]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/volumes.c
btrfs: remove unused parameter from __btrfs_alloc_chunk
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 return &fs_uuids;
149 }
150
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 struct btrfs_fs_devices *fs_devs;
154
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167 }
168
169 /**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192 }
193
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
203 kfree(device);
204 }
205 kfree(fs_devices);
206 }
207
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210 {
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
221 void btrfs_cleanup_fs_uuids(void)
222 {
223 struct btrfs_fs_devices *fs_devices;
224
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
230 }
231 }
232
233 static struct btrfs_device *__alloc_device(void)
234 {
235 struct btrfs_device *dev;
236
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
259 {
260 struct btrfs_device *dev;
261
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 return dev;
266 }
267 }
268 return NULL;
269 }
270
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 struct btrfs_fs_devices *fs_devices;
274
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280 }
281
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286 {
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313 error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317 }
318
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321 {
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331 }
332
333 /*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 struct btrfs_fs_info *fs_info = device->fs_info;
347 struct bio *pending;
348 struct backing_dev_info *bdi;
349 struct btrfs_pending_bios *pending_bios;
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
355 unsigned long limit;
356 unsigned long last_waited = 0;
357 int force_reg = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
368
369 bdi = blk_get_backing_dev_info(device->bdev);
370 limit = btrfs_async_submit_limit(fs_info);
371 limit = limit * 2 / 3;
372
373 loop:
374 spin_lock(&device->io_lock);
375
376 loop_lock:
377 num_run = 0;
378
379 /* take all the bios off the list at once and process them
380 * later on (without the lock held). But, remember the
381 * tail and other pointers so the bios can be properly reinserted
382 * into the list if we hit congestion
383 */
384 if (!force_reg && device->pending_sync_bios.head) {
385 pending_bios = &device->pending_sync_bios;
386 force_reg = 1;
387 } else {
388 pending_bios = &device->pending_bios;
389 force_reg = 0;
390 }
391
392 pending = pending_bios->head;
393 tail = pending_bios->tail;
394 WARN_ON(pending && !tail);
395
396 /*
397 * if pending was null this time around, no bios need processing
398 * at all and we can stop. Otherwise it'll loop back up again
399 * and do an additional check so no bios are missed.
400 *
401 * device->running_pending is used to synchronize with the
402 * schedule_bio code.
403 */
404 if (device->pending_sync_bios.head == NULL &&
405 device->pending_bios.head == NULL) {
406 again = 0;
407 device->running_pending = 0;
408 } else {
409 again = 1;
410 device->running_pending = 1;
411 }
412
413 pending_bios->head = NULL;
414 pending_bios->tail = NULL;
415
416 spin_unlock(&device->io_lock);
417
418 while (pending) {
419
420 rmb();
421 /* we want to work on both lists, but do more bios on the
422 * sync list than the regular list
423 */
424 if ((num_run > 32 &&
425 pending_bios != &device->pending_sync_bios &&
426 device->pending_sync_bios.head) ||
427 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
428 device->pending_bios.head)) {
429 spin_lock(&device->io_lock);
430 requeue_list(pending_bios, pending, tail);
431 goto loop_lock;
432 }
433
434 cur = pending;
435 pending = pending->bi_next;
436 cur->bi_next = NULL;
437
438 /*
439 * atomic_dec_return implies a barrier for waitqueue_active
440 */
441 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
442 waitqueue_active(&fs_info->async_submit_wait))
443 wake_up(&fs_info->async_submit_wait);
444
445 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
446
447 /*
448 * if we're doing the sync list, record that our
449 * plug has some sync requests on it
450 *
451 * If we're doing the regular list and there are
452 * sync requests sitting around, unplug before
453 * we add more
454 */
455 if (pending_bios == &device->pending_sync_bios) {
456 sync_pending = 1;
457 } else if (sync_pending) {
458 blk_finish_plug(&plug);
459 blk_start_plug(&plug);
460 sync_pending = 0;
461 }
462
463 btrfsic_submit_bio(cur);
464 num_run++;
465 batch_run++;
466
467 cond_resched();
468
469 /*
470 * we made progress, there is more work to do and the bdi
471 * is now congested. Back off and let other work structs
472 * run instead
473 */
474 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
475 fs_info->fs_devices->open_devices > 1) {
476 struct io_context *ioc;
477
478 ioc = current->io_context;
479
480 /*
481 * the main goal here is that we don't want to
482 * block if we're going to be able to submit
483 * more requests without blocking.
484 *
485 * This code does two great things, it pokes into
486 * the elevator code from a filesystem _and_
487 * it makes assumptions about how batching works.
488 */
489 if (ioc && ioc->nr_batch_requests > 0 &&
490 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
491 (last_waited == 0 ||
492 ioc->last_waited == last_waited)) {
493 /*
494 * we want to go through our batch of
495 * requests and stop. So, we copy out
496 * the ioc->last_waited time and test
497 * against it before looping
498 */
499 last_waited = ioc->last_waited;
500 cond_resched();
501 continue;
502 }
503 spin_lock(&device->io_lock);
504 requeue_list(pending_bios, pending, tail);
505 device->running_pending = 1;
506
507 spin_unlock(&device->io_lock);
508 btrfs_queue_work(fs_info->submit_workers,
509 &device->work);
510 goto done;
511 }
512 /* unplug every 64 requests just for good measure */
513 if (batch_run % 64 == 0) {
514 blk_finish_plug(&plug);
515 blk_start_plug(&plug);
516 sync_pending = 0;
517 }
518 }
519
520 cond_resched();
521 if (again)
522 goto loop;
523
524 spin_lock(&device->io_lock);
525 if (device->pending_bios.head || device->pending_sync_bios.head)
526 goto loop_lock;
527 spin_unlock(&device->io_lock);
528
529 done:
530 blk_finish_plug(&plug);
531 }
532
533 static void pending_bios_fn(struct btrfs_work *work)
534 {
535 struct btrfs_device *device;
536
537 device = container_of(work, struct btrfs_device, work);
538 run_scheduled_bios(device);
539 }
540
541
542 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
543 {
544 struct btrfs_fs_devices *fs_devs;
545 struct btrfs_device *dev;
546
547 if (!cur_dev->name)
548 return;
549
550 list_for_each_entry(fs_devs, &fs_uuids, list) {
551 int del = 1;
552
553 if (fs_devs->opened)
554 continue;
555 if (fs_devs->seeding)
556 continue;
557
558 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
559
560 if (dev == cur_dev)
561 continue;
562 if (!dev->name)
563 continue;
564
565 /*
566 * Todo: This won't be enough. What if the same device
567 * comes back (with new uuid and) with its mapper path?
568 * But for now, this does help as mostly an admin will
569 * either use mapper or non mapper path throughout.
570 */
571 rcu_read_lock();
572 del = strcmp(rcu_str_deref(dev->name),
573 rcu_str_deref(cur_dev->name));
574 rcu_read_unlock();
575 if (!del)
576 break;
577 }
578
579 if (!del) {
580 /* delete the stale device */
581 if (fs_devs->num_devices == 1) {
582 btrfs_sysfs_remove_fsid(fs_devs);
583 list_del(&fs_devs->list);
584 free_fs_devices(fs_devs);
585 } else {
586 fs_devs->num_devices--;
587 list_del(&dev->dev_list);
588 rcu_string_free(dev->name);
589 kfree(dev);
590 }
591 break;
592 }
593 }
594 }
595
596 /*
597 * Add new device to list of registered devices
598 *
599 * Returns:
600 * 1 - first time device is seen
601 * 0 - device already known
602 * < 0 - error
603 */
604 static noinline int device_list_add(const char *path,
605 struct btrfs_super_block *disk_super,
606 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
607 {
608 struct btrfs_device *device;
609 struct btrfs_fs_devices *fs_devices;
610 struct rcu_string *name;
611 int ret = 0;
612 u64 found_transid = btrfs_super_generation(disk_super);
613
614 fs_devices = find_fsid(disk_super->fsid);
615 if (!fs_devices) {
616 fs_devices = alloc_fs_devices(disk_super->fsid);
617 if (IS_ERR(fs_devices))
618 return PTR_ERR(fs_devices);
619
620 list_add(&fs_devices->list, &fs_uuids);
621
622 device = NULL;
623 } else {
624 device = __find_device(&fs_devices->devices, devid,
625 disk_super->dev_item.uuid);
626 }
627
628 if (!device) {
629 if (fs_devices->opened)
630 return -EBUSY;
631
632 device = btrfs_alloc_device(NULL, &devid,
633 disk_super->dev_item.uuid);
634 if (IS_ERR(device)) {
635 /* we can safely leave the fs_devices entry around */
636 return PTR_ERR(device);
637 }
638
639 name = rcu_string_strdup(path, GFP_NOFS);
640 if (!name) {
641 kfree(device);
642 return -ENOMEM;
643 }
644 rcu_assign_pointer(device->name, name);
645
646 mutex_lock(&fs_devices->device_list_mutex);
647 list_add_rcu(&device->dev_list, &fs_devices->devices);
648 fs_devices->num_devices++;
649 mutex_unlock(&fs_devices->device_list_mutex);
650
651 ret = 1;
652 device->fs_devices = fs_devices;
653 } else if (!device->name || strcmp(device->name->str, path)) {
654 /*
655 * When FS is already mounted.
656 * 1. If you are here and if the device->name is NULL that
657 * means this device was missing at time of FS mount.
658 * 2. If you are here and if the device->name is different
659 * from 'path' that means either
660 * a. The same device disappeared and reappeared with
661 * different name. or
662 * b. The missing-disk-which-was-replaced, has
663 * reappeared now.
664 *
665 * We must allow 1 and 2a above. But 2b would be a spurious
666 * and unintentional.
667 *
668 * Further in case of 1 and 2a above, the disk at 'path'
669 * would have missed some transaction when it was away and
670 * in case of 2a the stale bdev has to be updated as well.
671 * 2b must not be allowed at all time.
672 */
673
674 /*
675 * For now, we do allow update to btrfs_fs_device through the
676 * btrfs dev scan cli after FS has been mounted. We're still
677 * tracking a problem where systems fail mount by subvolume id
678 * when we reject replacement on a mounted FS.
679 */
680 if (!fs_devices->opened && found_transid < device->generation) {
681 /*
682 * That is if the FS is _not_ mounted and if you
683 * are here, that means there is more than one
684 * disk with same uuid and devid.We keep the one
685 * with larger generation number or the last-in if
686 * generation are equal.
687 */
688 return -EEXIST;
689 }
690
691 name = rcu_string_strdup(path, GFP_NOFS);
692 if (!name)
693 return -ENOMEM;
694 rcu_string_free(device->name);
695 rcu_assign_pointer(device->name, name);
696 if (device->missing) {
697 fs_devices->missing_devices--;
698 device->missing = 0;
699 }
700 }
701
702 /*
703 * Unmount does not free the btrfs_device struct but would zero
704 * generation along with most of the other members. So just update
705 * it back. We need it to pick the disk with largest generation
706 * (as above).
707 */
708 if (!fs_devices->opened)
709 device->generation = found_transid;
710
711 /*
712 * if there is new btrfs on an already registered device,
713 * then remove the stale device entry.
714 */
715 if (ret > 0)
716 btrfs_free_stale_device(device);
717
718 *fs_devices_ret = fs_devices;
719
720 return ret;
721 }
722
723 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
724 {
725 struct btrfs_fs_devices *fs_devices;
726 struct btrfs_device *device;
727 struct btrfs_device *orig_dev;
728
729 fs_devices = alloc_fs_devices(orig->fsid);
730 if (IS_ERR(fs_devices))
731 return fs_devices;
732
733 mutex_lock(&orig->device_list_mutex);
734 fs_devices->total_devices = orig->total_devices;
735
736 /* We have held the volume lock, it is safe to get the devices. */
737 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
738 struct rcu_string *name;
739
740 device = btrfs_alloc_device(NULL, &orig_dev->devid,
741 orig_dev->uuid);
742 if (IS_ERR(device))
743 goto error;
744
745 /*
746 * This is ok to do without rcu read locked because we hold the
747 * uuid mutex so nothing we touch in here is going to disappear.
748 */
749 if (orig_dev->name) {
750 name = rcu_string_strdup(orig_dev->name->str,
751 GFP_KERNEL);
752 if (!name) {
753 kfree(device);
754 goto error;
755 }
756 rcu_assign_pointer(device->name, name);
757 }
758
759 list_add(&device->dev_list, &fs_devices->devices);
760 device->fs_devices = fs_devices;
761 fs_devices->num_devices++;
762 }
763 mutex_unlock(&orig->device_list_mutex);
764 return fs_devices;
765 error:
766 mutex_unlock(&orig->device_list_mutex);
767 free_fs_devices(fs_devices);
768 return ERR_PTR(-ENOMEM);
769 }
770
771 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
772 {
773 struct btrfs_device *device, *next;
774 struct btrfs_device *latest_dev = NULL;
775
776 mutex_lock(&uuid_mutex);
777 again:
778 /* This is the initialized path, it is safe to release the devices. */
779 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
780 if (device->in_fs_metadata) {
781 if (!device->is_tgtdev_for_dev_replace &&
782 (!latest_dev ||
783 device->generation > latest_dev->generation)) {
784 latest_dev = device;
785 }
786 continue;
787 }
788
789 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
790 /*
791 * In the first step, keep the device which has
792 * the correct fsid and the devid that is used
793 * for the dev_replace procedure.
794 * In the second step, the dev_replace state is
795 * read from the device tree and it is known
796 * whether the procedure is really active or
797 * not, which means whether this device is
798 * used or whether it should be removed.
799 */
800 if (step == 0 || device->is_tgtdev_for_dev_replace) {
801 continue;
802 }
803 }
804 if (device->bdev) {
805 blkdev_put(device->bdev, device->mode);
806 device->bdev = NULL;
807 fs_devices->open_devices--;
808 }
809 if (device->writeable) {
810 list_del_init(&device->dev_alloc_list);
811 device->writeable = 0;
812 if (!device->is_tgtdev_for_dev_replace)
813 fs_devices->rw_devices--;
814 }
815 list_del_init(&device->dev_list);
816 fs_devices->num_devices--;
817 rcu_string_free(device->name);
818 kfree(device);
819 }
820
821 if (fs_devices->seed) {
822 fs_devices = fs_devices->seed;
823 goto again;
824 }
825
826 fs_devices->latest_bdev = latest_dev->bdev;
827
828 mutex_unlock(&uuid_mutex);
829 }
830
831 static void __free_device(struct work_struct *work)
832 {
833 struct btrfs_device *device;
834
835 device = container_of(work, struct btrfs_device, rcu_work);
836 rcu_string_free(device->name);
837 kfree(device);
838 }
839
840 static void free_device(struct rcu_head *head)
841 {
842 struct btrfs_device *device;
843
844 device = container_of(head, struct btrfs_device, rcu);
845
846 INIT_WORK(&device->rcu_work, __free_device);
847 schedule_work(&device->rcu_work);
848 }
849
850 static void btrfs_close_bdev(struct btrfs_device *device)
851 {
852 if (device->bdev && device->writeable) {
853 sync_blockdev(device->bdev);
854 invalidate_bdev(device->bdev);
855 }
856
857 if (device->bdev)
858 blkdev_put(device->bdev, device->mode);
859 }
860
861 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
862 {
863 struct btrfs_fs_devices *fs_devices = device->fs_devices;
864 struct btrfs_device *new_device;
865 struct rcu_string *name;
866
867 if (device->bdev)
868 fs_devices->open_devices--;
869
870 if (device->writeable &&
871 device->devid != BTRFS_DEV_REPLACE_DEVID) {
872 list_del_init(&device->dev_alloc_list);
873 fs_devices->rw_devices--;
874 }
875
876 if (device->missing)
877 fs_devices->missing_devices--;
878
879 new_device = btrfs_alloc_device(NULL, &device->devid,
880 device->uuid);
881 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
882
883 /* Safe because we are under uuid_mutex */
884 if (device->name) {
885 name = rcu_string_strdup(device->name->str, GFP_NOFS);
886 BUG_ON(!name); /* -ENOMEM */
887 rcu_assign_pointer(new_device->name, name);
888 }
889
890 list_replace_rcu(&device->dev_list, &new_device->dev_list);
891 new_device->fs_devices = device->fs_devices;
892 }
893
894 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
895 {
896 struct btrfs_device *device, *tmp;
897 struct list_head pending_put;
898
899 INIT_LIST_HEAD(&pending_put);
900
901 if (--fs_devices->opened > 0)
902 return 0;
903
904 mutex_lock(&fs_devices->device_list_mutex);
905 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
906 btrfs_prepare_close_one_device(device);
907 list_add(&device->dev_list, &pending_put);
908 }
909 mutex_unlock(&fs_devices->device_list_mutex);
910
911 /*
912 * btrfs_show_devname() is using the device_list_mutex,
913 * sometimes call to blkdev_put() leads vfs calling
914 * into this func. So do put outside of device_list_mutex,
915 * as of now.
916 */
917 while (!list_empty(&pending_put)) {
918 device = list_first_entry(&pending_put,
919 struct btrfs_device, dev_list);
920 list_del(&device->dev_list);
921 btrfs_close_bdev(device);
922 call_rcu(&device->rcu, free_device);
923 }
924
925 WARN_ON(fs_devices->open_devices);
926 WARN_ON(fs_devices->rw_devices);
927 fs_devices->opened = 0;
928 fs_devices->seeding = 0;
929
930 return 0;
931 }
932
933 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
934 {
935 struct btrfs_fs_devices *seed_devices = NULL;
936 int ret;
937
938 mutex_lock(&uuid_mutex);
939 ret = __btrfs_close_devices(fs_devices);
940 if (!fs_devices->opened) {
941 seed_devices = fs_devices->seed;
942 fs_devices->seed = NULL;
943 }
944 mutex_unlock(&uuid_mutex);
945
946 while (seed_devices) {
947 fs_devices = seed_devices;
948 seed_devices = fs_devices->seed;
949 __btrfs_close_devices(fs_devices);
950 free_fs_devices(fs_devices);
951 }
952 /*
953 * Wait for rcu kworkers under __btrfs_close_devices
954 * to finish all blkdev_puts so device is really
955 * free when umount is done.
956 */
957 rcu_barrier();
958 return ret;
959 }
960
961 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
962 fmode_t flags, void *holder)
963 {
964 struct request_queue *q;
965 struct block_device *bdev;
966 struct list_head *head = &fs_devices->devices;
967 struct btrfs_device *device;
968 struct btrfs_device *latest_dev = NULL;
969 struct buffer_head *bh;
970 struct btrfs_super_block *disk_super;
971 u64 devid;
972 int seeding = 1;
973 int ret = 0;
974
975 flags |= FMODE_EXCL;
976
977 list_for_each_entry(device, head, dev_list) {
978 if (device->bdev)
979 continue;
980 if (!device->name)
981 continue;
982
983 /* Just open everything we can; ignore failures here */
984 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
985 &bdev, &bh))
986 continue;
987
988 disk_super = (struct btrfs_super_block *)bh->b_data;
989 devid = btrfs_stack_device_id(&disk_super->dev_item);
990 if (devid != device->devid)
991 goto error_brelse;
992
993 if (memcmp(device->uuid, disk_super->dev_item.uuid,
994 BTRFS_UUID_SIZE))
995 goto error_brelse;
996
997 device->generation = btrfs_super_generation(disk_super);
998 if (!latest_dev ||
999 device->generation > latest_dev->generation)
1000 latest_dev = device;
1001
1002 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1003 device->writeable = 0;
1004 } else {
1005 device->writeable = !bdev_read_only(bdev);
1006 seeding = 0;
1007 }
1008
1009 q = bdev_get_queue(bdev);
1010 if (blk_queue_discard(q))
1011 device->can_discard = 1;
1012
1013 device->bdev = bdev;
1014 device->in_fs_metadata = 0;
1015 device->mode = flags;
1016
1017 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1018 fs_devices->rotating = 1;
1019
1020 fs_devices->open_devices++;
1021 if (device->writeable &&
1022 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1023 fs_devices->rw_devices++;
1024 list_add(&device->dev_alloc_list,
1025 &fs_devices->alloc_list);
1026 }
1027 brelse(bh);
1028 continue;
1029
1030 error_brelse:
1031 brelse(bh);
1032 blkdev_put(bdev, flags);
1033 continue;
1034 }
1035 if (fs_devices->open_devices == 0) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039 fs_devices->seeding = seeding;
1040 fs_devices->opened = 1;
1041 fs_devices->latest_bdev = latest_dev->bdev;
1042 fs_devices->total_rw_bytes = 0;
1043 out:
1044 return ret;
1045 }
1046
1047 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1048 fmode_t flags, void *holder)
1049 {
1050 int ret;
1051
1052 mutex_lock(&uuid_mutex);
1053 if (fs_devices->opened) {
1054 fs_devices->opened++;
1055 ret = 0;
1056 } else {
1057 ret = __btrfs_open_devices(fs_devices, flags, holder);
1058 }
1059 mutex_unlock(&uuid_mutex);
1060 return ret;
1061 }
1062
1063 void btrfs_release_disk_super(struct page *page)
1064 {
1065 kunmap(page);
1066 put_page(page);
1067 }
1068
1069 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1070 struct page **page, struct btrfs_super_block **disk_super)
1071 {
1072 void *p;
1073 pgoff_t index;
1074
1075 /* make sure our super fits in the device */
1076 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1077 return 1;
1078
1079 /* make sure our super fits in the page */
1080 if (sizeof(**disk_super) > PAGE_SIZE)
1081 return 1;
1082
1083 /* make sure our super doesn't straddle pages on disk */
1084 index = bytenr >> PAGE_SHIFT;
1085 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1086 return 1;
1087
1088 /* pull in the page with our super */
1089 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1090 index, GFP_KERNEL);
1091
1092 if (IS_ERR_OR_NULL(*page))
1093 return 1;
1094
1095 p = kmap(*page);
1096
1097 /* align our pointer to the offset of the super block */
1098 *disk_super = p + (bytenr & ~PAGE_MASK);
1099
1100 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1101 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1102 btrfs_release_disk_super(*page);
1103 return 1;
1104 }
1105
1106 if ((*disk_super)->label[0] &&
1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1108 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1109
1110 return 0;
1111 }
1112
1113 /*
1114 * Look for a btrfs signature on a device. This may be called out of the mount path
1115 * and we are not allowed to call set_blocksize during the scan. The superblock
1116 * is read via pagecache
1117 */
1118 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1119 struct btrfs_fs_devices **fs_devices_ret)
1120 {
1121 struct btrfs_super_block *disk_super;
1122 struct block_device *bdev;
1123 struct page *page;
1124 int ret = -EINVAL;
1125 u64 devid;
1126 u64 transid;
1127 u64 total_devices;
1128 u64 bytenr;
1129
1130 /*
1131 * we would like to check all the supers, but that would make
1132 * a btrfs mount succeed after a mkfs from a different FS.
1133 * So, we need to add a special mount option to scan for
1134 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1135 */
1136 bytenr = btrfs_sb_offset(0);
1137 flags |= FMODE_EXCL;
1138 mutex_lock(&uuid_mutex);
1139
1140 bdev = blkdev_get_by_path(path, flags, holder);
1141 if (IS_ERR(bdev)) {
1142 ret = PTR_ERR(bdev);
1143 goto error;
1144 }
1145
1146 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1147 goto error_bdev_put;
1148
1149 devid = btrfs_stack_device_id(&disk_super->dev_item);
1150 transid = btrfs_super_generation(disk_super);
1151 total_devices = btrfs_super_num_devices(disk_super);
1152
1153 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1154 if (ret > 0) {
1155 if (disk_super->label[0]) {
1156 pr_info("BTRFS: device label %s ", disk_super->label);
1157 } else {
1158 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1159 }
1160
1161 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1162 ret = 0;
1163 }
1164 if (!ret && fs_devices_ret)
1165 (*fs_devices_ret)->total_devices = total_devices;
1166
1167 btrfs_release_disk_super(page);
1168
1169 error_bdev_put:
1170 blkdev_put(bdev, flags);
1171 error:
1172 mutex_unlock(&uuid_mutex);
1173 return ret;
1174 }
1175
1176 /* helper to account the used device space in the range */
1177 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1178 u64 end, u64 *length)
1179 {
1180 struct btrfs_key key;
1181 struct btrfs_root *root = device->fs_info->dev_root;
1182 struct btrfs_dev_extent *dev_extent;
1183 struct btrfs_path *path;
1184 u64 extent_end;
1185 int ret;
1186 int slot;
1187 struct extent_buffer *l;
1188
1189 *length = 0;
1190
1191 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1192 return 0;
1193
1194 path = btrfs_alloc_path();
1195 if (!path)
1196 return -ENOMEM;
1197 path->reada = READA_FORWARD;
1198
1199 key.objectid = device->devid;
1200 key.offset = start;
1201 key.type = BTRFS_DEV_EXTENT_KEY;
1202
1203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1204 if (ret < 0)
1205 goto out;
1206 if (ret > 0) {
1207 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1208 if (ret < 0)
1209 goto out;
1210 }
1211
1212 while (1) {
1213 l = path->nodes[0];
1214 slot = path->slots[0];
1215 if (slot >= btrfs_header_nritems(l)) {
1216 ret = btrfs_next_leaf(root, path);
1217 if (ret == 0)
1218 continue;
1219 if (ret < 0)
1220 goto out;
1221
1222 break;
1223 }
1224 btrfs_item_key_to_cpu(l, &key, slot);
1225
1226 if (key.objectid < device->devid)
1227 goto next;
1228
1229 if (key.objectid > device->devid)
1230 break;
1231
1232 if (key.type != BTRFS_DEV_EXTENT_KEY)
1233 goto next;
1234
1235 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1236 extent_end = key.offset + btrfs_dev_extent_length(l,
1237 dev_extent);
1238 if (key.offset <= start && extent_end > end) {
1239 *length = end - start + 1;
1240 break;
1241 } else if (key.offset <= start && extent_end > start)
1242 *length += extent_end - start;
1243 else if (key.offset > start && extent_end <= end)
1244 *length += extent_end - key.offset;
1245 else if (key.offset > start && key.offset <= end) {
1246 *length += end - key.offset + 1;
1247 break;
1248 } else if (key.offset > end)
1249 break;
1250
1251 next:
1252 path->slots[0]++;
1253 }
1254 ret = 0;
1255 out:
1256 btrfs_free_path(path);
1257 return ret;
1258 }
1259
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261 struct btrfs_device *device,
1262 u64 *start, u64 len)
1263 {
1264 struct btrfs_fs_info *fs_info = device->fs_info;
1265 struct extent_map *em;
1266 struct list_head *search_list = &fs_info->pinned_chunks;
1267 int ret = 0;
1268 u64 physical_start = *start;
1269
1270 if (transaction)
1271 search_list = &transaction->pending_chunks;
1272 again:
1273 list_for_each_entry(em, search_list, list) {
1274 struct map_lookup *map;
1275 int i;
1276
1277 map = em->map_lookup;
1278 for (i = 0; i < map->num_stripes; i++) {
1279 u64 end;
1280
1281 if (map->stripes[i].dev != device)
1282 continue;
1283 if (map->stripes[i].physical >= physical_start + len ||
1284 map->stripes[i].physical + em->orig_block_len <=
1285 physical_start)
1286 continue;
1287 /*
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1297 * pending chunk.
1298 */
1299 end = map->stripes[i].physical + em->orig_block_len;
1300 if (end > *start) {
1301 *start = end;
1302 ret = 1;
1303 }
1304 }
1305 }
1306 if (search_list != &fs_info->pinned_chunks) {
1307 search_list = &fs_info->pinned_chunks;
1308 goto again;
1309 }
1310
1311 return ret;
1312 }
1313
1314
1315 /*
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
1323 *
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1326 * of extents
1327 *
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1331 *
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
1335 */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 struct btrfs_device *device, u64 num_bytes,
1338 u64 search_start, u64 *start, u64 *len)
1339 {
1340 struct btrfs_fs_info *fs_info = device->fs_info;
1341 struct btrfs_root *root = fs_info->dev_root;
1342 struct btrfs_key key;
1343 struct btrfs_dev_extent *dev_extent;
1344 struct btrfs_path *path;
1345 u64 hole_size;
1346 u64 max_hole_start;
1347 u64 max_hole_size;
1348 u64 extent_end;
1349 u64 search_end = device->total_bytes;
1350 int ret;
1351 int slot;
1352 struct extent_buffer *l;
1353 u64 min_search_start;
1354
1355 /*
1356 * We don't want to overwrite the superblock on the drive nor any area
1357 * used by the boot loader (grub for example), so we make sure to start
1358 * at an offset of at least 1MB.
1359 */
1360 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1361 search_start = max(search_start, min_search_start);
1362
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
1366
1367 max_hole_start = search_start;
1368 max_hole_size = 0;
1369
1370 again:
1371 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372 ret = -ENOSPC;
1373 goto out;
1374 }
1375
1376 path->reada = READA_FORWARD;
1377 path->search_commit_root = 1;
1378 path->skip_locking = 1;
1379
1380 key.objectid = device->devid;
1381 key.offset = search_start;
1382 key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385 if (ret < 0)
1386 goto out;
1387 if (ret > 0) {
1388 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389 if (ret < 0)
1390 goto out;
1391 }
1392
1393 while (1) {
1394 l = path->nodes[0];
1395 slot = path->slots[0];
1396 if (slot >= btrfs_header_nritems(l)) {
1397 ret = btrfs_next_leaf(root, path);
1398 if (ret == 0)
1399 continue;
1400 if (ret < 0)
1401 goto out;
1402
1403 break;
1404 }
1405 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407 if (key.objectid < device->devid)
1408 goto next;
1409
1410 if (key.objectid > device->devid)
1411 break;
1412
1413 if (key.type != BTRFS_DEV_EXTENT_KEY)
1414 goto next;
1415
1416 if (key.offset > search_start) {
1417 hole_size = key.offset - search_start;
1418
1419 /*
1420 * Have to check before we set max_hole_start, otherwise
1421 * we could end up sending back this offset anyway.
1422 */
1423 if (contains_pending_extent(transaction, device,
1424 &search_start,
1425 hole_size)) {
1426 if (key.offset >= search_start) {
1427 hole_size = key.offset - search_start;
1428 } else {
1429 WARN_ON_ONCE(1);
1430 hole_size = 0;
1431 }
1432 }
1433
1434 if (hole_size > max_hole_size) {
1435 max_hole_start = search_start;
1436 max_hole_size = hole_size;
1437 }
1438
1439 /*
1440 * If this free space is greater than which we need,
1441 * it must be the max free space that we have found
1442 * until now, so max_hole_start must point to the start
1443 * of this free space and the length of this free space
1444 * is stored in max_hole_size. Thus, we return
1445 * max_hole_start and max_hole_size and go back to the
1446 * caller.
1447 */
1448 if (hole_size >= num_bytes) {
1449 ret = 0;
1450 goto out;
1451 }
1452 }
1453
1454 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455 extent_end = key.offset + btrfs_dev_extent_length(l,
1456 dev_extent);
1457 if (extent_end > search_start)
1458 search_start = extent_end;
1459 next:
1460 path->slots[0]++;
1461 cond_resched();
1462 }
1463
1464 /*
1465 * At this point, search_start should be the end of
1466 * allocated dev extents, and when shrinking the device,
1467 * search_end may be smaller than search_start.
1468 */
1469 if (search_end > search_start) {
1470 hole_size = search_end - search_start;
1471
1472 if (contains_pending_extent(transaction, device, &search_start,
1473 hole_size)) {
1474 btrfs_release_path(path);
1475 goto again;
1476 }
1477
1478 if (hole_size > max_hole_size) {
1479 max_hole_start = search_start;
1480 max_hole_size = hole_size;
1481 }
1482 }
1483
1484 /* See above. */
1485 if (max_hole_size < num_bytes)
1486 ret = -ENOSPC;
1487 else
1488 ret = 0;
1489
1490 out:
1491 btrfs_free_path(path);
1492 *start = max_hole_start;
1493 if (len)
1494 *len = max_hole_size;
1495 return ret;
1496 }
1497
1498 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device, u64 num_bytes,
1500 u64 *start, u64 *len)
1501 {
1502 /* FIXME use last free of some kind */
1503 return find_free_dev_extent_start(trans->transaction, device,
1504 num_bytes, 0, start, len);
1505 }
1506
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508 struct btrfs_device *device,
1509 u64 start, u64 *dev_extent_len)
1510 {
1511 struct btrfs_fs_info *fs_info = device->fs_info;
1512 struct btrfs_root *root = fs_info->dev_root;
1513 int ret;
1514 struct btrfs_path *path;
1515 struct btrfs_key key;
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 key.objectid = device->devid;
1525 key.offset = start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
1527 again:
1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1529 if (ret > 0) {
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
1532 if (ret)
1533 goto out;
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
1540 key = found_key;
1541 btrfs_release_path(path);
1542 goto again;
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
1547 } else {
1548 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1549 goto out;
1550 }
1551
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553
1554 ret = btrfs_del_item(trans, root, path);
1555 if (ret) {
1556 btrfs_handle_fs_error(fs_info, ret,
1557 "Failed to remove dev extent item");
1558 } else {
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1560 }
1561 out:
1562 btrfs_free_path(path);
1563 return ret;
1564 }
1565
1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_tree, u64 chunk_objectid,
1569 u64 chunk_offset, u64 start, u64 num_bytes)
1570 {
1571 int ret;
1572 struct btrfs_path *path;
1573 struct btrfs_fs_info *fs_info = device->fs_info;
1574 struct btrfs_root *root = fs_info->dev_root;
1575 struct btrfs_dev_extent *extent;
1576 struct extent_buffer *leaf;
1577 struct btrfs_key key;
1578
1579 WARN_ON(!device->in_fs_metadata);
1580 WARN_ON(device->is_tgtdev_for_dev_replace);
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return -ENOMEM;
1584
1585 key.objectid = device->devid;
1586 key.offset = start;
1587 key.type = BTRFS_DEV_EXTENT_KEY;
1588 ret = btrfs_insert_empty_item(trans, root, path, &key,
1589 sizeof(*extent));
1590 if (ret)
1591 goto out;
1592
1593 leaf = path->nodes[0];
1594 extent = btrfs_item_ptr(leaf, path->slots[0],
1595 struct btrfs_dev_extent);
1596 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1597 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1598 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1601
1602 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 btrfs_mark_buffer_dirty(leaf);
1604 out:
1605 btrfs_free_path(path);
1606 return ret;
1607 }
1608
1609 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1610 {
1611 struct extent_map_tree *em_tree;
1612 struct extent_map *em;
1613 struct rb_node *n;
1614 u64 ret = 0;
1615
1616 em_tree = &fs_info->mapping_tree.map_tree;
1617 read_lock(&em_tree->lock);
1618 n = rb_last(&em_tree->map);
1619 if (n) {
1620 em = rb_entry(n, struct extent_map, rb_node);
1621 ret = em->start + em->len;
1622 }
1623 read_unlock(&em_tree->lock);
1624
1625 return ret;
1626 }
1627
1628 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1629 u64 *devid_ret)
1630 {
1631 int ret;
1632 struct btrfs_key key;
1633 struct btrfs_key found_key;
1634 struct btrfs_path *path;
1635
1636 path = btrfs_alloc_path();
1637 if (!path)
1638 return -ENOMEM;
1639
1640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 key.type = BTRFS_DEV_ITEM_KEY;
1642 key.offset = (u64)-1;
1643
1644 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1645 if (ret < 0)
1646 goto error;
1647
1648 BUG_ON(ret == 0); /* Corruption */
1649
1650 ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 BTRFS_DEV_ITEMS_OBJECTID,
1652 BTRFS_DEV_ITEM_KEY);
1653 if (ret) {
1654 *devid_ret = 1;
1655 } else {
1656 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1657 path->slots[0]);
1658 *devid_ret = found_key.offset + 1;
1659 }
1660 ret = 0;
1661 error:
1662 btrfs_free_path(path);
1663 return ret;
1664 }
1665
1666 /*
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1669 */
1670 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1671 struct btrfs_fs_info *fs_info,
1672 struct btrfs_device *device)
1673 {
1674 struct btrfs_root *root = fs_info->chunk_root;
1675 int ret;
1676 struct btrfs_path *path;
1677 struct btrfs_dev_item *dev_item;
1678 struct extent_buffer *leaf;
1679 struct btrfs_key key;
1680 unsigned long ptr;
1681
1682 path = btrfs_alloc_path();
1683 if (!path)
1684 return -ENOMEM;
1685
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
1688 key.offset = device->devid;
1689
1690 ret = btrfs_insert_empty_item(trans, root, path, &key,
1691 sizeof(*dev_item));
1692 if (ret)
1693 goto out;
1694
1695 leaf = path->nodes[0];
1696 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697
1698 btrfs_set_device_id(leaf, dev_item, device->devid);
1699 btrfs_set_device_generation(leaf, dev_item, 0);
1700 btrfs_set_device_type(leaf, dev_item, device->type);
1701 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1704 btrfs_set_device_total_bytes(leaf, dev_item,
1705 btrfs_device_get_disk_total_bytes(device));
1706 btrfs_set_device_bytes_used(leaf, dev_item,
1707 btrfs_device_get_bytes_used(device));
1708 btrfs_set_device_group(leaf, dev_item, 0);
1709 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1711 btrfs_set_device_start_offset(leaf, dev_item, 0);
1712
1713 ptr = btrfs_device_uuid(dev_item);
1714 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1715 ptr = btrfs_device_fsid(dev_item);
1716 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1717 btrfs_mark_buffer_dirty(leaf);
1718
1719 ret = 0;
1720 out:
1721 btrfs_free_path(path);
1722 return ret;
1723 }
1724
1725 /*
1726 * Function to update ctime/mtime for a given device path.
1727 * Mainly used for ctime/mtime based probe like libblkid.
1728 */
1729 static void update_dev_time(char *path_name)
1730 {
1731 struct file *filp;
1732
1733 filp = filp_open(path_name, O_RDWR, 0);
1734 if (IS_ERR(filp))
1735 return;
1736 file_update_time(filp);
1737 filp_close(filp, NULL);
1738 }
1739
1740 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1741 struct btrfs_device *device)
1742 {
1743 struct btrfs_root *root = fs_info->chunk_root;
1744 int ret;
1745 struct btrfs_path *path;
1746 struct btrfs_key key;
1747 struct btrfs_trans_handle *trans;
1748
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
1753 trans = btrfs_start_transaction(root, 0);
1754 if (IS_ERR(trans)) {
1755 btrfs_free_path(path);
1756 return PTR_ERR(trans);
1757 }
1758 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1759 key.type = BTRFS_DEV_ITEM_KEY;
1760 key.offset = device->devid;
1761
1762 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1763 if (ret < 0)
1764 goto out;
1765
1766 if (ret > 0) {
1767 ret = -ENOENT;
1768 goto out;
1769 }
1770
1771 ret = btrfs_del_item(trans, root, path);
1772 if (ret)
1773 goto out;
1774 out:
1775 btrfs_free_path(path);
1776 btrfs_commit_transaction(trans);
1777 return ret;
1778 }
1779
1780 /*
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1783 * replace.
1784 */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 u64 num_devices)
1787 {
1788 u64 all_avail;
1789 unsigned seq;
1790 int i;
1791
1792 do {
1793 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795 all_avail = fs_info->avail_data_alloc_bits |
1796 fs_info->avail_system_alloc_bits |
1797 fs_info->avail_metadata_alloc_bits;
1798 } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 if (!(all_avail & btrfs_raid_group[i]))
1802 continue;
1803
1804 if (num_devices < btrfs_raid_array[i].devs_min) {
1805 int ret = btrfs_raid_mindev_error[i];
1806
1807 if (ret)
1808 return ret;
1809 }
1810 }
1811
1812 return 0;
1813 }
1814
1815 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1816 struct btrfs_device *device)
1817 {
1818 struct btrfs_device *next_device;
1819
1820 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 if (next_device != device &&
1822 !next_device->missing && next_device->bdev)
1823 return next_device;
1824 }
1825
1826 return NULL;
1827 }
1828
1829 /*
1830 * Helper function to check if the given device is part of s_bdev / latest_bdev
1831 * and replace it with the provided or the next active device, in the context
1832 * where this function called, there should be always be another device (or
1833 * this_dev) which is active.
1834 */
1835 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1836 struct btrfs_device *device, struct btrfs_device *this_dev)
1837 {
1838 struct btrfs_device *next_device;
1839
1840 if (this_dev)
1841 next_device = this_dev;
1842 else
1843 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1844 device);
1845 ASSERT(next_device);
1846
1847 if (fs_info->sb->s_bdev &&
1848 (fs_info->sb->s_bdev == device->bdev))
1849 fs_info->sb->s_bdev = next_device->bdev;
1850
1851 if (fs_info->fs_devices->latest_bdev == device->bdev)
1852 fs_info->fs_devices->latest_bdev = next_device->bdev;
1853 }
1854
1855 int btrfs_rm_device(struct btrfs_fs_info *fs_info, char *device_path, u64 devid)
1856 {
1857 struct btrfs_device *device;
1858 struct btrfs_fs_devices *cur_devices;
1859 u64 num_devices;
1860 int ret = 0;
1861 bool clear_super = false;
1862
1863 mutex_lock(&uuid_mutex);
1864
1865 num_devices = fs_info->fs_devices->num_devices;
1866 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1867 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1868 WARN_ON(num_devices < 1);
1869 num_devices--;
1870 }
1871 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1872
1873 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1874 if (ret)
1875 goto out;
1876
1877 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1878 &device);
1879 if (ret)
1880 goto out;
1881
1882 if (device->is_tgtdev_for_dev_replace) {
1883 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1884 goto out;
1885 }
1886
1887 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1888 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1889 goto out;
1890 }
1891
1892 if (device->writeable) {
1893 mutex_lock(&fs_info->chunk_mutex);
1894 list_del_init(&device->dev_alloc_list);
1895 device->fs_devices->rw_devices--;
1896 mutex_unlock(&fs_info->chunk_mutex);
1897 clear_super = true;
1898 }
1899
1900 mutex_unlock(&uuid_mutex);
1901 ret = btrfs_shrink_device(device, 0);
1902 mutex_lock(&uuid_mutex);
1903 if (ret)
1904 goto error_undo;
1905
1906 /*
1907 * TODO: the superblock still includes this device in its num_devices
1908 * counter although write_all_supers() is not locked out. This
1909 * could give a filesystem state which requires a degraded mount.
1910 */
1911 ret = btrfs_rm_dev_item(fs_info, device);
1912 if (ret)
1913 goto error_undo;
1914
1915 device->in_fs_metadata = 0;
1916 btrfs_scrub_cancel_dev(fs_info, device);
1917
1918 /*
1919 * the device list mutex makes sure that we don't change
1920 * the device list while someone else is writing out all
1921 * the device supers. Whoever is writing all supers, should
1922 * lock the device list mutex before getting the number of
1923 * devices in the super block (super_copy). Conversely,
1924 * whoever updates the number of devices in the super block
1925 * (super_copy) should hold the device list mutex.
1926 */
1927
1928 cur_devices = device->fs_devices;
1929 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1930 list_del_rcu(&device->dev_list);
1931
1932 device->fs_devices->num_devices--;
1933 device->fs_devices->total_devices--;
1934
1935 if (device->missing)
1936 device->fs_devices->missing_devices--;
1937
1938 btrfs_assign_next_active_device(fs_info, device, NULL);
1939
1940 if (device->bdev) {
1941 device->fs_devices->open_devices--;
1942 /* remove sysfs entry */
1943 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1944 }
1945
1946 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1947 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1948 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1949
1950 /*
1951 * at this point, the device is zero sized and detached from
1952 * the devices list. All that's left is to zero out the old
1953 * supers and free the device.
1954 */
1955 if (device->writeable)
1956 btrfs_scratch_superblocks(device->bdev, device->name->str);
1957
1958 btrfs_close_bdev(device);
1959 call_rcu(&device->rcu, free_device);
1960
1961 if (cur_devices->open_devices == 0) {
1962 struct btrfs_fs_devices *fs_devices;
1963 fs_devices = fs_info->fs_devices;
1964 while (fs_devices) {
1965 if (fs_devices->seed == cur_devices) {
1966 fs_devices->seed = cur_devices->seed;
1967 break;
1968 }
1969 fs_devices = fs_devices->seed;
1970 }
1971 cur_devices->seed = NULL;
1972 __btrfs_close_devices(cur_devices);
1973 free_fs_devices(cur_devices);
1974 }
1975
1976 fs_info->num_tolerated_disk_barrier_failures =
1977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1978
1979 out:
1980 mutex_unlock(&uuid_mutex);
1981 return ret;
1982
1983 error_undo:
1984 if (device->writeable) {
1985 mutex_lock(&fs_info->chunk_mutex);
1986 list_add(&device->dev_alloc_list,
1987 &fs_info->fs_devices->alloc_list);
1988 device->fs_devices->rw_devices++;
1989 mutex_unlock(&fs_info->chunk_mutex);
1990 }
1991 goto out;
1992 }
1993
1994 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1995 struct btrfs_device *srcdev)
1996 {
1997 struct btrfs_fs_devices *fs_devices;
1998
1999 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2000
2001 /*
2002 * in case of fs with no seed, srcdev->fs_devices will point
2003 * to fs_devices of fs_info. However when the dev being replaced is
2004 * a seed dev it will point to the seed's local fs_devices. In short
2005 * srcdev will have its correct fs_devices in both the cases.
2006 */
2007 fs_devices = srcdev->fs_devices;
2008
2009 list_del_rcu(&srcdev->dev_list);
2010 list_del_rcu(&srcdev->dev_alloc_list);
2011 fs_devices->num_devices--;
2012 if (srcdev->missing)
2013 fs_devices->missing_devices--;
2014
2015 if (srcdev->writeable)
2016 fs_devices->rw_devices--;
2017
2018 if (srcdev->bdev)
2019 fs_devices->open_devices--;
2020 }
2021
2022 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2023 struct btrfs_device *srcdev)
2024 {
2025 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2026
2027 if (srcdev->writeable) {
2028 /* zero out the old super if it is writable */
2029 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2030 }
2031
2032 btrfs_close_bdev(srcdev);
2033
2034 call_rcu(&srcdev->rcu, free_device);
2035
2036 /*
2037 * unless fs_devices is seed fs, num_devices shouldn't go
2038 * zero
2039 */
2040 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2041
2042 /* if this is no devs we rather delete the fs_devices */
2043 if (!fs_devices->num_devices) {
2044 struct btrfs_fs_devices *tmp_fs_devices;
2045
2046 tmp_fs_devices = fs_info->fs_devices;
2047 while (tmp_fs_devices) {
2048 if (tmp_fs_devices->seed == fs_devices) {
2049 tmp_fs_devices->seed = fs_devices->seed;
2050 break;
2051 }
2052 tmp_fs_devices = tmp_fs_devices->seed;
2053 }
2054 fs_devices->seed = NULL;
2055 __btrfs_close_devices(fs_devices);
2056 free_fs_devices(fs_devices);
2057 }
2058 }
2059
2060 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2061 struct btrfs_device *tgtdev)
2062 {
2063 mutex_lock(&uuid_mutex);
2064 WARN_ON(!tgtdev);
2065 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2066
2067 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2068
2069 if (tgtdev->bdev)
2070 fs_info->fs_devices->open_devices--;
2071
2072 fs_info->fs_devices->num_devices--;
2073
2074 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2075
2076 list_del_rcu(&tgtdev->dev_list);
2077
2078 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2079 mutex_unlock(&uuid_mutex);
2080
2081 /*
2082 * The update_dev_time() with in btrfs_scratch_superblocks()
2083 * may lead to a call to btrfs_show_devname() which will try
2084 * to hold device_list_mutex. And here this device
2085 * is already out of device list, so we don't have to hold
2086 * the device_list_mutex lock.
2087 */
2088 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2089
2090 btrfs_close_bdev(tgtdev);
2091 call_rcu(&tgtdev->rcu, free_device);
2092 }
2093
2094 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2095 char *device_path,
2096 struct btrfs_device **device)
2097 {
2098 int ret = 0;
2099 struct btrfs_super_block *disk_super;
2100 u64 devid;
2101 u8 *dev_uuid;
2102 struct block_device *bdev;
2103 struct buffer_head *bh;
2104
2105 *device = NULL;
2106 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107 fs_info->bdev_holder, 0, &bdev, &bh);
2108 if (ret)
2109 return ret;
2110 disk_super = (struct btrfs_super_block *)bh->b_data;
2111 devid = btrfs_stack_device_id(&disk_super->dev_item);
2112 dev_uuid = disk_super->dev_item.uuid;
2113 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2114 brelse(bh);
2115 if (!*device)
2116 ret = -ENOENT;
2117 blkdev_put(bdev, FMODE_READ);
2118 return ret;
2119 }
2120
2121 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2122 char *device_path,
2123 struct btrfs_device **device)
2124 {
2125 *device = NULL;
2126 if (strcmp(device_path, "missing") == 0) {
2127 struct list_head *devices;
2128 struct btrfs_device *tmp;
2129
2130 devices = &fs_info->fs_devices->devices;
2131 /*
2132 * It is safe to read the devices since the volume_mutex
2133 * is held by the caller.
2134 */
2135 list_for_each_entry(tmp, devices, dev_list) {
2136 if (tmp->in_fs_metadata && !tmp->bdev) {
2137 *device = tmp;
2138 break;
2139 }
2140 }
2141
2142 if (!*device)
2143 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144
2145 return 0;
2146 } else {
2147 return btrfs_find_device_by_path(fs_info, device_path, device);
2148 }
2149 }
2150
2151 /*
2152 * Lookup a device given by device id, or the path if the id is 0.
2153 */
2154 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2155 char *devpath, struct btrfs_device **device)
2156 {
2157 int ret;
2158
2159 if (devid) {
2160 ret = 0;
2161 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2162 if (!*device)
2163 ret = -ENOENT;
2164 } else {
2165 if (!devpath || !devpath[0])
2166 return -EINVAL;
2167
2168 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2169 device);
2170 }
2171 return ret;
2172 }
2173
2174 /*
2175 * does all the dirty work required for changing file system's UUID.
2176 */
2177 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2178 {
2179 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2180 struct btrfs_fs_devices *old_devices;
2181 struct btrfs_fs_devices *seed_devices;
2182 struct btrfs_super_block *disk_super = fs_info->super_copy;
2183 struct btrfs_device *device;
2184 u64 super_flags;
2185
2186 BUG_ON(!mutex_is_locked(&uuid_mutex));
2187 if (!fs_devices->seeding)
2188 return -EINVAL;
2189
2190 seed_devices = __alloc_fs_devices();
2191 if (IS_ERR(seed_devices))
2192 return PTR_ERR(seed_devices);
2193
2194 old_devices = clone_fs_devices(fs_devices);
2195 if (IS_ERR(old_devices)) {
2196 kfree(seed_devices);
2197 return PTR_ERR(old_devices);
2198 }
2199
2200 list_add(&old_devices->list, &fs_uuids);
2201
2202 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2203 seed_devices->opened = 1;
2204 INIT_LIST_HEAD(&seed_devices->devices);
2205 INIT_LIST_HEAD(&seed_devices->alloc_list);
2206 mutex_init(&seed_devices->device_list_mutex);
2207
2208 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2209 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2210 synchronize_rcu);
2211 list_for_each_entry(device, &seed_devices->devices, dev_list)
2212 device->fs_devices = seed_devices;
2213
2214 mutex_lock(&fs_info->chunk_mutex);
2215 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2216 mutex_unlock(&fs_info->chunk_mutex);
2217
2218 fs_devices->seeding = 0;
2219 fs_devices->num_devices = 0;
2220 fs_devices->open_devices = 0;
2221 fs_devices->missing_devices = 0;
2222 fs_devices->rotating = 0;
2223 fs_devices->seed = seed_devices;
2224
2225 generate_random_uuid(fs_devices->fsid);
2226 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2227 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2228 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2229
2230 super_flags = btrfs_super_flags(disk_super) &
2231 ~BTRFS_SUPER_FLAG_SEEDING;
2232 btrfs_set_super_flags(disk_super, super_flags);
2233
2234 return 0;
2235 }
2236
2237 /*
2238 * Store the expected generation for seed devices in device items.
2239 */
2240 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2241 struct btrfs_fs_info *fs_info)
2242 {
2243 struct btrfs_root *root = fs_info->chunk_root;
2244 struct btrfs_path *path;
2245 struct extent_buffer *leaf;
2246 struct btrfs_dev_item *dev_item;
2247 struct btrfs_device *device;
2248 struct btrfs_key key;
2249 u8 fs_uuid[BTRFS_UUID_SIZE];
2250 u8 dev_uuid[BTRFS_UUID_SIZE];
2251 u64 devid;
2252 int ret;
2253
2254 path = btrfs_alloc_path();
2255 if (!path)
2256 return -ENOMEM;
2257
2258 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2259 key.offset = 0;
2260 key.type = BTRFS_DEV_ITEM_KEY;
2261
2262 while (1) {
2263 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2264 if (ret < 0)
2265 goto error;
2266
2267 leaf = path->nodes[0];
2268 next_slot:
2269 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2270 ret = btrfs_next_leaf(root, path);
2271 if (ret > 0)
2272 break;
2273 if (ret < 0)
2274 goto error;
2275 leaf = path->nodes[0];
2276 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2277 btrfs_release_path(path);
2278 continue;
2279 }
2280
2281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2282 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2283 key.type != BTRFS_DEV_ITEM_KEY)
2284 break;
2285
2286 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2287 struct btrfs_dev_item);
2288 devid = btrfs_device_id(leaf, dev_item);
2289 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2290 BTRFS_UUID_SIZE);
2291 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2292 BTRFS_UUID_SIZE);
2293 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2294 BUG_ON(!device); /* Logic error */
2295
2296 if (device->fs_devices->seeding) {
2297 btrfs_set_device_generation(leaf, dev_item,
2298 device->generation);
2299 btrfs_mark_buffer_dirty(leaf);
2300 }
2301
2302 path->slots[0]++;
2303 goto next_slot;
2304 }
2305 ret = 0;
2306 error:
2307 btrfs_free_path(path);
2308 return ret;
2309 }
2310
2311 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
2312 {
2313 struct btrfs_root *root = fs_info->dev_root;
2314 struct request_queue *q;
2315 struct btrfs_trans_handle *trans;
2316 struct btrfs_device *device;
2317 struct block_device *bdev;
2318 struct list_head *devices;
2319 struct super_block *sb = fs_info->sb;
2320 struct rcu_string *name;
2321 u64 tmp;
2322 int seeding_dev = 0;
2323 int ret = 0;
2324
2325 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2326 return -EROFS;
2327
2328 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2329 fs_info->bdev_holder);
2330 if (IS_ERR(bdev))
2331 return PTR_ERR(bdev);
2332
2333 if (fs_info->fs_devices->seeding) {
2334 seeding_dev = 1;
2335 down_write(&sb->s_umount);
2336 mutex_lock(&uuid_mutex);
2337 }
2338
2339 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2340
2341 devices = &fs_info->fs_devices->devices;
2342
2343 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2344 list_for_each_entry(device, devices, dev_list) {
2345 if (device->bdev == bdev) {
2346 ret = -EEXIST;
2347 mutex_unlock(
2348 &fs_info->fs_devices->device_list_mutex);
2349 goto error;
2350 }
2351 }
2352 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2353
2354 device = btrfs_alloc_device(fs_info, NULL, NULL);
2355 if (IS_ERR(device)) {
2356 /* we can safely leave the fs_devices entry around */
2357 ret = PTR_ERR(device);
2358 goto error;
2359 }
2360
2361 name = rcu_string_strdup(device_path, GFP_KERNEL);
2362 if (!name) {
2363 kfree(device);
2364 ret = -ENOMEM;
2365 goto error;
2366 }
2367 rcu_assign_pointer(device->name, name);
2368
2369 trans = btrfs_start_transaction(root, 0);
2370 if (IS_ERR(trans)) {
2371 rcu_string_free(device->name);
2372 kfree(device);
2373 ret = PTR_ERR(trans);
2374 goto error;
2375 }
2376
2377 q = bdev_get_queue(bdev);
2378 if (blk_queue_discard(q))
2379 device->can_discard = 1;
2380 device->writeable = 1;
2381 device->generation = trans->transid;
2382 device->io_width = fs_info->sectorsize;
2383 device->io_align = fs_info->sectorsize;
2384 device->sector_size = fs_info->sectorsize;
2385 device->total_bytes = i_size_read(bdev->bd_inode);
2386 device->disk_total_bytes = device->total_bytes;
2387 device->commit_total_bytes = device->total_bytes;
2388 device->fs_info = fs_info;
2389 device->bdev = bdev;
2390 device->in_fs_metadata = 1;
2391 device->is_tgtdev_for_dev_replace = 0;
2392 device->mode = FMODE_EXCL;
2393 device->dev_stats_valid = 1;
2394 set_blocksize(device->bdev, 4096);
2395
2396 if (seeding_dev) {
2397 sb->s_flags &= ~MS_RDONLY;
2398 ret = btrfs_prepare_sprout(fs_info);
2399 BUG_ON(ret); /* -ENOMEM */
2400 }
2401
2402 device->fs_devices = fs_info->fs_devices;
2403
2404 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2405 mutex_lock(&fs_info->chunk_mutex);
2406 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2407 list_add(&device->dev_alloc_list,
2408 &fs_info->fs_devices->alloc_list);
2409 fs_info->fs_devices->num_devices++;
2410 fs_info->fs_devices->open_devices++;
2411 fs_info->fs_devices->rw_devices++;
2412 fs_info->fs_devices->total_devices++;
2413 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2414
2415 spin_lock(&fs_info->free_chunk_lock);
2416 fs_info->free_chunk_space += device->total_bytes;
2417 spin_unlock(&fs_info->free_chunk_lock);
2418
2419 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2420 fs_info->fs_devices->rotating = 1;
2421
2422 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2423 btrfs_set_super_total_bytes(fs_info->super_copy,
2424 tmp + device->total_bytes);
2425
2426 tmp = btrfs_super_num_devices(fs_info->super_copy);
2427 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2428
2429 /* add sysfs device entry */
2430 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2431
2432 /*
2433 * we've got more storage, clear any full flags on the space
2434 * infos
2435 */
2436 btrfs_clear_space_info_full(fs_info);
2437
2438 mutex_unlock(&fs_info->chunk_mutex);
2439 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2440
2441 if (seeding_dev) {
2442 mutex_lock(&fs_info->chunk_mutex);
2443 ret = init_first_rw_device(trans, fs_info, device);
2444 mutex_unlock(&fs_info->chunk_mutex);
2445 if (ret) {
2446 btrfs_abort_transaction(trans, ret);
2447 goto error_trans;
2448 }
2449 }
2450
2451 ret = btrfs_add_device(trans, fs_info, device);
2452 if (ret) {
2453 btrfs_abort_transaction(trans, ret);
2454 goto error_trans;
2455 }
2456
2457 if (seeding_dev) {
2458 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2459
2460 ret = btrfs_finish_sprout(trans, fs_info);
2461 if (ret) {
2462 btrfs_abort_transaction(trans, ret);
2463 goto error_trans;
2464 }
2465
2466 /* Sprouting would change fsid of the mounted root,
2467 * so rename the fsid on the sysfs
2468 */
2469 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2470 fs_info->fsid);
2471 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2472 btrfs_warn(fs_info,
2473 "sysfs: failed to create fsid for sprout");
2474 }
2475
2476 fs_info->num_tolerated_disk_barrier_failures =
2477 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2478 ret = btrfs_commit_transaction(trans);
2479
2480 if (seeding_dev) {
2481 mutex_unlock(&uuid_mutex);
2482 up_write(&sb->s_umount);
2483
2484 if (ret) /* transaction commit */
2485 return ret;
2486
2487 ret = btrfs_relocate_sys_chunks(fs_info);
2488 if (ret < 0)
2489 btrfs_handle_fs_error(fs_info, ret,
2490 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2491 trans = btrfs_attach_transaction(root);
2492 if (IS_ERR(trans)) {
2493 if (PTR_ERR(trans) == -ENOENT)
2494 return 0;
2495 return PTR_ERR(trans);
2496 }
2497 ret = btrfs_commit_transaction(trans);
2498 }
2499
2500 /* Update ctime/mtime for libblkid */
2501 update_dev_time(device_path);
2502 return ret;
2503
2504 error_trans:
2505 btrfs_end_transaction(trans);
2506 rcu_string_free(device->name);
2507 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2508 kfree(device);
2509 error:
2510 blkdev_put(bdev, FMODE_EXCL);
2511 if (seeding_dev) {
2512 mutex_unlock(&uuid_mutex);
2513 up_write(&sb->s_umount);
2514 }
2515 return ret;
2516 }
2517
2518 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2519 char *device_path,
2520 struct btrfs_device *srcdev,
2521 struct btrfs_device **device_out)
2522 {
2523 struct request_queue *q;
2524 struct btrfs_device *device;
2525 struct block_device *bdev;
2526 struct list_head *devices;
2527 struct rcu_string *name;
2528 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2529 int ret = 0;
2530
2531 *device_out = NULL;
2532 if (fs_info->fs_devices->seeding) {
2533 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2534 return -EINVAL;
2535 }
2536
2537 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2538 fs_info->bdev_holder);
2539 if (IS_ERR(bdev)) {
2540 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2541 return PTR_ERR(bdev);
2542 }
2543
2544 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2545
2546 devices = &fs_info->fs_devices->devices;
2547 list_for_each_entry(device, devices, dev_list) {
2548 if (device->bdev == bdev) {
2549 btrfs_err(fs_info,
2550 "target device is in the filesystem!");
2551 ret = -EEXIST;
2552 goto error;
2553 }
2554 }
2555
2556
2557 if (i_size_read(bdev->bd_inode) <
2558 btrfs_device_get_total_bytes(srcdev)) {
2559 btrfs_err(fs_info,
2560 "target device is smaller than source device!");
2561 ret = -EINVAL;
2562 goto error;
2563 }
2564
2565
2566 device = btrfs_alloc_device(NULL, &devid, NULL);
2567 if (IS_ERR(device)) {
2568 ret = PTR_ERR(device);
2569 goto error;
2570 }
2571
2572 name = rcu_string_strdup(device_path, GFP_NOFS);
2573 if (!name) {
2574 kfree(device);
2575 ret = -ENOMEM;
2576 goto error;
2577 }
2578 rcu_assign_pointer(device->name, name);
2579
2580 q = bdev_get_queue(bdev);
2581 if (blk_queue_discard(q))
2582 device->can_discard = 1;
2583 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2584 device->writeable = 1;
2585 device->generation = 0;
2586 device->io_width = fs_info->sectorsize;
2587 device->io_align = fs_info->sectorsize;
2588 device->sector_size = fs_info->sectorsize;
2589 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2590 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2591 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2592 ASSERT(list_empty(&srcdev->resized_list));
2593 device->commit_total_bytes = srcdev->commit_total_bytes;
2594 device->commit_bytes_used = device->bytes_used;
2595 device->fs_info = fs_info;
2596 device->bdev = bdev;
2597 device->in_fs_metadata = 1;
2598 device->is_tgtdev_for_dev_replace = 1;
2599 device->mode = FMODE_EXCL;
2600 device->dev_stats_valid = 1;
2601 set_blocksize(device->bdev, 4096);
2602 device->fs_devices = fs_info->fs_devices;
2603 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2604 fs_info->fs_devices->num_devices++;
2605 fs_info->fs_devices->open_devices++;
2606 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2607
2608 *device_out = device;
2609 return ret;
2610
2611 error:
2612 blkdev_put(bdev, FMODE_EXCL);
2613 return ret;
2614 }
2615
2616 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2617 struct btrfs_device *tgtdev)
2618 {
2619 u32 sectorsize = fs_info->sectorsize;
2620
2621 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2622 tgtdev->io_width = sectorsize;
2623 tgtdev->io_align = sectorsize;
2624 tgtdev->sector_size = sectorsize;
2625 tgtdev->fs_info = fs_info;
2626 tgtdev->in_fs_metadata = 1;
2627 }
2628
2629 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2630 struct btrfs_device *device)
2631 {
2632 int ret;
2633 struct btrfs_path *path;
2634 struct btrfs_root *root = device->fs_info->chunk_root;
2635 struct btrfs_dev_item *dev_item;
2636 struct extent_buffer *leaf;
2637 struct btrfs_key key;
2638
2639 path = btrfs_alloc_path();
2640 if (!path)
2641 return -ENOMEM;
2642
2643 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2644 key.type = BTRFS_DEV_ITEM_KEY;
2645 key.offset = device->devid;
2646
2647 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2648 if (ret < 0)
2649 goto out;
2650
2651 if (ret > 0) {
2652 ret = -ENOENT;
2653 goto out;
2654 }
2655
2656 leaf = path->nodes[0];
2657 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2658
2659 btrfs_set_device_id(leaf, dev_item, device->devid);
2660 btrfs_set_device_type(leaf, dev_item, device->type);
2661 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2662 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2663 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2664 btrfs_set_device_total_bytes(leaf, dev_item,
2665 btrfs_device_get_disk_total_bytes(device));
2666 btrfs_set_device_bytes_used(leaf, dev_item,
2667 btrfs_device_get_bytes_used(device));
2668 btrfs_mark_buffer_dirty(leaf);
2669
2670 out:
2671 btrfs_free_path(path);
2672 return ret;
2673 }
2674
2675 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2676 struct btrfs_device *device, u64 new_size)
2677 {
2678 struct btrfs_fs_info *fs_info = device->fs_info;
2679 struct btrfs_super_block *super_copy = fs_info->super_copy;
2680 struct btrfs_fs_devices *fs_devices;
2681 u64 old_total;
2682 u64 diff;
2683
2684 if (!device->writeable)
2685 return -EACCES;
2686
2687 mutex_lock(&fs_info->chunk_mutex);
2688 old_total = btrfs_super_total_bytes(super_copy);
2689 diff = new_size - device->total_bytes;
2690
2691 if (new_size <= device->total_bytes ||
2692 device->is_tgtdev_for_dev_replace) {
2693 mutex_unlock(&fs_info->chunk_mutex);
2694 return -EINVAL;
2695 }
2696
2697 fs_devices = fs_info->fs_devices;
2698
2699 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2700 device->fs_devices->total_rw_bytes += diff;
2701
2702 btrfs_device_set_total_bytes(device, new_size);
2703 btrfs_device_set_disk_total_bytes(device, new_size);
2704 btrfs_clear_space_info_full(device->fs_info);
2705 if (list_empty(&device->resized_list))
2706 list_add_tail(&device->resized_list,
2707 &fs_devices->resized_devices);
2708 mutex_unlock(&fs_info->chunk_mutex);
2709
2710 return btrfs_update_device(trans, device);
2711 }
2712
2713 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2714 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2715 u64 chunk_offset)
2716 {
2717 struct btrfs_root *root = fs_info->chunk_root;
2718 int ret;
2719 struct btrfs_path *path;
2720 struct btrfs_key key;
2721
2722 path = btrfs_alloc_path();
2723 if (!path)
2724 return -ENOMEM;
2725
2726 key.objectid = chunk_objectid;
2727 key.offset = chunk_offset;
2728 key.type = BTRFS_CHUNK_ITEM_KEY;
2729
2730 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2731 if (ret < 0)
2732 goto out;
2733 else if (ret > 0) { /* Logic error or corruption */
2734 btrfs_handle_fs_error(fs_info, -ENOENT,
2735 "Failed lookup while freeing chunk.");
2736 ret = -ENOENT;
2737 goto out;
2738 }
2739
2740 ret = btrfs_del_item(trans, root, path);
2741 if (ret < 0)
2742 btrfs_handle_fs_error(fs_info, ret,
2743 "Failed to delete chunk item.");
2744 out:
2745 btrfs_free_path(path);
2746 return ret;
2747 }
2748
2749 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2750 u64 chunk_objectid, u64 chunk_offset)
2751 {
2752 struct btrfs_super_block *super_copy = fs_info->super_copy;
2753 struct btrfs_disk_key *disk_key;
2754 struct btrfs_chunk *chunk;
2755 u8 *ptr;
2756 int ret = 0;
2757 u32 num_stripes;
2758 u32 array_size;
2759 u32 len = 0;
2760 u32 cur;
2761 struct btrfs_key key;
2762
2763 mutex_lock(&fs_info->chunk_mutex);
2764 array_size = btrfs_super_sys_array_size(super_copy);
2765
2766 ptr = super_copy->sys_chunk_array;
2767 cur = 0;
2768
2769 while (cur < array_size) {
2770 disk_key = (struct btrfs_disk_key *)ptr;
2771 btrfs_disk_key_to_cpu(&key, disk_key);
2772
2773 len = sizeof(*disk_key);
2774
2775 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2776 chunk = (struct btrfs_chunk *)(ptr + len);
2777 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2778 len += btrfs_chunk_item_size(num_stripes);
2779 } else {
2780 ret = -EIO;
2781 break;
2782 }
2783 if (key.objectid == chunk_objectid &&
2784 key.offset == chunk_offset) {
2785 memmove(ptr, ptr + len, array_size - (cur + len));
2786 array_size -= len;
2787 btrfs_set_super_sys_array_size(super_copy, array_size);
2788 } else {
2789 ptr += len;
2790 cur += len;
2791 }
2792 }
2793 mutex_unlock(&fs_info->chunk_mutex);
2794 return ret;
2795 }
2796
2797 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2798 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2799 {
2800 struct extent_map_tree *em_tree;
2801 struct extent_map *em;
2802 struct map_lookup *map;
2803 u64 dev_extent_len = 0;
2804 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2805 int i, ret = 0;
2806 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2807
2808 em_tree = &fs_info->mapping_tree.map_tree;
2809
2810 read_lock(&em_tree->lock);
2811 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2812 read_unlock(&em_tree->lock);
2813
2814 if (!em || em->start > chunk_offset ||
2815 em->start + em->len < chunk_offset) {
2816 /*
2817 * This is a logic error, but we don't want to just rely on the
2818 * user having built with ASSERT enabled, so if ASSERT doesn't
2819 * do anything we still error out.
2820 */
2821 ASSERT(0);
2822 if (em)
2823 free_extent_map(em);
2824 return -EINVAL;
2825 }
2826 map = em->map_lookup;
2827 mutex_lock(&fs_info->chunk_mutex);
2828 check_system_chunk(trans, fs_info, map->type);
2829 mutex_unlock(&fs_info->chunk_mutex);
2830
2831 /*
2832 * Take the device list mutex to prevent races with the final phase of
2833 * a device replace operation that replaces the device object associated
2834 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2835 */
2836 mutex_lock(&fs_devices->device_list_mutex);
2837 for (i = 0; i < map->num_stripes; i++) {
2838 struct btrfs_device *device = map->stripes[i].dev;
2839 ret = btrfs_free_dev_extent(trans, device,
2840 map->stripes[i].physical,
2841 &dev_extent_len);
2842 if (ret) {
2843 mutex_unlock(&fs_devices->device_list_mutex);
2844 btrfs_abort_transaction(trans, ret);
2845 goto out;
2846 }
2847
2848 if (device->bytes_used > 0) {
2849 mutex_lock(&fs_info->chunk_mutex);
2850 btrfs_device_set_bytes_used(device,
2851 device->bytes_used - dev_extent_len);
2852 spin_lock(&fs_info->free_chunk_lock);
2853 fs_info->free_chunk_space += dev_extent_len;
2854 spin_unlock(&fs_info->free_chunk_lock);
2855 btrfs_clear_space_info_full(fs_info);
2856 mutex_unlock(&fs_info->chunk_mutex);
2857 }
2858
2859 if (map->stripes[i].dev) {
2860 ret = btrfs_update_device(trans, map->stripes[i].dev);
2861 if (ret) {
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863 btrfs_abort_transaction(trans, ret);
2864 goto out;
2865 }
2866 }
2867 }
2868 mutex_unlock(&fs_devices->device_list_mutex);
2869
2870 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2871 if (ret) {
2872 btrfs_abort_transaction(trans, ret);
2873 goto out;
2874 }
2875
2876 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2877
2878 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2879 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2880 chunk_offset);
2881 if (ret) {
2882 btrfs_abort_transaction(trans, ret);
2883 goto out;
2884 }
2885 }
2886
2887 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2888 if (ret) {
2889 btrfs_abort_transaction(trans, ret);
2890 goto out;
2891 }
2892
2893 out:
2894 /* once for us */
2895 free_extent_map(em);
2896 return ret;
2897 }
2898
2899 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2900 {
2901 struct btrfs_root *root = fs_info->chunk_root;
2902 struct btrfs_trans_handle *trans;
2903 int ret;
2904
2905 /*
2906 * Prevent races with automatic removal of unused block groups.
2907 * After we relocate and before we remove the chunk with offset
2908 * chunk_offset, automatic removal of the block group can kick in,
2909 * resulting in a failure when calling btrfs_remove_chunk() below.
2910 *
2911 * Make sure to acquire this mutex before doing a tree search (dev
2912 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2913 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2914 * we release the path used to search the chunk/dev tree and before
2915 * the current task acquires this mutex and calls us.
2916 */
2917 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2918
2919 ret = btrfs_can_relocate(fs_info, chunk_offset);
2920 if (ret)
2921 return -ENOSPC;
2922
2923 /* step one, relocate all the extents inside this chunk */
2924 btrfs_scrub_pause(fs_info);
2925 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2926 btrfs_scrub_continue(fs_info);
2927 if (ret)
2928 return ret;
2929
2930 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2931 chunk_offset);
2932 if (IS_ERR(trans)) {
2933 ret = PTR_ERR(trans);
2934 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2935 return ret;
2936 }
2937
2938 /*
2939 * step two, delete the device extents and the
2940 * chunk tree entries
2941 */
2942 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2943 btrfs_end_transaction(trans);
2944 return ret;
2945 }
2946
2947 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2948 {
2949 struct btrfs_root *chunk_root = fs_info->chunk_root;
2950 struct btrfs_path *path;
2951 struct extent_buffer *leaf;
2952 struct btrfs_chunk *chunk;
2953 struct btrfs_key key;
2954 struct btrfs_key found_key;
2955 u64 chunk_type;
2956 bool retried = false;
2957 int failed = 0;
2958 int ret;
2959
2960 path = btrfs_alloc_path();
2961 if (!path)
2962 return -ENOMEM;
2963
2964 again:
2965 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2966 key.offset = (u64)-1;
2967 key.type = BTRFS_CHUNK_ITEM_KEY;
2968
2969 while (1) {
2970 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2971 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2972 if (ret < 0) {
2973 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2974 goto error;
2975 }
2976 BUG_ON(ret == 0); /* Corruption */
2977
2978 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2979 key.type);
2980 if (ret)
2981 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2982 if (ret < 0)
2983 goto error;
2984 if (ret > 0)
2985 break;
2986
2987 leaf = path->nodes[0];
2988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2989
2990 chunk = btrfs_item_ptr(leaf, path->slots[0],
2991 struct btrfs_chunk);
2992 chunk_type = btrfs_chunk_type(leaf, chunk);
2993 btrfs_release_path(path);
2994
2995 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2996 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2997 if (ret == -ENOSPC)
2998 failed++;
2999 else
3000 BUG_ON(ret);
3001 }
3002 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3003
3004 if (found_key.offset == 0)
3005 break;
3006 key.offset = found_key.offset - 1;
3007 }
3008 ret = 0;
3009 if (failed && !retried) {
3010 failed = 0;
3011 retried = true;
3012 goto again;
3013 } else if (WARN_ON(failed && retried)) {
3014 ret = -ENOSPC;
3015 }
3016 error:
3017 btrfs_free_path(path);
3018 return ret;
3019 }
3020
3021 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3022 struct btrfs_balance_control *bctl)
3023 {
3024 struct btrfs_root *root = fs_info->tree_root;
3025 struct btrfs_trans_handle *trans;
3026 struct btrfs_balance_item *item;
3027 struct btrfs_disk_balance_args disk_bargs;
3028 struct btrfs_path *path;
3029 struct extent_buffer *leaf;
3030 struct btrfs_key key;
3031 int ret, err;
3032
3033 path = btrfs_alloc_path();
3034 if (!path)
3035 return -ENOMEM;
3036
3037 trans = btrfs_start_transaction(root, 0);
3038 if (IS_ERR(trans)) {
3039 btrfs_free_path(path);
3040 return PTR_ERR(trans);
3041 }
3042
3043 key.objectid = BTRFS_BALANCE_OBJECTID;
3044 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3045 key.offset = 0;
3046
3047 ret = btrfs_insert_empty_item(trans, root, path, &key,
3048 sizeof(*item));
3049 if (ret)
3050 goto out;
3051
3052 leaf = path->nodes[0];
3053 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3054
3055 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3056
3057 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3058 btrfs_set_balance_data(leaf, item, &disk_bargs);
3059 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3060 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3061 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3062 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3063
3064 btrfs_set_balance_flags(leaf, item, bctl->flags);
3065
3066 btrfs_mark_buffer_dirty(leaf);
3067 out:
3068 btrfs_free_path(path);
3069 err = btrfs_commit_transaction(trans);
3070 if (err && !ret)
3071 ret = err;
3072 return ret;
3073 }
3074
3075 static int del_balance_item(struct btrfs_fs_info *fs_info)
3076 {
3077 struct btrfs_root *root = fs_info->tree_root;
3078 struct btrfs_trans_handle *trans;
3079 struct btrfs_path *path;
3080 struct btrfs_key key;
3081 int ret, err;
3082
3083 path = btrfs_alloc_path();
3084 if (!path)
3085 return -ENOMEM;
3086
3087 trans = btrfs_start_transaction(root, 0);
3088 if (IS_ERR(trans)) {
3089 btrfs_free_path(path);
3090 return PTR_ERR(trans);
3091 }
3092
3093 key.objectid = BTRFS_BALANCE_OBJECTID;
3094 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3095 key.offset = 0;
3096
3097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3098 if (ret < 0)
3099 goto out;
3100 if (ret > 0) {
3101 ret = -ENOENT;
3102 goto out;
3103 }
3104
3105 ret = btrfs_del_item(trans, root, path);
3106 out:
3107 btrfs_free_path(path);
3108 err = btrfs_commit_transaction(trans);
3109 if (err && !ret)
3110 ret = err;
3111 return ret;
3112 }
3113
3114 /*
3115 * This is a heuristic used to reduce the number of chunks balanced on
3116 * resume after balance was interrupted.
3117 */
3118 static void update_balance_args(struct btrfs_balance_control *bctl)
3119 {
3120 /*
3121 * Turn on soft mode for chunk types that were being converted.
3122 */
3123 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3124 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3125 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3126 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3127 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3128 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3129
3130 /*
3131 * Turn on usage filter if is not already used. The idea is
3132 * that chunks that we have already balanced should be
3133 * reasonably full. Don't do it for chunks that are being
3134 * converted - that will keep us from relocating unconverted
3135 * (albeit full) chunks.
3136 */
3137 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3138 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141 bctl->data.usage = 90;
3142 }
3143 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3144 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147 bctl->sys.usage = 90;
3148 }
3149 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3150 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3152 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3153 bctl->meta.usage = 90;
3154 }
3155 }
3156
3157 /*
3158 * Should be called with both balance and volume mutexes held to
3159 * serialize other volume operations (add_dev/rm_dev/resize) with
3160 * restriper. Same goes for unset_balance_control.
3161 */
3162 static void set_balance_control(struct btrfs_balance_control *bctl)
3163 {
3164 struct btrfs_fs_info *fs_info = bctl->fs_info;
3165
3166 BUG_ON(fs_info->balance_ctl);
3167
3168 spin_lock(&fs_info->balance_lock);
3169 fs_info->balance_ctl = bctl;
3170 spin_unlock(&fs_info->balance_lock);
3171 }
3172
3173 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3174 {
3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3176
3177 BUG_ON(!fs_info->balance_ctl);
3178
3179 spin_lock(&fs_info->balance_lock);
3180 fs_info->balance_ctl = NULL;
3181 spin_unlock(&fs_info->balance_lock);
3182
3183 kfree(bctl);
3184 }
3185
3186 /*
3187 * Balance filters. Return 1 if chunk should be filtered out
3188 * (should not be balanced).
3189 */
3190 static int chunk_profiles_filter(u64 chunk_type,
3191 struct btrfs_balance_args *bargs)
3192 {
3193 chunk_type = chunk_to_extended(chunk_type) &
3194 BTRFS_EXTENDED_PROFILE_MASK;
3195
3196 if (bargs->profiles & chunk_type)
3197 return 0;
3198
3199 return 1;
3200 }
3201
3202 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3203 struct btrfs_balance_args *bargs)
3204 {
3205 struct btrfs_block_group_cache *cache;
3206 u64 chunk_used;
3207 u64 user_thresh_min;
3208 u64 user_thresh_max;
3209 int ret = 1;
3210
3211 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3212 chunk_used = btrfs_block_group_used(&cache->item);
3213
3214 if (bargs->usage_min == 0)
3215 user_thresh_min = 0;
3216 else
3217 user_thresh_min = div_factor_fine(cache->key.offset,
3218 bargs->usage_min);
3219
3220 if (bargs->usage_max == 0)
3221 user_thresh_max = 1;
3222 else if (bargs->usage_max > 100)
3223 user_thresh_max = cache->key.offset;
3224 else
3225 user_thresh_max = div_factor_fine(cache->key.offset,
3226 bargs->usage_max);
3227
3228 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3229 ret = 0;
3230
3231 btrfs_put_block_group(cache);
3232 return ret;
3233 }
3234
3235 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3236 u64 chunk_offset, struct btrfs_balance_args *bargs)
3237 {
3238 struct btrfs_block_group_cache *cache;
3239 u64 chunk_used, user_thresh;
3240 int ret = 1;
3241
3242 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3243 chunk_used = btrfs_block_group_used(&cache->item);
3244
3245 if (bargs->usage_min == 0)
3246 user_thresh = 1;
3247 else if (bargs->usage > 100)
3248 user_thresh = cache->key.offset;
3249 else
3250 user_thresh = div_factor_fine(cache->key.offset,
3251 bargs->usage);
3252
3253 if (chunk_used < user_thresh)
3254 ret = 0;
3255
3256 btrfs_put_block_group(cache);
3257 return ret;
3258 }
3259
3260 static int chunk_devid_filter(struct extent_buffer *leaf,
3261 struct btrfs_chunk *chunk,
3262 struct btrfs_balance_args *bargs)
3263 {
3264 struct btrfs_stripe *stripe;
3265 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3266 int i;
3267
3268 for (i = 0; i < num_stripes; i++) {
3269 stripe = btrfs_stripe_nr(chunk, i);
3270 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3271 return 0;
3272 }
3273
3274 return 1;
3275 }
3276
3277 /* [pstart, pend) */
3278 static int chunk_drange_filter(struct extent_buffer *leaf,
3279 struct btrfs_chunk *chunk,
3280 u64 chunk_offset,
3281 struct btrfs_balance_args *bargs)
3282 {
3283 struct btrfs_stripe *stripe;
3284 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3285 u64 stripe_offset;
3286 u64 stripe_length;
3287 int factor;
3288 int i;
3289
3290 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3291 return 0;
3292
3293 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3294 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3295 factor = num_stripes / 2;
3296 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3297 factor = num_stripes - 1;
3298 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3299 factor = num_stripes - 2;
3300 } else {
3301 factor = num_stripes;
3302 }
3303
3304 for (i = 0; i < num_stripes; i++) {
3305 stripe = btrfs_stripe_nr(chunk, i);
3306 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3307 continue;
3308
3309 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3310 stripe_length = btrfs_chunk_length(leaf, chunk);
3311 stripe_length = div_u64(stripe_length, factor);
3312
3313 if (stripe_offset < bargs->pend &&
3314 stripe_offset + stripe_length > bargs->pstart)
3315 return 0;
3316 }
3317
3318 return 1;
3319 }
3320
3321 /* [vstart, vend) */
3322 static int chunk_vrange_filter(struct extent_buffer *leaf,
3323 struct btrfs_chunk *chunk,
3324 u64 chunk_offset,
3325 struct btrfs_balance_args *bargs)
3326 {
3327 if (chunk_offset < bargs->vend &&
3328 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3329 /* at least part of the chunk is inside this vrange */
3330 return 0;
3331
3332 return 1;
3333 }
3334
3335 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3336 struct btrfs_chunk *chunk,
3337 struct btrfs_balance_args *bargs)
3338 {
3339 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3340
3341 if (bargs->stripes_min <= num_stripes
3342 && num_stripes <= bargs->stripes_max)
3343 return 0;
3344
3345 return 1;
3346 }
3347
3348 static int chunk_soft_convert_filter(u64 chunk_type,
3349 struct btrfs_balance_args *bargs)
3350 {
3351 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3352 return 0;
3353
3354 chunk_type = chunk_to_extended(chunk_type) &
3355 BTRFS_EXTENDED_PROFILE_MASK;
3356
3357 if (bargs->target == chunk_type)
3358 return 1;
3359
3360 return 0;
3361 }
3362
3363 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3364 struct extent_buffer *leaf,
3365 struct btrfs_chunk *chunk, u64 chunk_offset)
3366 {
3367 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3368 struct btrfs_balance_args *bargs = NULL;
3369 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3370
3371 /* type filter */
3372 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3373 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3374 return 0;
3375 }
3376
3377 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3378 bargs = &bctl->data;
3379 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3380 bargs = &bctl->sys;
3381 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3382 bargs = &bctl->meta;
3383
3384 /* profiles filter */
3385 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3386 chunk_profiles_filter(chunk_type, bargs)) {
3387 return 0;
3388 }
3389
3390 /* usage filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3392 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3393 return 0;
3394 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3395 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3396 return 0;
3397 }
3398
3399 /* devid filter */
3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3401 chunk_devid_filter(leaf, chunk, bargs)) {
3402 return 0;
3403 }
3404
3405 /* drange filter, makes sense only with devid filter */
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3407 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3408 return 0;
3409 }
3410
3411 /* vrange filter */
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3413 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3414 return 0;
3415 }
3416
3417 /* stripes filter */
3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3419 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3420 return 0;
3421 }
3422
3423 /* soft profile changing mode */
3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3425 chunk_soft_convert_filter(chunk_type, bargs)) {
3426 return 0;
3427 }
3428
3429 /*
3430 * limited by count, must be the last filter
3431 */
3432 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3433 if (bargs->limit == 0)
3434 return 0;
3435 else
3436 bargs->limit--;
3437 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3438 /*
3439 * Same logic as the 'limit' filter; the minimum cannot be
3440 * determined here because we do not have the global information
3441 * about the count of all chunks that satisfy the filters.
3442 */
3443 if (bargs->limit_max == 0)
3444 return 0;
3445 else
3446 bargs->limit_max--;
3447 }
3448
3449 return 1;
3450 }
3451
3452 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3453 {
3454 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3455 struct btrfs_root *chunk_root = fs_info->chunk_root;
3456 struct btrfs_root *dev_root = fs_info->dev_root;
3457 struct list_head *devices;
3458 struct btrfs_device *device;
3459 u64 old_size;
3460 u64 size_to_free;
3461 u64 chunk_type;
3462 struct btrfs_chunk *chunk;
3463 struct btrfs_path *path = NULL;
3464 struct btrfs_key key;
3465 struct btrfs_key found_key;
3466 struct btrfs_trans_handle *trans;
3467 struct extent_buffer *leaf;
3468 int slot;
3469 int ret;
3470 int enospc_errors = 0;
3471 bool counting = true;
3472 /* The single value limit and min/max limits use the same bytes in the */
3473 u64 limit_data = bctl->data.limit;
3474 u64 limit_meta = bctl->meta.limit;
3475 u64 limit_sys = bctl->sys.limit;
3476 u32 count_data = 0;
3477 u32 count_meta = 0;
3478 u32 count_sys = 0;
3479 int chunk_reserved = 0;
3480 u64 bytes_used = 0;
3481
3482 /* step one make some room on all the devices */
3483 devices = &fs_info->fs_devices->devices;
3484 list_for_each_entry(device, devices, dev_list) {
3485 old_size = btrfs_device_get_total_bytes(device);
3486 size_to_free = div_factor(old_size, 1);
3487 size_to_free = min_t(u64, size_to_free, SZ_1M);
3488 if (!device->writeable ||
3489 btrfs_device_get_total_bytes(device) -
3490 btrfs_device_get_bytes_used(device) > size_to_free ||
3491 device->is_tgtdev_for_dev_replace)
3492 continue;
3493
3494 ret = btrfs_shrink_device(device, old_size - size_to_free);
3495 if (ret == -ENOSPC)
3496 break;
3497 if (ret) {
3498 /* btrfs_shrink_device never returns ret > 0 */
3499 WARN_ON(ret > 0);
3500 goto error;
3501 }
3502
3503 trans = btrfs_start_transaction(dev_root, 0);
3504 if (IS_ERR(trans)) {
3505 ret = PTR_ERR(trans);
3506 btrfs_info_in_rcu(fs_info,
3507 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3508 rcu_str_deref(device->name), ret,
3509 old_size, old_size - size_to_free);
3510 goto error;
3511 }
3512
3513 ret = btrfs_grow_device(trans, device, old_size);
3514 if (ret) {
3515 btrfs_end_transaction(trans);
3516 /* btrfs_grow_device never returns ret > 0 */
3517 WARN_ON(ret > 0);
3518 btrfs_info_in_rcu(fs_info,
3519 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3520 rcu_str_deref(device->name), ret,
3521 old_size, old_size - size_to_free);
3522 goto error;
3523 }
3524
3525 btrfs_end_transaction(trans);
3526 }
3527
3528 /* step two, relocate all the chunks */
3529 path = btrfs_alloc_path();
3530 if (!path) {
3531 ret = -ENOMEM;
3532 goto error;
3533 }
3534
3535 /* zero out stat counters */
3536 spin_lock(&fs_info->balance_lock);
3537 memset(&bctl->stat, 0, sizeof(bctl->stat));
3538 spin_unlock(&fs_info->balance_lock);
3539 again:
3540 if (!counting) {
3541 /*
3542 * The single value limit and min/max limits use the same bytes
3543 * in the
3544 */
3545 bctl->data.limit = limit_data;
3546 bctl->meta.limit = limit_meta;
3547 bctl->sys.limit = limit_sys;
3548 }
3549 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3550 key.offset = (u64)-1;
3551 key.type = BTRFS_CHUNK_ITEM_KEY;
3552
3553 while (1) {
3554 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3555 atomic_read(&fs_info->balance_cancel_req)) {
3556 ret = -ECANCELED;
3557 goto error;
3558 }
3559
3560 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3561 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3562 if (ret < 0) {
3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564 goto error;
3565 }
3566
3567 /*
3568 * this shouldn't happen, it means the last relocate
3569 * failed
3570 */
3571 if (ret == 0)
3572 BUG(); /* FIXME break ? */
3573
3574 ret = btrfs_previous_item(chunk_root, path, 0,
3575 BTRFS_CHUNK_ITEM_KEY);
3576 if (ret) {
3577 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3578 ret = 0;
3579 break;
3580 }
3581
3582 leaf = path->nodes[0];
3583 slot = path->slots[0];
3584 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3585
3586 if (found_key.objectid != key.objectid) {
3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 break;
3589 }
3590
3591 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3592 chunk_type = btrfs_chunk_type(leaf, chunk);
3593
3594 if (!counting) {
3595 spin_lock(&fs_info->balance_lock);
3596 bctl->stat.considered++;
3597 spin_unlock(&fs_info->balance_lock);
3598 }
3599
3600 ret = should_balance_chunk(fs_info, leaf, chunk,
3601 found_key.offset);
3602
3603 btrfs_release_path(path);
3604 if (!ret) {
3605 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606 goto loop;
3607 }
3608
3609 if (counting) {
3610 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3611 spin_lock(&fs_info->balance_lock);
3612 bctl->stat.expected++;
3613 spin_unlock(&fs_info->balance_lock);
3614
3615 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3616 count_data++;
3617 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3618 count_sys++;
3619 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3620 count_meta++;
3621
3622 goto loop;
3623 }
3624
3625 /*
3626 * Apply limit_min filter, no need to check if the LIMITS
3627 * filter is used, limit_min is 0 by default
3628 */
3629 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3630 count_data < bctl->data.limit_min)
3631 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3632 count_meta < bctl->meta.limit_min)
3633 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3634 count_sys < bctl->sys.limit_min)) {
3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 goto loop;
3637 }
3638
3639 ASSERT(fs_info->data_sinfo);
3640 spin_lock(&fs_info->data_sinfo->lock);
3641 bytes_used = fs_info->data_sinfo->bytes_used;
3642 spin_unlock(&fs_info->data_sinfo->lock);
3643
3644 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3645 !chunk_reserved && !bytes_used) {
3646 trans = btrfs_start_transaction(chunk_root, 0);
3647 if (IS_ERR(trans)) {
3648 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3649 ret = PTR_ERR(trans);
3650 goto error;
3651 }
3652
3653 ret = btrfs_force_chunk_alloc(trans, fs_info,
3654 BTRFS_BLOCK_GROUP_DATA);
3655 btrfs_end_transaction(trans);
3656 if (ret < 0) {
3657 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 goto error;
3659 }
3660 chunk_reserved = 1;
3661 }
3662
3663 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3664 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3665 if (ret && ret != -ENOSPC)
3666 goto error;
3667 if (ret == -ENOSPC) {
3668 enospc_errors++;
3669 } else {
3670 spin_lock(&fs_info->balance_lock);
3671 bctl->stat.completed++;
3672 spin_unlock(&fs_info->balance_lock);
3673 }
3674 loop:
3675 if (found_key.offset == 0)
3676 break;
3677 key.offset = found_key.offset - 1;
3678 }
3679
3680 if (counting) {
3681 btrfs_release_path(path);
3682 counting = false;
3683 goto again;
3684 }
3685 error:
3686 btrfs_free_path(path);
3687 if (enospc_errors) {
3688 btrfs_info(fs_info, "%d enospc errors during balance",
3689 enospc_errors);
3690 if (!ret)
3691 ret = -ENOSPC;
3692 }
3693
3694 return ret;
3695 }
3696
3697 /**
3698 * alloc_profile_is_valid - see if a given profile is valid and reduced
3699 * @flags: profile to validate
3700 * @extended: if true @flags is treated as an extended profile
3701 */
3702 static int alloc_profile_is_valid(u64 flags, int extended)
3703 {
3704 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3705 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3706
3707 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3708
3709 /* 1) check that all other bits are zeroed */
3710 if (flags & ~mask)
3711 return 0;
3712
3713 /* 2) see if profile is reduced */
3714 if (flags == 0)
3715 return !extended; /* "0" is valid for usual profiles */
3716
3717 /* true if exactly one bit set */
3718 return (flags & (flags - 1)) == 0;
3719 }
3720
3721 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3722 {
3723 /* cancel requested || normal exit path */
3724 return atomic_read(&fs_info->balance_cancel_req) ||
3725 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3726 atomic_read(&fs_info->balance_cancel_req) == 0);
3727 }
3728
3729 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3730 {
3731 int ret;
3732
3733 unset_balance_control(fs_info);
3734 ret = del_balance_item(fs_info);
3735 if (ret)
3736 btrfs_handle_fs_error(fs_info, ret, NULL);
3737
3738 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3739 }
3740
3741 /* Non-zero return value signifies invalidity */
3742 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3743 u64 allowed)
3744 {
3745 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3746 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3747 (bctl_arg->target & ~allowed)));
3748 }
3749
3750 /*
3751 * Should be called with both balance and volume mutexes held
3752 */
3753 int btrfs_balance(struct btrfs_balance_control *bctl,
3754 struct btrfs_ioctl_balance_args *bargs)
3755 {
3756 struct btrfs_fs_info *fs_info = bctl->fs_info;
3757 u64 allowed;
3758 int mixed = 0;
3759 int ret;
3760 u64 num_devices;
3761 unsigned seq;
3762
3763 if (btrfs_fs_closing(fs_info) ||
3764 atomic_read(&fs_info->balance_pause_req) ||
3765 atomic_read(&fs_info->balance_cancel_req)) {
3766 ret = -EINVAL;
3767 goto out;
3768 }
3769
3770 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3771 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3772 mixed = 1;
3773
3774 /*
3775 * In case of mixed groups both data and meta should be picked,
3776 * and identical options should be given for both of them.
3777 */
3778 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3779 if (mixed && (bctl->flags & allowed)) {
3780 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3781 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3782 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3783 btrfs_err(fs_info,
3784 "with mixed groups data and metadata balance options must be the same");
3785 ret = -EINVAL;
3786 goto out;
3787 }
3788 }
3789
3790 num_devices = fs_info->fs_devices->num_devices;
3791 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3792 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3793 BUG_ON(num_devices < 1);
3794 num_devices--;
3795 }
3796 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3797 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3798 if (num_devices > 1)
3799 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3800 if (num_devices > 2)
3801 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3802 if (num_devices > 3)
3803 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3804 BTRFS_BLOCK_GROUP_RAID6);
3805 if (validate_convert_profile(&bctl->data, allowed)) {
3806 btrfs_err(fs_info,
3807 "unable to start balance with target data profile %llu",
3808 bctl->data.target);
3809 ret = -EINVAL;
3810 goto out;
3811 }
3812 if (validate_convert_profile(&bctl->meta, allowed)) {
3813 btrfs_err(fs_info,
3814 "unable to start balance with target metadata profile %llu",
3815 bctl->meta.target);
3816 ret = -EINVAL;
3817 goto out;
3818 }
3819 if (validate_convert_profile(&bctl->sys, allowed)) {
3820 btrfs_err(fs_info,
3821 "unable to start balance with target system profile %llu",
3822 bctl->sys.target);
3823 ret = -EINVAL;
3824 goto out;
3825 }
3826
3827 /* allow to reduce meta or sys integrity only if force set */
3828 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3829 BTRFS_BLOCK_GROUP_RAID10 |
3830 BTRFS_BLOCK_GROUP_RAID5 |
3831 BTRFS_BLOCK_GROUP_RAID6;
3832 do {
3833 seq = read_seqbegin(&fs_info->profiles_lock);
3834
3835 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3836 (fs_info->avail_system_alloc_bits & allowed) &&
3837 !(bctl->sys.target & allowed)) ||
3838 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3839 (fs_info->avail_metadata_alloc_bits & allowed) &&
3840 !(bctl->meta.target & allowed))) {
3841 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3842 btrfs_info(fs_info,
3843 "force reducing metadata integrity");
3844 } else {
3845 btrfs_err(fs_info,
3846 "balance will reduce metadata integrity, use force if you want this");
3847 ret = -EINVAL;
3848 goto out;
3849 }
3850 }
3851 } while (read_seqretry(&fs_info->profiles_lock, seq));
3852
3853 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3854 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3855 btrfs_warn(fs_info,
3856 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3857 bctl->meta.target, bctl->data.target);
3858 }
3859
3860 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3861 fs_info->num_tolerated_disk_barrier_failures = min(
3862 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3863 btrfs_get_num_tolerated_disk_barrier_failures(
3864 bctl->sys.target));
3865 }
3866
3867 ret = insert_balance_item(fs_info, bctl);
3868 if (ret && ret != -EEXIST)
3869 goto out;
3870
3871 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3872 BUG_ON(ret == -EEXIST);
3873 set_balance_control(bctl);
3874 } else {
3875 BUG_ON(ret != -EEXIST);
3876 spin_lock(&fs_info->balance_lock);
3877 update_balance_args(bctl);
3878 spin_unlock(&fs_info->balance_lock);
3879 }
3880
3881 atomic_inc(&fs_info->balance_running);
3882 mutex_unlock(&fs_info->balance_mutex);
3883
3884 ret = __btrfs_balance(fs_info);
3885
3886 mutex_lock(&fs_info->balance_mutex);
3887 atomic_dec(&fs_info->balance_running);
3888
3889 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3890 fs_info->num_tolerated_disk_barrier_failures =
3891 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3892 }
3893
3894 if (bargs) {
3895 memset(bargs, 0, sizeof(*bargs));
3896 update_ioctl_balance_args(fs_info, 0, bargs);
3897 }
3898
3899 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3900 balance_need_close(fs_info)) {
3901 __cancel_balance(fs_info);
3902 }
3903
3904 wake_up(&fs_info->balance_wait_q);
3905
3906 return ret;
3907 out:
3908 if (bctl->flags & BTRFS_BALANCE_RESUME)
3909 __cancel_balance(fs_info);
3910 else {
3911 kfree(bctl);
3912 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3913 }
3914 return ret;
3915 }
3916
3917 static int balance_kthread(void *data)
3918 {
3919 struct btrfs_fs_info *fs_info = data;
3920 int ret = 0;
3921
3922 mutex_lock(&fs_info->volume_mutex);
3923 mutex_lock(&fs_info->balance_mutex);
3924
3925 if (fs_info->balance_ctl) {
3926 btrfs_info(fs_info, "continuing balance");
3927 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3928 }
3929
3930 mutex_unlock(&fs_info->balance_mutex);
3931 mutex_unlock(&fs_info->volume_mutex);
3932
3933 return ret;
3934 }
3935
3936 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3937 {
3938 struct task_struct *tsk;
3939
3940 spin_lock(&fs_info->balance_lock);
3941 if (!fs_info->balance_ctl) {
3942 spin_unlock(&fs_info->balance_lock);
3943 return 0;
3944 }
3945 spin_unlock(&fs_info->balance_lock);
3946
3947 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3948 btrfs_info(fs_info, "force skipping balance");
3949 return 0;
3950 }
3951
3952 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3953 return PTR_ERR_OR_ZERO(tsk);
3954 }
3955
3956 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3957 {
3958 struct btrfs_balance_control *bctl;
3959 struct btrfs_balance_item *item;
3960 struct btrfs_disk_balance_args disk_bargs;
3961 struct btrfs_path *path;
3962 struct extent_buffer *leaf;
3963 struct btrfs_key key;
3964 int ret;
3965
3966 path = btrfs_alloc_path();
3967 if (!path)
3968 return -ENOMEM;
3969
3970 key.objectid = BTRFS_BALANCE_OBJECTID;
3971 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3972 key.offset = 0;
3973
3974 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3975 if (ret < 0)
3976 goto out;
3977 if (ret > 0) { /* ret = -ENOENT; */
3978 ret = 0;
3979 goto out;
3980 }
3981
3982 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3983 if (!bctl) {
3984 ret = -ENOMEM;
3985 goto out;
3986 }
3987
3988 leaf = path->nodes[0];
3989 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3990
3991 bctl->fs_info = fs_info;
3992 bctl->flags = btrfs_balance_flags(leaf, item);
3993 bctl->flags |= BTRFS_BALANCE_RESUME;
3994
3995 btrfs_balance_data(leaf, item, &disk_bargs);
3996 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3997 btrfs_balance_meta(leaf, item, &disk_bargs);
3998 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3999 btrfs_balance_sys(leaf, item, &disk_bargs);
4000 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4001
4002 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4003
4004 mutex_lock(&fs_info->volume_mutex);
4005 mutex_lock(&fs_info->balance_mutex);
4006
4007 set_balance_control(bctl);
4008
4009 mutex_unlock(&fs_info->balance_mutex);
4010 mutex_unlock(&fs_info->volume_mutex);
4011 out:
4012 btrfs_free_path(path);
4013 return ret;
4014 }
4015
4016 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4017 {
4018 int ret = 0;
4019
4020 mutex_lock(&fs_info->balance_mutex);
4021 if (!fs_info->balance_ctl) {
4022 mutex_unlock(&fs_info->balance_mutex);
4023 return -ENOTCONN;
4024 }
4025
4026 if (atomic_read(&fs_info->balance_running)) {
4027 atomic_inc(&fs_info->balance_pause_req);
4028 mutex_unlock(&fs_info->balance_mutex);
4029
4030 wait_event(fs_info->balance_wait_q,
4031 atomic_read(&fs_info->balance_running) == 0);
4032
4033 mutex_lock(&fs_info->balance_mutex);
4034 /* we are good with balance_ctl ripped off from under us */
4035 BUG_ON(atomic_read(&fs_info->balance_running));
4036 atomic_dec(&fs_info->balance_pause_req);
4037 } else {
4038 ret = -ENOTCONN;
4039 }
4040
4041 mutex_unlock(&fs_info->balance_mutex);
4042 return ret;
4043 }
4044
4045 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4046 {
4047 if (fs_info->sb->s_flags & MS_RDONLY)
4048 return -EROFS;
4049
4050 mutex_lock(&fs_info->balance_mutex);
4051 if (!fs_info->balance_ctl) {
4052 mutex_unlock(&fs_info->balance_mutex);
4053 return -ENOTCONN;
4054 }
4055
4056 atomic_inc(&fs_info->balance_cancel_req);
4057 /*
4058 * if we are running just wait and return, balance item is
4059 * deleted in btrfs_balance in this case
4060 */
4061 if (atomic_read(&fs_info->balance_running)) {
4062 mutex_unlock(&fs_info->balance_mutex);
4063 wait_event(fs_info->balance_wait_q,
4064 atomic_read(&fs_info->balance_running) == 0);
4065 mutex_lock(&fs_info->balance_mutex);
4066 } else {
4067 /* __cancel_balance needs volume_mutex */
4068 mutex_unlock(&fs_info->balance_mutex);
4069 mutex_lock(&fs_info->volume_mutex);
4070 mutex_lock(&fs_info->balance_mutex);
4071
4072 if (fs_info->balance_ctl)
4073 __cancel_balance(fs_info);
4074
4075 mutex_unlock(&fs_info->volume_mutex);
4076 }
4077
4078 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4079 atomic_dec(&fs_info->balance_cancel_req);
4080 mutex_unlock(&fs_info->balance_mutex);
4081 return 0;
4082 }
4083
4084 static int btrfs_uuid_scan_kthread(void *data)
4085 {
4086 struct btrfs_fs_info *fs_info = data;
4087 struct btrfs_root *root = fs_info->tree_root;
4088 struct btrfs_key key;
4089 struct btrfs_key max_key;
4090 struct btrfs_path *path = NULL;
4091 int ret = 0;
4092 struct extent_buffer *eb;
4093 int slot;
4094 struct btrfs_root_item root_item;
4095 u32 item_size;
4096 struct btrfs_trans_handle *trans = NULL;
4097
4098 path = btrfs_alloc_path();
4099 if (!path) {
4100 ret = -ENOMEM;
4101 goto out;
4102 }
4103
4104 key.objectid = 0;
4105 key.type = BTRFS_ROOT_ITEM_KEY;
4106 key.offset = 0;
4107
4108 max_key.objectid = (u64)-1;
4109 max_key.type = BTRFS_ROOT_ITEM_KEY;
4110 max_key.offset = (u64)-1;
4111
4112 while (1) {
4113 ret = btrfs_search_forward(root, &key, path, 0);
4114 if (ret) {
4115 if (ret > 0)
4116 ret = 0;
4117 break;
4118 }
4119
4120 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4121 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4122 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4123 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4124 goto skip;
4125
4126 eb = path->nodes[0];
4127 slot = path->slots[0];
4128 item_size = btrfs_item_size_nr(eb, slot);
4129 if (item_size < sizeof(root_item))
4130 goto skip;
4131
4132 read_extent_buffer(eb, &root_item,
4133 btrfs_item_ptr_offset(eb, slot),
4134 (int)sizeof(root_item));
4135 if (btrfs_root_refs(&root_item) == 0)
4136 goto skip;
4137
4138 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4139 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4140 if (trans)
4141 goto update_tree;
4142
4143 btrfs_release_path(path);
4144 /*
4145 * 1 - subvol uuid item
4146 * 1 - received_subvol uuid item
4147 */
4148 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4149 if (IS_ERR(trans)) {
4150 ret = PTR_ERR(trans);
4151 break;
4152 }
4153 continue;
4154 } else {
4155 goto skip;
4156 }
4157 update_tree:
4158 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4159 ret = btrfs_uuid_tree_add(trans, fs_info,
4160 root_item.uuid,
4161 BTRFS_UUID_KEY_SUBVOL,
4162 key.objectid);
4163 if (ret < 0) {
4164 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4165 ret);
4166 break;
4167 }
4168 }
4169
4170 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4171 ret = btrfs_uuid_tree_add(trans, fs_info,
4172 root_item.received_uuid,
4173 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4174 key.objectid);
4175 if (ret < 0) {
4176 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4177 ret);
4178 break;
4179 }
4180 }
4181
4182 skip:
4183 if (trans) {
4184 ret = btrfs_end_transaction(trans);
4185 trans = NULL;
4186 if (ret)
4187 break;
4188 }
4189
4190 btrfs_release_path(path);
4191 if (key.offset < (u64)-1) {
4192 key.offset++;
4193 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4194 key.offset = 0;
4195 key.type = BTRFS_ROOT_ITEM_KEY;
4196 } else if (key.objectid < (u64)-1) {
4197 key.offset = 0;
4198 key.type = BTRFS_ROOT_ITEM_KEY;
4199 key.objectid++;
4200 } else {
4201 break;
4202 }
4203 cond_resched();
4204 }
4205
4206 out:
4207 btrfs_free_path(path);
4208 if (trans && !IS_ERR(trans))
4209 btrfs_end_transaction(trans);
4210 if (ret)
4211 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4212 else
4213 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4214 up(&fs_info->uuid_tree_rescan_sem);
4215 return 0;
4216 }
4217
4218 /*
4219 * Callback for btrfs_uuid_tree_iterate().
4220 * returns:
4221 * 0 check succeeded, the entry is not outdated.
4222 * < 0 if an error occurred.
4223 * > 0 if the check failed, which means the caller shall remove the entry.
4224 */
4225 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4226 u8 *uuid, u8 type, u64 subid)
4227 {
4228 struct btrfs_key key;
4229 int ret = 0;
4230 struct btrfs_root *subvol_root;
4231
4232 if (type != BTRFS_UUID_KEY_SUBVOL &&
4233 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4234 goto out;
4235
4236 key.objectid = subid;
4237 key.type = BTRFS_ROOT_ITEM_KEY;
4238 key.offset = (u64)-1;
4239 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4240 if (IS_ERR(subvol_root)) {
4241 ret = PTR_ERR(subvol_root);
4242 if (ret == -ENOENT)
4243 ret = 1;
4244 goto out;
4245 }
4246
4247 switch (type) {
4248 case BTRFS_UUID_KEY_SUBVOL:
4249 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4250 ret = 1;
4251 break;
4252 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4253 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4254 BTRFS_UUID_SIZE))
4255 ret = 1;
4256 break;
4257 }
4258
4259 out:
4260 return ret;
4261 }
4262
4263 static int btrfs_uuid_rescan_kthread(void *data)
4264 {
4265 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4266 int ret;
4267
4268 /*
4269 * 1st step is to iterate through the existing UUID tree and
4270 * to delete all entries that contain outdated data.
4271 * 2nd step is to add all missing entries to the UUID tree.
4272 */
4273 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4274 if (ret < 0) {
4275 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4276 up(&fs_info->uuid_tree_rescan_sem);
4277 return ret;
4278 }
4279 return btrfs_uuid_scan_kthread(data);
4280 }
4281
4282 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4283 {
4284 struct btrfs_trans_handle *trans;
4285 struct btrfs_root *tree_root = fs_info->tree_root;
4286 struct btrfs_root *uuid_root;
4287 struct task_struct *task;
4288 int ret;
4289
4290 /*
4291 * 1 - root node
4292 * 1 - root item
4293 */
4294 trans = btrfs_start_transaction(tree_root, 2);
4295 if (IS_ERR(trans))
4296 return PTR_ERR(trans);
4297
4298 uuid_root = btrfs_create_tree(trans, fs_info,
4299 BTRFS_UUID_TREE_OBJECTID);
4300 if (IS_ERR(uuid_root)) {
4301 ret = PTR_ERR(uuid_root);
4302 btrfs_abort_transaction(trans, ret);
4303 btrfs_end_transaction(trans);
4304 return ret;
4305 }
4306
4307 fs_info->uuid_root = uuid_root;
4308
4309 ret = btrfs_commit_transaction(trans);
4310 if (ret)
4311 return ret;
4312
4313 down(&fs_info->uuid_tree_rescan_sem);
4314 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4315 if (IS_ERR(task)) {
4316 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4317 btrfs_warn(fs_info, "failed to start uuid_scan task");
4318 up(&fs_info->uuid_tree_rescan_sem);
4319 return PTR_ERR(task);
4320 }
4321
4322 return 0;
4323 }
4324
4325 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4326 {
4327 struct task_struct *task;
4328
4329 down(&fs_info->uuid_tree_rescan_sem);
4330 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4331 if (IS_ERR(task)) {
4332 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4333 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4334 up(&fs_info->uuid_tree_rescan_sem);
4335 return PTR_ERR(task);
4336 }
4337
4338 return 0;
4339 }
4340
4341 /*
4342 * shrinking a device means finding all of the device extents past
4343 * the new size, and then following the back refs to the chunks.
4344 * The chunk relocation code actually frees the device extent
4345 */
4346 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4347 {
4348 struct btrfs_fs_info *fs_info = device->fs_info;
4349 struct btrfs_root *root = fs_info->dev_root;
4350 struct btrfs_trans_handle *trans;
4351 struct btrfs_dev_extent *dev_extent = NULL;
4352 struct btrfs_path *path;
4353 u64 length;
4354 u64 chunk_offset;
4355 int ret;
4356 int slot;
4357 int failed = 0;
4358 bool retried = false;
4359 bool checked_pending_chunks = false;
4360 struct extent_buffer *l;
4361 struct btrfs_key key;
4362 struct btrfs_super_block *super_copy = fs_info->super_copy;
4363 u64 old_total = btrfs_super_total_bytes(super_copy);
4364 u64 old_size = btrfs_device_get_total_bytes(device);
4365 u64 diff = old_size - new_size;
4366
4367 if (device->is_tgtdev_for_dev_replace)
4368 return -EINVAL;
4369
4370 path = btrfs_alloc_path();
4371 if (!path)
4372 return -ENOMEM;
4373
4374 path->reada = READA_FORWARD;
4375
4376 mutex_lock(&fs_info->chunk_mutex);
4377
4378 btrfs_device_set_total_bytes(device, new_size);
4379 if (device->writeable) {
4380 device->fs_devices->total_rw_bytes -= diff;
4381 spin_lock(&fs_info->free_chunk_lock);
4382 fs_info->free_chunk_space -= diff;
4383 spin_unlock(&fs_info->free_chunk_lock);
4384 }
4385 mutex_unlock(&fs_info->chunk_mutex);
4386
4387 again:
4388 key.objectid = device->devid;
4389 key.offset = (u64)-1;
4390 key.type = BTRFS_DEV_EXTENT_KEY;
4391
4392 do {
4393 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4394 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4395 if (ret < 0) {
4396 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4397 goto done;
4398 }
4399
4400 ret = btrfs_previous_item(root, path, 0, key.type);
4401 if (ret)
4402 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4403 if (ret < 0)
4404 goto done;
4405 if (ret) {
4406 ret = 0;
4407 btrfs_release_path(path);
4408 break;
4409 }
4410
4411 l = path->nodes[0];
4412 slot = path->slots[0];
4413 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4414
4415 if (key.objectid != device->devid) {
4416 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4417 btrfs_release_path(path);
4418 break;
4419 }
4420
4421 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4422 length = btrfs_dev_extent_length(l, dev_extent);
4423
4424 if (key.offset + length <= new_size) {
4425 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4426 btrfs_release_path(path);
4427 break;
4428 }
4429
4430 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4431 btrfs_release_path(path);
4432
4433 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4434 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4435 if (ret && ret != -ENOSPC)
4436 goto done;
4437 if (ret == -ENOSPC)
4438 failed++;
4439 } while (key.offset-- > 0);
4440
4441 if (failed && !retried) {
4442 failed = 0;
4443 retried = true;
4444 goto again;
4445 } else if (failed && retried) {
4446 ret = -ENOSPC;
4447 goto done;
4448 }
4449
4450 /* Shrinking succeeded, else we would be at "done". */
4451 trans = btrfs_start_transaction(root, 0);
4452 if (IS_ERR(trans)) {
4453 ret = PTR_ERR(trans);
4454 goto done;
4455 }
4456
4457 mutex_lock(&fs_info->chunk_mutex);
4458
4459 /*
4460 * We checked in the above loop all device extents that were already in
4461 * the device tree. However before we have updated the device's
4462 * total_bytes to the new size, we might have had chunk allocations that
4463 * have not complete yet (new block groups attached to transaction
4464 * handles), and therefore their device extents were not yet in the
4465 * device tree and we missed them in the loop above. So if we have any
4466 * pending chunk using a device extent that overlaps the device range
4467 * that we can not use anymore, commit the current transaction and
4468 * repeat the search on the device tree - this way we guarantee we will
4469 * not have chunks using device extents that end beyond 'new_size'.
4470 */
4471 if (!checked_pending_chunks) {
4472 u64 start = new_size;
4473 u64 len = old_size - new_size;
4474
4475 if (contains_pending_extent(trans->transaction, device,
4476 &start, len)) {
4477 mutex_unlock(&fs_info->chunk_mutex);
4478 checked_pending_chunks = true;
4479 failed = 0;
4480 retried = false;
4481 ret = btrfs_commit_transaction(trans);
4482 if (ret)
4483 goto done;
4484 goto again;
4485 }
4486 }
4487
4488 btrfs_device_set_disk_total_bytes(device, new_size);
4489 if (list_empty(&device->resized_list))
4490 list_add_tail(&device->resized_list,
4491 &fs_info->fs_devices->resized_devices);
4492
4493 WARN_ON(diff > old_total);
4494 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4495 mutex_unlock(&fs_info->chunk_mutex);
4496
4497 /* Now btrfs_update_device() will change the on-disk size. */
4498 ret = btrfs_update_device(trans, device);
4499 btrfs_end_transaction(trans);
4500 done:
4501 btrfs_free_path(path);
4502 if (ret) {
4503 mutex_lock(&fs_info->chunk_mutex);
4504 btrfs_device_set_total_bytes(device, old_size);
4505 if (device->writeable)
4506 device->fs_devices->total_rw_bytes += diff;
4507 spin_lock(&fs_info->free_chunk_lock);
4508 fs_info->free_chunk_space += diff;
4509 spin_unlock(&fs_info->free_chunk_lock);
4510 mutex_unlock(&fs_info->chunk_mutex);
4511 }
4512 return ret;
4513 }
4514
4515 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4516 struct btrfs_key *key,
4517 struct btrfs_chunk *chunk, int item_size)
4518 {
4519 struct btrfs_super_block *super_copy = fs_info->super_copy;
4520 struct btrfs_disk_key disk_key;
4521 u32 array_size;
4522 u8 *ptr;
4523
4524 mutex_lock(&fs_info->chunk_mutex);
4525 array_size = btrfs_super_sys_array_size(super_copy);
4526 if (array_size + item_size + sizeof(disk_key)
4527 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4528 mutex_unlock(&fs_info->chunk_mutex);
4529 return -EFBIG;
4530 }
4531
4532 ptr = super_copy->sys_chunk_array + array_size;
4533 btrfs_cpu_key_to_disk(&disk_key, key);
4534 memcpy(ptr, &disk_key, sizeof(disk_key));
4535 ptr += sizeof(disk_key);
4536 memcpy(ptr, chunk, item_size);
4537 item_size += sizeof(disk_key);
4538 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4539 mutex_unlock(&fs_info->chunk_mutex);
4540
4541 return 0;
4542 }
4543
4544 /*
4545 * sort the devices in descending order by max_avail, total_avail
4546 */
4547 static int btrfs_cmp_device_info(const void *a, const void *b)
4548 {
4549 const struct btrfs_device_info *di_a = a;
4550 const struct btrfs_device_info *di_b = b;
4551
4552 if (di_a->max_avail > di_b->max_avail)
4553 return -1;
4554 if (di_a->max_avail < di_b->max_avail)
4555 return 1;
4556 if (di_a->total_avail > di_b->total_avail)
4557 return -1;
4558 if (di_a->total_avail < di_b->total_avail)
4559 return 1;
4560 return 0;
4561 }
4562
4563 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4564 {
4565 /* TODO allow them to set a preferred stripe size */
4566 return SZ_64K;
4567 }
4568
4569 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4570 {
4571 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4572 return;
4573
4574 btrfs_set_fs_incompat(info, RAID56);
4575 }
4576
4577 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4578 - sizeof(struct btrfs_chunk)) \
4579 / sizeof(struct btrfs_stripe) + 1)
4580
4581 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4582 - 2 * sizeof(struct btrfs_disk_key) \
4583 - 2 * sizeof(struct btrfs_chunk)) \
4584 / sizeof(struct btrfs_stripe) + 1)
4585
4586 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4587 u64 start, u64 type)
4588 {
4589 struct btrfs_fs_info *info = trans->fs_info;
4590 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4591 struct list_head *cur;
4592 struct map_lookup *map = NULL;
4593 struct extent_map_tree *em_tree;
4594 struct extent_map *em;
4595 struct btrfs_device_info *devices_info = NULL;
4596 u64 total_avail;
4597 int num_stripes; /* total number of stripes to allocate */
4598 int data_stripes; /* number of stripes that count for
4599 block group size */
4600 int sub_stripes; /* sub_stripes info for map */
4601 int dev_stripes; /* stripes per dev */
4602 int devs_max; /* max devs to use */
4603 int devs_min; /* min devs needed */
4604 int devs_increment; /* ndevs has to be a multiple of this */
4605 int ncopies; /* how many copies to data has */
4606 int ret;
4607 u64 max_stripe_size;
4608 u64 max_chunk_size;
4609 u64 stripe_size;
4610 u64 num_bytes;
4611 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4612 int ndevs;
4613 int i;
4614 int j;
4615 int index;
4616
4617 BUG_ON(!alloc_profile_is_valid(type, 0));
4618
4619 if (list_empty(&fs_devices->alloc_list))
4620 return -ENOSPC;
4621
4622 index = __get_raid_index(type);
4623
4624 sub_stripes = btrfs_raid_array[index].sub_stripes;
4625 dev_stripes = btrfs_raid_array[index].dev_stripes;
4626 devs_max = btrfs_raid_array[index].devs_max;
4627 devs_min = btrfs_raid_array[index].devs_min;
4628 devs_increment = btrfs_raid_array[index].devs_increment;
4629 ncopies = btrfs_raid_array[index].ncopies;
4630
4631 if (type & BTRFS_BLOCK_GROUP_DATA) {
4632 max_stripe_size = SZ_1G;
4633 max_chunk_size = 10 * max_stripe_size;
4634 if (!devs_max)
4635 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4636 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4637 /* for larger filesystems, use larger metadata chunks */
4638 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4639 max_stripe_size = SZ_1G;
4640 else
4641 max_stripe_size = SZ_256M;
4642 max_chunk_size = max_stripe_size;
4643 if (!devs_max)
4644 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4645 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4646 max_stripe_size = SZ_32M;
4647 max_chunk_size = 2 * max_stripe_size;
4648 if (!devs_max)
4649 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4650 } else {
4651 btrfs_err(info, "invalid chunk type 0x%llx requested",
4652 type);
4653 BUG_ON(1);
4654 }
4655
4656 /* we don't want a chunk larger than 10% of writeable space */
4657 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4658 max_chunk_size);
4659
4660 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4661 GFP_NOFS);
4662 if (!devices_info)
4663 return -ENOMEM;
4664
4665 cur = fs_devices->alloc_list.next;
4666
4667 /*
4668 * in the first pass through the devices list, we gather information
4669 * about the available holes on each device.
4670 */
4671 ndevs = 0;
4672 while (cur != &fs_devices->alloc_list) {
4673 struct btrfs_device *device;
4674 u64 max_avail;
4675 u64 dev_offset;
4676
4677 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4678
4679 cur = cur->next;
4680
4681 if (!device->writeable) {
4682 WARN(1, KERN_ERR
4683 "BTRFS: read-only device in alloc_list\n");
4684 continue;
4685 }
4686
4687 if (!device->in_fs_metadata ||
4688 device->is_tgtdev_for_dev_replace)
4689 continue;
4690
4691 if (device->total_bytes > device->bytes_used)
4692 total_avail = device->total_bytes - device->bytes_used;
4693 else
4694 total_avail = 0;
4695
4696 /* If there is no space on this device, skip it. */
4697 if (total_avail == 0)
4698 continue;
4699
4700 ret = find_free_dev_extent(trans, device,
4701 max_stripe_size * dev_stripes,
4702 &dev_offset, &max_avail);
4703 if (ret && ret != -ENOSPC)
4704 goto error;
4705
4706 if (ret == 0)
4707 max_avail = max_stripe_size * dev_stripes;
4708
4709 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4710 continue;
4711
4712 if (ndevs == fs_devices->rw_devices) {
4713 WARN(1, "%s: found more than %llu devices\n",
4714 __func__, fs_devices->rw_devices);
4715 break;
4716 }
4717 devices_info[ndevs].dev_offset = dev_offset;
4718 devices_info[ndevs].max_avail = max_avail;
4719 devices_info[ndevs].total_avail = total_avail;
4720 devices_info[ndevs].dev = device;
4721 ++ndevs;
4722 }
4723
4724 /*
4725 * now sort the devices by hole size / available space
4726 */
4727 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4728 btrfs_cmp_device_info, NULL);
4729
4730 /* round down to number of usable stripes */
4731 ndevs -= ndevs % devs_increment;
4732
4733 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4734 ret = -ENOSPC;
4735 goto error;
4736 }
4737
4738 if (devs_max && ndevs > devs_max)
4739 ndevs = devs_max;
4740 /*
4741 * the primary goal is to maximize the number of stripes, so use as many
4742 * devices as possible, even if the stripes are not maximum sized.
4743 */
4744 stripe_size = devices_info[ndevs-1].max_avail;
4745 num_stripes = ndevs * dev_stripes;
4746
4747 /*
4748 * this will have to be fixed for RAID1 and RAID10 over
4749 * more drives
4750 */
4751 data_stripes = num_stripes / ncopies;
4752
4753 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4754 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4755 info->stripesize);
4756 data_stripes = num_stripes - 1;
4757 }
4758 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4759 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4760 info->stripesize);
4761 data_stripes = num_stripes - 2;
4762 }
4763
4764 /*
4765 * Use the number of data stripes to figure out how big this chunk
4766 * is really going to be in terms of logical address space,
4767 * and compare that answer with the max chunk size
4768 */
4769 if (stripe_size * data_stripes > max_chunk_size) {
4770 u64 mask = (1ULL << 24) - 1;
4771
4772 stripe_size = div_u64(max_chunk_size, data_stripes);
4773
4774 /* bump the answer up to a 16MB boundary */
4775 stripe_size = (stripe_size + mask) & ~mask;
4776
4777 /* but don't go higher than the limits we found
4778 * while searching for free extents
4779 */
4780 if (stripe_size > devices_info[ndevs-1].max_avail)
4781 stripe_size = devices_info[ndevs-1].max_avail;
4782 }
4783
4784 stripe_size = div_u64(stripe_size, dev_stripes);
4785
4786 /* align to BTRFS_STRIPE_LEN */
4787 stripe_size = div_u64(stripe_size, raid_stripe_len);
4788 stripe_size *= raid_stripe_len;
4789
4790 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4791 if (!map) {
4792 ret = -ENOMEM;
4793 goto error;
4794 }
4795 map->num_stripes = num_stripes;
4796
4797 for (i = 0; i < ndevs; ++i) {
4798 for (j = 0; j < dev_stripes; ++j) {
4799 int s = i * dev_stripes + j;
4800 map->stripes[s].dev = devices_info[i].dev;
4801 map->stripes[s].physical = devices_info[i].dev_offset +
4802 j * stripe_size;
4803 }
4804 }
4805 map->sector_size = info->sectorsize;
4806 map->stripe_len = raid_stripe_len;
4807 map->io_align = raid_stripe_len;
4808 map->io_width = raid_stripe_len;
4809 map->type = type;
4810 map->sub_stripes = sub_stripes;
4811
4812 num_bytes = stripe_size * data_stripes;
4813
4814 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4815
4816 em = alloc_extent_map();
4817 if (!em) {
4818 kfree(map);
4819 ret = -ENOMEM;
4820 goto error;
4821 }
4822 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4823 em->map_lookup = map;
4824 em->start = start;
4825 em->len = num_bytes;
4826 em->block_start = 0;
4827 em->block_len = em->len;
4828 em->orig_block_len = stripe_size;
4829
4830 em_tree = &info->mapping_tree.map_tree;
4831 write_lock(&em_tree->lock);
4832 ret = add_extent_mapping(em_tree, em, 0);
4833 if (!ret) {
4834 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4835 atomic_inc(&em->refs);
4836 }
4837 write_unlock(&em_tree->lock);
4838 if (ret) {
4839 free_extent_map(em);
4840 goto error;
4841 }
4842
4843 ret = btrfs_make_block_group(trans, info, 0, type,
4844 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4845 start, num_bytes);
4846 if (ret)
4847 goto error_del_extent;
4848
4849 for (i = 0; i < map->num_stripes; i++) {
4850 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4851 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4852 }
4853
4854 spin_lock(&info->free_chunk_lock);
4855 info->free_chunk_space -= (stripe_size * map->num_stripes);
4856 spin_unlock(&info->free_chunk_lock);
4857
4858 free_extent_map(em);
4859 check_raid56_incompat_flag(info, type);
4860
4861 kfree(devices_info);
4862 return 0;
4863
4864 error_del_extent:
4865 write_lock(&em_tree->lock);
4866 remove_extent_mapping(em_tree, em);
4867 write_unlock(&em_tree->lock);
4868
4869 /* One for our allocation */
4870 free_extent_map(em);
4871 /* One for the tree reference */
4872 free_extent_map(em);
4873 /* One for the pending_chunks list reference */
4874 free_extent_map(em);
4875 error:
4876 kfree(devices_info);
4877 return ret;
4878 }
4879
4880 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4881 struct btrfs_fs_info *fs_info,
4882 u64 chunk_offset, u64 chunk_size)
4883 {
4884 struct btrfs_root *extent_root = fs_info->extent_root;
4885 struct btrfs_root *chunk_root = fs_info->chunk_root;
4886 struct btrfs_key key;
4887 struct btrfs_device *device;
4888 struct btrfs_chunk *chunk;
4889 struct btrfs_stripe *stripe;
4890 struct extent_map_tree *em_tree;
4891 struct extent_map *em;
4892 struct map_lookup *map;
4893 size_t item_size;
4894 u64 dev_offset;
4895 u64 stripe_size;
4896 int i = 0;
4897 int ret = 0;
4898
4899 em_tree = &fs_info->mapping_tree.map_tree;
4900 read_lock(&em_tree->lock);
4901 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4902 read_unlock(&em_tree->lock);
4903
4904 if (!em) {
4905 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
4906 chunk_offset, chunk_size);
4907 return -EINVAL;
4908 }
4909
4910 if (em->start != chunk_offset || em->len != chunk_size) {
4911 btrfs_crit(fs_info,
4912 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4913 chunk_offset, chunk_size, em->start, em->len);
4914 free_extent_map(em);
4915 return -EINVAL;
4916 }
4917
4918 map = em->map_lookup;
4919 item_size = btrfs_chunk_item_size(map->num_stripes);
4920 stripe_size = em->orig_block_len;
4921
4922 chunk = kzalloc(item_size, GFP_NOFS);
4923 if (!chunk) {
4924 ret = -ENOMEM;
4925 goto out;
4926 }
4927
4928 /*
4929 * Take the device list mutex to prevent races with the final phase of
4930 * a device replace operation that replaces the device object associated
4931 * with the map's stripes, because the device object's id can change
4932 * at any time during that final phase of the device replace operation
4933 * (dev-replace.c:btrfs_dev_replace_finishing()).
4934 */
4935 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4936 for (i = 0; i < map->num_stripes; i++) {
4937 device = map->stripes[i].dev;
4938 dev_offset = map->stripes[i].physical;
4939
4940 ret = btrfs_update_device(trans, device);
4941 if (ret)
4942 break;
4943 ret = btrfs_alloc_dev_extent(trans, device,
4944 chunk_root->root_key.objectid,
4945 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4946 chunk_offset, dev_offset,
4947 stripe_size);
4948 if (ret)
4949 break;
4950 }
4951 if (ret) {
4952 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4953 goto out;
4954 }
4955
4956 stripe = &chunk->stripe;
4957 for (i = 0; i < map->num_stripes; i++) {
4958 device = map->stripes[i].dev;
4959 dev_offset = map->stripes[i].physical;
4960
4961 btrfs_set_stack_stripe_devid(stripe, device->devid);
4962 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4963 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4964 stripe++;
4965 }
4966 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4967
4968 btrfs_set_stack_chunk_length(chunk, chunk_size);
4969 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4970 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4971 btrfs_set_stack_chunk_type(chunk, map->type);
4972 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4973 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4974 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4975 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4976 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4977
4978 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4979 key.type = BTRFS_CHUNK_ITEM_KEY;
4980 key.offset = chunk_offset;
4981
4982 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4983 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4984 /*
4985 * TODO: Cleanup of inserted chunk root in case of
4986 * failure.
4987 */
4988 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4989 }
4990
4991 out:
4992 kfree(chunk);
4993 free_extent_map(em);
4994 return ret;
4995 }
4996
4997 /*
4998 * Chunk allocation falls into two parts. The first part does works
4999 * that make the new allocated chunk useable, but not do any operation
5000 * that modifies the chunk tree. The second part does the works that
5001 * require modifying the chunk tree. This division is important for the
5002 * bootstrap process of adding storage to a seed btrfs.
5003 */
5004 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5005 struct btrfs_fs_info *fs_info, u64 type)
5006 {
5007 u64 chunk_offset;
5008
5009 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5010 chunk_offset = find_next_chunk(fs_info);
5011 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5012 }
5013
5014 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5015 struct btrfs_fs_info *fs_info,
5016 struct btrfs_device *device)
5017 {
5018 struct btrfs_root *extent_root = fs_info->extent_root;
5019 u64 chunk_offset;
5020 u64 sys_chunk_offset;
5021 u64 alloc_profile;
5022 int ret;
5023
5024 chunk_offset = find_next_chunk(fs_info);
5025 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5026 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5027 if (ret)
5028 return ret;
5029
5030 sys_chunk_offset = find_next_chunk(fs_info);
5031 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5032 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5033 return ret;
5034 }
5035
5036 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5037 {
5038 int max_errors;
5039
5040 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5041 BTRFS_BLOCK_GROUP_RAID10 |
5042 BTRFS_BLOCK_GROUP_RAID5 |
5043 BTRFS_BLOCK_GROUP_DUP)) {
5044 max_errors = 1;
5045 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5046 max_errors = 2;
5047 } else {
5048 max_errors = 0;
5049 }
5050
5051 return max_errors;
5052 }
5053
5054 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5055 {
5056 struct extent_map *em;
5057 struct map_lookup *map;
5058 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5059 int readonly = 0;
5060 int miss_ndevs = 0;
5061 int i;
5062
5063 read_lock(&map_tree->map_tree.lock);
5064 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5065 read_unlock(&map_tree->map_tree.lock);
5066 if (!em)
5067 return 1;
5068
5069 map = em->map_lookup;
5070 for (i = 0; i < map->num_stripes; i++) {
5071 if (map->stripes[i].dev->missing) {
5072 miss_ndevs++;
5073 continue;
5074 }
5075
5076 if (!map->stripes[i].dev->writeable) {
5077 readonly = 1;
5078 goto end;
5079 }
5080 }
5081
5082 /*
5083 * If the number of missing devices is larger than max errors,
5084 * we can not write the data into that chunk successfully, so
5085 * set it readonly.
5086 */
5087 if (miss_ndevs > btrfs_chunk_max_errors(map))
5088 readonly = 1;
5089 end:
5090 free_extent_map(em);
5091 return readonly;
5092 }
5093
5094 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5095 {
5096 extent_map_tree_init(&tree->map_tree);
5097 }
5098
5099 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5100 {
5101 struct extent_map *em;
5102
5103 while (1) {
5104 write_lock(&tree->map_tree.lock);
5105 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5106 if (em)
5107 remove_extent_mapping(&tree->map_tree, em);
5108 write_unlock(&tree->map_tree.lock);
5109 if (!em)
5110 break;
5111 /* once for us */
5112 free_extent_map(em);
5113 /* once for the tree */
5114 free_extent_map(em);
5115 }
5116 }
5117
5118 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5119 {
5120 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5121 struct extent_map *em;
5122 struct map_lookup *map;
5123 struct extent_map_tree *em_tree = &map_tree->map_tree;
5124 int ret;
5125
5126 read_lock(&em_tree->lock);
5127 em = lookup_extent_mapping(em_tree, logical, len);
5128 read_unlock(&em_tree->lock);
5129
5130 /*
5131 * We could return errors for these cases, but that could get ugly and
5132 * we'd probably do the same thing which is just not do anything else
5133 * and exit, so return 1 so the callers don't try to use other copies.
5134 */
5135 if (!em) {
5136 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5137 logical+len);
5138 return 1;
5139 }
5140
5141 if (em->start > logical || em->start + em->len < logical) {
5142 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5143 logical, logical+len, em->start,
5144 em->start + em->len);
5145 free_extent_map(em);
5146 return 1;
5147 }
5148
5149 map = em->map_lookup;
5150 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5151 ret = map->num_stripes;
5152 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5153 ret = map->sub_stripes;
5154 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5155 ret = 2;
5156 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5157 ret = 3;
5158 else
5159 ret = 1;
5160 free_extent_map(em);
5161
5162 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5163 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5164 ret++;
5165 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5166
5167 return ret;
5168 }
5169
5170 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5171 struct btrfs_mapping_tree *map_tree,
5172 u64 logical)
5173 {
5174 struct extent_map *em;
5175 struct map_lookup *map;
5176 struct extent_map_tree *em_tree = &map_tree->map_tree;
5177 unsigned long len = fs_info->sectorsize;
5178
5179 read_lock(&em_tree->lock);
5180 em = lookup_extent_mapping(em_tree, logical, len);
5181 read_unlock(&em_tree->lock);
5182 BUG_ON(!em);
5183
5184 BUG_ON(em->start > logical || em->start + em->len < logical);
5185 map = em->map_lookup;
5186 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5187 len = map->stripe_len * nr_data_stripes(map);
5188 free_extent_map(em);
5189 return len;
5190 }
5191
5192 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5193 u64 logical, u64 len, int mirror_num)
5194 {
5195 struct extent_map *em;
5196 struct map_lookup *map;
5197 struct extent_map_tree *em_tree = &map_tree->map_tree;
5198 int ret = 0;
5199
5200 read_lock(&em_tree->lock);
5201 em = lookup_extent_mapping(em_tree, logical, len);
5202 read_unlock(&em_tree->lock);
5203 BUG_ON(!em);
5204
5205 BUG_ON(em->start > logical || em->start + em->len < logical);
5206 map = em->map_lookup;
5207 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5208 ret = 1;
5209 free_extent_map(em);
5210 return ret;
5211 }
5212
5213 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5214 struct map_lookup *map, int first, int num,
5215 int optimal, int dev_replace_is_ongoing)
5216 {
5217 int i;
5218 int tolerance;
5219 struct btrfs_device *srcdev;
5220
5221 if (dev_replace_is_ongoing &&
5222 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5223 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5224 srcdev = fs_info->dev_replace.srcdev;
5225 else
5226 srcdev = NULL;
5227
5228 /*
5229 * try to avoid the drive that is the source drive for a
5230 * dev-replace procedure, only choose it if no other non-missing
5231 * mirror is available
5232 */
5233 for (tolerance = 0; tolerance < 2; tolerance++) {
5234 if (map->stripes[optimal].dev->bdev &&
5235 (tolerance || map->stripes[optimal].dev != srcdev))
5236 return optimal;
5237 for (i = first; i < first + num; i++) {
5238 if (map->stripes[i].dev->bdev &&
5239 (tolerance || map->stripes[i].dev != srcdev))
5240 return i;
5241 }
5242 }
5243
5244 /* we couldn't find one that doesn't fail. Just return something
5245 * and the io error handling code will clean up eventually
5246 */
5247 return optimal;
5248 }
5249
5250 static inline int parity_smaller(u64 a, u64 b)
5251 {
5252 return a > b;
5253 }
5254
5255 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5256 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5257 {
5258 struct btrfs_bio_stripe s;
5259 int i;
5260 u64 l;
5261 int again = 1;
5262
5263 while (again) {
5264 again = 0;
5265 for (i = 0; i < num_stripes - 1; i++) {
5266 if (parity_smaller(bbio->raid_map[i],
5267 bbio->raid_map[i+1])) {
5268 s = bbio->stripes[i];
5269 l = bbio->raid_map[i];
5270 bbio->stripes[i] = bbio->stripes[i+1];
5271 bbio->raid_map[i] = bbio->raid_map[i+1];
5272 bbio->stripes[i+1] = s;
5273 bbio->raid_map[i+1] = l;
5274
5275 again = 1;
5276 }
5277 }
5278 }
5279 }
5280
5281 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5282 {
5283 struct btrfs_bio *bbio = kzalloc(
5284 /* the size of the btrfs_bio */
5285 sizeof(struct btrfs_bio) +
5286 /* plus the variable array for the stripes */
5287 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5288 /* plus the variable array for the tgt dev */
5289 sizeof(int) * (real_stripes) +
5290 /*
5291 * plus the raid_map, which includes both the tgt dev
5292 * and the stripes
5293 */
5294 sizeof(u64) * (total_stripes),
5295 GFP_NOFS|__GFP_NOFAIL);
5296
5297 atomic_set(&bbio->error, 0);
5298 atomic_set(&bbio->refs, 1);
5299
5300 return bbio;
5301 }
5302
5303 void btrfs_get_bbio(struct btrfs_bio *bbio)
5304 {
5305 WARN_ON(!atomic_read(&bbio->refs));
5306 atomic_inc(&bbio->refs);
5307 }
5308
5309 void btrfs_put_bbio(struct btrfs_bio *bbio)
5310 {
5311 if (!bbio)
5312 return;
5313 if (atomic_dec_and_test(&bbio->refs))
5314 kfree(bbio);
5315 }
5316
5317 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5318 enum btrfs_map_op op,
5319 u64 logical, u64 *length,
5320 struct btrfs_bio **bbio_ret,
5321 int mirror_num, int need_raid_map)
5322 {
5323 struct extent_map *em;
5324 struct map_lookup *map;
5325 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5326 struct extent_map_tree *em_tree = &map_tree->map_tree;
5327 u64 offset;
5328 u64 stripe_offset;
5329 u64 stripe_end_offset;
5330 u64 stripe_nr;
5331 u64 stripe_nr_orig;
5332 u64 stripe_nr_end;
5333 u64 stripe_len;
5334 u32 stripe_index;
5335 int i;
5336 int ret = 0;
5337 int num_stripes;
5338 int max_errors = 0;
5339 int tgtdev_indexes = 0;
5340 struct btrfs_bio *bbio = NULL;
5341 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5342 int dev_replace_is_ongoing = 0;
5343 int num_alloc_stripes;
5344 int patch_the_first_stripe_for_dev_replace = 0;
5345 u64 physical_to_patch_in_first_stripe = 0;
5346 u64 raid56_full_stripe_start = (u64)-1;
5347
5348 read_lock(&em_tree->lock);
5349 em = lookup_extent_mapping(em_tree, logical, *length);
5350 read_unlock(&em_tree->lock);
5351
5352 if (!em) {
5353 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5354 logical, *length);
5355 return -EINVAL;
5356 }
5357
5358 if (em->start > logical || em->start + em->len < logical) {
5359 btrfs_crit(fs_info,
5360 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5361 logical, em->start, em->start + em->len);
5362 free_extent_map(em);
5363 return -EINVAL;
5364 }
5365
5366 map = em->map_lookup;
5367 offset = logical - em->start;
5368
5369 stripe_len = map->stripe_len;
5370 stripe_nr = offset;
5371 /*
5372 * stripe_nr counts the total number of stripes we have to stride
5373 * to get to this block
5374 */
5375 stripe_nr = div64_u64(stripe_nr, stripe_len);
5376
5377 stripe_offset = stripe_nr * stripe_len;
5378 if (offset < stripe_offset) {
5379 btrfs_crit(fs_info,
5380 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5381 stripe_offset, offset, em->start, logical,
5382 stripe_len);
5383 free_extent_map(em);
5384 return -EINVAL;
5385 }
5386
5387 /* stripe_offset is the offset of this block in its stripe*/
5388 stripe_offset = offset - stripe_offset;
5389
5390 /* if we're here for raid56, we need to know the stripe aligned start */
5391 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5392 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5393 raid56_full_stripe_start = offset;
5394
5395 /* allow a write of a full stripe, but make sure we don't
5396 * allow straddling of stripes
5397 */
5398 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5399 full_stripe_len);
5400 raid56_full_stripe_start *= full_stripe_len;
5401 }
5402
5403 if (op == BTRFS_MAP_DISCARD) {
5404 /* we don't discard raid56 yet */
5405 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5406 ret = -EOPNOTSUPP;
5407 goto out;
5408 }
5409 *length = min_t(u64, em->len - offset, *length);
5410 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5411 u64 max_len;
5412 /* For writes to RAID[56], allow a full stripeset across all disks.
5413 For other RAID types and for RAID[56] reads, just allow a single
5414 stripe (on a single disk). */
5415 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5416 (op == BTRFS_MAP_WRITE)) {
5417 max_len = stripe_len * nr_data_stripes(map) -
5418 (offset - raid56_full_stripe_start);
5419 } else {
5420 /* we limit the length of each bio to what fits in a stripe */
5421 max_len = stripe_len - stripe_offset;
5422 }
5423 *length = min_t(u64, em->len - offset, max_len);
5424 } else {
5425 *length = em->len - offset;
5426 }
5427
5428 /* This is for when we're called from btrfs_merge_bio_hook() and all
5429 it cares about is the length */
5430 if (!bbio_ret)
5431 goto out;
5432
5433 btrfs_dev_replace_lock(dev_replace, 0);
5434 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5435 if (!dev_replace_is_ongoing)
5436 btrfs_dev_replace_unlock(dev_replace, 0);
5437 else
5438 btrfs_dev_replace_set_lock_blocking(dev_replace);
5439
5440 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5441 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5442 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5443 /*
5444 * in dev-replace case, for repair case (that's the only
5445 * case where the mirror is selected explicitly when
5446 * calling btrfs_map_block), blocks left of the left cursor
5447 * can also be read from the target drive.
5448 * For REQ_GET_READ_MIRRORS, the target drive is added as
5449 * the last one to the array of stripes. For READ, it also
5450 * needs to be supported using the same mirror number.
5451 * If the requested block is not left of the left cursor,
5452 * EIO is returned. This can happen because btrfs_num_copies()
5453 * returns one more in the dev-replace case.
5454 */
5455 u64 tmp_length = *length;
5456 struct btrfs_bio *tmp_bbio = NULL;
5457 int tmp_num_stripes;
5458 u64 srcdev_devid = dev_replace->srcdev->devid;
5459 int index_srcdev = 0;
5460 int found = 0;
5461 u64 physical_of_found = 0;
5462
5463 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5464 logical, &tmp_length, &tmp_bbio, 0, 0);
5465 if (ret) {
5466 WARN_ON(tmp_bbio != NULL);
5467 goto out;
5468 }
5469
5470 tmp_num_stripes = tmp_bbio->num_stripes;
5471 if (mirror_num > tmp_num_stripes) {
5472 /*
5473 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5474 * mirror, that means that the requested area
5475 * is not left of the left cursor
5476 */
5477 ret = -EIO;
5478 btrfs_put_bbio(tmp_bbio);
5479 goto out;
5480 }
5481
5482 /*
5483 * process the rest of the function using the mirror_num
5484 * of the source drive. Therefore look it up first.
5485 * At the end, patch the device pointer to the one of the
5486 * target drive.
5487 */
5488 for (i = 0; i < tmp_num_stripes; i++) {
5489 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5490 continue;
5491
5492 /*
5493 * In case of DUP, in order to keep it simple, only add
5494 * the mirror with the lowest physical address
5495 */
5496 if (found &&
5497 physical_of_found <= tmp_bbio->stripes[i].physical)
5498 continue;
5499
5500 index_srcdev = i;
5501 found = 1;
5502 physical_of_found = tmp_bbio->stripes[i].physical;
5503 }
5504
5505 btrfs_put_bbio(tmp_bbio);
5506
5507 if (!found) {
5508 WARN_ON(1);
5509 ret = -EIO;
5510 goto out;
5511 }
5512
5513 mirror_num = index_srcdev + 1;
5514 patch_the_first_stripe_for_dev_replace = 1;
5515 physical_to_patch_in_first_stripe = physical_of_found;
5516 } else if (mirror_num > map->num_stripes) {
5517 mirror_num = 0;
5518 }
5519
5520 num_stripes = 1;
5521 stripe_index = 0;
5522 stripe_nr_orig = stripe_nr;
5523 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5524 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5525 stripe_end_offset = stripe_nr_end * map->stripe_len -
5526 (offset + *length);
5527
5528 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5529 if (op == BTRFS_MAP_DISCARD)
5530 num_stripes = min_t(u64, map->num_stripes,
5531 stripe_nr_end - stripe_nr_orig);
5532 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5533 &stripe_index);
5534 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5535 op != BTRFS_MAP_GET_READ_MIRRORS)
5536 mirror_num = 1;
5537 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5538 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5539 op == BTRFS_MAP_GET_READ_MIRRORS)
5540 num_stripes = map->num_stripes;
5541 else if (mirror_num)
5542 stripe_index = mirror_num - 1;
5543 else {
5544 stripe_index = find_live_mirror(fs_info, map, 0,
5545 map->num_stripes,
5546 current->pid % map->num_stripes,
5547 dev_replace_is_ongoing);
5548 mirror_num = stripe_index + 1;
5549 }
5550
5551 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5552 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5553 op == BTRFS_MAP_GET_READ_MIRRORS) {
5554 num_stripes = map->num_stripes;
5555 } else if (mirror_num) {
5556 stripe_index = mirror_num - 1;
5557 } else {
5558 mirror_num = 1;
5559 }
5560
5561 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5562 u32 factor = map->num_stripes / map->sub_stripes;
5563
5564 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5565 stripe_index *= map->sub_stripes;
5566
5567 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5568 num_stripes = map->sub_stripes;
5569 else if (op == BTRFS_MAP_DISCARD)
5570 num_stripes = min_t(u64, map->sub_stripes *
5571 (stripe_nr_end - stripe_nr_orig),
5572 map->num_stripes);
5573 else if (mirror_num)
5574 stripe_index += mirror_num - 1;
5575 else {
5576 int old_stripe_index = stripe_index;
5577 stripe_index = find_live_mirror(fs_info, map,
5578 stripe_index,
5579 map->sub_stripes, stripe_index +
5580 current->pid % map->sub_stripes,
5581 dev_replace_is_ongoing);
5582 mirror_num = stripe_index - old_stripe_index + 1;
5583 }
5584
5585 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5586 if (need_raid_map &&
5587 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5588 mirror_num > 1)) {
5589 /* push stripe_nr back to the start of the full stripe */
5590 stripe_nr = div_u64(raid56_full_stripe_start,
5591 stripe_len * nr_data_stripes(map));
5592
5593 /* RAID[56] write or recovery. Return all stripes */
5594 num_stripes = map->num_stripes;
5595 max_errors = nr_parity_stripes(map);
5596
5597 *length = map->stripe_len;
5598 stripe_index = 0;
5599 stripe_offset = 0;
5600 } else {
5601 /*
5602 * Mirror #0 or #1 means the original data block.
5603 * Mirror #2 is RAID5 parity block.
5604 * Mirror #3 is RAID6 Q block.
5605 */
5606 stripe_nr = div_u64_rem(stripe_nr,
5607 nr_data_stripes(map), &stripe_index);
5608 if (mirror_num > 1)
5609 stripe_index = nr_data_stripes(map) +
5610 mirror_num - 2;
5611
5612 /* We distribute the parity blocks across stripes */
5613 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5614 &stripe_index);
5615 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5616 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
5617 mirror_num = 1;
5618 }
5619 } else {
5620 /*
5621 * after this, stripe_nr is the number of stripes on this
5622 * device we have to walk to find the data, and stripe_index is
5623 * the number of our device in the stripe array
5624 */
5625 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5626 &stripe_index);
5627 mirror_num = stripe_index + 1;
5628 }
5629 if (stripe_index >= map->num_stripes) {
5630 btrfs_crit(fs_info,
5631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5632 stripe_index, map->num_stripes);
5633 ret = -EINVAL;
5634 goto out;
5635 }
5636
5637 num_alloc_stripes = num_stripes;
5638 if (dev_replace_is_ongoing) {
5639 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
5640 num_alloc_stripes <<= 1;
5641 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5642 num_alloc_stripes++;
5643 tgtdev_indexes = num_stripes;
5644 }
5645
5646 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5647 if (!bbio) {
5648 ret = -ENOMEM;
5649 goto out;
5650 }
5651 if (dev_replace_is_ongoing)
5652 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5653
5654 /* build raid_map */
5655 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5656 need_raid_map &&
5657 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
5658 mirror_num > 1)) {
5659 u64 tmp;
5660 unsigned rot;
5661
5662 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5663 sizeof(struct btrfs_bio_stripe) *
5664 num_alloc_stripes +
5665 sizeof(int) * tgtdev_indexes);
5666
5667 /* Work out the disk rotation on this stripe-set */
5668 div_u64_rem(stripe_nr, num_stripes, &rot);
5669
5670 /* Fill in the logical address of each stripe */
5671 tmp = stripe_nr * nr_data_stripes(map);
5672 for (i = 0; i < nr_data_stripes(map); i++)
5673 bbio->raid_map[(i+rot) % num_stripes] =
5674 em->start + (tmp + i) * map->stripe_len;
5675
5676 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5677 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5678 bbio->raid_map[(i+rot+1) % num_stripes] =
5679 RAID6_Q_STRIPE;
5680 }
5681
5682 if (op == BTRFS_MAP_DISCARD) {
5683 u32 factor = 0;
5684 u32 sub_stripes = 0;
5685 u64 stripes_per_dev = 0;
5686 u32 remaining_stripes = 0;
5687 u32 last_stripe = 0;
5688
5689 if (map->type &
5690 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5691 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5692 sub_stripes = 1;
5693 else
5694 sub_stripes = map->sub_stripes;
5695
5696 factor = map->num_stripes / sub_stripes;
5697 stripes_per_dev = div_u64_rem(stripe_nr_end -
5698 stripe_nr_orig,
5699 factor,
5700 &remaining_stripes);
5701 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5702 last_stripe *= sub_stripes;
5703 }
5704
5705 for (i = 0; i < num_stripes; i++) {
5706 bbio->stripes[i].physical =
5707 map->stripes[stripe_index].physical +
5708 stripe_offset + stripe_nr * map->stripe_len;
5709 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5710
5711 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5712 BTRFS_BLOCK_GROUP_RAID10)) {
5713 bbio->stripes[i].length = stripes_per_dev *
5714 map->stripe_len;
5715
5716 if (i / sub_stripes < remaining_stripes)
5717 bbio->stripes[i].length +=
5718 map->stripe_len;
5719
5720 /*
5721 * Special for the first stripe and
5722 * the last stripe:
5723 *
5724 * |-------|...|-------|
5725 * |----------|
5726 * off end_off
5727 */
5728 if (i < sub_stripes)
5729 bbio->stripes[i].length -=
5730 stripe_offset;
5731
5732 if (stripe_index >= last_stripe &&
5733 stripe_index <= (last_stripe +
5734 sub_stripes - 1))
5735 bbio->stripes[i].length -=
5736 stripe_end_offset;
5737
5738 if (i == sub_stripes - 1)
5739 stripe_offset = 0;
5740 } else
5741 bbio->stripes[i].length = *length;
5742
5743 stripe_index++;
5744 if (stripe_index == map->num_stripes) {
5745 /* This could only happen for RAID0/10 */
5746 stripe_index = 0;
5747 stripe_nr++;
5748 }
5749 }
5750 } else {
5751 for (i = 0; i < num_stripes; i++) {
5752 bbio->stripes[i].physical =
5753 map->stripes[stripe_index].physical +
5754 stripe_offset +
5755 stripe_nr * map->stripe_len;
5756 bbio->stripes[i].dev =
5757 map->stripes[stripe_index].dev;
5758 stripe_index++;
5759 }
5760 }
5761
5762 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5763 max_errors = btrfs_chunk_max_errors(map);
5764
5765 if (bbio->raid_map)
5766 sort_parity_stripes(bbio, num_stripes);
5767
5768 tgtdev_indexes = 0;
5769 if (dev_replace_is_ongoing &&
5770 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
5771 dev_replace->tgtdev != NULL) {
5772 int index_where_to_add;
5773 u64 srcdev_devid = dev_replace->srcdev->devid;
5774
5775 /*
5776 * duplicate the write operations while the dev replace
5777 * procedure is running. Since the copying of the old disk
5778 * to the new disk takes place at run time while the
5779 * filesystem is mounted writable, the regular write
5780 * operations to the old disk have to be duplicated to go
5781 * to the new disk as well.
5782 * Note that device->missing is handled by the caller, and
5783 * that the write to the old disk is already set up in the
5784 * stripes array.
5785 */
5786 index_where_to_add = num_stripes;
5787 for (i = 0; i < num_stripes; i++) {
5788 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5789 /* write to new disk, too */
5790 struct btrfs_bio_stripe *new =
5791 bbio->stripes + index_where_to_add;
5792 struct btrfs_bio_stripe *old =
5793 bbio->stripes + i;
5794
5795 new->physical = old->physical;
5796 new->length = old->length;
5797 new->dev = dev_replace->tgtdev;
5798 bbio->tgtdev_map[i] = index_where_to_add;
5799 index_where_to_add++;
5800 max_errors++;
5801 tgtdev_indexes++;
5802 }
5803 }
5804 num_stripes = index_where_to_add;
5805 } else if (dev_replace_is_ongoing &&
5806 op == BTRFS_MAP_GET_READ_MIRRORS &&
5807 dev_replace->tgtdev != NULL) {
5808 u64 srcdev_devid = dev_replace->srcdev->devid;
5809 int index_srcdev = 0;
5810 int found = 0;
5811 u64 physical_of_found = 0;
5812
5813 /*
5814 * During the dev-replace procedure, the target drive can
5815 * also be used to read data in case it is needed to repair
5816 * a corrupt block elsewhere. This is possible if the
5817 * requested area is left of the left cursor. In this area,
5818 * the target drive is a full copy of the source drive.
5819 */
5820 for (i = 0; i < num_stripes; i++) {
5821 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5822 /*
5823 * In case of DUP, in order to keep it
5824 * simple, only add the mirror with the
5825 * lowest physical address
5826 */
5827 if (found &&
5828 physical_of_found <=
5829 bbio->stripes[i].physical)
5830 continue;
5831 index_srcdev = i;
5832 found = 1;
5833 physical_of_found = bbio->stripes[i].physical;
5834 }
5835 }
5836 if (found) {
5837 struct btrfs_bio_stripe *tgtdev_stripe =
5838 bbio->stripes + num_stripes;
5839
5840 tgtdev_stripe->physical = physical_of_found;
5841 tgtdev_stripe->length =
5842 bbio->stripes[index_srcdev].length;
5843 tgtdev_stripe->dev = dev_replace->tgtdev;
5844 bbio->tgtdev_map[index_srcdev] = num_stripes;
5845
5846 tgtdev_indexes++;
5847 num_stripes++;
5848 }
5849 }
5850
5851 *bbio_ret = bbio;
5852 bbio->map_type = map->type;
5853 bbio->num_stripes = num_stripes;
5854 bbio->max_errors = max_errors;
5855 bbio->mirror_num = mirror_num;
5856 bbio->num_tgtdevs = tgtdev_indexes;
5857
5858 /*
5859 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5860 * mirror_num == num_stripes + 1 && dev_replace target drive is
5861 * available as a mirror
5862 */
5863 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5864 WARN_ON(num_stripes > 1);
5865 bbio->stripes[0].dev = dev_replace->tgtdev;
5866 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5867 bbio->mirror_num = map->num_stripes + 1;
5868 }
5869 out:
5870 if (dev_replace_is_ongoing) {
5871 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5872 btrfs_dev_replace_unlock(dev_replace, 0);
5873 }
5874 free_extent_map(em);
5875 return ret;
5876 }
5877
5878 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5879 u64 logical, u64 *length,
5880 struct btrfs_bio **bbio_ret, int mirror_num)
5881 {
5882 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5883 mirror_num, 0);
5884 }
5885
5886 /* For Scrub/replace */
5887 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5888 u64 logical, u64 *length,
5889 struct btrfs_bio **bbio_ret, int mirror_num,
5890 int need_raid_map)
5891 {
5892 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5893 mirror_num, need_raid_map);
5894 }
5895
5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5897 u64 chunk_start, u64 physical, u64 devid,
5898 u64 **logical, int *naddrs, int *stripe_len)
5899 {
5900 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5901 struct extent_map_tree *em_tree = &map_tree->map_tree;
5902 struct extent_map *em;
5903 struct map_lookup *map;
5904 u64 *buf;
5905 u64 bytenr;
5906 u64 length;
5907 u64 stripe_nr;
5908 u64 rmap_len;
5909 int i, j, nr = 0;
5910
5911 read_lock(&em_tree->lock);
5912 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5913 read_unlock(&em_tree->lock);
5914
5915 if (!em) {
5916 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5917 chunk_start);
5918 return -EIO;
5919 }
5920
5921 if (em->start != chunk_start) {
5922 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5923 em->start, chunk_start);
5924 free_extent_map(em);
5925 return -EIO;
5926 }
5927 map = em->map_lookup;
5928
5929 length = em->len;
5930 rmap_len = map->stripe_len;
5931
5932 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5933 length = div_u64(length, map->num_stripes / map->sub_stripes);
5934 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5935 length = div_u64(length, map->num_stripes);
5936 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5937 length = div_u64(length, nr_data_stripes(map));
5938 rmap_len = map->stripe_len * nr_data_stripes(map);
5939 }
5940
5941 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5942 BUG_ON(!buf); /* -ENOMEM */
5943
5944 for (i = 0; i < map->num_stripes; i++) {
5945 if (devid && map->stripes[i].dev->devid != devid)
5946 continue;
5947 if (map->stripes[i].physical > physical ||
5948 map->stripes[i].physical + length <= physical)
5949 continue;
5950
5951 stripe_nr = physical - map->stripes[i].physical;
5952 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5953
5954 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5955 stripe_nr = stripe_nr * map->num_stripes + i;
5956 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5957 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5958 stripe_nr = stripe_nr * map->num_stripes + i;
5959 } /* else if RAID[56], multiply by nr_data_stripes().
5960 * Alternatively, just use rmap_len below instead of
5961 * map->stripe_len */
5962
5963 bytenr = chunk_start + stripe_nr * rmap_len;
5964 WARN_ON(nr >= map->num_stripes);
5965 for (j = 0; j < nr; j++) {
5966 if (buf[j] == bytenr)
5967 break;
5968 }
5969 if (j == nr) {
5970 WARN_ON(nr >= map->num_stripes);
5971 buf[nr++] = bytenr;
5972 }
5973 }
5974
5975 *logical = buf;
5976 *naddrs = nr;
5977 *stripe_len = rmap_len;
5978
5979 free_extent_map(em);
5980 return 0;
5981 }
5982
5983 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5984 {
5985 bio->bi_private = bbio->private;
5986 bio->bi_end_io = bbio->end_io;
5987 bio_endio(bio);
5988
5989 btrfs_put_bbio(bbio);
5990 }
5991
5992 static void btrfs_end_bio(struct bio *bio)
5993 {
5994 struct btrfs_bio *bbio = bio->bi_private;
5995 int is_orig_bio = 0;
5996
5997 if (bio->bi_error) {
5998 atomic_inc(&bbio->error);
5999 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6000 unsigned int stripe_index =
6001 btrfs_io_bio(bio)->stripe_index;
6002 struct btrfs_device *dev;
6003
6004 BUG_ON(stripe_index >= bbio->num_stripes);
6005 dev = bbio->stripes[stripe_index].dev;
6006 if (dev->bdev) {
6007 if (bio_op(bio) == REQ_OP_WRITE)
6008 btrfs_dev_stat_inc(dev,
6009 BTRFS_DEV_STAT_WRITE_ERRS);
6010 else
6011 btrfs_dev_stat_inc(dev,
6012 BTRFS_DEV_STAT_READ_ERRS);
6013 if (bio->bi_opf & REQ_PREFLUSH)
6014 btrfs_dev_stat_inc(dev,
6015 BTRFS_DEV_STAT_FLUSH_ERRS);
6016 btrfs_dev_stat_print_on_error(dev);
6017 }
6018 }
6019 }
6020
6021 if (bio == bbio->orig_bio)
6022 is_orig_bio = 1;
6023
6024 btrfs_bio_counter_dec(bbio->fs_info);
6025
6026 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6027 if (!is_orig_bio) {
6028 bio_put(bio);
6029 bio = bbio->orig_bio;
6030 }
6031
6032 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6033 /* only send an error to the higher layers if it is
6034 * beyond the tolerance of the btrfs bio
6035 */
6036 if (atomic_read(&bbio->error) > bbio->max_errors) {
6037 bio->bi_error = -EIO;
6038 } else {
6039 /*
6040 * this bio is actually up to date, we didn't
6041 * go over the max number of errors
6042 */
6043 bio->bi_error = 0;
6044 }
6045
6046 btrfs_end_bbio(bbio, bio);
6047 } else if (!is_orig_bio) {
6048 bio_put(bio);
6049 }
6050 }
6051
6052 /*
6053 * see run_scheduled_bios for a description of why bios are collected for
6054 * async submit.
6055 *
6056 * This will add one bio to the pending list for a device and make sure
6057 * the work struct is scheduled.
6058 */
6059 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6060 struct bio *bio)
6061 {
6062 struct btrfs_fs_info *fs_info = device->fs_info;
6063 int should_queue = 1;
6064 struct btrfs_pending_bios *pending_bios;
6065
6066 if (device->missing || !device->bdev) {
6067 bio_io_error(bio);
6068 return;
6069 }
6070
6071 /* don't bother with additional async steps for reads, right now */
6072 if (bio_op(bio) == REQ_OP_READ) {
6073 bio_get(bio);
6074 btrfsic_submit_bio(bio);
6075 bio_put(bio);
6076 return;
6077 }
6078
6079 /*
6080 * nr_async_bios allows us to reliably return congestion to the
6081 * higher layers. Otherwise, the async bio makes it appear we have
6082 * made progress against dirty pages when we've really just put it
6083 * on a queue for later
6084 */
6085 atomic_inc(&fs_info->nr_async_bios);
6086 WARN_ON(bio->bi_next);
6087 bio->bi_next = NULL;
6088
6089 spin_lock(&device->io_lock);
6090 if (op_is_sync(bio->bi_opf))
6091 pending_bios = &device->pending_sync_bios;
6092 else
6093 pending_bios = &device->pending_bios;
6094
6095 if (pending_bios->tail)
6096 pending_bios->tail->bi_next = bio;
6097
6098 pending_bios->tail = bio;
6099 if (!pending_bios->head)
6100 pending_bios->head = bio;
6101 if (device->running_pending)
6102 should_queue = 0;
6103
6104 spin_unlock(&device->io_lock);
6105
6106 if (should_queue)
6107 btrfs_queue_work(fs_info->submit_workers, &device->work);
6108 }
6109
6110 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6111 u64 physical, int dev_nr, int async)
6112 {
6113 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6114 struct btrfs_fs_info *fs_info = bbio->fs_info;
6115
6116 bio->bi_private = bbio;
6117 btrfs_io_bio(bio)->stripe_index = dev_nr;
6118 bio->bi_end_io = btrfs_end_bio;
6119 bio->bi_iter.bi_sector = physical >> 9;
6120 #ifdef DEBUG
6121 {
6122 struct rcu_string *name;
6123
6124 rcu_read_lock();
6125 name = rcu_dereference(dev->name);
6126 btrfs_debug(fs_info,
6127 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6128 bio_op(bio), bio->bi_opf,
6129 (u64)bio->bi_iter.bi_sector,
6130 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6131 bio->bi_iter.bi_size);
6132 rcu_read_unlock();
6133 }
6134 #endif
6135 bio->bi_bdev = dev->bdev;
6136
6137 btrfs_bio_counter_inc_noblocked(fs_info);
6138
6139 if (async)
6140 btrfs_schedule_bio(dev, bio);
6141 else
6142 btrfsic_submit_bio(bio);
6143 }
6144
6145 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6146 {
6147 atomic_inc(&bbio->error);
6148 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6149 /* Should be the original bio. */
6150 WARN_ON(bio != bbio->orig_bio);
6151
6152 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6153 bio->bi_iter.bi_sector = logical >> 9;
6154 bio->bi_error = -EIO;
6155 btrfs_end_bbio(bbio, bio);
6156 }
6157 }
6158
6159 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6160 int mirror_num, int async_submit)
6161 {
6162 struct btrfs_device *dev;
6163 struct bio *first_bio = bio;
6164 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6165 u64 length = 0;
6166 u64 map_length;
6167 int ret;
6168 int dev_nr;
6169 int total_devs;
6170 struct btrfs_bio *bbio = NULL;
6171
6172 length = bio->bi_iter.bi_size;
6173 map_length = length;
6174
6175 btrfs_bio_counter_inc_blocked(fs_info);
6176 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6177 &map_length, &bbio, mirror_num, 1);
6178 if (ret) {
6179 btrfs_bio_counter_dec(fs_info);
6180 return ret;
6181 }
6182
6183 total_devs = bbio->num_stripes;
6184 bbio->orig_bio = first_bio;
6185 bbio->private = first_bio->bi_private;
6186 bbio->end_io = first_bio->bi_end_io;
6187 bbio->fs_info = fs_info;
6188 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6189
6190 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6191 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6192 /* In this case, map_length has been set to the length of
6193 a single stripe; not the whole write */
6194 if (bio_op(bio) == REQ_OP_WRITE) {
6195 ret = raid56_parity_write(fs_info, bio, bbio,
6196 map_length);
6197 } else {
6198 ret = raid56_parity_recover(fs_info, bio, bbio,
6199 map_length, mirror_num, 1);
6200 }
6201
6202 btrfs_bio_counter_dec(fs_info);
6203 return ret;
6204 }
6205
6206 if (map_length < length) {
6207 btrfs_crit(fs_info,
6208 "mapping failed logical %llu bio len %llu len %llu",
6209 logical, length, map_length);
6210 BUG();
6211 }
6212
6213 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6214 dev = bbio->stripes[dev_nr].dev;
6215 if (!dev || !dev->bdev ||
6216 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6217 bbio_error(bbio, first_bio, logical);
6218 continue;
6219 }
6220
6221 if (dev_nr < total_devs - 1) {
6222 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6223 BUG_ON(!bio); /* -ENOMEM */
6224 } else
6225 bio = first_bio;
6226
6227 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6228 dev_nr, async_submit);
6229 }
6230 btrfs_bio_counter_dec(fs_info);
6231 return 0;
6232 }
6233
6234 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6235 u8 *uuid, u8 *fsid)
6236 {
6237 struct btrfs_device *device;
6238 struct btrfs_fs_devices *cur_devices;
6239
6240 cur_devices = fs_info->fs_devices;
6241 while (cur_devices) {
6242 if (!fsid ||
6243 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6244 device = __find_device(&cur_devices->devices,
6245 devid, uuid);
6246 if (device)
6247 return device;
6248 }
6249 cur_devices = cur_devices->seed;
6250 }
6251 return NULL;
6252 }
6253
6254 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6255 u64 devid, u8 *dev_uuid)
6256 {
6257 struct btrfs_device *device;
6258
6259 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6260 if (IS_ERR(device))
6261 return NULL;
6262
6263 list_add(&device->dev_list, &fs_devices->devices);
6264 device->fs_devices = fs_devices;
6265 fs_devices->num_devices++;
6266
6267 device->missing = 1;
6268 fs_devices->missing_devices++;
6269
6270 return device;
6271 }
6272
6273 /**
6274 * btrfs_alloc_device - allocate struct btrfs_device
6275 * @fs_info: used only for generating a new devid, can be NULL if
6276 * devid is provided (i.e. @devid != NULL).
6277 * @devid: a pointer to devid for this device. If NULL a new devid
6278 * is generated.
6279 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6280 * is generated.
6281 *
6282 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6283 * on error. Returned struct is not linked onto any lists and can be
6284 * destroyed with kfree() right away.
6285 */
6286 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6287 const u64 *devid,
6288 const u8 *uuid)
6289 {
6290 struct btrfs_device *dev;
6291 u64 tmp;
6292
6293 if (WARN_ON(!devid && !fs_info))
6294 return ERR_PTR(-EINVAL);
6295
6296 dev = __alloc_device();
6297 if (IS_ERR(dev))
6298 return dev;
6299
6300 if (devid)
6301 tmp = *devid;
6302 else {
6303 int ret;
6304
6305 ret = find_next_devid(fs_info, &tmp);
6306 if (ret) {
6307 kfree(dev);
6308 return ERR_PTR(ret);
6309 }
6310 }
6311 dev->devid = tmp;
6312
6313 if (uuid)
6314 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6315 else
6316 generate_random_uuid(dev->uuid);
6317
6318 btrfs_init_work(&dev->work, btrfs_submit_helper,
6319 pending_bios_fn, NULL, NULL);
6320
6321 return dev;
6322 }
6323
6324 /* Return -EIO if any error, otherwise return 0. */
6325 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6326 struct extent_buffer *leaf,
6327 struct btrfs_chunk *chunk, u64 logical)
6328 {
6329 u64 length;
6330 u64 stripe_len;
6331 u16 num_stripes;
6332 u16 sub_stripes;
6333 u64 type;
6334
6335 length = btrfs_chunk_length(leaf, chunk);
6336 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6337 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6338 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6339 type = btrfs_chunk_type(leaf, chunk);
6340
6341 if (!num_stripes) {
6342 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6343 num_stripes);
6344 return -EIO;
6345 }
6346 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6347 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6348 return -EIO;
6349 }
6350 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6351 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6352 btrfs_chunk_sector_size(leaf, chunk));
6353 return -EIO;
6354 }
6355 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6356 btrfs_err(fs_info, "invalid chunk length %llu", length);
6357 return -EIO;
6358 }
6359 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6360 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6361 stripe_len);
6362 return -EIO;
6363 }
6364 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6365 type) {
6366 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6367 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6368 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6369 btrfs_chunk_type(leaf, chunk));
6370 return -EIO;
6371 }
6372 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6373 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6374 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6375 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6376 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6377 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6378 num_stripes != 1)) {
6379 btrfs_err(fs_info,
6380 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6381 num_stripes, sub_stripes,
6382 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6383 return -EIO;
6384 }
6385
6386 return 0;
6387 }
6388
6389 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6390 struct extent_buffer *leaf,
6391 struct btrfs_chunk *chunk)
6392 {
6393 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6394 struct map_lookup *map;
6395 struct extent_map *em;
6396 u64 logical;
6397 u64 length;
6398 u64 stripe_len;
6399 u64 devid;
6400 u8 uuid[BTRFS_UUID_SIZE];
6401 int num_stripes;
6402 int ret;
6403 int i;
6404
6405 logical = key->offset;
6406 length = btrfs_chunk_length(leaf, chunk);
6407 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6408 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6409
6410 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6411 if (ret)
6412 return ret;
6413
6414 read_lock(&map_tree->map_tree.lock);
6415 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6416 read_unlock(&map_tree->map_tree.lock);
6417
6418 /* already mapped? */
6419 if (em && em->start <= logical && em->start + em->len > logical) {
6420 free_extent_map(em);
6421 return 0;
6422 } else if (em) {
6423 free_extent_map(em);
6424 }
6425
6426 em = alloc_extent_map();
6427 if (!em)
6428 return -ENOMEM;
6429 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6430 if (!map) {
6431 free_extent_map(em);
6432 return -ENOMEM;
6433 }
6434
6435 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6436 em->map_lookup = map;
6437 em->start = logical;
6438 em->len = length;
6439 em->orig_start = 0;
6440 em->block_start = 0;
6441 em->block_len = em->len;
6442
6443 map->num_stripes = num_stripes;
6444 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6445 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6446 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6447 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6448 map->type = btrfs_chunk_type(leaf, chunk);
6449 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6450 for (i = 0; i < num_stripes; i++) {
6451 map->stripes[i].physical =
6452 btrfs_stripe_offset_nr(leaf, chunk, i);
6453 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6454 read_extent_buffer(leaf, uuid, (unsigned long)
6455 btrfs_stripe_dev_uuid_nr(chunk, i),
6456 BTRFS_UUID_SIZE);
6457 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6458 uuid, NULL);
6459 if (!map->stripes[i].dev &&
6460 !btrfs_test_opt(fs_info, DEGRADED)) {
6461 free_extent_map(em);
6462 return -EIO;
6463 }
6464 if (!map->stripes[i].dev) {
6465 map->stripes[i].dev =
6466 add_missing_dev(fs_info->fs_devices, devid,
6467 uuid);
6468 if (!map->stripes[i].dev) {
6469 free_extent_map(em);
6470 return -EIO;
6471 }
6472 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6473 devid, uuid);
6474 }
6475 map->stripes[i].dev->in_fs_metadata = 1;
6476 }
6477
6478 write_lock(&map_tree->map_tree.lock);
6479 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6480 write_unlock(&map_tree->map_tree.lock);
6481 BUG_ON(ret); /* Tree corruption */
6482 free_extent_map(em);
6483
6484 return 0;
6485 }
6486
6487 static void fill_device_from_item(struct extent_buffer *leaf,
6488 struct btrfs_dev_item *dev_item,
6489 struct btrfs_device *device)
6490 {
6491 unsigned long ptr;
6492
6493 device->devid = btrfs_device_id(leaf, dev_item);
6494 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6495 device->total_bytes = device->disk_total_bytes;
6496 device->commit_total_bytes = device->disk_total_bytes;
6497 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6498 device->commit_bytes_used = device->bytes_used;
6499 device->type = btrfs_device_type(leaf, dev_item);
6500 device->io_align = btrfs_device_io_align(leaf, dev_item);
6501 device->io_width = btrfs_device_io_width(leaf, dev_item);
6502 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6503 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6504 device->is_tgtdev_for_dev_replace = 0;
6505
6506 ptr = btrfs_device_uuid(dev_item);
6507 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6508 }
6509
6510 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6511 u8 *fsid)
6512 {
6513 struct btrfs_fs_devices *fs_devices;
6514 int ret;
6515
6516 BUG_ON(!mutex_is_locked(&uuid_mutex));
6517
6518 fs_devices = fs_info->fs_devices->seed;
6519 while (fs_devices) {
6520 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6521 return fs_devices;
6522
6523 fs_devices = fs_devices->seed;
6524 }
6525
6526 fs_devices = find_fsid(fsid);
6527 if (!fs_devices) {
6528 if (!btrfs_test_opt(fs_info, DEGRADED))
6529 return ERR_PTR(-ENOENT);
6530
6531 fs_devices = alloc_fs_devices(fsid);
6532 if (IS_ERR(fs_devices))
6533 return fs_devices;
6534
6535 fs_devices->seeding = 1;
6536 fs_devices->opened = 1;
6537 return fs_devices;
6538 }
6539
6540 fs_devices = clone_fs_devices(fs_devices);
6541 if (IS_ERR(fs_devices))
6542 return fs_devices;
6543
6544 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6545 fs_info->bdev_holder);
6546 if (ret) {
6547 free_fs_devices(fs_devices);
6548 fs_devices = ERR_PTR(ret);
6549 goto out;
6550 }
6551
6552 if (!fs_devices->seeding) {
6553 __btrfs_close_devices(fs_devices);
6554 free_fs_devices(fs_devices);
6555 fs_devices = ERR_PTR(-EINVAL);
6556 goto out;
6557 }
6558
6559 fs_devices->seed = fs_info->fs_devices->seed;
6560 fs_info->fs_devices->seed = fs_devices;
6561 out:
6562 return fs_devices;
6563 }
6564
6565 static int read_one_dev(struct btrfs_fs_info *fs_info,
6566 struct extent_buffer *leaf,
6567 struct btrfs_dev_item *dev_item)
6568 {
6569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6570 struct btrfs_device *device;
6571 u64 devid;
6572 int ret;
6573 u8 fs_uuid[BTRFS_UUID_SIZE];
6574 u8 dev_uuid[BTRFS_UUID_SIZE];
6575
6576 devid = btrfs_device_id(leaf, dev_item);
6577 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6578 BTRFS_UUID_SIZE);
6579 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6580 BTRFS_UUID_SIZE);
6581
6582 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6583 fs_devices = open_seed_devices(fs_info, fs_uuid);
6584 if (IS_ERR(fs_devices))
6585 return PTR_ERR(fs_devices);
6586 }
6587
6588 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6589 if (!device) {
6590 if (!btrfs_test_opt(fs_info, DEGRADED))
6591 return -EIO;
6592
6593 device = add_missing_dev(fs_devices, devid, dev_uuid);
6594 if (!device)
6595 return -ENOMEM;
6596 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6597 devid, dev_uuid);
6598 } else {
6599 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6600 return -EIO;
6601
6602 if(!device->bdev && !device->missing) {
6603 /*
6604 * this happens when a device that was properly setup
6605 * in the device info lists suddenly goes bad.
6606 * device->bdev is NULL, and so we have to set
6607 * device->missing to one here
6608 */
6609 device->fs_devices->missing_devices++;
6610 device->missing = 1;
6611 }
6612
6613 /* Move the device to its own fs_devices */
6614 if (device->fs_devices != fs_devices) {
6615 ASSERT(device->missing);
6616
6617 list_move(&device->dev_list, &fs_devices->devices);
6618 device->fs_devices->num_devices--;
6619 fs_devices->num_devices++;
6620
6621 device->fs_devices->missing_devices--;
6622 fs_devices->missing_devices++;
6623
6624 device->fs_devices = fs_devices;
6625 }
6626 }
6627
6628 if (device->fs_devices != fs_info->fs_devices) {
6629 BUG_ON(device->writeable);
6630 if (device->generation !=
6631 btrfs_device_generation(leaf, dev_item))
6632 return -EINVAL;
6633 }
6634
6635 fill_device_from_item(leaf, dev_item, device);
6636 device->in_fs_metadata = 1;
6637 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6638 device->fs_devices->total_rw_bytes += device->total_bytes;
6639 spin_lock(&fs_info->free_chunk_lock);
6640 fs_info->free_chunk_space += device->total_bytes -
6641 device->bytes_used;
6642 spin_unlock(&fs_info->free_chunk_lock);
6643 }
6644 ret = 0;
6645 return ret;
6646 }
6647
6648 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6649 {
6650 struct btrfs_root *root = fs_info->tree_root;
6651 struct btrfs_super_block *super_copy = fs_info->super_copy;
6652 struct extent_buffer *sb;
6653 struct btrfs_disk_key *disk_key;
6654 struct btrfs_chunk *chunk;
6655 u8 *array_ptr;
6656 unsigned long sb_array_offset;
6657 int ret = 0;
6658 u32 num_stripes;
6659 u32 array_size;
6660 u32 len = 0;
6661 u32 cur_offset;
6662 u64 type;
6663 struct btrfs_key key;
6664
6665 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6666 /*
6667 * This will create extent buffer of nodesize, superblock size is
6668 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6669 * overallocate but we can keep it as-is, only the first page is used.
6670 */
6671 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6672 if (IS_ERR(sb))
6673 return PTR_ERR(sb);
6674 set_extent_buffer_uptodate(sb);
6675 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6676 /*
6677 * The sb extent buffer is artificial and just used to read the system array.
6678 * set_extent_buffer_uptodate() call does not properly mark all it's
6679 * pages up-to-date when the page is larger: extent does not cover the
6680 * whole page and consequently check_page_uptodate does not find all
6681 * the page's extents up-to-date (the hole beyond sb),
6682 * write_extent_buffer then triggers a WARN_ON.
6683 *
6684 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6685 * but sb spans only this function. Add an explicit SetPageUptodate call
6686 * to silence the warning eg. on PowerPC 64.
6687 */
6688 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6689 SetPageUptodate(sb->pages[0]);
6690
6691 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6692 array_size = btrfs_super_sys_array_size(super_copy);
6693
6694 array_ptr = super_copy->sys_chunk_array;
6695 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6696 cur_offset = 0;
6697
6698 while (cur_offset < array_size) {
6699 disk_key = (struct btrfs_disk_key *)array_ptr;
6700 len = sizeof(*disk_key);
6701 if (cur_offset + len > array_size)
6702 goto out_short_read;
6703
6704 btrfs_disk_key_to_cpu(&key, disk_key);
6705
6706 array_ptr += len;
6707 sb_array_offset += len;
6708 cur_offset += len;
6709
6710 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6711 chunk = (struct btrfs_chunk *)sb_array_offset;
6712 /*
6713 * At least one btrfs_chunk with one stripe must be
6714 * present, exact stripe count check comes afterwards
6715 */
6716 len = btrfs_chunk_item_size(1);
6717 if (cur_offset + len > array_size)
6718 goto out_short_read;
6719
6720 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6721 if (!num_stripes) {
6722 btrfs_err(fs_info,
6723 "invalid number of stripes %u in sys_array at offset %u",
6724 num_stripes, cur_offset);
6725 ret = -EIO;
6726 break;
6727 }
6728
6729 type = btrfs_chunk_type(sb, chunk);
6730 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6731 btrfs_err(fs_info,
6732 "invalid chunk type %llu in sys_array at offset %u",
6733 type, cur_offset);
6734 ret = -EIO;
6735 break;
6736 }
6737
6738 len = btrfs_chunk_item_size(num_stripes);
6739 if (cur_offset + len > array_size)
6740 goto out_short_read;
6741
6742 ret = read_one_chunk(fs_info, &key, sb, chunk);
6743 if (ret)
6744 break;
6745 } else {
6746 btrfs_err(fs_info,
6747 "unexpected item type %u in sys_array at offset %u",
6748 (u32)key.type, cur_offset);
6749 ret = -EIO;
6750 break;
6751 }
6752 array_ptr += len;
6753 sb_array_offset += len;
6754 cur_offset += len;
6755 }
6756 clear_extent_buffer_uptodate(sb);
6757 free_extent_buffer_stale(sb);
6758 return ret;
6759
6760 out_short_read:
6761 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6762 len, cur_offset);
6763 clear_extent_buffer_uptodate(sb);
6764 free_extent_buffer_stale(sb);
6765 return -EIO;
6766 }
6767
6768 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6769 {
6770 struct btrfs_root *root = fs_info->chunk_root;
6771 struct btrfs_path *path;
6772 struct extent_buffer *leaf;
6773 struct btrfs_key key;
6774 struct btrfs_key found_key;
6775 int ret;
6776 int slot;
6777 u64 total_dev = 0;
6778
6779 path = btrfs_alloc_path();
6780 if (!path)
6781 return -ENOMEM;
6782
6783 mutex_lock(&uuid_mutex);
6784 mutex_lock(&fs_info->chunk_mutex);
6785
6786 /*
6787 * Read all device items, and then all the chunk items. All
6788 * device items are found before any chunk item (their object id
6789 * is smaller than the lowest possible object id for a chunk
6790 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6791 */
6792 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6793 key.offset = 0;
6794 key.type = 0;
6795 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6796 if (ret < 0)
6797 goto error;
6798 while (1) {
6799 leaf = path->nodes[0];
6800 slot = path->slots[0];
6801 if (slot >= btrfs_header_nritems(leaf)) {
6802 ret = btrfs_next_leaf(root, path);
6803 if (ret == 0)
6804 continue;
6805 if (ret < 0)
6806 goto error;
6807 break;
6808 }
6809 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6810 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6811 struct btrfs_dev_item *dev_item;
6812 dev_item = btrfs_item_ptr(leaf, slot,
6813 struct btrfs_dev_item);
6814 ret = read_one_dev(fs_info, leaf, dev_item);
6815 if (ret)
6816 goto error;
6817 total_dev++;
6818 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6819 struct btrfs_chunk *chunk;
6820 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6821 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6822 if (ret)
6823 goto error;
6824 }
6825 path->slots[0]++;
6826 }
6827
6828 /*
6829 * After loading chunk tree, we've got all device information,
6830 * do another round of validation checks.
6831 */
6832 if (total_dev != fs_info->fs_devices->total_devices) {
6833 btrfs_err(fs_info,
6834 "super_num_devices %llu mismatch with num_devices %llu found here",
6835 btrfs_super_num_devices(fs_info->super_copy),
6836 total_dev);
6837 ret = -EINVAL;
6838 goto error;
6839 }
6840 if (btrfs_super_total_bytes(fs_info->super_copy) <
6841 fs_info->fs_devices->total_rw_bytes) {
6842 btrfs_err(fs_info,
6843 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6844 btrfs_super_total_bytes(fs_info->super_copy),
6845 fs_info->fs_devices->total_rw_bytes);
6846 ret = -EINVAL;
6847 goto error;
6848 }
6849 ret = 0;
6850 error:
6851 mutex_unlock(&fs_info->chunk_mutex);
6852 mutex_unlock(&uuid_mutex);
6853
6854 btrfs_free_path(path);
6855 return ret;
6856 }
6857
6858 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6859 {
6860 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6861 struct btrfs_device *device;
6862
6863 while (fs_devices) {
6864 mutex_lock(&fs_devices->device_list_mutex);
6865 list_for_each_entry(device, &fs_devices->devices, dev_list)
6866 device->fs_info = fs_info;
6867 mutex_unlock(&fs_devices->device_list_mutex);
6868
6869 fs_devices = fs_devices->seed;
6870 }
6871 }
6872
6873 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6874 {
6875 int i;
6876
6877 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6878 btrfs_dev_stat_reset(dev, i);
6879 }
6880
6881 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6882 {
6883 struct btrfs_key key;
6884 struct btrfs_key found_key;
6885 struct btrfs_root *dev_root = fs_info->dev_root;
6886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6887 struct extent_buffer *eb;
6888 int slot;
6889 int ret = 0;
6890 struct btrfs_device *device;
6891 struct btrfs_path *path = NULL;
6892 int i;
6893
6894 path = btrfs_alloc_path();
6895 if (!path) {
6896 ret = -ENOMEM;
6897 goto out;
6898 }
6899
6900 mutex_lock(&fs_devices->device_list_mutex);
6901 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6902 int item_size;
6903 struct btrfs_dev_stats_item *ptr;
6904
6905 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6906 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6907 key.offset = device->devid;
6908 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6909 if (ret) {
6910 __btrfs_reset_dev_stats(device);
6911 device->dev_stats_valid = 1;
6912 btrfs_release_path(path);
6913 continue;
6914 }
6915 slot = path->slots[0];
6916 eb = path->nodes[0];
6917 btrfs_item_key_to_cpu(eb, &found_key, slot);
6918 item_size = btrfs_item_size_nr(eb, slot);
6919
6920 ptr = btrfs_item_ptr(eb, slot,
6921 struct btrfs_dev_stats_item);
6922
6923 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6924 if (item_size >= (1 + i) * sizeof(__le64))
6925 btrfs_dev_stat_set(device, i,
6926 btrfs_dev_stats_value(eb, ptr, i));
6927 else
6928 btrfs_dev_stat_reset(device, i);
6929 }
6930
6931 device->dev_stats_valid = 1;
6932 btrfs_dev_stat_print_on_load(device);
6933 btrfs_release_path(path);
6934 }
6935 mutex_unlock(&fs_devices->device_list_mutex);
6936
6937 out:
6938 btrfs_free_path(path);
6939 return ret < 0 ? ret : 0;
6940 }
6941
6942 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6943 struct btrfs_fs_info *fs_info,
6944 struct btrfs_device *device)
6945 {
6946 struct btrfs_root *dev_root = fs_info->dev_root;
6947 struct btrfs_path *path;
6948 struct btrfs_key key;
6949 struct extent_buffer *eb;
6950 struct btrfs_dev_stats_item *ptr;
6951 int ret;
6952 int i;
6953
6954 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6956 key.offset = device->devid;
6957
6958 path = btrfs_alloc_path();
6959 BUG_ON(!path);
6960 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6961 if (ret < 0) {
6962 btrfs_warn_in_rcu(fs_info,
6963 "error %d while searching for dev_stats item for device %s",
6964 ret, rcu_str_deref(device->name));
6965 goto out;
6966 }
6967
6968 if (ret == 0 &&
6969 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6970 /* need to delete old one and insert a new one */
6971 ret = btrfs_del_item(trans, dev_root, path);
6972 if (ret != 0) {
6973 btrfs_warn_in_rcu(fs_info,
6974 "delete too small dev_stats item for device %s failed %d",
6975 rcu_str_deref(device->name), ret);
6976 goto out;
6977 }
6978 ret = 1;
6979 }
6980
6981 if (ret == 1) {
6982 /* need to insert a new item */
6983 btrfs_release_path(path);
6984 ret = btrfs_insert_empty_item(trans, dev_root, path,
6985 &key, sizeof(*ptr));
6986 if (ret < 0) {
6987 btrfs_warn_in_rcu(fs_info,
6988 "insert dev_stats item for device %s failed %d",
6989 rcu_str_deref(device->name), ret);
6990 goto out;
6991 }
6992 }
6993
6994 eb = path->nodes[0];
6995 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6996 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6997 btrfs_set_dev_stats_value(eb, ptr, i,
6998 btrfs_dev_stat_read(device, i));
6999 btrfs_mark_buffer_dirty(eb);
7000
7001 out:
7002 btrfs_free_path(path);
7003 return ret;
7004 }
7005
7006 /*
7007 * called from commit_transaction. Writes all changed device stats to disk.
7008 */
7009 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7010 struct btrfs_fs_info *fs_info)
7011 {
7012 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7013 struct btrfs_device *device;
7014 int stats_cnt;
7015 int ret = 0;
7016
7017 mutex_lock(&fs_devices->device_list_mutex);
7018 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7019 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7020 continue;
7021
7022 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7023 ret = update_dev_stat_item(trans, fs_info, device);
7024 if (!ret)
7025 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7026 }
7027 mutex_unlock(&fs_devices->device_list_mutex);
7028
7029 return ret;
7030 }
7031
7032 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7033 {
7034 btrfs_dev_stat_inc(dev, index);
7035 btrfs_dev_stat_print_on_error(dev);
7036 }
7037
7038 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7039 {
7040 if (!dev->dev_stats_valid)
7041 return;
7042 btrfs_err_rl_in_rcu(dev->fs_info,
7043 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7044 rcu_str_deref(dev->name),
7045 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7050 }
7051
7052 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7053 {
7054 int i;
7055
7056 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7057 if (btrfs_dev_stat_read(dev, i) != 0)
7058 break;
7059 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7060 return; /* all values == 0, suppress message */
7061
7062 btrfs_info_in_rcu(dev->fs_info,
7063 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7064 rcu_str_deref(dev->name),
7065 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7070 }
7071
7072 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7073 struct btrfs_ioctl_get_dev_stats *stats)
7074 {
7075 struct btrfs_device *dev;
7076 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7077 int i;
7078
7079 mutex_lock(&fs_devices->device_list_mutex);
7080 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7081 mutex_unlock(&fs_devices->device_list_mutex);
7082
7083 if (!dev) {
7084 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7085 return -ENODEV;
7086 } else if (!dev->dev_stats_valid) {
7087 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7088 return -ENODEV;
7089 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7090 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7091 if (stats->nr_items > i)
7092 stats->values[i] =
7093 btrfs_dev_stat_read_and_reset(dev, i);
7094 else
7095 btrfs_dev_stat_reset(dev, i);
7096 }
7097 } else {
7098 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7099 if (stats->nr_items > i)
7100 stats->values[i] = btrfs_dev_stat_read(dev, i);
7101 }
7102 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7103 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7104 return 0;
7105 }
7106
7107 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7108 {
7109 struct buffer_head *bh;
7110 struct btrfs_super_block *disk_super;
7111 int copy_num;
7112
7113 if (!bdev)
7114 return;
7115
7116 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7117 copy_num++) {
7118
7119 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7120 continue;
7121
7122 disk_super = (struct btrfs_super_block *)bh->b_data;
7123
7124 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7125 set_buffer_dirty(bh);
7126 sync_dirty_buffer(bh);
7127 brelse(bh);
7128 }
7129
7130 /* Notify udev that device has changed */
7131 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7132
7133 /* Update ctime/mtime for device path for libblkid */
7134 update_dev_time(device_path);
7135 }
7136
7137 /*
7138 * Update the size of all devices, which is used for writing out the
7139 * super blocks.
7140 */
7141 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7142 {
7143 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7144 struct btrfs_device *curr, *next;
7145
7146 if (list_empty(&fs_devices->resized_devices))
7147 return;
7148
7149 mutex_lock(&fs_devices->device_list_mutex);
7150 mutex_lock(&fs_info->chunk_mutex);
7151 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7152 resized_list) {
7153 list_del_init(&curr->resized_list);
7154 curr->commit_total_bytes = curr->disk_total_bytes;
7155 }
7156 mutex_unlock(&fs_info->chunk_mutex);
7157 mutex_unlock(&fs_devices->device_list_mutex);
7158 }
7159
7160 /* Must be invoked during the transaction commit */
7161 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7162 struct btrfs_transaction *transaction)
7163 {
7164 struct extent_map *em;
7165 struct map_lookup *map;
7166 struct btrfs_device *dev;
7167 int i;
7168
7169 if (list_empty(&transaction->pending_chunks))
7170 return;
7171
7172 /* In order to kick the device replace finish process */
7173 mutex_lock(&fs_info->chunk_mutex);
7174 list_for_each_entry(em, &transaction->pending_chunks, list) {
7175 map = em->map_lookup;
7176
7177 for (i = 0; i < map->num_stripes; i++) {
7178 dev = map->stripes[i].dev;
7179 dev->commit_bytes_used = dev->bytes_used;
7180 }
7181 }
7182 mutex_unlock(&fs_info->chunk_mutex);
7183 }
7184
7185 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7186 {
7187 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7188 while (fs_devices) {
7189 fs_devices->fs_info = fs_info;
7190 fs_devices = fs_devices->seed;
7191 }
7192 }
7193
7194 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7195 {
7196 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7197 while (fs_devices) {
7198 fs_devices->fs_info = NULL;
7199 fs_devices = fs_devices->seed;
7200 }
7201 }