]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/volumes.c
Merge tag 'sched-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 [BTRFS_RAID_RAID10] = {
37 .sub_stripes = 2,
38 .dev_stripes = 1,
39 .devs_max = 0, /* 0 == as many as possible */
40 .devs_min = 4,
41 .tolerated_failures = 1,
42 .devs_increment = 2,
43 .ncopies = 2,
44 .nparity = 0,
45 .raid_name = "raid10",
46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 },
49 [BTRFS_RAID_RAID1] = {
50 .sub_stripes = 1,
51 .dev_stripes = 1,
52 .devs_max = 2,
53 .devs_min = 2,
54 .tolerated_failures = 1,
55 .devs_increment = 2,
56 .ncopies = 2,
57 .nparity = 0,
58 .raid_name = "raid1",
59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 },
62 [BTRFS_RAID_RAID1C3] = {
63 .sub_stripes = 1,
64 .dev_stripes = 1,
65 .devs_max = 3,
66 .devs_min = 3,
67 .tolerated_failures = 2,
68 .devs_increment = 3,
69 .ncopies = 3,
70 .nparity = 0,
71 .raid_name = "raid1c3",
72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 },
75 [BTRFS_RAID_RAID1C4] = {
76 .sub_stripes = 1,
77 .dev_stripes = 1,
78 .devs_max = 4,
79 .devs_min = 4,
80 .tolerated_failures = 3,
81 .devs_increment = 4,
82 .ncopies = 4,
83 .nparity = 0,
84 .raid_name = "raid1c4",
85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 },
88 [BTRFS_RAID_DUP] = {
89 .sub_stripes = 1,
90 .dev_stripes = 2,
91 .devs_max = 1,
92 .devs_min = 1,
93 .tolerated_failures = 0,
94 .devs_increment = 1,
95 .ncopies = 2,
96 .nparity = 0,
97 .raid_name = "dup",
98 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
99 .mindev_error = 0,
100 },
101 [BTRFS_RAID_RAID0] = {
102 .sub_stripes = 1,
103 .dev_stripes = 1,
104 .devs_max = 0,
105 .devs_min = 2,
106 .tolerated_failures = 0,
107 .devs_increment = 1,
108 .ncopies = 1,
109 .nparity = 0,
110 .raid_name = "raid0",
111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
112 .mindev_error = 0,
113 },
114 [BTRFS_RAID_SINGLE] = {
115 .sub_stripes = 1,
116 .dev_stripes = 1,
117 .devs_max = 1,
118 .devs_min = 1,
119 .tolerated_failures = 0,
120 .devs_increment = 1,
121 .ncopies = 1,
122 .nparity = 0,
123 .raid_name = "single",
124 .bg_flag = 0,
125 .mindev_error = 0,
126 },
127 [BTRFS_RAID_RAID5] = {
128 .sub_stripes = 1,
129 .dev_stripes = 1,
130 .devs_max = 0,
131 .devs_min = 2,
132 .tolerated_failures = 1,
133 .devs_increment = 1,
134 .ncopies = 1,
135 .nparity = 1,
136 .raid_name = "raid5",
137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 },
140 [BTRFS_RAID_RAID6] = {
141 .sub_stripes = 1,
142 .dev_stripes = 1,
143 .devs_max = 0,
144 .devs_min = 3,
145 .tolerated_failures = 2,
146 .devs_increment = 1,
147 .ncopies = 1,
148 .nparity = 2,
149 .raid_name = "raid6",
150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 },
153 };
154
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 const int index = btrfs_bg_flags_to_raid_index(flags);
158
159 if (index >= BTRFS_NR_RAID_TYPES)
160 return NULL;
161
162 return btrfs_raid_array[index].raid_name;
163 }
164
165 /*
166 * Fill @buf with textual description of @bg_flags, no more than @size_buf
167 * bytes including terminating null byte.
168 */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 int i;
172 int ret;
173 char *bp = buf;
174 u64 flags = bg_flags;
175 u32 size_bp = size_buf;
176
177 if (!flags) {
178 strcpy(bp, "NONE");
179 return;
180 }
181
182 #define DESCRIBE_FLAG(flag, desc) \
183 do { \
184 if (flags & (flag)) { \
185 ret = snprintf(bp, size_bp, "%s|", (desc)); \
186 if (ret < 0 || ret >= size_bp) \
187 goto out_overflow; \
188 size_bp -= ret; \
189 bp += ret; \
190 flags &= ~(flag); \
191 } \
192 } while (0)
193
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203
204 if (flags) {
205 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 size_bp -= ret;
207 }
208
209 if (size_bp < size_buf)
210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212 /*
213 * The text is trimmed, it's up to the caller to provide sufficiently
214 * large buffer
215 */
216 out_overflow:;
217 }
218
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 enum btrfs_map_op op,
225 u64 logical, u64 *length,
226 struct btrfs_bio **bbio_ret,
227 int mirror_num, int need_raid_map);
228
229 /*
230 * Device locking
231 * ==============
232 *
233 * There are several mutexes that protect manipulation of devices and low-level
234 * structures like chunks but not block groups, extents or files
235 *
236 * uuid_mutex (global lock)
237 * ------------------------
238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240 * device) or requested by the device= mount option
241 *
242 * the mutex can be very coarse and can cover long-running operations
243 *
244 * protects: updates to fs_devices counters like missing devices, rw devices,
245 * seeding, structure cloning, opening/closing devices at mount/umount time
246 *
247 * global::fs_devs - add, remove, updates to the global list
248 *
249 * does not protect: manipulation of the fs_devices::devices list in general
250 * but in mount context it could be used to exclude list modifications by eg.
251 * scan ioctl
252 *
253 * btrfs_device::name - renames (write side), read is RCU
254 *
255 * fs_devices::device_list_mutex (per-fs, with RCU)
256 * ------------------------------------------------
257 * protects updates to fs_devices::devices, ie. adding and deleting
258 *
259 * simple list traversal with read-only actions can be done with RCU protection
260 *
261 * may be used to exclude some operations from running concurrently without any
262 * modifications to the list (see write_all_supers)
263 *
264 * Is not required at mount and close times, because our device list is
265 * protected by the uuid_mutex at that point.
266 *
267 * balance_mutex
268 * -------------
269 * protects balance structures (status, state) and context accessed from
270 * several places (internally, ioctl)
271 *
272 * chunk_mutex
273 * -----------
274 * protects chunks, adding or removing during allocation, trim or when a new
275 * device is added/removed. Additionally it also protects post_commit_list of
276 * individual devices, since they can be added to the transaction's
277 * post_commit_list only with chunk_mutex held.
278 *
279 * cleaner_mutex
280 * -------------
281 * a big lock that is held by the cleaner thread and prevents running subvolume
282 * cleaning together with relocation or delayed iputs
283 *
284 *
285 * Lock nesting
286 * ============
287 *
288 * uuid_mutex
289 * device_list_mutex
290 * chunk_mutex
291 * balance_mutex
292 *
293 *
294 * Exclusive operations
295 * ====================
296 *
297 * Maintains the exclusivity of the following operations that apply to the
298 * whole filesystem and cannot run in parallel.
299 *
300 * - Balance (*)
301 * - Device add
302 * - Device remove
303 * - Device replace (*)
304 * - Resize
305 *
306 * The device operations (as above) can be in one of the following states:
307 *
308 * - Running state
309 * - Paused state
310 * - Completed state
311 *
312 * Only device operations marked with (*) can go into the Paused state for the
313 * following reasons:
314 *
315 * - ioctl (only Balance can be Paused through ioctl)
316 * - filesystem remounted as read-only
317 * - filesystem unmounted and mounted as read-only
318 * - system power-cycle and filesystem mounted as read-only
319 * - filesystem or device errors leading to forced read-only
320 *
321 * The status of exclusive operation is set and cleared atomically.
322 * During the course of Paused state, fs_info::exclusive_operation remains set.
323 * A device operation in Paused or Running state can be canceled or resumed
324 * either by ioctl (Balance only) or when remounted as read-write.
325 * The exclusive status is cleared when the device operation is canceled or
326 * completed.
327 */
328
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 return &fs_uuids;
334 }
335
336 /*
337 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
340 *
341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342 * The returned struct is not linked onto any lists and can be destroyed with
343 * kfree() right away.
344 */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 const u8 *metadata_fsid)
347 {
348 struct btrfs_fs_devices *fs_devs;
349
350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 if (!fs_devs)
352 return ERR_PTR(-ENOMEM);
353
354 mutex_init(&fs_devs->device_list_mutex);
355
356 INIT_LIST_HEAD(&fs_devs->devices);
357 INIT_LIST_HEAD(&fs_devs->alloc_list);
358 INIT_LIST_HEAD(&fs_devs->fs_list);
359 INIT_LIST_HEAD(&fs_devs->seed_list);
360 if (fsid)
361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
362
363 if (metadata_fsid)
364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
365 else if (fsid)
366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
367
368 return fs_devs;
369 }
370
371 void btrfs_free_device(struct btrfs_device *device)
372 {
373 WARN_ON(!list_empty(&device->post_commit_list));
374 rcu_string_free(device->name);
375 extent_io_tree_release(&device->alloc_state);
376 bio_put(device->flush_bio);
377 kfree(device);
378 }
379
380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
381 {
382 struct btrfs_device *device;
383 WARN_ON(fs_devices->opened);
384 while (!list_empty(&fs_devices->devices)) {
385 device = list_entry(fs_devices->devices.next,
386 struct btrfs_device, dev_list);
387 list_del(&device->dev_list);
388 btrfs_free_device(device);
389 }
390 kfree(fs_devices);
391 }
392
393 void __exit btrfs_cleanup_fs_uuids(void)
394 {
395 struct btrfs_fs_devices *fs_devices;
396
397 while (!list_empty(&fs_uuids)) {
398 fs_devices = list_entry(fs_uuids.next,
399 struct btrfs_fs_devices, fs_list);
400 list_del(&fs_devices->fs_list);
401 free_fs_devices(fs_devices);
402 }
403 }
404
405 /*
406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
407 * Returned struct is not linked onto any lists and must be destroyed using
408 * btrfs_free_device.
409 */
410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 {
412 struct btrfs_device *dev;
413
414 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 if (!dev)
416 return ERR_PTR(-ENOMEM);
417
418 /*
419 * Preallocate a bio that's always going to be used for flushing device
420 * barriers and matches the device lifespan
421 */
422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
423 if (!dev->flush_bio) {
424 kfree(dev);
425 return ERR_PTR(-ENOMEM);
426 }
427
428 INIT_LIST_HEAD(&dev->dev_list);
429 INIT_LIST_HEAD(&dev->dev_alloc_list);
430 INIT_LIST_HEAD(&dev->post_commit_list);
431
432 atomic_set(&dev->reada_in_flight, 0);
433 atomic_set(&dev->dev_stats_ccnt, 0);
434 btrfs_device_data_ordered_init(dev, fs_info);
435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 extent_io_tree_init(fs_info, &dev->alloc_state,
438 IO_TREE_DEVICE_ALLOC_STATE, NULL);
439
440 return dev;
441 }
442
443 static noinline struct btrfs_fs_devices *find_fsid(
444 const u8 *fsid, const u8 *metadata_fsid)
445 {
446 struct btrfs_fs_devices *fs_devices;
447
448 ASSERT(fsid);
449
450 /* Handle non-split brain cases */
451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 if (metadata_fsid) {
453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 BTRFS_FSID_SIZE) == 0)
456 return fs_devices;
457 } else {
458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 return fs_devices;
460 }
461 }
462 return NULL;
463 }
464
465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
466 struct btrfs_super_block *disk_super)
467 {
468
469 struct btrfs_fs_devices *fs_devices;
470
471 /*
472 * Handle scanned device having completed its fsid change but
473 * belonging to a fs_devices that was created by first scanning
474 * a device which didn't have its fsid/metadata_uuid changed
475 * at all and the CHANGING_FSID_V2 flag set.
476 */
477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 if (fs_devices->fsid_change &&
479 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
480 BTRFS_FSID_SIZE) == 0 &&
481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
482 BTRFS_FSID_SIZE) == 0) {
483 return fs_devices;
484 }
485 }
486 /*
487 * Handle scanned device having completed its fsid change but
488 * belonging to a fs_devices that was created by a device that
489 * has an outdated pair of fsid/metadata_uuid and
490 * CHANGING_FSID_V2 flag set.
491 */
492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
493 if (fs_devices->fsid_change &&
494 memcmp(fs_devices->metadata_uuid,
495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
497 BTRFS_FSID_SIZE) == 0) {
498 return fs_devices;
499 }
500 }
501
502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
503 }
504
505
506 static int
507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
508 int flush, struct block_device **bdev,
509 struct btrfs_super_block **disk_super)
510 {
511 int ret;
512
513 *bdev = blkdev_get_by_path(device_path, flags, holder);
514
515 if (IS_ERR(*bdev)) {
516 ret = PTR_ERR(*bdev);
517 goto error;
518 }
519
520 if (flush)
521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 if (ret) {
524 blkdev_put(*bdev, flags);
525 goto error;
526 }
527 invalidate_bdev(*bdev);
528 *disk_super = btrfs_read_dev_super(*bdev);
529 if (IS_ERR(*disk_super)) {
530 ret = PTR_ERR(*disk_super);
531 blkdev_put(*bdev, flags);
532 goto error;
533 }
534
535 return 0;
536
537 error:
538 *bdev = NULL;
539 return ret;
540 }
541
542 static bool device_path_matched(const char *path, struct btrfs_device *device)
543 {
544 int found;
545
546 rcu_read_lock();
547 found = strcmp(rcu_str_deref(device->name), path);
548 rcu_read_unlock();
549
550 return found == 0;
551 }
552
553 /*
554 * Search and remove all stale (devices which are not mounted) devices.
555 * When both inputs are NULL, it will search and release all stale devices.
556 * path: Optional. When provided will it release all unmounted devices
557 * matching this path only.
558 * skip_dev: Optional. Will skip this device when searching for the stale
559 * devices.
560 * Return: 0 for success or if @path is NULL.
561 * -EBUSY if @path is a mounted device.
562 * -ENOENT if @path does not match any device in the list.
563 */
564 static int btrfs_free_stale_devices(const char *path,
565 struct btrfs_device *skip_device)
566 {
567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
568 struct btrfs_device *device, *tmp_device;
569 int ret = 0;
570
571 if (path)
572 ret = -ENOENT;
573
574 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
575
576 mutex_lock(&fs_devices->device_list_mutex);
577 list_for_each_entry_safe(device, tmp_device,
578 &fs_devices->devices, dev_list) {
579 if (skip_device && skip_device == device)
580 continue;
581 if (path && !device->name)
582 continue;
583 if (path && !device_path_matched(path, device))
584 continue;
585 if (fs_devices->opened) {
586 /* for an already deleted device return 0 */
587 if (path && ret != 0)
588 ret = -EBUSY;
589 break;
590 }
591
592 /* delete the stale device */
593 fs_devices->num_devices--;
594 list_del(&device->dev_list);
595 btrfs_free_device(device);
596
597 ret = 0;
598 }
599 mutex_unlock(&fs_devices->device_list_mutex);
600
601 if (fs_devices->num_devices == 0) {
602 btrfs_sysfs_remove_fsid(fs_devices);
603 list_del(&fs_devices->fs_list);
604 free_fs_devices(fs_devices);
605 }
606 }
607
608 return ret;
609 }
610
611 /*
612 * This is only used on mount, and we are protected from competing things
613 * messing with our fs_devices by the uuid_mutex, thus we do not need the
614 * fs_devices->device_list_mutex here.
615 */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 struct btrfs_device *device, fmode_t flags,
618 void *holder)
619 {
620 struct request_queue *q;
621 struct block_device *bdev;
622 struct btrfs_super_block *disk_super;
623 u64 devid;
624 int ret;
625
626 if (device->bdev)
627 return -EINVAL;
628 if (!device->name)
629 return -EINVAL;
630
631 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 &bdev, &disk_super);
633 if (ret)
634 return ret;
635
636 devid = btrfs_stack_device_id(&disk_super->dev_item);
637 if (devid != device->devid)
638 goto error_free_page;
639
640 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 goto error_free_page;
642
643 device->generation = btrfs_super_generation(disk_super);
644
645 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 if (btrfs_super_incompat_flags(disk_super) &
647 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 pr_err(
649 "BTRFS: Invalid seeding and uuid-changed device detected\n");
650 goto error_free_page;
651 }
652
653 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 fs_devices->seeding = true;
655 } else {
656 if (bdev_read_only(bdev))
657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 else
659 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 }
661
662 q = bdev_get_queue(bdev);
663 if (!blk_queue_nonrot(q))
664 fs_devices->rotating = true;
665
666 device->bdev = bdev;
667 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 device->mode = flags;
669
670 fs_devices->open_devices++;
671 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 fs_devices->rw_devices++;
674 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 }
676 btrfs_release_disk_super(disk_super);
677
678 return 0;
679
680 error_free_page:
681 btrfs_release_disk_super(disk_super);
682 blkdev_put(bdev, flags);
683
684 return -EINVAL;
685 }
686
687 /*
688 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689 * being created with a disk that has already completed its fsid change. Such
690 * disk can belong to an fs which has its FSID changed or to one which doesn't.
691 * Handle both cases here.
692 */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 struct btrfs_super_block *disk_super)
695 {
696 struct btrfs_fs_devices *fs_devices;
697
698 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 BTRFS_FSID_SIZE) != 0 &&
701 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 return fs_devices;
704 }
705 }
706
707 return find_fsid(disk_super->fsid, NULL);
708 }
709
710
711 static struct btrfs_fs_devices *find_fsid_changed(
712 struct btrfs_super_block *disk_super)
713 {
714 struct btrfs_fs_devices *fs_devices;
715
716 /*
717 * Handles the case where scanned device is part of an fs that had
718 * multiple successful changes of FSID but curently device didn't
719 * observe it. Meaning our fsid will be different than theirs. We need
720 * to handle two subcases :
721 * 1 - The fs still continues to have different METADATA/FSID uuids.
722 * 2 - The fs is switched back to its original FSID (METADATA/FSID
723 * are equal).
724 */
725 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 /* Changed UUIDs */
727 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 BTRFS_FSID_SIZE) != 0 &&
729 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 BTRFS_FSID_SIZE) == 0 &&
731 memcmp(fs_devices->fsid, disk_super->fsid,
732 BTRFS_FSID_SIZE) != 0)
733 return fs_devices;
734
735 /* Unchanged UUIDs */
736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 BTRFS_FSID_SIZE) == 0 &&
738 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 BTRFS_FSID_SIZE) == 0)
740 return fs_devices;
741 }
742
743 return NULL;
744 }
745
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 struct btrfs_super_block *disk_super)
748 {
749 struct btrfs_fs_devices *fs_devices;
750
751 /*
752 * Handle the case where the scanned device is part of an fs whose last
753 * metadata UUID change reverted it to the original FSID. At the same
754 * time * fs_devices was first created by another constitutent device
755 * which didn't fully observe the operation. This results in an
756 * btrfs_fs_devices created with metadata/fsid different AND
757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 * fs_devices equal to the FSID of the disk.
759 */
760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 BTRFS_FSID_SIZE) != 0 &&
763 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 BTRFS_FSID_SIZE) == 0 &&
765 fs_devices->fsid_change)
766 return fs_devices;
767 }
768
769 return NULL;
770 }
771 /*
772 * Add new device to list of registered devices
773 *
774 * Returns:
775 * device pointer which was just added or updated when successful
776 * error pointer when failed
777 */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779 struct btrfs_super_block *disk_super,
780 bool *new_device_added)
781 {
782 struct btrfs_device *device;
783 struct btrfs_fs_devices *fs_devices = NULL;
784 struct rcu_string *name;
785 u64 found_transid = btrfs_super_generation(disk_super);
786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791
792 if (fsid_change_in_progress) {
793 if (!has_metadata_uuid)
794 fs_devices = find_fsid_inprogress(disk_super);
795 else
796 fs_devices = find_fsid_changed(disk_super);
797 } else if (has_metadata_uuid) {
798 fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 } else {
800 fs_devices = find_fsid_reverted_metadata(disk_super);
801 if (!fs_devices)
802 fs_devices = find_fsid(disk_super->fsid, NULL);
803 }
804
805
806 if (!fs_devices) {
807 if (has_metadata_uuid)
808 fs_devices = alloc_fs_devices(disk_super->fsid,
809 disk_super->metadata_uuid);
810 else
811 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812
813 if (IS_ERR(fs_devices))
814 return ERR_CAST(fs_devices);
815
816 fs_devices->fsid_change = fsid_change_in_progress;
817
818 mutex_lock(&fs_devices->device_list_mutex);
819 list_add(&fs_devices->fs_list, &fs_uuids);
820
821 device = NULL;
822 } else {
823 mutex_lock(&fs_devices->device_list_mutex);
824 device = btrfs_find_device(fs_devices, devid,
825 disk_super->dev_item.uuid, NULL, false);
826
827 /*
828 * If this disk has been pulled into an fs devices created by
829 * a device which had the CHANGING_FSID_V2 flag then replace the
830 * metadata_uuid/fsid values of the fs_devices.
831 */
832 if (fs_devices->fsid_change &&
833 found_transid > fs_devices->latest_generation) {
834 memcpy(fs_devices->fsid, disk_super->fsid,
835 BTRFS_FSID_SIZE);
836
837 if (has_metadata_uuid)
838 memcpy(fs_devices->metadata_uuid,
839 disk_super->metadata_uuid,
840 BTRFS_FSID_SIZE);
841 else
842 memcpy(fs_devices->metadata_uuid,
843 disk_super->fsid, BTRFS_FSID_SIZE);
844
845 fs_devices->fsid_change = false;
846 }
847 }
848
849 if (!device) {
850 if (fs_devices->opened) {
851 mutex_unlock(&fs_devices->device_list_mutex);
852 return ERR_PTR(-EBUSY);
853 }
854
855 device = btrfs_alloc_device(NULL, &devid,
856 disk_super->dev_item.uuid);
857 if (IS_ERR(device)) {
858 mutex_unlock(&fs_devices->device_list_mutex);
859 /* we can safely leave the fs_devices entry around */
860 return device;
861 }
862
863 name = rcu_string_strdup(path, GFP_NOFS);
864 if (!name) {
865 btrfs_free_device(device);
866 mutex_unlock(&fs_devices->device_list_mutex);
867 return ERR_PTR(-ENOMEM);
868 }
869 rcu_assign_pointer(device->name, name);
870
871 list_add_rcu(&device->dev_list, &fs_devices->devices);
872 fs_devices->num_devices++;
873
874 device->fs_devices = fs_devices;
875 *new_device_added = true;
876
877 if (disk_super->label[0])
878 pr_info(
879 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 disk_super->label, devid, found_transid, path,
881 current->comm, task_pid_nr(current));
882 else
883 pr_info(
884 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 disk_super->fsid, devid, found_transid, path,
886 current->comm, task_pid_nr(current));
887
888 } else if (!device->name || strcmp(device->name->str, path)) {
889 /*
890 * When FS is already mounted.
891 * 1. If you are here and if the device->name is NULL that
892 * means this device was missing at time of FS mount.
893 * 2. If you are here and if the device->name is different
894 * from 'path' that means either
895 * a. The same device disappeared and reappeared with
896 * different name. or
897 * b. The missing-disk-which-was-replaced, has
898 * reappeared now.
899 *
900 * We must allow 1 and 2a above. But 2b would be a spurious
901 * and unintentional.
902 *
903 * Further in case of 1 and 2a above, the disk at 'path'
904 * would have missed some transaction when it was away and
905 * in case of 2a the stale bdev has to be updated as well.
906 * 2b must not be allowed at all time.
907 */
908
909 /*
910 * For now, we do allow update to btrfs_fs_device through the
911 * btrfs dev scan cli after FS has been mounted. We're still
912 * tracking a problem where systems fail mount by subvolume id
913 * when we reject replacement on a mounted FS.
914 */
915 if (!fs_devices->opened && found_transid < device->generation) {
916 /*
917 * That is if the FS is _not_ mounted and if you
918 * are here, that means there is more than one
919 * disk with same uuid and devid.We keep the one
920 * with larger generation number or the last-in if
921 * generation are equal.
922 */
923 mutex_unlock(&fs_devices->device_list_mutex);
924 return ERR_PTR(-EEXIST);
925 }
926
927 /*
928 * We are going to replace the device path for a given devid,
929 * make sure it's the same device if the device is mounted
930 */
931 if (device->bdev) {
932 struct block_device *path_bdev;
933
934 path_bdev = lookup_bdev(path);
935 if (IS_ERR(path_bdev)) {
936 mutex_unlock(&fs_devices->device_list_mutex);
937 return ERR_CAST(path_bdev);
938 }
939
940 if (device->bdev != path_bdev) {
941 bdput(path_bdev);
942 mutex_unlock(&fs_devices->device_list_mutex);
943 btrfs_warn_in_rcu(device->fs_info,
944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
945 path, devid, found_transid,
946 current->comm,
947 task_pid_nr(current));
948 return ERR_PTR(-EEXIST);
949 }
950 bdput(path_bdev);
951 btrfs_info_in_rcu(device->fs_info,
952 "devid %llu device path %s changed to %s scanned by %s (%d)",
953 devid, rcu_str_deref(device->name),
954 path, current->comm,
955 task_pid_nr(current));
956 }
957
958 name = rcu_string_strdup(path, GFP_NOFS);
959 if (!name) {
960 mutex_unlock(&fs_devices->device_list_mutex);
961 return ERR_PTR(-ENOMEM);
962 }
963 rcu_string_free(device->name);
964 rcu_assign_pointer(device->name, name);
965 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966 fs_devices->missing_devices--;
967 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968 }
969 }
970
971 /*
972 * Unmount does not free the btrfs_device struct but would zero
973 * generation along with most of the other members. So just update
974 * it back. We need it to pick the disk with largest generation
975 * (as above).
976 */
977 if (!fs_devices->opened) {
978 device->generation = found_transid;
979 fs_devices->latest_generation = max_t(u64, found_transid,
980 fs_devices->latest_generation);
981 }
982
983 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
984
985 mutex_unlock(&fs_devices->device_list_mutex);
986 return device;
987 }
988
989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
990 {
991 struct btrfs_fs_devices *fs_devices;
992 struct btrfs_device *device;
993 struct btrfs_device *orig_dev;
994 int ret = 0;
995
996 fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 if (IS_ERR(fs_devices))
998 return fs_devices;
999
1000 mutex_lock(&orig->device_list_mutex);
1001 fs_devices->total_devices = orig->total_devices;
1002
1003 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 struct rcu_string *name;
1005
1006 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1007 orig_dev->uuid);
1008 if (IS_ERR(device)) {
1009 ret = PTR_ERR(device);
1010 goto error;
1011 }
1012
1013 /*
1014 * This is ok to do without rcu read locked because we hold the
1015 * uuid mutex so nothing we touch in here is going to disappear.
1016 */
1017 if (orig_dev->name) {
1018 name = rcu_string_strdup(orig_dev->name->str,
1019 GFP_KERNEL);
1020 if (!name) {
1021 btrfs_free_device(device);
1022 ret = -ENOMEM;
1023 goto error;
1024 }
1025 rcu_assign_pointer(device->name, name);
1026 }
1027
1028 list_add(&device->dev_list, &fs_devices->devices);
1029 device->fs_devices = fs_devices;
1030 fs_devices->num_devices++;
1031 }
1032 mutex_unlock(&orig->device_list_mutex);
1033 return fs_devices;
1034 error:
1035 mutex_unlock(&orig->device_list_mutex);
1036 free_fs_devices(fs_devices);
1037 return ERR_PTR(ret);
1038 }
1039
1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1041 int step, struct btrfs_device **latest_dev)
1042 {
1043 struct btrfs_device *device, *next;
1044
1045 /* This is the initialized path, it is safe to release the devices. */
1046 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049 &device->dev_state) &&
1050 !test_bit(BTRFS_DEV_STATE_MISSING,
1051 &device->dev_state) &&
1052 (!*latest_dev ||
1053 device->generation > (*latest_dev)->generation)) {
1054 *latest_dev = device;
1055 }
1056 continue;
1057 }
1058
1059 /*
1060 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1061 * in btrfs_init_dev_replace() so just continue.
1062 */
1063 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1064 continue;
1065
1066 if (device->bdev) {
1067 blkdev_put(device->bdev, device->mode);
1068 device->bdev = NULL;
1069 fs_devices->open_devices--;
1070 }
1071 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1072 list_del_init(&device->dev_alloc_list);
1073 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1074 }
1075 list_del_init(&device->dev_list);
1076 fs_devices->num_devices--;
1077 btrfs_free_device(device);
1078 }
1079
1080 }
1081
1082 /*
1083 * After we have read the system tree and know devids belonging to this
1084 * filesystem, remove the device which does not belong there.
1085 */
1086 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1087 {
1088 struct btrfs_device *latest_dev = NULL;
1089 struct btrfs_fs_devices *seed_dev;
1090
1091 mutex_lock(&uuid_mutex);
1092 __btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1093
1094 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1095 __btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1096
1097 fs_devices->latest_bdev = latest_dev->bdev;
1098
1099 mutex_unlock(&uuid_mutex);
1100 }
1101
1102 static void btrfs_close_bdev(struct btrfs_device *device)
1103 {
1104 if (!device->bdev)
1105 return;
1106
1107 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1108 sync_blockdev(device->bdev);
1109 invalidate_bdev(device->bdev);
1110 }
1111
1112 blkdev_put(device->bdev, device->mode);
1113 }
1114
1115 static void btrfs_close_one_device(struct btrfs_device *device)
1116 {
1117 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1118
1119 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1120 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1121 list_del_init(&device->dev_alloc_list);
1122 fs_devices->rw_devices--;
1123 }
1124
1125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 fs_devices->missing_devices--;
1127
1128 btrfs_close_bdev(device);
1129 if (device->bdev) {
1130 fs_devices->open_devices--;
1131 device->bdev = NULL;
1132 }
1133 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
1138
1139 /* Verify the device is back in a pristine state */
1140 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1141 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1142 ASSERT(list_empty(&device->dev_alloc_list));
1143 ASSERT(list_empty(&device->post_commit_list));
1144 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1145 }
1146
1147 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1148 {
1149 struct btrfs_device *device, *tmp;
1150
1151 lockdep_assert_held(&uuid_mutex);
1152
1153 if (--fs_devices->opened > 0)
1154 return;
1155
1156 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1157 btrfs_close_one_device(device);
1158
1159 WARN_ON(fs_devices->open_devices);
1160 WARN_ON(fs_devices->rw_devices);
1161 fs_devices->opened = 0;
1162 fs_devices->seeding = false;
1163 fs_devices->fs_info = NULL;
1164 }
1165
1166 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1167 {
1168 LIST_HEAD(list);
1169 struct btrfs_fs_devices *tmp;
1170
1171 mutex_lock(&uuid_mutex);
1172 close_fs_devices(fs_devices);
1173 if (!fs_devices->opened)
1174 list_splice_init(&fs_devices->seed_list, &list);
1175
1176 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1177 close_fs_devices(fs_devices);
1178 list_del(&fs_devices->seed_list);
1179 free_fs_devices(fs_devices);
1180 }
1181 mutex_unlock(&uuid_mutex);
1182 }
1183
1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1185 fmode_t flags, void *holder)
1186 {
1187 struct btrfs_device *device;
1188 struct btrfs_device *latest_dev = NULL;
1189 struct btrfs_device *tmp_device;
1190
1191 flags |= FMODE_EXCL;
1192
1193 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1194 dev_list) {
1195 int ret;
1196
1197 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1198 if (ret == 0 &&
1199 (!latest_dev || device->generation > latest_dev->generation)) {
1200 latest_dev = device;
1201 } else if (ret == -ENODATA) {
1202 fs_devices->num_devices--;
1203 list_del(&device->dev_list);
1204 btrfs_free_device(device);
1205 }
1206 }
1207 if (fs_devices->open_devices == 0)
1208 return -EINVAL;
1209
1210 fs_devices->opened = 1;
1211 fs_devices->latest_bdev = latest_dev->bdev;
1212 fs_devices->total_rw_bytes = 0;
1213 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1214
1215 return 0;
1216 }
1217
1218 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1219 {
1220 struct btrfs_device *dev1, *dev2;
1221
1222 dev1 = list_entry(a, struct btrfs_device, dev_list);
1223 dev2 = list_entry(b, struct btrfs_device, dev_list);
1224
1225 if (dev1->devid < dev2->devid)
1226 return -1;
1227 else if (dev1->devid > dev2->devid)
1228 return 1;
1229 return 0;
1230 }
1231
1232 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1233 fmode_t flags, void *holder)
1234 {
1235 int ret;
1236
1237 lockdep_assert_held(&uuid_mutex);
1238 /*
1239 * The device_list_mutex cannot be taken here in case opening the
1240 * underlying device takes further locks like bd_mutex.
1241 *
1242 * We also don't need the lock here as this is called during mount and
1243 * exclusion is provided by uuid_mutex
1244 */
1245
1246 if (fs_devices->opened) {
1247 fs_devices->opened++;
1248 ret = 0;
1249 } else {
1250 list_sort(NULL, &fs_devices->devices, devid_cmp);
1251 ret = open_fs_devices(fs_devices, flags, holder);
1252 }
1253
1254 return ret;
1255 }
1256
1257 void btrfs_release_disk_super(struct btrfs_super_block *super)
1258 {
1259 struct page *page = virt_to_page(super);
1260
1261 put_page(page);
1262 }
1263
1264 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1265 u64 bytenr)
1266 {
1267 struct btrfs_super_block *disk_super;
1268 struct page *page;
1269 void *p;
1270 pgoff_t index;
1271
1272 /* make sure our super fits in the device */
1273 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1274 return ERR_PTR(-EINVAL);
1275
1276 /* make sure our super fits in the page */
1277 if (sizeof(*disk_super) > PAGE_SIZE)
1278 return ERR_PTR(-EINVAL);
1279
1280 /* make sure our super doesn't straddle pages on disk */
1281 index = bytenr >> PAGE_SHIFT;
1282 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1283 return ERR_PTR(-EINVAL);
1284
1285 /* pull in the page with our super */
1286 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1287
1288 if (IS_ERR(page))
1289 return ERR_CAST(page);
1290
1291 p = page_address(page);
1292
1293 /* align our pointer to the offset of the super block */
1294 disk_super = p + offset_in_page(bytenr);
1295
1296 if (btrfs_super_bytenr(disk_super) != bytenr ||
1297 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1298 btrfs_release_disk_super(p);
1299 return ERR_PTR(-EINVAL);
1300 }
1301
1302 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1303 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1304
1305 return disk_super;
1306 }
1307
1308 int btrfs_forget_devices(const char *path)
1309 {
1310 int ret;
1311
1312 mutex_lock(&uuid_mutex);
1313 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1314 mutex_unlock(&uuid_mutex);
1315
1316 return ret;
1317 }
1318
1319 /*
1320 * Look for a btrfs signature on a device. This may be called out of the mount path
1321 * and we are not allowed to call set_blocksize during the scan. The superblock
1322 * is read via pagecache
1323 */
1324 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1325 void *holder)
1326 {
1327 struct btrfs_super_block *disk_super;
1328 bool new_device_added = false;
1329 struct btrfs_device *device = NULL;
1330 struct block_device *bdev;
1331 u64 bytenr;
1332
1333 lockdep_assert_held(&uuid_mutex);
1334
1335 /*
1336 * we would like to check all the supers, but that would make
1337 * a btrfs mount succeed after a mkfs from a different FS.
1338 * So, we need to add a special mount option to scan for
1339 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1340 */
1341 bytenr = btrfs_sb_offset(0);
1342 flags |= FMODE_EXCL;
1343
1344 bdev = blkdev_get_by_path(path, flags, holder);
1345 if (IS_ERR(bdev))
1346 return ERR_CAST(bdev);
1347
1348 disk_super = btrfs_read_disk_super(bdev, bytenr);
1349 if (IS_ERR(disk_super)) {
1350 device = ERR_CAST(disk_super);
1351 goto error_bdev_put;
1352 }
1353
1354 device = device_list_add(path, disk_super, &new_device_added);
1355 if (!IS_ERR(device)) {
1356 if (new_device_added)
1357 btrfs_free_stale_devices(path, device);
1358 }
1359
1360 btrfs_release_disk_super(disk_super);
1361
1362 error_bdev_put:
1363 blkdev_put(bdev, flags);
1364
1365 return device;
1366 }
1367
1368 /*
1369 * Try to find a chunk that intersects [start, start + len] range and when one
1370 * such is found, record the end of it in *start
1371 */
1372 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1373 u64 len)
1374 {
1375 u64 physical_start, physical_end;
1376
1377 lockdep_assert_held(&device->fs_info->chunk_mutex);
1378
1379 if (!find_first_extent_bit(&device->alloc_state, *start,
1380 &physical_start, &physical_end,
1381 CHUNK_ALLOCATED, NULL)) {
1382
1383 if (in_range(physical_start, *start, len) ||
1384 in_range(*start, physical_start,
1385 physical_end - physical_start)) {
1386 *start = physical_end + 1;
1387 return true;
1388 }
1389 }
1390 return false;
1391 }
1392
1393 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1394 {
1395 switch (device->fs_devices->chunk_alloc_policy) {
1396 case BTRFS_CHUNK_ALLOC_REGULAR:
1397 /*
1398 * We don't want to overwrite the superblock on the drive nor
1399 * any area used by the boot loader (grub for example), so we
1400 * make sure to start at an offset of at least 1MB.
1401 */
1402 return max_t(u64, start, SZ_1M);
1403 default:
1404 BUG();
1405 }
1406 }
1407
1408 /**
1409 * dev_extent_hole_check - check if specified hole is suitable for allocation
1410 * @device: the device which we have the hole
1411 * @hole_start: starting position of the hole
1412 * @hole_size: the size of the hole
1413 * @num_bytes: the size of the free space that we need
1414 *
1415 * This function may modify @hole_start and @hole_end to reflect the suitable
1416 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1417 */
1418 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1419 u64 *hole_size, u64 num_bytes)
1420 {
1421 bool changed = false;
1422 u64 hole_end = *hole_start + *hole_size;
1423
1424 /*
1425 * Check before we set max_hole_start, otherwise we could end up
1426 * sending back this offset anyway.
1427 */
1428 if (contains_pending_extent(device, hole_start, *hole_size)) {
1429 if (hole_end >= *hole_start)
1430 *hole_size = hole_end - *hole_start;
1431 else
1432 *hole_size = 0;
1433 changed = true;
1434 }
1435
1436 switch (device->fs_devices->chunk_alloc_policy) {
1437 case BTRFS_CHUNK_ALLOC_REGULAR:
1438 /* No extra check */
1439 break;
1440 default:
1441 BUG();
1442 }
1443
1444 return changed;
1445 }
1446
1447 /*
1448 * find_free_dev_extent_start - find free space in the specified device
1449 * @device: the device which we search the free space in
1450 * @num_bytes: the size of the free space that we need
1451 * @search_start: the position from which to begin the search
1452 * @start: store the start of the free space.
1453 * @len: the size of the free space. that we find, or the size
1454 * of the max free space if we don't find suitable free space
1455 *
1456 * this uses a pretty simple search, the expectation is that it is
1457 * called very infrequently and that a given device has a small number
1458 * of extents
1459 *
1460 * @start is used to store the start of the free space if we find. But if we
1461 * don't find suitable free space, it will be used to store the start position
1462 * of the max free space.
1463 *
1464 * @len is used to store the size of the free space that we find.
1465 * But if we don't find suitable free space, it is used to store the size of
1466 * the max free space.
1467 *
1468 * NOTE: This function will search *commit* root of device tree, and does extra
1469 * check to ensure dev extents are not double allocated.
1470 * This makes the function safe to allocate dev extents but may not report
1471 * correct usable device space, as device extent freed in current transaction
1472 * is not reported as avaiable.
1473 */
1474 static int find_free_dev_extent_start(struct btrfs_device *device,
1475 u64 num_bytes, u64 search_start, u64 *start,
1476 u64 *len)
1477 {
1478 struct btrfs_fs_info *fs_info = device->fs_info;
1479 struct btrfs_root *root = fs_info->dev_root;
1480 struct btrfs_key key;
1481 struct btrfs_dev_extent *dev_extent;
1482 struct btrfs_path *path;
1483 u64 hole_size;
1484 u64 max_hole_start;
1485 u64 max_hole_size;
1486 u64 extent_end;
1487 u64 search_end = device->total_bytes;
1488 int ret;
1489 int slot;
1490 struct extent_buffer *l;
1491
1492 search_start = dev_extent_search_start(device, search_start);
1493
1494 path = btrfs_alloc_path();
1495 if (!path)
1496 return -ENOMEM;
1497
1498 max_hole_start = search_start;
1499 max_hole_size = 0;
1500
1501 again:
1502 if (search_start >= search_end ||
1503 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1504 ret = -ENOSPC;
1505 goto out;
1506 }
1507
1508 path->reada = READA_FORWARD;
1509 path->search_commit_root = 1;
1510 path->skip_locking = 1;
1511
1512 key.objectid = device->devid;
1513 key.offset = search_start;
1514 key.type = BTRFS_DEV_EXTENT_KEY;
1515
1516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1517 if (ret < 0)
1518 goto out;
1519 if (ret > 0) {
1520 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1521 if (ret < 0)
1522 goto out;
1523 }
1524
1525 while (1) {
1526 l = path->nodes[0];
1527 slot = path->slots[0];
1528 if (slot >= btrfs_header_nritems(l)) {
1529 ret = btrfs_next_leaf(root, path);
1530 if (ret == 0)
1531 continue;
1532 if (ret < 0)
1533 goto out;
1534
1535 break;
1536 }
1537 btrfs_item_key_to_cpu(l, &key, slot);
1538
1539 if (key.objectid < device->devid)
1540 goto next;
1541
1542 if (key.objectid > device->devid)
1543 break;
1544
1545 if (key.type != BTRFS_DEV_EXTENT_KEY)
1546 goto next;
1547
1548 if (key.offset > search_start) {
1549 hole_size = key.offset - search_start;
1550 dev_extent_hole_check(device, &search_start, &hole_size,
1551 num_bytes);
1552
1553 if (hole_size > max_hole_size) {
1554 max_hole_start = search_start;
1555 max_hole_size = hole_size;
1556 }
1557
1558 /*
1559 * If this free space is greater than which we need,
1560 * it must be the max free space that we have found
1561 * until now, so max_hole_start must point to the start
1562 * of this free space and the length of this free space
1563 * is stored in max_hole_size. Thus, we return
1564 * max_hole_start and max_hole_size and go back to the
1565 * caller.
1566 */
1567 if (hole_size >= num_bytes) {
1568 ret = 0;
1569 goto out;
1570 }
1571 }
1572
1573 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1574 extent_end = key.offset + btrfs_dev_extent_length(l,
1575 dev_extent);
1576 if (extent_end > search_start)
1577 search_start = extent_end;
1578 next:
1579 path->slots[0]++;
1580 cond_resched();
1581 }
1582
1583 /*
1584 * At this point, search_start should be the end of
1585 * allocated dev extents, and when shrinking the device,
1586 * search_end may be smaller than search_start.
1587 */
1588 if (search_end > search_start) {
1589 hole_size = search_end - search_start;
1590 if (dev_extent_hole_check(device, &search_start, &hole_size,
1591 num_bytes)) {
1592 btrfs_release_path(path);
1593 goto again;
1594 }
1595
1596 if (hole_size > max_hole_size) {
1597 max_hole_start = search_start;
1598 max_hole_size = hole_size;
1599 }
1600 }
1601
1602 /* See above. */
1603 if (max_hole_size < num_bytes)
1604 ret = -ENOSPC;
1605 else
1606 ret = 0;
1607
1608 out:
1609 btrfs_free_path(path);
1610 *start = max_hole_start;
1611 if (len)
1612 *len = max_hole_size;
1613 return ret;
1614 }
1615
1616 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1617 u64 *start, u64 *len)
1618 {
1619 /* FIXME use last free of some kind */
1620 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1621 }
1622
1623 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1624 struct btrfs_device *device,
1625 u64 start, u64 *dev_extent_len)
1626 {
1627 struct btrfs_fs_info *fs_info = device->fs_info;
1628 struct btrfs_root *root = fs_info->dev_root;
1629 int ret;
1630 struct btrfs_path *path;
1631 struct btrfs_key key;
1632 struct btrfs_key found_key;
1633 struct extent_buffer *leaf = NULL;
1634 struct btrfs_dev_extent *extent = NULL;
1635
1636 path = btrfs_alloc_path();
1637 if (!path)
1638 return -ENOMEM;
1639
1640 key.objectid = device->devid;
1641 key.offset = start;
1642 key.type = BTRFS_DEV_EXTENT_KEY;
1643 again:
1644 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1645 if (ret > 0) {
1646 ret = btrfs_previous_item(root, path, key.objectid,
1647 BTRFS_DEV_EXTENT_KEY);
1648 if (ret)
1649 goto out;
1650 leaf = path->nodes[0];
1651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1652 extent = btrfs_item_ptr(leaf, path->slots[0],
1653 struct btrfs_dev_extent);
1654 BUG_ON(found_key.offset > start || found_key.offset +
1655 btrfs_dev_extent_length(leaf, extent) < start);
1656 key = found_key;
1657 btrfs_release_path(path);
1658 goto again;
1659 } else if (ret == 0) {
1660 leaf = path->nodes[0];
1661 extent = btrfs_item_ptr(leaf, path->slots[0],
1662 struct btrfs_dev_extent);
1663 } else {
1664 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1665 goto out;
1666 }
1667
1668 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1669
1670 ret = btrfs_del_item(trans, root, path);
1671 if (ret) {
1672 btrfs_handle_fs_error(fs_info, ret,
1673 "Failed to remove dev extent item");
1674 } else {
1675 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1676 }
1677 out:
1678 btrfs_free_path(path);
1679 return ret;
1680 }
1681
1682 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1683 struct btrfs_device *device,
1684 u64 chunk_offset, u64 start, u64 num_bytes)
1685 {
1686 int ret;
1687 struct btrfs_path *path;
1688 struct btrfs_fs_info *fs_info = device->fs_info;
1689 struct btrfs_root *root = fs_info->dev_root;
1690 struct btrfs_dev_extent *extent;
1691 struct extent_buffer *leaf;
1692 struct btrfs_key key;
1693
1694 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1695 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1696 path = btrfs_alloc_path();
1697 if (!path)
1698 return -ENOMEM;
1699
1700 key.objectid = device->devid;
1701 key.offset = start;
1702 key.type = BTRFS_DEV_EXTENT_KEY;
1703 ret = btrfs_insert_empty_item(trans, root, path, &key,
1704 sizeof(*extent));
1705 if (ret)
1706 goto out;
1707
1708 leaf = path->nodes[0];
1709 extent = btrfs_item_ptr(leaf, path->slots[0],
1710 struct btrfs_dev_extent);
1711 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1712 BTRFS_CHUNK_TREE_OBJECTID);
1713 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1714 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1715 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1716
1717 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1718 btrfs_mark_buffer_dirty(leaf);
1719 out:
1720 btrfs_free_path(path);
1721 return ret;
1722 }
1723
1724 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1725 {
1726 struct extent_map_tree *em_tree;
1727 struct extent_map *em;
1728 struct rb_node *n;
1729 u64 ret = 0;
1730
1731 em_tree = &fs_info->mapping_tree;
1732 read_lock(&em_tree->lock);
1733 n = rb_last(&em_tree->map.rb_root);
1734 if (n) {
1735 em = rb_entry(n, struct extent_map, rb_node);
1736 ret = em->start + em->len;
1737 }
1738 read_unlock(&em_tree->lock);
1739
1740 return ret;
1741 }
1742
1743 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1744 u64 *devid_ret)
1745 {
1746 int ret;
1747 struct btrfs_key key;
1748 struct btrfs_key found_key;
1749 struct btrfs_path *path;
1750
1751 path = btrfs_alloc_path();
1752 if (!path)
1753 return -ENOMEM;
1754
1755 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1756 key.type = BTRFS_DEV_ITEM_KEY;
1757 key.offset = (u64)-1;
1758
1759 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1760 if (ret < 0)
1761 goto error;
1762
1763 if (ret == 0) {
1764 /* Corruption */
1765 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1766 ret = -EUCLEAN;
1767 goto error;
1768 }
1769
1770 ret = btrfs_previous_item(fs_info->chunk_root, path,
1771 BTRFS_DEV_ITEMS_OBJECTID,
1772 BTRFS_DEV_ITEM_KEY);
1773 if (ret) {
1774 *devid_ret = 1;
1775 } else {
1776 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1777 path->slots[0]);
1778 *devid_ret = found_key.offset + 1;
1779 }
1780 ret = 0;
1781 error:
1782 btrfs_free_path(path);
1783 return ret;
1784 }
1785
1786 /*
1787 * the device information is stored in the chunk root
1788 * the btrfs_device struct should be fully filled in
1789 */
1790 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1791 struct btrfs_device *device)
1792 {
1793 int ret;
1794 struct btrfs_path *path;
1795 struct btrfs_dev_item *dev_item;
1796 struct extent_buffer *leaf;
1797 struct btrfs_key key;
1798 unsigned long ptr;
1799
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
1803
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = device->devid;
1807
1808 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1809 &key, sizeof(*dev_item));
1810 if (ret)
1811 goto out;
1812
1813 leaf = path->nodes[0];
1814 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1815
1816 btrfs_set_device_id(leaf, dev_item, device->devid);
1817 btrfs_set_device_generation(leaf, dev_item, 0);
1818 btrfs_set_device_type(leaf, dev_item, device->type);
1819 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1820 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1821 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1822 btrfs_set_device_total_bytes(leaf, dev_item,
1823 btrfs_device_get_disk_total_bytes(device));
1824 btrfs_set_device_bytes_used(leaf, dev_item,
1825 btrfs_device_get_bytes_used(device));
1826 btrfs_set_device_group(leaf, dev_item, 0);
1827 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1828 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1829 btrfs_set_device_start_offset(leaf, dev_item, 0);
1830
1831 ptr = btrfs_device_uuid(dev_item);
1832 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1833 ptr = btrfs_device_fsid(dev_item);
1834 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1835 ptr, BTRFS_FSID_SIZE);
1836 btrfs_mark_buffer_dirty(leaf);
1837
1838 ret = 0;
1839 out:
1840 btrfs_free_path(path);
1841 return ret;
1842 }
1843
1844 /*
1845 * Function to update ctime/mtime for a given device path.
1846 * Mainly used for ctime/mtime based probe like libblkid.
1847 */
1848 static void update_dev_time(const char *path_name)
1849 {
1850 struct file *filp;
1851
1852 filp = filp_open(path_name, O_RDWR, 0);
1853 if (IS_ERR(filp))
1854 return;
1855 file_update_time(filp);
1856 filp_close(filp, NULL);
1857 }
1858
1859 static int btrfs_rm_dev_item(struct btrfs_device *device)
1860 {
1861 struct btrfs_root *root = device->fs_info->chunk_root;
1862 int ret;
1863 struct btrfs_path *path;
1864 struct btrfs_key key;
1865 struct btrfs_trans_handle *trans;
1866
1867 path = btrfs_alloc_path();
1868 if (!path)
1869 return -ENOMEM;
1870
1871 trans = btrfs_start_transaction(root, 0);
1872 if (IS_ERR(trans)) {
1873 btrfs_free_path(path);
1874 return PTR_ERR(trans);
1875 }
1876 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1877 key.type = BTRFS_DEV_ITEM_KEY;
1878 key.offset = device->devid;
1879
1880 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1881 if (ret) {
1882 if (ret > 0)
1883 ret = -ENOENT;
1884 btrfs_abort_transaction(trans, ret);
1885 btrfs_end_transaction(trans);
1886 goto out;
1887 }
1888
1889 ret = btrfs_del_item(trans, root, path);
1890 if (ret) {
1891 btrfs_abort_transaction(trans, ret);
1892 btrfs_end_transaction(trans);
1893 }
1894
1895 out:
1896 btrfs_free_path(path);
1897 if (!ret)
1898 ret = btrfs_commit_transaction(trans);
1899 return ret;
1900 }
1901
1902 /*
1903 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1904 * filesystem. It's up to the caller to adjust that number regarding eg. device
1905 * replace.
1906 */
1907 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1908 u64 num_devices)
1909 {
1910 u64 all_avail;
1911 unsigned seq;
1912 int i;
1913
1914 do {
1915 seq = read_seqbegin(&fs_info->profiles_lock);
1916
1917 all_avail = fs_info->avail_data_alloc_bits |
1918 fs_info->avail_system_alloc_bits |
1919 fs_info->avail_metadata_alloc_bits;
1920 } while (read_seqretry(&fs_info->profiles_lock, seq));
1921
1922 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1923 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1924 continue;
1925
1926 if (num_devices < btrfs_raid_array[i].devs_min) {
1927 int ret = btrfs_raid_array[i].mindev_error;
1928
1929 if (ret)
1930 return ret;
1931 }
1932 }
1933
1934 return 0;
1935 }
1936
1937 static struct btrfs_device * btrfs_find_next_active_device(
1938 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1939 {
1940 struct btrfs_device *next_device;
1941
1942 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1943 if (next_device != device &&
1944 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1945 && next_device->bdev)
1946 return next_device;
1947 }
1948
1949 return NULL;
1950 }
1951
1952 /*
1953 * Helper function to check if the given device is part of s_bdev / latest_bdev
1954 * and replace it with the provided or the next active device, in the context
1955 * where this function called, there should be always be another device (or
1956 * this_dev) which is active.
1957 */
1958 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1959 struct btrfs_device *next_device)
1960 {
1961 struct btrfs_fs_info *fs_info = device->fs_info;
1962
1963 if (!next_device)
1964 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1965 device);
1966 ASSERT(next_device);
1967
1968 if (fs_info->sb->s_bdev &&
1969 (fs_info->sb->s_bdev == device->bdev))
1970 fs_info->sb->s_bdev = next_device->bdev;
1971
1972 if (fs_info->fs_devices->latest_bdev == device->bdev)
1973 fs_info->fs_devices->latest_bdev = next_device->bdev;
1974 }
1975
1976 /*
1977 * Return btrfs_fs_devices::num_devices excluding the device that's being
1978 * currently replaced.
1979 */
1980 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1981 {
1982 u64 num_devices = fs_info->fs_devices->num_devices;
1983
1984 down_read(&fs_info->dev_replace.rwsem);
1985 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1986 ASSERT(num_devices > 1);
1987 num_devices--;
1988 }
1989 up_read(&fs_info->dev_replace.rwsem);
1990
1991 return num_devices;
1992 }
1993
1994 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
1995 struct block_device *bdev,
1996 const char *device_path)
1997 {
1998 struct btrfs_super_block *disk_super;
1999 int copy_num;
2000
2001 if (!bdev)
2002 return;
2003
2004 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2005 struct page *page;
2006 int ret;
2007
2008 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2009 if (IS_ERR(disk_super))
2010 continue;
2011
2012 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2013
2014 page = virt_to_page(disk_super);
2015 set_page_dirty(page);
2016 lock_page(page);
2017 /* write_on_page() unlocks the page */
2018 ret = write_one_page(page);
2019 if (ret)
2020 btrfs_warn(fs_info,
2021 "error clearing superblock number %d (%d)",
2022 copy_num, ret);
2023 btrfs_release_disk_super(disk_super);
2024
2025 }
2026
2027 /* Notify udev that device has changed */
2028 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2029
2030 /* Update ctime/mtime for device path for libblkid */
2031 update_dev_time(device_path);
2032 }
2033
2034 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2035 u64 devid)
2036 {
2037 struct btrfs_device *device;
2038 struct btrfs_fs_devices *cur_devices;
2039 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2040 u64 num_devices;
2041 int ret = 0;
2042
2043 mutex_lock(&uuid_mutex);
2044
2045 num_devices = btrfs_num_devices(fs_info);
2046
2047 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2048 if (ret)
2049 goto out;
2050
2051 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2052
2053 if (IS_ERR(device)) {
2054 if (PTR_ERR(device) == -ENOENT &&
2055 strcmp(device_path, "missing") == 0)
2056 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2057 else
2058 ret = PTR_ERR(device);
2059 goto out;
2060 }
2061
2062 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2063 btrfs_warn_in_rcu(fs_info,
2064 "cannot remove device %s (devid %llu) due to active swapfile",
2065 rcu_str_deref(device->name), device->devid);
2066 ret = -ETXTBSY;
2067 goto out;
2068 }
2069
2070 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2071 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2072 goto out;
2073 }
2074
2075 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2076 fs_info->fs_devices->rw_devices == 1) {
2077 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2078 goto out;
2079 }
2080
2081 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2082 mutex_lock(&fs_info->chunk_mutex);
2083 list_del_init(&device->dev_alloc_list);
2084 device->fs_devices->rw_devices--;
2085 mutex_unlock(&fs_info->chunk_mutex);
2086 }
2087
2088 mutex_unlock(&uuid_mutex);
2089 ret = btrfs_shrink_device(device, 0);
2090 if (!ret)
2091 btrfs_reada_remove_dev(device);
2092 mutex_lock(&uuid_mutex);
2093 if (ret)
2094 goto error_undo;
2095
2096 /*
2097 * TODO: the superblock still includes this device in its num_devices
2098 * counter although write_all_supers() is not locked out. This
2099 * could give a filesystem state which requires a degraded mount.
2100 */
2101 ret = btrfs_rm_dev_item(device);
2102 if (ret)
2103 goto error_undo;
2104
2105 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2106 btrfs_scrub_cancel_dev(device);
2107
2108 /*
2109 * the device list mutex makes sure that we don't change
2110 * the device list while someone else is writing out all
2111 * the device supers. Whoever is writing all supers, should
2112 * lock the device list mutex before getting the number of
2113 * devices in the super block (super_copy). Conversely,
2114 * whoever updates the number of devices in the super block
2115 * (super_copy) should hold the device list mutex.
2116 */
2117
2118 /*
2119 * In normal cases the cur_devices == fs_devices. But in case
2120 * of deleting a seed device, the cur_devices should point to
2121 * its own fs_devices listed under the fs_devices->seed.
2122 */
2123 cur_devices = device->fs_devices;
2124 mutex_lock(&fs_devices->device_list_mutex);
2125 list_del_rcu(&device->dev_list);
2126
2127 cur_devices->num_devices--;
2128 cur_devices->total_devices--;
2129 /* Update total_devices of the parent fs_devices if it's seed */
2130 if (cur_devices != fs_devices)
2131 fs_devices->total_devices--;
2132
2133 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2134 cur_devices->missing_devices--;
2135
2136 btrfs_assign_next_active_device(device, NULL);
2137
2138 if (device->bdev) {
2139 cur_devices->open_devices--;
2140 /* remove sysfs entry */
2141 btrfs_sysfs_remove_device(device);
2142 }
2143
2144 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2145 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2146 mutex_unlock(&fs_devices->device_list_mutex);
2147
2148 /*
2149 * at this point, the device is zero sized and detached from
2150 * the devices list. All that's left is to zero out the old
2151 * supers and free the device.
2152 */
2153 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2154 btrfs_scratch_superblocks(fs_info, device->bdev,
2155 device->name->str);
2156
2157 btrfs_close_bdev(device);
2158 synchronize_rcu();
2159 btrfs_free_device(device);
2160
2161 if (cur_devices->open_devices == 0) {
2162 list_del_init(&cur_devices->seed_list);
2163 close_fs_devices(cur_devices);
2164 free_fs_devices(cur_devices);
2165 }
2166
2167 out:
2168 mutex_unlock(&uuid_mutex);
2169 return ret;
2170
2171 error_undo:
2172 btrfs_reada_undo_remove_dev(device);
2173 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2174 mutex_lock(&fs_info->chunk_mutex);
2175 list_add(&device->dev_alloc_list,
2176 &fs_devices->alloc_list);
2177 device->fs_devices->rw_devices++;
2178 mutex_unlock(&fs_info->chunk_mutex);
2179 }
2180 goto out;
2181 }
2182
2183 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2184 {
2185 struct btrfs_fs_devices *fs_devices;
2186
2187 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2188
2189 /*
2190 * in case of fs with no seed, srcdev->fs_devices will point
2191 * to fs_devices of fs_info. However when the dev being replaced is
2192 * a seed dev it will point to the seed's local fs_devices. In short
2193 * srcdev will have its correct fs_devices in both the cases.
2194 */
2195 fs_devices = srcdev->fs_devices;
2196
2197 list_del_rcu(&srcdev->dev_list);
2198 list_del(&srcdev->dev_alloc_list);
2199 fs_devices->num_devices--;
2200 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2201 fs_devices->missing_devices--;
2202
2203 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2204 fs_devices->rw_devices--;
2205
2206 if (srcdev->bdev)
2207 fs_devices->open_devices--;
2208 }
2209
2210 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2211 {
2212 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2213
2214 mutex_lock(&uuid_mutex);
2215
2216 btrfs_close_bdev(srcdev);
2217 synchronize_rcu();
2218 btrfs_free_device(srcdev);
2219
2220 /* if this is no devs we rather delete the fs_devices */
2221 if (!fs_devices->num_devices) {
2222 /*
2223 * On a mounted FS, num_devices can't be zero unless it's a
2224 * seed. In case of a seed device being replaced, the replace
2225 * target added to the sprout FS, so there will be no more
2226 * device left under the seed FS.
2227 */
2228 ASSERT(fs_devices->seeding);
2229
2230 list_del_init(&fs_devices->seed_list);
2231 close_fs_devices(fs_devices);
2232 free_fs_devices(fs_devices);
2233 }
2234 mutex_unlock(&uuid_mutex);
2235 }
2236
2237 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2238 {
2239 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2240
2241 mutex_lock(&fs_devices->device_list_mutex);
2242
2243 btrfs_sysfs_remove_device(tgtdev);
2244
2245 if (tgtdev->bdev)
2246 fs_devices->open_devices--;
2247
2248 fs_devices->num_devices--;
2249
2250 btrfs_assign_next_active_device(tgtdev, NULL);
2251
2252 list_del_rcu(&tgtdev->dev_list);
2253
2254 mutex_unlock(&fs_devices->device_list_mutex);
2255
2256 /*
2257 * The update_dev_time() with in btrfs_scratch_superblocks()
2258 * may lead to a call to btrfs_show_devname() which will try
2259 * to hold device_list_mutex. And here this device
2260 * is already out of device list, so we don't have to hold
2261 * the device_list_mutex lock.
2262 */
2263 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2264 tgtdev->name->str);
2265
2266 btrfs_close_bdev(tgtdev);
2267 synchronize_rcu();
2268 btrfs_free_device(tgtdev);
2269 }
2270
2271 static struct btrfs_device *btrfs_find_device_by_path(
2272 struct btrfs_fs_info *fs_info, const char *device_path)
2273 {
2274 int ret = 0;
2275 struct btrfs_super_block *disk_super;
2276 u64 devid;
2277 u8 *dev_uuid;
2278 struct block_device *bdev;
2279 struct btrfs_device *device;
2280
2281 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2282 fs_info->bdev_holder, 0, &bdev, &disk_super);
2283 if (ret)
2284 return ERR_PTR(ret);
2285
2286 devid = btrfs_stack_device_id(&disk_super->dev_item);
2287 dev_uuid = disk_super->dev_item.uuid;
2288 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2289 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2290 disk_super->metadata_uuid, true);
2291 else
2292 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2293 disk_super->fsid, true);
2294
2295 btrfs_release_disk_super(disk_super);
2296 if (!device)
2297 device = ERR_PTR(-ENOENT);
2298 blkdev_put(bdev, FMODE_READ);
2299 return device;
2300 }
2301
2302 /*
2303 * Lookup a device given by device id, or the path if the id is 0.
2304 */
2305 struct btrfs_device *btrfs_find_device_by_devspec(
2306 struct btrfs_fs_info *fs_info, u64 devid,
2307 const char *device_path)
2308 {
2309 struct btrfs_device *device;
2310
2311 if (devid) {
2312 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2313 NULL, true);
2314 if (!device)
2315 return ERR_PTR(-ENOENT);
2316 return device;
2317 }
2318
2319 if (!device_path || !device_path[0])
2320 return ERR_PTR(-EINVAL);
2321
2322 if (strcmp(device_path, "missing") == 0) {
2323 /* Find first missing device */
2324 list_for_each_entry(device, &fs_info->fs_devices->devices,
2325 dev_list) {
2326 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2327 &device->dev_state) && !device->bdev)
2328 return device;
2329 }
2330 return ERR_PTR(-ENOENT);
2331 }
2332
2333 return btrfs_find_device_by_path(fs_info, device_path);
2334 }
2335
2336 /*
2337 * does all the dirty work required for changing file system's UUID.
2338 */
2339 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2340 {
2341 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2342 struct btrfs_fs_devices *old_devices;
2343 struct btrfs_fs_devices *seed_devices;
2344 struct btrfs_super_block *disk_super = fs_info->super_copy;
2345 struct btrfs_device *device;
2346 u64 super_flags;
2347
2348 lockdep_assert_held(&uuid_mutex);
2349 if (!fs_devices->seeding)
2350 return -EINVAL;
2351
2352 /*
2353 * Private copy of the seed devices, anchored at
2354 * fs_info->fs_devices->seed_list
2355 */
2356 seed_devices = alloc_fs_devices(NULL, NULL);
2357 if (IS_ERR(seed_devices))
2358 return PTR_ERR(seed_devices);
2359
2360 /*
2361 * It's necessary to retain a copy of the original seed fs_devices in
2362 * fs_uuids so that filesystems which have been seeded can successfully
2363 * reference the seed device from open_seed_devices. This also supports
2364 * multiple fs seed.
2365 */
2366 old_devices = clone_fs_devices(fs_devices);
2367 if (IS_ERR(old_devices)) {
2368 kfree(seed_devices);
2369 return PTR_ERR(old_devices);
2370 }
2371
2372 list_add(&old_devices->fs_list, &fs_uuids);
2373
2374 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2375 seed_devices->opened = 1;
2376 INIT_LIST_HEAD(&seed_devices->devices);
2377 INIT_LIST_HEAD(&seed_devices->alloc_list);
2378 mutex_init(&seed_devices->device_list_mutex);
2379
2380 mutex_lock(&fs_devices->device_list_mutex);
2381 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2382 synchronize_rcu);
2383 list_for_each_entry(device, &seed_devices->devices, dev_list)
2384 device->fs_devices = seed_devices;
2385
2386 fs_devices->seeding = false;
2387 fs_devices->num_devices = 0;
2388 fs_devices->open_devices = 0;
2389 fs_devices->missing_devices = 0;
2390 fs_devices->rotating = false;
2391 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2392
2393 generate_random_uuid(fs_devices->fsid);
2394 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2395 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2396 mutex_unlock(&fs_devices->device_list_mutex);
2397
2398 super_flags = btrfs_super_flags(disk_super) &
2399 ~BTRFS_SUPER_FLAG_SEEDING;
2400 btrfs_set_super_flags(disk_super, super_flags);
2401
2402 return 0;
2403 }
2404
2405 /*
2406 * Store the expected generation for seed devices in device items.
2407 */
2408 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2409 {
2410 struct btrfs_fs_info *fs_info = trans->fs_info;
2411 struct btrfs_root *root = fs_info->chunk_root;
2412 struct btrfs_path *path;
2413 struct extent_buffer *leaf;
2414 struct btrfs_dev_item *dev_item;
2415 struct btrfs_device *device;
2416 struct btrfs_key key;
2417 u8 fs_uuid[BTRFS_FSID_SIZE];
2418 u8 dev_uuid[BTRFS_UUID_SIZE];
2419 u64 devid;
2420 int ret;
2421
2422 path = btrfs_alloc_path();
2423 if (!path)
2424 return -ENOMEM;
2425
2426 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2427 key.offset = 0;
2428 key.type = BTRFS_DEV_ITEM_KEY;
2429
2430 while (1) {
2431 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2432 if (ret < 0)
2433 goto error;
2434
2435 leaf = path->nodes[0];
2436 next_slot:
2437 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2438 ret = btrfs_next_leaf(root, path);
2439 if (ret > 0)
2440 break;
2441 if (ret < 0)
2442 goto error;
2443 leaf = path->nodes[0];
2444 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2445 btrfs_release_path(path);
2446 continue;
2447 }
2448
2449 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2450 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2451 key.type != BTRFS_DEV_ITEM_KEY)
2452 break;
2453
2454 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2455 struct btrfs_dev_item);
2456 devid = btrfs_device_id(leaf, dev_item);
2457 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2458 BTRFS_UUID_SIZE);
2459 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2460 BTRFS_FSID_SIZE);
2461 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2462 fs_uuid, true);
2463 BUG_ON(!device); /* Logic error */
2464
2465 if (device->fs_devices->seeding) {
2466 btrfs_set_device_generation(leaf, dev_item,
2467 device->generation);
2468 btrfs_mark_buffer_dirty(leaf);
2469 }
2470
2471 path->slots[0]++;
2472 goto next_slot;
2473 }
2474 ret = 0;
2475 error:
2476 btrfs_free_path(path);
2477 return ret;
2478 }
2479
2480 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2481 {
2482 struct btrfs_root *root = fs_info->dev_root;
2483 struct request_queue *q;
2484 struct btrfs_trans_handle *trans;
2485 struct btrfs_device *device;
2486 struct block_device *bdev;
2487 struct super_block *sb = fs_info->sb;
2488 struct rcu_string *name;
2489 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2490 u64 orig_super_total_bytes;
2491 u64 orig_super_num_devices;
2492 int seeding_dev = 0;
2493 int ret = 0;
2494 bool locked = false;
2495
2496 if (sb_rdonly(sb) && !fs_devices->seeding)
2497 return -EROFS;
2498
2499 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2500 fs_info->bdev_holder);
2501 if (IS_ERR(bdev))
2502 return PTR_ERR(bdev);
2503
2504 if (fs_devices->seeding) {
2505 seeding_dev = 1;
2506 down_write(&sb->s_umount);
2507 mutex_lock(&uuid_mutex);
2508 locked = true;
2509 }
2510
2511 sync_blockdev(bdev);
2512
2513 rcu_read_lock();
2514 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2515 if (device->bdev == bdev) {
2516 ret = -EEXIST;
2517 rcu_read_unlock();
2518 goto error;
2519 }
2520 }
2521 rcu_read_unlock();
2522
2523 device = btrfs_alloc_device(fs_info, NULL, NULL);
2524 if (IS_ERR(device)) {
2525 /* we can safely leave the fs_devices entry around */
2526 ret = PTR_ERR(device);
2527 goto error;
2528 }
2529
2530 name = rcu_string_strdup(device_path, GFP_KERNEL);
2531 if (!name) {
2532 ret = -ENOMEM;
2533 goto error_free_device;
2534 }
2535 rcu_assign_pointer(device->name, name);
2536
2537 trans = btrfs_start_transaction(root, 0);
2538 if (IS_ERR(trans)) {
2539 ret = PTR_ERR(trans);
2540 goto error_free_device;
2541 }
2542
2543 q = bdev_get_queue(bdev);
2544 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2545 device->generation = trans->transid;
2546 device->io_width = fs_info->sectorsize;
2547 device->io_align = fs_info->sectorsize;
2548 device->sector_size = fs_info->sectorsize;
2549 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2550 fs_info->sectorsize);
2551 device->disk_total_bytes = device->total_bytes;
2552 device->commit_total_bytes = device->total_bytes;
2553 device->fs_info = fs_info;
2554 device->bdev = bdev;
2555 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2556 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2557 device->mode = FMODE_EXCL;
2558 device->dev_stats_valid = 1;
2559 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2560
2561 if (seeding_dev) {
2562 sb->s_flags &= ~SB_RDONLY;
2563 ret = btrfs_prepare_sprout(fs_info);
2564 if (ret) {
2565 btrfs_abort_transaction(trans, ret);
2566 goto error_trans;
2567 }
2568 }
2569
2570 device->fs_devices = fs_devices;
2571
2572 mutex_lock(&fs_devices->device_list_mutex);
2573 mutex_lock(&fs_info->chunk_mutex);
2574 list_add_rcu(&device->dev_list, &fs_devices->devices);
2575 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2576 fs_devices->num_devices++;
2577 fs_devices->open_devices++;
2578 fs_devices->rw_devices++;
2579 fs_devices->total_devices++;
2580 fs_devices->total_rw_bytes += device->total_bytes;
2581
2582 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2583
2584 if (!blk_queue_nonrot(q))
2585 fs_devices->rotating = true;
2586
2587 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2588 btrfs_set_super_total_bytes(fs_info->super_copy,
2589 round_down(orig_super_total_bytes + device->total_bytes,
2590 fs_info->sectorsize));
2591
2592 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2593 btrfs_set_super_num_devices(fs_info->super_copy,
2594 orig_super_num_devices + 1);
2595
2596 /*
2597 * we've got more storage, clear any full flags on the space
2598 * infos
2599 */
2600 btrfs_clear_space_info_full(fs_info);
2601
2602 mutex_unlock(&fs_info->chunk_mutex);
2603
2604 /* Add sysfs device entry */
2605 btrfs_sysfs_add_device(device);
2606
2607 mutex_unlock(&fs_devices->device_list_mutex);
2608
2609 if (seeding_dev) {
2610 mutex_lock(&fs_info->chunk_mutex);
2611 ret = init_first_rw_device(trans);
2612 mutex_unlock(&fs_info->chunk_mutex);
2613 if (ret) {
2614 btrfs_abort_transaction(trans, ret);
2615 goto error_sysfs;
2616 }
2617 }
2618
2619 ret = btrfs_add_dev_item(trans, device);
2620 if (ret) {
2621 btrfs_abort_transaction(trans, ret);
2622 goto error_sysfs;
2623 }
2624
2625 if (seeding_dev) {
2626 ret = btrfs_finish_sprout(trans);
2627 if (ret) {
2628 btrfs_abort_transaction(trans, ret);
2629 goto error_sysfs;
2630 }
2631
2632 /*
2633 * fs_devices now represents the newly sprouted filesystem and
2634 * its fsid has been changed by btrfs_prepare_sprout
2635 */
2636 btrfs_sysfs_update_sprout_fsid(fs_devices);
2637 }
2638
2639 ret = btrfs_commit_transaction(trans);
2640
2641 if (seeding_dev) {
2642 mutex_unlock(&uuid_mutex);
2643 up_write(&sb->s_umount);
2644 locked = false;
2645
2646 if (ret) /* transaction commit */
2647 return ret;
2648
2649 ret = btrfs_relocate_sys_chunks(fs_info);
2650 if (ret < 0)
2651 btrfs_handle_fs_error(fs_info, ret,
2652 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2653 trans = btrfs_attach_transaction(root);
2654 if (IS_ERR(trans)) {
2655 if (PTR_ERR(trans) == -ENOENT)
2656 return 0;
2657 ret = PTR_ERR(trans);
2658 trans = NULL;
2659 goto error_sysfs;
2660 }
2661 ret = btrfs_commit_transaction(trans);
2662 }
2663
2664 /*
2665 * Now that we have written a new super block to this device, check all
2666 * other fs_devices list if device_path alienates any other scanned
2667 * device.
2668 * We can ignore the return value as it typically returns -EINVAL and
2669 * only succeeds if the device was an alien.
2670 */
2671 btrfs_forget_devices(device_path);
2672
2673 /* Update ctime/mtime for blkid or udev */
2674 update_dev_time(device_path);
2675
2676 return ret;
2677
2678 error_sysfs:
2679 btrfs_sysfs_remove_device(device);
2680 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2681 mutex_lock(&fs_info->chunk_mutex);
2682 list_del_rcu(&device->dev_list);
2683 list_del(&device->dev_alloc_list);
2684 fs_info->fs_devices->num_devices--;
2685 fs_info->fs_devices->open_devices--;
2686 fs_info->fs_devices->rw_devices--;
2687 fs_info->fs_devices->total_devices--;
2688 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2689 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2690 btrfs_set_super_total_bytes(fs_info->super_copy,
2691 orig_super_total_bytes);
2692 btrfs_set_super_num_devices(fs_info->super_copy,
2693 orig_super_num_devices);
2694 mutex_unlock(&fs_info->chunk_mutex);
2695 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2696 error_trans:
2697 if (seeding_dev)
2698 sb->s_flags |= SB_RDONLY;
2699 if (trans)
2700 btrfs_end_transaction(trans);
2701 error_free_device:
2702 btrfs_free_device(device);
2703 error:
2704 blkdev_put(bdev, FMODE_EXCL);
2705 if (locked) {
2706 mutex_unlock(&uuid_mutex);
2707 up_write(&sb->s_umount);
2708 }
2709 return ret;
2710 }
2711
2712 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2713 struct btrfs_device *device)
2714 {
2715 int ret;
2716 struct btrfs_path *path;
2717 struct btrfs_root *root = device->fs_info->chunk_root;
2718 struct btrfs_dev_item *dev_item;
2719 struct extent_buffer *leaf;
2720 struct btrfs_key key;
2721
2722 path = btrfs_alloc_path();
2723 if (!path)
2724 return -ENOMEM;
2725
2726 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2727 key.type = BTRFS_DEV_ITEM_KEY;
2728 key.offset = device->devid;
2729
2730 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2731 if (ret < 0)
2732 goto out;
2733
2734 if (ret > 0) {
2735 ret = -ENOENT;
2736 goto out;
2737 }
2738
2739 leaf = path->nodes[0];
2740 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2741
2742 btrfs_set_device_id(leaf, dev_item, device->devid);
2743 btrfs_set_device_type(leaf, dev_item, device->type);
2744 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2745 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2746 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2747 btrfs_set_device_total_bytes(leaf, dev_item,
2748 btrfs_device_get_disk_total_bytes(device));
2749 btrfs_set_device_bytes_used(leaf, dev_item,
2750 btrfs_device_get_bytes_used(device));
2751 btrfs_mark_buffer_dirty(leaf);
2752
2753 out:
2754 btrfs_free_path(path);
2755 return ret;
2756 }
2757
2758 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2759 struct btrfs_device *device, u64 new_size)
2760 {
2761 struct btrfs_fs_info *fs_info = device->fs_info;
2762 struct btrfs_super_block *super_copy = fs_info->super_copy;
2763 u64 old_total;
2764 u64 diff;
2765
2766 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2767 return -EACCES;
2768
2769 new_size = round_down(new_size, fs_info->sectorsize);
2770
2771 mutex_lock(&fs_info->chunk_mutex);
2772 old_total = btrfs_super_total_bytes(super_copy);
2773 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2774
2775 if (new_size <= device->total_bytes ||
2776 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2777 mutex_unlock(&fs_info->chunk_mutex);
2778 return -EINVAL;
2779 }
2780
2781 btrfs_set_super_total_bytes(super_copy,
2782 round_down(old_total + diff, fs_info->sectorsize));
2783 device->fs_devices->total_rw_bytes += diff;
2784
2785 btrfs_device_set_total_bytes(device, new_size);
2786 btrfs_device_set_disk_total_bytes(device, new_size);
2787 btrfs_clear_space_info_full(device->fs_info);
2788 if (list_empty(&device->post_commit_list))
2789 list_add_tail(&device->post_commit_list,
2790 &trans->transaction->dev_update_list);
2791 mutex_unlock(&fs_info->chunk_mutex);
2792
2793 return btrfs_update_device(trans, device);
2794 }
2795
2796 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2797 {
2798 struct btrfs_fs_info *fs_info = trans->fs_info;
2799 struct btrfs_root *root = fs_info->chunk_root;
2800 int ret;
2801 struct btrfs_path *path;
2802 struct btrfs_key key;
2803
2804 path = btrfs_alloc_path();
2805 if (!path)
2806 return -ENOMEM;
2807
2808 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2809 key.offset = chunk_offset;
2810 key.type = BTRFS_CHUNK_ITEM_KEY;
2811
2812 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2813 if (ret < 0)
2814 goto out;
2815 else if (ret > 0) { /* Logic error or corruption */
2816 btrfs_handle_fs_error(fs_info, -ENOENT,
2817 "Failed lookup while freeing chunk.");
2818 ret = -ENOENT;
2819 goto out;
2820 }
2821
2822 ret = btrfs_del_item(trans, root, path);
2823 if (ret < 0)
2824 btrfs_handle_fs_error(fs_info, ret,
2825 "Failed to delete chunk item.");
2826 out:
2827 btrfs_free_path(path);
2828 return ret;
2829 }
2830
2831 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2832 {
2833 struct btrfs_super_block *super_copy = fs_info->super_copy;
2834 struct btrfs_disk_key *disk_key;
2835 struct btrfs_chunk *chunk;
2836 u8 *ptr;
2837 int ret = 0;
2838 u32 num_stripes;
2839 u32 array_size;
2840 u32 len = 0;
2841 u32 cur;
2842 struct btrfs_key key;
2843
2844 mutex_lock(&fs_info->chunk_mutex);
2845 array_size = btrfs_super_sys_array_size(super_copy);
2846
2847 ptr = super_copy->sys_chunk_array;
2848 cur = 0;
2849
2850 while (cur < array_size) {
2851 disk_key = (struct btrfs_disk_key *)ptr;
2852 btrfs_disk_key_to_cpu(&key, disk_key);
2853
2854 len = sizeof(*disk_key);
2855
2856 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2857 chunk = (struct btrfs_chunk *)(ptr + len);
2858 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2859 len += btrfs_chunk_item_size(num_stripes);
2860 } else {
2861 ret = -EIO;
2862 break;
2863 }
2864 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2865 key.offset == chunk_offset) {
2866 memmove(ptr, ptr + len, array_size - (cur + len));
2867 array_size -= len;
2868 btrfs_set_super_sys_array_size(super_copy, array_size);
2869 } else {
2870 ptr += len;
2871 cur += len;
2872 }
2873 }
2874 mutex_unlock(&fs_info->chunk_mutex);
2875 return ret;
2876 }
2877
2878 /*
2879 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2880 * @logical: Logical block offset in bytes.
2881 * @length: Length of extent in bytes.
2882 *
2883 * Return: Chunk mapping or ERR_PTR.
2884 */
2885 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2886 u64 logical, u64 length)
2887 {
2888 struct extent_map_tree *em_tree;
2889 struct extent_map *em;
2890
2891 em_tree = &fs_info->mapping_tree;
2892 read_lock(&em_tree->lock);
2893 em = lookup_extent_mapping(em_tree, logical, length);
2894 read_unlock(&em_tree->lock);
2895
2896 if (!em) {
2897 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2898 logical, length);
2899 return ERR_PTR(-EINVAL);
2900 }
2901
2902 if (em->start > logical || em->start + em->len < logical) {
2903 btrfs_crit(fs_info,
2904 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2905 logical, length, em->start, em->start + em->len);
2906 free_extent_map(em);
2907 return ERR_PTR(-EINVAL);
2908 }
2909
2910 /* callers are responsible for dropping em's ref. */
2911 return em;
2912 }
2913
2914 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2915 {
2916 struct btrfs_fs_info *fs_info = trans->fs_info;
2917 struct extent_map *em;
2918 struct map_lookup *map;
2919 u64 dev_extent_len = 0;
2920 int i, ret = 0;
2921 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2922
2923 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2924 if (IS_ERR(em)) {
2925 /*
2926 * This is a logic error, but we don't want to just rely on the
2927 * user having built with ASSERT enabled, so if ASSERT doesn't
2928 * do anything we still error out.
2929 */
2930 ASSERT(0);
2931 return PTR_ERR(em);
2932 }
2933 map = em->map_lookup;
2934 mutex_lock(&fs_info->chunk_mutex);
2935 check_system_chunk(trans, map->type);
2936 mutex_unlock(&fs_info->chunk_mutex);
2937
2938 /*
2939 * Take the device list mutex to prevent races with the final phase of
2940 * a device replace operation that replaces the device object associated
2941 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2942 */
2943 mutex_lock(&fs_devices->device_list_mutex);
2944 for (i = 0; i < map->num_stripes; i++) {
2945 struct btrfs_device *device = map->stripes[i].dev;
2946 ret = btrfs_free_dev_extent(trans, device,
2947 map->stripes[i].physical,
2948 &dev_extent_len);
2949 if (ret) {
2950 mutex_unlock(&fs_devices->device_list_mutex);
2951 btrfs_abort_transaction(trans, ret);
2952 goto out;
2953 }
2954
2955 if (device->bytes_used > 0) {
2956 mutex_lock(&fs_info->chunk_mutex);
2957 btrfs_device_set_bytes_used(device,
2958 device->bytes_used - dev_extent_len);
2959 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2960 btrfs_clear_space_info_full(fs_info);
2961 mutex_unlock(&fs_info->chunk_mutex);
2962 }
2963
2964 ret = btrfs_update_device(trans, device);
2965 if (ret) {
2966 mutex_unlock(&fs_devices->device_list_mutex);
2967 btrfs_abort_transaction(trans, ret);
2968 goto out;
2969 }
2970 }
2971 mutex_unlock(&fs_devices->device_list_mutex);
2972
2973 ret = btrfs_free_chunk(trans, chunk_offset);
2974 if (ret) {
2975 btrfs_abort_transaction(trans, ret);
2976 goto out;
2977 }
2978
2979 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2980
2981 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2982 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2983 if (ret) {
2984 btrfs_abort_transaction(trans, ret);
2985 goto out;
2986 }
2987 }
2988
2989 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2990 if (ret) {
2991 btrfs_abort_transaction(trans, ret);
2992 goto out;
2993 }
2994
2995 out:
2996 /* once for us */
2997 free_extent_map(em);
2998 return ret;
2999 }
3000
3001 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3002 {
3003 struct btrfs_root *root = fs_info->chunk_root;
3004 struct btrfs_trans_handle *trans;
3005 struct btrfs_block_group *block_group;
3006 int ret;
3007
3008 /*
3009 * Prevent races with automatic removal of unused block groups.
3010 * After we relocate and before we remove the chunk with offset
3011 * chunk_offset, automatic removal of the block group can kick in,
3012 * resulting in a failure when calling btrfs_remove_chunk() below.
3013 *
3014 * Make sure to acquire this mutex before doing a tree search (dev
3015 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3016 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3017 * we release the path used to search the chunk/dev tree and before
3018 * the current task acquires this mutex and calls us.
3019 */
3020 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3021
3022 /* step one, relocate all the extents inside this chunk */
3023 btrfs_scrub_pause(fs_info);
3024 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3025 btrfs_scrub_continue(fs_info);
3026 if (ret)
3027 return ret;
3028
3029 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3030 if (!block_group)
3031 return -ENOENT;
3032 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3033 btrfs_put_block_group(block_group);
3034
3035 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3036 chunk_offset);
3037 if (IS_ERR(trans)) {
3038 ret = PTR_ERR(trans);
3039 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3040 return ret;
3041 }
3042
3043 /*
3044 * step two, delete the device extents and the
3045 * chunk tree entries
3046 */
3047 ret = btrfs_remove_chunk(trans, chunk_offset);
3048 btrfs_end_transaction(trans);
3049 return ret;
3050 }
3051
3052 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3053 {
3054 struct btrfs_root *chunk_root = fs_info->chunk_root;
3055 struct btrfs_path *path;
3056 struct extent_buffer *leaf;
3057 struct btrfs_chunk *chunk;
3058 struct btrfs_key key;
3059 struct btrfs_key found_key;
3060 u64 chunk_type;
3061 bool retried = false;
3062 int failed = 0;
3063 int ret;
3064
3065 path = btrfs_alloc_path();
3066 if (!path)
3067 return -ENOMEM;
3068
3069 again:
3070 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3071 key.offset = (u64)-1;
3072 key.type = BTRFS_CHUNK_ITEM_KEY;
3073
3074 while (1) {
3075 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3076 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3077 if (ret < 0) {
3078 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3079 goto error;
3080 }
3081 BUG_ON(ret == 0); /* Corruption */
3082
3083 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3084 key.type);
3085 if (ret)
3086 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3087 if (ret < 0)
3088 goto error;
3089 if (ret > 0)
3090 break;
3091
3092 leaf = path->nodes[0];
3093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3094
3095 chunk = btrfs_item_ptr(leaf, path->slots[0],
3096 struct btrfs_chunk);
3097 chunk_type = btrfs_chunk_type(leaf, chunk);
3098 btrfs_release_path(path);
3099
3100 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3101 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3102 if (ret == -ENOSPC)
3103 failed++;
3104 else
3105 BUG_ON(ret);
3106 }
3107 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3108
3109 if (found_key.offset == 0)
3110 break;
3111 key.offset = found_key.offset - 1;
3112 }
3113 ret = 0;
3114 if (failed && !retried) {
3115 failed = 0;
3116 retried = true;
3117 goto again;
3118 } else if (WARN_ON(failed && retried)) {
3119 ret = -ENOSPC;
3120 }
3121 error:
3122 btrfs_free_path(path);
3123 return ret;
3124 }
3125
3126 /*
3127 * return 1 : allocate a data chunk successfully,
3128 * return <0: errors during allocating a data chunk,
3129 * return 0 : no need to allocate a data chunk.
3130 */
3131 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3132 u64 chunk_offset)
3133 {
3134 struct btrfs_block_group *cache;
3135 u64 bytes_used;
3136 u64 chunk_type;
3137
3138 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3139 ASSERT(cache);
3140 chunk_type = cache->flags;
3141 btrfs_put_block_group(cache);
3142
3143 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3144 return 0;
3145
3146 spin_lock(&fs_info->data_sinfo->lock);
3147 bytes_used = fs_info->data_sinfo->bytes_used;
3148 spin_unlock(&fs_info->data_sinfo->lock);
3149
3150 if (!bytes_used) {
3151 struct btrfs_trans_handle *trans;
3152 int ret;
3153
3154 trans = btrfs_join_transaction(fs_info->tree_root);
3155 if (IS_ERR(trans))
3156 return PTR_ERR(trans);
3157
3158 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3159 btrfs_end_transaction(trans);
3160 if (ret < 0)
3161 return ret;
3162 return 1;
3163 }
3164
3165 return 0;
3166 }
3167
3168 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3169 struct btrfs_balance_control *bctl)
3170 {
3171 struct btrfs_root *root = fs_info->tree_root;
3172 struct btrfs_trans_handle *trans;
3173 struct btrfs_balance_item *item;
3174 struct btrfs_disk_balance_args disk_bargs;
3175 struct btrfs_path *path;
3176 struct extent_buffer *leaf;
3177 struct btrfs_key key;
3178 int ret, err;
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOMEM;
3183
3184 trans = btrfs_start_transaction(root, 0);
3185 if (IS_ERR(trans)) {
3186 btrfs_free_path(path);
3187 return PTR_ERR(trans);
3188 }
3189
3190 key.objectid = BTRFS_BALANCE_OBJECTID;
3191 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3192 key.offset = 0;
3193
3194 ret = btrfs_insert_empty_item(trans, root, path, &key,
3195 sizeof(*item));
3196 if (ret)
3197 goto out;
3198
3199 leaf = path->nodes[0];
3200 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3201
3202 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3203
3204 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3205 btrfs_set_balance_data(leaf, item, &disk_bargs);
3206 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3207 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3208 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3209 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3210
3211 btrfs_set_balance_flags(leaf, item, bctl->flags);
3212
3213 btrfs_mark_buffer_dirty(leaf);
3214 out:
3215 btrfs_free_path(path);
3216 err = btrfs_commit_transaction(trans);
3217 if (err && !ret)
3218 ret = err;
3219 return ret;
3220 }
3221
3222 static int del_balance_item(struct btrfs_fs_info *fs_info)
3223 {
3224 struct btrfs_root *root = fs_info->tree_root;
3225 struct btrfs_trans_handle *trans;
3226 struct btrfs_path *path;
3227 struct btrfs_key key;
3228 int ret, err;
3229
3230 path = btrfs_alloc_path();
3231 if (!path)
3232 return -ENOMEM;
3233
3234 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3235 if (IS_ERR(trans)) {
3236 btrfs_free_path(path);
3237 return PTR_ERR(trans);
3238 }
3239
3240 key.objectid = BTRFS_BALANCE_OBJECTID;
3241 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3242 key.offset = 0;
3243
3244 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3245 if (ret < 0)
3246 goto out;
3247 if (ret > 0) {
3248 ret = -ENOENT;
3249 goto out;
3250 }
3251
3252 ret = btrfs_del_item(trans, root, path);
3253 out:
3254 btrfs_free_path(path);
3255 err = btrfs_commit_transaction(trans);
3256 if (err && !ret)
3257 ret = err;
3258 return ret;
3259 }
3260
3261 /*
3262 * This is a heuristic used to reduce the number of chunks balanced on
3263 * resume after balance was interrupted.
3264 */
3265 static void update_balance_args(struct btrfs_balance_control *bctl)
3266 {
3267 /*
3268 * Turn on soft mode for chunk types that were being converted.
3269 */
3270 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3271 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3272 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3273 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3274 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3275 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3276
3277 /*
3278 * Turn on usage filter if is not already used. The idea is
3279 * that chunks that we have already balanced should be
3280 * reasonably full. Don't do it for chunks that are being
3281 * converted - that will keep us from relocating unconverted
3282 * (albeit full) chunks.
3283 */
3284 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3285 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3286 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3287 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3288 bctl->data.usage = 90;
3289 }
3290 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3291 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3292 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3293 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3294 bctl->sys.usage = 90;
3295 }
3296 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3298 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3299 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3300 bctl->meta.usage = 90;
3301 }
3302 }
3303
3304 /*
3305 * Clear the balance status in fs_info and delete the balance item from disk.
3306 */
3307 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3308 {
3309 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3310 int ret;
3311
3312 BUG_ON(!fs_info->balance_ctl);
3313
3314 spin_lock(&fs_info->balance_lock);
3315 fs_info->balance_ctl = NULL;
3316 spin_unlock(&fs_info->balance_lock);
3317
3318 kfree(bctl);
3319 ret = del_balance_item(fs_info);
3320 if (ret)
3321 btrfs_handle_fs_error(fs_info, ret, NULL);
3322 }
3323
3324 /*
3325 * Balance filters. Return 1 if chunk should be filtered out
3326 * (should not be balanced).
3327 */
3328 static int chunk_profiles_filter(u64 chunk_type,
3329 struct btrfs_balance_args *bargs)
3330 {
3331 chunk_type = chunk_to_extended(chunk_type) &
3332 BTRFS_EXTENDED_PROFILE_MASK;
3333
3334 if (bargs->profiles & chunk_type)
3335 return 0;
3336
3337 return 1;
3338 }
3339
3340 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3341 struct btrfs_balance_args *bargs)
3342 {
3343 struct btrfs_block_group *cache;
3344 u64 chunk_used;
3345 u64 user_thresh_min;
3346 u64 user_thresh_max;
3347 int ret = 1;
3348
3349 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3350 chunk_used = cache->used;
3351
3352 if (bargs->usage_min == 0)
3353 user_thresh_min = 0;
3354 else
3355 user_thresh_min = div_factor_fine(cache->length,
3356 bargs->usage_min);
3357
3358 if (bargs->usage_max == 0)
3359 user_thresh_max = 1;
3360 else if (bargs->usage_max > 100)
3361 user_thresh_max = cache->length;
3362 else
3363 user_thresh_max = div_factor_fine(cache->length,
3364 bargs->usage_max);
3365
3366 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3367 ret = 0;
3368
3369 btrfs_put_block_group(cache);
3370 return ret;
3371 }
3372
3373 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3374 u64 chunk_offset, struct btrfs_balance_args *bargs)
3375 {
3376 struct btrfs_block_group *cache;
3377 u64 chunk_used, user_thresh;
3378 int ret = 1;
3379
3380 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3381 chunk_used = cache->used;
3382
3383 if (bargs->usage_min == 0)
3384 user_thresh = 1;
3385 else if (bargs->usage > 100)
3386 user_thresh = cache->length;
3387 else
3388 user_thresh = div_factor_fine(cache->length, bargs->usage);
3389
3390 if (chunk_used < user_thresh)
3391 ret = 0;
3392
3393 btrfs_put_block_group(cache);
3394 return ret;
3395 }
3396
3397 static int chunk_devid_filter(struct extent_buffer *leaf,
3398 struct btrfs_chunk *chunk,
3399 struct btrfs_balance_args *bargs)
3400 {
3401 struct btrfs_stripe *stripe;
3402 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3403 int i;
3404
3405 for (i = 0; i < num_stripes; i++) {
3406 stripe = btrfs_stripe_nr(chunk, i);
3407 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3408 return 0;
3409 }
3410
3411 return 1;
3412 }
3413
3414 static u64 calc_data_stripes(u64 type, int num_stripes)
3415 {
3416 const int index = btrfs_bg_flags_to_raid_index(type);
3417 const int ncopies = btrfs_raid_array[index].ncopies;
3418 const int nparity = btrfs_raid_array[index].nparity;
3419
3420 if (nparity)
3421 return num_stripes - nparity;
3422 else
3423 return num_stripes / ncopies;
3424 }
3425
3426 /* [pstart, pend) */
3427 static int chunk_drange_filter(struct extent_buffer *leaf,
3428 struct btrfs_chunk *chunk,
3429 struct btrfs_balance_args *bargs)
3430 {
3431 struct btrfs_stripe *stripe;
3432 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3433 u64 stripe_offset;
3434 u64 stripe_length;
3435 u64 type;
3436 int factor;
3437 int i;
3438
3439 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3440 return 0;
3441
3442 type = btrfs_chunk_type(leaf, chunk);
3443 factor = calc_data_stripes(type, num_stripes);
3444
3445 for (i = 0; i < num_stripes; i++) {
3446 stripe = btrfs_stripe_nr(chunk, i);
3447 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3448 continue;
3449
3450 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3451 stripe_length = btrfs_chunk_length(leaf, chunk);
3452 stripe_length = div_u64(stripe_length, factor);
3453
3454 if (stripe_offset < bargs->pend &&
3455 stripe_offset + stripe_length > bargs->pstart)
3456 return 0;
3457 }
3458
3459 return 1;
3460 }
3461
3462 /* [vstart, vend) */
3463 static int chunk_vrange_filter(struct extent_buffer *leaf,
3464 struct btrfs_chunk *chunk,
3465 u64 chunk_offset,
3466 struct btrfs_balance_args *bargs)
3467 {
3468 if (chunk_offset < bargs->vend &&
3469 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3470 /* at least part of the chunk is inside this vrange */
3471 return 0;
3472
3473 return 1;
3474 }
3475
3476 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3477 struct btrfs_chunk *chunk,
3478 struct btrfs_balance_args *bargs)
3479 {
3480 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3481
3482 if (bargs->stripes_min <= num_stripes
3483 && num_stripes <= bargs->stripes_max)
3484 return 0;
3485
3486 return 1;
3487 }
3488
3489 static int chunk_soft_convert_filter(u64 chunk_type,
3490 struct btrfs_balance_args *bargs)
3491 {
3492 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3493 return 0;
3494
3495 chunk_type = chunk_to_extended(chunk_type) &
3496 BTRFS_EXTENDED_PROFILE_MASK;
3497
3498 if (bargs->target == chunk_type)
3499 return 1;
3500
3501 return 0;
3502 }
3503
3504 static int should_balance_chunk(struct extent_buffer *leaf,
3505 struct btrfs_chunk *chunk, u64 chunk_offset)
3506 {
3507 struct btrfs_fs_info *fs_info = leaf->fs_info;
3508 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3509 struct btrfs_balance_args *bargs = NULL;
3510 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3511
3512 /* type filter */
3513 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3514 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3515 return 0;
3516 }
3517
3518 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3519 bargs = &bctl->data;
3520 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3521 bargs = &bctl->sys;
3522 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3523 bargs = &bctl->meta;
3524
3525 /* profiles filter */
3526 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3527 chunk_profiles_filter(chunk_type, bargs)) {
3528 return 0;
3529 }
3530
3531 /* usage filter */
3532 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3533 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3534 return 0;
3535 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3536 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3537 return 0;
3538 }
3539
3540 /* devid filter */
3541 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3542 chunk_devid_filter(leaf, chunk, bargs)) {
3543 return 0;
3544 }
3545
3546 /* drange filter, makes sense only with devid filter */
3547 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3548 chunk_drange_filter(leaf, chunk, bargs)) {
3549 return 0;
3550 }
3551
3552 /* vrange filter */
3553 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3554 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3555 return 0;
3556 }
3557
3558 /* stripes filter */
3559 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3560 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3561 return 0;
3562 }
3563
3564 /* soft profile changing mode */
3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3566 chunk_soft_convert_filter(chunk_type, bargs)) {
3567 return 0;
3568 }
3569
3570 /*
3571 * limited by count, must be the last filter
3572 */
3573 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3574 if (bargs->limit == 0)
3575 return 0;
3576 else
3577 bargs->limit--;
3578 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3579 /*
3580 * Same logic as the 'limit' filter; the minimum cannot be
3581 * determined here because we do not have the global information
3582 * about the count of all chunks that satisfy the filters.
3583 */
3584 if (bargs->limit_max == 0)
3585 return 0;
3586 else
3587 bargs->limit_max--;
3588 }
3589
3590 return 1;
3591 }
3592
3593 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3594 {
3595 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3596 struct btrfs_root *chunk_root = fs_info->chunk_root;
3597 u64 chunk_type;
3598 struct btrfs_chunk *chunk;
3599 struct btrfs_path *path = NULL;
3600 struct btrfs_key key;
3601 struct btrfs_key found_key;
3602 struct extent_buffer *leaf;
3603 int slot;
3604 int ret;
3605 int enospc_errors = 0;
3606 bool counting = true;
3607 /* The single value limit and min/max limits use the same bytes in the */
3608 u64 limit_data = bctl->data.limit;
3609 u64 limit_meta = bctl->meta.limit;
3610 u64 limit_sys = bctl->sys.limit;
3611 u32 count_data = 0;
3612 u32 count_meta = 0;
3613 u32 count_sys = 0;
3614 int chunk_reserved = 0;
3615
3616 path = btrfs_alloc_path();
3617 if (!path) {
3618 ret = -ENOMEM;
3619 goto error;
3620 }
3621
3622 /* zero out stat counters */
3623 spin_lock(&fs_info->balance_lock);
3624 memset(&bctl->stat, 0, sizeof(bctl->stat));
3625 spin_unlock(&fs_info->balance_lock);
3626 again:
3627 if (!counting) {
3628 /*
3629 * The single value limit and min/max limits use the same bytes
3630 * in the
3631 */
3632 bctl->data.limit = limit_data;
3633 bctl->meta.limit = limit_meta;
3634 bctl->sys.limit = limit_sys;
3635 }
3636 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3637 key.offset = (u64)-1;
3638 key.type = BTRFS_CHUNK_ITEM_KEY;
3639
3640 while (1) {
3641 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3642 atomic_read(&fs_info->balance_cancel_req)) {
3643 ret = -ECANCELED;
3644 goto error;
3645 }
3646
3647 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3648 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3649 if (ret < 0) {
3650 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651 goto error;
3652 }
3653
3654 /*
3655 * this shouldn't happen, it means the last relocate
3656 * failed
3657 */
3658 if (ret == 0)
3659 BUG(); /* FIXME break ? */
3660
3661 ret = btrfs_previous_item(chunk_root, path, 0,
3662 BTRFS_CHUNK_ITEM_KEY);
3663 if (ret) {
3664 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3665 ret = 0;
3666 break;
3667 }
3668
3669 leaf = path->nodes[0];
3670 slot = path->slots[0];
3671 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3672
3673 if (found_key.objectid != key.objectid) {
3674 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675 break;
3676 }
3677
3678 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3679 chunk_type = btrfs_chunk_type(leaf, chunk);
3680
3681 if (!counting) {
3682 spin_lock(&fs_info->balance_lock);
3683 bctl->stat.considered++;
3684 spin_unlock(&fs_info->balance_lock);
3685 }
3686
3687 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3688
3689 btrfs_release_path(path);
3690 if (!ret) {
3691 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692 goto loop;
3693 }
3694
3695 if (counting) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 spin_lock(&fs_info->balance_lock);
3698 bctl->stat.expected++;
3699 spin_unlock(&fs_info->balance_lock);
3700
3701 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3702 count_data++;
3703 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3704 count_sys++;
3705 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3706 count_meta++;
3707
3708 goto loop;
3709 }
3710
3711 /*
3712 * Apply limit_min filter, no need to check if the LIMITS
3713 * filter is used, limit_min is 0 by default
3714 */
3715 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3716 count_data < bctl->data.limit_min)
3717 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3718 count_meta < bctl->meta.limit_min)
3719 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3720 count_sys < bctl->sys.limit_min)) {
3721 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3722 goto loop;
3723 }
3724
3725 if (!chunk_reserved) {
3726 /*
3727 * We may be relocating the only data chunk we have,
3728 * which could potentially end up with losing data's
3729 * raid profile, so lets allocate an empty one in
3730 * advance.
3731 */
3732 ret = btrfs_may_alloc_data_chunk(fs_info,
3733 found_key.offset);
3734 if (ret < 0) {
3735 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3736 goto error;
3737 } else if (ret == 1) {
3738 chunk_reserved = 1;
3739 }
3740 }
3741
3742 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3743 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3744 if (ret == -ENOSPC) {
3745 enospc_errors++;
3746 } else if (ret == -ETXTBSY) {
3747 btrfs_info(fs_info,
3748 "skipping relocation of block group %llu due to active swapfile",
3749 found_key.offset);
3750 ret = 0;
3751 } else if (ret) {
3752 goto error;
3753 } else {
3754 spin_lock(&fs_info->balance_lock);
3755 bctl->stat.completed++;
3756 spin_unlock(&fs_info->balance_lock);
3757 }
3758 loop:
3759 if (found_key.offset == 0)
3760 break;
3761 key.offset = found_key.offset - 1;
3762 }
3763
3764 if (counting) {
3765 btrfs_release_path(path);
3766 counting = false;
3767 goto again;
3768 }
3769 error:
3770 btrfs_free_path(path);
3771 if (enospc_errors) {
3772 btrfs_info(fs_info, "%d enospc errors during balance",
3773 enospc_errors);
3774 if (!ret)
3775 ret = -ENOSPC;
3776 }
3777
3778 return ret;
3779 }
3780
3781 /**
3782 * alloc_profile_is_valid - see if a given profile is valid and reduced
3783 * @flags: profile to validate
3784 * @extended: if true @flags is treated as an extended profile
3785 */
3786 static int alloc_profile_is_valid(u64 flags, int extended)
3787 {
3788 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3789 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3790
3791 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3792
3793 /* 1) check that all other bits are zeroed */
3794 if (flags & ~mask)
3795 return 0;
3796
3797 /* 2) see if profile is reduced */
3798 if (flags == 0)
3799 return !extended; /* "0" is valid for usual profiles */
3800
3801 return has_single_bit_set(flags);
3802 }
3803
3804 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3805 {
3806 /* cancel requested || normal exit path */
3807 return atomic_read(&fs_info->balance_cancel_req) ||
3808 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3809 atomic_read(&fs_info->balance_cancel_req) == 0);
3810 }
3811
3812 /*
3813 * Validate target profile against allowed profiles and return true if it's OK.
3814 * Otherwise print the error message and return false.
3815 */
3816 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3817 const struct btrfs_balance_args *bargs,
3818 u64 allowed, const char *type)
3819 {
3820 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3821 return true;
3822
3823 /* Profile is valid and does not have bits outside of the allowed set */
3824 if (alloc_profile_is_valid(bargs->target, 1) &&
3825 (bargs->target & ~allowed) == 0)
3826 return true;
3827
3828 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3829 type, btrfs_bg_type_to_raid_name(bargs->target));
3830 return false;
3831 }
3832
3833 /*
3834 * Fill @buf with textual description of balance filter flags @bargs, up to
3835 * @size_buf including the terminating null. The output may be trimmed if it
3836 * does not fit into the provided buffer.
3837 */
3838 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3839 u32 size_buf)
3840 {
3841 int ret;
3842 u32 size_bp = size_buf;
3843 char *bp = buf;
3844 u64 flags = bargs->flags;
3845 char tmp_buf[128] = {'\0'};
3846
3847 if (!flags)
3848 return;
3849
3850 #define CHECK_APPEND_NOARG(a) \
3851 do { \
3852 ret = snprintf(bp, size_bp, (a)); \
3853 if (ret < 0 || ret >= size_bp) \
3854 goto out_overflow; \
3855 size_bp -= ret; \
3856 bp += ret; \
3857 } while (0)
3858
3859 #define CHECK_APPEND_1ARG(a, v1) \
3860 do { \
3861 ret = snprintf(bp, size_bp, (a), (v1)); \
3862 if (ret < 0 || ret >= size_bp) \
3863 goto out_overflow; \
3864 size_bp -= ret; \
3865 bp += ret; \
3866 } while (0)
3867
3868 #define CHECK_APPEND_2ARG(a, v1, v2) \
3869 do { \
3870 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3871 if (ret < 0 || ret >= size_bp) \
3872 goto out_overflow; \
3873 size_bp -= ret; \
3874 bp += ret; \
3875 } while (0)
3876
3877 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3878 CHECK_APPEND_1ARG("convert=%s,",
3879 btrfs_bg_type_to_raid_name(bargs->target));
3880
3881 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3882 CHECK_APPEND_NOARG("soft,");
3883
3884 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3885 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3886 sizeof(tmp_buf));
3887 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3888 }
3889
3890 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3891 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3892
3893 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3894 CHECK_APPEND_2ARG("usage=%u..%u,",
3895 bargs->usage_min, bargs->usage_max);
3896
3897 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3898 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3899
3900 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3901 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3902 bargs->pstart, bargs->pend);
3903
3904 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3905 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3906 bargs->vstart, bargs->vend);
3907
3908 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3909 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3910
3911 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3912 CHECK_APPEND_2ARG("limit=%u..%u,",
3913 bargs->limit_min, bargs->limit_max);
3914
3915 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3916 CHECK_APPEND_2ARG("stripes=%u..%u,",
3917 bargs->stripes_min, bargs->stripes_max);
3918
3919 #undef CHECK_APPEND_2ARG
3920 #undef CHECK_APPEND_1ARG
3921 #undef CHECK_APPEND_NOARG
3922
3923 out_overflow:
3924
3925 if (size_bp < size_buf)
3926 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3927 else
3928 buf[0] = '\0';
3929 }
3930
3931 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3932 {
3933 u32 size_buf = 1024;
3934 char tmp_buf[192] = {'\0'};
3935 char *buf;
3936 char *bp;
3937 u32 size_bp = size_buf;
3938 int ret;
3939 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3940
3941 buf = kzalloc(size_buf, GFP_KERNEL);
3942 if (!buf)
3943 return;
3944
3945 bp = buf;
3946
3947 #define CHECK_APPEND_1ARG(a, v1) \
3948 do { \
3949 ret = snprintf(bp, size_bp, (a), (v1)); \
3950 if (ret < 0 || ret >= size_bp) \
3951 goto out_overflow; \
3952 size_bp -= ret; \
3953 bp += ret; \
3954 } while (0)
3955
3956 if (bctl->flags & BTRFS_BALANCE_FORCE)
3957 CHECK_APPEND_1ARG("%s", "-f ");
3958
3959 if (bctl->flags & BTRFS_BALANCE_DATA) {
3960 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3961 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3962 }
3963
3964 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3965 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3966 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3967 }
3968
3969 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3970 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3971 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3972 }
3973
3974 #undef CHECK_APPEND_1ARG
3975
3976 out_overflow:
3977
3978 if (size_bp < size_buf)
3979 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3980 btrfs_info(fs_info, "balance: %s %s",
3981 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3982 "resume" : "start", buf);
3983
3984 kfree(buf);
3985 }
3986
3987 /*
3988 * Should be called with balance mutexe held
3989 */
3990 int btrfs_balance(struct btrfs_fs_info *fs_info,
3991 struct btrfs_balance_control *bctl,
3992 struct btrfs_ioctl_balance_args *bargs)
3993 {
3994 u64 meta_target, data_target;
3995 u64 allowed;
3996 int mixed = 0;
3997 int ret;
3998 u64 num_devices;
3999 unsigned seq;
4000 bool reducing_redundancy;
4001 int i;
4002
4003 if (btrfs_fs_closing(fs_info) ||
4004 atomic_read(&fs_info->balance_pause_req) ||
4005 btrfs_should_cancel_balance(fs_info)) {
4006 ret = -EINVAL;
4007 goto out;
4008 }
4009
4010 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4011 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4012 mixed = 1;
4013
4014 /*
4015 * In case of mixed groups both data and meta should be picked,
4016 * and identical options should be given for both of them.
4017 */
4018 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4019 if (mixed && (bctl->flags & allowed)) {
4020 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4021 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4022 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4023 btrfs_err(fs_info,
4024 "balance: mixed groups data and metadata options must be the same");
4025 ret = -EINVAL;
4026 goto out;
4027 }
4028 }
4029
4030 /*
4031 * rw_devices will not change at the moment, device add/delete/replace
4032 * are exclusive
4033 */
4034 num_devices = fs_info->fs_devices->rw_devices;
4035
4036 /*
4037 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4038 * special bit for it, to make it easier to distinguish. Thus we need
4039 * to set it manually, or balance would refuse the profile.
4040 */
4041 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4042 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4043 if (num_devices >= btrfs_raid_array[i].devs_min)
4044 allowed |= btrfs_raid_array[i].bg_flag;
4045
4046 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4047 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4048 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4049 ret = -EINVAL;
4050 goto out;
4051 }
4052
4053 /*
4054 * Allow to reduce metadata or system integrity only if force set for
4055 * profiles with redundancy (copies, parity)
4056 */
4057 allowed = 0;
4058 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4059 if (btrfs_raid_array[i].ncopies >= 2 ||
4060 btrfs_raid_array[i].tolerated_failures >= 1)
4061 allowed |= btrfs_raid_array[i].bg_flag;
4062 }
4063 do {
4064 seq = read_seqbegin(&fs_info->profiles_lock);
4065
4066 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4067 (fs_info->avail_system_alloc_bits & allowed) &&
4068 !(bctl->sys.target & allowed)) ||
4069 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4070 (fs_info->avail_metadata_alloc_bits & allowed) &&
4071 !(bctl->meta.target & allowed)))
4072 reducing_redundancy = true;
4073 else
4074 reducing_redundancy = false;
4075
4076 /* if we're not converting, the target field is uninitialized */
4077 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4078 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4079 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4080 bctl->data.target : fs_info->avail_data_alloc_bits;
4081 } while (read_seqretry(&fs_info->profiles_lock, seq));
4082
4083 if (reducing_redundancy) {
4084 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4085 btrfs_info(fs_info,
4086 "balance: force reducing metadata redundancy");
4087 } else {
4088 btrfs_err(fs_info,
4089 "balance: reduces metadata redundancy, use --force if you want this");
4090 ret = -EINVAL;
4091 goto out;
4092 }
4093 }
4094
4095 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4096 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4097 btrfs_warn(fs_info,
4098 "balance: metadata profile %s has lower redundancy than data profile %s",
4099 btrfs_bg_type_to_raid_name(meta_target),
4100 btrfs_bg_type_to_raid_name(data_target));
4101 }
4102
4103 if (fs_info->send_in_progress) {
4104 btrfs_warn_rl(fs_info,
4105 "cannot run balance while send operations are in progress (%d in progress)",
4106 fs_info->send_in_progress);
4107 ret = -EAGAIN;
4108 goto out;
4109 }
4110
4111 ret = insert_balance_item(fs_info, bctl);
4112 if (ret && ret != -EEXIST)
4113 goto out;
4114
4115 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4116 BUG_ON(ret == -EEXIST);
4117 BUG_ON(fs_info->balance_ctl);
4118 spin_lock(&fs_info->balance_lock);
4119 fs_info->balance_ctl = bctl;
4120 spin_unlock(&fs_info->balance_lock);
4121 } else {
4122 BUG_ON(ret != -EEXIST);
4123 spin_lock(&fs_info->balance_lock);
4124 update_balance_args(bctl);
4125 spin_unlock(&fs_info->balance_lock);
4126 }
4127
4128 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4129 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4130 describe_balance_start_or_resume(fs_info);
4131 mutex_unlock(&fs_info->balance_mutex);
4132
4133 ret = __btrfs_balance(fs_info);
4134
4135 mutex_lock(&fs_info->balance_mutex);
4136 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4137 btrfs_info(fs_info, "balance: paused");
4138 /*
4139 * Balance can be canceled by:
4140 *
4141 * - Regular cancel request
4142 * Then ret == -ECANCELED and balance_cancel_req > 0
4143 *
4144 * - Fatal signal to "btrfs" process
4145 * Either the signal caught by wait_reserve_ticket() and callers
4146 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4147 * got -ECANCELED.
4148 * Either way, in this case balance_cancel_req = 0, and
4149 * ret == -EINTR or ret == -ECANCELED.
4150 *
4151 * So here we only check the return value to catch canceled balance.
4152 */
4153 else if (ret == -ECANCELED || ret == -EINTR)
4154 btrfs_info(fs_info, "balance: canceled");
4155 else
4156 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4157
4158 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4159
4160 if (bargs) {
4161 memset(bargs, 0, sizeof(*bargs));
4162 btrfs_update_ioctl_balance_args(fs_info, bargs);
4163 }
4164
4165 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4166 balance_need_close(fs_info)) {
4167 reset_balance_state(fs_info);
4168 btrfs_exclop_finish(fs_info);
4169 }
4170
4171 wake_up(&fs_info->balance_wait_q);
4172
4173 return ret;
4174 out:
4175 if (bctl->flags & BTRFS_BALANCE_RESUME)
4176 reset_balance_state(fs_info);
4177 else
4178 kfree(bctl);
4179 btrfs_exclop_finish(fs_info);
4180
4181 return ret;
4182 }
4183
4184 static int balance_kthread(void *data)
4185 {
4186 struct btrfs_fs_info *fs_info = data;
4187 int ret = 0;
4188
4189 mutex_lock(&fs_info->balance_mutex);
4190 if (fs_info->balance_ctl)
4191 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4192 mutex_unlock(&fs_info->balance_mutex);
4193
4194 return ret;
4195 }
4196
4197 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4198 {
4199 struct task_struct *tsk;
4200
4201 mutex_lock(&fs_info->balance_mutex);
4202 if (!fs_info->balance_ctl) {
4203 mutex_unlock(&fs_info->balance_mutex);
4204 return 0;
4205 }
4206 mutex_unlock(&fs_info->balance_mutex);
4207
4208 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4209 btrfs_info(fs_info, "balance: resume skipped");
4210 return 0;
4211 }
4212
4213 /*
4214 * A ro->rw remount sequence should continue with the paused balance
4215 * regardless of who pauses it, system or the user as of now, so set
4216 * the resume flag.
4217 */
4218 spin_lock(&fs_info->balance_lock);
4219 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4220 spin_unlock(&fs_info->balance_lock);
4221
4222 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4223 return PTR_ERR_OR_ZERO(tsk);
4224 }
4225
4226 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4227 {
4228 struct btrfs_balance_control *bctl;
4229 struct btrfs_balance_item *item;
4230 struct btrfs_disk_balance_args disk_bargs;
4231 struct btrfs_path *path;
4232 struct extent_buffer *leaf;
4233 struct btrfs_key key;
4234 int ret;
4235
4236 path = btrfs_alloc_path();
4237 if (!path)
4238 return -ENOMEM;
4239
4240 key.objectid = BTRFS_BALANCE_OBJECTID;
4241 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4242 key.offset = 0;
4243
4244 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4245 if (ret < 0)
4246 goto out;
4247 if (ret > 0) { /* ret = -ENOENT; */
4248 ret = 0;
4249 goto out;
4250 }
4251
4252 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4253 if (!bctl) {
4254 ret = -ENOMEM;
4255 goto out;
4256 }
4257
4258 leaf = path->nodes[0];
4259 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4260
4261 bctl->flags = btrfs_balance_flags(leaf, item);
4262 bctl->flags |= BTRFS_BALANCE_RESUME;
4263
4264 btrfs_balance_data(leaf, item, &disk_bargs);
4265 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4266 btrfs_balance_meta(leaf, item, &disk_bargs);
4267 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4268 btrfs_balance_sys(leaf, item, &disk_bargs);
4269 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4270
4271 /*
4272 * This should never happen, as the paused balance state is recovered
4273 * during mount without any chance of other exclusive ops to collide.
4274 *
4275 * This gives the exclusive op status to balance and keeps in paused
4276 * state until user intervention (cancel or umount). If the ownership
4277 * cannot be assigned, show a message but do not fail. The balance
4278 * is in a paused state and must have fs_info::balance_ctl properly
4279 * set up.
4280 */
4281 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4282 btrfs_warn(fs_info,
4283 "balance: cannot set exclusive op status, resume manually");
4284
4285 mutex_lock(&fs_info->balance_mutex);
4286 BUG_ON(fs_info->balance_ctl);
4287 spin_lock(&fs_info->balance_lock);
4288 fs_info->balance_ctl = bctl;
4289 spin_unlock(&fs_info->balance_lock);
4290 mutex_unlock(&fs_info->balance_mutex);
4291 out:
4292 btrfs_free_path(path);
4293 return ret;
4294 }
4295
4296 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4297 {
4298 int ret = 0;
4299
4300 mutex_lock(&fs_info->balance_mutex);
4301 if (!fs_info->balance_ctl) {
4302 mutex_unlock(&fs_info->balance_mutex);
4303 return -ENOTCONN;
4304 }
4305
4306 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4307 atomic_inc(&fs_info->balance_pause_req);
4308 mutex_unlock(&fs_info->balance_mutex);
4309
4310 wait_event(fs_info->balance_wait_q,
4311 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4312
4313 mutex_lock(&fs_info->balance_mutex);
4314 /* we are good with balance_ctl ripped off from under us */
4315 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4316 atomic_dec(&fs_info->balance_pause_req);
4317 } else {
4318 ret = -ENOTCONN;
4319 }
4320
4321 mutex_unlock(&fs_info->balance_mutex);
4322 return ret;
4323 }
4324
4325 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4326 {
4327 mutex_lock(&fs_info->balance_mutex);
4328 if (!fs_info->balance_ctl) {
4329 mutex_unlock(&fs_info->balance_mutex);
4330 return -ENOTCONN;
4331 }
4332
4333 /*
4334 * A paused balance with the item stored on disk can be resumed at
4335 * mount time if the mount is read-write. Otherwise it's still paused
4336 * and we must not allow cancelling as it deletes the item.
4337 */
4338 if (sb_rdonly(fs_info->sb)) {
4339 mutex_unlock(&fs_info->balance_mutex);
4340 return -EROFS;
4341 }
4342
4343 atomic_inc(&fs_info->balance_cancel_req);
4344 /*
4345 * if we are running just wait and return, balance item is
4346 * deleted in btrfs_balance in this case
4347 */
4348 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4349 mutex_unlock(&fs_info->balance_mutex);
4350 wait_event(fs_info->balance_wait_q,
4351 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4352 mutex_lock(&fs_info->balance_mutex);
4353 } else {
4354 mutex_unlock(&fs_info->balance_mutex);
4355 /*
4356 * Lock released to allow other waiters to continue, we'll
4357 * reexamine the status again.
4358 */
4359 mutex_lock(&fs_info->balance_mutex);
4360
4361 if (fs_info->balance_ctl) {
4362 reset_balance_state(fs_info);
4363 btrfs_exclop_finish(fs_info);
4364 btrfs_info(fs_info, "balance: canceled");
4365 }
4366 }
4367
4368 BUG_ON(fs_info->balance_ctl ||
4369 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4370 atomic_dec(&fs_info->balance_cancel_req);
4371 mutex_unlock(&fs_info->balance_mutex);
4372 return 0;
4373 }
4374
4375 int btrfs_uuid_scan_kthread(void *data)
4376 {
4377 struct btrfs_fs_info *fs_info = data;
4378 struct btrfs_root *root = fs_info->tree_root;
4379 struct btrfs_key key;
4380 struct btrfs_path *path = NULL;
4381 int ret = 0;
4382 struct extent_buffer *eb;
4383 int slot;
4384 struct btrfs_root_item root_item;
4385 u32 item_size;
4386 struct btrfs_trans_handle *trans = NULL;
4387 bool closing = false;
4388
4389 path = btrfs_alloc_path();
4390 if (!path) {
4391 ret = -ENOMEM;
4392 goto out;
4393 }
4394
4395 key.objectid = 0;
4396 key.type = BTRFS_ROOT_ITEM_KEY;
4397 key.offset = 0;
4398
4399 while (1) {
4400 if (btrfs_fs_closing(fs_info)) {
4401 closing = true;
4402 break;
4403 }
4404 ret = btrfs_search_forward(root, &key, path,
4405 BTRFS_OLDEST_GENERATION);
4406 if (ret) {
4407 if (ret > 0)
4408 ret = 0;
4409 break;
4410 }
4411
4412 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4413 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4414 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4415 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4416 goto skip;
4417
4418 eb = path->nodes[0];
4419 slot = path->slots[0];
4420 item_size = btrfs_item_size_nr(eb, slot);
4421 if (item_size < sizeof(root_item))
4422 goto skip;
4423
4424 read_extent_buffer(eb, &root_item,
4425 btrfs_item_ptr_offset(eb, slot),
4426 (int)sizeof(root_item));
4427 if (btrfs_root_refs(&root_item) == 0)
4428 goto skip;
4429
4430 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4431 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4432 if (trans)
4433 goto update_tree;
4434
4435 btrfs_release_path(path);
4436 /*
4437 * 1 - subvol uuid item
4438 * 1 - received_subvol uuid item
4439 */
4440 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4441 if (IS_ERR(trans)) {
4442 ret = PTR_ERR(trans);
4443 break;
4444 }
4445 continue;
4446 } else {
4447 goto skip;
4448 }
4449 update_tree:
4450 btrfs_release_path(path);
4451 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4452 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4453 BTRFS_UUID_KEY_SUBVOL,
4454 key.objectid);
4455 if (ret < 0) {
4456 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4457 ret);
4458 break;
4459 }
4460 }
4461
4462 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4463 ret = btrfs_uuid_tree_add(trans,
4464 root_item.received_uuid,
4465 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4466 key.objectid);
4467 if (ret < 0) {
4468 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4469 ret);
4470 break;
4471 }
4472 }
4473
4474 skip:
4475 btrfs_release_path(path);
4476 if (trans) {
4477 ret = btrfs_end_transaction(trans);
4478 trans = NULL;
4479 if (ret)
4480 break;
4481 }
4482
4483 if (key.offset < (u64)-1) {
4484 key.offset++;
4485 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4486 key.offset = 0;
4487 key.type = BTRFS_ROOT_ITEM_KEY;
4488 } else if (key.objectid < (u64)-1) {
4489 key.offset = 0;
4490 key.type = BTRFS_ROOT_ITEM_KEY;
4491 key.objectid++;
4492 } else {
4493 break;
4494 }
4495 cond_resched();
4496 }
4497
4498 out:
4499 btrfs_free_path(path);
4500 if (trans && !IS_ERR(trans))
4501 btrfs_end_transaction(trans);
4502 if (ret)
4503 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4504 else if (!closing)
4505 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4506 up(&fs_info->uuid_tree_rescan_sem);
4507 return 0;
4508 }
4509
4510 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4511 {
4512 struct btrfs_trans_handle *trans;
4513 struct btrfs_root *tree_root = fs_info->tree_root;
4514 struct btrfs_root *uuid_root;
4515 struct task_struct *task;
4516 int ret;
4517
4518 /*
4519 * 1 - root node
4520 * 1 - root item
4521 */
4522 trans = btrfs_start_transaction(tree_root, 2);
4523 if (IS_ERR(trans))
4524 return PTR_ERR(trans);
4525
4526 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4527 if (IS_ERR(uuid_root)) {
4528 ret = PTR_ERR(uuid_root);
4529 btrfs_abort_transaction(trans, ret);
4530 btrfs_end_transaction(trans);
4531 return ret;
4532 }
4533
4534 fs_info->uuid_root = uuid_root;
4535
4536 ret = btrfs_commit_transaction(trans);
4537 if (ret)
4538 return ret;
4539
4540 down(&fs_info->uuid_tree_rescan_sem);
4541 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4542 if (IS_ERR(task)) {
4543 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4544 btrfs_warn(fs_info, "failed to start uuid_scan task");
4545 up(&fs_info->uuid_tree_rescan_sem);
4546 return PTR_ERR(task);
4547 }
4548
4549 return 0;
4550 }
4551
4552 /*
4553 * shrinking a device means finding all of the device extents past
4554 * the new size, and then following the back refs to the chunks.
4555 * The chunk relocation code actually frees the device extent
4556 */
4557 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4558 {
4559 struct btrfs_fs_info *fs_info = device->fs_info;
4560 struct btrfs_root *root = fs_info->dev_root;
4561 struct btrfs_trans_handle *trans;
4562 struct btrfs_dev_extent *dev_extent = NULL;
4563 struct btrfs_path *path;
4564 u64 length;
4565 u64 chunk_offset;
4566 int ret;
4567 int slot;
4568 int failed = 0;
4569 bool retried = false;
4570 struct extent_buffer *l;
4571 struct btrfs_key key;
4572 struct btrfs_super_block *super_copy = fs_info->super_copy;
4573 u64 old_total = btrfs_super_total_bytes(super_copy);
4574 u64 old_size = btrfs_device_get_total_bytes(device);
4575 u64 diff;
4576 u64 start;
4577
4578 new_size = round_down(new_size, fs_info->sectorsize);
4579 start = new_size;
4580 diff = round_down(old_size - new_size, fs_info->sectorsize);
4581
4582 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4583 return -EINVAL;
4584
4585 path = btrfs_alloc_path();
4586 if (!path)
4587 return -ENOMEM;
4588
4589 path->reada = READA_BACK;
4590
4591 trans = btrfs_start_transaction(root, 0);
4592 if (IS_ERR(trans)) {
4593 btrfs_free_path(path);
4594 return PTR_ERR(trans);
4595 }
4596
4597 mutex_lock(&fs_info->chunk_mutex);
4598
4599 btrfs_device_set_total_bytes(device, new_size);
4600 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4601 device->fs_devices->total_rw_bytes -= diff;
4602 atomic64_sub(diff, &fs_info->free_chunk_space);
4603 }
4604
4605 /*
4606 * Once the device's size has been set to the new size, ensure all
4607 * in-memory chunks are synced to disk so that the loop below sees them
4608 * and relocates them accordingly.
4609 */
4610 if (contains_pending_extent(device, &start, diff)) {
4611 mutex_unlock(&fs_info->chunk_mutex);
4612 ret = btrfs_commit_transaction(trans);
4613 if (ret)
4614 goto done;
4615 } else {
4616 mutex_unlock(&fs_info->chunk_mutex);
4617 btrfs_end_transaction(trans);
4618 }
4619
4620 again:
4621 key.objectid = device->devid;
4622 key.offset = (u64)-1;
4623 key.type = BTRFS_DEV_EXTENT_KEY;
4624
4625 do {
4626 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4627 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4628 if (ret < 0) {
4629 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4630 goto done;
4631 }
4632
4633 ret = btrfs_previous_item(root, path, 0, key.type);
4634 if (ret)
4635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4636 if (ret < 0)
4637 goto done;
4638 if (ret) {
4639 ret = 0;
4640 btrfs_release_path(path);
4641 break;
4642 }
4643
4644 l = path->nodes[0];
4645 slot = path->slots[0];
4646 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4647
4648 if (key.objectid != device->devid) {
4649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4650 btrfs_release_path(path);
4651 break;
4652 }
4653
4654 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4655 length = btrfs_dev_extent_length(l, dev_extent);
4656
4657 if (key.offset + length <= new_size) {
4658 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4659 btrfs_release_path(path);
4660 break;
4661 }
4662
4663 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4664 btrfs_release_path(path);
4665
4666 /*
4667 * We may be relocating the only data chunk we have,
4668 * which could potentially end up with losing data's
4669 * raid profile, so lets allocate an empty one in
4670 * advance.
4671 */
4672 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4673 if (ret < 0) {
4674 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4675 goto done;
4676 }
4677
4678 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4679 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4680 if (ret == -ENOSPC) {
4681 failed++;
4682 } else if (ret) {
4683 if (ret == -ETXTBSY) {
4684 btrfs_warn(fs_info,
4685 "could not shrink block group %llu due to active swapfile",
4686 chunk_offset);
4687 }
4688 goto done;
4689 }
4690 } while (key.offset-- > 0);
4691
4692 if (failed && !retried) {
4693 failed = 0;
4694 retried = true;
4695 goto again;
4696 } else if (failed && retried) {
4697 ret = -ENOSPC;
4698 goto done;
4699 }
4700
4701 /* Shrinking succeeded, else we would be at "done". */
4702 trans = btrfs_start_transaction(root, 0);
4703 if (IS_ERR(trans)) {
4704 ret = PTR_ERR(trans);
4705 goto done;
4706 }
4707
4708 mutex_lock(&fs_info->chunk_mutex);
4709 /* Clear all state bits beyond the shrunk device size */
4710 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4711 CHUNK_STATE_MASK);
4712
4713 btrfs_device_set_disk_total_bytes(device, new_size);
4714 if (list_empty(&device->post_commit_list))
4715 list_add_tail(&device->post_commit_list,
4716 &trans->transaction->dev_update_list);
4717
4718 WARN_ON(diff > old_total);
4719 btrfs_set_super_total_bytes(super_copy,
4720 round_down(old_total - diff, fs_info->sectorsize));
4721 mutex_unlock(&fs_info->chunk_mutex);
4722
4723 /* Now btrfs_update_device() will change the on-disk size. */
4724 ret = btrfs_update_device(trans, device);
4725 if (ret < 0) {
4726 btrfs_abort_transaction(trans, ret);
4727 btrfs_end_transaction(trans);
4728 } else {
4729 ret = btrfs_commit_transaction(trans);
4730 }
4731 done:
4732 btrfs_free_path(path);
4733 if (ret) {
4734 mutex_lock(&fs_info->chunk_mutex);
4735 btrfs_device_set_total_bytes(device, old_size);
4736 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4737 device->fs_devices->total_rw_bytes += diff;
4738 atomic64_add(diff, &fs_info->free_chunk_space);
4739 mutex_unlock(&fs_info->chunk_mutex);
4740 }
4741 return ret;
4742 }
4743
4744 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4745 struct btrfs_key *key,
4746 struct btrfs_chunk *chunk, int item_size)
4747 {
4748 struct btrfs_super_block *super_copy = fs_info->super_copy;
4749 struct btrfs_disk_key disk_key;
4750 u32 array_size;
4751 u8 *ptr;
4752
4753 mutex_lock(&fs_info->chunk_mutex);
4754 array_size = btrfs_super_sys_array_size(super_copy);
4755 if (array_size + item_size + sizeof(disk_key)
4756 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4757 mutex_unlock(&fs_info->chunk_mutex);
4758 return -EFBIG;
4759 }
4760
4761 ptr = super_copy->sys_chunk_array + array_size;
4762 btrfs_cpu_key_to_disk(&disk_key, key);
4763 memcpy(ptr, &disk_key, sizeof(disk_key));
4764 ptr += sizeof(disk_key);
4765 memcpy(ptr, chunk, item_size);
4766 item_size += sizeof(disk_key);
4767 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4768 mutex_unlock(&fs_info->chunk_mutex);
4769
4770 return 0;
4771 }
4772
4773 /*
4774 * sort the devices in descending order by max_avail, total_avail
4775 */
4776 static int btrfs_cmp_device_info(const void *a, const void *b)
4777 {
4778 const struct btrfs_device_info *di_a = a;
4779 const struct btrfs_device_info *di_b = b;
4780
4781 if (di_a->max_avail > di_b->max_avail)
4782 return -1;
4783 if (di_a->max_avail < di_b->max_avail)
4784 return 1;
4785 if (di_a->total_avail > di_b->total_avail)
4786 return -1;
4787 if (di_a->total_avail < di_b->total_avail)
4788 return 1;
4789 return 0;
4790 }
4791
4792 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4793 {
4794 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4795 return;
4796
4797 btrfs_set_fs_incompat(info, RAID56);
4798 }
4799
4800 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4801 {
4802 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4803 return;
4804
4805 btrfs_set_fs_incompat(info, RAID1C34);
4806 }
4807
4808 /*
4809 * Structure used internally for __btrfs_alloc_chunk() function.
4810 * Wraps needed parameters.
4811 */
4812 struct alloc_chunk_ctl {
4813 u64 start;
4814 u64 type;
4815 /* Total number of stripes to allocate */
4816 int num_stripes;
4817 /* sub_stripes info for map */
4818 int sub_stripes;
4819 /* Stripes per device */
4820 int dev_stripes;
4821 /* Maximum number of devices to use */
4822 int devs_max;
4823 /* Minimum number of devices to use */
4824 int devs_min;
4825 /* ndevs has to be a multiple of this */
4826 int devs_increment;
4827 /* Number of copies */
4828 int ncopies;
4829 /* Number of stripes worth of bytes to store parity information */
4830 int nparity;
4831 u64 max_stripe_size;
4832 u64 max_chunk_size;
4833 u64 dev_extent_min;
4834 u64 stripe_size;
4835 u64 chunk_size;
4836 int ndevs;
4837 };
4838
4839 static void init_alloc_chunk_ctl_policy_regular(
4840 struct btrfs_fs_devices *fs_devices,
4841 struct alloc_chunk_ctl *ctl)
4842 {
4843 u64 type = ctl->type;
4844
4845 if (type & BTRFS_BLOCK_GROUP_DATA) {
4846 ctl->max_stripe_size = SZ_1G;
4847 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4848 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4849 /* For larger filesystems, use larger metadata chunks */
4850 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4851 ctl->max_stripe_size = SZ_1G;
4852 else
4853 ctl->max_stripe_size = SZ_256M;
4854 ctl->max_chunk_size = ctl->max_stripe_size;
4855 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4856 ctl->max_stripe_size = SZ_32M;
4857 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4858 ctl->devs_max = min_t(int, ctl->devs_max,
4859 BTRFS_MAX_DEVS_SYS_CHUNK);
4860 } else {
4861 BUG();
4862 }
4863
4864 /* We don't want a chunk larger than 10% of writable space */
4865 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4866 ctl->max_chunk_size);
4867 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4868 }
4869
4870 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4871 struct alloc_chunk_ctl *ctl)
4872 {
4873 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4874
4875 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4876 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4877 ctl->devs_max = btrfs_raid_array[index].devs_max;
4878 if (!ctl->devs_max)
4879 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4880 ctl->devs_min = btrfs_raid_array[index].devs_min;
4881 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4882 ctl->ncopies = btrfs_raid_array[index].ncopies;
4883 ctl->nparity = btrfs_raid_array[index].nparity;
4884 ctl->ndevs = 0;
4885
4886 switch (fs_devices->chunk_alloc_policy) {
4887 case BTRFS_CHUNK_ALLOC_REGULAR:
4888 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4889 break;
4890 default:
4891 BUG();
4892 }
4893 }
4894
4895 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4896 struct alloc_chunk_ctl *ctl,
4897 struct btrfs_device_info *devices_info)
4898 {
4899 struct btrfs_fs_info *info = fs_devices->fs_info;
4900 struct btrfs_device *device;
4901 u64 total_avail;
4902 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4903 int ret;
4904 int ndevs = 0;
4905 u64 max_avail;
4906 u64 dev_offset;
4907
4908 /*
4909 * in the first pass through the devices list, we gather information
4910 * about the available holes on each device.
4911 */
4912 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4913 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4914 WARN(1, KERN_ERR
4915 "BTRFS: read-only device in alloc_list\n");
4916 continue;
4917 }
4918
4919 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4920 &device->dev_state) ||
4921 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4922 continue;
4923
4924 if (device->total_bytes > device->bytes_used)
4925 total_avail = device->total_bytes - device->bytes_used;
4926 else
4927 total_avail = 0;
4928
4929 /* If there is no space on this device, skip it. */
4930 if (total_avail < ctl->dev_extent_min)
4931 continue;
4932
4933 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4934 &max_avail);
4935 if (ret && ret != -ENOSPC)
4936 return ret;
4937
4938 if (ret == 0)
4939 max_avail = dev_extent_want;
4940
4941 if (max_avail < ctl->dev_extent_min) {
4942 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4943 btrfs_debug(info,
4944 "%s: devid %llu has no free space, have=%llu want=%llu",
4945 __func__, device->devid, max_avail,
4946 ctl->dev_extent_min);
4947 continue;
4948 }
4949
4950 if (ndevs == fs_devices->rw_devices) {
4951 WARN(1, "%s: found more than %llu devices\n",
4952 __func__, fs_devices->rw_devices);
4953 break;
4954 }
4955 devices_info[ndevs].dev_offset = dev_offset;
4956 devices_info[ndevs].max_avail = max_avail;
4957 devices_info[ndevs].total_avail = total_avail;
4958 devices_info[ndevs].dev = device;
4959 ++ndevs;
4960 }
4961 ctl->ndevs = ndevs;
4962
4963 /*
4964 * now sort the devices by hole size / available space
4965 */
4966 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4967 btrfs_cmp_device_info, NULL);
4968
4969 return 0;
4970 }
4971
4972 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4973 struct btrfs_device_info *devices_info)
4974 {
4975 /* Number of stripes that count for block group size */
4976 int data_stripes;
4977
4978 /*
4979 * The primary goal is to maximize the number of stripes, so use as
4980 * many devices as possible, even if the stripes are not maximum sized.
4981 *
4982 * The DUP profile stores more than one stripe per device, the
4983 * max_avail is the total size so we have to adjust.
4984 */
4985 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4986 ctl->dev_stripes);
4987 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
4988
4989 /* This will have to be fixed for RAID1 and RAID10 over more drives */
4990 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
4991
4992 /*
4993 * Use the number of data stripes to figure out how big this chunk is
4994 * really going to be in terms of logical address space, and compare
4995 * that answer with the max chunk size. If it's higher, we try to
4996 * reduce stripe_size.
4997 */
4998 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
4999 /*
5000 * Reduce stripe_size, round it up to a 16MB boundary again and
5001 * then use it, unless it ends up being even bigger than the
5002 * previous value we had already.
5003 */
5004 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5005 data_stripes), SZ_16M),
5006 ctl->stripe_size);
5007 }
5008
5009 /* Align to BTRFS_STRIPE_LEN */
5010 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5011 ctl->chunk_size = ctl->stripe_size * data_stripes;
5012
5013 return 0;
5014 }
5015
5016 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5017 struct alloc_chunk_ctl *ctl,
5018 struct btrfs_device_info *devices_info)
5019 {
5020 struct btrfs_fs_info *info = fs_devices->fs_info;
5021
5022 /*
5023 * Round down to number of usable stripes, devs_increment can be any
5024 * number so we can't use round_down() that requires power of 2, while
5025 * rounddown is safe.
5026 */
5027 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5028
5029 if (ctl->ndevs < ctl->devs_min) {
5030 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5031 btrfs_debug(info,
5032 "%s: not enough devices with free space: have=%d minimum required=%d",
5033 __func__, ctl->ndevs, ctl->devs_min);
5034 }
5035 return -ENOSPC;
5036 }
5037
5038 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5039
5040 switch (fs_devices->chunk_alloc_policy) {
5041 case BTRFS_CHUNK_ALLOC_REGULAR:
5042 return decide_stripe_size_regular(ctl, devices_info);
5043 default:
5044 BUG();
5045 }
5046 }
5047
5048 static int create_chunk(struct btrfs_trans_handle *trans,
5049 struct alloc_chunk_ctl *ctl,
5050 struct btrfs_device_info *devices_info)
5051 {
5052 struct btrfs_fs_info *info = trans->fs_info;
5053 struct map_lookup *map = NULL;
5054 struct extent_map_tree *em_tree;
5055 struct extent_map *em;
5056 u64 start = ctl->start;
5057 u64 type = ctl->type;
5058 int ret;
5059 int i;
5060 int j;
5061
5062 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5063 if (!map)
5064 return -ENOMEM;
5065 map->num_stripes = ctl->num_stripes;
5066
5067 for (i = 0; i < ctl->ndevs; ++i) {
5068 for (j = 0; j < ctl->dev_stripes; ++j) {
5069 int s = i * ctl->dev_stripes + j;
5070 map->stripes[s].dev = devices_info[i].dev;
5071 map->stripes[s].physical = devices_info[i].dev_offset +
5072 j * ctl->stripe_size;
5073 }
5074 }
5075 map->stripe_len = BTRFS_STRIPE_LEN;
5076 map->io_align = BTRFS_STRIPE_LEN;
5077 map->io_width = BTRFS_STRIPE_LEN;
5078 map->type = type;
5079 map->sub_stripes = ctl->sub_stripes;
5080
5081 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5082
5083 em = alloc_extent_map();
5084 if (!em) {
5085 kfree(map);
5086 return -ENOMEM;
5087 }
5088 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5089 em->map_lookup = map;
5090 em->start = start;
5091 em->len = ctl->chunk_size;
5092 em->block_start = 0;
5093 em->block_len = em->len;
5094 em->orig_block_len = ctl->stripe_size;
5095
5096 em_tree = &info->mapping_tree;
5097 write_lock(&em_tree->lock);
5098 ret = add_extent_mapping(em_tree, em, 0);
5099 if (ret) {
5100 write_unlock(&em_tree->lock);
5101 free_extent_map(em);
5102 return ret;
5103 }
5104 write_unlock(&em_tree->lock);
5105
5106 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5107 if (ret)
5108 goto error_del_extent;
5109
5110 for (i = 0; i < map->num_stripes; i++) {
5111 struct btrfs_device *dev = map->stripes[i].dev;
5112
5113 btrfs_device_set_bytes_used(dev,
5114 dev->bytes_used + ctl->stripe_size);
5115 if (list_empty(&dev->post_commit_list))
5116 list_add_tail(&dev->post_commit_list,
5117 &trans->transaction->dev_update_list);
5118 }
5119
5120 atomic64_sub(ctl->stripe_size * map->num_stripes,
5121 &info->free_chunk_space);
5122
5123 free_extent_map(em);
5124 check_raid56_incompat_flag(info, type);
5125 check_raid1c34_incompat_flag(info, type);
5126
5127 return 0;
5128
5129 error_del_extent:
5130 write_lock(&em_tree->lock);
5131 remove_extent_mapping(em_tree, em);
5132 write_unlock(&em_tree->lock);
5133
5134 /* One for our allocation */
5135 free_extent_map(em);
5136 /* One for the tree reference */
5137 free_extent_map(em);
5138
5139 return ret;
5140 }
5141
5142 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5143 {
5144 struct btrfs_fs_info *info = trans->fs_info;
5145 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5146 struct btrfs_device_info *devices_info = NULL;
5147 struct alloc_chunk_ctl ctl;
5148 int ret;
5149
5150 lockdep_assert_held(&info->chunk_mutex);
5151
5152 if (!alloc_profile_is_valid(type, 0)) {
5153 ASSERT(0);
5154 return -EINVAL;
5155 }
5156
5157 if (list_empty(&fs_devices->alloc_list)) {
5158 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5159 btrfs_debug(info, "%s: no writable device", __func__);
5160 return -ENOSPC;
5161 }
5162
5163 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5164 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5165 ASSERT(0);
5166 return -EINVAL;
5167 }
5168
5169 ctl.start = find_next_chunk(info);
5170 ctl.type = type;
5171 init_alloc_chunk_ctl(fs_devices, &ctl);
5172
5173 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5174 GFP_NOFS);
5175 if (!devices_info)
5176 return -ENOMEM;
5177
5178 ret = gather_device_info(fs_devices, &ctl, devices_info);
5179 if (ret < 0)
5180 goto out;
5181
5182 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5183 if (ret < 0)
5184 goto out;
5185
5186 ret = create_chunk(trans, &ctl, devices_info);
5187
5188 out:
5189 kfree(devices_info);
5190 return ret;
5191 }
5192
5193 /*
5194 * Chunk allocation falls into two parts. The first part does work
5195 * that makes the new allocated chunk usable, but does not do any operation
5196 * that modifies the chunk tree. The second part does the work that
5197 * requires modifying the chunk tree. This division is important for the
5198 * bootstrap process of adding storage to a seed btrfs.
5199 */
5200 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5201 u64 chunk_offset, u64 chunk_size)
5202 {
5203 struct btrfs_fs_info *fs_info = trans->fs_info;
5204 struct btrfs_root *extent_root = fs_info->extent_root;
5205 struct btrfs_root *chunk_root = fs_info->chunk_root;
5206 struct btrfs_key key;
5207 struct btrfs_device *device;
5208 struct btrfs_chunk *chunk;
5209 struct btrfs_stripe *stripe;
5210 struct extent_map *em;
5211 struct map_lookup *map;
5212 size_t item_size;
5213 u64 dev_offset;
5214 u64 stripe_size;
5215 int i = 0;
5216 int ret = 0;
5217
5218 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5219 if (IS_ERR(em))
5220 return PTR_ERR(em);
5221
5222 map = em->map_lookup;
5223 item_size = btrfs_chunk_item_size(map->num_stripes);
5224 stripe_size = em->orig_block_len;
5225
5226 chunk = kzalloc(item_size, GFP_NOFS);
5227 if (!chunk) {
5228 ret = -ENOMEM;
5229 goto out;
5230 }
5231
5232 /*
5233 * Take the device list mutex to prevent races with the final phase of
5234 * a device replace operation that replaces the device object associated
5235 * with the map's stripes, because the device object's id can change
5236 * at any time during that final phase of the device replace operation
5237 * (dev-replace.c:btrfs_dev_replace_finishing()).
5238 */
5239 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5240 for (i = 0; i < map->num_stripes; i++) {
5241 device = map->stripes[i].dev;
5242 dev_offset = map->stripes[i].physical;
5243
5244 ret = btrfs_update_device(trans, device);
5245 if (ret)
5246 break;
5247 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5248 dev_offset, stripe_size);
5249 if (ret)
5250 break;
5251 }
5252 if (ret) {
5253 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5254 goto out;
5255 }
5256
5257 stripe = &chunk->stripe;
5258 for (i = 0; i < map->num_stripes; i++) {
5259 device = map->stripes[i].dev;
5260 dev_offset = map->stripes[i].physical;
5261
5262 btrfs_set_stack_stripe_devid(stripe, device->devid);
5263 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5264 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5265 stripe++;
5266 }
5267 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5268
5269 btrfs_set_stack_chunk_length(chunk, chunk_size);
5270 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5271 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5272 btrfs_set_stack_chunk_type(chunk, map->type);
5273 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5274 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5275 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5276 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5277 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5278
5279 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5280 key.type = BTRFS_CHUNK_ITEM_KEY;
5281 key.offset = chunk_offset;
5282
5283 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5284 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5285 /*
5286 * TODO: Cleanup of inserted chunk root in case of
5287 * failure.
5288 */
5289 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5290 }
5291
5292 out:
5293 kfree(chunk);
5294 free_extent_map(em);
5295 return ret;
5296 }
5297
5298 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5299 {
5300 struct btrfs_fs_info *fs_info = trans->fs_info;
5301 u64 alloc_profile;
5302 int ret;
5303
5304 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5305 ret = btrfs_alloc_chunk(trans, alloc_profile);
5306 if (ret)
5307 return ret;
5308
5309 alloc_profile = btrfs_system_alloc_profile(fs_info);
5310 ret = btrfs_alloc_chunk(trans, alloc_profile);
5311 return ret;
5312 }
5313
5314 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5315 {
5316 const int index = btrfs_bg_flags_to_raid_index(map->type);
5317
5318 return btrfs_raid_array[index].tolerated_failures;
5319 }
5320
5321 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5322 {
5323 struct extent_map *em;
5324 struct map_lookup *map;
5325 int readonly = 0;
5326 int miss_ndevs = 0;
5327 int i;
5328
5329 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5330 if (IS_ERR(em))
5331 return 1;
5332
5333 map = em->map_lookup;
5334 for (i = 0; i < map->num_stripes; i++) {
5335 if (test_bit(BTRFS_DEV_STATE_MISSING,
5336 &map->stripes[i].dev->dev_state)) {
5337 miss_ndevs++;
5338 continue;
5339 }
5340 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5341 &map->stripes[i].dev->dev_state)) {
5342 readonly = 1;
5343 goto end;
5344 }
5345 }
5346
5347 /*
5348 * If the number of missing devices is larger than max errors,
5349 * we can not write the data into that chunk successfully, so
5350 * set it readonly.
5351 */
5352 if (miss_ndevs > btrfs_chunk_max_errors(map))
5353 readonly = 1;
5354 end:
5355 free_extent_map(em);
5356 return readonly;
5357 }
5358
5359 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5360 {
5361 struct extent_map *em;
5362
5363 while (1) {
5364 write_lock(&tree->lock);
5365 em = lookup_extent_mapping(tree, 0, (u64)-1);
5366 if (em)
5367 remove_extent_mapping(tree, em);
5368 write_unlock(&tree->lock);
5369 if (!em)
5370 break;
5371 /* once for us */
5372 free_extent_map(em);
5373 /* once for the tree */
5374 free_extent_map(em);
5375 }
5376 }
5377
5378 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5379 {
5380 struct extent_map *em;
5381 struct map_lookup *map;
5382 int ret;
5383
5384 em = btrfs_get_chunk_map(fs_info, logical, len);
5385 if (IS_ERR(em))
5386 /*
5387 * We could return errors for these cases, but that could get
5388 * ugly and we'd probably do the same thing which is just not do
5389 * anything else and exit, so return 1 so the callers don't try
5390 * to use other copies.
5391 */
5392 return 1;
5393
5394 map = em->map_lookup;
5395 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5396 ret = map->num_stripes;
5397 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5398 ret = map->sub_stripes;
5399 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5400 ret = 2;
5401 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5402 /*
5403 * There could be two corrupted data stripes, we need
5404 * to loop retry in order to rebuild the correct data.
5405 *
5406 * Fail a stripe at a time on every retry except the
5407 * stripe under reconstruction.
5408 */
5409 ret = map->num_stripes;
5410 else
5411 ret = 1;
5412 free_extent_map(em);
5413
5414 down_read(&fs_info->dev_replace.rwsem);
5415 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5416 fs_info->dev_replace.tgtdev)
5417 ret++;
5418 up_read(&fs_info->dev_replace.rwsem);
5419
5420 return ret;
5421 }
5422
5423 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5424 u64 logical)
5425 {
5426 struct extent_map *em;
5427 struct map_lookup *map;
5428 unsigned long len = fs_info->sectorsize;
5429
5430 em = btrfs_get_chunk_map(fs_info, logical, len);
5431
5432 if (!WARN_ON(IS_ERR(em))) {
5433 map = em->map_lookup;
5434 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5435 len = map->stripe_len * nr_data_stripes(map);
5436 free_extent_map(em);
5437 }
5438 return len;
5439 }
5440
5441 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5442 {
5443 struct extent_map *em;
5444 struct map_lookup *map;
5445 int ret = 0;
5446
5447 em = btrfs_get_chunk_map(fs_info, logical, len);
5448
5449 if(!WARN_ON(IS_ERR(em))) {
5450 map = em->map_lookup;
5451 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5452 ret = 1;
5453 free_extent_map(em);
5454 }
5455 return ret;
5456 }
5457
5458 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5459 struct map_lookup *map, int first,
5460 int dev_replace_is_ongoing)
5461 {
5462 int i;
5463 int num_stripes;
5464 int preferred_mirror;
5465 int tolerance;
5466 struct btrfs_device *srcdev;
5467
5468 ASSERT((map->type &
5469 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5470
5471 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5472 num_stripes = map->sub_stripes;
5473 else
5474 num_stripes = map->num_stripes;
5475
5476 preferred_mirror = first + current->pid % num_stripes;
5477
5478 if (dev_replace_is_ongoing &&
5479 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5480 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5481 srcdev = fs_info->dev_replace.srcdev;
5482 else
5483 srcdev = NULL;
5484
5485 /*
5486 * try to avoid the drive that is the source drive for a
5487 * dev-replace procedure, only choose it if no other non-missing
5488 * mirror is available
5489 */
5490 for (tolerance = 0; tolerance < 2; tolerance++) {
5491 if (map->stripes[preferred_mirror].dev->bdev &&
5492 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5493 return preferred_mirror;
5494 for (i = first; i < first + num_stripes; i++) {
5495 if (map->stripes[i].dev->bdev &&
5496 (tolerance || map->stripes[i].dev != srcdev))
5497 return i;
5498 }
5499 }
5500
5501 /* we couldn't find one that doesn't fail. Just return something
5502 * and the io error handling code will clean up eventually
5503 */
5504 return preferred_mirror;
5505 }
5506
5507 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5508 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5509 {
5510 int i;
5511 int again = 1;
5512
5513 while (again) {
5514 again = 0;
5515 for (i = 0; i < num_stripes - 1; i++) {
5516 /* Swap if parity is on a smaller index */
5517 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5518 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5519 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5520 again = 1;
5521 }
5522 }
5523 }
5524 }
5525
5526 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5527 {
5528 struct btrfs_bio *bbio = kzalloc(
5529 /* the size of the btrfs_bio */
5530 sizeof(struct btrfs_bio) +
5531 /* plus the variable array for the stripes */
5532 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5533 /* plus the variable array for the tgt dev */
5534 sizeof(int) * (real_stripes) +
5535 /*
5536 * plus the raid_map, which includes both the tgt dev
5537 * and the stripes
5538 */
5539 sizeof(u64) * (total_stripes),
5540 GFP_NOFS|__GFP_NOFAIL);
5541
5542 atomic_set(&bbio->error, 0);
5543 refcount_set(&bbio->refs, 1);
5544
5545 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5546 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5547
5548 return bbio;
5549 }
5550
5551 void btrfs_get_bbio(struct btrfs_bio *bbio)
5552 {
5553 WARN_ON(!refcount_read(&bbio->refs));
5554 refcount_inc(&bbio->refs);
5555 }
5556
5557 void btrfs_put_bbio(struct btrfs_bio *bbio)
5558 {
5559 if (!bbio)
5560 return;
5561 if (refcount_dec_and_test(&bbio->refs))
5562 kfree(bbio);
5563 }
5564
5565 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5566 /*
5567 * Please note that, discard won't be sent to target device of device
5568 * replace.
5569 */
5570 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5571 u64 logical, u64 *length_ret,
5572 struct btrfs_bio **bbio_ret)
5573 {
5574 struct extent_map *em;
5575 struct map_lookup *map;
5576 struct btrfs_bio *bbio;
5577 u64 length = *length_ret;
5578 u64 offset;
5579 u64 stripe_nr;
5580 u64 stripe_nr_end;
5581 u64 stripe_end_offset;
5582 u64 stripe_cnt;
5583 u64 stripe_len;
5584 u64 stripe_offset;
5585 u64 num_stripes;
5586 u32 stripe_index;
5587 u32 factor = 0;
5588 u32 sub_stripes = 0;
5589 u64 stripes_per_dev = 0;
5590 u32 remaining_stripes = 0;
5591 u32 last_stripe = 0;
5592 int ret = 0;
5593 int i;
5594
5595 /* discard always return a bbio */
5596 ASSERT(bbio_ret);
5597
5598 em = btrfs_get_chunk_map(fs_info, logical, length);
5599 if (IS_ERR(em))
5600 return PTR_ERR(em);
5601
5602 map = em->map_lookup;
5603 /* we don't discard raid56 yet */
5604 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5605 ret = -EOPNOTSUPP;
5606 goto out;
5607 }
5608
5609 offset = logical - em->start;
5610 length = min_t(u64, em->start + em->len - logical, length);
5611 *length_ret = length;
5612
5613 stripe_len = map->stripe_len;
5614 /*
5615 * stripe_nr counts the total number of stripes we have to stride
5616 * to get to this block
5617 */
5618 stripe_nr = div64_u64(offset, stripe_len);
5619
5620 /* stripe_offset is the offset of this block in its stripe */
5621 stripe_offset = offset - stripe_nr * stripe_len;
5622
5623 stripe_nr_end = round_up(offset + length, map->stripe_len);
5624 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5625 stripe_cnt = stripe_nr_end - stripe_nr;
5626 stripe_end_offset = stripe_nr_end * map->stripe_len -
5627 (offset + length);
5628 /*
5629 * after this, stripe_nr is the number of stripes on this
5630 * device we have to walk to find the data, and stripe_index is
5631 * the number of our device in the stripe array
5632 */
5633 num_stripes = 1;
5634 stripe_index = 0;
5635 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5636 BTRFS_BLOCK_GROUP_RAID10)) {
5637 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5638 sub_stripes = 1;
5639 else
5640 sub_stripes = map->sub_stripes;
5641
5642 factor = map->num_stripes / sub_stripes;
5643 num_stripes = min_t(u64, map->num_stripes,
5644 sub_stripes * stripe_cnt);
5645 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5646 stripe_index *= sub_stripes;
5647 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5648 &remaining_stripes);
5649 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5650 last_stripe *= sub_stripes;
5651 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5652 BTRFS_BLOCK_GROUP_DUP)) {
5653 num_stripes = map->num_stripes;
5654 } else {
5655 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5656 &stripe_index);
5657 }
5658
5659 bbio = alloc_btrfs_bio(num_stripes, 0);
5660 if (!bbio) {
5661 ret = -ENOMEM;
5662 goto out;
5663 }
5664
5665 for (i = 0; i < num_stripes; i++) {
5666 bbio->stripes[i].physical =
5667 map->stripes[stripe_index].physical +
5668 stripe_offset + stripe_nr * map->stripe_len;
5669 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5670
5671 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5672 BTRFS_BLOCK_GROUP_RAID10)) {
5673 bbio->stripes[i].length = stripes_per_dev *
5674 map->stripe_len;
5675
5676 if (i / sub_stripes < remaining_stripes)
5677 bbio->stripes[i].length +=
5678 map->stripe_len;
5679
5680 /*
5681 * Special for the first stripe and
5682 * the last stripe:
5683 *
5684 * |-------|...|-------|
5685 * |----------|
5686 * off end_off
5687 */
5688 if (i < sub_stripes)
5689 bbio->stripes[i].length -=
5690 stripe_offset;
5691
5692 if (stripe_index >= last_stripe &&
5693 stripe_index <= (last_stripe +
5694 sub_stripes - 1))
5695 bbio->stripes[i].length -=
5696 stripe_end_offset;
5697
5698 if (i == sub_stripes - 1)
5699 stripe_offset = 0;
5700 } else {
5701 bbio->stripes[i].length = length;
5702 }
5703
5704 stripe_index++;
5705 if (stripe_index == map->num_stripes) {
5706 stripe_index = 0;
5707 stripe_nr++;
5708 }
5709 }
5710
5711 *bbio_ret = bbio;
5712 bbio->map_type = map->type;
5713 bbio->num_stripes = num_stripes;
5714 out:
5715 free_extent_map(em);
5716 return ret;
5717 }
5718
5719 /*
5720 * In dev-replace case, for repair case (that's the only case where the mirror
5721 * is selected explicitly when calling btrfs_map_block), blocks left of the
5722 * left cursor can also be read from the target drive.
5723 *
5724 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5725 * array of stripes.
5726 * For READ, it also needs to be supported using the same mirror number.
5727 *
5728 * If the requested block is not left of the left cursor, EIO is returned. This
5729 * can happen because btrfs_num_copies() returns one more in the dev-replace
5730 * case.
5731 */
5732 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5733 u64 logical, u64 length,
5734 u64 srcdev_devid, int *mirror_num,
5735 u64 *physical)
5736 {
5737 struct btrfs_bio *bbio = NULL;
5738 int num_stripes;
5739 int index_srcdev = 0;
5740 int found = 0;
5741 u64 physical_of_found = 0;
5742 int i;
5743 int ret = 0;
5744
5745 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5746 logical, &length, &bbio, 0, 0);
5747 if (ret) {
5748 ASSERT(bbio == NULL);
5749 return ret;
5750 }
5751
5752 num_stripes = bbio->num_stripes;
5753 if (*mirror_num > num_stripes) {
5754 /*
5755 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5756 * that means that the requested area is not left of the left
5757 * cursor
5758 */
5759 btrfs_put_bbio(bbio);
5760 return -EIO;
5761 }
5762
5763 /*
5764 * process the rest of the function using the mirror_num of the source
5765 * drive. Therefore look it up first. At the end, patch the device
5766 * pointer to the one of the target drive.
5767 */
5768 for (i = 0; i < num_stripes; i++) {
5769 if (bbio->stripes[i].dev->devid != srcdev_devid)
5770 continue;
5771
5772 /*
5773 * In case of DUP, in order to keep it simple, only add the
5774 * mirror with the lowest physical address
5775 */
5776 if (found &&
5777 physical_of_found <= bbio->stripes[i].physical)
5778 continue;
5779
5780 index_srcdev = i;
5781 found = 1;
5782 physical_of_found = bbio->stripes[i].physical;
5783 }
5784
5785 btrfs_put_bbio(bbio);
5786
5787 ASSERT(found);
5788 if (!found)
5789 return -EIO;
5790
5791 *mirror_num = index_srcdev + 1;
5792 *physical = physical_of_found;
5793 return ret;
5794 }
5795
5796 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5797 struct btrfs_bio **bbio_ret,
5798 struct btrfs_dev_replace *dev_replace,
5799 int *num_stripes_ret, int *max_errors_ret)
5800 {
5801 struct btrfs_bio *bbio = *bbio_ret;
5802 u64 srcdev_devid = dev_replace->srcdev->devid;
5803 int tgtdev_indexes = 0;
5804 int num_stripes = *num_stripes_ret;
5805 int max_errors = *max_errors_ret;
5806 int i;
5807
5808 if (op == BTRFS_MAP_WRITE) {
5809 int index_where_to_add;
5810
5811 /*
5812 * duplicate the write operations while the dev replace
5813 * procedure is running. Since the copying of the old disk to
5814 * the new disk takes place at run time while the filesystem is
5815 * mounted writable, the regular write operations to the old
5816 * disk have to be duplicated to go to the new disk as well.
5817 *
5818 * Note that device->missing is handled by the caller, and that
5819 * the write to the old disk is already set up in the stripes
5820 * array.
5821 */
5822 index_where_to_add = num_stripes;
5823 for (i = 0; i < num_stripes; i++) {
5824 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5825 /* write to new disk, too */
5826 struct btrfs_bio_stripe *new =
5827 bbio->stripes + index_where_to_add;
5828 struct btrfs_bio_stripe *old =
5829 bbio->stripes + i;
5830
5831 new->physical = old->physical;
5832 new->length = old->length;
5833 new->dev = dev_replace->tgtdev;
5834 bbio->tgtdev_map[i] = index_where_to_add;
5835 index_where_to_add++;
5836 max_errors++;
5837 tgtdev_indexes++;
5838 }
5839 }
5840 num_stripes = index_where_to_add;
5841 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5842 int index_srcdev = 0;
5843 int found = 0;
5844 u64 physical_of_found = 0;
5845
5846 /*
5847 * During the dev-replace procedure, the target drive can also
5848 * be used to read data in case it is needed to repair a corrupt
5849 * block elsewhere. This is possible if the requested area is
5850 * left of the left cursor. In this area, the target drive is a
5851 * full copy of the source drive.
5852 */
5853 for (i = 0; i < num_stripes; i++) {
5854 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5855 /*
5856 * In case of DUP, in order to keep it simple,
5857 * only add the mirror with the lowest physical
5858 * address
5859 */
5860 if (found &&
5861 physical_of_found <=
5862 bbio->stripes[i].physical)
5863 continue;
5864 index_srcdev = i;
5865 found = 1;
5866 physical_of_found = bbio->stripes[i].physical;
5867 }
5868 }
5869 if (found) {
5870 struct btrfs_bio_stripe *tgtdev_stripe =
5871 bbio->stripes + num_stripes;
5872
5873 tgtdev_stripe->physical = physical_of_found;
5874 tgtdev_stripe->length =
5875 bbio->stripes[index_srcdev].length;
5876 tgtdev_stripe->dev = dev_replace->tgtdev;
5877 bbio->tgtdev_map[index_srcdev] = num_stripes;
5878
5879 tgtdev_indexes++;
5880 num_stripes++;
5881 }
5882 }
5883
5884 *num_stripes_ret = num_stripes;
5885 *max_errors_ret = max_errors;
5886 bbio->num_tgtdevs = tgtdev_indexes;
5887 *bbio_ret = bbio;
5888 }
5889
5890 static bool need_full_stripe(enum btrfs_map_op op)
5891 {
5892 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5893 }
5894
5895 /*
5896 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5897 * tuple. This information is used to calculate how big a
5898 * particular bio can get before it straddles a stripe.
5899 *
5900 * @fs_info - the filesystem
5901 * @logical - address that we want to figure out the geometry of
5902 * @len - the length of IO we are going to perform, starting at @logical
5903 * @op - type of operation - write or read
5904 * @io_geom - pointer used to return values
5905 *
5906 * Returns < 0 in case a chunk for the given logical address cannot be found,
5907 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5908 */
5909 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5910 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5911 {
5912 struct extent_map *em;
5913 struct map_lookup *map;
5914 u64 offset;
5915 u64 stripe_offset;
5916 u64 stripe_nr;
5917 u64 stripe_len;
5918 u64 raid56_full_stripe_start = (u64)-1;
5919 int data_stripes;
5920 int ret = 0;
5921
5922 ASSERT(op != BTRFS_MAP_DISCARD);
5923
5924 em = btrfs_get_chunk_map(fs_info, logical, len);
5925 if (IS_ERR(em))
5926 return PTR_ERR(em);
5927
5928 map = em->map_lookup;
5929 /* Offset of this logical address in the chunk */
5930 offset = logical - em->start;
5931 /* Len of a stripe in a chunk */
5932 stripe_len = map->stripe_len;
5933 /* Stripe wher this block falls in */
5934 stripe_nr = div64_u64(offset, stripe_len);
5935 /* Offset of stripe in the chunk */
5936 stripe_offset = stripe_nr * stripe_len;
5937 if (offset < stripe_offset) {
5938 btrfs_crit(fs_info,
5939 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5940 stripe_offset, offset, em->start, logical, stripe_len);
5941 ret = -EINVAL;
5942 goto out;
5943 }
5944
5945 /* stripe_offset is the offset of this block in its stripe */
5946 stripe_offset = offset - stripe_offset;
5947 data_stripes = nr_data_stripes(map);
5948
5949 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5950 u64 max_len = stripe_len - stripe_offset;
5951
5952 /*
5953 * In case of raid56, we need to know the stripe aligned start
5954 */
5955 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5956 unsigned long full_stripe_len = stripe_len * data_stripes;
5957 raid56_full_stripe_start = offset;
5958
5959 /*
5960 * Allow a write of a full stripe, but make sure we
5961 * don't allow straddling of stripes
5962 */
5963 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5964 full_stripe_len);
5965 raid56_full_stripe_start *= full_stripe_len;
5966
5967 /*
5968 * For writes to RAID[56], allow a full stripeset across
5969 * all disks. For other RAID types and for RAID[56]
5970 * reads, just allow a single stripe (on a single disk).
5971 */
5972 if (op == BTRFS_MAP_WRITE) {
5973 max_len = stripe_len * data_stripes -
5974 (offset - raid56_full_stripe_start);
5975 }
5976 }
5977 len = min_t(u64, em->len - offset, max_len);
5978 } else {
5979 len = em->len - offset;
5980 }
5981
5982 io_geom->len = len;
5983 io_geom->offset = offset;
5984 io_geom->stripe_len = stripe_len;
5985 io_geom->stripe_nr = stripe_nr;
5986 io_geom->stripe_offset = stripe_offset;
5987 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5988
5989 out:
5990 /* once for us */
5991 free_extent_map(em);
5992 return ret;
5993 }
5994
5995 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5996 enum btrfs_map_op op,
5997 u64 logical, u64 *length,
5998 struct btrfs_bio **bbio_ret,
5999 int mirror_num, int need_raid_map)
6000 {
6001 struct extent_map *em;
6002 struct map_lookup *map;
6003 u64 stripe_offset;
6004 u64 stripe_nr;
6005 u64 stripe_len;
6006 u32 stripe_index;
6007 int data_stripes;
6008 int i;
6009 int ret = 0;
6010 int num_stripes;
6011 int max_errors = 0;
6012 int tgtdev_indexes = 0;
6013 struct btrfs_bio *bbio = NULL;
6014 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6015 int dev_replace_is_ongoing = 0;
6016 int num_alloc_stripes;
6017 int patch_the_first_stripe_for_dev_replace = 0;
6018 u64 physical_to_patch_in_first_stripe = 0;
6019 u64 raid56_full_stripe_start = (u64)-1;
6020 struct btrfs_io_geometry geom;
6021
6022 ASSERT(bbio_ret);
6023 ASSERT(op != BTRFS_MAP_DISCARD);
6024
6025 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6026 if (ret < 0)
6027 return ret;
6028
6029 em = btrfs_get_chunk_map(fs_info, logical, *length);
6030 ASSERT(!IS_ERR(em));
6031 map = em->map_lookup;
6032
6033 *length = geom.len;
6034 stripe_len = geom.stripe_len;
6035 stripe_nr = geom.stripe_nr;
6036 stripe_offset = geom.stripe_offset;
6037 raid56_full_stripe_start = geom.raid56_stripe_offset;
6038 data_stripes = nr_data_stripes(map);
6039
6040 down_read(&dev_replace->rwsem);
6041 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6042 /*
6043 * Hold the semaphore for read during the whole operation, write is
6044 * requested at commit time but must wait.
6045 */
6046 if (!dev_replace_is_ongoing)
6047 up_read(&dev_replace->rwsem);
6048
6049 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6050 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6051 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6052 dev_replace->srcdev->devid,
6053 &mirror_num,
6054 &physical_to_patch_in_first_stripe);
6055 if (ret)
6056 goto out;
6057 else
6058 patch_the_first_stripe_for_dev_replace = 1;
6059 } else if (mirror_num > map->num_stripes) {
6060 mirror_num = 0;
6061 }
6062
6063 num_stripes = 1;
6064 stripe_index = 0;
6065 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6066 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6067 &stripe_index);
6068 if (!need_full_stripe(op))
6069 mirror_num = 1;
6070 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6071 if (need_full_stripe(op))
6072 num_stripes = map->num_stripes;
6073 else if (mirror_num)
6074 stripe_index = mirror_num - 1;
6075 else {
6076 stripe_index = find_live_mirror(fs_info, map, 0,
6077 dev_replace_is_ongoing);
6078 mirror_num = stripe_index + 1;
6079 }
6080
6081 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6082 if (need_full_stripe(op)) {
6083 num_stripes = map->num_stripes;
6084 } else if (mirror_num) {
6085 stripe_index = mirror_num - 1;
6086 } else {
6087 mirror_num = 1;
6088 }
6089
6090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6091 u32 factor = map->num_stripes / map->sub_stripes;
6092
6093 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6094 stripe_index *= map->sub_stripes;
6095
6096 if (need_full_stripe(op))
6097 num_stripes = map->sub_stripes;
6098 else if (mirror_num)
6099 stripe_index += mirror_num - 1;
6100 else {
6101 int old_stripe_index = stripe_index;
6102 stripe_index = find_live_mirror(fs_info, map,
6103 stripe_index,
6104 dev_replace_is_ongoing);
6105 mirror_num = stripe_index - old_stripe_index + 1;
6106 }
6107
6108 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6109 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6110 /* push stripe_nr back to the start of the full stripe */
6111 stripe_nr = div64_u64(raid56_full_stripe_start,
6112 stripe_len * data_stripes);
6113
6114 /* RAID[56] write or recovery. Return all stripes */
6115 num_stripes = map->num_stripes;
6116 max_errors = nr_parity_stripes(map);
6117
6118 *length = map->stripe_len;
6119 stripe_index = 0;
6120 stripe_offset = 0;
6121 } else {
6122 /*
6123 * Mirror #0 or #1 means the original data block.
6124 * Mirror #2 is RAID5 parity block.
6125 * Mirror #3 is RAID6 Q block.
6126 */
6127 stripe_nr = div_u64_rem(stripe_nr,
6128 data_stripes, &stripe_index);
6129 if (mirror_num > 1)
6130 stripe_index = data_stripes + mirror_num - 2;
6131
6132 /* We distribute the parity blocks across stripes */
6133 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6134 &stripe_index);
6135 if (!need_full_stripe(op) && mirror_num <= 1)
6136 mirror_num = 1;
6137 }
6138 } else {
6139 /*
6140 * after this, stripe_nr is the number of stripes on this
6141 * device we have to walk to find the data, and stripe_index is
6142 * the number of our device in the stripe array
6143 */
6144 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6145 &stripe_index);
6146 mirror_num = stripe_index + 1;
6147 }
6148 if (stripe_index >= map->num_stripes) {
6149 btrfs_crit(fs_info,
6150 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6151 stripe_index, map->num_stripes);
6152 ret = -EINVAL;
6153 goto out;
6154 }
6155
6156 num_alloc_stripes = num_stripes;
6157 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6158 if (op == BTRFS_MAP_WRITE)
6159 num_alloc_stripes <<= 1;
6160 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6161 num_alloc_stripes++;
6162 tgtdev_indexes = num_stripes;
6163 }
6164
6165 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6166 if (!bbio) {
6167 ret = -ENOMEM;
6168 goto out;
6169 }
6170
6171 for (i = 0; i < num_stripes; i++) {
6172 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6173 stripe_offset + stripe_nr * map->stripe_len;
6174 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6175 stripe_index++;
6176 }
6177
6178 /* build raid_map */
6179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6180 (need_full_stripe(op) || mirror_num > 1)) {
6181 u64 tmp;
6182 unsigned rot;
6183
6184 /* Work out the disk rotation on this stripe-set */
6185 div_u64_rem(stripe_nr, num_stripes, &rot);
6186
6187 /* Fill in the logical address of each stripe */
6188 tmp = stripe_nr * data_stripes;
6189 for (i = 0; i < data_stripes; i++)
6190 bbio->raid_map[(i+rot) % num_stripes] =
6191 em->start + (tmp + i) * map->stripe_len;
6192
6193 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6194 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6195 bbio->raid_map[(i+rot+1) % num_stripes] =
6196 RAID6_Q_STRIPE;
6197
6198 sort_parity_stripes(bbio, num_stripes);
6199 }
6200
6201 if (need_full_stripe(op))
6202 max_errors = btrfs_chunk_max_errors(map);
6203
6204 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6205 need_full_stripe(op)) {
6206 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6207 &max_errors);
6208 }
6209
6210 *bbio_ret = bbio;
6211 bbio->map_type = map->type;
6212 bbio->num_stripes = num_stripes;
6213 bbio->max_errors = max_errors;
6214 bbio->mirror_num = mirror_num;
6215
6216 /*
6217 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6218 * mirror_num == num_stripes + 1 && dev_replace target drive is
6219 * available as a mirror
6220 */
6221 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6222 WARN_ON(num_stripes > 1);
6223 bbio->stripes[0].dev = dev_replace->tgtdev;
6224 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6225 bbio->mirror_num = map->num_stripes + 1;
6226 }
6227 out:
6228 if (dev_replace_is_ongoing) {
6229 lockdep_assert_held(&dev_replace->rwsem);
6230 /* Unlock and let waiting writers proceed */
6231 up_read(&dev_replace->rwsem);
6232 }
6233 free_extent_map(em);
6234 return ret;
6235 }
6236
6237 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6238 u64 logical, u64 *length,
6239 struct btrfs_bio **bbio_ret, int mirror_num)
6240 {
6241 if (op == BTRFS_MAP_DISCARD)
6242 return __btrfs_map_block_for_discard(fs_info, logical,
6243 length, bbio_ret);
6244
6245 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6246 mirror_num, 0);
6247 }
6248
6249 /* For Scrub/replace */
6250 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6251 u64 logical, u64 *length,
6252 struct btrfs_bio **bbio_ret)
6253 {
6254 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6255 }
6256
6257 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6258 {
6259 bio->bi_private = bbio->private;
6260 bio->bi_end_io = bbio->end_io;
6261 bio_endio(bio);
6262
6263 btrfs_put_bbio(bbio);
6264 }
6265
6266 static void btrfs_end_bio(struct bio *bio)
6267 {
6268 struct btrfs_bio *bbio = bio->bi_private;
6269 int is_orig_bio = 0;
6270
6271 if (bio->bi_status) {
6272 atomic_inc(&bbio->error);
6273 if (bio->bi_status == BLK_STS_IOERR ||
6274 bio->bi_status == BLK_STS_TARGET) {
6275 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6276
6277 ASSERT(dev->bdev);
6278 if (bio_op(bio) == REQ_OP_WRITE)
6279 btrfs_dev_stat_inc_and_print(dev,
6280 BTRFS_DEV_STAT_WRITE_ERRS);
6281 else if (!(bio->bi_opf & REQ_RAHEAD))
6282 btrfs_dev_stat_inc_and_print(dev,
6283 BTRFS_DEV_STAT_READ_ERRS);
6284 if (bio->bi_opf & REQ_PREFLUSH)
6285 btrfs_dev_stat_inc_and_print(dev,
6286 BTRFS_DEV_STAT_FLUSH_ERRS);
6287 }
6288 }
6289
6290 if (bio == bbio->orig_bio)
6291 is_orig_bio = 1;
6292
6293 btrfs_bio_counter_dec(bbio->fs_info);
6294
6295 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6296 if (!is_orig_bio) {
6297 bio_put(bio);
6298 bio = bbio->orig_bio;
6299 }
6300
6301 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6302 /* only send an error to the higher layers if it is
6303 * beyond the tolerance of the btrfs bio
6304 */
6305 if (atomic_read(&bbio->error) > bbio->max_errors) {
6306 bio->bi_status = BLK_STS_IOERR;
6307 } else {
6308 /*
6309 * this bio is actually up to date, we didn't
6310 * go over the max number of errors
6311 */
6312 bio->bi_status = BLK_STS_OK;
6313 }
6314
6315 btrfs_end_bbio(bbio, bio);
6316 } else if (!is_orig_bio) {
6317 bio_put(bio);
6318 }
6319 }
6320
6321 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6322 u64 physical, struct btrfs_device *dev)
6323 {
6324 struct btrfs_fs_info *fs_info = bbio->fs_info;
6325
6326 bio->bi_private = bbio;
6327 btrfs_io_bio(bio)->device = dev;
6328 bio->bi_end_io = btrfs_end_bio;
6329 bio->bi_iter.bi_sector = physical >> 9;
6330 btrfs_debug_in_rcu(fs_info,
6331 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6332 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6333 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6334 dev->devid, bio->bi_iter.bi_size);
6335 bio_set_dev(bio, dev->bdev);
6336
6337 btrfs_bio_counter_inc_noblocked(fs_info);
6338
6339 btrfsic_submit_bio(bio);
6340 }
6341
6342 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6343 {
6344 atomic_inc(&bbio->error);
6345 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6346 /* Should be the original bio. */
6347 WARN_ON(bio != bbio->orig_bio);
6348
6349 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6350 bio->bi_iter.bi_sector = logical >> 9;
6351 if (atomic_read(&bbio->error) > bbio->max_errors)
6352 bio->bi_status = BLK_STS_IOERR;
6353 else
6354 bio->bi_status = BLK_STS_OK;
6355 btrfs_end_bbio(bbio, bio);
6356 }
6357 }
6358
6359 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6360 int mirror_num)
6361 {
6362 struct btrfs_device *dev;
6363 struct bio *first_bio = bio;
6364 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6365 u64 length = 0;
6366 u64 map_length;
6367 int ret;
6368 int dev_nr;
6369 int total_devs;
6370 struct btrfs_bio *bbio = NULL;
6371
6372 length = bio->bi_iter.bi_size;
6373 map_length = length;
6374
6375 btrfs_bio_counter_inc_blocked(fs_info);
6376 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6377 &map_length, &bbio, mirror_num, 1);
6378 if (ret) {
6379 btrfs_bio_counter_dec(fs_info);
6380 return errno_to_blk_status(ret);
6381 }
6382
6383 total_devs = bbio->num_stripes;
6384 bbio->orig_bio = first_bio;
6385 bbio->private = first_bio->bi_private;
6386 bbio->end_io = first_bio->bi_end_io;
6387 bbio->fs_info = fs_info;
6388 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6389
6390 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6391 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6392 /* In this case, map_length has been set to the length of
6393 a single stripe; not the whole write */
6394 if (bio_op(bio) == REQ_OP_WRITE) {
6395 ret = raid56_parity_write(fs_info, bio, bbio,
6396 map_length);
6397 } else {
6398 ret = raid56_parity_recover(fs_info, bio, bbio,
6399 map_length, mirror_num, 1);
6400 }
6401
6402 btrfs_bio_counter_dec(fs_info);
6403 return errno_to_blk_status(ret);
6404 }
6405
6406 if (map_length < length) {
6407 btrfs_crit(fs_info,
6408 "mapping failed logical %llu bio len %llu len %llu",
6409 logical, length, map_length);
6410 BUG();
6411 }
6412
6413 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6414 dev = bbio->stripes[dev_nr].dev;
6415 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6416 &dev->dev_state) ||
6417 (bio_op(first_bio) == REQ_OP_WRITE &&
6418 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6419 bbio_error(bbio, first_bio, logical);
6420 continue;
6421 }
6422
6423 if (dev_nr < total_devs - 1)
6424 bio = btrfs_bio_clone(first_bio);
6425 else
6426 bio = first_bio;
6427
6428 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6429 }
6430 btrfs_bio_counter_dec(fs_info);
6431 return BLK_STS_OK;
6432 }
6433
6434 /*
6435 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6436 * return NULL.
6437 *
6438 * If devid and uuid are both specified, the match must be exact, otherwise
6439 * only devid is used.
6440 *
6441 * If @seed is true, traverse through the seed devices.
6442 */
6443 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6444 u64 devid, u8 *uuid, u8 *fsid,
6445 bool seed)
6446 {
6447 struct btrfs_device *device;
6448 struct btrfs_fs_devices *seed_devs;
6449
6450 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6451 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6452 if (device->devid == devid &&
6453 (!uuid || memcmp(device->uuid, uuid,
6454 BTRFS_UUID_SIZE) == 0))
6455 return device;
6456 }
6457 }
6458
6459 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6460 if (!fsid ||
6461 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6462 list_for_each_entry(device, &seed_devs->devices,
6463 dev_list) {
6464 if (device->devid == devid &&
6465 (!uuid || memcmp(device->uuid, uuid,
6466 BTRFS_UUID_SIZE) == 0))
6467 return device;
6468 }
6469 }
6470 }
6471
6472 return NULL;
6473 }
6474
6475 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6476 u64 devid, u8 *dev_uuid)
6477 {
6478 struct btrfs_device *device;
6479 unsigned int nofs_flag;
6480
6481 /*
6482 * We call this under the chunk_mutex, so we want to use NOFS for this
6483 * allocation, however we don't want to change btrfs_alloc_device() to
6484 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6485 * places.
6486 */
6487 nofs_flag = memalloc_nofs_save();
6488 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6489 memalloc_nofs_restore(nofs_flag);
6490 if (IS_ERR(device))
6491 return device;
6492
6493 list_add(&device->dev_list, &fs_devices->devices);
6494 device->fs_devices = fs_devices;
6495 fs_devices->num_devices++;
6496
6497 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6498 fs_devices->missing_devices++;
6499
6500 return device;
6501 }
6502
6503 /**
6504 * btrfs_alloc_device - allocate struct btrfs_device
6505 * @fs_info: used only for generating a new devid, can be NULL if
6506 * devid is provided (i.e. @devid != NULL).
6507 * @devid: a pointer to devid for this device. If NULL a new devid
6508 * is generated.
6509 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6510 * is generated.
6511 *
6512 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6513 * on error. Returned struct is not linked onto any lists and must be
6514 * destroyed with btrfs_free_device.
6515 */
6516 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6517 const u64 *devid,
6518 const u8 *uuid)
6519 {
6520 struct btrfs_device *dev;
6521 u64 tmp;
6522
6523 if (WARN_ON(!devid && !fs_info))
6524 return ERR_PTR(-EINVAL);
6525
6526 dev = __alloc_device(fs_info);
6527 if (IS_ERR(dev))
6528 return dev;
6529
6530 if (devid)
6531 tmp = *devid;
6532 else {
6533 int ret;
6534
6535 ret = find_next_devid(fs_info, &tmp);
6536 if (ret) {
6537 btrfs_free_device(dev);
6538 return ERR_PTR(ret);
6539 }
6540 }
6541 dev->devid = tmp;
6542
6543 if (uuid)
6544 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6545 else
6546 generate_random_uuid(dev->uuid);
6547
6548 return dev;
6549 }
6550
6551 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6552 u64 devid, u8 *uuid, bool error)
6553 {
6554 if (error)
6555 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6556 devid, uuid);
6557 else
6558 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6559 devid, uuid);
6560 }
6561
6562 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6563 {
6564 int index = btrfs_bg_flags_to_raid_index(type);
6565 int ncopies = btrfs_raid_array[index].ncopies;
6566 const int nparity = btrfs_raid_array[index].nparity;
6567 int data_stripes;
6568
6569 if (nparity)
6570 data_stripes = num_stripes - nparity;
6571 else
6572 data_stripes = num_stripes / ncopies;
6573
6574 return div_u64(chunk_len, data_stripes);
6575 }
6576
6577 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6578 struct btrfs_chunk *chunk)
6579 {
6580 struct btrfs_fs_info *fs_info = leaf->fs_info;
6581 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6582 struct map_lookup *map;
6583 struct extent_map *em;
6584 u64 logical;
6585 u64 length;
6586 u64 devid;
6587 u8 uuid[BTRFS_UUID_SIZE];
6588 int num_stripes;
6589 int ret;
6590 int i;
6591
6592 logical = key->offset;
6593 length = btrfs_chunk_length(leaf, chunk);
6594 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6595
6596 /*
6597 * Only need to verify chunk item if we're reading from sys chunk array,
6598 * as chunk item in tree block is already verified by tree-checker.
6599 */
6600 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6601 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6602 if (ret)
6603 return ret;
6604 }
6605
6606 read_lock(&map_tree->lock);
6607 em = lookup_extent_mapping(map_tree, logical, 1);
6608 read_unlock(&map_tree->lock);
6609
6610 /* already mapped? */
6611 if (em && em->start <= logical && em->start + em->len > logical) {
6612 free_extent_map(em);
6613 return 0;
6614 } else if (em) {
6615 free_extent_map(em);
6616 }
6617
6618 em = alloc_extent_map();
6619 if (!em)
6620 return -ENOMEM;
6621 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6622 if (!map) {
6623 free_extent_map(em);
6624 return -ENOMEM;
6625 }
6626
6627 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6628 em->map_lookup = map;
6629 em->start = logical;
6630 em->len = length;
6631 em->orig_start = 0;
6632 em->block_start = 0;
6633 em->block_len = em->len;
6634
6635 map->num_stripes = num_stripes;
6636 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6637 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6638 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6639 map->type = btrfs_chunk_type(leaf, chunk);
6640 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6641 map->verified_stripes = 0;
6642 em->orig_block_len = calc_stripe_length(map->type, em->len,
6643 map->num_stripes);
6644 for (i = 0; i < num_stripes; i++) {
6645 map->stripes[i].physical =
6646 btrfs_stripe_offset_nr(leaf, chunk, i);
6647 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6648 read_extent_buffer(leaf, uuid, (unsigned long)
6649 btrfs_stripe_dev_uuid_nr(chunk, i),
6650 BTRFS_UUID_SIZE);
6651 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6652 devid, uuid, NULL, true);
6653 if (!map->stripes[i].dev &&
6654 !btrfs_test_opt(fs_info, DEGRADED)) {
6655 free_extent_map(em);
6656 btrfs_report_missing_device(fs_info, devid, uuid, true);
6657 return -ENOENT;
6658 }
6659 if (!map->stripes[i].dev) {
6660 map->stripes[i].dev =
6661 add_missing_dev(fs_info->fs_devices, devid,
6662 uuid);
6663 if (IS_ERR(map->stripes[i].dev)) {
6664 free_extent_map(em);
6665 btrfs_err(fs_info,
6666 "failed to init missing dev %llu: %ld",
6667 devid, PTR_ERR(map->stripes[i].dev));
6668 return PTR_ERR(map->stripes[i].dev);
6669 }
6670 btrfs_report_missing_device(fs_info, devid, uuid, false);
6671 }
6672 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6673 &(map->stripes[i].dev->dev_state));
6674
6675 }
6676
6677 write_lock(&map_tree->lock);
6678 ret = add_extent_mapping(map_tree, em, 0);
6679 write_unlock(&map_tree->lock);
6680 if (ret < 0) {
6681 btrfs_err(fs_info,
6682 "failed to add chunk map, start=%llu len=%llu: %d",
6683 em->start, em->len, ret);
6684 }
6685 free_extent_map(em);
6686
6687 return ret;
6688 }
6689
6690 static void fill_device_from_item(struct extent_buffer *leaf,
6691 struct btrfs_dev_item *dev_item,
6692 struct btrfs_device *device)
6693 {
6694 unsigned long ptr;
6695
6696 device->devid = btrfs_device_id(leaf, dev_item);
6697 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6698 device->total_bytes = device->disk_total_bytes;
6699 device->commit_total_bytes = device->disk_total_bytes;
6700 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6701 device->commit_bytes_used = device->bytes_used;
6702 device->type = btrfs_device_type(leaf, dev_item);
6703 device->io_align = btrfs_device_io_align(leaf, dev_item);
6704 device->io_width = btrfs_device_io_width(leaf, dev_item);
6705 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6706 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6707 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6708
6709 ptr = btrfs_device_uuid(dev_item);
6710 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6711 }
6712
6713 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6714 u8 *fsid)
6715 {
6716 struct btrfs_fs_devices *fs_devices;
6717 int ret;
6718
6719 lockdep_assert_held(&uuid_mutex);
6720 ASSERT(fsid);
6721
6722 /* This will match only for multi-device seed fs */
6723 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6724 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6725 return fs_devices;
6726
6727
6728 fs_devices = find_fsid(fsid, NULL);
6729 if (!fs_devices) {
6730 if (!btrfs_test_opt(fs_info, DEGRADED))
6731 return ERR_PTR(-ENOENT);
6732
6733 fs_devices = alloc_fs_devices(fsid, NULL);
6734 if (IS_ERR(fs_devices))
6735 return fs_devices;
6736
6737 fs_devices->seeding = true;
6738 fs_devices->opened = 1;
6739 return fs_devices;
6740 }
6741
6742 /*
6743 * Upon first call for a seed fs fsid, just create a private copy of the
6744 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6745 */
6746 fs_devices = clone_fs_devices(fs_devices);
6747 if (IS_ERR(fs_devices))
6748 return fs_devices;
6749
6750 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6751 if (ret) {
6752 free_fs_devices(fs_devices);
6753 return ERR_PTR(ret);
6754 }
6755
6756 if (!fs_devices->seeding) {
6757 close_fs_devices(fs_devices);
6758 free_fs_devices(fs_devices);
6759 return ERR_PTR(-EINVAL);
6760 }
6761
6762 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6763
6764 return fs_devices;
6765 }
6766
6767 static int read_one_dev(struct extent_buffer *leaf,
6768 struct btrfs_dev_item *dev_item)
6769 {
6770 struct btrfs_fs_info *fs_info = leaf->fs_info;
6771 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6772 struct btrfs_device *device;
6773 u64 devid;
6774 int ret;
6775 u8 fs_uuid[BTRFS_FSID_SIZE];
6776 u8 dev_uuid[BTRFS_UUID_SIZE];
6777
6778 devid = btrfs_device_id(leaf, dev_item);
6779 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6780 BTRFS_UUID_SIZE);
6781 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6782 BTRFS_FSID_SIZE);
6783
6784 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6785 fs_devices = open_seed_devices(fs_info, fs_uuid);
6786 if (IS_ERR(fs_devices))
6787 return PTR_ERR(fs_devices);
6788 }
6789
6790 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6791 fs_uuid, true);
6792 if (!device) {
6793 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6794 btrfs_report_missing_device(fs_info, devid,
6795 dev_uuid, true);
6796 return -ENOENT;
6797 }
6798
6799 device = add_missing_dev(fs_devices, devid, dev_uuid);
6800 if (IS_ERR(device)) {
6801 btrfs_err(fs_info,
6802 "failed to add missing dev %llu: %ld",
6803 devid, PTR_ERR(device));
6804 return PTR_ERR(device);
6805 }
6806 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6807 } else {
6808 if (!device->bdev) {
6809 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6810 btrfs_report_missing_device(fs_info,
6811 devid, dev_uuid, true);
6812 return -ENOENT;
6813 }
6814 btrfs_report_missing_device(fs_info, devid,
6815 dev_uuid, false);
6816 }
6817
6818 if (!device->bdev &&
6819 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6820 /*
6821 * this happens when a device that was properly setup
6822 * in the device info lists suddenly goes bad.
6823 * device->bdev is NULL, and so we have to set
6824 * device->missing to one here
6825 */
6826 device->fs_devices->missing_devices++;
6827 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6828 }
6829
6830 /* Move the device to its own fs_devices */
6831 if (device->fs_devices != fs_devices) {
6832 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6833 &device->dev_state));
6834
6835 list_move(&device->dev_list, &fs_devices->devices);
6836 device->fs_devices->num_devices--;
6837 fs_devices->num_devices++;
6838
6839 device->fs_devices->missing_devices--;
6840 fs_devices->missing_devices++;
6841
6842 device->fs_devices = fs_devices;
6843 }
6844 }
6845
6846 if (device->fs_devices != fs_info->fs_devices) {
6847 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6848 if (device->generation !=
6849 btrfs_device_generation(leaf, dev_item))
6850 return -EINVAL;
6851 }
6852
6853 fill_device_from_item(leaf, dev_item, device);
6854 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6855 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6856 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6857 device->fs_devices->total_rw_bytes += device->total_bytes;
6858 atomic64_add(device->total_bytes - device->bytes_used,
6859 &fs_info->free_chunk_space);
6860 }
6861 ret = 0;
6862 return ret;
6863 }
6864
6865 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6866 {
6867 struct btrfs_root *root = fs_info->tree_root;
6868 struct btrfs_super_block *super_copy = fs_info->super_copy;
6869 struct extent_buffer *sb;
6870 struct btrfs_disk_key *disk_key;
6871 struct btrfs_chunk *chunk;
6872 u8 *array_ptr;
6873 unsigned long sb_array_offset;
6874 int ret = 0;
6875 u32 num_stripes;
6876 u32 array_size;
6877 u32 len = 0;
6878 u32 cur_offset;
6879 u64 type;
6880 struct btrfs_key key;
6881
6882 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6883 /*
6884 * This will create extent buffer of nodesize, superblock size is
6885 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6886 * overallocate but we can keep it as-is, only the first page is used.
6887 */
6888 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6889 if (IS_ERR(sb))
6890 return PTR_ERR(sb);
6891 set_extent_buffer_uptodate(sb);
6892 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6893 /*
6894 * The sb extent buffer is artificial and just used to read the system array.
6895 * set_extent_buffer_uptodate() call does not properly mark all it's
6896 * pages up-to-date when the page is larger: extent does not cover the
6897 * whole page and consequently check_page_uptodate does not find all
6898 * the page's extents up-to-date (the hole beyond sb),
6899 * write_extent_buffer then triggers a WARN_ON.
6900 *
6901 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6902 * but sb spans only this function. Add an explicit SetPageUptodate call
6903 * to silence the warning eg. on PowerPC 64.
6904 */
6905 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6906 SetPageUptodate(sb->pages[0]);
6907
6908 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6909 array_size = btrfs_super_sys_array_size(super_copy);
6910
6911 array_ptr = super_copy->sys_chunk_array;
6912 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6913 cur_offset = 0;
6914
6915 while (cur_offset < array_size) {
6916 disk_key = (struct btrfs_disk_key *)array_ptr;
6917 len = sizeof(*disk_key);
6918 if (cur_offset + len > array_size)
6919 goto out_short_read;
6920
6921 btrfs_disk_key_to_cpu(&key, disk_key);
6922
6923 array_ptr += len;
6924 sb_array_offset += len;
6925 cur_offset += len;
6926
6927 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6928 btrfs_err(fs_info,
6929 "unexpected item type %u in sys_array at offset %u",
6930 (u32)key.type, cur_offset);
6931 ret = -EIO;
6932 break;
6933 }
6934
6935 chunk = (struct btrfs_chunk *)sb_array_offset;
6936 /*
6937 * At least one btrfs_chunk with one stripe must be present,
6938 * exact stripe count check comes afterwards
6939 */
6940 len = btrfs_chunk_item_size(1);
6941 if (cur_offset + len > array_size)
6942 goto out_short_read;
6943
6944 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6945 if (!num_stripes) {
6946 btrfs_err(fs_info,
6947 "invalid number of stripes %u in sys_array at offset %u",
6948 num_stripes, cur_offset);
6949 ret = -EIO;
6950 break;
6951 }
6952
6953 type = btrfs_chunk_type(sb, chunk);
6954 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6955 btrfs_err(fs_info,
6956 "invalid chunk type %llu in sys_array at offset %u",
6957 type, cur_offset);
6958 ret = -EIO;
6959 break;
6960 }
6961
6962 len = btrfs_chunk_item_size(num_stripes);
6963 if (cur_offset + len > array_size)
6964 goto out_short_read;
6965
6966 ret = read_one_chunk(&key, sb, chunk);
6967 if (ret)
6968 break;
6969
6970 array_ptr += len;
6971 sb_array_offset += len;
6972 cur_offset += len;
6973 }
6974 clear_extent_buffer_uptodate(sb);
6975 free_extent_buffer_stale(sb);
6976 return ret;
6977
6978 out_short_read:
6979 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6980 len, cur_offset);
6981 clear_extent_buffer_uptodate(sb);
6982 free_extent_buffer_stale(sb);
6983 return -EIO;
6984 }
6985
6986 /*
6987 * Check if all chunks in the fs are OK for read-write degraded mount
6988 *
6989 * If the @failing_dev is specified, it's accounted as missing.
6990 *
6991 * Return true if all chunks meet the minimal RW mount requirements.
6992 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6993 */
6994 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6995 struct btrfs_device *failing_dev)
6996 {
6997 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6998 struct extent_map *em;
6999 u64 next_start = 0;
7000 bool ret = true;
7001
7002 read_lock(&map_tree->lock);
7003 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7004 read_unlock(&map_tree->lock);
7005 /* No chunk at all? Return false anyway */
7006 if (!em) {
7007 ret = false;
7008 goto out;
7009 }
7010 while (em) {
7011 struct map_lookup *map;
7012 int missing = 0;
7013 int max_tolerated;
7014 int i;
7015
7016 map = em->map_lookup;
7017 max_tolerated =
7018 btrfs_get_num_tolerated_disk_barrier_failures(
7019 map->type);
7020 for (i = 0; i < map->num_stripes; i++) {
7021 struct btrfs_device *dev = map->stripes[i].dev;
7022
7023 if (!dev || !dev->bdev ||
7024 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7025 dev->last_flush_error)
7026 missing++;
7027 else if (failing_dev && failing_dev == dev)
7028 missing++;
7029 }
7030 if (missing > max_tolerated) {
7031 if (!failing_dev)
7032 btrfs_warn(fs_info,
7033 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7034 em->start, missing, max_tolerated);
7035 free_extent_map(em);
7036 ret = false;
7037 goto out;
7038 }
7039 next_start = extent_map_end(em);
7040 free_extent_map(em);
7041
7042 read_lock(&map_tree->lock);
7043 em = lookup_extent_mapping(map_tree, next_start,
7044 (u64)(-1) - next_start);
7045 read_unlock(&map_tree->lock);
7046 }
7047 out:
7048 return ret;
7049 }
7050
7051 static void readahead_tree_node_children(struct extent_buffer *node)
7052 {
7053 int i;
7054 const int nr_items = btrfs_header_nritems(node);
7055
7056 for (i = 0; i < nr_items; i++) {
7057 u64 start;
7058
7059 start = btrfs_node_blockptr(node, i);
7060 readahead_tree_block(node->fs_info, start);
7061 }
7062 }
7063
7064 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7065 {
7066 struct btrfs_root *root = fs_info->chunk_root;
7067 struct btrfs_path *path;
7068 struct extent_buffer *leaf;
7069 struct btrfs_key key;
7070 struct btrfs_key found_key;
7071 int ret;
7072 int slot;
7073 u64 total_dev = 0;
7074 u64 last_ra_node = 0;
7075
7076 path = btrfs_alloc_path();
7077 if (!path)
7078 return -ENOMEM;
7079
7080 /*
7081 * uuid_mutex is needed only if we are mounting a sprout FS
7082 * otherwise we don't need it.
7083 */
7084 mutex_lock(&uuid_mutex);
7085
7086 /*
7087 * It is possible for mount and umount to race in such a way that
7088 * we execute this code path, but open_fs_devices failed to clear
7089 * total_rw_bytes. We certainly want it cleared before reading the
7090 * device items, so clear it here.
7091 */
7092 fs_info->fs_devices->total_rw_bytes = 0;
7093
7094 /*
7095 * Read all device items, and then all the chunk items. All
7096 * device items are found before any chunk item (their object id
7097 * is smaller than the lowest possible object id for a chunk
7098 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7099 */
7100 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7101 key.offset = 0;
7102 key.type = 0;
7103 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7104 if (ret < 0)
7105 goto error;
7106 while (1) {
7107 struct extent_buffer *node;
7108
7109 leaf = path->nodes[0];
7110 slot = path->slots[0];
7111 if (slot >= btrfs_header_nritems(leaf)) {
7112 ret = btrfs_next_leaf(root, path);
7113 if (ret == 0)
7114 continue;
7115 if (ret < 0)
7116 goto error;
7117 break;
7118 }
7119 /*
7120 * The nodes on level 1 are not locked but we don't need to do
7121 * that during mount time as nothing else can access the tree
7122 */
7123 node = path->nodes[1];
7124 if (node) {
7125 if (last_ra_node != node->start) {
7126 readahead_tree_node_children(node);
7127 last_ra_node = node->start;
7128 }
7129 }
7130 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7131 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7132 struct btrfs_dev_item *dev_item;
7133 dev_item = btrfs_item_ptr(leaf, slot,
7134 struct btrfs_dev_item);
7135 ret = read_one_dev(leaf, dev_item);
7136 if (ret)
7137 goto error;
7138 total_dev++;
7139 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7140 struct btrfs_chunk *chunk;
7141 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7142 mutex_lock(&fs_info->chunk_mutex);
7143 ret = read_one_chunk(&found_key, leaf, chunk);
7144 mutex_unlock(&fs_info->chunk_mutex);
7145 if (ret)
7146 goto error;
7147 }
7148 path->slots[0]++;
7149 }
7150
7151 /*
7152 * After loading chunk tree, we've got all device information,
7153 * do another round of validation checks.
7154 */
7155 if (total_dev != fs_info->fs_devices->total_devices) {
7156 btrfs_err(fs_info,
7157 "super_num_devices %llu mismatch with num_devices %llu found here",
7158 btrfs_super_num_devices(fs_info->super_copy),
7159 total_dev);
7160 ret = -EINVAL;
7161 goto error;
7162 }
7163 if (btrfs_super_total_bytes(fs_info->super_copy) <
7164 fs_info->fs_devices->total_rw_bytes) {
7165 btrfs_err(fs_info,
7166 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7167 btrfs_super_total_bytes(fs_info->super_copy),
7168 fs_info->fs_devices->total_rw_bytes);
7169 ret = -EINVAL;
7170 goto error;
7171 }
7172 ret = 0;
7173 error:
7174 mutex_unlock(&uuid_mutex);
7175
7176 btrfs_free_path(path);
7177 return ret;
7178 }
7179
7180 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7181 {
7182 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7183 struct btrfs_device *device;
7184
7185 fs_devices->fs_info = fs_info;
7186
7187 mutex_lock(&fs_devices->device_list_mutex);
7188 list_for_each_entry(device, &fs_devices->devices, dev_list)
7189 device->fs_info = fs_info;
7190
7191 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7192 list_for_each_entry(device, &seed_devs->devices, dev_list)
7193 device->fs_info = fs_info;
7194
7195 seed_devs->fs_info = fs_info;
7196 }
7197 mutex_unlock(&fs_devices->device_list_mutex);
7198 }
7199
7200 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7201 const struct btrfs_dev_stats_item *ptr,
7202 int index)
7203 {
7204 u64 val;
7205
7206 read_extent_buffer(eb, &val,
7207 offsetof(struct btrfs_dev_stats_item, values) +
7208 ((unsigned long)ptr) + (index * sizeof(u64)),
7209 sizeof(val));
7210 return val;
7211 }
7212
7213 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7214 struct btrfs_dev_stats_item *ptr,
7215 int index, u64 val)
7216 {
7217 write_extent_buffer(eb, &val,
7218 offsetof(struct btrfs_dev_stats_item, values) +
7219 ((unsigned long)ptr) + (index * sizeof(u64)),
7220 sizeof(val));
7221 }
7222
7223 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7224 struct btrfs_path *path)
7225 {
7226 struct btrfs_dev_stats_item *ptr;
7227 struct extent_buffer *eb;
7228 struct btrfs_key key;
7229 int item_size;
7230 int i, ret, slot;
7231
7232 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7233 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7234 key.offset = device->devid;
7235 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7236 if (ret) {
7237 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7238 btrfs_dev_stat_set(device, i, 0);
7239 device->dev_stats_valid = 1;
7240 btrfs_release_path(path);
7241 return ret < 0 ? ret : 0;
7242 }
7243 slot = path->slots[0];
7244 eb = path->nodes[0];
7245 item_size = btrfs_item_size_nr(eb, slot);
7246
7247 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7248
7249 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7250 if (item_size >= (1 + i) * sizeof(__le64))
7251 btrfs_dev_stat_set(device, i,
7252 btrfs_dev_stats_value(eb, ptr, i));
7253 else
7254 btrfs_dev_stat_set(device, i, 0);
7255 }
7256
7257 device->dev_stats_valid = 1;
7258 btrfs_dev_stat_print_on_load(device);
7259 btrfs_release_path(path);
7260
7261 return 0;
7262 }
7263
7264 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7265 {
7266 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7267 struct btrfs_device *device;
7268 struct btrfs_path *path = NULL;
7269 int ret = 0;
7270
7271 path = btrfs_alloc_path();
7272 if (!path)
7273 return -ENOMEM;
7274
7275 mutex_lock(&fs_devices->device_list_mutex);
7276 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7277 ret = btrfs_device_init_dev_stats(device, path);
7278 if (ret)
7279 goto out;
7280 }
7281 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7282 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7283 ret = btrfs_device_init_dev_stats(device, path);
7284 if (ret)
7285 goto out;
7286 }
7287 }
7288 out:
7289 mutex_unlock(&fs_devices->device_list_mutex);
7290
7291 btrfs_free_path(path);
7292 return ret;
7293 }
7294
7295 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7296 struct btrfs_device *device)
7297 {
7298 struct btrfs_fs_info *fs_info = trans->fs_info;
7299 struct btrfs_root *dev_root = fs_info->dev_root;
7300 struct btrfs_path *path;
7301 struct btrfs_key key;
7302 struct extent_buffer *eb;
7303 struct btrfs_dev_stats_item *ptr;
7304 int ret;
7305 int i;
7306
7307 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7308 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7309 key.offset = device->devid;
7310
7311 path = btrfs_alloc_path();
7312 if (!path)
7313 return -ENOMEM;
7314 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7315 if (ret < 0) {
7316 btrfs_warn_in_rcu(fs_info,
7317 "error %d while searching for dev_stats item for device %s",
7318 ret, rcu_str_deref(device->name));
7319 goto out;
7320 }
7321
7322 if (ret == 0 &&
7323 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7324 /* need to delete old one and insert a new one */
7325 ret = btrfs_del_item(trans, dev_root, path);
7326 if (ret != 0) {
7327 btrfs_warn_in_rcu(fs_info,
7328 "delete too small dev_stats item for device %s failed %d",
7329 rcu_str_deref(device->name), ret);
7330 goto out;
7331 }
7332 ret = 1;
7333 }
7334
7335 if (ret == 1) {
7336 /* need to insert a new item */
7337 btrfs_release_path(path);
7338 ret = btrfs_insert_empty_item(trans, dev_root, path,
7339 &key, sizeof(*ptr));
7340 if (ret < 0) {
7341 btrfs_warn_in_rcu(fs_info,
7342 "insert dev_stats item for device %s failed %d",
7343 rcu_str_deref(device->name), ret);
7344 goto out;
7345 }
7346 }
7347
7348 eb = path->nodes[0];
7349 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7350 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7351 btrfs_set_dev_stats_value(eb, ptr, i,
7352 btrfs_dev_stat_read(device, i));
7353 btrfs_mark_buffer_dirty(eb);
7354
7355 out:
7356 btrfs_free_path(path);
7357 return ret;
7358 }
7359
7360 /*
7361 * called from commit_transaction. Writes all changed device stats to disk.
7362 */
7363 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7364 {
7365 struct btrfs_fs_info *fs_info = trans->fs_info;
7366 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7367 struct btrfs_device *device;
7368 int stats_cnt;
7369 int ret = 0;
7370
7371 mutex_lock(&fs_devices->device_list_mutex);
7372 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7373 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7374 if (!device->dev_stats_valid || stats_cnt == 0)
7375 continue;
7376
7377
7378 /*
7379 * There is a LOAD-LOAD control dependency between the value of
7380 * dev_stats_ccnt and updating the on-disk values which requires
7381 * reading the in-memory counters. Such control dependencies
7382 * require explicit read memory barriers.
7383 *
7384 * This memory barriers pairs with smp_mb__before_atomic in
7385 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7386 * barrier implied by atomic_xchg in
7387 * btrfs_dev_stats_read_and_reset
7388 */
7389 smp_rmb();
7390
7391 ret = update_dev_stat_item(trans, device);
7392 if (!ret)
7393 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7394 }
7395 mutex_unlock(&fs_devices->device_list_mutex);
7396
7397 return ret;
7398 }
7399
7400 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7401 {
7402 btrfs_dev_stat_inc(dev, index);
7403 btrfs_dev_stat_print_on_error(dev);
7404 }
7405
7406 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7407 {
7408 if (!dev->dev_stats_valid)
7409 return;
7410 btrfs_err_rl_in_rcu(dev->fs_info,
7411 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7412 rcu_str_deref(dev->name),
7413 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7414 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7415 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7416 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7417 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7418 }
7419
7420 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7421 {
7422 int i;
7423
7424 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7425 if (btrfs_dev_stat_read(dev, i) != 0)
7426 break;
7427 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7428 return; /* all values == 0, suppress message */
7429
7430 btrfs_info_in_rcu(dev->fs_info,
7431 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7432 rcu_str_deref(dev->name),
7433 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7434 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7435 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7436 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7437 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7438 }
7439
7440 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7441 struct btrfs_ioctl_get_dev_stats *stats)
7442 {
7443 struct btrfs_device *dev;
7444 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7445 int i;
7446
7447 mutex_lock(&fs_devices->device_list_mutex);
7448 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7449 true);
7450 mutex_unlock(&fs_devices->device_list_mutex);
7451
7452 if (!dev) {
7453 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7454 return -ENODEV;
7455 } else if (!dev->dev_stats_valid) {
7456 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7457 return -ENODEV;
7458 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7459 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7460 if (stats->nr_items > i)
7461 stats->values[i] =
7462 btrfs_dev_stat_read_and_reset(dev, i);
7463 else
7464 btrfs_dev_stat_set(dev, i, 0);
7465 }
7466 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7467 current->comm, task_pid_nr(current));
7468 } else {
7469 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7470 if (stats->nr_items > i)
7471 stats->values[i] = btrfs_dev_stat_read(dev, i);
7472 }
7473 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7474 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7475 return 0;
7476 }
7477
7478 /*
7479 * Update the size and bytes used for each device where it changed. This is
7480 * delayed since we would otherwise get errors while writing out the
7481 * superblocks.
7482 *
7483 * Must be invoked during transaction commit.
7484 */
7485 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7486 {
7487 struct btrfs_device *curr, *next;
7488
7489 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7490
7491 if (list_empty(&trans->dev_update_list))
7492 return;
7493
7494 /*
7495 * We don't need the device_list_mutex here. This list is owned by the
7496 * transaction and the transaction must complete before the device is
7497 * released.
7498 */
7499 mutex_lock(&trans->fs_info->chunk_mutex);
7500 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7501 post_commit_list) {
7502 list_del_init(&curr->post_commit_list);
7503 curr->commit_total_bytes = curr->disk_total_bytes;
7504 curr->commit_bytes_used = curr->bytes_used;
7505 }
7506 mutex_unlock(&trans->fs_info->chunk_mutex);
7507 }
7508
7509 /*
7510 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7511 */
7512 int btrfs_bg_type_to_factor(u64 flags)
7513 {
7514 const int index = btrfs_bg_flags_to_raid_index(flags);
7515
7516 return btrfs_raid_array[index].ncopies;
7517 }
7518
7519
7520
7521 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7522 u64 chunk_offset, u64 devid,
7523 u64 physical_offset, u64 physical_len)
7524 {
7525 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7526 struct extent_map *em;
7527 struct map_lookup *map;
7528 struct btrfs_device *dev;
7529 u64 stripe_len;
7530 bool found = false;
7531 int ret = 0;
7532 int i;
7533
7534 read_lock(&em_tree->lock);
7535 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7536 read_unlock(&em_tree->lock);
7537
7538 if (!em) {
7539 btrfs_err(fs_info,
7540 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7541 physical_offset, devid);
7542 ret = -EUCLEAN;
7543 goto out;
7544 }
7545
7546 map = em->map_lookup;
7547 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7548 if (physical_len != stripe_len) {
7549 btrfs_err(fs_info,
7550 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7551 physical_offset, devid, em->start, physical_len,
7552 stripe_len);
7553 ret = -EUCLEAN;
7554 goto out;
7555 }
7556
7557 for (i = 0; i < map->num_stripes; i++) {
7558 if (map->stripes[i].dev->devid == devid &&
7559 map->stripes[i].physical == physical_offset) {
7560 found = true;
7561 if (map->verified_stripes >= map->num_stripes) {
7562 btrfs_err(fs_info,
7563 "too many dev extents for chunk %llu found",
7564 em->start);
7565 ret = -EUCLEAN;
7566 goto out;
7567 }
7568 map->verified_stripes++;
7569 break;
7570 }
7571 }
7572 if (!found) {
7573 btrfs_err(fs_info,
7574 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7575 physical_offset, devid);
7576 ret = -EUCLEAN;
7577 }
7578
7579 /* Make sure no dev extent is beyond device bondary */
7580 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7581 if (!dev) {
7582 btrfs_err(fs_info, "failed to find devid %llu", devid);
7583 ret = -EUCLEAN;
7584 goto out;
7585 }
7586
7587 /* It's possible this device is a dummy for seed device */
7588 if (dev->disk_total_bytes == 0) {
7589 struct btrfs_fs_devices *devs;
7590
7591 devs = list_first_entry(&fs_info->fs_devices->seed_list,
7592 struct btrfs_fs_devices, seed_list);
7593 dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7594 if (!dev) {
7595 btrfs_err(fs_info, "failed to find seed devid %llu",
7596 devid);
7597 ret = -EUCLEAN;
7598 goto out;
7599 }
7600 }
7601
7602 if (physical_offset + physical_len > dev->disk_total_bytes) {
7603 btrfs_err(fs_info,
7604 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7605 devid, physical_offset, physical_len,
7606 dev->disk_total_bytes);
7607 ret = -EUCLEAN;
7608 goto out;
7609 }
7610 out:
7611 free_extent_map(em);
7612 return ret;
7613 }
7614
7615 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7616 {
7617 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7618 struct extent_map *em;
7619 struct rb_node *node;
7620 int ret = 0;
7621
7622 read_lock(&em_tree->lock);
7623 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7624 em = rb_entry(node, struct extent_map, rb_node);
7625 if (em->map_lookup->num_stripes !=
7626 em->map_lookup->verified_stripes) {
7627 btrfs_err(fs_info,
7628 "chunk %llu has missing dev extent, have %d expect %d",
7629 em->start, em->map_lookup->verified_stripes,
7630 em->map_lookup->num_stripes);
7631 ret = -EUCLEAN;
7632 goto out;
7633 }
7634 }
7635 out:
7636 read_unlock(&em_tree->lock);
7637 return ret;
7638 }
7639
7640 /*
7641 * Ensure that all dev extents are mapped to correct chunk, otherwise
7642 * later chunk allocation/free would cause unexpected behavior.
7643 *
7644 * NOTE: This will iterate through the whole device tree, which should be of
7645 * the same size level as the chunk tree. This slightly increases mount time.
7646 */
7647 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7648 {
7649 struct btrfs_path *path;
7650 struct btrfs_root *root = fs_info->dev_root;
7651 struct btrfs_key key;
7652 u64 prev_devid = 0;
7653 u64 prev_dev_ext_end = 0;
7654 int ret = 0;
7655
7656 key.objectid = 1;
7657 key.type = BTRFS_DEV_EXTENT_KEY;
7658 key.offset = 0;
7659
7660 path = btrfs_alloc_path();
7661 if (!path)
7662 return -ENOMEM;
7663
7664 path->reada = READA_FORWARD;
7665 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7666 if (ret < 0)
7667 goto out;
7668
7669 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7670 ret = btrfs_next_item(root, path);
7671 if (ret < 0)
7672 goto out;
7673 /* No dev extents at all? Not good */
7674 if (ret > 0) {
7675 ret = -EUCLEAN;
7676 goto out;
7677 }
7678 }
7679 while (1) {
7680 struct extent_buffer *leaf = path->nodes[0];
7681 struct btrfs_dev_extent *dext;
7682 int slot = path->slots[0];
7683 u64 chunk_offset;
7684 u64 physical_offset;
7685 u64 physical_len;
7686 u64 devid;
7687
7688 btrfs_item_key_to_cpu(leaf, &key, slot);
7689 if (key.type != BTRFS_DEV_EXTENT_KEY)
7690 break;
7691 devid = key.objectid;
7692 physical_offset = key.offset;
7693
7694 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7695 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7696 physical_len = btrfs_dev_extent_length(leaf, dext);
7697
7698 /* Check if this dev extent overlaps with the previous one */
7699 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7700 btrfs_err(fs_info,
7701 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7702 devid, physical_offset, prev_dev_ext_end);
7703 ret = -EUCLEAN;
7704 goto out;
7705 }
7706
7707 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7708 physical_offset, physical_len);
7709 if (ret < 0)
7710 goto out;
7711 prev_devid = devid;
7712 prev_dev_ext_end = physical_offset + physical_len;
7713
7714 ret = btrfs_next_item(root, path);
7715 if (ret < 0)
7716 goto out;
7717 if (ret > 0) {
7718 ret = 0;
7719 break;
7720 }
7721 }
7722
7723 /* Ensure all chunks have corresponding dev extents */
7724 ret = verify_chunk_dev_extent_mapping(fs_info);
7725 out:
7726 btrfs_free_path(path);
7727 return ret;
7728 }
7729
7730 /*
7731 * Check whether the given block group or device is pinned by any inode being
7732 * used as a swapfile.
7733 */
7734 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7735 {
7736 struct btrfs_swapfile_pin *sp;
7737 struct rb_node *node;
7738
7739 spin_lock(&fs_info->swapfile_pins_lock);
7740 node = fs_info->swapfile_pins.rb_node;
7741 while (node) {
7742 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7743 if (ptr < sp->ptr)
7744 node = node->rb_left;
7745 else if (ptr > sp->ptr)
7746 node = node->rb_right;
7747 else
7748 break;
7749 }
7750 spin_unlock(&fs_info->swapfile_pins_lock);
7751 return node != NULL;
7752 }