2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_root
*root
,
138 struct btrfs_device
*device
);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
140 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
143 static void btrfs_close_one_device(struct btrfs_device
*device
);
145 DEFINE_MUTEX(uuid_mutex
);
146 static LIST_HEAD(fs_uuids
);
147 struct list_head
*btrfs_get_fs_uuids(void)
152 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
154 struct btrfs_fs_devices
*fs_devs
;
156 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
158 return ERR_PTR(-ENOMEM
);
160 mutex_init(&fs_devs
->device_list_mutex
);
162 INIT_LIST_HEAD(&fs_devs
->devices
);
163 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
164 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
165 INIT_LIST_HEAD(&fs_devs
->list
);
171 * alloc_fs_devices - allocate struct btrfs_fs_devices
172 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
175 * Return: a pointer to a new &struct btrfs_fs_devices on success;
176 * ERR_PTR() on error. Returned struct is not linked onto any lists and
177 * can be destroyed with kfree() right away.
179 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
181 struct btrfs_fs_devices
*fs_devs
;
183 fs_devs
= __alloc_fs_devices();
188 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
190 generate_random_uuid(fs_devs
->fsid
);
195 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
197 struct btrfs_device
*device
;
198 WARN_ON(fs_devices
->opened
);
199 while (!list_empty(&fs_devices
->devices
)) {
200 device
= list_entry(fs_devices
->devices
.next
,
201 struct btrfs_device
, dev_list
);
202 list_del(&device
->dev_list
);
203 rcu_string_free(device
->name
);
209 static void btrfs_kobject_uevent(struct block_device
*bdev
,
210 enum kobject_action action
)
214 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
216 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
218 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
219 &disk_to_dev(bdev
->bd_disk
)->kobj
);
222 void btrfs_cleanup_fs_uuids(void)
224 struct btrfs_fs_devices
*fs_devices
;
226 while (!list_empty(&fs_uuids
)) {
227 fs_devices
= list_entry(fs_uuids
.next
,
228 struct btrfs_fs_devices
, list
);
229 list_del(&fs_devices
->list
);
230 free_fs_devices(fs_devices
);
234 static struct btrfs_device
*__alloc_device(void)
236 struct btrfs_device
*dev
;
238 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
240 return ERR_PTR(-ENOMEM
);
242 INIT_LIST_HEAD(&dev
->dev_list
);
243 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
244 INIT_LIST_HEAD(&dev
->resized_list
);
246 spin_lock_init(&dev
->io_lock
);
248 spin_lock_init(&dev
->reada_lock
);
249 atomic_set(&dev
->reada_in_flight
, 0);
250 atomic_set(&dev
->dev_stats_ccnt
, 0);
251 btrfs_device_data_ordered_init(dev
);
252 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
253 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
258 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
261 struct btrfs_device
*dev
;
263 list_for_each_entry(dev
, head
, dev_list
) {
264 if (dev
->devid
== devid
&&
265 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
272 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
274 struct btrfs_fs_devices
*fs_devices
;
276 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
277 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
284 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
285 int flush
, struct block_device
**bdev
,
286 struct buffer_head
**bh
)
290 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
293 ret
= PTR_ERR(*bdev
);
298 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
299 ret
= set_blocksize(*bdev
, 4096);
301 blkdev_put(*bdev
, flags
);
304 invalidate_bdev(*bdev
);
305 *bh
= btrfs_read_dev_super(*bdev
);
308 blkdev_put(*bdev
, flags
);
320 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
321 struct bio
*head
, struct bio
*tail
)
324 struct bio
*old_head
;
326 old_head
= pending_bios
->head
;
327 pending_bios
->head
= head
;
328 if (pending_bios
->tail
)
329 tail
->bi_next
= old_head
;
331 pending_bios
->tail
= tail
;
335 * we try to collect pending bios for a device so we don't get a large
336 * number of procs sending bios down to the same device. This greatly
337 * improves the schedulers ability to collect and merge the bios.
339 * But, it also turns into a long list of bios to process and that is sure
340 * to eventually make the worker thread block. The solution here is to
341 * make some progress and then put this work struct back at the end of
342 * the list if the block device is congested. This way, multiple devices
343 * can make progress from a single worker thread.
345 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
348 struct backing_dev_info
*bdi
;
349 struct btrfs_fs_info
*fs_info
;
350 struct btrfs_pending_bios
*pending_bios
;
354 unsigned long num_run
;
355 unsigned long batch_run
= 0;
357 unsigned long last_waited
= 0;
359 int sync_pending
= 0;
360 struct blk_plug plug
;
363 * this function runs all the bios we've collected for
364 * a particular device. We don't want to wander off to
365 * another device without first sending all of these down.
366 * So, setup a plug here and finish it off before we return
368 blk_start_plug(&plug
);
370 bdi
= blk_get_backing_dev_info(device
->bdev
);
371 fs_info
= device
->dev_root
->fs_info
;
372 limit
= btrfs_async_submit_limit(fs_info
);
373 limit
= limit
* 2 / 3;
376 spin_lock(&device
->io_lock
);
381 /* take all the bios off the list at once and process them
382 * later on (without the lock held). But, remember the
383 * tail and other pointers so the bios can be properly reinserted
384 * into the list if we hit congestion
386 if (!force_reg
&& device
->pending_sync_bios
.head
) {
387 pending_bios
= &device
->pending_sync_bios
;
390 pending_bios
= &device
->pending_bios
;
394 pending
= pending_bios
->head
;
395 tail
= pending_bios
->tail
;
396 WARN_ON(pending
&& !tail
);
399 * if pending was null this time around, no bios need processing
400 * at all and we can stop. Otherwise it'll loop back up again
401 * and do an additional check so no bios are missed.
403 * device->running_pending is used to synchronize with the
406 if (device
->pending_sync_bios
.head
== NULL
&&
407 device
->pending_bios
.head
== NULL
) {
409 device
->running_pending
= 0;
412 device
->running_pending
= 1;
415 pending_bios
->head
= NULL
;
416 pending_bios
->tail
= NULL
;
418 spin_unlock(&device
->io_lock
);
423 /* we want to work on both lists, but do more bios on the
424 * sync list than the regular list
427 pending_bios
!= &device
->pending_sync_bios
&&
428 device
->pending_sync_bios
.head
) ||
429 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
430 device
->pending_bios
.head
)) {
431 spin_lock(&device
->io_lock
);
432 requeue_list(pending_bios
, pending
, tail
);
437 pending
= pending
->bi_next
;
441 * atomic_dec_return implies a barrier for waitqueue_active
443 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
444 waitqueue_active(&fs_info
->async_submit_wait
))
445 wake_up(&fs_info
->async_submit_wait
);
447 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
450 * if we're doing the sync list, record that our
451 * plug has some sync requests on it
453 * If we're doing the regular list and there are
454 * sync requests sitting around, unplug before
457 if (pending_bios
== &device
->pending_sync_bios
) {
459 } else if (sync_pending
) {
460 blk_finish_plug(&plug
);
461 blk_start_plug(&plug
);
465 btrfsic_submit_bio(cur
->bi_rw
, cur
);
472 * we made progress, there is more work to do and the bdi
473 * is now congested. Back off and let other work structs
476 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
477 fs_info
->fs_devices
->open_devices
> 1) {
478 struct io_context
*ioc
;
480 ioc
= current
->io_context
;
483 * the main goal here is that we don't want to
484 * block if we're going to be able to submit
485 * more requests without blocking.
487 * This code does two great things, it pokes into
488 * the elevator code from a filesystem _and_
489 * it makes assumptions about how batching works.
491 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
492 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
494 ioc
->last_waited
== last_waited
)) {
496 * we want to go through our batch of
497 * requests and stop. So, we copy out
498 * the ioc->last_waited time and test
499 * against it before looping
501 last_waited
= ioc
->last_waited
;
505 spin_lock(&device
->io_lock
);
506 requeue_list(pending_bios
, pending
, tail
);
507 device
->running_pending
= 1;
509 spin_unlock(&device
->io_lock
);
510 btrfs_queue_work(fs_info
->submit_workers
,
514 /* unplug every 64 requests just for good measure */
515 if (batch_run
% 64 == 0) {
516 blk_finish_plug(&plug
);
517 blk_start_plug(&plug
);
526 spin_lock(&device
->io_lock
);
527 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
529 spin_unlock(&device
->io_lock
);
532 blk_finish_plug(&plug
);
535 static void pending_bios_fn(struct btrfs_work
*work
)
537 struct btrfs_device
*device
;
539 device
= container_of(work
, struct btrfs_device
, work
);
540 run_scheduled_bios(device
);
544 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
546 struct btrfs_fs_devices
*fs_devs
;
547 struct btrfs_device
*dev
;
552 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
557 if (fs_devs
->seeding
)
560 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
568 * Todo: This won't be enough. What if the same device
569 * comes back (with new uuid and) with its mapper path?
570 * But for now, this does help as mostly an admin will
571 * either use mapper or non mapper path throughout.
574 del
= strcmp(rcu_str_deref(dev
->name
),
575 rcu_str_deref(cur_dev
->name
));
582 /* delete the stale device */
583 if (fs_devs
->num_devices
== 1) {
584 btrfs_sysfs_remove_fsid(fs_devs
);
585 list_del(&fs_devs
->list
);
586 free_fs_devices(fs_devs
);
588 fs_devs
->num_devices
--;
589 list_del(&dev
->dev_list
);
590 rcu_string_free(dev
->name
);
599 * Add new device to list of registered devices
602 * 1 - first time device is seen
603 * 0 - device already known
606 static noinline
int device_list_add(const char *path
,
607 struct btrfs_super_block
*disk_super
,
608 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
610 struct btrfs_device
*device
;
611 struct btrfs_fs_devices
*fs_devices
;
612 struct rcu_string
*name
;
614 u64 found_transid
= btrfs_super_generation(disk_super
);
616 fs_devices
= find_fsid(disk_super
->fsid
);
618 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
619 if (IS_ERR(fs_devices
))
620 return PTR_ERR(fs_devices
);
622 list_add(&fs_devices
->list
, &fs_uuids
);
626 device
= __find_device(&fs_devices
->devices
, devid
,
627 disk_super
->dev_item
.uuid
);
631 if (fs_devices
->opened
)
634 device
= btrfs_alloc_device(NULL
, &devid
,
635 disk_super
->dev_item
.uuid
);
636 if (IS_ERR(device
)) {
637 /* we can safely leave the fs_devices entry around */
638 return PTR_ERR(device
);
641 name
= rcu_string_strdup(path
, GFP_NOFS
);
646 rcu_assign_pointer(device
->name
, name
);
648 mutex_lock(&fs_devices
->device_list_mutex
);
649 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
650 fs_devices
->num_devices
++;
651 mutex_unlock(&fs_devices
->device_list_mutex
);
654 device
->fs_devices
= fs_devices
;
655 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
664 * b. The missing-disk-which-was-replaced, has
667 * We must allow 1 and 2a above. But 2b would be a spurious
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
682 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
693 name
= rcu_string_strdup(path
, GFP_NOFS
);
696 rcu_string_free(device
->name
);
697 rcu_assign_pointer(device
->name
, name
);
698 if (device
->missing
) {
699 fs_devices
->missing_devices
--;
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
710 if (!fs_devices
->opened
)
711 device
->generation
= found_transid
;
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
718 btrfs_free_stale_device(device
);
720 *fs_devices_ret
= fs_devices
;
725 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
727 struct btrfs_fs_devices
*fs_devices
;
728 struct btrfs_device
*device
;
729 struct btrfs_device
*orig_dev
;
731 fs_devices
= alloc_fs_devices(orig
->fsid
);
732 if (IS_ERR(fs_devices
))
735 mutex_lock(&orig
->device_list_mutex
);
736 fs_devices
->total_devices
= orig
->total_devices
;
738 /* We have held the volume lock, it is safe to get the devices. */
739 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
740 struct rcu_string
*name
;
742 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
751 if (orig_dev
->name
) {
752 name
= rcu_string_strdup(orig_dev
->name
->str
,
758 rcu_assign_pointer(device
->name
, name
);
761 list_add(&device
->dev_list
, &fs_devices
->devices
);
762 device
->fs_devices
= fs_devices
;
763 fs_devices
->num_devices
++;
765 mutex_unlock(&orig
->device_list_mutex
);
768 mutex_unlock(&orig
->device_list_mutex
);
769 free_fs_devices(fs_devices
);
770 return ERR_PTR(-ENOMEM
);
773 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
775 struct btrfs_device
*device
, *next
;
776 struct btrfs_device
*latest_dev
= NULL
;
778 mutex_lock(&uuid_mutex
);
780 /* This is the initialized path, it is safe to release the devices. */
781 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
782 if (device
->in_fs_metadata
) {
783 if (!device
->is_tgtdev_for_dev_replace
&&
785 device
->generation
> latest_dev
->generation
)) {
791 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
802 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
807 blkdev_put(device
->bdev
, device
->mode
);
809 fs_devices
->open_devices
--;
811 if (device
->writeable
) {
812 list_del_init(&device
->dev_alloc_list
);
813 device
->writeable
= 0;
814 if (!device
->is_tgtdev_for_dev_replace
)
815 fs_devices
->rw_devices
--;
817 list_del_init(&device
->dev_list
);
818 fs_devices
->num_devices
--;
819 rcu_string_free(device
->name
);
823 if (fs_devices
->seed
) {
824 fs_devices
= fs_devices
->seed
;
828 fs_devices
->latest_bdev
= latest_dev
->bdev
;
830 mutex_unlock(&uuid_mutex
);
833 static void __free_device(struct work_struct
*work
)
835 struct btrfs_device
*device
;
837 device
= container_of(work
, struct btrfs_device
, rcu_work
);
840 blkdev_put(device
->bdev
, device
->mode
);
842 rcu_string_free(device
->name
);
846 static void free_device(struct rcu_head
*head
)
848 struct btrfs_device
*device
;
850 device
= container_of(head
, struct btrfs_device
, rcu
);
852 INIT_WORK(&device
->rcu_work
, __free_device
);
853 schedule_work(&device
->rcu_work
);
856 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
858 struct btrfs_device
*device
, *tmp
;
860 if (--fs_devices
->opened
> 0)
863 mutex_lock(&fs_devices
->device_list_mutex
);
864 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
865 btrfs_close_one_device(device
);
867 mutex_unlock(&fs_devices
->device_list_mutex
);
869 WARN_ON(fs_devices
->open_devices
);
870 WARN_ON(fs_devices
->rw_devices
);
871 fs_devices
->opened
= 0;
872 fs_devices
->seeding
= 0;
877 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
879 struct btrfs_fs_devices
*seed_devices
= NULL
;
882 mutex_lock(&uuid_mutex
);
883 ret
= __btrfs_close_devices(fs_devices
);
884 if (!fs_devices
->opened
) {
885 seed_devices
= fs_devices
->seed
;
886 fs_devices
->seed
= NULL
;
888 mutex_unlock(&uuid_mutex
);
890 while (seed_devices
) {
891 fs_devices
= seed_devices
;
892 seed_devices
= fs_devices
->seed
;
893 __btrfs_close_devices(fs_devices
);
894 free_fs_devices(fs_devices
);
897 * Wait for rcu kworkers under __btrfs_close_devices
898 * to finish all blkdev_puts so device is really
899 * free when umount is done.
905 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
906 fmode_t flags
, void *holder
)
908 struct request_queue
*q
;
909 struct block_device
*bdev
;
910 struct list_head
*head
= &fs_devices
->devices
;
911 struct btrfs_device
*device
;
912 struct btrfs_device
*latest_dev
= NULL
;
913 struct buffer_head
*bh
;
914 struct btrfs_super_block
*disk_super
;
921 list_for_each_entry(device
, head
, dev_list
) {
927 /* Just open everything we can; ignore failures here */
928 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
932 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
933 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
934 if (devid
!= device
->devid
)
937 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
941 device
->generation
= btrfs_super_generation(disk_super
);
943 device
->generation
> latest_dev
->generation
)
946 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
947 device
->writeable
= 0;
949 device
->writeable
= !bdev_read_only(bdev
);
953 q
= bdev_get_queue(bdev
);
954 if (blk_queue_discard(q
))
955 device
->can_discard
= 1;
958 device
->in_fs_metadata
= 0;
959 device
->mode
= flags
;
961 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
962 fs_devices
->rotating
= 1;
964 fs_devices
->open_devices
++;
965 if (device
->writeable
&&
966 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
967 fs_devices
->rw_devices
++;
968 list_add(&device
->dev_alloc_list
,
969 &fs_devices
->alloc_list
);
976 blkdev_put(bdev
, flags
);
979 if (fs_devices
->open_devices
== 0) {
983 fs_devices
->seeding
= seeding
;
984 fs_devices
->opened
= 1;
985 fs_devices
->latest_bdev
= latest_dev
->bdev
;
986 fs_devices
->total_rw_bytes
= 0;
991 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
992 fmode_t flags
, void *holder
)
996 mutex_lock(&uuid_mutex
);
997 if (fs_devices
->opened
) {
998 fs_devices
->opened
++;
1001 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1003 mutex_unlock(&uuid_mutex
);
1007 void btrfs_release_disk_super(struct page
*page
)
1013 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1014 struct page
**page
, struct btrfs_super_block
**disk_super
)
1019 /* make sure our super fits in the device */
1020 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1023 /* make sure our super fits in the page */
1024 if (sizeof(**disk_super
) > PAGE_SIZE
)
1027 /* make sure our super doesn't straddle pages on disk */
1028 index
= bytenr
>> PAGE_SHIFT
;
1029 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1032 /* pull in the page with our super */
1033 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1036 if (IS_ERR_OR_NULL(*page
))
1041 /* align our pointer to the offset of the super block */
1042 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1044 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1045 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1046 btrfs_release_disk_super(*page
);
1050 if ((*disk_super
)->label
[0] &&
1051 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1052 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1058 * Look for a btrfs signature on a device. This may be called out of the mount path
1059 * and we are not allowed to call set_blocksize during the scan. The superblock
1060 * is read via pagecache
1062 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1063 struct btrfs_fs_devices
**fs_devices_ret
)
1065 struct btrfs_super_block
*disk_super
;
1066 struct block_device
*bdev
;
1075 * we would like to check all the supers, but that would make
1076 * a btrfs mount succeed after a mkfs from a different FS.
1077 * So, we need to add a special mount option to scan for
1078 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1080 bytenr
= btrfs_sb_offset(0);
1081 flags
|= FMODE_EXCL
;
1082 mutex_lock(&uuid_mutex
);
1084 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1086 ret
= PTR_ERR(bdev
);
1090 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1091 goto error_bdev_put
;
1093 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1094 transid
= btrfs_super_generation(disk_super
);
1095 total_devices
= btrfs_super_num_devices(disk_super
);
1097 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1099 if (disk_super
->label
[0]) {
1100 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
1102 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
1105 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
1108 if (!ret
&& fs_devices_ret
)
1109 (*fs_devices_ret
)->total_devices
= total_devices
;
1111 btrfs_release_disk_super(page
);
1114 blkdev_put(bdev
, flags
);
1116 mutex_unlock(&uuid_mutex
);
1120 /* helper to account the used device space in the range */
1121 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1122 u64 end
, u64
*length
)
1124 struct btrfs_key key
;
1125 struct btrfs_root
*root
= device
->dev_root
;
1126 struct btrfs_dev_extent
*dev_extent
;
1127 struct btrfs_path
*path
;
1131 struct extent_buffer
*l
;
1135 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1138 path
= btrfs_alloc_path();
1141 path
->reada
= READA_FORWARD
;
1143 key
.objectid
= device
->devid
;
1145 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1147 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1151 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1158 slot
= path
->slots
[0];
1159 if (slot
>= btrfs_header_nritems(l
)) {
1160 ret
= btrfs_next_leaf(root
, path
);
1168 btrfs_item_key_to_cpu(l
, &key
, slot
);
1170 if (key
.objectid
< device
->devid
)
1173 if (key
.objectid
> device
->devid
)
1176 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1179 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1180 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1182 if (key
.offset
<= start
&& extent_end
> end
) {
1183 *length
= end
- start
+ 1;
1185 } else if (key
.offset
<= start
&& extent_end
> start
)
1186 *length
+= extent_end
- start
;
1187 else if (key
.offset
> start
&& extent_end
<= end
)
1188 *length
+= extent_end
- key
.offset
;
1189 else if (key
.offset
> start
&& key
.offset
<= end
) {
1190 *length
+= end
- key
.offset
+ 1;
1192 } else if (key
.offset
> end
)
1200 btrfs_free_path(path
);
1204 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1205 struct btrfs_device
*device
,
1206 u64
*start
, u64 len
)
1208 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
1209 struct extent_map
*em
;
1210 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1212 u64 physical_start
= *start
;
1215 search_list
= &transaction
->pending_chunks
;
1217 list_for_each_entry(em
, search_list
, list
) {
1218 struct map_lookup
*map
;
1221 map
= em
->map_lookup
;
1222 for (i
= 0; i
< map
->num_stripes
; i
++) {
1225 if (map
->stripes
[i
].dev
!= device
)
1227 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1228 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1232 * Make sure that while processing the pinned list we do
1233 * not override our *start with a lower value, because
1234 * we can have pinned chunks that fall within this
1235 * device hole and that have lower physical addresses
1236 * than the pending chunks we processed before. If we
1237 * do not take this special care we can end up getting
1238 * 2 pending chunks that start at the same physical
1239 * device offsets because the end offset of a pinned
1240 * chunk can be equal to the start offset of some
1243 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1250 if (search_list
!= &fs_info
->pinned_chunks
) {
1251 search_list
= &fs_info
->pinned_chunks
;
1260 * find_free_dev_extent_start - find free space in the specified device
1261 * @device: the device which we search the free space in
1262 * @num_bytes: the size of the free space that we need
1263 * @search_start: the position from which to begin the search
1264 * @start: store the start of the free space.
1265 * @len: the size of the free space. that we find, or the size
1266 * of the max free space if we don't find suitable free space
1268 * this uses a pretty simple search, the expectation is that it is
1269 * called very infrequently and that a given device has a small number
1272 * @start is used to store the start of the free space if we find. But if we
1273 * don't find suitable free space, it will be used to store the start position
1274 * of the max free space.
1276 * @len is used to store the size of the free space that we find.
1277 * But if we don't find suitable free space, it is used to store the size of
1278 * the max free space.
1280 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1281 struct btrfs_device
*device
, u64 num_bytes
,
1282 u64 search_start
, u64
*start
, u64
*len
)
1284 struct btrfs_key key
;
1285 struct btrfs_root
*root
= device
->dev_root
;
1286 struct btrfs_dev_extent
*dev_extent
;
1287 struct btrfs_path
*path
;
1292 u64 search_end
= device
->total_bytes
;
1295 struct extent_buffer
*l
;
1296 u64 min_search_start
;
1299 * We don't want to overwrite the superblock on the drive nor any area
1300 * used by the boot loader (grub for example), so we make sure to start
1301 * at an offset of at least 1MB.
1303 min_search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1304 search_start
= max(search_start
, min_search_start
);
1306 path
= btrfs_alloc_path();
1310 max_hole_start
= search_start
;
1314 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1319 path
->reada
= READA_FORWARD
;
1320 path
->search_commit_root
= 1;
1321 path
->skip_locking
= 1;
1323 key
.objectid
= device
->devid
;
1324 key
.offset
= search_start
;
1325 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1327 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1331 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1338 slot
= path
->slots
[0];
1339 if (slot
>= btrfs_header_nritems(l
)) {
1340 ret
= btrfs_next_leaf(root
, path
);
1348 btrfs_item_key_to_cpu(l
, &key
, slot
);
1350 if (key
.objectid
< device
->devid
)
1353 if (key
.objectid
> device
->devid
)
1356 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1359 if (key
.offset
> search_start
) {
1360 hole_size
= key
.offset
- search_start
;
1363 * Have to check before we set max_hole_start, otherwise
1364 * we could end up sending back this offset anyway.
1366 if (contains_pending_extent(transaction
, device
,
1369 if (key
.offset
>= search_start
) {
1370 hole_size
= key
.offset
- search_start
;
1377 if (hole_size
> max_hole_size
) {
1378 max_hole_start
= search_start
;
1379 max_hole_size
= hole_size
;
1383 * If this free space is greater than which we need,
1384 * it must be the max free space that we have found
1385 * until now, so max_hole_start must point to the start
1386 * of this free space and the length of this free space
1387 * is stored in max_hole_size. Thus, we return
1388 * max_hole_start and max_hole_size and go back to the
1391 if (hole_size
>= num_bytes
) {
1397 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1398 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1400 if (extent_end
> search_start
)
1401 search_start
= extent_end
;
1408 * At this point, search_start should be the end of
1409 * allocated dev extents, and when shrinking the device,
1410 * search_end may be smaller than search_start.
1412 if (search_end
> search_start
) {
1413 hole_size
= search_end
- search_start
;
1415 if (contains_pending_extent(transaction
, device
, &search_start
,
1417 btrfs_release_path(path
);
1421 if (hole_size
> max_hole_size
) {
1422 max_hole_start
= search_start
;
1423 max_hole_size
= hole_size
;
1428 if (max_hole_size
< num_bytes
)
1434 btrfs_free_path(path
);
1435 *start
= max_hole_start
;
1437 *len
= max_hole_size
;
1441 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1442 struct btrfs_device
*device
, u64 num_bytes
,
1443 u64
*start
, u64
*len
)
1445 /* FIXME use last free of some kind */
1446 return find_free_dev_extent_start(trans
->transaction
, device
,
1447 num_bytes
, 0, start
, len
);
1450 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1451 struct btrfs_device
*device
,
1452 u64 start
, u64
*dev_extent_len
)
1455 struct btrfs_path
*path
;
1456 struct btrfs_root
*root
= device
->dev_root
;
1457 struct btrfs_key key
;
1458 struct btrfs_key found_key
;
1459 struct extent_buffer
*leaf
= NULL
;
1460 struct btrfs_dev_extent
*extent
= NULL
;
1462 path
= btrfs_alloc_path();
1466 key
.objectid
= device
->devid
;
1468 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1470 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1472 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1473 BTRFS_DEV_EXTENT_KEY
);
1476 leaf
= path
->nodes
[0];
1477 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1478 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1479 struct btrfs_dev_extent
);
1480 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1481 btrfs_dev_extent_length(leaf
, extent
) < start
);
1483 btrfs_release_path(path
);
1485 } else if (ret
== 0) {
1486 leaf
= path
->nodes
[0];
1487 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1488 struct btrfs_dev_extent
);
1490 btrfs_handle_fs_error(root
->fs_info
, ret
, "Slot search failed");
1494 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1496 ret
= btrfs_del_item(trans
, root
, path
);
1498 btrfs_handle_fs_error(root
->fs_info
, ret
,
1499 "Failed to remove dev extent item");
1501 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1504 btrfs_free_path(path
);
1508 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1509 struct btrfs_device
*device
,
1510 u64 chunk_tree
, u64 chunk_objectid
,
1511 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1514 struct btrfs_path
*path
;
1515 struct btrfs_root
*root
= device
->dev_root
;
1516 struct btrfs_dev_extent
*extent
;
1517 struct extent_buffer
*leaf
;
1518 struct btrfs_key key
;
1520 WARN_ON(!device
->in_fs_metadata
);
1521 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1522 path
= btrfs_alloc_path();
1526 key
.objectid
= device
->devid
;
1528 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1529 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1534 leaf
= path
->nodes
[0];
1535 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1536 struct btrfs_dev_extent
);
1537 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1538 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1539 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1541 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1542 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1544 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1545 btrfs_mark_buffer_dirty(leaf
);
1547 btrfs_free_path(path
);
1551 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1553 struct extent_map_tree
*em_tree
;
1554 struct extent_map
*em
;
1558 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1559 read_lock(&em_tree
->lock
);
1560 n
= rb_last(&em_tree
->map
);
1562 em
= rb_entry(n
, struct extent_map
, rb_node
);
1563 ret
= em
->start
+ em
->len
;
1565 read_unlock(&em_tree
->lock
);
1570 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1574 struct btrfs_key key
;
1575 struct btrfs_key found_key
;
1576 struct btrfs_path
*path
;
1578 path
= btrfs_alloc_path();
1582 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1583 key
.type
= BTRFS_DEV_ITEM_KEY
;
1584 key
.offset
= (u64
)-1;
1586 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1590 BUG_ON(ret
== 0); /* Corruption */
1592 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1593 BTRFS_DEV_ITEMS_OBJECTID
,
1594 BTRFS_DEV_ITEM_KEY
);
1598 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1600 *devid_ret
= found_key
.offset
+ 1;
1604 btrfs_free_path(path
);
1609 * the device information is stored in the chunk root
1610 * the btrfs_device struct should be fully filled in
1612 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1613 struct btrfs_root
*root
,
1614 struct btrfs_device
*device
)
1617 struct btrfs_path
*path
;
1618 struct btrfs_dev_item
*dev_item
;
1619 struct extent_buffer
*leaf
;
1620 struct btrfs_key key
;
1623 root
= root
->fs_info
->chunk_root
;
1625 path
= btrfs_alloc_path();
1629 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1630 key
.type
= BTRFS_DEV_ITEM_KEY
;
1631 key
.offset
= device
->devid
;
1633 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1638 leaf
= path
->nodes
[0];
1639 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1641 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1642 btrfs_set_device_generation(leaf
, dev_item
, 0);
1643 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1644 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1645 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1646 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1647 btrfs_set_device_total_bytes(leaf
, dev_item
,
1648 btrfs_device_get_disk_total_bytes(device
));
1649 btrfs_set_device_bytes_used(leaf
, dev_item
,
1650 btrfs_device_get_bytes_used(device
));
1651 btrfs_set_device_group(leaf
, dev_item
, 0);
1652 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1653 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1654 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1656 ptr
= btrfs_device_uuid(dev_item
);
1657 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1658 ptr
= btrfs_device_fsid(dev_item
);
1659 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1660 btrfs_mark_buffer_dirty(leaf
);
1664 btrfs_free_path(path
);
1669 * Function to update ctime/mtime for a given device path.
1670 * Mainly used for ctime/mtime based probe like libblkid.
1672 static void update_dev_time(char *path_name
)
1676 filp
= filp_open(path_name
, O_RDWR
, 0);
1679 file_update_time(filp
);
1680 filp_close(filp
, NULL
);
1683 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1684 struct btrfs_device
*device
)
1687 struct btrfs_path
*path
;
1688 struct btrfs_key key
;
1689 struct btrfs_trans_handle
*trans
;
1691 root
= root
->fs_info
->chunk_root
;
1693 path
= btrfs_alloc_path();
1697 trans
= btrfs_start_transaction(root
, 0);
1698 if (IS_ERR(trans
)) {
1699 btrfs_free_path(path
);
1700 return PTR_ERR(trans
);
1702 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1703 key
.type
= BTRFS_DEV_ITEM_KEY
;
1704 key
.offset
= device
->devid
;
1706 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1715 ret
= btrfs_del_item(trans
, root
, path
);
1719 btrfs_free_path(path
);
1720 btrfs_commit_transaction(trans
, root
);
1725 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1726 * filesystem. It's up to the caller to adjust that number regarding eg. device
1729 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1737 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1739 all_avail
= fs_info
->avail_data_alloc_bits
|
1740 fs_info
->avail_system_alloc_bits
|
1741 fs_info
->avail_metadata_alloc_bits
;
1742 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1744 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1745 if (!(all_avail
& btrfs_raid_group
[i
]))
1748 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1749 int ret
= btrfs_raid_mindev_error
[i
];
1759 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1760 struct btrfs_device
*device
)
1762 struct btrfs_device
*next_device
;
1764 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1765 if (next_device
!= device
&&
1766 !next_device
->missing
&& next_device
->bdev
)
1774 * Helper function to check if the given device is part of s_bdev / latest_bdev
1775 * and replace it with the provided or the next active device, in the context
1776 * where this function called, there should be always be another device (or
1777 * this_dev) which is active.
1779 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1780 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1782 struct btrfs_device
*next_device
;
1785 next_device
= this_dev
;
1787 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1789 ASSERT(next_device
);
1791 if (fs_info
->sb
->s_bdev
&&
1792 (fs_info
->sb
->s_bdev
== device
->bdev
))
1793 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1795 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1796 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1799 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
, u64 devid
)
1801 struct btrfs_device
*device
;
1802 struct btrfs_fs_devices
*cur_devices
;
1805 bool clear_super
= false;
1806 char *dev_name
= NULL
;
1808 mutex_lock(&uuid_mutex
);
1810 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1811 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
, 0);
1812 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1813 WARN_ON(num_devices
< 1);
1816 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
, 0);
1818 ret
= btrfs_check_raid_min_devices(root
->fs_info
, num_devices
- 1);
1822 ret
= btrfs_find_device_by_devspec(root
, devid
, device_path
,
1827 if (device
->is_tgtdev_for_dev_replace
) {
1828 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1832 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1833 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1837 if (device
->writeable
) {
1839 list_del_init(&device
->dev_alloc_list
);
1840 device
->fs_devices
->rw_devices
--;
1841 unlock_chunks(root
);
1842 dev_name
= kstrdup(device
->name
->str
, GFP_KERNEL
);
1850 mutex_unlock(&uuid_mutex
);
1851 ret
= btrfs_shrink_device(device
, 0);
1852 mutex_lock(&uuid_mutex
);
1857 * TODO: the superblock still includes this device in its num_devices
1858 * counter although write_all_supers() is not locked out. This
1859 * could give a filesystem state which requires a degraded mount.
1861 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1865 device
->in_fs_metadata
= 0;
1866 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1869 * the device list mutex makes sure that we don't change
1870 * the device list while someone else is writing out all
1871 * the device supers. Whoever is writing all supers, should
1872 * lock the device list mutex before getting the number of
1873 * devices in the super block (super_copy). Conversely,
1874 * whoever updates the number of devices in the super block
1875 * (super_copy) should hold the device list mutex.
1878 cur_devices
= device
->fs_devices
;
1879 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1880 list_del_rcu(&device
->dev_list
);
1882 device
->fs_devices
->num_devices
--;
1883 device
->fs_devices
->total_devices
--;
1885 if (device
->missing
)
1886 device
->fs_devices
->missing_devices
--;
1888 btrfs_assign_next_active_device(root
->fs_info
, device
, NULL
);
1891 device
->fs_devices
->open_devices
--;
1892 /* remove sysfs entry */
1893 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
1896 call_rcu(&device
->rcu
, free_device
);
1898 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1899 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1900 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1902 if (cur_devices
->open_devices
== 0) {
1903 struct btrfs_fs_devices
*fs_devices
;
1904 fs_devices
= root
->fs_info
->fs_devices
;
1905 while (fs_devices
) {
1906 if (fs_devices
->seed
== cur_devices
) {
1907 fs_devices
->seed
= cur_devices
->seed
;
1910 fs_devices
= fs_devices
->seed
;
1912 cur_devices
->seed
= NULL
;
1913 __btrfs_close_devices(cur_devices
);
1914 free_fs_devices(cur_devices
);
1917 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1918 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1921 * at this point, the device is zero sized. We want to
1922 * remove it from the devices list and zero out the old super
1925 struct block_device
*bdev
;
1927 bdev
= blkdev_get_by_path(dev_name
, FMODE_READ
| FMODE_EXCL
,
1928 root
->fs_info
->bdev_holder
);
1929 if (!IS_ERR(bdev
)) {
1930 btrfs_scratch_superblocks(bdev
, dev_name
);
1931 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1938 mutex_unlock(&uuid_mutex
);
1942 if (device
->writeable
) {
1944 list_add(&device
->dev_alloc_list
,
1945 &root
->fs_info
->fs_devices
->alloc_list
);
1946 device
->fs_devices
->rw_devices
++;
1947 unlock_chunks(root
);
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1953 struct btrfs_device
*srcdev
)
1955 struct btrfs_fs_devices
*fs_devices
;
1957 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1960 * in case of fs with no seed, srcdev->fs_devices will point
1961 * to fs_devices of fs_info. However when the dev being replaced is
1962 * a seed dev it will point to the seed's local fs_devices. In short
1963 * srcdev will have its correct fs_devices in both the cases.
1965 fs_devices
= srcdev
->fs_devices
;
1967 list_del_rcu(&srcdev
->dev_list
);
1968 list_del_rcu(&srcdev
->dev_alloc_list
);
1969 fs_devices
->num_devices
--;
1970 if (srcdev
->missing
)
1971 fs_devices
->missing_devices
--;
1973 if (srcdev
->writeable
)
1974 fs_devices
->rw_devices
--;
1977 fs_devices
->open_devices
--;
1980 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
1981 struct btrfs_device
*srcdev
)
1983 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
1985 if (srcdev
->writeable
) {
1986 /* zero out the old super if it is writable */
1987 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
1989 call_rcu(&srcdev
->rcu
, free_device
);
1992 * unless fs_devices is seed fs, num_devices shouldn't go
1995 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
1997 /* if this is no devs we rather delete the fs_devices */
1998 if (!fs_devices
->num_devices
) {
1999 struct btrfs_fs_devices
*tmp_fs_devices
;
2001 tmp_fs_devices
= fs_info
->fs_devices
;
2002 while (tmp_fs_devices
) {
2003 if (tmp_fs_devices
->seed
== fs_devices
) {
2004 tmp_fs_devices
->seed
= fs_devices
->seed
;
2007 tmp_fs_devices
= tmp_fs_devices
->seed
;
2009 fs_devices
->seed
= NULL
;
2010 __btrfs_close_devices(fs_devices
);
2011 free_fs_devices(fs_devices
);
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2016 struct btrfs_device
*tgtdev
)
2018 mutex_lock(&uuid_mutex
);
2020 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2022 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2025 fs_info
->fs_devices
->open_devices
--;
2027 fs_info
->fs_devices
->num_devices
--;
2029 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2031 list_del_rcu(&tgtdev
->dev_list
);
2033 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2034 mutex_unlock(&uuid_mutex
);
2037 * The update_dev_time() with in btrfs_scratch_superblocks()
2038 * may lead to a call to btrfs_show_devname() which will try
2039 * to hold device_list_mutex. And here this device
2040 * is already out of device list, so we don't have to hold
2041 * the device_list_mutex lock.
2043 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2044 call_rcu(&tgtdev
->rcu
, free_device
);
2047 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
2048 struct btrfs_device
**device
)
2051 struct btrfs_super_block
*disk_super
;
2054 struct block_device
*bdev
;
2055 struct buffer_head
*bh
;
2058 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2059 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2062 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2063 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2064 dev_uuid
= disk_super
->dev_item
.uuid
;
2065 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2070 blkdev_put(bdev
, FMODE_READ
);
2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
2076 struct btrfs_device
**device
)
2079 if (strcmp(device_path
, "missing") == 0) {
2080 struct list_head
*devices
;
2081 struct btrfs_device
*tmp
;
2083 devices
= &root
->fs_info
->fs_devices
->devices
;
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2088 list_for_each_entry(tmp
, devices
, dev_list
) {
2089 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2100 return btrfs_find_device_by_path(root
, device_path
, device
);
2105 * Lookup a device given by device id, or the path if the id is 0.
2107 int btrfs_find_device_by_devspec(struct btrfs_root
*root
, u64 devid
,
2109 struct btrfs_device
**device
)
2115 *device
= btrfs_find_device(root
->fs_info
, devid
, NULL
,
2120 if (!devpath
|| !devpath
[0])
2123 ret
= btrfs_find_device_missing_or_by_path(root
, devpath
,
2130 * does all the dirty work required for changing file system's UUID.
2132 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
2134 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2135 struct btrfs_fs_devices
*old_devices
;
2136 struct btrfs_fs_devices
*seed_devices
;
2137 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
2138 struct btrfs_device
*device
;
2141 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2142 if (!fs_devices
->seeding
)
2145 seed_devices
= __alloc_fs_devices();
2146 if (IS_ERR(seed_devices
))
2147 return PTR_ERR(seed_devices
);
2149 old_devices
= clone_fs_devices(fs_devices
);
2150 if (IS_ERR(old_devices
)) {
2151 kfree(seed_devices
);
2152 return PTR_ERR(old_devices
);
2155 list_add(&old_devices
->list
, &fs_uuids
);
2157 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2158 seed_devices
->opened
= 1;
2159 INIT_LIST_HEAD(&seed_devices
->devices
);
2160 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2161 mutex_init(&seed_devices
->device_list_mutex
);
2163 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2164 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2166 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2167 device
->fs_devices
= seed_devices
;
2170 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2171 unlock_chunks(root
);
2173 fs_devices
->seeding
= 0;
2174 fs_devices
->num_devices
= 0;
2175 fs_devices
->open_devices
= 0;
2176 fs_devices
->missing_devices
= 0;
2177 fs_devices
->rotating
= 0;
2178 fs_devices
->seed
= seed_devices
;
2180 generate_random_uuid(fs_devices
->fsid
);
2181 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2182 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2183 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2185 super_flags
= btrfs_super_flags(disk_super
) &
2186 ~BTRFS_SUPER_FLAG_SEEDING
;
2187 btrfs_set_super_flags(disk_super
, super_flags
);
2193 * Store the expected generation for seed devices in device items.
2195 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2196 struct btrfs_root
*root
)
2198 struct btrfs_path
*path
;
2199 struct extent_buffer
*leaf
;
2200 struct btrfs_dev_item
*dev_item
;
2201 struct btrfs_device
*device
;
2202 struct btrfs_key key
;
2203 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2204 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2208 path
= btrfs_alloc_path();
2212 root
= root
->fs_info
->chunk_root
;
2213 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2215 key
.type
= BTRFS_DEV_ITEM_KEY
;
2218 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2222 leaf
= path
->nodes
[0];
2224 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2225 ret
= btrfs_next_leaf(root
, path
);
2230 leaf
= path
->nodes
[0];
2231 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2232 btrfs_release_path(path
);
2236 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2237 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2238 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2241 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2242 struct btrfs_dev_item
);
2243 devid
= btrfs_device_id(leaf
, dev_item
);
2244 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2246 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2248 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2250 BUG_ON(!device
); /* Logic error */
2252 if (device
->fs_devices
->seeding
) {
2253 btrfs_set_device_generation(leaf
, dev_item
,
2254 device
->generation
);
2255 btrfs_mark_buffer_dirty(leaf
);
2263 btrfs_free_path(path
);
2267 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2269 struct request_queue
*q
;
2270 struct btrfs_trans_handle
*trans
;
2271 struct btrfs_device
*device
;
2272 struct block_device
*bdev
;
2273 struct list_head
*devices
;
2274 struct super_block
*sb
= root
->fs_info
->sb
;
2275 struct rcu_string
*name
;
2277 int seeding_dev
= 0;
2280 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2283 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2284 root
->fs_info
->bdev_holder
);
2286 return PTR_ERR(bdev
);
2288 if (root
->fs_info
->fs_devices
->seeding
) {
2290 down_write(&sb
->s_umount
);
2291 mutex_lock(&uuid_mutex
);
2294 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2296 devices
= &root
->fs_info
->fs_devices
->devices
;
2298 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2299 list_for_each_entry(device
, devices
, dev_list
) {
2300 if (device
->bdev
== bdev
) {
2303 &root
->fs_info
->fs_devices
->device_list_mutex
);
2307 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2309 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2310 if (IS_ERR(device
)) {
2311 /* we can safely leave the fs_devices entry around */
2312 ret
= PTR_ERR(device
);
2316 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2322 rcu_assign_pointer(device
->name
, name
);
2324 trans
= btrfs_start_transaction(root
, 0);
2325 if (IS_ERR(trans
)) {
2326 rcu_string_free(device
->name
);
2328 ret
= PTR_ERR(trans
);
2332 q
= bdev_get_queue(bdev
);
2333 if (blk_queue_discard(q
))
2334 device
->can_discard
= 1;
2335 device
->writeable
= 1;
2336 device
->generation
= trans
->transid
;
2337 device
->io_width
= root
->sectorsize
;
2338 device
->io_align
= root
->sectorsize
;
2339 device
->sector_size
= root
->sectorsize
;
2340 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2341 device
->disk_total_bytes
= device
->total_bytes
;
2342 device
->commit_total_bytes
= device
->total_bytes
;
2343 device
->dev_root
= root
->fs_info
->dev_root
;
2344 device
->bdev
= bdev
;
2345 device
->in_fs_metadata
= 1;
2346 device
->is_tgtdev_for_dev_replace
= 0;
2347 device
->mode
= FMODE_EXCL
;
2348 device
->dev_stats_valid
= 1;
2349 set_blocksize(device
->bdev
, 4096);
2352 sb
->s_flags
&= ~MS_RDONLY
;
2353 ret
= btrfs_prepare_sprout(root
);
2354 BUG_ON(ret
); /* -ENOMEM */
2357 device
->fs_devices
= root
->fs_info
->fs_devices
;
2359 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2361 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2362 list_add(&device
->dev_alloc_list
,
2363 &root
->fs_info
->fs_devices
->alloc_list
);
2364 root
->fs_info
->fs_devices
->num_devices
++;
2365 root
->fs_info
->fs_devices
->open_devices
++;
2366 root
->fs_info
->fs_devices
->rw_devices
++;
2367 root
->fs_info
->fs_devices
->total_devices
++;
2368 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2370 spin_lock(&root
->fs_info
->free_chunk_lock
);
2371 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2372 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2374 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2375 root
->fs_info
->fs_devices
->rotating
= 1;
2377 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2378 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2379 tmp
+ device
->total_bytes
);
2381 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2382 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2385 /* add sysfs device entry */
2386 btrfs_sysfs_add_device_link(root
->fs_info
->fs_devices
, device
);
2389 * we've got more storage, clear any full flags on the space
2392 btrfs_clear_space_info_full(root
->fs_info
);
2394 unlock_chunks(root
);
2395 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2399 ret
= init_first_rw_device(trans
, root
, device
);
2400 unlock_chunks(root
);
2402 btrfs_abort_transaction(trans
, root
, ret
);
2407 ret
= btrfs_add_device(trans
, root
, device
);
2409 btrfs_abort_transaction(trans
, root
, ret
);
2414 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2416 ret
= btrfs_finish_sprout(trans
, root
);
2418 btrfs_abort_transaction(trans
, root
, ret
);
2422 /* Sprouting would change fsid of the mounted root,
2423 * so rename the fsid on the sysfs
2425 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2426 root
->fs_info
->fsid
);
2427 if (kobject_rename(&root
->fs_info
->fs_devices
->fsid_kobj
,
2429 btrfs_warn(root
->fs_info
,
2430 "sysfs: failed to create fsid for sprout");
2433 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2434 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2435 ret
= btrfs_commit_transaction(trans
, root
);
2438 mutex_unlock(&uuid_mutex
);
2439 up_write(&sb
->s_umount
);
2441 if (ret
) /* transaction commit */
2444 ret
= btrfs_relocate_sys_chunks(root
);
2446 btrfs_handle_fs_error(root
->fs_info
, ret
,
2447 "Failed to relocate sys chunks after "
2448 "device initialization. This can be fixed "
2449 "using the \"btrfs balance\" command.");
2450 trans
= btrfs_attach_transaction(root
);
2451 if (IS_ERR(trans
)) {
2452 if (PTR_ERR(trans
) == -ENOENT
)
2454 return PTR_ERR(trans
);
2456 ret
= btrfs_commit_transaction(trans
, root
);
2459 /* Update ctime/mtime for libblkid */
2460 update_dev_time(device_path
);
2464 btrfs_end_transaction(trans
, root
);
2465 rcu_string_free(device
->name
);
2466 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
2469 blkdev_put(bdev
, FMODE_EXCL
);
2471 mutex_unlock(&uuid_mutex
);
2472 up_write(&sb
->s_umount
);
2477 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2478 struct btrfs_device
*srcdev
,
2479 struct btrfs_device
**device_out
)
2481 struct request_queue
*q
;
2482 struct btrfs_device
*device
;
2483 struct block_device
*bdev
;
2484 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2485 struct list_head
*devices
;
2486 struct rcu_string
*name
;
2487 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2491 if (fs_info
->fs_devices
->seeding
) {
2492 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2496 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2497 fs_info
->bdev_holder
);
2499 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2500 return PTR_ERR(bdev
);
2503 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2505 devices
= &fs_info
->fs_devices
->devices
;
2506 list_for_each_entry(device
, devices
, dev_list
) {
2507 if (device
->bdev
== bdev
) {
2508 btrfs_err(fs_info
, "target device is in the filesystem!");
2515 if (i_size_read(bdev
->bd_inode
) <
2516 btrfs_device_get_total_bytes(srcdev
)) {
2517 btrfs_err(fs_info
, "target device is smaller than source device!");
2523 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2524 if (IS_ERR(device
)) {
2525 ret
= PTR_ERR(device
);
2529 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2535 rcu_assign_pointer(device
->name
, name
);
2537 q
= bdev_get_queue(bdev
);
2538 if (blk_queue_discard(q
))
2539 device
->can_discard
= 1;
2540 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2541 device
->writeable
= 1;
2542 device
->generation
= 0;
2543 device
->io_width
= root
->sectorsize
;
2544 device
->io_align
= root
->sectorsize
;
2545 device
->sector_size
= root
->sectorsize
;
2546 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2547 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2548 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2549 ASSERT(list_empty(&srcdev
->resized_list
));
2550 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2551 device
->commit_bytes_used
= device
->bytes_used
;
2552 device
->dev_root
= fs_info
->dev_root
;
2553 device
->bdev
= bdev
;
2554 device
->in_fs_metadata
= 1;
2555 device
->is_tgtdev_for_dev_replace
= 1;
2556 device
->mode
= FMODE_EXCL
;
2557 device
->dev_stats_valid
= 1;
2558 set_blocksize(device
->bdev
, 4096);
2559 device
->fs_devices
= fs_info
->fs_devices
;
2560 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2561 fs_info
->fs_devices
->num_devices
++;
2562 fs_info
->fs_devices
->open_devices
++;
2563 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2565 *device_out
= device
;
2569 blkdev_put(bdev
, FMODE_EXCL
);
2573 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2574 struct btrfs_device
*tgtdev
)
2576 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2577 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2578 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2579 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2580 tgtdev
->dev_root
= fs_info
->dev_root
;
2581 tgtdev
->in_fs_metadata
= 1;
2584 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2585 struct btrfs_device
*device
)
2588 struct btrfs_path
*path
;
2589 struct btrfs_root
*root
;
2590 struct btrfs_dev_item
*dev_item
;
2591 struct extent_buffer
*leaf
;
2592 struct btrfs_key key
;
2594 root
= device
->dev_root
->fs_info
->chunk_root
;
2596 path
= btrfs_alloc_path();
2600 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2601 key
.type
= BTRFS_DEV_ITEM_KEY
;
2602 key
.offset
= device
->devid
;
2604 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2613 leaf
= path
->nodes
[0];
2614 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2616 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2617 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2618 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2619 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2620 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2621 btrfs_set_device_total_bytes(leaf
, dev_item
,
2622 btrfs_device_get_disk_total_bytes(device
));
2623 btrfs_set_device_bytes_used(leaf
, dev_item
,
2624 btrfs_device_get_bytes_used(device
));
2625 btrfs_mark_buffer_dirty(leaf
);
2628 btrfs_free_path(path
);
2632 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2633 struct btrfs_device
*device
, u64 new_size
)
2635 struct btrfs_super_block
*super_copy
=
2636 device
->dev_root
->fs_info
->super_copy
;
2637 struct btrfs_fs_devices
*fs_devices
;
2641 if (!device
->writeable
)
2644 lock_chunks(device
->dev_root
);
2645 old_total
= btrfs_super_total_bytes(super_copy
);
2646 diff
= new_size
- device
->total_bytes
;
2648 if (new_size
<= device
->total_bytes
||
2649 device
->is_tgtdev_for_dev_replace
) {
2650 unlock_chunks(device
->dev_root
);
2654 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2656 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2657 device
->fs_devices
->total_rw_bytes
+= diff
;
2659 btrfs_device_set_total_bytes(device
, new_size
);
2660 btrfs_device_set_disk_total_bytes(device
, new_size
);
2661 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2662 if (list_empty(&device
->resized_list
))
2663 list_add_tail(&device
->resized_list
,
2664 &fs_devices
->resized_devices
);
2665 unlock_chunks(device
->dev_root
);
2667 return btrfs_update_device(trans
, device
);
2670 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2671 struct btrfs_root
*root
, u64 chunk_objectid
,
2675 struct btrfs_path
*path
;
2676 struct btrfs_key key
;
2678 root
= root
->fs_info
->chunk_root
;
2679 path
= btrfs_alloc_path();
2683 key
.objectid
= chunk_objectid
;
2684 key
.offset
= chunk_offset
;
2685 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2687 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2690 else if (ret
> 0) { /* Logic error or corruption */
2691 btrfs_handle_fs_error(root
->fs_info
, -ENOENT
,
2692 "Failed lookup while freeing chunk.");
2697 ret
= btrfs_del_item(trans
, root
, path
);
2699 btrfs_handle_fs_error(root
->fs_info
, ret
,
2700 "Failed to delete chunk item.");
2702 btrfs_free_path(path
);
2706 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2709 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2710 struct btrfs_disk_key
*disk_key
;
2711 struct btrfs_chunk
*chunk
;
2718 struct btrfs_key key
;
2721 array_size
= btrfs_super_sys_array_size(super_copy
);
2723 ptr
= super_copy
->sys_chunk_array
;
2726 while (cur
< array_size
) {
2727 disk_key
= (struct btrfs_disk_key
*)ptr
;
2728 btrfs_disk_key_to_cpu(&key
, disk_key
);
2730 len
= sizeof(*disk_key
);
2732 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2733 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2734 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2735 len
+= btrfs_chunk_item_size(num_stripes
);
2740 if (key
.objectid
== chunk_objectid
&&
2741 key
.offset
== chunk_offset
) {
2742 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2744 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2750 unlock_chunks(root
);
2754 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2755 struct btrfs_root
*root
, u64 chunk_offset
)
2757 struct extent_map_tree
*em_tree
;
2758 struct extent_map
*em
;
2759 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2760 struct map_lookup
*map
;
2761 u64 dev_extent_len
= 0;
2762 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2766 root
= root
->fs_info
->chunk_root
;
2767 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2769 read_lock(&em_tree
->lock
);
2770 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2771 read_unlock(&em_tree
->lock
);
2773 if (!em
|| em
->start
> chunk_offset
||
2774 em
->start
+ em
->len
< chunk_offset
) {
2776 * This is a logic error, but we don't want to just rely on the
2777 * user having built with ASSERT enabled, so if ASSERT doesn't
2778 * do anything we still error out.
2782 free_extent_map(em
);
2785 map
= em
->map_lookup
;
2786 lock_chunks(root
->fs_info
->chunk_root
);
2787 check_system_chunk(trans
, extent_root
, map
->type
);
2788 unlock_chunks(root
->fs_info
->chunk_root
);
2790 for (i
= 0; i
< map
->num_stripes
; i
++) {
2791 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2792 ret
= btrfs_free_dev_extent(trans
, device
,
2793 map
->stripes
[i
].physical
,
2796 btrfs_abort_transaction(trans
, root
, ret
);
2800 if (device
->bytes_used
> 0) {
2802 btrfs_device_set_bytes_used(device
,
2803 device
->bytes_used
- dev_extent_len
);
2804 spin_lock(&root
->fs_info
->free_chunk_lock
);
2805 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2806 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2807 btrfs_clear_space_info_full(root
->fs_info
);
2808 unlock_chunks(root
);
2811 if (map
->stripes
[i
].dev
) {
2812 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2814 btrfs_abort_transaction(trans
, root
, ret
);
2819 ret
= btrfs_free_chunk(trans
, root
, chunk_objectid
, chunk_offset
);
2821 btrfs_abort_transaction(trans
, root
, ret
);
2825 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2827 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2828 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2830 btrfs_abort_transaction(trans
, root
, ret
);
2835 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2837 btrfs_abort_transaction(trans
, extent_root
, ret
);
2843 free_extent_map(em
);
2847 static int btrfs_relocate_chunk(struct btrfs_root
*root
, u64 chunk_offset
)
2849 struct btrfs_root
*extent_root
;
2850 struct btrfs_trans_handle
*trans
;
2853 root
= root
->fs_info
->chunk_root
;
2854 extent_root
= root
->fs_info
->extent_root
;
2857 * Prevent races with automatic removal of unused block groups.
2858 * After we relocate and before we remove the chunk with offset
2859 * chunk_offset, automatic removal of the block group can kick in,
2860 * resulting in a failure when calling btrfs_remove_chunk() below.
2862 * Make sure to acquire this mutex before doing a tree search (dev
2863 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2864 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2865 * we release the path used to search the chunk/dev tree and before
2866 * the current task acquires this mutex and calls us.
2868 ASSERT(mutex_is_locked(&root
->fs_info
->delete_unused_bgs_mutex
));
2870 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2874 /* step one, relocate all the extents inside this chunk */
2875 btrfs_scrub_pause(root
);
2876 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2877 btrfs_scrub_continue(root
);
2881 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2883 if (IS_ERR(trans
)) {
2884 ret
= PTR_ERR(trans
);
2885 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2890 * step two, delete the device extents and the
2891 * chunk tree entries
2893 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2894 btrfs_end_transaction(trans
, root
);
2898 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2900 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2901 struct btrfs_path
*path
;
2902 struct extent_buffer
*leaf
;
2903 struct btrfs_chunk
*chunk
;
2904 struct btrfs_key key
;
2905 struct btrfs_key found_key
;
2907 bool retried
= false;
2911 path
= btrfs_alloc_path();
2916 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2917 key
.offset
= (u64
)-1;
2918 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2921 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
2922 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2924 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2927 BUG_ON(ret
== 0); /* Corruption */
2929 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2932 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2938 leaf
= path
->nodes
[0];
2939 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2941 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2942 struct btrfs_chunk
);
2943 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2944 btrfs_release_path(path
);
2946 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2947 ret
= btrfs_relocate_chunk(chunk_root
,
2954 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2956 if (found_key
.offset
== 0)
2958 key
.offset
= found_key
.offset
- 1;
2961 if (failed
&& !retried
) {
2965 } else if (WARN_ON(failed
&& retried
)) {
2969 btrfs_free_path(path
);
2973 static int insert_balance_item(struct btrfs_root
*root
,
2974 struct btrfs_balance_control
*bctl
)
2976 struct btrfs_trans_handle
*trans
;
2977 struct btrfs_balance_item
*item
;
2978 struct btrfs_disk_balance_args disk_bargs
;
2979 struct btrfs_path
*path
;
2980 struct extent_buffer
*leaf
;
2981 struct btrfs_key key
;
2984 path
= btrfs_alloc_path();
2988 trans
= btrfs_start_transaction(root
, 0);
2989 if (IS_ERR(trans
)) {
2990 btrfs_free_path(path
);
2991 return PTR_ERR(trans
);
2994 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2995 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
2998 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3003 leaf
= path
->nodes
[0];
3004 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3006 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
3008 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3009 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3010 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3011 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3012 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3013 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3015 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3017 btrfs_mark_buffer_dirty(leaf
);
3019 btrfs_free_path(path
);
3020 err
= btrfs_commit_transaction(trans
, root
);
3026 static int del_balance_item(struct btrfs_root
*root
)
3028 struct btrfs_trans_handle
*trans
;
3029 struct btrfs_path
*path
;
3030 struct btrfs_key key
;
3033 path
= btrfs_alloc_path();
3037 trans
= btrfs_start_transaction(root
, 0);
3038 if (IS_ERR(trans
)) {
3039 btrfs_free_path(path
);
3040 return PTR_ERR(trans
);
3043 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3044 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3047 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3055 ret
= btrfs_del_item(trans
, root
, path
);
3057 btrfs_free_path(path
);
3058 err
= btrfs_commit_transaction(trans
, root
);
3065 * This is a heuristic used to reduce the number of chunks balanced on
3066 * resume after balance was interrupted.
3068 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3071 * Turn on soft mode for chunk types that were being converted.
3073 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3074 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3075 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3076 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3077 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3078 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3081 * Turn on usage filter if is not already used. The idea is
3082 * that chunks that we have already balanced should be
3083 * reasonably full. Don't do it for chunks that are being
3084 * converted - that will keep us from relocating unconverted
3085 * (albeit full) chunks.
3087 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3088 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3089 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3090 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3091 bctl
->data
.usage
= 90;
3093 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3094 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3095 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3096 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3097 bctl
->sys
.usage
= 90;
3099 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3100 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3101 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3102 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3103 bctl
->meta
.usage
= 90;
3108 * Should be called with both balance and volume mutexes held to
3109 * serialize other volume operations (add_dev/rm_dev/resize) with
3110 * restriper. Same goes for unset_balance_control.
3112 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3114 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3116 BUG_ON(fs_info
->balance_ctl
);
3118 spin_lock(&fs_info
->balance_lock
);
3119 fs_info
->balance_ctl
= bctl
;
3120 spin_unlock(&fs_info
->balance_lock
);
3123 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3125 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3127 BUG_ON(!fs_info
->balance_ctl
);
3129 spin_lock(&fs_info
->balance_lock
);
3130 fs_info
->balance_ctl
= NULL
;
3131 spin_unlock(&fs_info
->balance_lock
);
3137 * Balance filters. Return 1 if chunk should be filtered out
3138 * (should not be balanced).
3140 static int chunk_profiles_filter(u64 chunk_type
,
3141 struct btrfs_balance_args
*bargs
)
3143 chunk_type
= chunk_to_extended(chunk_type
) &
3144 BTRFS_EXTENDED_PROFILE_MASK
;
3146 if (bargs
->profiles
& chunk_type
)
3152 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3153 struct btrfs_balance_args
*bargs
)
3155 struct btrfs_block_group_cache
*cache
;
3157 u64 user_thresh_min
;
3158 u64 user_thresh_max
;
3161 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3162 chunk_used
= btrfs_block_group_used(&cache
->item
);
3164 if (bargs
->usage_min
== 0)
3165 user_thresh_min
= 0;
3167 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3170 if (bargs
->usage_max
== 0)
3171 user_thresh_max
= 1;
3172 else if (bargs
->usage_max
> 100)
3173 user_thresh_max
= cache
->key
.offset
;
3175 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3178 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3181 btrfs_put_block_group(cache
);
3185 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3186 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3188 struct btrfs_block_group_cache
*cache
;
3189 u64 chunk_used
, user_thresh
;
3192 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3193 chunk_used
= btrfs_block_group_used(&cache
->item
);
3195 if (bargs
->usage_min
== 0)
3197 else if (bargs
->usage
> 100)
3198 user_thresh
= cache
->key
.offset
;
3200 user_thresh
= div_factor_fine(cache
->key
.offset
,
3203 if (chunk_used
< user_thresh
)
3206 btrfs_put_block_group(cache
);
3210 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3211 struct btrfs_chunk
*chunk
,
3212 struct btrfs_balance_args
*bargs
)
3214 struct btrfs_stripe
*stripe
;
3215 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3218 for (i
= 0; i
< num_stripes
; i
++) {
3219 stripe
= btrfs_stripe_nr(chunk
, i
);
3220 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3227 /* [pstart, pend) */
3228 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3229 struct btrfs_chunk
*chunk
,
3231 struct btrfs_balance_args
*bargs
)
3233 struct btrfs_stripe
*stripe
;
3234 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3240 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3243 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3244 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3245 factor
= num_stripes
/ 2;
3246 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3247 factor
= num_stripes
- 1;
3248 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3249 factor
= num_stripes
- 2;
3251 factor
= num_stripes
;
3254 for (i
= 0; i
< num_stripes
; i
++) {
3255 stripe
= btrfs_stripe_nr(chunk
, i
);
3256 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3259 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3260 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3261 stripe_length
= div_u64(stripe_length
, factor
);
3263 if (stripe_offset
< bargs
->pend
&&
3264 stripe_offset
+ stripe_length
> bargs
->pstart
)
3271 /* [vstart, vend) */
3272 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3273 struct btrfs_chunk
*chunk
,
3275 struct btrfs_balance_args
*bargs
)
3277 if (chunk_offset
< bargs
->vend
&&
3278 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3279 /* at least part of the chunk is inside this vrange */
3285 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3286 struct btrfs_chunk
*chunk
,
3287 struct btrfs_balance_args
*bargs
)
3289 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3291 if (bargs
->stripes_min
<= num_stripes
3292 && num_stripes
<= bargs
->stripes_max
)
3298 static int chunk_soft_convert_filter(u64 chunk_type
,
3299 struct btrfs_balance_args
*bargs
)
3301 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3304 chunk_type
= chunk_to_extended(chunk_type
) &
3305 BTRFS_EXTENDED_PROFILE_MASK
;
3307 if (bargs
->target
== chunk_type
)
3313 static int should_balance_chunk(struct btrfs_root
*root
,
3314 struct extent_buffer
*leaf
,
3315 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3317 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3318 struct btrfs_balance_args
*bargs
= NULL
;
3319 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3322 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3323 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3327 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3328 bargs
= &bctl
->data
;
3329 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3331 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3332 bargs
= &bctl
->meta
;
3334 /* profiles filter */
3335 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3336 chunk_profiles_filter(chunk_type
, bargs
)) {
3341 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3342 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3344 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3345 chunk_usage_range_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3350 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3351 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3355 /* drange filter, makes sense only with devid filter */
3356 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3357 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3362 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3363 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3367 /* stripes filter */
3368 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3369 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3373 /* soft profile changing mode */
3374 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3375 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3380 * limited by count, must be the last filter
3382 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3383 if (bargs
->limit
== 0)
3387 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3389 * Same logic as the 'limit' filter; the minimum cannot be
3390 * determined here because we do not have the global information
3391 * about the count of all chunks that satisfy the filters.
3393 if (bargs
->limit_max
== 0)
3402 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3404 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3405 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3406 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3407 struct list_head
*devices
;
3408 struct btrfs_device
*device
;
3412 struct btrfs_chunk
*chunk
;
3413 struct btrfs_path
*path
;
3414 struct btrfs_key key
;
3415 struct btrfs_key found_key
;
3416 struct btrfs_trans_handle
*trans
;
3417 struct extent_buffer
*leaf
;
3420 int enospc_errors
= 0;
3421 bool counting
= true;
3422 /* The single value limit and min/max limits use the same bytes in the */
3423 u64 limit_data
= bctl
->data
.limit
;
3424 u64 limit_meta
= bctl
->meta
.limit
;
3425 u64 limit_sys
= bctl
->sys
.limit
;
3429 int chunk_reserved
= 0;
3432 /* step one make some room on all the devices */
3433 devices
= &fs_info
->fs_devices
->devices
;
3434 list_for_each_entry(device
, devices
, dev_list
) {
3435 old_size
= btrfs_device_get_total_bytes(device
);
3436 size_to_free
= div_factor(old_size
, 1);
3437 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3438 if (!device
->writeable
||
3439 btrfs_device_get_total_bytes(device
) -
3440 btrfs_device_get_bytes_used(device
) > size_to_free
||
3441 device
->is_tgtdev_for_dev_replace
)
3444 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3449 trans
= btrfs_start_transaction(dev_root
, 0);
3450 BUG_ON(IS_ERR(trans
));
3452 ret
= btrfs_grow_device(trans
, device
, old_size
);
3455 btrfs_end_transaction(trans
, dev_root
);
3458 /* step two, relocate all the chunks */
3459 path
= btrfs_alloc_path();
3465 /* zero out stat counters */
3466 spin_lock(&fs_info
->balance_lock
);
3467 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3468 spin_unlock(&fs_info
->balance_lock
);
3472 * The single value limit and min/max limits use the same bytes
3475 bctl
->data
.limit
= limit_data
;
3476 bctl
->meta
.limit
= limit_meta
;
3477 bctl
->sys
.limit
= limit_sys
;
3479 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3480 key
.offset
= (u64
)-1;
3481 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3484 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3485 atomic_read(&fs_info
->balance_cancel_req
)) {
3490 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3491 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3493 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3498 * this shouldn't happen, it means the last relocate
3502 BUG(); /* FIXME break ? */
3504 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3505 BTRFS_CHUNK_ITEM_KEY
);
3507 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3512 leaf
= path
->nodes
[0];
3513 slot
= path
->slots
[0];
3514 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3516 if (found_key
.objectid
!= key
.objectid
) {
3517 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3521 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3522 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3525 spin_lock(&fs_info
->balance_lock
);
3526 bctl
->stat
.considered
++;
3527 spin_unlock(&fs_info
->balance_lock
);
3530 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3533 btrfs_release_path(path
);
3535 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3540 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3541 spin_lock(&fs_info
->balance_lock
);
3542 bctl
->stat
.expected
++;
3543 spin_unlock(&fs_info
->balance_lock
);
3545 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3547 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3549 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3556 * Apply limit_min filter, no need to check if the LIMITS
3557 * filter is used, limit_min is 0 by default
3559 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3560 count_data
< bctl
->data
.limit_min
)
3561 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3562 count_meta
< bctl
->meta
.limit_min
)
3563 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3564 count_sys
< bctl
->sys
.limit_min
)) {
3565 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3569 ASSERT(fs_info
->data_sinfo
);
3570 spin_lock(&fs_info
->data_sinfo
->lock
);
3571 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3572 spin_unlock(&fs_info
->data_sinfo
->lock
);
3574 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3575 !chunk_reserved
&& !bytes_used
) {
3576 trans
= btrfs_start_transaction(chunk_root
, 0);
3577 if (IS_ERR(trans
)) {
3578 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3579 ret
= PTR_ERR(trans
);
3583 ret
= btrfs_force_chunk_alloc(trans
, chunk_root
,
3584 BTRFS_BLOCK_GROUP_DATA
);
3585 btrfs_end_transaction(trans
, chunk_root
);
3587 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3593 ret
= btrfs_relocate_chunk(chunk_root
,
3595 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3596 if (ret
&& ret
!= -ENOSPC
)
3598 if (ret
== -ENOSPC
) {
3601 spin_lock(&fs_info
->balance_lock
);
3602 bctl
->stat
.completed
++;
3603 spin_unlock(&fs_info
->balance_lock
);
3606 if (found_key
.offset
== 0)
3608 key
.offset
= found_key
.offset
- 1;
3612 btrfs_release_path(path
);
3617 btrfs_free_path(path
);
3618 if (enospc_errors
) {
3619 btrfs_info(fs_info
, "%d enospc errors during balance",
3629 * alloc_profile_is_valid - see if a given profile is valid and reduced
3630 * @flags: profile to validate
3631 * @extended: if true @flags is treated as an extended profile
3633 static int alloc_profile_is_valid(u64 flags
, int extended
)
3635 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3636 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3638 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3640 /* 1) check that all other bits are zeroed */
3644 /* 2) see if profile is reduced */
3646 return !extended
; /* "0" is valid for usual profiles */
3648 /* true if exactly one bit set */
3649 return (flags
& (flags
- 1)) == 0;
3652 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3654 /* cancel requested || normal exit path */
3655 return atomic_read(&fs_info
->balance_cancel_req
) ||
3656 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3657 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3660 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3664 unset_balance_control(fs_info
);
3665 ret
= del_balance_item(fs_info
->tree_root
);
3667 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3669 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3672 /* Non-zero return value signifies invalidity */
3673 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3676 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3677 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3678 (bctl_arg
->target
& ~allowed
)));
3682 * Should be called with both balance and volume mutexes held
3684 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3685 struct btrfs_ioctl_balance_args
*bargs
)
3687 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3694 if (btrfs_fs_closing(fs_info
) ||
3695 atomic_read(&fs_info
->balance_pause_req
) ||
3696 atomic_read(&fs_info
->balance_cancel_req
)) {
3701 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3702 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3706 * In case of mixed groups both data and meta should be picked,
3707 * and identical options should be given for both of them.
3709 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3710 if (mixed
&& (bctl
->flags
& allowed
)) {
3711 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3712 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3713 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3714 btrfs_err(fs_info
, "with mixed groups data and "
3715 "metadata balance options must be the same");
3721 num_devices
= fs_info
->fs_devices
->num_devices
;
3722 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3723 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3724 BUG_ON(num_devices
< 1);
3727 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3728 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3729 if (num_devices
> 1)
3730 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3731 if (num_devices
> 2)
3732 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3733 if (num_devices
> 3)
3734 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3735 BTRFS_BLOCK_GROUP_RAID6
);
3736 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3737 btrfs_err(fs_info
, "unable to start balance with target "
3738 "data profile %llu",
3743 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3745 "unable to start balance with target metadata profile %llu",
3750 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3752 "unable to start balance with target system profile %llu",
3758 /* allow to reduce meta or sys integrity only if force set */
3759 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3760 BTRFS_BLOCK_GROUP_RAID10
|
3761 BTRFS_BLOCK_GROUP_RAID5
|
3762 BTRFS_BLOCK_GROUP_RAID6
;
3764 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3766 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3767 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3768 !(bctl
->sys
.target
& allowed
)) ||
3769 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3770 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3771 !(bctl
->meta
.target
& allowed
))) {
3772 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3773 btrfs_info(fs_info
, "force reducing metadata integrity");
3775 btrfs_err(fs_info
, "balance will reduce metadata "
3776 "integrity, use force if you want this");
3781 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3783 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl
->meta
.target
) <
3784 btrfs_get_num_tolerated_disk_barrier_failures(bctl
->data
.target
)) {
3786 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3787 bctl
->meta
.target
, bctl
->data
.target
);
3790 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3791 fs_info
->num_tolerated_disk_barrier_failures
= min(
3792 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3793 btrfs_get_num_tolerated_disk_barrier_failures(
3797 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3798 if (ret
&& ret
!= -EEXIST
)
3801 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3802 BUG_ON(ret
== -EEXIST
);
3803 set_balance_control(bctl
);
3805 BUG_ON(ret
!= -EEXIST
);
3806 spin_lock(&fs_info
->balance_lock
);
3807 update_balance_args(bctl
);
3808 spin_unlock(&fs_info
->balance_lock
);
3811 atomic_inc(&fs_info
->balance_running
);
3812 mutex_unlock(&fs_info
->balance_mutex
);
3814 ret
= __btrfs_balance(fs_info
);
3816 mutex_lock(&fs_info
->balance_mutex
);
3817 atomic_dec(&fs_info
->balance_running
);
3819 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3820 fs_info
->num_tolerated_disk_barrier_failures
=
3821 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3825 memset(bargs
, 0, sizeof(*bargs
));
3826 update_ioctl_balance_args(fs_info
, 0, bargs
);
3829 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3830 balance_need_close(fs_info
)) {
3831 __cancel_balance(fs_info
);
3834 wake_up(&fs_info
->balance_wait_q
);
3838 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3839 __cancel_balance(fs_info
);
3842 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3847 static int balance_kthread(void *data
)
3849 struct btrfs_fs_info
*fs_info
= data
;
3852 mutex_lock(&fs_info
->volume_mutex
);
3853 mutex_lock(&fs_info
->balance_mutex
);
3855 if (fs_info
->balance_ctl
) {
3856 btrfs_info(fs_info
, "continuing balance");
3857 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3860 mutex_unlock(&fs_info
->balance_mutex
);
3861 mutex_unlock(&fs_info
->volume_mutex
);
3866 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3868 struct task_struct
*tsk
;
3870 spin_lock(&fs_info
->balance_lock
);
3871 if (!fs_info
->balance_ctl
) {
3872 spin_unlock(&fs_info
->balance_lock
);
3875 spin_unlock(&fs_info
->balance_lock
);
3877 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3878 btrfs_info(fs_info
, "force skipping balance");
3882 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3883 return PTR_ERR_OR_ZERO(tsk
);
3886 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3888 struct btrfs_balance_control
*bctl
;
3889 struct btrfs_balance_item
*item
;
3890 struct btrfs_disk_balance_args disk_bargs
;
3891 struct btrfs_path
*path
;
3892 struct extent_buffer
*leaf
;
3893 struct btrfs_key key
;
3896 path
= btrfs_alloc_path();
3900 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3901 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3904 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3907 if (ret
> 0) { /* ret = -ENOENT; */
3912 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3918 leaf
= path
->nodes
[0];
3919 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3921 bctl
->fs_info
= fs_info
;
3922 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3923 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3925 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3926 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3927 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3928 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3929 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3930 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3932 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3934 mutex_lock(&fs_info
->volume_mutex
);
3935 mutex_lock(&fs_info
->balance_mutex
);
3937 set_balance_control(bctl
);
3939 mutex_unlock(&fs_info
->balance_mutex
);
3940 mutex_unlock(&fs_info
->volume_mutex
);
3942 btrfs_free_path(path
);
3946 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3950 mutex_lock(&fs_info
->balance_mutex
);
3951 if (!fs_info
->balance_ctl
) {
3952 mutex_unlock(&fs_info
->balance_mutex
);
3956 if (atomic_read(&fs_info
->balance_running
)) {
3957 atomic_inc(&fs_info
->balance_pause_req
);
3958 mutex_unlock(&fs_info
->balance_mutex
);
3960 wait_event(fs_info
->balance_wait_q
,
3961 atomic_read(&fs_info
->balance_running
) == 0);
3963 mutex_lock(&fs_info
->balance_mutex
);
3964 /* we are good with balance_ctl ripped off from under us */
3965 BUG_ON(atomic_read(&fs_info
->balance_running
));
3966 atomic_dec(&fs_info
->balance_pause_req
);
3971 mutex_unlock(&fs_info
->balance_mutex
);
3975 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3977 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3980 mutex_lock(&fs_info
->balance_mutex
);
3981 if (!fs_info
->balance_ctl
) {
3982 mutex_unlock(&fs_info
->balance_mutex
);
3986 atomic_inc(&fs_info
->balance_cancel_req
);
3988 * if we are running just wait and return, balance item is
3989 * deleted in btrfs_balance in this case
3991 if (atomic_read(&fs_info
->balance_running
)) {
3992 mutex_unlock(&fs_info
->balance_mutex
);
3993 wait_event(fs_info
->balance_wait_q
,
3994 atomic_read(&fs_info
->balance_running
) == 0);
3995 mutex_lock(&fs_info
->balance_mutex
);
3997 /* __cancel_balance needs volume_mutex */
3998 mutex_unlock(&fs_info
->balance_mutex
);
3999 mutex_lock(&fs_info
->volume_mutex
);
4000 mutex_lock(&fs_info
->balance_mutex
);
4002 if (fs_info
->balance_ctl
)
4003 __cancel_balance(fs_info
);
4005 mutex_unlock(&fs_info
->volume_mutex
);
4008 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4009 atomic_dec(&fs_info
->balance_cancel_req
);
4010 mutex_unlock(&fs_info
->balance_mutex
);
4014 static int btrfs_uuid_scan_kthread(void *data
)
4016 struct btrfs_fs_info
*fs_info
= data
;
4017 struct btrfs_root
*root
= fs_info
->tree_root
;
4018 struct btrfs_key key
;
4019 struct btrfs_key max_key
;
4020 struct btrfs_path
*path
= NULL
;
4022 struct extent_buffer
*eb
;
4024 struct btrfs_root_item root_item
;
4026 struct btrfs_trans_handle
*trans
= NULL
;
4028 path
= btrfs_alloc_path();
4035 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4038 max_key
.objectid
= (u64
)-1;
4039 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4040 max_key
.offset
= (u64
)-1;
4043 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4050 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4051 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4052 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4053 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4056 eb
= path
->nodes
[0];
4057 slot
= path
->slots
[0];
4058 item_size
= btrfs_item_size_nr(eb
, slot
);
4059 if (item_size
< sizeof(root_item
))
4062 read_extent_buffer(eb
, &root_item
,
4063 btrfs_item_ptr_offset(eb
, slot
),
4064 (int)sizeof(root_item
));
4065 if (btrfs_root_refs(&root_item
) == 0)
4068 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4069 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4073 btrfs_release_path(path
);
4075 * 1 - subvol uuid item
4076 * 1 - received_subvol uuid item
4078 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4079 if (IS_ERR(trans
)) {
4080 ret
= PTR_ERR(trans
);
4088 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4089 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4091 BTRFS_UUID_KEY_SUBVOL
,
4094 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4100 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4101 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4102 root_item
.received_uuid
,
4103 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4106 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4114 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4120 btrfs_release_path(path
);
4121 if (key
.offset
< (u64
)-1) {
4123 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4125 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4126 } else if (key
.objectid
< (u64
)-1) {
4128 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4137 btrfs_free_path(path
);
4138 if (trans
&& !IS_ERR(trans
))
4139 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4141 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4143 fs_info
->update_uuid_tree_gen
= 1;
4144 up(&fs_info
->uuid_tree_rescan_sem
);
4149 * Callback for btrfs_uuid_tree_iterate().
4151 * 0 check succeeded, the entry is not outdated.
4152 * < 0 if an error occurred.
4153 * > 0 if the check failed, which means the caller shall remove the entry.
4155 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4156 u8
*uuid
, u8 type
, u64 subid
)
4158 struct btrfs_key key
;
4160 struct btrfs_root
*subvol_root
;
4162 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4163 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4166 key
.objectid
= subid
;
4167 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4168 key
.offset
= (u64
)-1;
4169 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4170 if (IS_ERR(subvol_root
)) {
4171 ret
= PTR_ERR(subvol_root
);
4178 case BTRFS_UUID_KEY_SUBVOL
:
4179 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4182 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4183 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4193 static int btrfs_uuid_rescan_kthread(void *data
)
4195 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4199 * 1st step is to iterate through the existing UUID tree and
4200 * to delete all entries that contain outdated data.
4201 * 2nd step is to add all missing entries to the UUID tree.
4203 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4205 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4206 up(&fs_info
->uuid_tree_rescan_sem
);
4209 return btrfs_uuid_scan_kthread(data
);
4212 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4214 struct btrfs_trans_handle
*trans
;
4215 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4216 struct btrfs_root
*uuid_root
;
4217 struct task_struct
*task
;
4224 trans
= btrfs_start_transaction(tree_root
, 2);
4226 return PTR_ERR(trans
);
4228 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4229 BTRFS_UUID_TREE_OBJECTID
);
4230 if (IS_ERR(uuid_root
)) {
4231 ret
= PTR_ERR(uuid_root
);
4232 btrfs_abort_transaction(trans
, tree_root
, ret
);
4236 fs_info
->uuid_root
= uuid_root
;
4238 ret
= btrfs_commit_transaction(trans
, tree_root
);
4242 down(&fs_info
->uuid_tree_rescan_sem
);
4243 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4245 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4246 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4247 up(&fs_info
->uuid_tree_rescan_sem
);
4248 return PTR_ERR(task
);
4254 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4256 struct task_struct
*task
;
4258 down(&fs_info
->uuid_tree_rescan_sem
);
4259 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4261 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4262 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4263 up(&fs_info
->uuid_tree_rescan_sem
);
4264 return PTR_ERR(task
);
4271 * shrinking a device means finding all of the device extents past
4272 * the new size, and then following the back refs to the chunks.
4273 * The chunk relocation code actually frees the device extent
4275 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4277 struct btrfs_trans_handle
*trans
;
4278 struct btrfs_root
*root
= device
->dev_root
;
4279 struct btrfs_dev_extent
*dev_extent
= NULL
;
4280 struct btrfs_path
*path
;
4286 bool retried
= false;
4287 bool checked_pending_chunks
= false;
4288 struct extent_buffer
*l
;
4289 struct btrfs_key key
;
4290 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4291 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4292 u64 old_size
= btrfs_device_get_total_bytes(device
);
4293 u64 diff
= old_size
- new_size
;
4295 if (device
->is_tgtdev_for_dev_replace
)
4298 path
= btrfs_alloc_path();
4302 path
->reada
= READA_FORWARD
;
4306 btrfs_device_set_total_bytes(device
, new_size
);
4307 if (device
->writeable
) {
4308 device
->fs_devices
->total_rw_bytes
-= diff
;
4309 spin_lock(&root
->fs_info
->free_chunk_lock
);
4310 root
->fs_info
->free_chunk_space
-= diff
;
4311 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4313 unlock_chunks(root
);
4316 key
.objectid
= device
->devid
;
4317 key
.offset
= (u64
)-1;
4318 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4321 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
4322 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4324 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4328 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4330 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4335 btrfs_release_path(path
);
4340 slot
= path
->slots
[0];
4341 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4343 if (key
.objectid
!= device
->devid
) {
4344 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4345 btrfs_release_path(path
);
4349 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4350 length
= btrfs_dev_extent_length(l
, dev_extent
);
4352 if (key
.offset
+ length
<= new_size
) {
4353 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4354 btrfs_release_path(path
);
4358 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4359 btrfs_release_path(path
);
4361 ret
= btrfs_relocate_chunk(root
, chunk_offset
);
4362 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4363 if (ret
&& ret
!= -ENOSPC
)
4367 } while (key
.offset
-- > 0);
4369 if (failed
&& !retried
) {
4373 } else if (failed
&& retried
) {
4378 /* Shrinking succeeded, else we would be at "done". */
4379 trans
= btrfs_start_transaction(root
, 0);
4380 if (IS_ERR(trans
)) {
4381 ret
= PTR_ERR(trans
);
4388 * We checked in the above loop all device extents that were already in
4389 * the device tree. However before we have updated the device's
4390 * total_bytes to the new size, we might have had chunk allocations that
4391 * have not complete yet (new block groups attached to transaction
4392 * handles), and therefore their device extents were not yet in the
4393 * device tree and we missed them in the loop above. So if we have any
4394 * pending chunk using a device extent that overlaps the device range
4395 * that we can not use anymore, commit the current transaction and
4396 * repeat the search on the device tree - this way we guarantee we will
4397 * not have chunks using device extents that end beyond 'new_size'.
4399 if (!checked_pending_chunks
) {
4400 u64 start
= new_size
;
4401 u64 len
= old_size
- new_size
;
4403 if (contains_pending_extent(trans
->transaction
, device
,
4405 unlock_chunks(root
);
4406 checked_pending_chunks
= true;
4409 ret
= btrfs_commit_transaction(trans
, root
);
4416 btrfs_device_set_disk_total_bytes(device
, new_size
);
4417 if (list_empty(&device
->resized_list
))
4418 list_add_tail(&device
->resized_list
,
4419 &root
->fs_info
->fs_devices
->resized_devices
);
4421 WARN_ON(diff
> old_total
);
4422 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4423 unlock_chunks(root
);
4425 /* Now btrfs_update_device() will change the on-disk size. */
4426 ret
= btrfs_update_device(trans
, device
);
4427 btrfs_end_transaction(trans
, root
);
4429 btrfs_free_path(path
);
4432 btrfs_device_set_total_bytes(device
, old_size
);
4433 if (device
->writeable
)
4434 device
->fs_devices
->total_rw_bytes
+= diff
;
4435 spin_lock(&root
->fs_info
->free_chunk_lock
);
4436 root
->fs_info
->free_chunk_space
+= diff
;
4437 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4438 unlock_chunks(root
);
4443 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4444 struct btrfs_key
*key
,
4445 struct btrfs_chunk
*chunk
, int item_size
)
4447 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4448 struct btrfs_disk_key disk_key
;
4453 array_size
= btrfs_super_sys_array_size(super_copy
);
4454 if (array_size
+ item_size
+ sizeof(disk_key
)
4455 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4456 unlock_chunks(root
);
4460 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4461 btrfs_cpu_key_to_disk(&disk_key
, key
);
4462 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4463 ptr
+= sizeof(disk_key
);
4464 memcpy(ptr
, chunk
, item_size
);
4465 item_size
+= sizeof(disk_key
);
4466 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4467 unlock_chunks(root
);
4473 * sort the devices in descending order by max_avail, total_avail
4475 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4477 const struct btrfs_device_info
*di_a
= a
;
4478 const struct btrfs_device_info
*di_b
= b
;
4480 if (di_a
->max_avail
> di_b
->max_avail
)
4482 if (di_a
->max_avail
< di_b
->max_avail
)
4484 if (di_a
->total_avail
> di_b
->total_avail
)
4486 if (di_a
->total_avail
< di_b
->total_avail
)
4491 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4493 /* TODO allow them to set a preferred stripe size */
4497 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4499 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4502 btrfs_set_fs_incompat(info
, RAID56
);
4505 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4506 - sizeof(struct btrfs_item) \
4507 - sizeof(struct btrfs_chunk)) \
4508 / sizeof(struct btrfs_stripe) + 1)
4510 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4511 - 2 * sizeof(struct btrfs_disk_key) \
4512 - 2 * sizeof(struct btrfs_chunk)) \
4513 / sizeof(struct btrfs_stripe) + 1)
4515 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4516 struct btrfs_root
*extent_root
, u64 start
,
4519 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4520 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4521 struct list_head
*cur
;
4522 struct map_lookup
*map
= NULL
;
4523 struct extent_map_tree
*em_tree
;
4524 struct extent_map
*em
;
4525 struct btrfs_device_info
*devices_info
= NULL
;
4527 int num_stripes
; /* total number of stripes to allocate */
4528 int data_stripes
; /* number of stripes that count for
4530 int sub_stripes
; /* sub_stripes info for map */
4531 int dev_stripes
; /* stripes per dev */
4532 int devs_max
; /* max devs to use */
4533 int devs_min
; /* min devs needed */
4534 int devs_increment
; /* ndevs has to be a multiple of this */
4535 int ncopies
; /* how many copies to data has */
4537 u64 max_stripe_size
;
4541 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4547 BUG_ON(!alloc_profile_is_valid(type
, 0));
4549 if (list_empty(&fs_devices
->alloc_list
))
4552 index
= __get_raid_index(type
);
4554 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4555 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4556 devs_max
= btrfs_raid_array
[index
].devs_max
;
4557 devs_min
= btrfs_raid_array
[index
].devs_min
;
4558 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4559 ncopies
= btrfs_raid_array
[index
].ncopies
;
4561 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4562 max_stripe_size
= SZ_1G
;
4563 max_chunk_size
= 10 * max_stripe_size
;
4565 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4566 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4567 /* for larger filesystems, use larger metadata chunks */
4568 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4569 max_stripe_size
= SZ_1G
;
4571 max_stripe_size
= SZ_256M
;
4572 max_chunk_size
= max_stripe_size
;
4574 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4575 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4576 max_stripe_size
= SZ_32M
;
4577 max_chunk_size
= 2 * max_stripe_size
;
4579 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4581 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4586 /* we don't want a chunk larger than 10% of writeable space */
4587 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4590 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4595 cur
= fs_devices
->alloc_list
.next
;
4598 * in the first pass through the devices list, we gather information
4599 * about the available holes on each device.
4602 while (cur
!= &fs_devices
->alloc_list
) {
4603 struct btrfs_device
*device
;
4607 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4611 if (!device
->writeable
) {
4613 "BTRFS: read-only device in alloc_list\n");
4617 if (!device
->in_fs_metadata
||
4618 device
->is_tgtdev_for_dev_replace
)
4621 if (device
->total_bytes
> device
->bytes_used
)
4622 total_avail
= device
->total_bytes
- device
->bytes_used
;
4626 /* If there is no space on this device, skip it. */
4627 if (total_avail
== 0)
4630 ret
= find_free_dev_extent(trans
, device
,
4631 max_stripe_size
* dev_stripes
,
4632 &dev_offset
, &max_avail
);
4633 if (ret
&& ret
!= -ENOSPC
)
4637 max_avail
= max_stripe_size
* dev_stripes
;
4639 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4642 if (ndevs
== fs_devices
->rw_devices
) {
4643 WARN(1, "%s: found more than %llu devices\n",
4644 __func__
, fs_devices
->rw_devices
);
4647 devices_info
[ndevs
].dev_offset
= dev_offset
;
4648 devices_info
[ndevs
].max_avail
= max_avail
;
4649 devices_info
[ndevs
].total_avail
= total_avail
;
4650 devices_info
[ndevs
].dev
= device
;
4655 * now sort the devices by hole size / available space
4657 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4658 btrfs_cmp_device_info
, NULL
);
4660 /* round down to number of usable stripes */
4661 ndevs
-= ndevs
% devs_increment
;
4663 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4668 if (devs_max
&& ndevs
> devs_max
)
4671 * the primary goal is to maximize the number of stripes, so use as many
4672 * devices as possible, even if the stripes are not maximum sized.
4674 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4675 num_stripes
= ndevs
* dev_stripes
;
4678 * this will have to be fixed for RAID1 and RAID10 over
4681 data_stripes
= num_stripes
/ ncopies
;
4683 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4684 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4685 btrfs_super_stripesize(info
->super_copy
));
4686 data_stripes
= num_stripes
- 1;
4688 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4689 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4690 btrfs_super_stripesize(info
->super_copy
));
4691 data_stripes
= num_stripes
- 2;
4695 * Use the number of data stripes to figure out how big this chunk
4696 * is really going to be in terms of logical address space,
4697 * and compare that answer with the max chunk size
4699 if (stripe_size
* data_stripes
> max_chunk_size
) {
4700 u64 mask
= (1ULL << 24) - 1;
4702 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4704 /* bump the answer up to a 16MB boundary */
4705 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4707 /* but don't go higher than the limits we found
4708 * while searching for free extents
4710 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4711 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4714 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4716 /* align to BTRFS_STRIPE_LEN */
4717 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4718 stripe_size
*= raid_stripe_len
;
4720 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4725 map
->num_stripes
= num_stripes
;
4727 for (i
= 0; i
< ndevs
; ++i
) {
4728 for (j
= 0; j
< dev_stripes
; ++j
) {
4729 int s
= i
* dev_stripes
+ j
;
4730 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4731 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4735 map
->sector_size
= extent_root
->sectorsize
;
4736 map
->stripe_len
= raid_stripe_len
;
4737 map
->io_align
= raid_stripe_len
;
4738 map
->io_width
= raid_stripe_len
;
4740 map
->sub_stripes
= sub_stripes
;
4742 num_bytes
= stripe_size
* data_stripes
;
4744 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4746 em
= alloc_extent_map();
4752 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4753 em
->map_lookup
= map
;
4755 em
->len
= num_bytes
;
4756 em
->block_start
= 0;
4757 em
->block_len
= em
->len
;
4758 em
->orig_block_len
= stripe_size
;
4760 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4761 write_lock(&em_tree
->lock
);
4762 ret
= add_extent_mapping(em_tree
, em
, 0);
4764 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4765 atomic_inc(&em
->refs
);
4767 write_unlock(&em_tree
->lock
);
4769 free_extent_map(em
);
4773 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4774 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4777 goto error_del_extent
;
4779 for (i
= 0; i
< map
->num_stripes
; i
++) {
4780 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4781 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4784 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4785 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4787 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4789 free_extent_map(em
);
4790 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4792 kfree(devices_info
);
4796 write_lock(&em_tree
->lock
);
4797 remove_extent_mapping(em_tree
, em
);
4798 write_unlock(&em_tree
->lock
);
4800 /* One for our allocation */
4801 free_extent_map(em
);
4802 /* One for the tree reference */
4803 free_extent_map(em
);
4804 /* One for the pending_chunks list reference */
4805 free_extent_map(em
);
4807 kfree(devices_info
);
4811 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4812 struct btrfs_root
*extent_root
,
4813 u64 chunk_offset
, u64 chunk_size
)
4815 struct btrfs_key key
;
4816 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4817 struct btrfs_device
*device
;
4818 struct btrfs_chunk
*chunk
;
4819 struct btrfs_stripe
*stripe
;
4820 struct extent_map_tree
*em_tree
;
4821 struct extent_map
*em
;
4822 struct map_lookup
*map
;
4829 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4830 read_lock(&em_tree
->lock
);
4831 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4832 read_unlock(&em_tree
->lock
);
4835 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4836 "%Lu len %Lu", chunk_offset
, chunk_size
);
4840 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4841 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4842 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4843 chunk_size
, em
->start
, em
->len
);
4844 free_extent_map(em
);
4848 map
= em
->map_lookup
;
4849 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4850 stripe_size
= em
->orig_block_len
;
4852 chunk
= kzalloc(item_size
, GFP_NOFS
);
4859 * Take the device list mutex to prevent races with the final phase of
4860 * a device replace operation that replaces the device object associated
4861 * with the map's stripes, because the device object's id can change
4862 * at any time during that final phase of the device replace operation
4863 * (dev-replace.c:btrfs_dev_replace_finishing()).
4865 mutex_lock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4866 for (i
= 0; i
< map
->num_stripes
; i
++) {
4867 device
= map
->stripes
[i
].dev
;
4868 dev_offset
= map
->stripes
[i
].physical
;
4870 ret
= btrfs_update_device(trans
, device
);
4873 ret
= btrfs_alloc_dev_extent(trans
, device
,
4874 chunk_root
->root_key
.objectid
,
4875 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4876 chunk_offset
, dev_offset
,
4882 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4886 stripe
= &chunk
->stripe
;
4887 for (i
= 0; i
< map
->num_stripes
; i
++) {
4888 device
= map
->stripes
[i
].dev
;
4889 dev_offset
= map
->stripes
[i
].physical
;
4891 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4892 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4893 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4896 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4898 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4899 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4900 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4901 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4902 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4903 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4904 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4905 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4906 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4908 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4909 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4910 key
.offset
= chunk_offset
;
4912 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4913 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4915 * TODO: Cleanup of inserted chunk root in case of
4918 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4924 free_extent_map(em
);
4929 * Chunk allocation falls into two parts. The first part does works
4930 * that make the new allocated chunk useable, but not do any operation
4931 * that modifies the chunk tree. The second part does the works that
4932 * require modifying the chunk tree. This division is important for the
4933 * bootstrap process of adding storage to a seed btrfs.
4935 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4936 struct btrfs_root
*extent_root
, u64 type
)
4940 ASSERT(mutex_is_locked(&extent_root
->fs_info
->chunk_mutex
));
4941 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4942 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4945 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4946 struct btrfs_root
*root
,
4947 struct btrfs_device
*device
)
4950 u64 sys_chunk_offset
;
4952 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4953 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4956 chunk_offset
= find_next_chunk(fs_info
);
4957 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4958 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4963 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4964 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4965 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4970 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
4974 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
4975 BTRFS_BLOCK_GROUP_RAID10
|
4976 BTRFS_BLOCK_GROUP_RAID5
|
4977 BTRFS_BLOCK_GROUP_DUP
)) {
4979 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
4988 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4990 struct extent_map
*em
;
4991 struct map_lookup
*map
;
4992 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4997 read_lock(&map_tree
->map_tree
.lock
);
4998 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4999 read_unlock(&map_tree
->map_tree
.lock
);
5003 map
= em
->map_lookup
;
5004 for (i
= 0; i
< map
->num_stripes
; i
++) {
5005 if (map
->stripes
[i
].dev
->missing
) {
5010 if (!map
->stripes
[i
].dev
->writeable
) {
5017 * If the number of missing devices is larger than max errors,
5018 * we can not write the data into that chunk successfully, so
5021 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5024 free_extent_map(em
);
5028 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5030 extent_map_tree_init(&tree
->map_tree
);
5033 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5035 struct extent_map
*em
;
5038 write_lock(&tree
->map_tree
.lock
);
5039 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5041 remove_extent_mapping(&tree
->map_tree
, em
);
5042 write_unlock(&tree
->map_tree
.lock
);
5046 free_extent_map(em
);
5047 /* once for the tree */
5048 free_extent_map(em
);
5052 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5054 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5055 struct extent_map
*em
;
5056 struct map_lookup
*map
;
5057 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5060 read_lock(&em_tree
->lock
);
5061 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5062 read_unlock(&em_tree
->lock
);
5065 * We could return errors for these cases, but that could get ugly and
5066 * we'd probably do the same thing which is just not do anything else
5067 * and exit, so return 1 so the callers don't try to use other copies.
5070 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5075 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5076 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
5077 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
5078 em
->start
+ em
->len
);
5079 free_extent_map(em
);
5083 map
= em
->map_lookup
;
5084 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5085 ret
= map
->num_stripes
;
5086 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5087 ret
= map
->sub_stripes
;
5088 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5090 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5094 free_extent_map(em
);
5096 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5097 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5099 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5104 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
5105 struct btrfs_mapping_tree
*map_tree
,
5108 struct extent_map
*em
;
5109 struct map_lookup
*map
;
5110 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5111 unsigned long len
= root
->sectorsize
;
5113 read_lock(&em_tree
->lock
);
5114 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5115 read_unlock(&em_tree
->lock
);
5118 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5119 map
= em
->map_lookup
;
5120 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5121 len
= map
->stripe_len
* nr_data_stripes(map
);
5122 free_extent_map(em
);
5126 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5127 u64 logical
, u64 len
, int mirror_num
)
5129 struct extent_map
*em
;
5130 struct map_lookup
*map
;
5131 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5134 read_lock(&em_tree
->lock
);
5135 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5136 read_unlock(&em_tree
->lock
);
5139 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5140 map
= em
->map_lookup
;
5141 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5143 free_extent_map(em
);
5147 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5148 struct map_lookup
*map
, int first
, int num
,
5149 int optimal
, int dev_replace_is_ongoing
)
5153 struct btrfs_device
*srcdev
;
5155 if (dev_replace_is_ongoing
&&
5156 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5157 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5158 srcdev
= fs_info
->dev_replace
.srcdev
;
5163 * try to avoid the drive that is the source drive for a
5164 * dev-replace procedure, only choose it if no other non-missing
5165 * mirror is available
5167 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5168 if (map
->stripes
[optimal
].dev
->bdev
&&
5169 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5171 for (i
= first
; i
< first
+ num
; i
++) {
5172 if (map
->stripes
[i
].dev
->bdev
&&
5173 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5178 /* we couldn't find one that doesn't fail. Just return something
5179 * and the io error handling code will clean up eventually
5184 static inline int parity_smaller(u64 a
, u64 b
)
5189 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5190 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5192 struct btrfs_bio_stripe s
;
5199 for (i
= 0; i
< num_stripes
- 1; i
++) {
5200 if (parity_smaller(bbio
->raid_map
[i
],
5201 bbio
->raid_map
[i
+1])) {
5202 s
= bbio
->stripes
[i
];
5203 l
= bbio
->raid_map
[i
];
5204 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5205 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5206 bbio
->stripes
[i
+1] = s
;
5207 bbio
->raid_map
[i
+1] = l
;
5215 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5217 struct btrfs_bio
*bbio
= kzalloc(
5218 /* the size of the btrfs_bio */
5219 sizeof(struct btrfs_bio
) +
5220 /* plus the variable array for the stripes */
5221 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5222 /* plus the variable array for the tgt dev */
5223 sizeof(int) * (real_stripes
) +
5225 * plus the raid_map, which includes both the tgt dev
5228 sizeof(u64
) * (total_stripes
),
5229 GFP_NOFS
|__GFP_NOFAIL
);
5231 atomic_set(&bbio
->error
, 0);
5232 atomic_set(&bbio
->refs
, 1);
5237 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5239 WARN_ON(!atomic_read(&bbio
->refs
));
5240 atomic_inc(&bbio
->refs
);
5243 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5247 if (atomic_dec_and_test(&bbio
->refs
))
5251 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5252 u64 logical
, u64
*length
,
5253 struct btrfs_bio
**bbio_ret
,
5254 int mirror_num
, int need_raid_map
)
5256 struct extent_map
*em
;
5257 struct map_lookup
*map
;
5258 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5259 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5262 u64 stripe_end_offset
;
5272 int tgtdev_indexes
= 0;
5273 struct btrfs_bio
*bbio
= NULL
;
5274 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5275 int dev_replace_is_ongoing
= 0;
5276 int num_alloc_stripes
;
5277 int patch_the_first_stripe_for_dev_replace
= 0;
5278 u64 physical_to_patch_in_first_stripe
= 0;
5279 u64 raid56_full_stripe_start
= (u64
)-1;
5281 read_lock(&em_tree
->lock
);
5282 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5283 read_unlock(&em_tree
->lock
);
5286 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5291 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5292 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
5293 "found %Lu-%Lu", logical
, em
->start
,
5294 em
->start
+ em
->len
);
5295 free_extent_map(em
);
5299 map
= em
->map_lookup
;
5300 offset
= logical
- em
->start
;
5302 stripe_len
= map
->stripe_len
;
5305 * stripe_nr counts the total number of stripes we have to stride
5306 * to get to this block
5308 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5310 stripe_offset
= stripe_nr
* stripe_len
;
5311 if (offset
< stripe_offset
) {
5312 btrfs_crit(fs_info
, "stripe math has gone wrong, "
5313 "stripe_offset=%llu, offset=%llu, start=%llu, "
5314 "logical=%llu, stripe_len=%llu",
5315 stripe_offset
, offset
, em
->start
, logical
,
5317 free_extent_map(em
);
5321 /* stripe_offset is the offset of this block in its stripe*/
5322 stripe_offset
= offset
- stripe_offset
;
5324 /* if we're here for raid56, we need to know the stripe aligned start */
5325 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5326 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5327 raid56_full_stripe_start
= offset
;
5329 /* allow a write of a full stripe, but make sure we don't
5330 * allow straddling of stripes
5332 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5334 raid56_full_stripe_start
*= full_stripe_len
;
5337 if (rw
& REQ_DISCARD
) {
5338 /* we don't discard raid56 yet */
5339 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5343 *length
= min_t(u64
, em
->len
- offset
, *length
);
5344 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5346 /* For writes to RAID[56], allow a full stripeset across all disks.
5347 For other RAID types and for RAID[56] reads, just allow a single
5348 stripe (on a single disk). */
5349 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5351 max_len
= stripe_len
* nr_data_stripes(map
) -
5352 (offset
- raid56_full_stripe_start
);
5354 /* we limit the length of each bio to what fits in a stripe */
5355 max_len
= stripe_len
- stripe_offset
;
5357 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5359 *length
= em
->len
- offset
;
5362 /* This is for when we're called from btrfs_merge_bio_hook() and all
5363 it cares about is the length */
5367 btrfs_dev_replace_lock(dev_replace
, 0);
5368 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5369 if (!dev_replace_is_ongoing
)
5370 btrfs_dev_replace_unlock(dev_replace
, 0);
5372 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5374 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5375 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
5376 dev_replace
->tgtdev
!= NULL
) {
5378 * in dev-replace case, for repair case (that's the only
5379 * case where the mirror is selected explicitly when
5380 * calling btrfs_map_block), blocks left of the left cursor
5381 * can also be read from the target drive.
5382 * For REQ_GET_READ_MIRRORS, the target drive is added as
5383 * the last one to the array of stripes. For READ, it also
5384 * needs to be supported using the same mirror number.
5385 * If the requested block is not left of the left cursor,
5386 * EIO is returned. This can happen because btrfs_num_copies()
5387 * returns one more in the dev-replace case.
5389 u64 tmp_length
= *length
;
5390 struct btrfs_bio
*tmp_bbio
= NULL
;
5391 int tmp_num_stripes
;
5392 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5393 int index_srcdev
= 0;
5395 u64 physical_of_found
= 0;
5397 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5398 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5400 WARN_ON(tmp_bbio
!= NULL
);
5404 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5405 if (mirror_num
> tmp_num_stripes
) {
5407 * REQ_GET_READ_MIRRORS does not contain this
5408 * mirror, that means that the requested area
5409 * is not left of the left cursor
5412 btrfs_put_bbio(tmp_bbio
);
5417 * process the rest of the function using the mirror_num
5418 * of the source drive. Therefore look it up first.
5419 * At the end, patch the device pointer to the one of the
5422 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5423 if (tmp_bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5427 * In case of DUP, in order to keep it simple, only add
5428 * the mirror with the lowest physical address
5431 physical_of_found
<= tmp_bbio
->stripes
[i
].physical
)
5436 physical_of_found
= tmp_bbio
->stripes
[i
].physical
;
5439 btrfs_put_bbio(tmp_bbio
);
5447 mirror_num
= index_srcdev
+ 1;
5448 patch_the_first_stripe_for_dev_replace
= 1;
5449 physical_to_patch_in_first_stripe
= physical_of_found
;
5450 } else if (mirror_num
> map
->num_stripes
) {
5456 stripe_nr_orig
= stripe_nr
;
5457 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5458 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5459 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5462 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5463 if (rw
& REQ_DISCARD
)
5464 num_stripes
= min_t(u64
, map
->num_stripes
,
5465 stripe_nr_end
- stripe_nr_orig
);
5466 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5468 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)))
5470 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5471 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
5472 num_stripes
= map
->num_stripes
;
5473 else if (mirror_num
)
5474 stripe_index
= mirror_num
- 1;
5476 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5478 current
->pid
% map
->num_stripes
,
5479 dev_replace_is_ongoing
);
5480 mirror_num
= stripe_index
+ 1;
5483 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5484 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
5485 num_stripes
= map
->num_stripes
;
5486 } else if (mirror_num
) {
5487 stripe_index
= mirror_num
- 1;
5492 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5493 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5495 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5496 stripe_index
*= map
->sub_stripes
;
5498 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5499 num_stripes
= map
->sub_stripes
;
5500 else if (rw
& REQ_DISCARD
)
5501 num_stripes
= min_t(u64
, map
->sub_stripes
*
5502 (stripe_nr_end
- stripe_nr_orig
),
5504 else if (mirror_num
)
5505 stripe_index
+= mirror_num
- 1;
5507 int old_stripe_index
= stripe_index
;
5508 stripe_index
= find_live_mirror(fs_info
, map
,
5510 map
->sub_stripes
, stripe_index
+
5511 current
->pid
% map
->sub_stripes
,
5512 dev_replace_is_ongoing
);
5513 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5516 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5517 if (need_raid_map
&&
5518 ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5520 /* push stripe_nr back to the start of the full stripe */
5521 stripe_nr
= div_u64(raid56_full_stripe_start
,
5522 stripe_len
* nr_data_stripes(map
));
5524 /* RAID[56] write or recovery. Return all stripes */
5525 num_stripes
= map
->num_stripes
;
5526 max_errors
= nr_parity_stripes(map
);
5528 *length
= map
->stripe_len
;
5533 * Mirror #0 or #1 means the original data block.
5534 * Mirror #2 is RAID5 parity block.
5535 * Mirror #3 is RAID6 Q block.
5537 stripe_nr
= div_u64_rem(stripe_nr
,
5538 nr_data_stripes(map
), &stripe_index
);
5540 stripe_index
= nr_data_stripes(map
) +
5543 /* We distribute the parity blocks across stripes */
5544 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5546 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
|
5547 REQ_GET_READ_MIRRORS
)) && mirror_num
<= 1)
5552 * after this, stripe_nr is the number of stripes on this
5553 * device we have to walk to find the data, and stripe_index is
5554 * the number of our device in the stripe array
5556 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5558 mirror_num
= stripe_index
+ 1;
5560 if (stripe_index
>= map
->num_stripes
) {
5561 btrfs_crit(fs_info
, "stripe index math went horribly wrong, "
5562 "got stripe_index=%u, num_stripes=%u",
5563 stripe_index
, map
->num_stripes
);
5568 num_alloc_stripes
= num_stripes
;
5569 if (dev_replace_is_ongoing
) {
5570 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5571 num_alloc_stripes
<<= 1;
5572 if (rw
& REQ_GET_READ_MIRRORS
)
5573 num_alloc_stripes
++;
5574 tgtdev_indexes
= num_stripes
;
5577 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5582 if (dev_replace_is_ongoing
)
5583 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5585 /* build raid_map */
5586 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5587 need_raid_map
&& ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5592 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5593 sizeof(struct btrfs_bio_stripe
) *
5595 sizeof(int) * tgtdev_indexes
);
5597 /* Work out the disk rotation on this stripe-set */
5598 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5600 /* Fill in the logical address of each stripe */
5601 tmp
= stripe_nr
* nr_data_stripes(map
);
5602 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5603 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5604 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5606 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5607 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5608 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5612 if (rw
& REQ_DISCARD
) {
5614 u32 sub_stripes
= 0;
5615 u64 stripes_per_dev
= 0;
5616 u32 remaining_stripes
= 0;
5617 u32 last_stripe
= 0;
5620 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5621 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5624 sub_stripes
= map
->sub_stripes
;
5626 factor
= map
->num_stripes
/ sub_stripes
;
5627 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5630 &remaining_stripes
);
5631 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5632 last_stripe
*= sub_stripes
;
5635 for (i
= 0; i
< num_stripes
; i
++) {
5636 bbio
->stripes
[i
].physical
=
5637 map
->stripes
[stripe_index
].physical
+
5638 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5639 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5641 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5642 BTRFS_BLOCK_GROUP_RAID10
)) {
5643 bbio
->stripes
[i
].length
= stripes_per_dev
*
5646 if (i
/ sub_stripes
< remaining_stripes
)
5647 bbio
->stripes
[i
].length
+=
5651 * Special for the first stripe and
5654 * |-------|...|-------|
5658 if (i
< sub_stripes
)
5659 bbio
->stripes
[i
].length
-=
5662 if (stripe_index
>= last_stripe
&&
5663 stripe_index
<= (last_stripe
+
5665 bbio
->stripes
[i
].length
-=
5668 if (i
== sub_stripes
- 1)
5671 bbio
->stripes
[i
].length
= *length
;
5674 if (stripe_index
== map
->num_stripes
) {
5675 /* This could only happen for RAID0/10 */
5681 for (i
= 0; i
< num_stripes
; i
++) {
5682 bbio
->stripes
[i
].physical
=
5683 map
->stripes
[stripe_index
].physical
+
5685 stripe_nr
* map
->stripe_len
;
5686 bbio
->stripes
[i
].dev
=
5687 map
->stripes
[stripe_index
].dev
;
5692 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5693 max_errors
= btrfs_chunk_max_errors(map
);
5696 sort_parity_stripes(bbio
, num_stripes
);
5699 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5700 dev_replace
->tgtdev
!= NULL
) {
5701 int index_where_to_add
;
5702 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5705 * duplicate the write operations while the dev replace
5706 * procedure is running. Since the copying of the old disk
5707 * to the new disk takes place at run time while the
5708 * filesystem is mounted writable, the regular write
5709 * operations to the old disk have to be duplicated to go
5710 * to the new disk as well.
5711 * Note that device->missing is handled by the caller, and
5712 * that the write to the old disk is already set up in the
5715 index_where_to_add
= num_stripes
;
5716 for (i
= 0; i
< num_stripes
; i
++) {
5717 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5718 /* write to new disk, too */
5719 struct btrfs_bio_stripe
*new =
5720 bbio
->stripes
+ index_where_to_add
;
5721 struct btrfs_bio_stripe
*old
=
5724 new->physical
= old
->physical
;
5725 new->length
= old
->length
;
5726 new->dev
= dev_replace
->tgtdev
;
5727 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5728 index_where_to_add
++;
5733 num_stripes
= index_where_to_add
;
5734 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5735 dev_replace
->tgtdev
!= NULL
) {
5736 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5737 int index_srcdev
= 0;
5739 u64 physical_of_found
= 0;
5742 * During the dev-replace procedure, the target drive can
5743 * also be used to read data in case it is needed to repair
5744 * a corrupt block elsewhere. This is possible if the
5745 * requested area is left of the left cursor. In this area,
5746 * the target drive is a full copy of the source drive.
5748 for (i
= 0; i
< num_stripes
; i
++) {
5749 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5751 * In case of DUP, in order to keep it
5752 * simple, only add the mirror with the
5753 * lowest physical address
5756 physical_of_found
<=
5757 bbio
->stripes
[i
].physical
)
5761 physical_of_found
= bbio
->stripes
[i
].physical
;
5765 if (physical_of_found
+ map
->stripe_len
<=
5766 dev_replace
->cursor_left
) {
5767 struct btrfs_bio_stripe
*tgtdev_stripe
=
5768 bbio
->stripes
+ num_stripes
;
5770 tgtdev_stripe
->physical
= physical_of_found
;
5771 tgtdev_stripe
->length
=
5772 bbio
->stripes
[index_srcdev
].length
;
5773 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5774 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5783 bbio
->map_type
= map
->type
;
5784 bbio
->num_stripes
= num_stripes
;
5785 bbio
->max_errors
= max_errors
;
5786 bbio
->mirror_num
= mirror_num
;
5787 bbio
->num_tgtdevs
= tgtdev_indexes
;
5790 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5791 * mirror_num == num_stripes + 1 && dev_replace target drive is
5792 * available as a mirror
5794 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5795 WARN_ON(num_stripes
> 1);
5796 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5797 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5798 bbio
->mirror_num
= map
->num_stripes
+ 1;
5801 if (dev_replace_is_ongoing
) {
5802 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5803 btrfs_dev_replace_unlock(dev_replace
, 0);
5805 free_extent_map(em
);
5809 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5810 u64 logical
, u64
*length
,
5811 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5813 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5817 /* For Scrub/replace */
5818 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int rw
,
5819 u64 logical
, u64
*length
,
5820 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5823 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5824 mirror_num
, need_raid_map
);
5827 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5828 u64 chunk_start
, u64 physical
, u64 devid
,
5829 u64
**logical
, int *naddrs
, int *stripe_len
)
5831 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5832 struct extent_map
*em
;
5833 struct map_lookup
*map
;
5841 read_lock(&em_tree
->lock
);
5842 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5843 read_unlock(&em_tree
->lock
);
5846 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5851 if (em
->start
!= chunk_start
) {
5852 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5853 em
->start
, chunk_start
);
5854 free_extent_map(em
);
5857 map
= em
->map_lookup
;
5860 rmap_len
= map
->stripe_len
;
5862 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5863 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5864 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5865 length
= div_u64(length
, map
->num_stripes
);
5866 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5867 length
= div_u64(length
, nr_data_stripes(map
));
5868 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5871 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5872 BUG_ON(!buf
); /* -ENOMEM */
5874 for (i
= 0; i
< map
->num_stripes
; i
++) {
5875 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5877 if (map
->stripes
[i
].physical
> physical
||
5878 map
->stripes
[i
].physical
+ length
<= physical
)
5881 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5882 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5884 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5885 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5886 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5887 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5888 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5889 } /* else if RAID[56], multiply by nr_data_stripes().
5890 * Alternatively, just use rmap_len below instead of
5891 * map->stripe_len */
5893 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5894 WARN_ON(nr
>= map
->num_stripes
);
5895 for (j
= 0; j
< nr
; j
++) {
5896 if (buf
[j
] == bytenr
)
5900 WARN_ON(nr
>= map
->num_stripes
);
5907 *stripe_len
= rmap_len
;
5909 free_extent_map(em
);
5913 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
5915 bio
->bi_private
= bbio
->private;
5916 bio
->bi_end_io
= bbio
->end_io
;
5919 btrfs_put_bbio(bbio
);
5922 static void btrfs_end_bio(struct bio
*bio
)
5924 struct btrfs_bio
*bbio
= bio
->bi_private
;
5925 int is_orig_bio
= 0;
5927 if (bio
->bi_error
) {
5928 atomic_inc(&bbio
->error
);
5929 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
5930 unsigned int stripe_index
=
5931 btrfs_io_bio(bio
)->stripe_index
;
5932 struct btrfs_device
*dev
;
5934 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5935 dev
= bbio
->stripes
[stripe_index
].dev
;
5937 if (bio
->bi_rw
& WRITE
)
5938 btrfs_dev_stat_inc(dev
,
5939 BTRFS_DEV_STAT_WRITE_ERRS
);
5941 btrfs_dev_stat_inc(dev
,
5942 BTRFS_DEV_STAT_READ_ERRS
);
5943 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5944 btrfs_dev_stat_inc(dev
,
5945 BTRFS_DEV_STAT_FLUSH_ERRS
);
5946 btrfs_dev_stat_print_on_error(dev
);
5951 if (bio
== bbio
->orig_bio
)
5954 btrfs_bio_counter_dec(bbio
->fs_info
);
5956 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5959 bio
= bbio
->orig_bio
;
5962 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5963 /* only send an error to the higher layers if it is
5964 * beyond the tolerance of the btrfs bio
5966 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5967 bio
->bi_error
= -EIO
;
5970 * this bio is actually up to date, we didn't
5971 * go over the max number of errors
5976 btrfs_end_bbio(bbio
, bio
);
5977 } else if (!is_orig_bio
) {
5983 * see run_scheduled_bios for a description of why bios are collected for
5986 * This will add one bio to the pending list for a device and make sure
5987 * the work struct is scheduled.
5989 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5990 struct btrfs_device
*device
,
5991 int rw
, struct bio
*bio
)
5993 int should_queue
= 1;
5994 struct btrfs_pending_bios
*pending_bios
;
5996 if (device
->missing
|| !device
->bdev
) {
6001 /* don't bother with additional async steps for reads, right now */
6002 if (!(rw
& REQ_WRITE
)) {
6004 btrfsic_submit_bio(rw
, bio
);
6010 * nr_async_bios allows us to reliably return congestion to the
6011 * higher layers. Otherwise, the async bio makes it appear we have
6012 * made progress against dirty pages when we've really just put it
6013 * on a queue for later
6015 atomic_inc(&root
->fs_info
->nr_async_bios
);
6016 WARN_ON(bio
->bi_next
);
6017 bio
->bi_next
= NULL
;
6020 spin_lock(&device
->io_lock
);
6021 if (bio
->bi_rw
& REQ_SYNC
)
6022 pending_bios
= &device
->pending_sync_bios
;
6024 pending_bios
= &device
->pending_bios
;
6026 if (pending_bios
->tail
)
6027 pending_bios
->tail
->bi_next
= bio
;
6029 pending_bios
->tail
= bio
;
6030 if (!pending_bios
->head
)
6031 pending_bios
->head
= bio
;
6032 if (device
->running_pending
)
6035 spin_unlock(&device
->io_lock
);
6038 btrfs_queue_work(root
->fs_info
->submit_workers
,
6042 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
6043 struct bio
*bio
, u64 physical
, int dev_nr
,
6046 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6048 bio
->bi_private
= bbio
;
6049 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6050 bio
->bi_end_io
= btrfs_end_bio
;
6051 bio
->bi_iter
.bi_sector
= physical
>> 9;
6054 struct rcu_string
*name
;
6057 name
= rcu_dereference(dev
->name
);
6058 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6059 "(%s id %llu), size=%u\n", rw
,
6060 (u64
)bio
->bi_iter
.bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
6061 name
->str
, dev
->devid
, bio
->bi_iter
.bi_size
);
6065 bio
->bi_bdev
= dev
->bdev
;
6067 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
6070 btrfs_schedule_bio(root
, dev
, rw
, bio
);
6072 btrfsic_submit_bio(rw
, bio
);
6075 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6077 atomic_inc(&bbio
->error
);
6078 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6079 /* Should be the original bio. */
6080 WARN_ON(bio
!= bbio
->orig_bio
);
6082 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6083 bio
->bi_iter
.bi_sector
= logical
>> 9;
6084 bio
->bi_error
= -EIO
;
6085 btrfs_end_bbio(bbio
, bio
);
6089 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
6090 int mirror_num
, int async_submit
)
6092 struct btrfs_device
*dev
;
6093 struct bio
*first_bio
= bio
;
6094 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6100 struct btrfs_bio
*bbio
= NULL
;
6102 length
= bio
->bi_iter
.bi_size
;
6103 map_length
= length
;
6105 btrfs_bio_counter_inc_blocked(root
->fs_info
);
6106 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
6109 btrfs_bio_counter_dec(root
->fs_info
);
6113 total_devs
= bbio
->num_stripes
;
6114 bbio
->orig_bio
= first_bio
;
6115 bbio
->private = first_bio
->bi_private
;
6116 bbio
->end_io
= first_bio
->bi_end_io
;
6117 bbio
->fs_info
= root
->fs_info
;
6118 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6120 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6121 ((rw
& WRITE
) || (mirror_num
> 1))) {
6122 /* In this case, map_length has been set to the length of
6123 a single stripe; not the whole write */
6125 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
6127 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
6131 btrfs_bio_counter_dec(root
->fs_info
);
6135 if (map_length
< length
) {
6136 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
6137 logical
, length
, map_length
);
6141 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6142 dev
= bbio
->stripes
[dev_nr
].dev
;
6143 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
6144 bbio_error(bbio
, first_bio
, logical
);
6148 if (dev_nr
< total_devs
- 1) {
6149 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6150 BUG_ON(!bio
); /* -ENOMEM */
6154 submit_stripe_bio(root
, bbio
, bio
,
6155 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
6158 btrfs_bio_counter_dec(root
->fs_info
);
6162 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6165 struct btrfs_device
*device
;
6166 struct btrfs_fs_devices
*cur_devices
;
6168 cur_devices
= fs_info
->fs_devices
;
6169 while (cur_devices
) {
6171 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6172 device
= __find_device(&cur_devices
->devices
,
6177 cur_devices
= cur_devices
->seed
;
6182 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
6183 struct btrfs_fs_devices
*fs_devices
,
6184 u64 devid
, u8
*dev_uuid
)
6186 struct btrfs_device
*device
;
6188 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6192 list_add(&device
->dev_list
, &fs_devices
->devices
);
6193 device
->fs_devices
= fs_devices
;
6194 fs_devices
->num_devices
++;
6196 device
->missing
= 1;
6197 fs_devices
->missing_devices
++;
6203 * btrfs_alloc_device - allocate struct btrfs_device
6204 * @fs_info: used only for generating a new devid, can be NULL if
6205 * devid is provided (i.e. @devid != NULL).
6206 * @devid: a pointer to devid for this device. If NULL a new devid
6208 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6211 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6212 * on error. Returned struct is not linked onto any lists and can be
6213 * destroyed with kfree() right away.
6215 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6219 struct btrfs_device
*dev
;
6222 if (WARN_ON(!devid
&& !fs_info
))
6223 return ERR_PTR(-EINVAL
);
6225 dev
= __alloc_device();
6234 ret
= find_next_devid(fs_info
, &tmp
);
6237 return ERR_PTR(ret
);
6243 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6245 generate_random_uuid(dev
->uuid
);
6247 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6248 pending_bios_fn
, NULL
, NULL
);
6253 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6254 struct extent_buffer
*leaf
,
6255 struct btrfs_chunk
*chunk
)
6257 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6258 struct map_lookup
*map
;
6259 struct extent_map
*em
;
6264 u8 uuid
[BTRFS_UUID_SIZE
];
6269 logical
= key
->offset
;
6270 length
= btrfs_chunk_length(leaf
, chunk
);
6271 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6272 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6273 /* Validation check */
6275 btrfs_err(root
->fs_info
, "invalid chunk num_stripes: %u",
6279 if (!IS_ALIGNED(logical
, root
->sectorsize
)) {
6280 btrfs_err(root
->fs_info
,
6281 "invalid chunk logical %llu", logical
);
6284 if (!length
|| !IS_ALIGNED(length
, root
->sectorsize
)) {
6285 btrfs_err(root
->fs_info
,
6286 "invalid chunk length %llu", length
);
6289 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6290 btrfs_err(root
->fs_info
, "invalid chunk stripe length: %llu",
6294 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6295 btrfs_chunk_type(leaf
, chunk
)) {
6296 btrfs_err(root
->fs_info
, "unrecognized chunk type: %llu",
6297 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6298 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6299 btrfs_chunk_type(leaf
, chunk
));
6303 read_lock(&map_tree
->map_tree
.lock
);
6304 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6305 read_unlock(&map_tree
->map_tree
.lock
);
6307 /* already mapped? */
6308 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6309 free_extent_map(em
);
6312 free_extent_map(em
);
6315 em
= alloc_extent_map();
6318 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6320 free_extent_map(em
);
6324 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6325 em
->map_lookup
= map
;
6326 em
->start
= logical
;
6329 em
->block_start
= 0;
6330 em
->block_len
= em
->len
;
6332 map
->num_stripes
= num_stripes
;
6333 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6334 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6335 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6336 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6337 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6338 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6339 for (i
= 0; i
< num_stripes
; i
++) {
6340 map
->stripes
[i
].physical
=
6341 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6342 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6343 read_extent_buffer(leaf
, uuid
, (unsigned long)
6344 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6346 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6348 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
6349 free_extent_map(em
);
6352 if (!map
->stripes
[i
].dev
) {
6353 map
->stripes
[i
].dev
=
6354 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6356 if (!map
->stripes
[i
].dev
) {
6357 free_extent_map(em
);
6360 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU is missing",
6363 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6366 write_lock(&map_tree
->map_tree
.lock
);
6367 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6368 write_unlock(&map_tree
->map_tree
.lock
);
6369 BUG_ON(ret
); /* Tree corruption */
6370 free_extent_map(em
);
6375 static void fill_device_from_item(struct extent_buffer
*leaf
,
6376 struct btrfs_dev_item
*dev_item
,
6377 struct btrfs_device
*device
)
6381 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6382 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6383 device
->total_bytes
= device
->disk_total_bytes
;
6384 device
->commit_total_bytes
= device
->disk_total_bytes
;
6385 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6386 device
->commit_bytes_used
= device
->bytes_used
;
6387 device
->type
= btrfs_device_type(leaf
, dev_item
);
6388 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6389 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6390 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6391 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6392 device
->is_tgtdev_for_dev_replace
= 0;
6394 ptr
= btrfs_device_uuid(dev_item
);
6395 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6398 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6401 struct btrfs_fs_devices
*fs_devices
;
6404 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6406 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6407 while (fs_devices
) {
6408 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6411 fs_devices
= fs_devices
->seed
;
6414 fs_devices
= find_fsid(fsid
);
6416 if (!btrfs_test_opt(root
, DEGRADED
))
6417 return ERR_PTR(-ENOENT
);
6419 fs_devices
= alloc_fs_devices(fsid
);
6420 if (IS_ERR(fs_devices
))
6423 fs_devices
->seeding
= 1;
6424 fs_devices
->opened
= 1;
6428 fs_devices
= clone_fs_devices(fs_devices
);
6429 if (IS_ERR(fs_devices
))
6432 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6433 root
->fs_info
->bdev_holder
);
6435 free_fs_devices(fs_devices
);
6436 fs_devices
= ERR_PTR(ret
);
6440 if (!fs_devices
->seeding
) {
6441 __btrfs_close_devices(fs_devices
);
6442 free_fs_devices(fs_devices
);
6443 fs_devices
= ERR_PTR(-EINVAL
);
6447 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6448 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6453 static int read_one_dev(struct btrfs_root
*root
,
6454 struct extent_buffer
*leaf
,
6455 struct btrfs_dev_item
*dev_item
)
6457 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6458 struct btrfs_device
*device
;
6461 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6462 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6464 devid
= btrfs_device_id(leaf
, dev_item
);
6465 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6467 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6470 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6471 fs_devices
= open_seed_devices(root
, fs_uuid
);
6472 if (IS_ERR(fs_devices
))
6473 return PTR_ERR(fs_devices
);
6476 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6478 if (!btrfs_test_opt(root
, DEGRADED
))
6481 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6484 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU missing",
6487 if (!device
->bdev
&& !btrfs_test_opt(root
, DEGRADED
))
6490 if(!device
->bdev
&& !device
->missing
) {
6492 * this happens when a device that was properly setup
6493 * in the device info lists suddenly goes bad.
6494 * device->bdev is NULL, and so we have to set
6495 * device->missing to one here
6497 device
->fs_devices
->missing_devices
++;
6498 device
->missing
= 1;
6501 /* Move the device to its own fs_devices */
6502 if (device
->fs_devices
!= fs_devices
) {
6503 ASSERT(device
->missing
);
6505 list_move(&device
->dev_list
, &fs_devices
->devices
);
6506 device
->fs_devices
->num_devices
--;
6507 fs_devices
->num_devices
++;
6509 device
->fs_devices
->missing_devices
--;
6510 fs_devices
->missing_devices
++;
6512 device
->fs_devices
= fs_devices
;
6516 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6517 BUG_ON(device
->writeable
);
6518 if (device
->generation
!=
6519 btrfs_device_generation(leaf
, dev_item
))
6523 fill_device_from_item(leaf
, dev_item
, device
);
6524 device
->in_fs_metadata
= 1;
6525 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6526 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6527 spin_lock(&root
->fs_info
->free_chunk_lock
);
6528 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6530 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6536 int btrfs_read_sys_array(struct btrfs_root
*root
)
6538 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6539 struct extent_buffer
*sb
;
6540 struct btrfs_disk_key
*disk_key
;
6541 struct btrfs_chunk
*chunk
;
6543 unsigned long sb_array_offset
;
6549 struct btrfs_key key
;
6551 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6553 * This will create extent buffer of nodesize, superblock size is
6554 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6555 * overallocate but we can keep it as-is, only the first page is used.
6557 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6560 set_extent_buffer_uptodate(sb
);
6561 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6563 * The sb extent buffer is artificial and just used to read the system array.
6564 * set_extent_buffer_uptodate() call does not properly mark all it's
6565 * pages up-to-date when the page is larger: extent does not cover the
6566 * whole page and consequently check_page_uptodate does not find all
6567 * the page's extents up-to-date (the hole beyond sb),
6568 * write_extent_buffer then triggers a WARN_ON.
6570 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6571 * but sb spans only this function. Add an explicit SetPageUptodate call
6572 * to silence the warning eg. on PowerPC 64.
6574 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6575 SetPageUptodate(sb
->pages
[0]);
6577 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6578 array_size
= btrfs_super_sys_array_size(super_copy
);
6580 array_ptr
= super_copy
->sys_chunk_array
;
6581 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6584 while (cur_offset
< array_size
) {
6585 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6586 len
= sizeof(*disk_key
);
6587 if (cur_offset
+ len
> array_size
)
6588 goto out_short_read
;
6590 btrfs_disk_key_to_cpu(&key
, disk_key
);
6593 sb_array_offset
+= len
;
6596 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6597 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6599 * At least one btrfs_chunk with one stripe must be
6600 * present, exact stripe count check comes afterwards
6602 len
= btrfs_chunk_item_size(1);
6603 if (cur_offset
+ len
> array_size
)
6604 goto out_short_read
;
6606 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6609 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6610 num_stripes
, cur_offset
);
6615 len
= btrfs_chunk_item_size(num_stripes
);
6616 if (cur_offset
+ len
> array_size
)
6617 goto out_short_read
;
6619 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6624 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6625 (u32
)key
.type
, cur_offset
);
6630 sb_array_offset
+= len
;
6633 free_extent_buffer_stale(sb
);
6637 printk(KERN_ERR
"BTRFS: sys_array too short to read %u bytes at offset %u\n",
6639 free_extent_buffer_stale(sb
);
6643 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6645 struct btrfs_path
*path
;
6646 struct extent_buffer
*leaf
;
6647 struct btrfs_key key
;
6648 struct btrfs_key found_key
;
6652 root
= root
->fs_info
->chunk_root
;
6654 path
= btrfs_alloc_path();
6658 mutex_lock(&uuid_mutex
);
6662 * Read all device items, and then all the chunk items. All
6663 * device items are found before any chunk item (their object id
6664 * is smaller than the lowest possible object id for a chunk
6665 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6667 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6670 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6674 leaf
= path
->nodes
[0];
6675 slot
= path
->slots
[0];
6676 if (slot
>= btrfs_header_nritems(leaf
)) {
6677 ret
= btrfs_next_leaf(root
, path
);
6684 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6685 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6686 struct btrfs_dev_item
*dev_item
;
6687 dev_item
= btrfs_item_ptr(leaf
, slot
,
6688 struct btrfs_dev_item
);
6689 ret
= read_one_dev(root
, leaf
, dev_item
);
6692 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6693 struct btrfs_chunk
*chunk
;
6694 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6695 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6703 unlock_chunks(root
);
6704 mutex_unlock(&uuid_mutex
);
6706 btrfs_free_path(path
);
6710 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6712 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6713 struct btrfs_device
*device
;
6715 while (fs_devices
) {
6716 mutex_lock(&fs_devices
->device_list_mutex
);
6717 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6718 device
->dev_root
= fs_info
->dev_root
;
6719 mutex_unlock(&fs_devices
->device_list_mutex
);
6721 fs_devices
= fs_devices
->seed
;
6725 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6729 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6730 btrfs_dev_stat_reset(dev
, i
);
6733 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6735 struct btrfs_key key
;
6736 struct btrfs_key found_key
;
6737 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6738 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6739 struct extent_buffer
*eb
;
6742 struct btrfs_device
*device
;
6743 struct btrfs_path
*path
= NULL
;
6746 path
= btrfs_alloc_path();
6752 mutex_lock(&fs_devices
->device_list_mutex
);
6753 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6755 struct btrfs_dev_stats_item
*ptr
;
6757 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6758 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6759 key
.offset
= device
->devid
;
6760 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6762 __btrfs_reset_dev_stats(device
);
6763 device
->dev_stats_valid
= 1;
6764 btrfs_release_path(path
);
6767 slot
= path
->slots
[0];
6768 eb
= path
->nodes
[0];
6769 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6770 item_size
= btrfs_item_size_nr(eb
, slot
);
6772 ptr
= btrfs_item_ptr(eb
, slot
,
6773 struct btrfs_dev_stats_item
);
6775 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6776 if (item_size
>= (1 + i
) * sizeof(__le64
))
6777 btrfs_dev_stat_set(device
, i
,
6778 btrfs_dev_stats_value(eb
, ptr
, i
));
6780 btrfs_dev_stat_reset(device
, i
);
6783 device
->dev_stats_valid
= 1;
6784 btrfs_dev_stat_print_on_load(device
);
6785 btrfs_release_path(path
);
6787 mutex_unlock(&fs_devices
->device_list_mutex
);
6790 btrfs_free_path(path
);
6791 return ret
< 0 ? ret
: 0;
6794 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6795 struct btrfs_root
*dev_root
,
6796 struct btrfs_device
*device
)
6798 struct btrfs_path
*path
;
6799 struct btrfs_key key
;
6800 struct extent_buffer
*eb
;
6801 struct btrfs_dev_stats_item
*ptr
;
6805 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6806 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6807 key
.offset
= device
->devid
;
6809 path
= btrfs_alloc_path();
6811 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6813 btrfs_warn_in_rcu(dev_root
->fs_info
,
6814 "error %d while searching for dev_stats item for device %s",
6815 ret
, rcu_str_deref(device
->name
));
6820 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6821 /* need to delete old one and insert a new one */
6822 ret
= btrfs_del_item(trans
, dev_root
, path
);
6824 btrfs_warn_in_rcu(dev_root
->fs_info
,
6825 "delete too small dev_stats item for device %s failed %d",
6826 rcu_str_deref(device
->name
), ret
);
6833 /* need to insert a new item */
6834 btrfs_release_path(path
);
6835 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6836 &key
, sizeof(*ptr
));
6838 btrfs_warn_in_rcu(dev_root
->fs_info
,
6839 "insert dev_stats item for device %s failed %d",
6840 rcu_str_deref(device
->name
), ret
);
6845 eb
= path
->nodes
[0];
6846 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6847 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6848 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6849 btrfs_dev_stat_read(device
, i
));
6850 btrfs_mark_buffer_dirty(eb
);
6853 btrfs_free_path(path
);
6858 * called from commit_transaction. Writes all changed device stats to disk.
6860 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6861 struct btrfs_fs_info
*fs_info
)
6863 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6864 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6865 struct btrfs_device
*device
;
6869 mutex_lock(&fs_devices
->device_list_mutex
);
6870 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6871 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
6874 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
6875 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6877 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
6879 mutex_unlock(&fs_devices
->device_list_mutex
);
6884 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6886 btrfs_dev_stat_inc(dev
, index
);
6887 btrfs_dev_stat_print_on_error(dev
);
6890 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6892 if (!dev
->dev_stats_valid
)
6894 btrfs_err_rl_in_rcu(dev
->dev_root
->fs_info
,
6895 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6896 rcu_str_deref(dev
->name
),
6897 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6898 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6899 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6900 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6901 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6904 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6908 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6909 if (btrfs_dev_stat_read(dev
, i
) != 0)
6911 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6912 return; /* all values == 0, suppress message */
6914 btrfs_info_in_rcu(dev
->dev_root
->fs_info
,
6915 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6916 rcu_str_deref(dev
->name
),
6917 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6918 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6919 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6920 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6921 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6924 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6925 struct btrfs_ioctl_get_dev_stats
*stats
)
6927 struct btrfs_device
*dev
;
6928 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6931 mutex_lock(&fs_devices
->device_list_mutex
);
6932 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6933 mutex_unlock(&fs_devices
->device_list_mutex
);
6936 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
6938 } else if (!dev
->dev_stats_valid
) {
6939 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
6941 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6942 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6943 if (stats
->nr_items
> i
)
6945 btrfs_dev_stat_read_and_reset(dev
, i
);
6947 btrfs_dev_stat_reset(dev
, i
);
6950 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6951 if (stats
->nr_items
> i
)
6952 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6954 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6955 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6959 void btrfs_scratch_superblocks(struct block_device
*bdev
, char *device_path
)
6961 struct buffer_head
*bh
;
6962 struct btrfs_super_block
*disk_super
;
6968 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
6971 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
6974 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6976 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6977 set_buffer_dirty(bh
);
6978 sync_dirty_buffer(bh
);
6982 /* Notify udev that device has changed */
6983 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
6985 /* Update ctime/mtime for device path for libblkid */
6986 update_dev_time(device_path
);
6990 * Update the size of all devices, which is used for writing out the
6993 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
6995 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6996 struct btrfs_device
*curr
, *next
;
6998 if (list_empty(&fs_devices
->resized_devices
))
7001 mutex_lock(&fs_devices
->device_list_mutex
);
7002 lock_chunks(fs_info
->dev_root
);
7003 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7005 list_del_init(&curr
->resized_list
);
7006 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7008 unlock_chunks(fs_info
->dev_root
);
7009 mutex_unlock(&fs_devices
->device_list_mutex
);
7012 /* Must be invoked during the transaction commit */
7013 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
7014 struct btrfs_transaction
*transaction
)
7016 struct extent_map
*em
;
7017 struct map_lookup
*map
;
7018 struct btrfs_device
*dev
;
7021 if (list_empty(&transaction
->pending_chunks
))
7024 /* In order to kick the device replace finish process */
7026 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7027 map
= em
->map_lookup
;
7029 for (i
= 0; i
< map
->num_stripes
; i
++) {
7030 dev
= map
->stripes
[i
].dev
;
7031 dev
->commit_bytes_used
= dev
->bytes_used
;
7034 unlock_chunks(root
);
7037 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7039 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7040 while (fs_devices
) {
7041 fs_devices
->fs_info
= fs_info
;
7042 fs_devices
= fs_devices
->seed
;
7046 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7048 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7049 while (fs_devices
) {
7050 fs_devices
->fs_info
= NULL
;
7051 fs_devices
= fs_devices
->seed
;
7055 static void btrfs_close_one_device(struct btrfs_device
*device
)
7057 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
7058 struct btrfs_device
*new_device
;
7059 struct rcu_string
*name
;
7062 fs_devices
->open_devices
--;
7064 if (device
->writeable
&&
7065 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
7066 list_del_init(&device
->dev_alloc_list
);
7067 fs_devices
->rw_devices
--;
7070 if (device
->missing
)
7071 fs_devices
->missing_devices
--;
7073 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
7075 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
7077 /* Safe because we are under uuid_mutex */
7079 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
7080 BUG_ON(!name
); /* -ENOMEM */
7081 rcu_assign_pointer(new_device
->name
, name
);
7084 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
7085 new_device
->fs_devices
= device
->fs_devices
;
7087 call_rcu(&device
->rcu
, free_device
);