
1572 max_hole_start = search_start;
1573 max_hole_size = hole_size;
1574 }
1575
1576 /*
1577 * If this free space is greater than which we need,
1578 * it must be the max free space that we have found
1579 * until now, so max_hole_start must point to the start
1580 * of this free space and the length of this free space
1581 * is stored in max_hole_size. Thus, we return
1582 * max_hole_start and max_hole_size and go back to the
1583 * caller.
1584 */
1585 if (hole_size >= num_bytes) {
1586 ret = 0;
1587 goto out;
1588 }
1589 }
1590
1591 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1592 extent_end = key.offset + btrfs_dev_extent_length(l,
1593 dev_extent);
1594 if (extent_end > search_start)
1595 search_start = extent_end;
1596 next:
1597 path->slots[0]++;
1598 cond_resched();
1599 }
1600
1601 /*
1602 * At this point, search_start should be the end of
1603 * allocated dev extents, and when shrinking the device,
1604 * search_end may be smaller than search_start.
1605 */
1606 if (search_end > search_start) {
1607 hole_size = search_end - search_start;
1608 if (dev_extent_hole_check(device, &search_start, &hole_size,
1609 num_bytes)) {
1610 btrfs_release_path(path);
1611 goto again;
1612 }
1613
1614 if (hole_size > max_hole_size) {
1615 max_hole_start = search_start;
1616 max_hole_size = hole_size;
1617 }
1618 }
1619
1620 /* See above. */
1621 if (max_hole_size < num_bytes)
1622 ret = -ENOSPC;
1623 else
1624 ret = 0;
1625
1626 out:
1627 btrfs_free_path(path);
1628 *start = max_hole_start;
1629 if (len)
1630 *len = max_hole_size;
1631 return ret;
1632 }
1633
1634 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1635 u64 *start, u64 *len)
1636 {
1637 /* FIXME use last free of some kind */
1638 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1639 }
1640
1641 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1642 struct btrfs_device *device,
1643 u64 start, u64 *dev_extent_len)
1644 {
1645 struct btrfs_fs_info *fs_info = device->fs_info;
1646 struct btrfs_root *root = fs_info->dev_root;
1647 int ret;
1648 struct btrfs_path *path;
1649 struct btrfs_key key;
1650 struct btrfs_key found_key;
1651 struct extent_buffer *leaf = NULL;
1652 struct btrfs_dev_extent *extent = NULL;
1653
1654 path = btrfs_alloc_path();
1655 if (!path)
1656 return -ENOMEM;
1657
1658 key.objectid = device->devid;
1659 key.offset = start;
1660 key.type = BTRFS_DEV_EXTENT_KEY;
1661 again:
1662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1663 if (ret > 0) {
1664 ret = btrfs_previous_item(root, path, key.objectid,
1665 BTRFS_DEV_EXTENT_KEY);
1666 if (ret)
1667 goto out;
1668 leaf = path->nodes[0];
1669 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1670 extent = btrfs_item_ptr(leaf, path->slots[0],
1671 struct btrfs_dev_extent);
1672 BUG_ON(found_key.offset > start || found_key.offset +
1673 btrfs_dev_extent_length(leaf, extent) < start);
1674 key = found_key;
1675 btrfs_release_path(path);
1676 goto again;
1677 } else if (ret == 0) {
1678 leaf = path->nodes[0];
1679 extent = btrfs_item_ptr(leaf, path->slots[0],
1680 struct btrfs_dev_extent);
1681 } else {
1682 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1683 goto out;
1684 }
1685
1686 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1687
1688 ret = btrfs_del_item(trans, root, path);
1689 if (ret) {
1690 btrfs_handle_fs_error(fs_info, ret,
1691 "Failed to remove dev extent item");
1692 } else {
1693 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1694 }
1695 out:
1696 btrfs_free_path(path);
1697 return ret;
1698 }
1699
1700 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device,
1702 u64 chunk_offset, u64 start, u64 num_bytes)
1703 {
1704 int ret;
1705 struct btrfs_path *path;
1706 struct btrfs_fs_info *fs_info = device->fs_info;
1707 struct btrfs_root *root = fs_info->dev_root;
1708 struct btrfs_dev_extent *extent;
1709 struct extent_buffer *leaf;
1710 struct btrfs_key key;
1711
1712 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1713 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1714 path = btrfs_alloc_path();
1715 if (!path)
1716 return -ENOMEM;
1717
1718 key.objectid = device->devid;
1719 key.offset = start;
1720 key.type = BTRFS_DEV_EXTENT_KEY;
1721 ret = btrfs_insert_empty_item(trans, root, path, &key,
1722 sizeof(*extent));
1723 if (ret)
1724 goto out;
1725
1726 leaf = path->nodes[0];
1727 extent = btrfs_item_ptr(leaf, path->slots[0],
1728 struct btrfs_dev_extent);
1729 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1730 BTRFS_CHUNK_TREE_OBJECTID);
1731 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1732 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1733 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1734
1735 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1736 btrfs_mark_buffer_dirty(leaf);
1737 out:
1738 btrfs_free_path(path);
1739 return ret;
1740 }
1741
1742 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1743 {
1744 struct extent_map_tree *em_tree;
1745 struct extent_map *em;
1746 struct rb_node *n;
1747 u64 ret = 0;
1748
1749 em_tree = &fs_info->mapping_tree;
1750 read_lock(&em_tree->lock);
1751 n = rb_last(&em_tree->map.rb_root);
1752 if (n) {
1753 em = rb_entry(n, struct extent_map, rb_node);
1754 ret = em->start + em->len;
1755 }
1756 read_unlock(&em_tree->lock);
1757
1758 return ret;
1759 }
1760
1761 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1762 u64 *devid_ret)
1763 {
1764 int ret;
1765 struct btrfs_key key;
1766 struct btrfs_key found_key;
1767 struct btrfs_path *path;
1768
1769 path = btrfs_alloc_path();
1770 if (!path)
1771 return -ENOMEM;
1772
1773 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774 key.type = BTRFS_DEV_ITEM_KEY;
1775 key.offset = (u64)-1;
1776
1777 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1778 if (ret < 0)
1779 goto error;
1780
1781 if (ret == 0) {
1782 /* Corruption */
1783 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1784 ret = -EUCLEAN;
1785 goto error;
1786 }
1787
1788 ret = btrfs_previous_item(fs_info->chunk_root, path,
1789 BTRFS_DEV_ITEMS_OBJECTID,
1790 BTRFS_DEV_ITEM_KEY);
1791 if (ret) {
1792 *devid_ret = 1;
1793 } else {
1794 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1795 path->slots[0]);
1796 *devid_ret = found_key.offset + 1;
1797 }
1798 ret = 0;
1799 error:
1800 btrfs_free_path(path);
1801 return ret;
1802 }
1803
1804 /*
1805 * the device information is stored in the chunk root
1806 * the btrfs_device struct should be fully filled in
1807 */
1808 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1809 struct btrfs_device *device)
1810 {
1811 int ret;
1812 struct btrfs_path *path;
1813 struct btrfs_dev_item *dev_item;
1814 struct extent_buffer *leaf;
1815 struct btrfs_key key;
1816 unsigned long ptr;
1817
1818 path = btrfs_alloc_path();
1819 if (!path)
1820 return -ENOMEM;
1821
1822 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1823 key.type = BTRFS_DEV_ITEM_KEY;
1824 key.offset = device->devid;
1825
1826 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1827 &key, sizeof(*dev_item));
1828 if (ret)
1829 goto out;
1830
1831 leaf = path->nodes[0];
1832 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1833
1834 btrfs_set_device_id(leaf, dev_item, device->devid);
1835 btrfs_set_device_generation(leaf, dev_item, 0);
1836 btrfs_set_device_type(leaf, dev_item, device->type);
1837 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1838 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1839 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1840 btrfs_set_device_total_bytes(leaf, dev_item,
1841 btrfs_device_get_disk_total_bytes(device));
1842 btrfs_set_device_bytes_used(leaf, dev_item,
1843 btrfs_device_get_bytes_used(device));
1844 btrfs_set_device_group(leaf, dev_item, 0);
1845 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1846 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1847 btrfs_set_device_start_offset(leaf, dev_item, 0);
1848
1849 ptr = btrfs_device_uuid(dev_item);
1850 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1851 ptr = btrfs_device_fsid(dev_item);
1852 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1853 ptr, BTRFS_FSID_SIZE);
1854 btrfs_mark_buffer_dirty(leaf);
1855
1856 ret = 0;
1857 out:
1858 btrfs_free_path(path);
1859 return ret;
1860 }
1861
1862 /*
1863 * Function to update ctime/mtime for a given device path.
1864 * Mainly used for ctime/mtime based probe like libblkid.
1865 */
1866 static void update_dev_time(const char *path_name)
1867 {
1868 struct file *filp;
1869
1870 filp = filp_open(path_name, O_RDWR, 0);
1871 if (IS_ERR(filp))
1872 return;
1873 file_update_time(filp);
1874 filp_close(filp, NULL);
1875 }
1876
1877 static int btrfs_rm_dev_item(struct btrfs_device *device)
1878 {
1879 struct btrfs_root *root = device->fs_info->chunk_root;
1880 int ret;
1881 struct btrfs_path *path;
1882 struct btrfs_key key;
1883 struct btrfs_trans_handle *trans;
1884
1885 path = btrfs_alloc_path();
1886 if (!path)
1887 return -ENOMEM;
1888
1889 trans = btrfs_start_transaction(root, 0);
1890 if (IS_ERR(trans)) {
1891 btrfs_free_path(path);
1892 return PTR_ERR(trans);
1893 }
1894 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895 key.type = BTRFS_DEV_ITEM_KEY;
1896 key.offset = device->devid;
1897
1898 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1899 if (ret) {
1900 if (ret > 0)
1901 ret = -ENOENT;
1902 btrfs_abort_transaction(trans, ret);
1903 btrfs_end_transaction(trans);
1904 goto out;
1905 }
1906
1907 ret = btrfs_del_item(trans, root, path);
1908 if (ret) {
1909 btrfs_abort_transaction(trans, ret);
1910 btrfs_end_transaction(trans);
1911 }
1912
1913 out:
1914 btrfs_free_path(path);
1915 if (!ret)
1916 ret = btrfs_commit_transaction(trans);
1917 return ret;
1918 }
1919
1920 /*
1921 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1922 * filesystem. It's up to the caller to adjust that number regarding eg. device
1923 * replace.
1924 */
1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1926 u64 num_devices)
1927 {
1928 u64 all_avail;
1929 unsigned seq;
1930 int i;
1931
1932 do {
1933 seq = read_seqbegin(&fs_info->profiles_lock);
1934
1935 all_avail = fs_info->avail_data_alloc_bits |
1936 fs_info->avail_system_alloc_bits |
1937 fs_info->avail_metadata_alloc_bits;
1938 } while (read_seqretry(&fs_info->profiles_lock, seq));
1939
1940 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1941 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1942 continue;
1943
1944 if (num_devices < btrfs_raid_array[i].devs_min) {
1945 int ret = btrfs_raid_array[i].mindev_error;
1946
1947 if (ret)
1948 return ret;
1949 }
1950 }
1951
1952 return 0;
1953 }
1954
1955 static struct btrfs_device * btrfs_find_next_active_device(
1956 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1957 {
1958 struct btrfs_device *next_device;
1959
1960 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1961 if (next_device != device &&
1962 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1963 && next_device->bdev)
1964 return next_device;
1965 }
1966
1967 return NULL;
1968 }
1969
1970 /*
1971 * Helper function to check if the given device is part of s_bdev / latest_bdev
1972 * and replace it with the provided or the next active device, in the context
1973 * where this function called, there should be always be another device (or
1974 * this_dev) which is active.
1975 */
1976 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1977 struct btrfs_device *next_device)
1978 {
1979 struct btrfs_fs_info *fs_info = device->fs_info;
1980
1981 if (!next_device)
1982 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1983 device);
1984 ASSERT(next_device);
1985
1986 if (fs_info->sb->s_bdev &&
1987 (fs_info->sb->s_bdev == device->bdev))
1988 fs_info->sb->s_bdev = next_device->bdev;
1989
1990 if (fs_info->fs_devices->latest_bdev == device->bdev)
1991 fs_info->fs_devices->latest_bdev = next_device->bdev;
1992 }
1993
1994 /*
1995 * Return btrfs_fs_devices::num_devices excluding the device that's being
1996 * currently replaced.
1997 */
1998 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1999 {
2000 u64 num_devices = fs_info->fs_devices->num_devices;
2001
2002 down_read(&fs_info->dev_replace.rwsem);
2003 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2004 ASSERT(num_devices > 1);
2005 num_devices--;
2006 }
2007 up_read(&fs_info->dev_replace.rwsem);
2008
2009 return num_devices;
2010 }
2011
2012 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2013 struct block_device *bdev,
2014 const char *device_path)
2015 {
2016 struct btrfs_super_block *disk_super;
2017 int copy_num;
2018
2019 if (!bdev)
2020 return;
2021
2022 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2023 struct page *page;
2024 int ret;
2025
2026 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2027 if (IS_ERR(disk_super))
2028 continue;
2029
2030 if (bdev_is_zoned(bdev)) {
2031 btrfs_reset_sb_log_zones(bdev, copy_num);
2032 continue;
2033 }
2034
2035 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2036
2037 page = virt_to_page(disk_super);
2038 set_page_dirty(page);
2039 lock_page(page);
2040 /* write_on_page() unlocks the page */
2041 ret = write_one_page(page);
2042 if (ret)
2043 btrfs_warn(fs_info,
2044 "error clearing superblock number %d (%d)",
2045 copy_num, ret);
2046 btrfs_release_disk_super(disk_super);
2047
2048 }
2049
2050 /* Notify udev that device has changed */
2051 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2052
2053 /* Update ctime/mtime for device path for libblkid */
2054 update_dev_time(device_path);
2055 }
2056
2057 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2058 u64 devid)
2059 {
2060 struct btrfs_device *device;
2061 struct btrfs_fs_devices *cur_devices;
2062 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2063 u64 num_devices;
2064 int ret = 0;
2065
2066 mutex_lock(&uuid_mutex);
2067
2068 num_devices = btrfs_num_devices(fs_info);
2069
2070 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2071 if (ret)
2072 goto out;
2073
2074 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2075
2076 if (IS_ERR(device)) {
2077 if (PTR_ERR(device) == -ENOENT &&
2078 strcmp(device_path, "missing") == 0)
2079 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2080 else
2081 ret = PTR_ERR(device);
2082 goto out;
2083 }
2084
2085 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2086 btrfs_warn_in_rcu(fs_info,
2087 "cannot remove device %s (devid %llu) due to active swapfile",
2088 rcu_str_deref(device->name), device->devid);
2089 ret = -ETXTBSY;
2090 goto out;
2091 }
2092
2093 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2094 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2095 goto out;
2096 }
2097
2098 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2099 fs_info->fs_devices->rw_devices == 1) {
2100 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2101 goto out;
2102 }
2103
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2105 mutex_lock(&fs_info->chunk_mutex);
2106 list_del_init(&device->dev_alloc_list);
2107 device->fs_devices->rw_devices--;
2108 mutex_unlock(&fs_info->chunk_mutex);
2109 }
2110
2111 mutex_unlock(&uuid_mutex);
2112 ret = btrfs_shrink_device(device, 0);
2113 if (!ret)
2114 btrfs_reada_remove_dev(device);
2115 mutex_lock(&uuid_mutex);
2116 if (ret)
2117 goto error_undo;
2118
2119 /*
2120 * TODO: the superblock still includes this device in its num_devices
2121 * counter although write_all_supers() is not locked out. This
2122 * could give a filesystem state which requires a degraded mount.
2123 */
2124 ret = btrfs_rm_dev_item(device);
2125 if (ret)
2126 goto error_undo;
2127
2128 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2129 btrfs_scrub_cancel_dev(device);
2130
2131 /*
2132 * the device list mutex makes sure that we don't change
2133 * the device list while someone else is writing out all
2134 * the device supers. Whoever is writing all supers, should
2135 * lock the device list mutex before getting the number of
2136 * devices in the super block (super_copy). Conversely,
2137 * whoever updates the number of devices in the super block
2138 * (super_copy) should hold the device list mutex.
2139 */
2140
2141 /*
2142 * In normal cases the cur_devices == fs_devices. But in case
2143 * of deleting a seed device, the cur_devices should point to
2144 * its own fs_devices listed under the fs_devices->seed.
2145 */
2146 cur_devices = device->fs_devices;
2147 mutex_lock(&fs_devices->device_list_mutex);
2148 list_del_rcu(&device->dev_list);
2149
2150 cur_devices->num_devices--;
2151 cur_devices->total_devices--;
2152 /* Update total_devices of the parent fs_devices if it's seed */
2153 if (cur_devices != fs_devices)
2154 fs_devices->total_devices--;
2155
2156 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2157 cur_devices->missing_devices--;
2158
2159 btrfs_assign_next_active_device(device, NULL);
2160
2161 if (device->bdev) {
2162 cur_devices->open_devices--;
2163 /* remove sysfs entry */
2164 btrfs_sysfs_remove_device(device);
2165 }
2166
2167 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2168 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2169 mutex_unlock(&fs_devices->device_list_mutex);
2170
2171 /*
2172 * at this point, the device is zero sized and detached from
2173 * the devices list. All that's left is to zero out the old
2174 * supers and free the device.
2175 */
2176 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2177 btrfs_scratch_superblocks(fs_info, device->bdev,
2178 device->name->str);
2179
2180 btrfs_close_bdev(device);
2181 synchronize_rcu();
2182 btrfs_free_device(device);
2183
2184 if (cur_devices->open_devices == 0) {
2185 list_del_init(&cur_devices->seed_list);
2186 close_fs_devices(cur_devices);
2187 free_fs_devices(cur_devices);
2188 }
2189
2190 out:
2191 mutex_unlock(&uuid_mutex);
2192 return ret;
2193
2194 error_undo:
2195 btrfs_reada_undo_remove_dev(device);
2196 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2197 mutex_lock(&fs_info->chunk_mutex);
2198 list_add(&device->dev_alloc_list,
2199 &fs_devices->alloc_list);
2200 device->fs_devices->rw_devices++;
2201 mutex_unlock(&fs_info->chunk_mutex);
2202 }
2203 goto out;
2204 }
2205
2206 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2207 {
2208 struct btrfs_fs_devices *fs_devices;
2209
2210 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2211
2212 /*
2213 * in case of fs with no seed, srcdev->fs_devices will point
2214 * to fs_devices of fs_info. However when the dev being replaced is
2215 * a seed dev it will point to the seed's local fs_devices. In short
2216 * srcdev will have its correct fs_devices in both the cases.
2217 */
2218 fs_devices = srcdev->fs_devices;
2219
2220 list_del_rcu(&srcdev->dev_list);
2221 list_del(&srcdev->dev_alloc_list);
2222 fs_devices->num_devices--;
2223 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2224 fs_devices->missing_devices--;
2225
2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2227 fs_devices->rw_devices--;
2228
2229 if (srcdev->bdev)
2230 fs_devices->open_devices--;
2231 }
2232
2233 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2234 {
2235 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2236
2237 mutex_lock(&uuid_mutex);
2238
2239 btrfs_close_bdev(srcdev);
2240 synchronize_rcu();
2241 btrfs_free_device(srcdev);
2242
2243 /* if this is no devs we rather delete the fs_devices */
2244 if (!fs_devices->num_devices) {
2245 /*
2246 * On a mounted FS, num_devices can't be zero unless it's a
2247 * seed. In case of a seed device being replaced, the replace
2248 * target added to the sprout FS, so there will be no more
2249 * device left under the seed FS.
2250 */
2251 ASSERT(fs_devices->seeding);
2252
2253 list_del_init(&fs_devices->seed_list);
2254 close_fs_devices(fs_devices);
2255 free_fs_devices(fs_devices);
2256 }
2257 mutex_unlock(&uuid_mutex);
2258 }
2259
2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2261 {
2262 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2263
2264 mutex_lock(&fs_devices->device_list_mutex);
2265
2266 btrfs_sysfs_remove_device(tgtdev);
2267
2268 if (tgtdev->bdev)
2269 fs_devices->open_devices--;
2270
2271 fs_devices->num_devices--;
2272
2273 btrfs_assign_next_active_device(tgtdev, NULL);
2274
2275 list_del_rcu(&tgtdev->dev_list);
2276
2277 mutex_unlock(&fs_devices->device_list_mutex);
2278
2279 /*
2280 * The update_dev_time() with in btrfs_scratch_superblocks()
2281 * may lead to a call to btrfs_show_devname() which will try
2282 * to hold device_list_mutex. And here this device
2283 * is already out of device list, so we don't have to hold
2284 * the device_list_mutex lock.
2285 */
2286 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2287 tgtdev->name->str);
2288
2289 btrfs_close_bdev(tgtdev);
2290 synchronize_rcu();
2291 btrfs_free_device(tgtdev);
2292 }
2293
2294 static struct btrfs_device *btrfs_find_device_by_path(
2295 struct btrfs_fs_info *fs_info, const char *device_path)
2296 {
2297 int ret = 0;
2298 struct btrfs_super_block *disk_super;
2299 u64 devid;
2300 u8 *dev_uuid;
2301 struct block_device *bdev;
2302 struct btrfs_device *device;
2303
2304 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2305 fs_info->bdev_holder, 0, &bdev, &disk_super);
2306 if (ret)
2307 return ERR_PTR(ret);
2308
2309 devid = btrfs_stack_device_id(&disk_super->dev_item);
2310 dev_uuid = disk_super->dev_item.uuid;
2311 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2312 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2313 disk_super->metadata_uuid);
2314 else
2315 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316 disk_super->fsid);
2317
2318 btrfs_release_disk_super(disk_super);
2319 if (!device)
2320 device = ERR_PTR(-ENOENT);
2321 blkdev_put(bdev, FMODE_READ);
2322 return device;
2323 }
2324
2325 /*
2326 * Lookup a device given by device id, or the path if the id is 0.
2327 */
2328 struct btrfs_device *btrfs_find_device_by_devspec(
2329 struct btrfs_fs_info *fs_info, u64 devid,
2330 const char *device_path)
2331 {
2332 struct btrfs_device *device;
2333
2334 if (devid) {
2335 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2336 NULL);
2337 if (!device)
2338 return ERR_PTR(-ENOENT);
2339 return device;
2340 }
2341
2342 if (!device_path || !device_path[0])
2343 return ERR_PTR(-EINVAL);
2344
2345 if (strcmp(device_path, "missing") == 0) {
2346 /* Find first missing device */
2347 list_for_each_entry(device, &fs_info->fs_devices->devices,
2348 dev_list) {
2349 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2350 &device->dev_state) && !device->bdev)
2351 return device;
2352 }
2353 return ERR_PTR(-ENOENT);
2354 }
2355
2356 return btrfs_find_device_by_path(fs_info, device_path);
2357 }
2358
2359 /*
2360 * does all the dirty work required for changing file system's UUID.
2361 */
2362 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2363 {
2364 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2365 struct btrfs_fs_devices *old_devices;
2366 struct btrfs_fs_devices *seed_devices;
2367 struct btrfs_super_block *disk_super = fs_info->super_copy;
2368 struct btrfs_device *device;
2369 u64 super_flags;
2370
2371 lockdep_assert_held(&uuid_mutex);
2372 if (!fs_devices->seeding)
2373 return -EINVAL;
2374
2375 /*
2376 * Private copy of the seed devices, anchored at
2377 * fs_info->fs_devices->seed_list
2378 */
2379 seed_devices = alloc_fs_devices(NULL, NULL);
2380 if (IS_ERR(seed_devices))
2381 return PTR_ERR(seed_devices);
2382
2383 /*
2384 * It's necessary to retain a copy of the original seed fs_devices in
2385 * fs_uuids so that filesystems which have been seeded can successfully
2386 * reference the seed device from open_seed_devices. This also supports
2387 * multiple fs seed.
2388 */
2389 old_devices = clone_fs_devices(fs_devices);
2390 if (IS_ERR(old_devices)) {
2391 kfree(seed_devices);
2392 return PTR_ERR(old_devices);
2393 }
2394
2395 list_add(&old_devices->fs_list, &fs_uuids);
2396
2397 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2398 seed_devices->opened = 1;
2399 INIT_LIST_HEAD(&seed_devices->devices);
2400 INIT_LIST_HEAD(&seed_devices->alloc_list);
2401 mutex_init(&seed_devices->device_list_mutex);
2402
2403 mutex_lock(&fs_devices->device_list_mutex);
2404 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2405 synchronize_rcu);
2406 list_for_each_entry(device, &seed_devices->devices, dev_list)
2407 device->fs_devices = seed_devices;
2408
2409 fs_devices->seeding = false;
2410 fs_devices->num_devices = 0;
2411 fs_devices->open_devices = 0;
2412 fs_devices->missing_devices = 0;
2413 fs_devices->rotating = false;
2414 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2415
2416 generate_random_uuid(fs_devices->fsid);
2417 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2418 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2419 mutex_unlock(&fs_devices->device_list_mutex);
2420
2421 super_flags = btrfs_super_flags(disk_super) &
2422 ~BTRFS_SUPER_FLAG_SEEDING;
2423 btrfs_set_super_flags(disk_super, super_flags);
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * Store the expected generation for seed devices in device items.
2430 */
2431 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2432 {
2433 struct btrfs_fs_info *fs_info = trans->fs_info;
2434 struct btrfs_root *root = fs_info->chunk_root;
2435 struct btrfs_path *path;
2436 struct extent_buffer *leaf;
2437 struct btrfs_dev_item *dev_item;
2438 struct btrfs_device *device;
2439 struct btrfs_key key;
2440 u8 fs_uuid[BTRFS_FSID_SIZE];
2441 u8 dev_uuid[BTRFS_UUID_SIZE];
2442 u64 devid;
2443 int ret;
2444
2445 path = btrfs_alloc_path();
2446 if (!path)
2447 return -ENOMEM;
2448
2449 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2450 key.offset = 0;
2451 key.type = BTRFS_DEV_ITEM_KEY;
2452
2453 while (1) {
2454 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2455 if (ret < 0)
2456 goto error;
2457
2458 leaf = path->nodes[0];
2459 next_slot:
2460 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2461 ret = btrfs_next_leaf(root, path);
2462 if (ret > 0)
2463 break;
2464 if (ret < 0)
2465 goto error;
2466 leaf = path->nodes[0];
2467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2468 btrfs_release_path(path);
2469 continue;
2470 }
2471
2472 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2473 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2474 key.type != BTRFS_DEV_ITEM_KEY)
2475 break;
2476
2477 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2478 struct btrfs_dev_item);
2479 devid = btrfs_device_id(leaf, dev_item);
2480 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2481 BTRFS_UUID_SIZE);
2482 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2483 BTRFS_FSID_SIZE);
2484 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2485 fs_uuid);
2486 BUG_ON(!device); /* Logic error */
2487
2488 if (device->fs_devices->seeding) {
2489 btrfs_set_device_generation(leaf, dev_item,
2490 device->generation);
2491 btrfs_mark_buffer_dirty(leaf);
2492 }
2493
2494 path->slots[0]++;
2495 goto next_slot;
2496 }
2497 ret = 0;
2498 error:
2499 btrfs_free_path(path);
2500 return ret;
2501 }
2502
2503 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2504 {
2505 struct btrfs_root *root = fs_info->dev_root;
2506 struct request_queue *q;
2507 struct btrfs_trans_handle *trans;
2508 struct btrfs_device *device;
2509 struct block_device *bdev;
2510 struct super_block *sb = fs_info->sb;
2511 struct rcu_string *name;
2512 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2513 u64 orig_super_total_bytes;
2514 u64 orig_super_num_devices;
2515 int seeding_dev = 0;
2516 int ret = 0;
2517 bool locked = false;
2518
2519 if (sb_rdonly(sb) && !fs_devices->seeding)
2520 return -EROFS;
2521
2522 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2523 fs_info->bdev_holder);
2524 if (IS_ERR(bdev))
2525 return PTR_ERR(bdev);
2526
2527 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2528 ret = -EINVAL;
2529 goto error;
2530 }
2531
2532 if (fs_devices->seeding) {
2533 seeding_dev = 1;
2534 down_write(&sb->s_umount);
2535 mutex_lock(&uuid_mutex);
2536 locked = true;
2537 }
2538
2539 sync_blockdev(bdev);
2540
2541 rcu_read_lock();
2542 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2543 if (device->bdev == bdev) {
2544 ret = -EEXIST;
2545 rcu_read_unlock();
2546 goto error;
2547 }
2548 }
2549 rcu_read_unlock();
2550
2551 device = btrfs_alloc_device(fs_info, NULL, NULL);
2552 if (IS_ERR(device)) {
2553 /* we can safely leave the fs_devices entry around */
2554 ret = PTR_ERR(device);
2555 goto error;
2556 }
2557
2558 name = rcu_string_strdup(device_path, GFP_KERNEL);
2559 if (!name) {
2560 ret = -ENOMEM;
2561 goto error_free_device;
2562 }
2563 rcu_assign_pointer(device->name, name);
2564
2565 device->fs_info = fs_info;
2566 device->bdev = bdev;
2567
2568 ret = btrfs_get_dev_zone_info(device);
2569 if (ret)
2570 goto error_free_device;
2571
2572 trans = btrfs_start_transaction(root, 0);
2573 if (IS_ERR(trans)) {
2574 ret = PTR_ERR(trans);
2575 goto error_free_zone;
2576 }
2577
2578 q = bdev_get_queue(bdev);
2579 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2580 device->generation = trans->transid;
2581 device->io_width = fs_info->sectorsize;
2582 device->io_align = fs_info->sectorsize;
2583 device->sector_size = fs_info->sectorsize;
2584 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2585 fs_info->sectorsize);
2586 device->disk_total_bytes = device->total_bytes;
2587 device->commit_total_bytes = device->total_bytes;
2588 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2589 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2590 device->mode = FMODE_EXCL;
2591 device->dev_stats_valid = 1;
2592 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2593
2594 if (seeding_dev) {
2595 btrfs_clear_sb_rdonly(sb);
2596 ret = btrfs_prepare_sprout(fs_info);
2597 if (ret) {
2598 btrfs_abort_transaction(trans, ret);
2599 goto error_trans;
2600 }
2601 }
2602
2603 device->fs_devices = fs_devices;
2604
2605 mutex_lock(&fs_devices->device_list_mutex);
2606 mutex_lock(&fs_info->chunk_mutex);
2607 list_add_rcu(&device->dev_list, &fs_devices->devices);
2608 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2609 fs_devices->num_devices++;
2610 fs_devices->open_devices++;
2611 fs_devices->rw_devices++;
2612 fs_devices->total_devices++;
2613 fs_devices->total_rw_bytes += device->total_bytes;
2614
2615 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2616
2617 if (!blk_queue_nonrot(q))
2618 fs_devices->rotating = true;
2619
2620 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2621 btrfs_set_super_total_bytes(fs_info->super_copy,
2622 round_down(orig_super_total_bytes + device->total_bytes,
2623 fs_info->sectorsize));
2624
2625 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2626 btrfs_set_super_num_devices(fs_info->super_copy,
2627 orig_super_num_devices + 1);
2628
2629 /*
2630 * we've got more storage, clear any full flags on the space
2631 * infos
2632 */
2633 btrfs_clear_space_info_full(fs_info);
2634
2635 mutex_unlock(&fs_info->chunk_mutex);
2636
2637 /* Add sysfs device entry */
2638 btrfs_sysfs_add_device(device);
2639
2640 mutex_unlock(&fs_devices->device_list_mutex);
2641
2642 if (seeding_dev) {
2643 mutex_lock(&fs_info->chunk_mutex);
2644 ret = init_first_rw_device(trans);
2645 mutex_unlock(&fs_info->chunk_mutex);
2646 if (ret) {
2647 btrfs_abort_transaction(trans, ret);
2648 goto error_sysfs;
2649 }
2650 }
2651
2652 ret = btrfs_add_dev_item(trans, device);
2653 if (ret) {
2654 btrfs_abort_transaction(trans, ret);
2655 goto error_sysfs;
2656 }
2657
2658 if (seeding_dev) {
2659 ret = btrfs_finish_sprout(trans);
2660 if (ret) {
2661 btrfs_abort_transaction(trans, ret);
2662 goto error_sysfs;
2663 }
2664
2665 /*
2666 * fs_devices now represents the newly sprouted filesystem and
2667 * its fsid has been changed by btrfs_prepare_sprout
2668 */
2669 btrfs_sysfs_update_sprout_fsid(fs_devices);
2670 }
2671
2672 ret = btrfs_commit_transaction(trans);
2673
2674 if (seeding_dev) {
2675 mutex_unlock(&uuid_mutex);
2676 up_write(&sb->s_umount);
2677 locked = false;
2678
2679 if (ret) /* transaction commit */
2680 return ret;
2681
2682 ret = btrfs_relocate_sys_chunks(fs_info);
2683 if (ret < 0)
2684 btrfs_handle_fs_error(fs_info, ret,
2685 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2686 trans = btrfs_attach_transaction(root);
2687 if (IS_ERR(trans)) {
2688 if (PTR_ERR(trans) == -ENOENT)
2689 return 0;
2690 ret = PTR_ERR(trans);
2691 trans = NULL;
2692 goto error_sysfs;
2693 }
2694 ret = btrfs_commit_transaction(trans);
2695 }
2696
2697 /*
2698 * Now that we have written a new super block to this device, check all
2699 * other fs_devices list if device_path alienates any other scanned
2700 * device.
2701 * We can ignore the return value as it typically returns -EINVAL and
2702 * only succeeds if the device was an alien.
2703 */
2704 btrfs_forget_devices(device_path);
2705
2706 /* Update ctime/mtime for blkid or udev */
2707 update_dev_time(device_path);
2708
2709 return ret;
2710
2711 error_sysfs:
2712 btrfs_sysfs_remove_device(device);
2713 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2714 mutex_lock(&fs_info->chunk_mutex);
2715 list_del_rcu(&device->dev_list);
2716 list_del(&device->dev_alloc_list);
2717 fs_info->fs_devices->num_devices--;
2718 fs_info->fs_devices->open_devices--;
2719 fs_info->fs_devices->rw_devices--;
2720 fs_info->fs_devices->total_devices--;
2721 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2722 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2723 btrfs_set_super_total_bytes(fs_info->super_copy,
2724 orig_super_total_bytes);
2725 btrfs_set_super_num_devices(fs_info->super_copy,
2726 orig_super_num_devices);
2727 mutex_unlock(&fs_info->chunk_mutex);
2728 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2729 error_trans:
2730 if (seeding_dev)
2731 btrfs_set_sb_rdonly(sb);
2732 if (trans)
2733 btrfs_end_transaction(trans);
2734 error_free_zone:
2735 btrfs_destroy_dev_zone_info(device);
2736 error_free_device:
2737 btrfs_free_device(device);
2738 error:
2739 blkdev_put(bdev, FMODE_EXCL);
2740 if (locked) {
2741 mutex_unlock(&uuid_mutex);
2742 up_write(&sb->s_umount);
2743 }
2744 return ret;
2745 }
2746
2747 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2748 struct btrfs_device *device)
2749 {
2750 int ret;
2751 struct btrfs_path *path;
2752 struct btrfs_root *root = device->fs_info->chunk_root;
2753 struct btrfs_dev_item *dev_item;
2754 struct extent_buffer *leaf;
2755 struct btrfs_key key;
2756
2757 path = btrfs_alloc_path();
2758 if (!path)
2759 return -ENOMEM;
2760
2761 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2762 key.type = BTRFS_DEV_ITEM_KEY;
2763 key.offset = device->devid;
2764
2765 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2766 if (ret < 0)
2767 goto out;
2768
2769 if (ret > 0) {
2770 ret = -ENOENT;
2771 goto out;
2772 }
2773
2774 leaf = path->nodes[0];
2775 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2776
2777 btrfs_set_device_id(leaf, dev_item, device->devid);
2778 btrfs_set_device_type(leaf, dev_item, device->type);
2779 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2780 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2781 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2782 btrfs_set_device_total_bytes(leaf, dev_item,
2783 btrfs_device_get_disk_total_bytes(device));
2784 btrfs_set_device_bytes_used(leaf, dev_item,
2785 btrfs_device_get_bytes_used(device));
2786 btrfs_mark_buffer_dirty(leaf);
2787
2788 out:
2789 btrfs_free_path(path);
2790 return ret;
2791 }
2792
2793 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2794 struct btrfs_device *device, u64 new_size)
2795 {
2796 struct btrfs_fs_info *fs_info = device->fs_info;
2797 struct btrfs_super_block *super_copy = fs_info->super_copy;
2798 u64 old_total;
2799 u64 diff;
2800
2801 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2802 return -EACCES;
2803
2804 new_size = round_down(new_size, fs_info->sectorsize);
2805
2806 mutex_lock(&fs_info->chunk_mutex);
2807 old_total = btrfs_super_total_bytes(super_copy);
2808 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2809
2810 if (new_size <= device->total_bytes ||
2811 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2812 mutex_unlock(&fs_info->chunk_mutex);
2813 return -EINVAL;
2814 }
2815
2816 btrfs_set_super_total_bytes(super_copy,
2817 round_down(old_total + diff, fs_info->sectorsize));
2818 device->fs_devices->total_rw_bytes += diff;
2819
2820 btrfs_device_set_total_bytes(device, new_size);
2821 btrfs_device_set_disk_total_bytes(device, new_size);
2822 btrfs_clear_space_info_full(device->fs_info);
2823 if (list_empty(&device->post_commit_list))
2824 list_add_tail(&device->post_commit_list,
2825 &trans->transaction->dev_update_list);
2826 mutex_unlock(&fs_info->chunk_mutex);
2827
2828 return btrfs_update_device(trans, device);
2829 }
2830
2831 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2832 {
2833 struct btrfs_fs_info *fs_info = trans->fs_info;
2834 struct btrfs_root *root = fs_info->chunk_root;
2835 int ret;
2836 struct btrfs_path *path;
2837 struct btrfs_key key;
2838
2839 path = btrfs_alloc_path();
2840 if (!path)
2841 return -ENOMEM;
2842
2843 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2844 key.offset = chunk_offset;
2845 key.type = BTRFS_CHUNK_ITEM_KEY;
2846
2847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2848 if (ret < 0)
2849 goto out;
2850 else if (ret > 0) { /* Logic error or corruption */
2851 btrfs_handle_fs_error(fs_info, -ENOENT,
2852 "Failed lookup while freeing chunk.");
2853 ret = -ENOENT;
2854 goto out;
2855 }
2856
2857 ret = btrfs_del_item(trans, root, path);
2858 if (ret < 0)
2859 btrfs_handle_fs_error(fs_info, ret,
2860 "Failed to delete chunk item.");
2861 out:
2862 btrfs_free_path(path);
2863 return ret;
2864 }
2865
2866 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2867 {
2868 struct btrfs_super_block *super_copy = fs_info->super_copy;
2869 struct btrfs_disk_key *disk_key;
2870 struct btrfs_chunk *chunk;
2871 u8 *ptr;
2872 int ret = 0;
2873 u32 num_stripes;
2874 u32 array_size;
2875 u32 len = 0;
2876 u32 cur;
2877 struct btrfs_key key;
2878
2879 mutex_lock(&fs_info->chunk_mutex);
2880 array_size = btrfs_super_sys_array_size(super_copy);
2881
2882 ptr = super_copy->sys_chunk_array;
2883 cur = 0;
2884
2885 while (cur < array_size) {
2886 disk_key = (struct btrfs_disk_key *)ptr;
2887 btrfs_disk_key_to_cpu(&key, disk_key);
2888
2889 len = sizeof(*disk_key);
2890
2891 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2892 chunk = (struct btrfs_chunk *)(ptr + len);
2893 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2894 len += btrfs_chunk_item_size(num_stripes);
2895 } else {
2896 ret = -EIO;
2897 break;
2898 }
2899 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2900 key.offset == chunk_offset) {
2901 memmove(ptr, ptr + len, array_size - (cur + len));
2902 array_size -= len;
2903 btrfs_set_super_sys_array_size(super_copy, array_size);
2904 } else {
2905 ptr += len;
2906 cur += len;
2907 }
2908 }
2909 mutex_unlock(&fs_info->chunk_mutex);
2910 return ret;
2911 }
2912
2913 /*
2914 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2915 * @logical: Logical block offset in bytes.
2916 * @length: Length of extent in bytes.
2917 *
2918 * Return: Chunk mapping or ERR_PTR.
2919 */
2920 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2921 u64 logical, u64 length)
2922 {
2923 struct extent_map_tree *em_tree;
2924 struct extent_map *em;
2925
2926 em_tree = &fs_info->mapping_tree;
2927 read_lock(&em_tree->lock);
2928 em = lookup_extent_mapping(em_tree, logical, length);
2929 read_unlock(&em_tree->lock);
2930
2931 if (!em) {
2932 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2933 logical, length);
2934 return ERR_PTR(-EINVAL);
2935 }
2936
2937 if (em->start > logical || em->start + em->len < logical) {
2938 btrfs_crit(fs_info,
2939 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2940 logical, length, em->start, em->start + em->len);
2941 free_extent_map(em);
2942 return ERR_PTR(-EINVAL);
2943 }
2944
2945 /* callers are responsible for dropping em's ref. */
2946 return em;
2947 }
2948
2949 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2950 {
2951 struct btrfs_fs_info *fs_info = trans->fs_info;
2952 struct extent_map *em;
2953 struct map_lookup *map;
2954 u64 dev_extent_len = 0;
2955 int i, ret = 0;
2956 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2957
2958 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2959 if (IS_ERR(em)) {
2960 /*
2961 * This is a logic error, but we don't want to just rely on the
2962 * user having built with ASSERT enabled, so if ASSERT doesn't
2963 * do anything we still error out.
2964 */
2965 ASSERT(0);
2966 return PTR_ERR(em);
2967 }
2968 map = em->map_lookup;
2969 mutex_lock(&fs_info->chunk_mutex);
2970 check_system_chunk(trans, map->type);
2971 mutex_unlock(&fs_info->chunk_mutex);
2972
2973 /*
2974 * Take the device list mutex to prevent races with the final phase of
2975 * a device replace operation that replaces the device object associated
2976 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2977 */
2978 mutex_lock(&fs_devices->device_list_mutex);
2979 for (i = 0; i < map->num_stripes; i++) {
2980 struct btrfs_device *device = map->stripes[i].dev;
2981 ret = btrfs_free_dev_extent(trans, device,
2982 map->stripes[i].physical,
2983 &dev_extent_len);
2984 if (ret) {
2985 mutex_unlock(&fs_devices->device_list_mutex);
2986 btrfs_abort_transaction(trans, ret);
2987 goto out;
2988 }
2989
2990 if (device->bytes_used > 0) {
2991 mutex_lock(&fs_info->chunk_mutex);
2992 btrfs_device_set_bytes_used(device,
2993 device->bytes_used - dev_extent_len);
2994 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2995 btrfs_clear_space_info_full(fs_info);
2996 mutex_unlock(&fs_info->chunk_mutex);
2997 }
2998
2999 ret = btrfs_update_device(trans, device);
3000 if (ret) {
3001 mutex_unlock(&fs_devices->device_list_mutex);
3002 btrfs_abort_transaction(trans, ret);
3003 goto out;
3004 }
3005 }
3006 mutex_unlock(&fs_devices->device_list_mutex);
3007
3008 ret = btrfs_free_chunk(trans, chunk_offset);
3009 if (ret) {
3010 btrfs_abort_transaction(trans, ret);
3011 goto out;
3012 }
3013
3014 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3015
3016 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3017 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3018 if (ret) {
3019 btrfs_abort_transaction(trans, ret);
3020 goto out;
3021 }
3022 }
3023
3024 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3025 if (ret) {
3026 btrfs_abort_transaction(trans, ret);
3027 goto out;
3028 }
3029
3030 out:
3031 /* once for us */
3032 free_extent_map(em);
3033 return ret;
3034 }
3035
3036 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3037 {
3038 struct btrfs_root *root = fs_info->chunk_root;
3039 struct btrfs_trans_handle *trans;
3040 struct btrfs_block_group *block_group;
3041 int ret;
3042
3043 /*
3044 * Prevent races with automatic removal of unused block groups.
3045 * After we relocate and before we remove the chunk with offset
3046 * chunk_offset, automatic removal of the block group can kick in,
3047 * resulting in a failure when calling btrfs_remove_chunk() below.
3048 *
3049 * Make sure to acquire this mutex before doing a tree search (dev
3050 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3051 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3052 * we release the path used to search the chunk/dev tree and before
3053 * the current task acquires this mutex and calls us.
3054 */
3055 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3056
3057 /* step one, relocate all the extents inside this chunk */
3058 btrfs_scrub_pause(fs_info);
3059 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3060 btrfs_scrub_continue(fs_info);
3061 if (ret)
3062 return ret;
3063
3064 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3065 if (!block_group)
3066 return -ENOENT;
3067 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3068 btrfs_put_block_group(block_group);
3069
3070 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3071 chunk_offset);
3072 if (IS_ERR(trans)) {
3073 ret = PTR_ERR(trans);
3074 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3075 return ret;
3076 }
3077
3078 /*
3079 * step two, delete the device extents and the
3080 * chunk tree entries
3081 */
3082 ret = btrfs_remove_chunk(trans, chunk_offset);
3083 btrfs_end_transaction(trans);
3084 return ret;
3085 }
3086
3087 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3088 {
3089 struct btrfs_root *chunk_root = fs_info->chunk_root;
3090 struct btrfs_path *path;
3091 struct extent_buffer *leaf;
3092 struct btrfs_chunk *chunk;
3093 struct btrfs_key key;
3094 struct btrfs_key found_key;
3095 u64 chunk_type;
3096 bool retried = false;
3097 int failed = 0;
3098 int ret;
3099
3100 path = btrfs_alloc_path();
3101 if (!path)
3102 return -ENOMEM;
3103
3104 again:
3105 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3106 key.offset = (u64)-1;
3107 key.type = BTRFS_CHUNK_ITEM_KEY;
3108
3109 while (1) {
3110 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3111 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3112 if (ret < 0) {
3113 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3114 goto error;
3115 }
3116 BUG_ON(ret == 0); /* Corruption */
3117
3118 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3119 key.type);
3120 if (ret)
3121 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3122 if (ret < 0)
3123 goto error;
3124 if (ret > 0)
3125 break;
3126
3127 leaf = path->nodes[0];
3128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3129
3130 chunk = btrfs_item_ptr(leaf, path->slots[0],
3131 struct btrfs_chunk);
3132 chunk_type = btrfs_chunk_type(leaf, chunk);
3133 btrfs_release_path(path);
3134
3135 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3136 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3137 if (ret == -ENOSPC)
3138 failed++;
3139 else
3140 BUG_ON(ret);
3141 }
3142 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3143
3144 if (found_key.offset == 0)
3145 break;
3146 key.offset = found_key.offset - 1;
3147 }
3148 ret = 0;
3149 if (failed && !retried) {
3150 failed = 0;
3151 retried = true;
3152 goto again;
3153 } else if (WARN_ON(failed && retried)) {
3154 ret = -ENOSPC;
3155 }
3156 error:
3157 btrfs_free_path(path);
3158 return ret;
3159 }
3160
3161 /*
3162 * return 1 : allocate a data chunk successfully,
3163 * return <0: errors during allocating a data chunk,
3164 * return 0 : no need to allocate a data chunk.
3165 */
3166 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3167 u64 chunk_offset)
3168 {
3169 struct btrfs_block_group *cache;
3170 u64 bytes_used;
3171 u64 chunk_type;
3172
3173 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3174 ASSERT(cache);
3175 chunk_type = cache->flags;
3176 btrfs_put_block_group(cache);
3177
3178 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3179 return 0;
3180
3181 spin_lock(&fs_info->data_sinfo->lock);
3182 bytes_used = fs_info->data_sinfo->bytes_used;
3183 spin_unlock(&fs_info->data_sinfo->lock);
3184
3185 if (!bytes_used) {
3186 struct btrfs_trans_handle *trans;
3187 int ret;
3188
3189 trans = btrfs_join_transaction(fs_info->tree_root);
3190 if (IS_ERR(trans))
3191 return PTR_ERR(trans);
3192
3193 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3194 btrfs_end_transaction(trans);
3195 if (ret < 0)
3196 return ret;
3197 return 1;
3198 }
3199
3200 return 0;
3201 }
3202
3203 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3204 struct btrfs_balance_control *bctl)
3205 {
3206 struct btrfs_root *root = fs_info->tree_root;
3207 struct btrfs_trans_handle *trans;
3208 struct btrfs_balance_item *item;
3209 struct btrfs_disk_balance_args disk_bargs;
3210 struct btrfs_path *path;
3211 struct extent_buffer *leaf;
3212 struct btrfs_key key;
3213 int ret, err;
3214
3215 path = btrfs_alloc_path();
3216 if (!path)
3217 return -ENOMEM;
3218
3219 trans = btrfs_start_transaction(root, 0);
3220 if (IS_ERR(trans)) {
3221 btrfs_free_path(path);
3222 return PTR_ERR(trans);
3223 }
3224
3225 key.objectid = BTRFS_BALANCE_OBJECTID;
3226 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3227 key.offset = 0;
3228
3229 ret = btrfs_insert_empty_item(trans, root, path, &key,
3230 sizeof(*item));
3231 if (ret)
3232 goto out;
3233
3234 leaf = path->nodes[0];
3235 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3236
3237 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3238
3239 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3240 btrfs_set_balance_data(leaf, item, &disk_bargs);
3241 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3242 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3243 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3244 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3245
3246 btrfs_set_balance_flags(leaf, item, bctl->flags);
3247
3248 btrfs_mark_buffer_dirty(leaf);
3249 out:
3250 btrfs_free_path(path);
3251 err = btrfs_commit_transaction(trans);
3252 if (err && !ret)
3253 ret = err;
3254 return ret;
3255 }
3256
3257 static int del_balance_item(struct btrfs_fs_info *fs_info)
3258 {
3259 struct btrfs_root *root = fs_info->tree_root;
3260 struct btrfs_trans_handle *trans;
3261 struct btrfs_path *path;
3262 struct btrfs_key key;
3263 int ret, err;
3264
3265 path = btrfs_alloc_path();
3266 if (!path)
3267 return -ENOMEM;
3268
3269 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3270 if (IS_ERR(trans)) {
3271 btrfs_free_path(path);
3272 return PTR_ERR(trans);
3273 }
3274
3275 key.objectid = BTRFS_BALANCE_OBJECTID;
3276 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3277 key.offset = 0;
3278
3279 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3280 if (ret < 0)
3281 goto out;
3282 if (ret > 0) {
3283 ret = -ENOENT;
3284 goto out;
3285 }
3286
3287 ret = btrfs_del_item(trans, root, path);
3288 out:
3289 btrfs_free_path(path);
3290 err = btrfs_commit_transaction(trans);
3291 if (err && !ret)
3292 ret = err;
3293 return ret;
3294 }
3295
3296 /*
3297 * This is a heuristic used to reduce the number of chunks balanced on
3298 * resume after balance was interrupted.
3299 */
3300 static void update_balance_args(struct btrfs_balance_control *bctl)
3301 {
3302 /*
3303 * Turn on soft mode for chunk types that were being converted.
3304 */
3305 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3306 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3307 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3308 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3309 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3310 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3311
3312 /*
3313 * Turn on usage filter if is not already used. The idea is
3314 * that chunks that we have already balanced should be
3315 * reasonably full. Don't do it for chunks that are being
3316 * converted - that will keep us from relocating unconverted
3317 * (albeit full) chunks.
3318 */
3319 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3320 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3321 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3322 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3323 bctl->data.usage = 90;
3324 }
3325 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3326 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3327 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3328 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3329 bctl->sys.usage = 90;
3330 }
3331 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3332 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3333 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3334 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3335 bctl->meta.usage = 90;
3336 }
3337 }
3338
3339 /*
3340 * Clear the balance status in fs_info and delete the balance item from disk.
3341 */
3342 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3343 {
3344 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3345 int ret;
3346
3347 BUG_ON(!fs_info->balance_ctl);
3348
3349 spin_lock(&fs_info->balance_lock);
3350 fs_info->balance_ctl = NULL;
3351 spin_unlock(&fs_info->balance_lock);
3352
3353 kfree(bctl);
3354 ret = del_balance_item(fs_info);
3355 if (ret)
3356 btrfs_handle_fs_error(fs_info, ret, NULL);
3357 }
3358
3359 /*
3360 * Balance filters. Return 1 if chunk should be filtered out
3361 * (should not be balanced).
3362 */
3363 static int chunk_profiles_filter(u64 chunk_type,
3364 struct btrfs_balance_args *bargs)
3365 {
3366 chunk_type = chunk_to_extended(chunk_type) &
3367 BTRFS_EXTENDED_PROFILE_MASK;
3368
3369 if (bargs->profiles & chunk_type)
3370 return 0;
3371
3372 return 1;
3373 }
3374
3375 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3376 struct btrfs_balance_args *bargs)
3377 {
3378 struct btrfs_block_group *cache;
3379 u64 chunk_used;
3380 u64 user_thresh_min;
3381 u64 user_thresh_max;
3382 int ret = 1;
3383
3384 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3385 chunk_used = cache->used;
3386
3387 if (bargs->usage_min == 0)
3388 user_thresh_min = 0;
3389 else
3390 user_thresh_min = div_factor_fine(cache->length,
3391 bargs->usage_min);
3392
3393 if (bargs->usage_max == 0)
3394 user_thresh_max = 1;
3395 else if (bargs->usage_max > 100)
3396 user_thresh_max = cache->length;
3397 else
3398 user_thresh_max = div_factor_fine(cache->length,
3399 bargs->usage_max);
3400
3401 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3402 ret = 0;
3403
3404 btrfs_put_block_group(cache);
3405 return ret;
3406 }
3407
3408 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3409 u64 chunk_offset, struct btrfs_balance_args *bargs)
3410 {
3411 struct btrfs_block_group *cache;
3412 u64 chunk_used, user_thresh;
3413 int ret = 1;
3414
3415 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3416 chunk_used = cache->used;
3417
3418 if (bargs->usage_min == 0)
3419 user_thresh = 1;
3420 else if (bargs->usage > 100)
3421 user_thresh = cache->length;
3422 else
3423 user_thresh = div_factor_fine(cache->length, bargs->usage);
3424
3425 if (chunk_used < user_thresh)
3426 ret = 0;
3427
3428 btrfs_put_block_group(cache);
3429 return ret;
3430 }
3431
3432 static int chunk_devid_filter(struct extent_buffer *leaf,
3433 struct btrfs_chunk *chunk,
3434 struct btrfs_balance_args *bargs)
3435 {
3436 struct btrfs_stripe *stripe;
3437 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3438 int i;
3439
3440 for (i = 0; i < num_stripes; i++) {
3441 stripe = btrfs_stripe_nr(chunk, i);
3442 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3443 return 0;
3444 }
3445
3446 return 1;
3447 }
3448
3449 static u64 calc_data_stripes(u64 type, int num_stripes)
3450 {
3451 const int index = btrfs_bg_flags_to_raid_index(type);
3452 const int ncopies = btrfs_raid_array[index].ncopies;
3453 const int nparity = btrfs_raid_array[index].nparity;
3454
3455 if (nparity)
3456 return num_stripes - nparity;
3457 else
3458 return num_stripes / ncopies;
3459 }
3460
3461 /* [pstart, pend) */
3462 static int chunk_drange_filter(struct extent_buffer *leaf,
3463 struct btrfs_chunk *chunk,
3464 struct btrfs_balance_args *bargs)
3465 {
3466 struct btrfs_stripe *stripe;
3467 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3468 u64 stripe_offset;
3469 u64 stripe_length;
3470 u64 type;
3471 int factor;
3472 int i;
3473
3474 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3475 return 0;
3476
3477 type = btrfs_chunk_type(leaf, chunk);
3478 factor = calc_data_stripes(type, num_stripes);
3479
3480 for (i = 0; i < num_stripes; i++) {
3481 stripe = btrfs_stripe_nr(chunk, i);
3482 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3483 continue;
3484
3485 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3486 stripe_length = btrfs_chunk_length(leaf, chunk);
3487 stripe_length = div_u64(stripe_length, factor);
3488
3489 if (stripe_offset < bargs->pend &&
3490 stripe_offset + stripe_length > bargs->pstart)
3491 return 0;
3492 }
3493
3494 return 1;
3495 }
3496
3497 /* [vstart, vend) */
3498 static int chunk_vrange_filter(struct extent_buffer *leaf,
3499 struct btrfs_chunk *chunk,
3500 u64 chunk_offset,
3501 struct btrfs_balance_args *bargs)
3502 {
3503 if (chunk_offset < bargs->vend &&
3504 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3505 /* at least part of the chunk is inside this vrange */
3506 return 0;
3507
3508 return 1;
3509 }
3510
3511 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3512 struct btrfs_chunk *chunk,
3513 struct btrfs_balance_args *bargs)
3514 {
3515 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3516
3517 if (bargs->stripes_min <= num_stripes
3518 && num_stripes <= bargs->stripes_max)
3519 return 0;
3520
3521 return 1;
3522 }
3523
3524 static int chunk_soft_convert_filter(u64 chunk_type,
3525 struct btrfs_balance_args *bargs)
3526 {
3527 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3528 return 0;
3529
3530 chunk_type = chunk_to_extended(chunk_type) &
3531 BTRFS_EXTENDED_PROFILE_MASK;
3532
3533 if (bargs->target == chunk_type)
3534 return 1;
3535
3536 return 0;
3537 }
3538
3539 static int should_balance_chunk(struct extent_buffer *leaf,
3540 struct btrfs_chunk *chunk, u64 chunk_offset)
3541 {
3542 struct btrfs_fs_info *fs_info = leaf->fs_info;
3543 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3544 struct btrfs_balance_args *bargs = NULL;
3545 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3546
3547 /* type filter */
3548 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3549 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3550 return 0;
3551 }
3552
3553 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3554 bargs = &bctl->data;
3555 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3556 bargs = &bctl->sys;
3557 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3558 bargs = &bctl->meta;
3559
3560 /* profiles filter */
3561 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3562 chunk_profiles_filter(chunk_type, bargs)) {
3563 return 0;
3564 }
3565
3566 /* usage filter */
3567 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3568 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3569 return 0;
3570 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3571 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3572 return 0;
3573 }
3574
3575 /* devid filter */
3576 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3577 chunk_devid_filter(leaf, chunk, bargs)) {
3578 return 0;
3579 }
3580
3581 /* drange filter, makes sense only with devid filter */
3582 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3583 chunk_drange_filter(leaf, chunk, bargs)) {
3584 return 0;
3585 }
3586
3587 /* vrange filter */
3588 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3589 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3590 return 0;
3591 }
3592
3593 /* stripes filter */
3594 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3595 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3596 return 0;
3597 }
3598
3599 /* soft profile changing mode */
3600 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3601 chunk_soft_convert_filter(chunk_type, bargs)) {
3602 return 0;
3603 }
3604
3605 /*
3606 * limited by count, must be the last filter
3607 */
3608 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3609 if (bargs->limit == 0)
3610 return 0;
3611 else
3612 bargs->limit--;
3613 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3614 /*
3615 * Same logic as the 'limit' filter; the minimum cannot be
3616 * determined here because we do not have the global information
3617 * about the count of all chunks that satisfy the filters.
3618 */
3619 if (bargs->limit_max == 0)
3620 return 0;
3621 else
3622 bargs->limit_max--;
3623 }
3624
3625 return 1;
3626 }
3627
3628 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3629 {
3630 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3631 struct btrfs_root *chunk_root = fs_info->chunk_root;
3632 u64 chunk_type;
3633 struct btrfs_chunk *chunk;
3634 struct btrfs_path *path = NULL;
3635 struct btrfs_key key;
3636 struct btrfs_key found_key;
3637 struct extent_buffer *leaf;
3638 int slot;
3639 int ret;
3640 int enospc_errors = 0;
3641 bool counting = true;
3642 /* The single value limit and min/max limits use the same bytes in the */
3643 u64 limit_data = bctl->data.limit;
3644 u64 limit_meta = bctl->meta.limit;
3645 u64 limit_sys = bctl->sys.limit;
3646 u32 count_data = 0;
3647 u32 count_meta = 0;
3648 u32 count_sys = 0;
3649 int chunk_reserved = 0;
3650
3651 path = btrfs_alloc_path();
3652 if (!path) {
3653 ret = -ENOMEM;
3654 goto error;
3655 }
3656
3657 /* zero out stat counters */
3658 spin_lock(&fs_info->balance_lock);
3659 memset(&bctl->stat, 0, sizeof(bctl->stat));
3660 spin_unlock(&fs_info->balance_lock);
3661 again:
3662 if (!counting) {
3663 /*
3664 * The single value limit and min/max limits use the same bytes
3665 * in the
3666 */
3667 bctl->data.limit = limit_data;
3668 bctl->meta.limit = limit_meta;
3669 bctl->sys.limit = limit_sys;
3670 }
3671 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3672 key.offset = (u64)-1;
3673 key.type = BTRFS_CHUNK_ITEM_KEY;
3674
3675 while (1) {
3676 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3677 atomic_read(&fs_info->balance_cancel_req)) {
3678 ret = -ECANCELED;
3679 goto error;
3680 }
3681
3682 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3683 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3684 if (ret < 0) {
3685 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3686 goto error;
3687 }
3688
3689 /*
3690 * this shouldn't happen, it means the last relocate
3691 * failed
3692 */
3693 if (ret == 0)
3694 BUG(); /* FIXME break ? */
3695
3696 ret = btrfs_previous_item(chunk_root, path, 0,
3697 BTRFS_CHUNK_ITEM_KEY);
3698 if (ret) {
3699 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700 ret = 0;
3701 break;
3702 }
3703
3704 leaf = path->nodes[0];
3705 slot = path->slots[0];
3706 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707
3708 if (found_key.objectid != key.objectid) {
3709 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3710 break;
3711 }
3712
3713 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3714 chunk_type = btrfs_chunk_type(leaf, chunk);
3715
3716 if (!counting) {
3717 spin_lock(&fs_info->balance_lock);
3718 bctl->stat.considered++;
3719 spin_unlock(&fs_info->balance_lock);
3720 }
3721
3722 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3723
3724 btrfs_release_path(path);
3725 if (!ret) {
3726 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3727 goto loop;
3728 }
3729
3730 if (counting) {
3731 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3732 spin_lock(&fs_info->balance_lock);
3733 bctl->stat.expected++;
3734 spin_unlock(&fs_info->balance_lock);
3735
3736 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3737 count_data++;
3738 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3739 count_sys++;
3740 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3741 count_meta++;
3742
3743 goto loop;
3744 }
3745
3746 /*
3747 * Apply limit_min filter, no need to check if the LIMITS
3748 * filter is used, limit_min is 0 by default
3749 */
3750 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3751 count_data < bctl->data.limit_min)
3752 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3753 count_meta < bctl->meta.limit_min)
3754 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3755 count_sys < bctl->sys.limit_min)) {
3756 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757 goto loop;
3758 }
3759
3760 if (!chunk_reserved) {
3761 /*
3762 * We may be relocating the only data chunk we have,
3763 * which could potentially end up with losing data's
3764 * raid profile, so lets allocate an empty one in
3765 * advance.
3766 */
3767 ret = btrfs_may_alloc_data_chunk(fs_info,
3768 found_key.offset);
3769 if (ret < 0) {
3770 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3771 goto error;
3772 } else if (ret == 1) {
3773 chunk_reserved = 1;
3774 }
3775 }
3776
3777 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3778 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3779 if (ret == -ENOSPC) {
3780 enospc_errors++;
3781 } else if (ret == -ETXTBSY) {
3782 btrfs_info(fs_info,
3783 "skipping relocation of block group %llu due to active swapfile",
3784 found_key.offset);
3785 ret = 0;
3786 } else if (ret) {
3787 goto error;
3788 } else {
3789 spin_lock(&fs_info->balance_lock);
3790 bctl->stat.completed++;
3791 spin_unlock(&fs_info->balance_lock);
3792 }
3793 loop:
3794 if (found_key.offset == 0)
3795 break;
3796 key.offset = found_key.offset - 1;
3797 }
3798
3799 if (counting) {
3800 btrfs_release_path(path);
3801 counting = false;
3802 goto again;
3803 }
3804 error:
3805 btrfs_free_path(path);
3806 if (enospc_errors) {
3807 btrfs_info(fs_info, "%d enospc errors during balance",
3808 enospc_errors);
3809 if (!ret)
3810 ret = -ENOSPC;
3811 }
3812
3813 return ret;
3814 }
3815
3816 /**
3817 * alloc_profile_is_valid - see if a given profile is valid and reduced
3818 * @flags: profile to validate
3819 * @extended: if true @flags is treated as an extended profile
3820 */
3821 static int alloc_profile_is_valid(u64 flags, int extended)
3822 {
3823 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3824 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3825
3826 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3827
3828 /* 1) check that all other bits are zeroed */
3829 if (flags & ~mask)
3830 return 0;
3831
3832 /* 2) see if profile is reduced */
3833 if (flags == 0)
3834 return !extended; /* "0" is valid for usual profiles */
3835
3836 return has_single_bit_set(flags);
3837 }
3838
3839 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3840 {
3841 /* cancel requested || normal exit path */
3842 return atomic_read(&fs_info->balance_cancel_req) ||
3843 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3844 atomic_read(&fs_info->balance_cancel_req) == 0);
3845 }
3846
3847 /*
3848 * Validate target profile against allowed profiles and return true if it's OK.
3849 * Otherwise print the error message and return false.
3850 */
3851 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3852 const struct btrfs_balance_args *bargs,
3853 u64 allowed, const char *type)
3854 {
3855 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3856 return true;
3857
3858 /* Profile is valid and does not have bits outside of the allowed set */
3859 if (alloc_profile_is_valid(bargs->target, 1) &&
3860 (bargs->target & ~allowed) == 0)
3861 return true;
3862
3863 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3864 type, btrfs_bg_type_to_raid_name(bargs->target));
3865 return false;
3866 }
3867
3868 /*
3869 * Fill @buf with textual description of balance filter flags @bargs, up to
3870 * @size_buf including the terminating null. The output may be trimmed if it
3871 * does not fit into the provided buffer.
3872 */
3873 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3874 u32 size_buf)
3875 {
3876 int ret;
3877 u32 size_bp = size_buf;
3878 char *bp = buf;
3879 u64 flags = bargs->flags;
3880 char tmp_buf[128] = {'\0'};
3881
3882 if (!flags)
3883 return;
3884
3885 #define CHECK_APPEND_NOARG(a) \
3886 do { \
3887 ret = snprintf(bp, size_bp, (a)); \
3888 if (ret < 0 || ret >= size_bp) \
3889 goto out_overflow; \
3890 size_bp -= ret; \
3891 bp += ret; \
3892 } while (0)
3893
3894 #define CHECK_APPEND_1ARG(a, v1) \
3895 do { \
3896 ret = snprintf(bp, size_bp, (a), (v1)); \
3897 if (ret < 0 || ret >= size_bp) \
3898 goto out_overflow; \
3899 size_bp -= ret; \
3900 bp += ret; \
3901 } while (0)
3902
3903 #define CHECK_APPEND_2ARG(a, v1, v2) \
3904 do { \
3905 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3906 if (ret < 0 || ret >= size_bp) \
3907 goto out_overflow; \
3908 size_bp -= ret; \
3909 bp += ret; \
3910 } while (0)
3911
3912 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3913 CHECK_APPEND_1ARG("convert=%s,",
3914 btrfs_bg_type_to_raid_name(bargs->target));
3915
3916 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3917 CHECK_APPEND_NOARG("soft,");
3918
3919 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3920 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3921 sizeof(tmp_buf));
3922 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3923 }
3924
3925 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3926 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3927
3928 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3929 CHECK_APPEND_2ARG("usage=%u..%u,",
3930 bargs->usage_min, bargs->usage_max);
3931
3932 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3933 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3934
3935 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3936 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3937 bargs->pstart, bargs->pend);
3938
3939 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3940 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3941 bargs->vstart, bargs->vend);
3942
3943 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3944 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3945
3946 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3947 CHECK_APPEND_2ARG("limit=%u..%u,",
3948 bargs->limit_min, bargs->limit_max);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3951 CHECK_APPEND_2ARG("stripes=%u..%u,",
3952 bargs->stripes_min, bargs->stripes_max);
3953
3954 #undef CHECK_APPEND_2ARG
3955 #undef CHECK_APPEND_1ARG
3956 #undef CHECK_APPEND_NOARG
3957
3958 out_overflow:
3959
3960 if (size_bp < size_buf)
3961 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3962 else
3963 buf[0] = '\0';
3964 }
3965
3966 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3967 {
3968 u32 size_buf = 1024;
3969 char tmp_buf[192] = {'\0'};
3970 char *buf;
3971 char *bp;
3972 u32 size_bp = size_buf;
3973 int ret;
3974 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3975
3976 buf = kzalloc(size_buf, GFP_KERNEL);
3977 if (!buf)
3978 return;
3979
3980 bp = buf;
3981
3982 #define CHECK_APPEND_1ARG(a, v1) \
3983 do { \
3984 ret = snprintf(bp, size_bp, (a), (v1)); \
3985 if (ret < 0 || ret >= size_bp) \
3986 goto out_overflow; \
3987 size_bp -= ret; \
3988 bp += ret; \
3989 } while (0)
3990
3991 if (bctl->flags & BTRFS_BALANCE_FORCE)
3992 CHECK_APPEND_1ARG("%s", "-f ");
3993
3994 if (bctl->flags & BTRFS_BALANCE_DATA) {
3995 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3996 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3997 }
3998
3999 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4000 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4001 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4002 }
4003
4004 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4005 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4006 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4007 }
4008
4009 #undef CHECK_APPEND_1ARG
4010
4011 out_overflow:
4012
4013 if (size_bp < size_buf)
4014 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4015 btrfs_info(fs_info, "balance: %s %s",
4016 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4017 "resume" : "start", buf);
4018
4019 kfree(buf);
4020 }
4021
4022 /*
4023 * Should be called with balance mutexe held
4024 */
4025 int btrfs_balance(struct btrfs_fs_info *fs_info,
4026 struct btrfs_balance_control *bctl,
4027 struct btrfs_ioctl_balance_args *bargs)
4028 {
4029 u64 meta_target, data_target;
4030 u64 allowed;
4031 int mixed = 0;
4032 int ret;
4033 u64 num_devices;
4034 unsigned seq;
4035 bool reducing_redundancy;
4036 int i;
4037
4038 if (btrfs_fs_closing(fs_info) ||
4039 atomic_read(&fs_info->balance_pause_req) ||
4040 btrfs_should_cancel_balance(fs_info)) {
4041 ret = -EINVAL;
4042 goto out;
4043 }
4044
4045 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4046 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4047 mixed = 1;
4048
4049 /*
4050 * In case of mixed groups both data and meta should be picked,
4051 * and identical options should be given for both of them.
4052 */
4053 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4054 if (mixed && (bctl->flags & allowed)) {
4055 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4056 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4057 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4058 btrfs_err(fs_info,
4059 "balance: mixed groups data and metadata options must be the same");
4060 ret = -EINVAL;
4061 goto out;
4062 }
4063 }
4064
4065 /*
4066 * rw_devices will not change at the moment, device add/delete/replace
4067 * are exclusive
4068 */
4069 num_devices = fs_info->fs_devices->rw_devices;
4070
4071 /*
4072 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073 * special bit for it, to make it easier to distinguish. Thus we need
4074 * to set it manually, or balance would refuse the profile.
4075 */
4076 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078 if (num_devices >= btrfs_raid_array[i].devs_min)
4079 allowed |= btrfs_raid_array[i].bg_flag;
4080
4081 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4082 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4083 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4084 ret = -EINVAL;
4085 goto out;
4086 }
4087
4088 /*
4089 * Allow to reduce metadata or system integrity only if force set for
4090 * profiles with redundancy (copies, parity)
4091 */
4092 allowed = 0;
4093 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4094 if (btrfs_raid_array[i].ncopies >= 2 ||
4095 btrfs_raid_array[i].tolerated_failures >= 1)
4096 allowed |= btrfs_raid_array[i].bg_flag;
4097 }
4098 do {
4099 seq = read_seqbegin(&fs_info->profiles_lock);
4100
4101 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4102 (fs_info->avail_system_alloc_bits & allowed) &&
4103 !(bctl->sys.target & allowed)) ||
4104 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4105 (fs_info->avail_metadata_alloc_bits & allowed) &&
4106 !(bctl->meta.target & allowed)))
4107 reducing_redundancy = true;
4108 else
4109 reducing_redundancy = false;
4110
4111 /* if we're not converting, the target field is uninitialized */
4112 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4113 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4114 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4115 bctl->data.target : fs_info->avail_data_alloc_bits;
4116 } while (read_seqretry(&fs_info->profiles_lock, seq));
4117
4118 if (reducing_redundancy) {
4119 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4120 btrfs_info(fs_info,
4121 "balance: force reducing metadata redundancy");
4122 } else {
4123 btrfs_err(fs_info,
4124 "balance: reduces metadata redundancy, use --force if you want this");
4125 ret = -EINVAL;
4126 goto out;
4127 }
4128 }
4129
4130 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4131 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4132 btrfs_warn(fs_info,
4133 "balance: metadata profile %s has lower redundancy than data profile %s",
4134 btrfs_bg_type_to_raid_name(meta_target),
4135 btrfs_bg_type_to_raid_name(data_target));
4136 }
4137
4138 if (fs_info->send_in_progress) {
4139 btrfs_warn_rl(fs_info,
4140 "cannot run balance while send operations are in progress (%d in progress)",
4141 fs_info->send_in_progress);
4142 ret = -EAGAIN;
4143 goto out;
4144 }
4145
4146 ret = insert_balance_item(fs_info, bctl);
4147 if (ret && ret != -EEXIST)
4148 goto out;
4149
4150 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4151 BUG_ON(ret == -EEXIST);
4152 BUG_ON(fs_info->balance_ctl);
4153 spin_lock(&fs_info->balance_lock);
4154 fs_info->balance_ctl = bctl;
4155 spin_unlock(&fs_info->balance_lock);
4156 } else {
4157 BUG_ON(ret != -EEXIST);
4158 spin_lock(&fs_info->balance_lock);
4159 update_balance_args(bctl);
4160 spin_unlock(&fs_info->balance_lock);
4161 }
4162
4163 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4164 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4165 describe_balance_start_or_resume(fs_info);
4166 mutex_unlock(&fs_info->balance_mutex);
4167
4168 ret = __btrfs_balance(fs_info);
4169
4170 mutex_lock(&fs_info->balance_mutex);
4171 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4172 btrfs_info(fs_info, "balance: paused");
4173 /*
4174 * Balance can be canceled by:
4175 *
4176 * - Regular cancel request
4177 * Then ret == -ECANCELED and balance_cancel_req > 0
4178 *
4179 * - Fatal signal to "btrfs" process
4180 * Either the signal caught by wait_reserve_ticket() and callers
4181 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4182 * got -ECANCELED.
4183 * Either way, in this case balance_cancel_req = 0, and
4184 * ret == -EINTR or ret == -ECANCELED.
4185 *
4186 * So here we only check the return value to catch canceled balance.
4187 */
4188 else if (ret == -ECANCELED || ret == -EINTR)
4189 btrfs_info(fs_info, "balance: canceled");
4190 else
4191 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
4193 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194
4195 if (bargs) {
4196 memset(bargs, 0, sizeof(*bargs));
4197 btrfs_update_ioctl_balance_args(fs_info, bargs);
4198 }
4199
4200 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201 balance_need_close(fs_info)) {
4202 reset_balance_state(fs_info);
4203 btrfs_exclop_finish(fs_info);
4204 }
4205
4206 wake_up(&fs_info->balance_wait_q);
4207
4208 return ret;
4209 out:
4210 if (bctl->flags & BTRFS_BALANCE_RESUME)
4211 reset_balance_state(fs_info);
4212 else
4213 kfree(bctl);
4214 btrfs_exclop_finish(fs_info);
4215
4216 return ret;
4217 }
4218
4219 static int balance_kthread(void *data)
4220 {
4221 struct btrfs_fs_info *fs_info = data;
4222 int ret = 0;
4223
4224 mutex_lock(&fs_info->balance_mutex);
4225 if (fs_info->balance_ctl)
4226 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227 mutex_unlock(&fs_info->balance_mutex);
4228
4229 return ret;
4230 }
4231
4232 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233 {
4234 struct task_struct *tsk;
4235
4236 mutex_lock(&fs_info->balance_mutex);
4237 if (!fs_info->balance_ctl) {
4238 mutex_unlock(&fs_info->balance_mutex);
4239 return 0;
4240 }
4241 mutex_unlock(&fs_info->balance_mutex);
4242
4243 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244 btrfs_info(fs_info, "balance: resume skipped");
4245 return 0;
4246 }
4247
4248 /*
4249 * A ro->rw remount sequence should continue with the paused balance
4250 * regardless of who pauses it, system or the user as of now, so set
4251 * the resume flag.
4252 */
4253 spin_lock(&fs_info->balance_lock);
4254 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255 spin_unlock(&fs_info->balance_lock);
4256
4257 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258 return PTR_ERR_OR_ZERO(tsk);
4259 }
4260
4261 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262 {
4263 struct btrfs_balance_control *bctl;
4264 struct btrfs_balance_item *item;
4265 struct btrfs_disk_balance_args disk_bargs;
4266 struct btrfs_path *path;
4267 struct extent_buffer *leaf;
4268 struct btrfs_key key;
4269 int ret;
4270
4271 path = btrfs_alloc_path();
4272 if (!path)
4273 return -ENOMEM;
4274
4275 key.objectid = BTRFS_BALANCE_OBJECTID;
4276 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277 key.offset = 0;
4278
4279 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280 if (ret < 0)
4281 goto out;
4282 if (ret > 0) { /* ret = -ENOENT; */
4283 ret = 0;
4284 goto out;
4285 }
4286
4287 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288 if (!bctl) {
4289 ret = -ENOMEM;
4290 goto out;
4291 }
4292
4293 leaf = path->nodes[0];
4294 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
4296 bctl->flags = btrfs_balance_flags(leaf, item);
4297 bctl->flags |= BTRFS_BALANCE_RESUME;
4298
4299 btrfs_balance_data(leaf, item, &disk_bargs);
4300 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301 btrfs_balance_meta(leaf, item, &disk_bargs);
4302 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303 btrfs_balance_sys(leaf, item, &disk_bargs);
4304 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
4306 /*
4307 * This should never happen, as the paused balance state is recovered
4308 * during mount without any chance of other exclusive ops to collide.
4309 *
4310 * This gives the exclusive op status to balance and keeps in paused
4311 * state until user intervention (cancel or umount). If the ownership
4312 * cannot be assigned, show a message but do not fail. The balance
4313 * is in a paused state and must have fs_info::balance_ctl properly
4314 * set up.
4315 */
4316 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4317 btrfs_warn(fs_info,
4318 "balance: cannot set exclusive op status, resume manually");
4319
4320 mutex_lock(&fs_info->balance_mutex);
4321 BUG_ON(fs_info->balance_ctl);
4322 spin_lock(&fs_info->balance_lock);
4323 fs_info->balance_ctl = bctl;
4324 spin_unlock(&fs_info->balance_lock);
4325 mutex_unlock(&fs_info->balance_mutex);
4326 out:
4327 btrfs_free_path(path);
4328 return ret;
4329 }
4330
4331 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4332 {
4333 int ret = 0;
4334
4335 mutex_lock(&fs_info->balance_mutex);
4336 if (!fs_info->balance_ctl) {
4337 mutex_unlock(&fs_info->balance_mutex);
4338 return -ENOTCONN;
4339 }
4340
4341 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4342 atomic_inc(&fs_info->balance_pause_req);
4343 mutex_unlock(&fs_info->balance_mutex);
4344
4345 wait_event(fs_info->balance_wait_q,
4346 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4347
4348 mutex_lock(&fs_info->balance_mutex);
4349 /* we are good with balance_ctl ripped off from under us */
4350 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351 atomic_dec(&fs_info->balance_pause_req);
4352 } else {
4353 ret = -ENOTCONN;
4354 }
4355
4356 mutex_unlock(&fs_info->balance_mutex);
4357 return ret;
4358 }
4359
4360 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4361 {
4362 mutex_lock(&fs_info->balance_mutex);
4363 if (!fs_info->balance_ctl) {
4364 mutex_unlock(&fs_info->balance_mutex);
4365 return -ENOTCONN;
4366 }
4367
4368 /*
4369 * A paused balance with the item stored on disk can be resumed at
4370 * mount time if the mount is read-write. Otherwise it's still paused
4371 * and we must not allow cancelling as it deletes the item.
4372 */
4373 if (sb_rdonly(fs_info->sb)) {
4374 mutex_unlock(&fs_info->balance_mutex);
4375 return -EROFS;
4376 }
4377
4378 atomic_inc(&fs_info->balance_cancel_req);
4379 /*
4380 * if we are running just wait and return, balance item is
4381 * deleted in btrfs_balance in this case
4382 */
4383 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4384 mutex_unlock(&fs_info->balance_mutex);
4385 wait_event(fs_info->balance_wait_q,
4386 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4387 mutex_lock(&fs_info->balance_mutex);
4388 } else {
4389 mutex_unlock(&fs_info->balance_mutex);
4390 /*
4391 * Lock released to allow other waiters to continue, we'll
4392 * reexamine the status again.
4393 */
4394 mutex_lock(&fs_info->balance_mutex);
4395
4396 if (fs_info->balance_ctl) {
4397 reset_balance_state(fs_info);
4398 btrfs_exclop_finish(fs_info);
4399 btrfs_info(fs_info, "balance: canceled");
4400 }
4401 }
4402
4403 BUG_ON(fs_info->balance_ctl ||
4404 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4405 atomic_dec(&fs_info->balance_cancel_req);
4406 mutex_unlock(&fs_info->balance_mutex);
4407 return 0;
4408 }
4409
4410 int btrfs_uuid_scan_kthread(void *data)
4411 {
4412 struct btrfs_fs_info *fs_info = data;
4413 struct btrfs_root *root = fs_info->tree_root;
4414 struct btrfs_key key;
4415 struct btrfs_path *path = NULL;
4416 int ret = 0;
4417 struct extent_buffer *eb;
4418 int slot;
4419 struct btrfs_root_item root_item;
4420 u32 item_size;
4421 struct btrfs_trans_handle *trans = NULL;
4422 bool closing = false;
4423
4424 path = btrfs_alloc_path();
4425 if (!path) {
4426 ret = -ENOMEM;
4427 goto out;
4428 }
4429
4430 key.objectid = 0;
4431 key.type = BTRFS_ROOT_ITEM_KEY;
4432 key.offset = 0;
4433
4434 while (1) {
4435 if (btrfs_fs_closing(fs_info)) {
4436 closing = true;
4437 break;
4438 }
4439 ret = btrfs_search_forward(root, &key, path,
4440 BTRFS_OLDEST_GENERATION);
4441 if (ret) {
4442 if (ret > 0)
4443 ret = 0;
4444 break;
4445 }
4446
4447 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4448 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4449 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4450 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4451 goto skip;
4452
4453 eb = path->nodes[0];
4454 slot = path->slots[0];
4455 item_size = btrfs_item_size_nr(eb, slot);
4456 if (item_size < sizeof(root_item))
4457 goto skip;
4458
4459 read_extent_buffer(eb, &root_item,
4460 btrfs_item_ptr_offset(eb, slot),
4461 (int)sizeof(root_item));
4462 if (btrfs_root_refs(&root_item) == 0)
4463 goto skip;
4464
4465 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4466 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4467 if (trans)
4468 goto update_tree;
4469
4470 btrfs_release_path(path);
4471 /*
4472 * 1 - subvol uuid item
4473 * 1 - received_subvol uuid item
4474 */
4475 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4476 if (IS_ERR(trans)) {
4477 ret = PTR_ERR(trans);
4478 break;
4479 }
4480 continue;
4481 } else {
4482 goto skip;
4483 }
4484 update_tree:
4485 btrfs_release_path(path);
4486 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4487 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4488 BTRFS_UUID_KEY_SUBVOL,
4489 key.objectid);
4490 if (ret < 0) {
4491 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4492 ret);
4493 break;
4494 }
4495 }
4496
4497 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4498 ret = btrfs_uuid_tree_add(trans,
4499 root_item.received_uuid,
4500 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4501 key.objectid);
4502 if (ret < 0) {
4503 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4504 ret);
4505 break;
4506 }
4507 }
4508
4509 skip:
4510 btrfs_release_path(path);
4511 if (trans) {
4512 ret = btrfs_end_transaction(trans);
4513 trans = NULL;
4514 if (ret)
4515 break;
4516 }
4517
4518 if (key.offset < (u64)-1) {
4519 key.offset++;
4520 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4521 key.offset = 0;
4522 key.type = BTRFS_ROOT_ITEM_KEY;
4523 } else if (key.objectid < (u64)-1) {
4524 key.offset = 0;
4525 key.type = BTRFS_ROOT_ITEM_KEY;
4526 key.objectid++;
4527 } else {
4528 break;
4529 }
4530 cond_resched();
4531 }
4532
4533 out:
4534 btrfs_free_path(path);
4535 if (trans && !IS_ERR(trans))
4536 btrfs_end_transaction(trans);
4537 if (ret)
4538 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4539 else if (!closing)
4540 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4541 up(&fs_info->uuid_tree_rescan_sem);
4542 return 0;
4543 }
4544
4545 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4546 {
4547 struct btrfs_trans_handle *trans;
4548 struct btrfs_root *tree_root = fs_info->tree_root;
4549 struct btrfs_root *uuid_root;
4550 struct task_struct *task;
4551 int ret;
4552
4553 /*
4554 * 1 - root node
4555 * 1 - root item
4556 */
4557 trans = btrfs_start_transaction(tree_root, 2);
4558 if (IS_ERR(trans))
4559 return PTR_ERR(trans);
4560
4561 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4562 if (IS_ERR(uuid_root)) {
4563 ret = PTR_ERR(uuid_root);
4564 btrfs_abort_transaction(trans, ret);
4565 btrfs_end_transaction(trans);
4566 return ret;
4567 }
4568
4569 fs_info->uuid_root = uuid_root;
4570
4571 ret = btrfs_commit_transaction(trans);
4572 if (ret)
4573 return ret;
4574
4575 down(&fs_info->uuid_tree_rescan_sem);
4576 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4577 if (IS_ERR(task)) {
4578 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4579 btrfs_warn(fs_info, "failed to start uuid_scan task");
4580 up(&fs_info->uuid_tree_rescan_sem);
4581 return PTR_ERR(task);
4582 }
4583
4584 return 0;
4585 }
4586
4587 /*
4588 * shrinking a device means finding all of the device extents past
4589 * the new size, and then following the back refs to the chunks.
4590 * The chunk relocation code actually frees the device extent
4591 */
4592 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4593 {
4594 struct btrfs_fs_info *fs_info = device->fs_info;
4595 struct btrfs_root *root = fs_info->dev_root;
4596 struct btrfs_trans_handle *trans;
4597 struct btrfs_dev_extent *dev_extent = NULL;
4598 struct btrfs_path *path;
4599 u64 length;
4600 u64 chunk_offset;
4601 int ret;
4602 int slot;
4603 int failed = 0;
4604 bool retried = false;
4605 struct extent_buffer *l;
4606 struct btrfs_key key;
4607 struct btrfs_super_block *super_copy = fs_info->super_copy;
4608 u64 old_total = btrfs_super_total_bytes(super_copy);
4609 u64 old_size = btrfs_device_get_total_bytes(device);
4610 u64 diff;
4611 u64 start;
4612
4613 new_size = round_down(new_size, fs_info->sectorsize);
4614 start = new_size;
4615 diff = round_down(old_size - new_size, fs_info->sectorsize);
4616
4617 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4618 return -EINVAL;
4619
4620 path = btrfs_alloc_path();
4621 if (!path)
4622 return -ENOMEM;
4623
4624 path->reada = READA_BACK;
4625
4626 trans = btrfs_start_transaction(root, 0);
4627 if (IS_ERR(trans)) {
4628 btrfs_free_path(path);
4629 return PTR_ERR(trans);
4630 }
4631
4632 mutex_lock(&fs_info->chunk_mutex);
4633
4634 btrfs_device_set_total_bytes(device, new_size);
4635 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4636 device->fs_devices->total_rw_bytes -= diff;
4637 atomic64_sub(diff, &fs_info->free_chunk_space);
4638 }
4639
4640 /*
4641 * Once the device's size has been set to the new size, ensure all
4642 * in-memory chunks are synced to disk so that the loop below sees them
4643 * and relocates them accordingly.
4644 */
4645 if (contains_pending_extent(device, &start, diff)) {
4646 mutex_unlock(&fs_info->chunk_mutex);
4647 ret = btrfs_commit_transaction(trans);
4648 if (ret)
4649 goto done;
4650 } else {
4651 mutex_unlock(&fs_info->chunk_mutex);
4652 btrfs_end_transaction(trans);
4653 }
4654
4655 again:
4656 key.objectid = device->devid;
4657 key.offset = (u64)-1;
4658 key.type = BTRFS_DEV_EXTENT_KEY;
4659
4660 do {
4661 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4662 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4663 if (ret < 0) {
4664 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4665 goto done;
4666 }
4667
4668 ret = btrfs_previous_item(root, path, 0, key.type);
4669 if (ret)
4670 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4671 if (ret < 0)
4672 goto done;
4673 if (ret) {
4674 ret = 0;
4675 btrfs_release_path(path);
4676 break;
4677 }
4678
4679 l = path->nodes[0];
4680 slot = path->slots[0];
4681 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4682
4683 if (key.objectid != device->devid) {
4684 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4685 btrfs_release_path(path);
4686 break;
4687 }
4688
4689 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4690 length = btrfs_dev_extent_length(l, dev_extent);
4691
4692 if (key.offset + length <= new_size) {
4693 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4694 btrfs_release_path(path);
4695 break;
4696 }
4697
4698 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4699 btrfs_release_path(path);
4700
4701 /*
4702 * We may be relocating the only data chunk we have,
4703 * which could potentially end up with losing data's
4704 * raid profile, so lets allocate an empty one in
4705 * advance.
4706 */
4707 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4708 if (ret < 0) {
4709 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4710 goto done;
4711 }
4712
4713 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4714 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4715 if (ret == -ENOSPC) {
4716 failed++;
4717 } else if (ret) {
4718 if (ret == -ETXTBSY) {
4719 btrfs_warn(fs_info,
4720 "could not shrink block group %llu due to active swapfile",
4721 chunk_offset);
4722 }
4723 goto done;
4724 }
4725 } while (key.offset-- > 0);
4726
4727 if (failed && !retried) {
4728 failed = 0;
4729 retried = true;
4730 goto again;
4731 } else if (failed && retried) {
4732 ret = -ENOSPC;
4733 goto done;
4734 }
4735
4736 /* Shrinking succeeded, else we would be at "done". */
4737 trans = btrfs_start_transaction(root, 0);
4738 if (IS_ERR(trans)) {
4739 ret = PTR_ERR(trans);
4740 goto done;
4741 }
4742
4743 mutex_lock(&fs_info->chunk_mutex);
4744 /* Clear all state bits beyond the shrunk device size */
4745 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4746 CHUNK_STATE_MASK);
4747
4748 btrfs_device_set_disk_total_bytes(device, new_size);
4749 if (list_empty(&device->post_commit_list))
4750 list_add_tail(&device->post_commit_list,
4751 &trans->transaction->dev_update_list);
4752
4753 WARN_ON(diff > old_total);
4754 btrfs_set_super_total_bytes(super_copy,
4755 round_down(old_total - diff, fs_info->sectorsize));
4756 mutex_unlock(&fs_info->chunk_mutex);
4757
4758 /* Now btrfs_update_device() will change the on-disk size. */
4759 ret = btrfs_update_device(trans, device);
4760 if (ret < 0) {
4761 btrfs_abort_transaction(trans, ret);
4762 btrfs_end_transaction(trans);
4763 } else {
4764 ret = btrfs_commit_transaction(trans);
4765 }
4766 done:
4767 btrfs_free_path(path);
4768 if (ret) {
4769 mutex_lock(&fs_info->chunk_mutex);
4770 btrfs_device_set_total_bytes(device, old_size);
4771 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4772 device->fs_devices->total_rw_bytes += diff;
4773 atomic64_add(diff, &fs_info->free_chunk_space);
4774 mutex_unlock(&fs_info->chunk_mutex);
4775 }
4776 return ret;
4777 }
4778
4779 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4780 struct btrfs_key *key,
4781 struct btrfs_chunk *chunk, int item_size)
4782 {
4783 struct btrfs_super_block *super_copy = fs_info->super_copy;
4784 struct btrfs_disk_key disk_key;
4785 u32 array_size;
4786 u8 *ptr;
4787
4788 mutex_lock(&fs_info->chunk_mutex);
4789 array_size = btrfs_super_sys_array_size(super_copy);
4790 if (array_size + item_size + sizeof(disk_key)
4791 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4792 mutex_unlock(&fs_info->chunk_mutex);
4793 return -EFBIG;
4794 }
4795
4796 ptr = super_copy->sys_chunk_array + array_size;
4797 btrfs_cpu_key_to_disk(&disk_key, key);
4798 memcpy(ptr, &disk_key, sizeof(disk_key));
4799 ptr += sizeof(disk_key);
4800 memcpy(ptr, chunk, item_size);
4801 item_size += sizeof(disk_key);
4802 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4803 mutex_unlock(&fs_info->chunk_mutex);
4804
4805 return 0;
4806 }
4807
4808 /*
4809 * sort the devices in descending order by max_avail, total_avail
4810 */
4811 static int btrfs_cmp_device_info(const void *a, const void *b)
4812 {
4813 const struct btrfs_device_info *di_a = a;
4814 const struct btrfs_device_info *di_b = b;
4815
4816 if (di_a->max_avail > di_b->max_avail)
4817 return -1;
4818 if (di_a->max_avail < di_b->max_avail)
4819 return 1;
4820 if (di_a->total_avail > di_b->total_avail)
4821 return -1;
4822 if (di_a->total_avail < di_b->total_avail)
4823 return 1;
4824 return 0;
4825 }
4826
4827 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4828 {
4829 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4830 return;
4831
4832 btrfs_set_fs_incompat(info, RAID56);
4833 }
4834
4835 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4836 {
4837 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4838 return;
4839
4840 btrfs_set_fs_incompat(info, RAID1C34);
4841 }
4842
4843 /*
4844 * Structure used internally for __btrfs_alloc_chunk() function.
4845 * Wraps needed parameters.
4846 */
4847 struct alloc_chunk_ctl {
4848 u64 start;
4849 u64 type;
4850 /* Total number of stripes to allocate */
4851 int num_stripes;
4852 /* sub_stripes info for map */
4853 int sub_stripes;
4854 /* Stripes per device */
4855 int dev_stripes;
4856 /* Maximum number of devices to use */
4857 int devs_max;
4858 /* Minimum number of devices to use */
4859 int devs_min;
4860 /* ndevs has to be a multiple of this */
4861 int devs_increment;
4862 /* Number of copies */
4863 int ncopies;
4864 /* Number of stripes worth of bytes to store parity information */
4865 int nparity;
4866 u64 max_stripe_size;
4867 u64 max_chunk_size;
4868 u64 dev_extent_min;
4869 u64 stripe_size;
4870 u64 chunk_size;
4871 int ndevs;
4872 };
4873
4874 static void init_alloc_chunk_ctl_policy_regular(
4875 struct btrfs_fs_devices *fs_devices,
4876 struct alloc_chunk_ctl *ctl)
4877 {
4878 u64 type = ctl->type;
4879
4880 if (type & BTRFS_BLOCK_GROUP_DATA) {
4881 ctl->max_stripe_size = SZ_1G;
4882 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4883 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4884 /* For larger filesystems, use larger metadata chunks */
4885 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4886 ctl->max_stripe_size = SZ_1G;
4887 else
4888 ctl->max_stripe_size = SZ_256M;
4889 ctl->max_chunk_size = ctl->max_stripe_size;
4890 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4891 ctl->max_stripe_size = SZ_32M;
4892 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4893 ctl->devs_max = min_t(int, ctl->devs_max,
4894 BTRFS_MAX_DEVS_SYS_CHUNK);
4895 } else {
4896 BUG();
4897 }
4898
4899 /* We don't want a chunk larger than 10% of writable space */
4900 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4901 ctl->max_chunk_size);
4902 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4903 }
4904
4905 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4906 struct alloc_chunk_ctl *ctl)
4907 {
4908 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4909
4910 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4911 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4912 ctl->devs_max = btrfs_raid_array[index].devs_max;
4913 if (!ctl->devs_max)
4914 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4915 ctl->devs_min = btrfs_raid_array[index].devs_min;
4916 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4917 ctl->ncopies = btrfs_raid_array[index].ncopies;
4918 ctl->nparity = btrfs_raid_array[index].nparity;
4919 ctl->ndevs = 0;
4920
4921 switch (fs_devices->chunk_alloc_policy) {
4922 case BTRFS_CHUNK_ALLOC_REGULAR:
4923 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4924 break;
4925 default:
4926 BUG();
4927 }
4928 }
4929
4930 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4931 struct alloc_chunk_ctl *ctl,
4932 struct btrfs_device_info *devices_info)
4933 {
4934 struct btrfs_fs_info *info = fs_devices->fs_info;
4935 struct btrfs_device *device;
4936 u64 total_avail;
4937 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4938 int ret;
4939 int ndevs = 0;
4940 u64 max_avail;
4941 u64 dev_offset;
4942
4943 /*
4944 * in the first pass through the devices list, we gather information
4945 * about the available holes on each device.
4946 */
4947 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4948 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4949 WARN(1, KERN_ERR
4950 "BTRFS: read-only device in alloc_list\n");
4951 continue;
4952 }
4953
4954 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4955 &device->dev_state) ||
4956 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4957 continue;
4958
4959 if (device->total_bytes > device->bytes_used)
4960 total_avail = device->total_bytes - device->bytes_used;
4961 else
4962 total_avail = 0;
4963
4964 /* If there is no space on this device, skip it. */
4965 if (total_avail < ctl->dev_extent_min)
4966 continue;
4967
4968 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4969 &max_avail);
4970 if (ret && ret != -ENOSPC)
4971 return ret;
4972
4973 if (ret == 0)
4974 max_avail = dev_extent_want;
4975
4976 if (max_avail < ctl->dev_extent_min) {
4977 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4978 btrfs_debug(info,
4979 "%s: devid %llu has no free space, have=%llu want=%llu",
4980 __func__, device->devid, max_avail,
4981 ctl->dev_extent_min);
4982 continue;
4983 }
4984
4985 if (ndevs == fs_devices->rw_devices) {
4986 WARN(1, "%s: found more than %llu devices\n",
4987 __func__, fs_devices->rw_devices);
4988 break;
4989 }
4990 devices_info[ndevs].dev_offset = dev_offset;
4991 devices_info[ndevs].max_avail = max_avail;
4992 devices_info[ndevs].total_avail = total_avail;
4993 devices_info[ndevs].dev = device;
4994 ++ndevs;
4995 }
4996 ctl->ndevs = ndevs;
4997
4998 /*
4999 * now sort the devices by hole size / available space
5000 */
5001 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5002 btrfs_cmp_device_info, NULL);
5003
5004 return 0;
5005 }
5006
5007 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5008 struct btrfs_device_info *devices_info)
5009 {
5010 /* Number of stripes that count for block group size */
5011 int data_stripes;
5012
5013 /*
5014 * The primary goal is to maximize the number of stripes, so use as
5015 * many devices as possible, even if the stripes are not maximum sized.
5016 *
5017 * The DUP profile stores more than one stripe per device, the
5018 * max_avail is the total size so we have to adjust.
5019 */
5020 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5021 ctl->dev_stripes);
5022 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5023
5024 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5025 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5026
5027 /*
5028 * Use the number of data stripes to figure out how big this chunk is
5029 * really going to be in terms of logical address space, and compare
5030 * that answer with the max chunk size. If it's higher, we try to
5031 * reduce stripe_size.
5032 */
5033 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5034 /*
5035 * Reduce stripe_size, round it up to a 16MB boundary again and
5036 * then use it, unless it ends up being even bigger than the
5037 * previous value we had already.
5038 */
5039 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5040 data_stripes), SZ_16M),
5041 ctl->stripe_size);
5042 }
5043
5044 /* Align to BTRFS_STRIPE_LEN */
5045 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5046 ctl->chunk_size = ctl->stripe_size * data_stripes;
5047
5048 return 0;
5049 }
5050
5051 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5052 struct alloc_chunk_ctl *ctl,
5053 struct btrfs_device_info *devices_info)
5054 {
5055 struct btrfs_fs_info *info = fs_devices->fs_info;
5056
5057 /*
5058 * Round down to number of usable stripes, devs_increment can be any
5059 * number so we can't use round_down() that requires power of 2, while
5060 * rounddown is safe.
5061 */
5062 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5063
5064 if (ctl->ndevs < ctl->devs_min) {
5065 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5066 btrfs_debug(info,
5067 "%s: not enough devices with free space: have=%d minimum required=%d",
5068 __func__, ctl->ndevs, ctl->devs_min);
5069 }
5070 return -ENOSPC;
5071 }
5072
5073 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5074
5075 switch (fs_devices->chunk_alloc_policy) {
5076 case BTRFS_CHUNK_ALLOC_REGULAR:
5077 return decide_stripe_size_regular(ctl, devices_info);
5078 default:
5079 BUG();
5080 }
5081 }
5082
5083 static int create_chunk(struct btrfs_trans_handle *trans,
5084 struct alloc_chunk_ctl *ctl,
5085 struct btrfs_device_info *devices_info)
5086 {
5087 struct btrfs_fs_info *info = trans->fs_info;
5088 struct map_lookup *map = NULL;
5089 struct extent_map_tree *em_tree;
5090 struct extent_map *em;
5091 u64 start = ctl->start;
5092 u64 type = ctl->type;
5093 int ret;
5094 int i;
5095 int j;
5096
5097 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5098 if (!map)
5099 return -ENOMEM;
5100 map->num_stripes = ctl->num_stripes;
5101
5102 for (i = 0; i < ctl->ndevs; ++i) {
5103 for (j = 0; j < ctl->dev_stripes; ++j) {
5104 int s = i * ctl->dev_stripes + j;
5105 map->stripes[s].dev = devices_info[i].dev;
5106 map->stripes[s].physical = devices_info[i].dev_offset +
5107 j * ctl->stripe_size;
5108 }
5109 }
5110 map->stripe_len = BTRFS_STRIPE_LEN;
5111 map->io_align = BTRFS_STRIPE_LEN;
5112 map->io_width = BTRFS_STRIPE_LEN;
5113 map->type = type;
5114 map->sub_stripes = ctl->sub_stripes;
5115
5116 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5117
5118 em = alloc_extent_map();
5119 if (!em) {
5120 kfree(map);
5121 return -ENOMEM;
5122 }
5123 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5124 em->map_lookup = map;
5125 em->start = start;
5126 em->len = ctl->chunk_size;
5127 em->block_start = 0;
5128 em->block_len = em->len;
5129 em->orig_block_len = ctl->stripe_size;
5130
5131 em_tree = &info->mapping_tree;
5132 write_lock(&em_tree->lock);
5133 ret = add_extent_mapping(em_tree, em, 0);
5134 if (ret) {
5135 write_unlock(&em_tree->lock);
5136 free_extent_map(em);
5137 return ret;
5138 }
5139 write_unlock(&em_tree->lock);
5140
5141 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5142 if (ret)
5143 goto error_del_extent;
5144
5145 for (i = 0; i < map->num_stripes; i++) {
5146 struct btrfs_device *dev = map->stripes[i].dev;
5147
5148 btrfs_device_set_bytes_used(dev,
5149 dev->bytes_used + ctl->stripe_size);
5150 if (list_empty(&dev->post_commit_list))
5151 list_add_tail(&dev->post_commit_list,
5152 &trans->transaction->dev_update_list);
5153 }
5154
5155 atomic64_sub(ctl->stripe_size * map->num_stripes,
5156 &info->free_chunk_space);
5157
5158 free_extent_map(em);
5159 check_raid56_incompat_flag(info, type);
5160 check_raid1c34_incompat_flag(info, type);
5161
5162 return 0;
5163
5164 error_del_extent:
5165 write_lock(&em_tree->lock);
5166 remove_extent_mapping(em_tree, em);
5167 write_unlock(&em_tree->lock);
5168
5169 /* One for our allocation */
5170 free_extent_map(em);
5171 /* One for the tree reference */
5172 free_extent_map(em);
5173
5174 return ret;
5175 }
5176
5177 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5178 {
5179 struct btrfs_fs_info *info = trans->fs_info;
5180 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5181 struct btrfs_device_info *devices_info = NULL;
5182 struct alloc_chunk_ctl ctl;
5183 int ret;
5184
5185 lockdep_assert_held(&info->chunk_mutex);
5186
5187 if (!alloc_profile_is_valid(type, 0)) {
5188 ASSERT(0);
5189 return -EINVAL;
5190 }
5191
5192 if (list_empty(&fs_devices->alloc_list)) {
5193 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5194 btrfs_debug(info, "%s: no writable device", __func__);
5195 return -ENOSPC;
5196 }
5197
5198 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5199 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5200 ASSERT(0);
5201 return -EINVAL;
5202 }
5203
5204 ctl.start = find_next_chunk(info);
5205 ctl.type = type;
5206 init_alloc_chunk_ctl(fs_devices, &ctl);
5207
5208 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5209 GFP_NOFS);
5210 if (!devices_info)
5211 return -ENOMEM;
5212
5213 ret = gather_device_info(fs_devices, &ctl, devices_info);
5214 if (ret < 0)
5215 goto out;
5216
5217 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5218 if (ret < 0)
5219 goto out;
5220
5221 ret = create_chunk(trans, &ctl, devices_info);
5222
5223 out:
5224 kfree(devices_info);
5225 return ret;
5226 }
5227
5228 /*
5229 * Chunk allocation falls into two parts. The first part does work
5230 * that makes the new allocated chunk usable, but does not do any operation
5231 * that modifies the chunk tree. The second part does the work that
5232 * requires modifying the chunk tree. This division is important for the
5233 * bootstrap process of adding storage to a seed btrfs.
5234 */
5235 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5236 u64 chunk_offset, u64 chunk_size)
5237 {
5238 struct btrfs_fs_info *fs_info = trans->fs_info;
5239 struct btrfs_root *extent_root = fs_info->extent_root;
5240 struct btrfs_root *chunk_root = fs_info->chunk_root;
5241 struct btrfs_key key;
5242 struct btrfs_device *device;
5243 struct btrfs_chunk *chunk;
5244 struct btrfs_stripe *stripe;
5245 struct extent_map *em;
5246 struct map_lookup *map;
5247 size_t item_size;
5248 u64 dev_offset;
5249 u64 stripe_size;
5250 int i = 0;
5251 int ret = 0;
5252
5253 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5254 if (IS_ERR(em))
5255 return PTR_ERR(em);
5256
5257 map = em->map_lookup;
5258 item_size = btrfs_chunk_item_size(map->num_stripes);
5259 stripe_size = em->orig_block_len;
5260
5261 chunk = kzalloc(item_size, GFP_NOFS);
5262 if (!chunk) {
5263 ret = -ENOMEM;
5264 goto out;
5265 }
5266
5267 /*
5268 * Take the device list mutex to prevent races with the final phase of
5269 * a device replace operation that replaces the device object associated
5270 * with the map's stripes, because the device object's id can change
5271 * at any time during that final phase of the device replace operation
5272 * (dev-replace.c:btrfs_dev_replace_finishing()).
5273 */
5274 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5275 for (i = 0; i < map->num_stripes; i++) {
5276 device = map->stripes[i].dev;
5277 dev_offset = map->stripes[i].physical;
5278
5279 ret = btrfs_update_device(trans, device);
5280 if (ret)
5281 break;
5282 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5283 dev_offset, stripe_size);
5284 if (ret)
5285 break;
5286 }
5287 if (ret) {
5288 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5289 goto out;
5290 }
5291
5292 stripe = &chunk->stripe;
5293 for (i = 0; i < map->num_stripes; i++) {
5294 device = map->stripes[i].dev;
5295 dev_offset = map->stripes[i].physical;
5296
5297 btrfs_set_stack_stripe_devid(stripe, device->devid);
5298 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5299 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5300 stripe++;
5301 }
5302 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5303
5304 btrfs_set_stack_chunk_length(chunk, chunk_size);
5305 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5306 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5307 btrfs_set_stack_chunk_type(chunk, map->type);
5308 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5309 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5310 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5311 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5312 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5313
5314 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5315 key.type = BTRFS_CHUNK_ITEM_KEY;
5316 key.offset = chunk_offset;
5317
5318 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5319 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5320 /*
5321 * TODO: Cleanup of inserted chunk root in case of
5322 * failure.
5323 */
5324 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5325 }
5326
5327 out:
5328 kfree(chunk);
5329 free_extent_map(em);
5330 return ret;
5331 }
5332
5333 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5334 {
5335 struct btrfs_fs_info *fs_info = trans->fs_info;
5336 u64 alloc_profile;
5337 int ret;
5338
5339 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5340 ret = btrfs_alloc_chunk(trans, alloc_profile);
5341 if (ret)
5342 return ret;
5343
5344 alloc_profile = btrfs_system_alloc_profile(fs_info);
5345 ret = btrfs_alloc_chunk(trans, alloc_profile);
5346 return ret;
5347 }
5348
5349 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5350 {
5351 const int index = btrfs_bg_flags_to_raid_index(map->type);
5352
5353 return btrfs_raid_array[index].tolerated_failures;
5354 }
5355
5356 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5357 {
5358 struct extent_map *em;
5359 struct map_lookup *map;
5360 int readonly = 0;
5361 int miss_ndevs = 0;
5362 int i;
5363
5364 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5365 if (IS_ERR(em))
5366 return 1;
5367
5368 map = em->map_lookup;
5369 for (i = 0; i < map->num_stripes; i++) {
5370 if (test_bit(BTRFS_DEV_STATE_MISSING,
5371 &map->stripes[i].dev->dev_state)) {
5372 miss_ndevs++;
5373 continue;
5374 }
5375 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5376 &map->stripes[i].dev->dev_state)) {
5377 readonly = 1;
5378 goto end;
5379 }
5380 }
5381
5382 /*
5383 * If the number of missing devices is larger than max errors,
5384 * we can not write the data into that chunk successfully, so
5385 * set it readonly.
5386 */
5387 if (miss_ndevs > btrfs_chunk_max_errors(map))
5388 readonly = 1;
5389 end:
5390 free_extent_map(em);
5391 return readonly;
5392 }
5393
5394 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5395 {
5396 struct extent_map *em;
5397
5398 while (1) {
5399 write_lock(&tree->lock);
5400 em = lookup_extent_mapping(tree, 0, (u64)-1);
5401 if (em)
5402 remove_extent_mapping(tree, em);
5403 write_unlock(&tree->lock);
5404 if (!em)
5405 break;
5406 /* once for us */
5407 free_extent_map(em);
5408 /* once for the tree */
5409 free_extent_map(em);
5410 }
5411 }
5412
5413 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5414 {
5415 struct extent_map *em;
5416 struct map_lookup *map;
5417 int ret;
5418
5419 em = btrfs_get_chunk_map(fs_info, logical, len);
5420 if (IS_ERR(em))
5421 /*
5422 * We could return errors for these cases, but that could get
5423 * ugly and we'd probably do the same thing which is just not do
5424 * anything else and exit, so return 1 so the callers don't try
5425 * to use other copies.
5426 */
5427 return 1;
5428
5429 map = em->map_lookup;
5430 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5431 ret = map->num_stripes;
5432 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5433 ret = map->sub_stripes;
5434 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5435 ret = 2;
5436 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5437 /*
5438 * There could be two corrupted data stripes, we need
5439 * to loop retry in order to rebuild the correct data.
5440 *
5441 * Fail a stripe at a time on every retry except the
5442 * stripe under reconstruction.
5443 */
5444 ret = map->num_stripes;
5445 else
5446 ret = 1;
5447 free_extent_map(em);
5448
5449 down_read(&fs_info->dev_replace.rwsem);
5450 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5451 fs_info->dev_replace.tgtdev)
5452 ret++;
5453 up_read(&fs_info->dev_replace.rwsem);
5454
5455 return ret;
5456 }
5457
5458 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5459 u64 logical)
5460 {
5461 struct extent_map *em;
5462 struct map_lookup *map;
5463 unsigned long len = fs_info->sectorsize;
5464
5465 em = btrfs_get_chunk_map(fs_info, logical, len);
5466
5467 if (!WARN_ON(IS_ERR(em))) {
5468 map = em->map_lookup;
5469 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5470 len = map->stripe_len * nr_data_stripes(map);
5471 free_extent_map(em);
5472 }
5473 return len;
5474 }
5475
5476 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5477 {
5478 struct extent_map *em;
5479 struct map_lookup *map;
5480 int ret = 0;
5481
5482 em = btrfs_get_chunk_map(fs_info, logical, len);
5483
5484 if(!WARN_ON(IS_ERR(em))) {
5485 map = em->map_lookup;
5486 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5487 ret = 1;
5488 free_extent_map(em);
5489 }
5490 return ret;
5491 }
5492
5493 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5494 struct map_lookup *map, int first,
5495 int dev_replace_is_ongoing)
5496 {
5497 int i;
5498 int num_stripes;
5499 int preferred_mirror;
5500 int tolerance;
5501 struct btrfs_device *srcdev;
5502
5503 ASSERT((map->type &
5504 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5505
5506 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5507 num_stripes = map->sub_stripes;
5508 else
5509 num_stripes = map->num_stripes;
5510
5511 switch (fs_info->fs_devices->read_policy) {
5512 default:
5513 /* Shouldn't happen, just warn and use pid instead of failing */
5514 btrfs_warn_rl(fs_info,
5515 "unknown read_policy type %u, reset to pid",
5516 fs_info->fs_devices->read_policy);
5517 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5518 fallthrough;
5519 case BTRFS_READ_POLICY_PID:
5520 preferred_mirror = first + (current->pid % num_stripes);
5521 break;
5522 }
5523
5524 if (dev_replace_is_ongoing &&
5525 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5526 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5527 srcdev = fs_info->dev_replace.srcdev;
5528 else
5529 srcdev = NULL;
5530
5531 /*
5532 * try to avoid the drive that is the source drive for a
5533 * dev-replace procedure, only choose it if no other non-missing
5534 * mirror is available
5535 */
5536 for (tolerance = 0; tolerance < 2; tolerance++) {
5537 if (map->stripes[preferred_mirror].dev->bdev &&
5538 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5539 return preferred_mirror;
5540 for (i = first; i < first + num_stripes; i++) {
5541 if (map->stripes[i].dev->bdev &&
5542 (tolerance || map->stripes[i].dev != srcdev))
5543 return i;
5544 }
5545 }
5546
5547 /* we couldn't find one that doesn't fail. Just return something
5548 * and the io error handling code will clean up eventually
5549 */
5550 return preferred_mirror;
5551 }
5552
5553 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5554 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5555 {
5556 int i;
5557 int again = 1;
5558
5559 while (again) {
5560 again = 0;
5561 for (i = 0; i < num_stripes - 1; i++) {
5562 /* Swap if parity is on a smaller index */
5563 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5564 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5565 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5566 again = 1;
5567 }
5568 }
5569 }
5570 }
5571
5572 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5573 {
5574 struct btrfs_bio *bbio = kzalloc(
5575 /* the size of the btrfs_bio */
5576 sizeof(struct btrfs_bio) +
5577 /* plus the variable array for the stripes */
5578 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5579 /* plus the variable array for the tgt dev */
5580 sizeof(int) * (real_stripes) +
5581 /*
5582 * plus the raid_map, which includes both the tgt dev
5583 * and the stripes
5584 */
5585 sizeof(u64) * (total_stripes),
5586 GFP_NOFS|__GFP_NOFAIL);
5587
5588 atomic_set(&bbio->error, 0);
5589 refcount_set(&bbio->refs, 1);
5590
5591 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5592 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5593
5594 return bbio;
5595 }
5596
5597 void btrfs_get_bbio(struct btrfs_bio *bbio)
5598 {
5599 WARN_ON(!refcount_read(&bbio->refs));
5600 refcount_inc(&bbio->refs);
5601 }
5602
5603 void btrfs_put_bbio(struct btrfs_bio *bbio)
5604 {
5605 if (!bbio)
5606 return;
5607 if (refcount_dec_and_test(&bbio->refs))
5608 kfree(bbio);
5609 }
5610
5611 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5612 /*
5613 * Please note that, discard won't be sent to target device of device
5614 * replace.
5615 */
5616 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5617 u64 logical, u64 *length_ret,
5618 struct btrfs_bio **bbio_ret)
5619 {
5620 struct extent_map *em;
5621 struct map_lookup *map;
5622 struct btrfs_bio *bbio;
5623 u64 length = *length_ret;
5624 u64 offset;
5625 u64 stripe_nr;
5626 u64 stripe_nr_end;
5627 u64 stripe_end_offset;
5628 u64 stripe_cnt;
5629 u64 stripe_len;
5630 u64 stripe_offset;
5631 u64 num_stripes;
5632 u32 stripe_index;
5633 u32 factor = 0;
5634 u32 sub_stripes = 0;
5635 u64 stripes_per_dev = 0;
5636 u32 remaining_stripes = 0;
5637 u32 last_stripe = 0;
5638 int ret = 0;
5639 int i;
5640
5641 /* discard always return a bbio */
5642 ASSERT(bbio_ret);
5643
5644 em = btrfs_get_chunk_map(fs_info, logical, length);
5645 if (IS_ERR(em))
5646 return PTR_ERR(em);
5647
5648 map = em->map_lookup;
5649 /* we don't discard raid56 yet */
5650 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5651 ret = -EOPNOTSUPP;
5652 goto out;
5653 }
5654
5655 offset = logical - em->start;
5656 length = min_t(u64, em->start + em->len - logical, length);
5657 *length_ret = length;
5658
5659 stripe_len = map->stripe_len;
5660 /*
5661 * stripe_nr counts the total number of stripes we have to stride
5662 * to get to this block
5663 */
5664 stripe_nr = div64_u64(offset, stripe_len);
5665
5666 /* stripe_offset is the offset of this block in its stripe */
5667 stripe_offset = offset - stripe_nr * stripe_len;
5668
5669 stripe_nr_end = round_up(offset + length, map->stripe_len);
5670 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5671 stripe_cnt = stripe_nr_end - stripe_nr;
5672 stripe_end_offset = stripe_nr_end * map->stripe_len -
5673 (offset + length);
5674 /*
5675 * after this, stripe_nr is the number of stripes on this
5676 * device we have to walk to find the data, and stripe_index is
5677 * the number of our device in the stripe array
5678 */
5679 num_stripes = 1;
5680 stripe_index = 0;
5681 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5682 BTRFS_BLOCK_GROUP_RAID10)) {
5683 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5684 sub_stripes = 1;
5685 else
5686 sub_stripes = map->sub_stripes;
5687
5688 factor = map->num_stripes / sub_stripes;
5689 num_stripes = min_t(u64, map->num_stripes,
5690 sub_stripes * stripe_cnt);
5691 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5692 stripe_index *= sub_stripes;
5693 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5694 &remaining_stripes);
5695 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5696 last_stripe *= sub_stripes;
5697 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5698 BTRFS_BLOCK_GROUP_DUP)) {
5699 num_stripes = map->num_stripes;
5700 } else {
5701 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5702 &stripe_index);
5703 }
5704
5705 bbio = alloc_btrfs_bio(num_stripes, 0);
5706 if (!bbio) {
5707 ret = -ENOMEM;
5708 goto out;
5709 }
5710
5711 for (i = 0; i < num_stripes; i++) {
5712 bbio->stripes[i].physical =
5713 map->stripes[stripe_index].physical +
5714 stripe_offset + stripe_nr * map->stripe_len;
5715 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5716
5717 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5718 BTRFS_BLOCK_GROUP_RAID10)) {
5719 bbio->stripes[i].length = stripes_per_dev *
5720 map->stripe_len;
5721
5722 if (i / sub_stripes < remaining_stripes)
5723 bbio->stripes[i].length +=
5724 map->stripe_len;
5725
5726 /*
5727 * Special for the first stripe and
5728 * the last stripe:
5729 *
5730 * |-------|...|-------|
5731 * |----------|
5732 * off end_off
5733 */
5734 if (i < sub_stripes)
5735 bbio->stripes[i].length -=
5736 stripe_offset;
5737
5738 if (stripe_index >= last_stripe &&
5739 stripe_index <= (last_stripe +
5740 sub_stripes - 1))
5741 bbio->stripes[i].length -=
5742 stripe_end_offset;
5743
5744 if (i == sub_stripes - 1)
5745 stripe_offset = 0;
5746 } else {
5747 bbio->stripes[i].length = length;
5748 }
5749
5750 stripe_index++;
5751 if (stripe_index == map->num_stripes) {
5752 stripe_index = 0;
5753 stripe_nr++;
5754 }
5755 }
5756
5757 *bbio_ret = bbio;
5758 bbio->map_type = map->type;
5759 bbio->num_stripes = num_stripes;
5760 out:
5761 free_extent_map(em);
5762 return ret;
5763 }
5764
5765 /*
5766 * In dev-replace case, for repair case (that's the only case where the mirror
5767 * is selected explicitly when calling btrfs_map_block), blocks left of the
5768 * left cursor can also be read from the target drive.
5769 *
5770 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5771 * array of stripes.
5772 * For READ, it also needs to be supported using the same mirror number.
5773 *
5774 * If the requested block is not left of the left cursor, EIO is returned. This
5775 * can happen because btrfs_num_copies() returns one more in the dev-replace
5776 * case.
5777 */
5778 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5779 u64 logical, u64 length,
5780 u64 srcdev_devid, int *mirror_num,
5781 u64 *physical)
5782 {
5783 struct btrfs_bio *bbio = NULL;
5784 int num_stripes;
5785 int index_srcdev = 0;
5786 int found = 0;
5787 u64 physical_of_found = 0;
5788 int i;
5789 int ret = 0;
5790
5791 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5792 logical, &length, &bbio, 0, 0);
5793 if (ret) {
5794 ASSERT(bbio == NULL);
5795 return ret;
5796 }
5797
5798 num_stripes = bbio->num_stripes;
5799 if (*mirror_num > num_stripes) {
5800 /*
5801 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5802 * that means that the requested area is not left of the left
5803 * cursor
5804 */
5805 btrfs_put_bbio(bbio);
5806 return -EIO;
5807 }
5808
5809 /*
5810 * process the rest of the function using the mirror_num of the source
5811 * drive. Therefore look it up first. At the end, patch the device
5812 * pointer to the one of the target drive.
5813 */
5814 for (i = 0; i < num_stripes; i++) {
5815 if (bbio->stripes[i].dev->devid != srcdev_devid)
5816 continue;
5817
5818 /*
5819 * In case of DUP, in order to keep it simple, only add the
5820 * mirror with the lowest physical address
5821 */
5822 if (found &&
5823 physical_of_found <= bbio->stripes[i].physical)
5824 continue;
5825
5826 index_srcdev = i;
5827 found = 1;
5828 physical_of_found = bbio->stripes[i].physical;
5829 }
5830
5831 btrfs_put_bbio(bbio);
5832
5833 ASSERT(found);
5834 if (!found)
5835 return -EIO;
5836
5837 *mirror_num = index_srcdev + 1;
5838 *physical = physical_of_found;
5839 return ret;
5840 }
5841
5842 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5843 struct btrfs_bio **bbio_ret,
5844 struct btrfs_dev_replace *dev_replace,
5845 int *num_stripes_ret, int *max_errors_ret)
5846 {
5847 struct btrfs_bio *bbio = *bbio_ret;
5848 u64 srcdev_devid = dev_replace->srcdev->devid;
5849 int tgtdev_indexes = 0;
5850 int num_stripes = *num_stripes_ret;
5851 int max_errors = *max_errors_ret;
5852 int i;
5853
5854 if (op == BTRFS_MAP_WRITE) {
5855 int index_where_to_add;
5856
5857 /*
5858 * duplicate the write operations while the dev replace
5859 * procedure is running. Since the copying of the old disk to
5860 * the new disk takes place at run time while the filesystem is
5861 * mounted writable, the regular write operations to the old
5862 * disk have to be duplicated to go to the new disk as well.
5863 *
5864 * Note that device->missing is handled by the caller, and that
5865 * the write to the old disk is already set up in the stripes
5866 * array.
5867 */
5868 index_where_to_add = num_stripes;
5869 for (i = 0; i < num_stripes; i++) {
5870 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5871 /* write to new disk, too */
5872 struct btrfs_bio_stripe *new =
5873 bbio->stripes + index_where_to_add;
5874 struct btrfs_bio_stripe *old =
5875 bbio->stripes + i;
5876
5877 new->physical = old->physical;
5878 new->length = old->length;
5879 new->dev = dev_replace->tgtdev;
5880 bbio->tgtdev_map[i] = index_where_to_add;
5881 index_where_to_add++;
5882 max_errors++;
5883 tgtdev_indexes++;
5884 }
5885 }
5886 num_stripes = index_where_to_add;
5887 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5888 int index_srcdev = 0;
5889 int found = 0;
5890 u64 physical_of_found = 0;
5891
5892 /*
5893 * During the dev-replace procedure, the target drive can also
5894 * be used to read data in case it is needed to repair a corrupt
5895 * block elsewhere. This is possible if the requested area is
5896 * left of the left cursor. In this area, the target drive is a
5897 * full copy of the source drive.
5898 */
5899 for (i = 0; i < num_stripes; i++) {
5900 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5901 /*
5902 * In case of DUP, in order to keep it simple,
5903 * only add the mirror with the lowest physical
5904 * address
5905 */
5906 if (found &&
5907 physical_of_found <=
5908 bbio->stripes[i].physical)
5909 continue;
5910 index_srcdev = i;
5911 found = 1;
5912 physical_of_found = bbio->stripes[i].physical;
5913 }
5914 }
5915 if (found) {
5916 struct btrfs_bio_stripe *tgtdev_stripe =
5917 bbio->stripes + num_stripes;
5918
5919 tgtdev_stripe->physical = physical_of_found;
5920 tgtdev_stripe->length =
5921 bbio->stripes[index_srcdev].length;
5922 tgtdev_stripe->dev = dev_replace->tgtdev;
5923 bbio->tgtdev_map[index_srcdev] = num_stripes;
5924
5925 tgtdev_indexes++;
5926 num_stripes++;
5927 }
5928 }
5929
5930 *num_stripes_ret = num_stripes;
5931 *max_errors_ret = max_errors;
5932 bbio->num_tgtdevs = tgtdev_indexes;
5933 *bbio_ret = bbio;
5934 }
5935
5936 static bool need_full_stripe(enum btrfs_map_op op)
5937 {
5938 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5939 }
5940
5941 /*
5942 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5943 * tuple. This information is used to calculate how big a
5944 * particular bio can get before it straddles a stripe.
5945 *
5946 * @fs_info - the filesystem
5947 * @logical - address that we want to figure out the geometry of
5948 * @len - the length of IO we are going to perform, starting at @logical
5949 * @op - type of operation - write or read
5950 * @io_geom - pointer used to return values
5951 *
5952 * Returns < 0 in case a chunk for the given logical address cannot be found,
5953 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5954 */
5955 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5956 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5957 {
5958 struct extent_map *em;
5959 struct map_lookup *map;
5960 u64 offset;
5961 u64 stripe_offset;
5962 u64 stripe_nr;
5963 u64 stripe_len;
5964 u64 raid56_full_stripe_start = (u64)-1;
5965 int data_stripes;
5966 int ret = 0;
5967
5968 ASSERT(op != BTRFS_MAP_DISCARD);
5969
5970 em = btrfs_get_chunk_map(fs_info, logical, len);
5971 if (IS_ERR(em))
5972 return PTR_ERR(em);
5973
5974 map = em->map_lookup;
5975 /* Offset of this logical address in the chunk */
5976 offset = logical - em->start;
5977 /* Len of a stripe in a chunk */
5978 stripe_len = map->stripe_len;
5979 /* Stripe wher this block falls in */
5980 stripe_nr = div64_u64(offset, stripe_len);
5981 /* Offset of stripe in the chunk */
5982 stripe_offset = stripe_nr * stripe_len;
5983 if (offset < stripe_offset) {
5984 btrfs_crit(fs_info,
5985 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5986 stripe_offset, offset, em->start, logical, stripe_len);
5987 ret = -EINVAL;
5988 goto out;
5989 }
5990
5991 /* stripe_offset is the offset of this block in its stripe */
5992 stripe_offset = offset - stripe_offset;
5993 data_stripes = nr_data_stripes(map);
5994
5995 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5996 u64 max_len = stripe_len - stripe_offset;
5997
5998 /*
5999 * In case of raid56, we need to know the stripe aligned start
6000 */
6001 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6002 unsigned long full_stripe_len = stripe_len * data_stripes;
6003 raid56_full_stripe_start = offset;
6004
6005 /*
6006 * Allow a write of a full stripe, but make sure we
6007 * don't allow straddling of stripes
6008 */
6009 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6010 full_stripe_len);
6011 raid56_full_stripe_start *= full_stripe_len;
6012
6013 /*
6014 * For writes to RAID[56], allow a full stripeset across
6015 * all disks. For other RAID types and for RAID[56]
6016 * reads, just allow a single stripe (on a single disk).
6017 */
6018 if (op == BTRFS_MAP_WRITE) {
6019 max_len = stripe_len * data_stripes -
6020 (offset - raid56_full_stripe_start);
6021 }
6022 }
6023 len = min_t(u64, em->len - offset, max_len);
6024 } else {
6025 len = em->len - offset;
6026 }
6027
6028 io_geom->len = len;
6029 io_geom->offset = offset;
6030 io_geom->stripe_len = stripe_len;
6031 io_geom->stripe_nr = stripe_nr;
6032 io_geom->stripe_offset = stripe_offset;
6033 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6034
6035 out:
6036 /* once for us */
6037 free_extent_map(em);
6038 return ret;
6039 }
6040
6041 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6042 enum btrfs_map_op op,
6043 u64 logical, u64 *length,
6044 struct btrfs_bio **bbio_ret,
6045 int mirror_num, int need_raid_map)
6046 {
6047 struct extent_map *em;
6048 struct map_lookup *map;
6049 u64 stripe_offset;
6050 u64 stripe_nr;
6051 u64 stripe_len;
6052 u32 stripe_index;
6053 int data_stripes;
6054 int i;
6055 int ret = 0;
6056 int num_stripes;
6057 int max_errors = 0;
6058 int tgtdev_indexes = 0;
6059 struct btrfs_bio *bbio = NULL;
6060 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6061 int dev_replace_is_ongoing = 0;
6062 int num_alloc_stripes;
6063 int patch_the_first_stripe_for_dev_replace = 0;
6064 u64 physical_to_patch_in_first_stripe = 0;
6065 u64 raid56_full_stripe_start = (u64)-1;
6066 struct btrfs_io_geometry geom;
6067
6068 ASSERT(bbio_ret);
6069 ASSERT(op != BTRFS_MAP_DISCARD);
6070
6071 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6072 if (ret < 0)
6073 return ret;
6074
6075 em = btrfs_get_chunk_map(fs_info, logical, *length);
6076 ASSERT(!IS_ERR(em));
6077 map = em->map_lookup;
6078
6079 *length = geom.len;
6080 stripe_len = geom.stripe_len;
6081 stripe_nr = geom.stripe_nr;
6082 stripe_offset = geom.stripe_offset;
6083 raid56_full_stripe_start = geom.raid56_stripe_offset;
6084 data_stripes = nr_data_stripes(map);
6085
6086 down_read(&dev_replace->rwsem);
6087 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6088 /*
6089 * Hold the semaphore for read during the whole operation, write is
6090 * requested at commit time but must wait.
6091 */
6092 if (!dev_replace_is_ongoing)
6093 up_read(&dev_replace->rwsem);
6094
6095 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6096 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6097 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6098 dev_replace->srcdev->devid,
6099 &mirror_num,
6100 &physical_to_patch_in_first_stripe);
6101 if (ret)
6102 goto out;
6103 else
6104 patch_the_first_stripe_for_dev_replace = 1;
6105 } else if (mirror_num > map->num_stripes) {
6106 mirror_num = 0;
6107 }
6108
6109 num_stripes = 1;
6110 stripe_index = 0;
6111 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6112 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6113 &stripe_index);
6114 if (!need_full_stripe(op))
6115 mirror_num = 1;
6116 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6117 if (need_full_stripe(op))
6118 num_stripes = map->num_stripes;
6119 else if (mirror_num)
6120 stripe_index = mirror_num - 1;
6121 else {
6122 stripe_index = find_live_mirror(fs_info, map, 0,
6123 dev_replace_is_ongoing);
6124 mirror_num = stripe_index + 1;
6125 }
6126
6127 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6128 if (need_full_stripe(op)) {
6129 num_stripes = map->num_stripes;
6130 } else if (mirror_num) {
6131 stripe_index = mirror_num - 1;
6132 } else {
6133 mirror_num = 1;
6134 }
6135
6136 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6137 u32 factor = map->num_stripes / map->sub_stripes;
6138
6139 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6140 stripe_index *= map->sub_stripes;
6141
6142 if (need_full_stripe(op))
6143 num_stripes = map->sub_stripes;
6144 else if (mirror_num)
6145 stripe_index += mirror_num - 1;
6146 else {
6147 int old_stripe_index = stripe_index;
6148 stripe_index = find_live_mirror(fs_info, map,
6149 stripe_index,
6150 dev_replace_is_ongoing);
6151 mirror_num = stripe_index - old_stripe_index + 1;
6152 }
6153
6154 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6155 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6156 /* push stripe_nr back to the start of the full stripe */
6157 stripe_nr = div64_u64(raid56_full_stripe_start,
6158 stripe_len * data_stripes);
6159
6160 /* RAID[56] write or recovery. Return all stripes */
6161 num_stripes = map->num_stripes;
6162 max_errors = nr_parity_stripes(map);
6163
6164 *length = map->stripe_len;
6165 stripe_index = 0;
6166 stripe_offset = 0;
6167 } else {
6168 /*
6169 * Mirror #0 or #1 means the original data block.
6170 * Mirror #2 is RAID5 parity block.
6171 * Mirror #3 is RAID6 Q block.
6172 */
6173 stripe_nr = div_u64_rem(stripe_nr,
6174 data_stripes, &stripe_index);
6175 if (mirror_num > 1)
6176 stripe_index = data_stripes + mirror_num - 2;
6177
6178 /* We distribute the parity blocks across stripes */
6179 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6180 &stripe_index);
6181 if (!need_full_stripe(op) && mirror_num <= 1)
6182 mirror_num = 1;
6183 }
6184 } else {
6185 /*
6186 * after this, stripe_nr is the number of stripes on this
6187 * device we have to walk to find the data, and stripe_index is
6188 * the number of our device in the stripe array
6189 */
6190 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6191 &stripe_index);
6192 mirror_num = stripe_index + 1;
6193 }
6194 if (stripe_index >= map->num_stripes) {
6195 btrfs_crit(fs_info,
6196 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6197 stripe_index, map->num_stripes);
6198 ret = -EINVAL;
6199 goto out;
6200 }
6201
6202 num_alloc_stripes = num_stripes;
6203 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6204 if (op == BTRFS_MAP_WRITE)
6205 num_alloc_stripes <<= 1;
6206 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6207 num_alloc_stripes++;
6208 tgtdev_indexes = num_stripes;
6209 }
6210
6211 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6212 if (!bbio) {
6213 ret = -ENOMEM;
6214 goto out;
6215 }
6216
6217 for (i = 0; i < num_stripes; i++) {
6218 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6219 stripe_offset + stripe_nr * map->stripe_len;
6220 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6221 stripe_index++;
6222 }
6223
6224 /* build raid_map */
6225 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6226 (need_full_stripe(op) || mirror_num > 1)) {
6227 u64 tmp;
6228 unsigned rot;
6229
6230 /* Work out the disk rotation on this stripe-set */
6231 div_u64_rem(stripe_nr, num_stripes, &rot);
6232
6233 /* Fill in the logical address of each stripe */
6234 tmp = stripe_nr * data_stripes;
6235 for (i = 0; i < data_stripes; i++)
6236 bbio->raid_map[(i+rot) % num_stripes] =
6237 em->start + (tmp + i) * map->stripe_len;
6238
6239 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6240 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6241 bbio->raid_map[(i+rot+1) % num_stripes] =
6242 RAID6_Q_STRIPE;
6243
6244 sort_parity_stripes(bbio, num_stripes);
6245 }
6246
6247 if (need_full_stripe(op))
6248 max_errors = btrfs_chunk_max_errors(map);
6249
6250 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6251 need_full_stripe(op)) {
6252 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6253 &max_errors);
6254 }
6255
6256 *bbio_ret = bbio;
6257 bbio->map_type = map->type;
6258 bbio->num_stripes = num_stripes;
6259 bbio->max_errors = max_errors;
6260 bbio->mirror_num = mirror_num;
6261
6262 /*
6263 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6264 * mirror_num == num_stripes + 1 && dev_replace target drive is
6265 * available as a mirror
6266 */
6267 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6268 WARN_ON(num_stripes > 1);
6269 bbio->stripes[0].dev = dev_replace->tgtdev;
6270 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6271 bbio->mirror_num = map->num_stripes + 1;
6272 }
6273 out:
6274 if (dev_replace_is_ongoing) {
6275 lockdep_assert_held(&dev_replace->rwsem);
6276 /* Unlock and let waiting writers proceed */
6277 up_read(&dev_replace->rwsem);
6278 }
6279 free_extent_map(em);
6280 return ret;
6281 }
6282
6283 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6284 u64 logical, u64 *length,
6285 struct btrfs_bio **bbio_ret, int mirror_num)
6286 {
6287 if (op == BTRFS_MAP_DISCARD)
6288 return __btrfs_map_block_for_discard(fs_info, logical,
6289 length, bbio_ret);
6290
6291 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6292 mirror_num, 0);
6293 }
6294
6295 /* For Scrub/replace */
6296 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6297 u64 logical, u64 *length,
6298 struct btrfs_bio **bbio_ret)
6299 {
6300 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6301 }
6302
6303 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6304 {
6305 bio->bi_private = bbio->private;
6306 bio->bi_end_io = bbio->end_io;
6307 bio_endio(bio);
6308
6309 btrfs_put_bbio(bbio);
6310 }
6311
6312 static void btrfs_end_bio(struct bio *bio)
6313 {
6314 struct btrfs_bio *bbio = bio->bi_private;
6315 int is_orig_bio = 0;
6316
6317 if (bio->bi_status) {
6318 atomic_inc(&bbio->error);
6319 if (bio->bi_status == BLK_STS_IOERR ||
6320 bio->bi_status == BLK_STS_TARGET) {
6321 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6322
6323 ASSERT(dev->bdev);
6324 if (bio_op(bio) == REQ_OP_WRITE)
6325 btrfs_dev_stat_inc_and_print(dev,
6326 BTRFS_DEV_STAT_WRITE_ERRS);
6327 else if (!(bio->bi_opf & REQ_RAHEAD))
6328 btrfs_dev_stat_inc_and_print(dev,
6329 BTRFS_DEV_STAT_READ_ERRS);
6330 if (bio->bi_opf & REQ_PREFLUSH)
6331 btrfs_dev_stat_inc_and_print(dev,
6332 BTRFS_DEV_STAT_FLUSH_ERRS);
6333 }
6334 }
6335
6336 if (bio == bbio->orig_bio)
6337 is_orig_bio = 1;
6338
6339 btrfs_bio_counter_dec(bbio->fs_info);
6340
6341 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6342 if (!is_orig_bio) {
6343 bio_put(bio);
6344 bio = bbio->orig_bio;
6345 }
6346
6347 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6348 /* only send an error to the higher layers if it is
6349 * beyond the tolerance of the btrfs bio
6350 */
6351 if (atomic_read(&bbio->error) > bbio->max_errors) {
6352 bio->bi_status = BLK_STS_IOERR;
6353 } else {
6354 /*
6355 * this bio is actually up to date, we didn't
6356 * go over the max number of errors
6357 */
6358 bio->bi_status = BLK_STS_OK;
6359 }
6360
6361 btrfs_end_bbio(bbio, bio);
6362 } else if (!is_orig_bio) {
6363 bio_put(bio);
6364 }
6365 }
6366
6367 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6368 u64 physical, struct btrfs_device *dev)
6369 {
6370 struct btrfs_fs_info *fs_info = bbio->fs_info;
6371
6372 bio->bi_private = bbio;
6373 btrfs_io_bio(bio)->device = dev;
6374 bio->bi_end_io = btrfs_end_bio;
6375 bio->bi_iter.bi_sector = physical >> 9;
6376 btrfs_debug_in_rcu(fs_info,
6377 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6378 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6379 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6380 dev->devid, bio->bi_iter.bi_size);
6381 bio_set_dev(bio, dev->bdev);
6382
6383 btrfs_bio_counter_inc_noblocked(fs_info);
6384
6385 btrfsic_submit_bio(bio);
6386 }
6387
6388 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6389 {
6390 atomic_inc(&bbio->error);
6391 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6392 /* Should be the original bio. */
6393 WARN_ON(bio != bbio->orig_bio);
6394
6395 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6396 bio->bi_iter.bi_sector = logical >> 9;
6397 if (atomic_read(&bbio->error) > bbio->max_errors)
6398 bio->bi_status = BLK_STS_IOERR;
6399 else
6400 bio->bi_status = BLK_STS_OK;
6401 btrfs_end_bbio(bbio, bio);
6402 }
6403 }
6404
6405 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6406 int mirror_num)
6407 {
6408 struct btrfs_device *dev;
6409 struct bio *first_bio = bio;
6410 u64 logical = bio->bi_iter.bi_sector << 9;
6411 u64 length = 0;
6412 u64 map_length;
6413 int ret;
6414 int dev_nr;
6415 int total_devs;
6416 struct btrfs_bio *bbio = NULL;
6417
6418 length = bio->bi_iter.bi_size;
6419 map_length = length;
6420
6421 btrfs_bio_counter_inc_blocked(fs_info);
6422 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6423 &map_length, &bbio, mirror_num, 1);
6424 if (ret) {
6425 btrfs_bio_counter_dec(fs_info);
6426 return errno_to_blk_status(ret);
6427 }
6428
6429 total_devs = bbio->num_stripes;
6430 bbio->orig_bio = first_bio;
6431 bbio->private = first_bio->bi_private;
6432 bbio->end_io = first_bio->bi_end_io;
6433 bbio->fs_info = fs_info;
6434 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6435
6436 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6437 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6438 /* In this case, map_length has been set to the length of
6439 a single stripe; not the whole write */
6440 if (bio_op(bio) == REQ_OP_WRITE) {
6441 ret = raid56_parity_write(fs_info, bio, bbio,
6442 map_length);
6443 } else {
6444 ret = raid56_parity_recover(fs_info, bio, bbio,
6445 map_length, mirror_num, 1);
6446 }
6447
6448 btrfs_bio_counter_dec(fs_info);
6449 return errno_to_blk_status(ret);
6450 }
6451
6452 if (map_length < length) {
6453 btrfs_crit(fs_info,
6454 "mapping failed logical %llu bio len %llu len %llu",
6455 logical, length, map_length);
6456 BUG();
6457 }
6458
6459 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6460 dev = bbio->stripes[dev_nr].dev;
6461 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6462 &dev->dev_state) ||
6463 (bio_op(first_bio) == REQ_OP_WRITE &&
6464 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6465 bbio_error(bbio, first_bio, logical);
6466 continue;
6467 }
6468
6469 if (dev_nr < total_devs - 1)
6470 bio = btrfs_bio_clone(first_bio);
6471 else
6472 bio = first_bio;
6473
6474 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6475 }
6476 btrfs_bio_counter_dec(fs_info);
6477 return BLK_STS_OK;
6478 }
6479
6480 /*
6481 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6482 * return NULL.
6483 *
6484 * If devid and uuid are both specified, the match must be exact, otherwise
6485 * only devid is used.
6486 *
6487 * If @seed is true, traverse through the seed devices.
6488 */
6489 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6490 u64 devid, u8 *uuid, u8 *fsid)
6491 {
6492 struct btrfs_device *device;
6493 struct btrfs_fs_devices *seed_devs;
6494
6495 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6496 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6497 if (device->devid == devid &&
6498 (!uuid || memcmp(device->uuid, uuid,
6499 BTRFS_UUID_SIZE) == 0))
6500 return device;
6501 }
6502 }
6503
6504 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6505 if (!fsid ||
6506 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6507 list_for_each_entry(device, &seed_devs->devices,
6508 dev_list) {
6509 if (device->devid == devid &&
6510 (!uuid || memcmp(device->uuid, uuid,
6511 BTRFS_UUID_SIZE) == 0))
6512 return device;
6513 }
6514 }
6515 }
6516
6517 return NULL;
6518 }
6519
6520 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6521 u64 devid, u8 *dev_uuid)
6522 {
6523 struct btrfs_device *device;
6524 unsigned int nofs_flag;
6525
6526 /*
6527 * We call this under the chunk_mutex, so we want to use NOFS for this
6528 * allocation, however we don't want to change btrfs_alloc_device() to
6529 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6530 * places.
6531 */
6532 nofs_flag = memalloc_nofs_save();
6533 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6534 memalloc_nofs_restore(nofs_flag);
6535 if (IS_ERR(device))
6536 return device;
6537
6538 list_add(&device->dev_list, &fs_devices->devices);
6539 device->fs_devices = fs_devices;
6540 fs_devices->num_devices++;
6541
6542 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6543 fs_devices->missing_devices++;
6544
6545 return device;
6546 }
6547
6548 /**
6549 * btrfs_alloc_device - allocate struct btrfs_device
6550 * @fs_info: used only for generating a new devid, can be NULL if
6551 * devid is provided (i.e. @devid != NULL).
6552 * @devid: a pointer to devid for this device. If NULL a new devid
6553 * is generated.
6554 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6555 * is generated.
6556 *
6557 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6558 * on error. Returned struct is not linked onto any lists and must be
6559 * destroyed with btrfs_free_device.
6560 */
6561 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6562 const u64 *devid,
6563 const u8 *uuid)
6564 {
6565 struct btrfs_device *dev;
6566 u64 tmp;
6567
6568 if (WARN_ON(!devid && !fs_info))
6569 return ERR_PTR(-EINVAL);
6570
6571 dev = __alloc_device(fs_info);
6572 if (IS_ERR(dev))
6573 return dev;
6574
6575 if (devid)
6576 tmp = *devid;
6577 else {
6578 int ret;
6579
6580 ret = find_next_devid(fs_info, &tmp);
6581 if (ret) {
6582 btrfs_free_device(dev);
6583 return ERR_PTR(ret);
6584 }
6585 }
6586 dev->devid = tmp;
6587
6588 if (uuid)
6589 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6590 else
6591 generate_random_uuid(dev->uuid);
6592
6593 return dev;
6594 }
6595
6596 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6597 u64 devid, u8 *uuid, bool error)
6598 {
6599 if (error)
6600 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6601 devid, uuid);
6602 else
6603 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6604 devid, uuid);
6605 }
6606
6607 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6608 {
6609 int index = btrfs_bg_flags_to_raid_index(type);
6610 int ncopies = btrfs_raid_array[index].ncopies;
6611 const int nparity = btrfs_raid_array[index].nparity;
6612 int data_stripes;
6613
6614 if (nparity)
6615 data_stripes = num_stripes - nparity;
6616 else
6617 data_stripes = num_stripes / ncopies;
6618
6619 return div_u64(chunk_len, data_stripes);
6620 }
6621
6622 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6623 struct btrfs_chunk *chunk)
6624 {
6625 struct btrfs_fs_info *fs_info = leaf->fs_info;
6626 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6627 struct map_lookup *map;
6628 struct extent_map *em;
6629 u64 logical;
6630 u64 length;
6631 u64 devid;
6632 u8 uuid[BTRFS_UUID_SIZE];
6633 int num_stripes;
6634 int ret;
6635 int i;
6636
6637 logical = key->offset;
6638 length = btrfs_chunk_length(leaf, chunk);
6639 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6640
6641 /*
6642 * Only need to verify chunk item if we're reading from sys chunk array,
6643 * as chunk item in tree block is already verified by tree-checker.
6644 */
6645 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6646 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6647 if (ret)
6648 return ret;
6649 }
6650
6651 read_lock(&map_tree->lock);
6652 em = lookup_extent_mapping(map_tree, logical, 1);
6653 read_unlock(&map_tree->lock);
6654
6655 /* already mapped? */
6656 if (em && em->start <= logical && em->start + em->len > logical) {
6657 free_extent_map(em);
6658 return 0;
6659 } else if (em) {
6660 free_extent_map(em);
6661 }
6662
6663 em = alloc_extent_map();
6664 if (!em)
6665 return -ENOMEM;
6666 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6667 if (!map) {
6668 free_extent_map(em);
6669 return -ENOMEM;
6670 }
6671
6672 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6673 em->map_lookup = map;
6674 em->start = logical;
6675 em->len = length;
6676 em->orig_start = 0;
6677 em->block_start = 0;
6678 em->block_len = em->len;
6679
6680 map->num_stripes = num_stripes;
6681 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6682 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6683 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6684 map->type = btrfs_chunk_type(leaf, chunk);
6685 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6686 map->verified_stripes = 0;
6687 em->orig_block_len = calc_stripe_length(map->type, em->len,
6688 map->num_stripes);
6689 for (i = 0; i < num_stripes; i++) {
6690 map->stripes[i].physical =
6691 btrfs_stripe_offset_nr(leaf, chunk, i);
6692 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6693 read_extent_buffer(leaf, uuid, (unsigned long)
6694 btrfs_stripe_dev_uuid_nr(chunk, i),
6695 BTRFS_UUID_SIZE);
6696 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6697 devid, uuid, NULL);
6698 if (!map->stripes[i].dev &&
6699 !btrfs_test_opt(fs_info, DEGRADED)) {
6700 free_extent_map(em);
6701 btrfs_report_missing_device(fs_info, devid, uuid, true);
6702 return -ENOENT;
6703 }
6704 if (!map->stripes[i].dev) {
6705 map->stripes[i].dev =
6706 add_missing_dev(fs_info->fs_devices, devid,
6707 uuid);
6708 if (IS_ERR(map->stripes[i].dev)) {
6709 free_extent_map(em);
6710 btrfs_err(fs_info,
6711 "failed to init missing dev %llu: %ld",
6712 devid, PTR_ERR(map->stripes[i].dev));
6713 return PTR_ERR(map->stripes[i].dev);
6714 }
6715 btrfs_report_missing_device(fs_info, devid, uuid, false);
6716 }
6717 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6718 &(map->stripes[i].dev->dev_state));
6719
6720 }
6721
6722 write_lock(&map_tree->lock);
6723 ret = add_extent_mapping(map_tree, em, 0);
6724 write_unlock(&map_tree->lock);
6725 if (ret < 0) {
6726 btrfs_err(fs_info,
6727 "failed to add chunk map, start=%llu len=%llu: %d",
6728 em->start, em->len, ret);
6729 }
6730 free_extent_map(em);
6731
6732 return ret;
6733 }
6734
6735 static void fill_device_from_item(struct extent_buffer *leaf,
6736 struct btrfs_dev_item *dev_item,
6737 struct btrfs_device *device)
6738 {
6739 unsigned long ptr;
6740
6741 device->devid = btrfs_device_id(leaf, dev_item);
6742 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6743 device->total_bytes = device->disk_total_bytes;
6744 device->commit_total_bytes = device->disk_total_bytes;
6745 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6746 device->commit_bytes_used = device->bytes_used;
6747 device->type = btrfs_device_type(leaf, dev_item);
6748 device->io_align = btrfs_device_io_align(leaf, dev_item);
6749 device->io_width = btrfs_device_io_width(leaf, dev_item);
6750 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6751 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6752 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6753
6754 ptr = btrfs_device_uuid(dev_item);
6755 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6756 }
6757
6758 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6759 u8 *fsid)
6760 {
6761 struct btrfs_fs_devices *fs_devices;
6762 int ret;
6763
6764 lockdep_assert_held(&uuid_mutex);
6765 ASSERT(fsid);
6766
6767 /* This will match only for multi-device seed fs */
6768 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6769 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6770 return fs_devices;
6771
6772
6773 fs_devices = find_fsid(fsid, NULL);
6774 if (!fs_devices) {
6775 if (!btrfs_test_opt(fs_info, DEGRADED))
6776 return ERR_PTR(-ENOENT);
6777
6778 fs_devices = alloc_fs_devices(fsid, NULL);
6779 if (IS_ERR(fs_devices))
6780 return fs_devices;
6781
6782 fs_devices->seeding = true;
6783 fs_devices->opened = 1;
6784 return fs_devices;
6785 }
6786
6787 /*
6788 * Upon first call for a seed fs fsid, just create a private copy of the
6789 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6790 */
6791 fs_devices = clone_fs_devices(fs_devices);
6792 if (IS_ERR(fs_devices))
6793 return fs_devices;
6794
6795 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6796 if (ret) {
6797 free_fs_devices(fs_devices);
6798 return ERR_PTR(ret);
6799 }
6800
6801 if (!fs_devices->seeding) {
6802 close_fs_devices(fs_devices);
6803 free_fs_devices(fs_devices);
6804 return ERR_PTR(-EINVAL);
6805 }
6806
6807 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6808
6809 return fs_devices;
6810 }
6811
6812 static int read_one_dev(struct extent_buffer *leaf,
6813 struct btrfs_dev_item *dev_item)
6814 {
6815 struct btrfs_fs_info *fs_info = leaf->fs_info;
6816 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6817 struct btrfs_device *device;
6818 u64 devid;
6819 int ret;
6820 u8 fs_uuid[BTRFS_FSID_SIZE];
6821 u8 dev_uuid[BTRFS_UUID_SIZE];
6822
6823 devid = btrfs_device_id(leaf, dev_item);
6824 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6825 BTRFS_UUID_SIZE);
6826 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6827 BTRFS_FSID_SIZE);
6828
6829 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6830 fs_devices = open_seed_devices(fs_info, fs_uuid);
6831 if (IS_ERR(fs_devices))
6832 return PTR_ERR(fs_devices);
6833 }
6834
6835 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6836 fs_uuid);
6837 if (!device) {
6838 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6839 btrfs_report_missing_device(fs_info, devid,
6840 dev_uuid, true);
6841 return -ENOENT;
6842 }
6843
6844 device = add_missing_dev(fs_devices, devid, dev_uuid);
6845 if (IS_ERR(device)) {
6846 btrfs_err(fs_info,
6847 "failed to add missing dev %llu: %ld",
6848 devid, PTR_ERR(device));
6849 return PTR_ERR(device);
6850 }
6851 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6852 } else {
6853 if (!device->bdev) {
6854 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6855 btrfs_report_missing_device(fs_info,
6856 devid, dev_uuid, true);
6857 return -ENOENT;
6858 }
6859 btrfs_report_missing_device(fs_info, devid,
6860 dev_uuid, false);
6861 }
6862
6863 if (!device->bdev &&
6864 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6865 /*
6866 * this happens when a device that was properly setup
6867 * in the device info lists suddenly goes bad.
6868 * device->bdev is NULL, and so we have to set
6869 * device->missing to one here
6870 */
6871 device->fs_devices->missing_devices++;
6872 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6873 }
6874
6875 /* Move the device to its own fs_devices */
6876 if (device->fs_devices != fs_devices) {
6877 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6878 &device->dev_state));
6879
6880 list_move(&device->dev_list, &fs_devices->devices);
6881 device->fs_devices->num_devices--;
6882 fs_devices->num_devices++;
6883
6884 device->fs_devices->missing_devices--;
6885 fs_devices->missing_devices++;
6886
6887 device->fs_devices = fs_devices;
6888 }
6889 }
6890
6891 if (device->fs_devices != fs_info->fs_devices) {
6892 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6893 if (device->generation !=
6894 btrfs_device_generation(leaf, dev_item))
6895 return -EINVAL;
6896 }
6897
6898 fill_device_from_item(leaf, dev_item, device);
6899 if (device->bdev) {
6900 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
6901
6902 if (device->total_bytes > max_total_bytes) {
6903 btrfs_err(fs_info,
6904 "device total_bytes should be at most %llu but found %llu",
6905 max_total_bytes, device->total_bytes);
6906 return -EINVAL;
6907 }
6908 }
6909 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6910 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6911 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6912 device->fs_devices->total_rw_bytes += device->total_bytes;
6913 atomic64_add(device->total_bytes - device->bytes_used,
6914 &fs_info->free_chunk_space);
6915 }
6916 ret = 0;
6917 return ret;
6918 }
6919
6920 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6921 {
6922 struct btrfs_root *root = fs_info->tree_root;
6923 struct btrfs_super_block *super_copy = fs_info->super_copy;
6924 struct extent_buffer *sb;
6925 struct btrfs_disk_key *disk_key;
6926 struct btrfs_chunk *chunk;
6927 u8 *array_ptr;
6928 unsigned long sb_array_offset;
6929 int ret = 0;
6930 u32 num_stripes;
6931 u32 array_size;
6932 u32 len = 0;
6933 u32 cur_offset;
6934 u64 type;
6935 struct btrfs_key key;
6936
6937 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6938 /*
6939 * This will create extent buffer of nodesize, superblock size is
6940 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6941 * overallocate but we can keep it as-is, only the first page is used.
6942 */
6943 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
6944 root->root_key.objectid, 0);
6945 if (IS_ERR(sb))
6946 return PTR_ERR(sb);
6947 set_extent_buffer_uptodate(sb);
6948 /*
6949 * The sb extent buffer is artificial and just used to read the system array.
6950 * set_extent_buffer_uptodate() call does not properly mark all it's
6951 * pages up-to-date when the page is larger: extent does not cover the
6952 * whole page and consequently check_page_uptodate does not find all
6953 * the page's extents up-to-date (the hole beyond sb),
6954 * write_extent_buffer then triggers a WARN_ON.
6955 *
6956 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6957 * but sb spans only this function. Add an explicit SetPageUptodate call
6958 * to silence the warning eg. on PowerPC 64.
6959 */
6960 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6961 SetPageUptodate(sb->pages[0]);
6962
6963 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6964 array_size = btrfs_super_sys_array_size(super_copy);
6965
6966 array_ptr = super_copy->sys_chunk_array;
6967 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6968 cur_offset = 0;
6969
6970 while (cur_offset < array_size) {
6971 disk_key = (struct btrfs_disk_key *)array_ptr;
6972 len = sizeof(*disk_key);
6973 if (cur_offset + len > array_size)
6974 goto out_short_read;
6975
6976 btrfs_disk_key_to_cpu(&key, disk_key);
6977
6978 array_ptr += len;
6979 sb_array_offset += len;
6980 cur_offset += len;
6981
6982 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6983 btrfs_err(fs_info,
6984 "unexpected item type %u in sys_array at offset %u",
6985 (u32)key.type, cur_offset);
6986 ret = -EIO;
6987 break;
6988 }
6989
6990 chunk = (struct btrfs_chunk *)sb_array_offset;
6991 /*
6992 * At least one btrfs_chunk with one stripe must be present,
6993 * exact stripe count check comes afterwards
6994 */
6995 len = btrfs_chunk_item_size(1);
6996 if (cur_offset + len > array_size)
6997 goto out_short_read;
6998
6999 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7000 if (!num_stripes) {
7001 btrfs_err(fs_info,
7002 "invalid number of stripes %u in sys_array at offset %u",
7003 num_stripes, cur_offset);
7004 ret = -EIO;
7005 break;
7006 }
7007
7008 type = btrfs_chunk_type(sb, chunk);
7009 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7010 btrfs_err(fs_info,
7011 "invalid chunk type %llu in sys_array at offset %u",
7012 type, cur_offset);
7013 ret = -EIO;
7014 break;
7015 }
7016
7017 len = btrfs_chunk_item_size(num_stripes);
7018 if (cur_offset + len > array_size)
7019 goto out_short_read;
7020
7021 ret = read_one_chunk(&key, sb, chunk);
7022 if (ret)
7023 break;
7024
7025 array_ptr += len;
7026 sb_array_offset += len;
7027 cur_offset += len;
7028 }
7029 clear_extent_buffer_uptodate(sb);
7030 free_extent_buffer_stale(sb);
7031 return ret;
7032
7033 out_short_read:
7034 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7035 len, cur_offset);
7036 clear_extent_buffer_uptodate(sb);
7037 free_extent_buffer_stale(sb);
7038 return -EIO;
7039 }
7040
7041 /*
7042 * Check if all chunks in the fs are OK for read-write degraded mount
7043 *
7044 * If the @failing_dev is specified, it's accounted as missing.
7045 *
7046 * Return true if all chunks meet the minimal RW mount requirements.
7047 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7048 */
7049 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7050 struct btrfs_device *failing_dev)
7051 {
7052 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7053 struct extent_map *em;
7054 u64 next_start = 0;
7055 bool ret = true;
7056
7057 read_lock(&map_tree->lock);
7058 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7059 read_unlock(&map_tree->lock);
7060 /* No chunk at all? Return false anyway */
7061 if (!em) {
7062 ret = false;
7063 goto out;
7064 }
7065 while (em) {
7066 struct map_lookup *map;
7067 int missing = 0;
7068 int max_tolerated;
7069 int i;
7070
7071 map = em->map_lookup;
7072 max_tolerated =
7073 btrfs_get_num_tolerated_disk_barrier_failures(
7074 map->type);
7075 for (i = 0; i < map->num_stripes; i++) {
7076 struct btrfs_device *dev = map->stripes[i].dev;
7077
7078 if (!dev || !dev->bdev ||
7079 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7080 dev->last_flush_error)
7081 missing++;
7082 else if (failing_dev && failing_dev == dev)
7083 missing++;
7084 }
7085 if (missing > max_tolerated) {
7086 if (!failing_dev)
7087 btrfs_warn(fs_info,
7088 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7089 em->start, missing, max_tolerated);
7090 free_extent_map(em);
7091 ret = false;
7092 goto out;
7093 }
7094 next_start = extent_map_end(em);
7095 free_extent_map(em);
7096
7097 read_lock(&map_tree->lock);
7098 em = lookup_extent_mapping(map_tree, next_start,
7099 (u64)(-1) - next_start);
7100 read_unlock(&map_tree->lock);
7101 }
7102 out:
7103 return ret;
7104 }
7105
7106 static void readahead_tree_node_children(struct extent_buffer *node)
7107 {
7108 int i;
7109 const int nr_items = btrfs_header_nritems(node);
7110
7111 for (i = 0; i < nr_items; i++)
7112 btrfs_readahead_node_child(node, i);
7113 }
7114
7115 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7116 {
7117 struct btrfs_root *root = fs_info->chunk_root;
7118 struct btrfs_path *path;
7119 struct extent_buffer *leaf;
7120 struct btrfs_key key;
7121 struct btrfs_key found_key;
7122 int ret;
7123 int slot;
7124 u64 total_dev = 0;
7125 u64 last_ra_node = 0;
7126
7127 path = btrfs_alloc_path();
7128 if (!path)
7129 return -ENOMEM;
7130
7131 /*
7132 * uuid_mutex is needed only if we are mounting a sprout FS
7133 * otherwise we don't need it.
7134 */
7135 mutex_lock(&uuid_mutex);
7136
7137 /*
7138 * It is possible for mount and umount to race in such a way that
7139 * we execute this code path, but open_fs_devices failed to clear
7140 * total_rw_bytes. We certainly want it cleared before reading the
7141 * device items, so clear it here.
7142 */
7143 fs_info->fs_devices->total_rw_bytes = 0;
7144
7145 /*
7146 * Read all device items, and then all the chunk items. All
7147 * device items are found before any chunk item (their object id
7148 * is smaller than the lowest possible object id for a chunk
7149 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7150 */
7151 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7152 key.offset = 0;
7153 key.type = 0;
7154 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7155 if (ret < 0)
7156 goto error;
7157 while (1) {
7158 struct extent_buffer *node;
7159
7160 leaf = path->nodes[0];
7161 slot = path->slots[0];
7162 if (slot >= btrfs_header_nritems(leaf)) {
7163 ret = btrfs_next_leaf(root, path);
7164 if (ret == 0)
7165 continue;
7166 if (ret < 0)
7167 goto error;
7168 break;
7169 }
7170 /*
7171 * The nodes on level 1 are not locked but we don't need to do
7172 * that during mount time as nothing else can access the tree
7173 */
7174 node = path->nodes[1];
7175 if (node) {
7176 if (last_ra_node != node->start) {
7177 readahead_tree_node_children(node);
7178 last_ra_node = node->start;
7179 }
7180 }
7181 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7182 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7183 struct btrfs_dev_item *dev_item;
7184 dev_item = btrfs_item_ptr(leaf, slot,
7185 struct btrfs_dev_item);
7186 ret = read_one_dev(leaf, dev_item);
7187 if (ret)
7188 goto error;
7189 total_dev++;
7190 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7191 struct btrfs_chunk *chunk;
7192 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7193 mutex_lock(&fs_info->chunk_mutex);
7194 ret = read_one_chunk(&found_key, leaf, chunk);
7195 mutex_unlock(&fs_info->chunk_mutex);
7196 if (ret)
7197 goto error;
7198 }
7199 path->slots[0]++;
7200 }
7201
7202 /*
7203 * After loading chunk tree, we've got all device information,
7204 * do another round of validation checks.
7205 */
7206 if (total_dev != fs_info->fs_devices->total_devices) {
7207 btrfs_err(fs_info,
7208 "super_num_devices %llu mismatch with num_devices %llu found here",
7209 btrfs_super_num_devices(fs_info->super_copy),
7210 total_dev);
7211 ret = -EINVAL;
7212 goto error;
7213 }
7214 if (btrfs_super_total_bytes(fs_info->super_copy) <
7215 fs_info->fs_devices->total_rw_bytes) {
7216 btrfs_err(fs_info,
7217 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7218 btrfs_super_total_bytes(fs_info->super_copy),
7219 fs_info->fs_devices->total_rw_bytes);
7220 ret = -EINVAL;
7221 goto error;
7222 }
7223 ret = 0;
7224 error:
7225 mutex_unlock(&uuid_mutex);
7226
7227 btrfs_free_path(path);
7228 return ret;
7229 }
7230
7231 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7232 {
7233 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7234 struct btrfs_device *device;
7235
7236 fs_devices->fs_info = fs_info;
7237
7238 mutex_lock(&fs_devices->device_list_mutex);
7239 list_for_each_entry(device, &fs_devices->devices, dev_list)
7240 device->fs_info = fs_info;
7241
7242 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7243 list_for_each_entry(device, &seed_devs->devices, dev_list)
7244 device->fs_info = fs_info;
7245
7246 seed_devs->fs_info = fs_info;
7247 }
7248 mutex_unlock(&fs_devices->device_list_mutex);
7249 }
7250
7251 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7252 const struct btrfs_dev_stats_item *ptr,
7253 int index)
7254 {
7255 u64 val;
7256
7257 read_extent_buffer(eb, &val,
7258 offsetof(struct btrfs_dev_stats_item, values) +
7259 ((unsigned long)ptr) + (index * sizeof(u64)),
7260 sizeof(val));
7261 return val;
7262 }
7263
7264 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7265 struct btrfs_dev_stats_item *ptr,
7266 int index, u64 val)
7267 {
7268 write_extent_buffer(eb, &val,
7269 offsetof(struct btrfs_dev_stats_item, values) +
7270 ((unsigned long)ptr) + (index * sizeof(u64)),
7271 sizeof(val));
7272 }
7273
7274 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7275 struct btrfs_path *path)
7276 {
7277 struct btrfs_dev_stats_item *ptr;
7278 struct extent_buffer *eb;
7279 struct btrfs_key key;
7280 int item_size;
7281 int i, ret, slot;
7282
7283 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7284 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7285 key.offset = device->devid;
7286 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7287 if (ret) {
7288 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7289 btrfs_dev_stat_set(device, i, 0);
7290 device->dev_stats_valid = 1;
7291 btrfs_release_path(path);
7292 return ret < 0 ? ret : 0;
7293 }
7294 slot = path->slots[0];
7295 eb = path->nodes[0];
7296 item_size = btrfs_item_size_nr(eb, slot);
7297
7298 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7299
7300 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7301 if (item_size >= (1 + i) * sizeof(__le64))
7302 btrfs_dev_stat_set(device, i,
7303 btrfs_dev_stats_value(eb, ptr, i));
7304 else
7305 btrfs_dev_stat_set(device, i, 0);
7306 }
7307
7308 device->dev_stats_valid = 1;
7309 btrfs_dev_stat_print_on_load(device);
7310 btrfs_release_path(path);
7311
7312 return 0;
7313 }
7314
7315 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7316 {
7317 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7318 struct btrfs_device *device;
7319 struct btrfs_path *path = NULL;
7320 int ret = 0;
7321
7322 path = btrfs_alloc_path();
7323 if (!path)
7324 return -ENOMEM;
7325
7326 mutex_lock(&fs_devices->device_list_mutex);
7327 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7328 ret = btrfs_device_init_dev_stats(device, path);
7329 if (ret)
7330 goto out;
7331 }
7332 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7333 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7334 ret = btrfs_device_init_dev_stats(device, path);
7335 if (ret)
7336 goto out;
7337 }
7338 }
7339 out:
7340 mutex_unlock(&fs_devices->device_list_mutex);
7341
7342 btrfs_free_path(path);
7343 return ret;
7344 }
7345
7346 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7347 struct btrfs_device *device)
7348 {
7349 struct btrfs_fs_info *fs_info = trans->fs_info;
7350 struct btrfs_root *dev_root = fs_info->dev_root;
7351 struct btrfs_path *path;
7352 struct btrfs_key key;
7353 struct extent_buffer *eb;
7354 struct btrfs_dev_stats_item *ptr;
7355 int ret;
7356 int i;
7357
7358 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7359 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7360 key.offset = device->devid;
7361
7362 path = btrfs_alloc_path();
7363 if (!path)
7364 return -ENOMEM;
7365 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7366 if (ret < 0) {
7367 btrfs_warn_in_rcu(fs_info,
7368 "error %d while searching for dev_stats item for device %s",
7369 ret, rcu_str_deref(device->name));
7370 goto out;
7371 }
7372
7373 if (ret == 0 &&
7374 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7375 /* need to delete old one and insert a new one */
7376 ret = btrfs_del_item(trans, dev_root, path);
7377 if (ret != 0) {
7378 btrfs_warn_in_rcu(fs_info,
7379 "delete too small dev_stats item for device %s failed %d",
7380 rcu_str_deref(device->name), ret);
7381 goto out;
7382 }
7383 ret = 1;
7384 }
7385
7386 if (ret == 1) {
7387 /* need to insert a new item */
7388 btrfs_release_path(path);
7389 ret = btrfs_insert_empty_item(trans, dev_root, path,
7390 &key, sizeof(*ptr));
7391 if (ret < 0) {
7392 btrfs_warn_in_rcu(fs_info,
7393 "insert dev_stats item for device %s failed %d",
7394 rcu_str_deref(device->name), ret);
7395 goto out;
7396 }
7397 }
7398
7399 eb = path->nodes[0];
7400 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7401 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7402 btrfs_set_dev_stats_value(eb, ptr, i,
7403 btrfs_dev_stat_read(device, i));
7404 btrfs_mark_buffer_dirty(eb);
7405
7406 out:
7407 btrfs_free_path(path);
7408 return ret;
7409 }
7410
7411 /*
7412 * called from commit_transaction. Writes all changed device stats to disk.
7413 */
7414 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7415 {
7416 struct btrfs_fs_info *fs_info = trans->fs_info;
7417 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7418 struct btrfs_device *device;
7419 int stats_cnt;
7420 int ret = 0;
7421
7422 mutex_lock(&fs_devices->device_list_mutex);
7423 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7424 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7425 if (!device->dev_stats_valid || stats_cnt == 0)
7426 continue;
7427
7428
7429 /*
7430 * There is a LOAD-LOAD control dependency between the value of
7431 * dev_stats_ccnt and updating the on-disk values which requires
7432 * reading the in-memory counters. Such control dependencies
7433 * require explicit read memory barriers.
7434 *
7435 * This memory barriers pairs with smp_mb__before_atomic in
7436 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7437 * barrier implied by atomic_xchg in
7438 * btrfs_dev_stats_read_and_reset
7439 */
7440 smp_rmb();
7441
7442 ret = update_dev_stat_item(trans, device);
7443 if (!ret)
7444 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7445 }
7446 mutex_unlock(&fs_devices->device_list_mutex);
7447
7448 return ret;
7449 }
7450
7451 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7452 {
7453 btrfs_dev_stat_inc(dev, index);
7454 btrfs_dev_stat_print_on_error(dev);
7455 }
7456
7457 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7458 {
7459 if (!dev->dev_stats_valid)
7460 return;
7461 btrfs_err_rl_in_rcu(dev->fs_info,
7462 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7463 rcu_str_deref(dev->name),
7464 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7465 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7466 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7467 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7468 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7469 }
7470
7471 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7472 {
7473 int i;
7474
7475 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7476 if (btrfs_dev_stat_read(dev, i) != 0)
7477 break;
7478 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7479 return; /* all values == 0, suppress message */
7480
7481 btrfs_info_in_rcu(dev->fs_info,
7482 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7483 rcu_str_deref(dev->name),
7484 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7485 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7486 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7487 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7488 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7489 }
7490
7491 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7492 struct btrfs_ioctl_get_dev_stats *stats)
7493 {
7494 struct btrfs_device *dev;
7495 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7496 int i;
7497
7498 mutex_lock(&fs_devices->device_list_mutex);
7499 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7500 mutex_unlock(&fs_devices->device_list_mutex);
7501
7502 if (!dev) {
7503 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7504 return -ENODEV;
7505 } else if (!dev->dev_stats_valid) {
7506 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7507 return -ENODEV;
7508 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7509 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7510 if (stats->nr_items > i)
7511 stats->values[i] =
7512 btrfs_dev_stat_read_and_reset(dev, i);
7513 else
7514 btrfs_dev_stat_set(dev, i, 0);
7515 }
7516 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7517 current->comm, task_pid_nr(current));
7518 } else {
7519 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7520 if (stats->nr_items > i)
7521 stats->values[i] = btrfs_dev_stat_read(dev, i);
7522 }
7523 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7524 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7525 return 0;
7526 }
7527
7528 /*
7529 * Update the size and bytes used for each device where it changed. This is
7530 * delayed since we would otherwise get errors while writing out the
7531 * superblocks.
7532 *
7533 * Must be invoked during transaction commit.
7534 */
7535 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7536 {
7537 struct btrfs_device *curr, *next;
7538
7539 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7540
7541 if (list_empty(&trans->dev_update_list))
7542 return;
7543
7544 /*
7545 * We don't need the device_list_mutex here. This list is owned by the
7546 * transaction and the transaction must complete before the device is
7547 * released.
7548 */
7549 mutex_lock(&trans->fs_info->chunk_mutex);
7550 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7551 post_commit_list) {
7552 list_del_init(&curr->post_commit_list);
7553 curr->commit_total_bytes = curr->disk_total_bytes;
7554 curr->commit_bytes_used = curr->bytes_used;
7555 }
7556 mutex_unlock(&trans->fs_info->chunk_mutex);
7557 }
7558
7559 /*
7560 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7561 */
7562 int btrfs_bg_type_to_factor(u64 flags)
7563 {
7564 const int index = btrfs_bg_flags_to_raid_index(flags);
7565
7566 return btrfs_raid_array[index].ncopies;
7567 }
7568
7569
7570
7571 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7572 u64 chunk_offset, u64 devid,
7573 u64 physical_offset, u64 physical_len)
7574 {
7575 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7576 struct extent_map *em;
7577 struct map_lookup *map;
7578 struct btrfs_device *dev;
7579 u64 stripe_len;
7580 bool found = false;
7581 int ret = 0;
7582 int i;
7583
7584 read_lock(&em_tree->lock);
7585 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7586 read_unlock(&em_tree->lock);
7587
7588 if (!em) {
7589 btrfs_err(fs_info,
7590 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7591 physical_offset, devid);
7592 ret = -EUCLEAN;
7593 goto out;
7594 }
7595
7596 map = em->map_lookup;
7597 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7598 if (physical_len != stripe_len) {
7599 btrfs_err(fs_info,
7600 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7601 physical_offset, devid, em->start, physical_len,
7602 stripe_len);
7603 ret = -EUCLEAN;
7604 goto out;
7605 }
7606
7607 for (i = 0; i < map->num_stripes; i++) {
7608 if (map->stripes[i].dev->devid == devid &&
7609 map->stripes[i].physical == physical_offset) {
7610 found = true;
7611 if (map->verified_stripes >= map->num_stripes) {
7612 btrfs_err(fs_info,
7613 "too many dev extents for chunk %llu found",
7614 em->start);
7615 ret = -EUCLEAN;
7616 goto out;
7617 }
7618 map->verified_stripes++;
7619 break;
7620 }
7621 }
7622 if (!found) {
7623 btrfs_err(fs_info,
7624 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7625 physical_offset, devid);
7626 ret = -EUCLEAN;
7627 }
7628
7629 /* Make sure no dev extent is beyond device bondary */
7630 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7631 if (!dev) {
7632 btrfs_err(fs_info, "failed to find devid %llu", devid);
7633 ret = -EUCLEAN;
7634 goto out;
7635 }
7636
7637 if (physical_offset + physical_len > dev->disk_total_bytes) {
7638 btrfs_err(fs_info,
7639 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7640 devid, physical_offset, physical_len,
7641 dev->disk_total_bytes);
7642 ret = -EUCLEAN;
7643 goto out;
7644 }
7645 out:
7646 free_extent_map(em);
7647 return ret;
7648 }
7649
7650 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7651 {
7652 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7653 struct extent_map *em;
7654 struct rb_node *node;
7655 int ret = 0;
7656
7657 read_lock(&em_tree->lock);
7658 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7659 em = rb_entry(node, struct extent_map, rb_node);
7660 if (em->map_lookup->num_stripes !=
7661 em->map_lookup->verified_stripes) {
7662 btrfs_err(fs_info,
7663 "chunk %llu has missing dev extent, have %d expect %d",
7664 em->start, em->map_lookup->verified_stripes,
7665 em->map_lookup->num_stripes);
7666 ret = -EUCLEAN;
7667 goto out;
7668 }
7669 }
7670 out:
7671 read_unlock(&em_tree->lock);
7672 return ret;
7673 }
7674
7675 /*
7676 * Ensure that all dev extents are mapped to correct chunk, otherwise
7677 * later chunk allocation/free would cause unexpected behavior.
7678 *
7679 * NOTE: This will iterate through the whole device tree, which should be of
7680 * the same size level as the chunk tree. This slightly increases mount time.
7681 */
7682 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7683 {
7684 struct btrfs_path *path;
7685 struct btrfs_root *root = fs_info->dev_root;
7686 struct btrfs_key key;
7687 u64 prev_devid = 0;
7688 u64 prev_dev_ext_end = 0;
7689 int ret = 0;
7690
7691 /*
7692 * We don't have a dev_root because we mounted with ignorebadroots and
7693 * failed to load the root, so we want to skip the verification in this
7694 * case for sure.
7695 *
7696 * However if the dev root is fine, but the tree itself is corrupted
7697 * we'd still fail to mount. This verification is only to make sure
7698 * writes can happen safely, so instead just bypass this check
7699 * completely in the case of IGNOREBADROOTS.
7700 */
7701 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7702 return 0;
7703
7704 key.objectid = 1;
7705 key.type = BTRFS_DEV_EXTENT_KEY;
7706 key.offset = 0;
7707
7708 path = btrfs_alloc_path();
7709 if (!path)
7710 return -ENOMEM;
7711
7712 path->reada = READA_FORWARD;
7713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7714 if (ret < 0)
7715 goto out;
7716
7717 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7718 ret = btrfs_next_item(root, path);
7719 if (ret < 0)
7720 goto out;
7721 /* No dev extents at all? Not good */
7722 if (ret > 0) {
7723 ret = -EUCLEAN;
7724 goto out;
7725 }
7726 }
7727 while (1) {
7728 struct extent_buffer *leaf = path->nodes[0];
7729 struct btrfs_dev_extent *dext;
7730 int slot = path->slots[0];
7731 u64 chunk_offset;
7732 u64 physical_offset;
7733 u64 physical_len;
7734 u64 devid;
7735
7736 btrfs_item_key_to_cpu(leaf, &key, slot);
7737 if (key.type != BTRFS_DEV_EXTENT_KEY)
7738 break;
7739 devid = key.objectid;
7740 physical_offset = key.offset;
7741
7742 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7743 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7744 physical_len = btrfs_dev_extent_length(leaf, dext);
7745
7746 /* Check if this dev extent overlaps with the previous one */
7747 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7748 btrfs_err(fs_info,
7749 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7750 devid, physical_offset, prev_dev_ext_end);
7751 ret = -EUCLEAN;
7752 goto out;
7753 }
7754
7755 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7756 physical_offset, physical_len);
7757 if (ret < 0)
7758 goto out;
7759 prev_devid = devid;
7760 prev_dev_ext_end = physical_offset + physical_len;
7761
7762 ret = btrfs_next_item(root, path);
7763 if (ret < 0)
7764 goto out;
7765 if (ret > 0) {
7766 ret = 0;
7767 break;
7768 }
7769 }
7770
7771 /* Ensure all chunks have corresponding dev extents */
7772 ret = verify_chunk_dev_extent_mapping(fs_info);
7773 out:
7774 btrfs_free_path(path);
7775 return ret;
7776 }
7777
7778 /*
7779 * Check whether the given block group or device is pinned by any inode being
7780 * used as a swapfile.
7781 */
7782 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7783 {
7784 struct btrfs_swapfile_pin *sp;
7785 struct rb_node *node;
7786
7787 spin_lock(&fs_info->swapfile_pins_lock);
7788 node = fs_info->swapfile_pins.rb_node;
7789 while (node) {
7790 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7791 if (ptr < sp->ptr)
7792 node = node->rb_left;
7793 else if (ptr > sp->ptr)
7794 node = node->rb_right;
7795 else
7796 break;
7797 }
7798 spin_unlock(&fs_info->swapfile_pins_lock);
7799 return node != NULL;
7800 }