2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_root
*root
,
138 struct btrfs_device
*device
);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
140 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
144 DEFINE_MUTEX(uuid_mutex
);
145 static LIST_HEAD(fs_uuids
);
146 struct list_head
*btrfs_get_fs_uuids(void)
151 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
153 struct btrfs_fs_devices
*fs_devs
;
155 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
157 return ERR_PTR(-ENOMEM
);
159 mutex_init(&fs_devs
->device_list_mutex
);
161 INIT_LIST_HEAD(&fs_devs
->devices
);
162 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
163 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
164 INIT_LIST_HEAD(&fs_devs
->list
);
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
178 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
180 struct btrfs_fs_devices
*fs_devs
;
182 fs_devs
= __alloc_fs_devices();
187 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
189 generate_random_uuid(fs_devs
->fsid
);
194 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
196 struct btrfs_device
*device
;
197 WARN_ON(fs_devices
->opened
);
198 while (!list_empty(&fs_devices
->devices
)) {
199 device
= list_entry(fs_devices
->devices
.next
,
200 struct btrfs_device
, dev_list
);
201 list_del(&device
->dev_list
);
202 rcu_string_free(device
->name
);
208 static void btrfs_kobject_uevent(struct block_device
*bdev
,
209 enum kobject_action action
)
213 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
218 &disk_to_dev(bdev
->bd_disk
)->kobj
);
221 void btrfs_cleanup_fs_uuids(void)
223 struct btrfs_fs_devices
*fs_devices
;
225 while (!list_empty(&fs_uuids
)) {
226 fs_devices
= list_entry(fs_uuids
.next
,
227 struct btrfs_fs_devices
, list
);
228 list_del(&fs_devices
->list
);
229 free_fs_devices(fs_devices
);
233 static struct btrfs_device
*__alloc_device(void)
235 struct btrfs_device
*dev
;
237 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
239 return ERR_PTR(-ENOMEM
);
241 INIT_LIST_HEAD(&dev
->dev_list
);
242 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
243 INIT_LIST_HEAD(&dev
->resized_list
);
245 spin_lock_init(&dev
->io_lock
);
247 spin_lock_init(&dev
->reada_lock
);
248 atomic_set(&dev
->reada_in_flight
, 0);
249 atomic_set(&dev
->dev_stats_ccnt
, 0);
250 btrfs_device_data_ordered_init(dev
);
251 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
252 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
257 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
260 struct btrfs_device
*dev
;
262 list_for_each_entry(dev
, head
, dev_list
) {
263 if (dev
->devid
== devid
&&
264 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
271 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
273 struct btrfs_fs_devices
*fs_devices
;
275 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
276 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
283 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
284 int flush
, struct block_device
**bdev
,
285 struct buffer_head
**bh
)
289 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
292 ret
= PTR_ERR(*bdev
);
297 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
298 ret
= set_blocksize(*bdev
, 4096);
300 blkdev_put(*bdev
, flags
);
303 invalidate_bdev(*bdev
);
304 *bh
= btrfs_read_dev_super(*bdev
);
307 blkdev_put(*bdev
, flags
);
319 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
320 struct bio
*head
, struct bio
*tail
)
323 struct bio
*old_head
;
325 old_head
= pending_bios
->head
;
326 pending_bios
->head
= head
;
327 if (pending_bios
->tail
)
328 tail
->bi_next
= old_head
;
330 pending_bios
->tail
= tail
;
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
344 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
347 struct backing_dev_info
*bdi
;
348 struct btrfs_fs_info
*fs_info
;
349 struct btrfs_pending_bios
*pending_bios
;
353 unsigned long num_run
;
354 unsigned long batch_run
= 0;
356 unsigned long last_waited
= 0;
358 int sync_pending
= 0;
359 struct blk_plug plug
;
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
367 blk_start_plug(&plug
);
369 bdi
= blk_get_backing_dev_info(device
->bdev
);
370 fs_info
= device
->dev_root
->fs_info
;
371 limit
= btrfs_async_submit_limit(fs_info
);
372 limit
= limit
* 2 / 3;
375 spin_lock(&device
->io_lock
);
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
385 if (!force_reg
&& device
->pending_sync_bios
.head
) {
386 pending_bios
= &device
->pending_sync_bios
;
389 pending_bios
= &device
->pending_bios
;
393 pending
= pending_bios
->head
;
394 tail
= pending_bios
->tail
;
395 WARN_ON(pending
&& !tail
);
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
402 * device->running_pending is used to synchronize with the
405 if (device
->pending_sync_bios
.head
== NULL
&&
406 device
->pending_bios
.head
== NULL
) {
408 device
->running_pending
= 0;
411 device
->running_pending
= 1;
414 pending_bios
->head
= NULL
;
415 pending_bios
->tail
= NULL
;
417 spin_unlock(&device
->io_lock
);
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
426 pending_bios
!= &device
->pending_sync_bios
&&
427 device
->pending_sync_bios
.head
) ||
428 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
429 device
->pending_bios
.head
)) {
430 spin_lock(&device
->io_lock
);
431 requeue_list(pending_bios
, pending
, tail
);
436 pending
= pending
->bi_next
;
440 * atomic_dec_return implies a barrier for waitqueue_active
442 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
443 waitqueue_active(&fs_info
->async_submit_wait
))
444 wake_up(&fs_info
->async_submit_wait
);
446 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
456 if (pending_bios
== &device
->pending_sync_bios
) {
458 } else if (sync_pending
) {
459 blk_finish_plug(&plug
);
460 blk_start_plug(&plug
);
464 btrfsic_submit_bio(cur
->bi_rw
, cur
);
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
475 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
476 fs_info
->fs_devices
->open_devices
> 1) {
477 struct io_context
*ioc
;
479 ioc
= current
->io_context
;
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
490 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
491 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
493 ioc
->last_waited
== last_waited
)) {
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
500 last_waited
= ioc
->last_waited
;
504 spin_lock(&device
->io_lock
);
505 requeue_list(pending_bios
, pending
, tail
);
506 device
->running_pending
= 1;
508 spin_unlock(&device
->io_lock
);
509 btrfs_queue_work(fs_info
->submit_workers
,
513 /* unplug every 64 requests just for good measure */
514 if (batch_run
% 64 == 0) {
515 blk_finish_plug(&plug
);
516 blk_start_plug(&plug
);
525 spin_lock(&device
->io_lock
);
526 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
528 spin_unlock(&device
->io_lock
);
531 blk_finish_plug(&plug
);
534 static void pending_bios_fn(struct btrfs_work
*work
)
536 struct btrfs_device
*device
;
538 device
= container_of(work
, struct btrfs_device
, work
);
539 run_scheduled_bios(device
);
543 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
545 struct btrfs_fs_devices
*fs_devs
;
546 struct btrfs_device
*dev
;
551 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
556 if (fs_devs
->seeding
)
559 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
573 del
= strcmp(rcu_str_deref(dev
->name
),
574 rcu_str_deref(cur_dev
->name
));
581 /* delete the stale device */
582 if (fs_devs
->num_devices
== 1) {
583 btrfs_sysfs_remove_fsid(fs_devs
);
584 list_del(&fs_devs
->list
);
585 free_fs_devices(fs_devs
);
587 fs_devs
->num_devices
--;
588 list_del(&dev
->dev_list
);
589 rcu_string_free(dev
->name
);
598 * Add new device to list of registered devices
601 * 1 - first time device is seen
602 * 0 - device already known
605 static noinline
int device_list_add(const char *path
,
606 struct btrfs_super_block
*disk_super
,
607 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
609 struct btrfs_device
*device
;
610 struct btrfs_fs_devices
*fs_devices
;
611 struct rcu_string
*name
;
613 u64 found_transid
= btrfs_super_generation(disk_super
);
615 fs_devices
= find_fsid(disk_super
->fsid
);
617 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
618 if (IS_ERR(fs_devices
))
619 return PTR_ERR(fs_devices
);
621 list_add(&fs_devices
->list
, &fs_uuids
);
625 device
= __find_device(&fs_devices
->devices
, devid
,
626 disk_super
->dev_item
.uuid
);
630 if (fs_devices
->opened
)
633 device
= btrfs_alloc_device(NULL
, &devid
,
634 disk_super
->dev_item
.uuid
);
635 if (IS_ERR(device
)) {
636 /* we can safely leave the fs_devices entry around */
637 return PTR_ERR(device
);
640 name
= rcu_string_strdup(path
, GFP_NOFS
);
645 rcu_assign_pointer(device
->name
, name
);
647 mutex_lock(&fs_devices
->device_list_mutex
);
648 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
649 fs_devices
->num_devices
++;
650 mutex_unlock(&fs_devices
->device_list_mutex
);
653 device
->fs_devices
= fs_devices
;
654 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
663 * b. The missing-disk-which-was-replaced, has
666 * We must allow 1 and 2a above. But 2b would be a spurious
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
681 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
692 name
= rcu_string_strdup(path
, GFP_NOFS
);
695 rcu_string_free(device
->name
);
696 rcu_assign_pointer(device
->name
, name
);
697 if (device
->missing
) {
698 fs_devices
->missing_devices
--;
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
709 if (!fs_devices
->opened
)
710 device
->generation
= found_transid
;
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
717 btrfs_free_stale_device(device
);
719 *fs_devices_ret
= fs_devices
;
724 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
726 struct btrfs_fs_devices
*fs_devices
;
727 struct btrfs_device
*device
;
728 struct btrfs_device
*orig_dev
;
730 fs_devices
= alloc_fs_devices(orig
->fsid
);
731 if (IS_ERR(fs_devices
))
734 mutex_lock(&orig
->device_list_mutex
);
735 fs_devices
->total_devices
= orig
->total_devices
;
737 /* We have held the volume lock, it is safe to get the devices. */
738 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
739 struct rcu_string
*name
;
741 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
750 if (orig_dev
->name
) {
751 name
= rcu_string_strdup(orig_dev
->name
->str
,
757 rcu_assign_pointer(device
->name
, name
);
760 list_add(&device
->dev_list
, &fs_devices
->devices
);
761 device
->fs_devices
= fs_devices
;
762 fs_devices
->num_devices
++;
764 mutex_unlock(&orig
->device_list_mutex
);
767 mutex_unlock(&orig
->device_list_mutex
);
768 free_fs_devices(fs_devices
);
769 return ERR_PTR(-ENOMEM
);
772 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
774 struct btrfs_device
*device
, *next
;
775 struct btrfs_device
*latest_dev
= NULL
;
777 mutex_lock(&uuid_mutex
);
779 /* This is the initialized path, it is safe to release the devices. */
780 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
781 if (device
->in_fs_metadata
) {
782 if (!device
->is_tgtdev_for_dev_replace
&&
784 device
->generation
> latest_dev
->generation
)) {
790 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
801 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
806 blkdev_put(device
->bdev
, device
->mode
);
808 fs_devices
->open_devices
--;
810 if (device
->writeable
) {
811 list_del_init(&device
->dev_alloc_list
);
812 device
->writeable
= 0;
813 if (!device
->is_tgtdev_for_dev_replace
)
814 fs_devices
->rw_devices
--;
816 list_del_init(&device
->dev_list
);
817 fs_devices
->num_devices
--;
818 rcu_string_free(device
->name
);
822 if (fs_devices
->seed
) {
823 fs_devices
= fs_devices
->seed
;
827 fs_devices
->latest_bdev
= latest_dev
->bdev
;
829 mutex_unlock(&uuid_mutex
);
832 static void __free_device(struct work_struct
*work
)
834 struct btrfs_device
*device
;
836 device
= container_of(work
, struct btrfs_device
, rcu_work
);
839 blkdev_put(device
->bdev
, device
->mode
);
841 rcu_string_free(device
->name
);
845 static void free_device(struct rcu_head
*head
)
847 struct btrfs_device
*device
;
849 device
= container_of(head
, struct btrfs_device
, rcu
);
851 INIT_WORK(&device
->rcu_work
, __free_device
);
852 schedule_work(&device
->rcu_work
);
855 static void btrfs_close_one_device(struct btrfs_device
*device
)
857 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
858 struct btrfs_device
*new_device
;
859 struct rcu_string
*name
;
862 fs_devices
->open_devices
--;
864 if (device
->writeable
&&
865 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
866 list_del_init(&device
->dev_alloc_list
);
867 fs_devices
->rw_devices
--;
871 fs_devices
->missing_devices
--;
873 if (device
->bdev
&& device
->writeable
) {
874 sync_blockdev(device
->bdev
);
875 invalidate_bdev(device
->bdev
);
878 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
880 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
882 /* Safe because we are under uuid_mutex */
884 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
885 BUG_ON(!name
); /* -ENOMEM */
886 rcu_assign_pointer(new_device
->name
, name
);
889 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
890 new_device
->fs_devices
= device
->fs_devices
;
892 call_rcu(&device
->rcu
, free_device
);
895 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
897 struct btrfs_device
*device
, *tmp
;
899 if (--fs_devices
->opened
> 0)
902 mutex_lock(&fs_devices
->device_list_mutex
);
903 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
904 btrfs_close_one_device(device
);
906 mutex_unlock(&fs_devices
->device_list_mutex
);
908 WARN_ON(fs_devices
->open_devices
);
909 WARN_ON(fs_devices
->rw_devices
);
910 fs_devices
->opened
= 0;
911 fs_devices
->seeding
= 0;
916 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
918 struct btrfs_fs_devices
*seed_devices
= NULL
;
921 mutex_lock(&uuid_mutex
);
922 ret
= __btrfs_close_devices(fs_devices
);
923 if (!fs_devices
->opened
) {
924 seed_devices
= fs_devices
->seed
;
925 fs_devices
->seed
= NULL
;
927 mutex_unlock(&uuid_mutex
);
929 while (seed_devices
) {
930 fs_devices
= seed_devices
;
931 seed_devices
= fs_devices
->seed
;
932 __btrfs_close_devices(fs_devices
);
933 free_fs_devices(fs_devices
);
936 * Wait for rcu kworkers under __btrfs_close_devices
937 * to finish all blkdev_puts so device is really
938 * free when umount is done.
944 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
945 fmode_t flags
, void *holder
)
947 struct request_queue
*q
;
948 struct block_device
*bdev
;
949 struct list_head
*head
= &fs_devices
->devices
;
950 struct btrfs_device
*device
;
951 struct btrfs_device
*latest_dev
= NULL
;
952 struct buffer_head
*bh
;
953 struct btrfs_super_block
*disk_super
;
960 list_for_each_entry(device
, head
, dev_list
) {
966 /* Just open everything we can; ignore failures here */
967 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
971 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
972 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
973 if (devid
!= device
->devid
)
976 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
980 device
->generation
= btrfs_super_generation(disk_super
);
982 device
->generation
> latest_dev
->generation
)
985 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
986 device
->writeable
= 0;
988 device
->writeable
= !bdev_read_only(bdev
);
992 q
= bdev_get_queue(bdev
);
993 if (blk_queue_discard(q
))
994 device
->can_discard
= 1;
997 device
->in_fs_metadata
= 0;
998 device
->mode
= flags
;
1000 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1001 fs_devices
->rotating
= 1;
1003 fs_devices
->open_devices
++;
1004 if (device
->writeable
&&
1005 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1006 fs_devices
->rw_devices
++;
1007 list_add(&device
->dev_alloc_list
,
1008 &fs_devices
->alloc_list
);
1015 blkdev_put(bdev
, flags
);
1018 if (fs_devices
->open_devices
== 0) {
1022 fs_devices
->seeding
= seeding
;
1023 fs_devices
->opened
= 1;
1024 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1025 fs_devices
->total_rw_bytes
= 0;
1030 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1031 fmode_t flags
, void *holder
)
1035 mutex_lock(&uuid_mutex
);
1036 if (fs_devices
->opened
) {
1037 fs_devices
->opened
++;
1040 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1042 mutex_unlock(&uuid_mutex
);
1046 void btrfs_release_disk_super(struct page
*page
)
1052 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1053 struct page
**page
, struct btrfs_super_block
**disk_super
)
1058 /* make sure our super fits in the device */
1059 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1062 /* make sure our super fits in the page */
1063 if (sizeof(**disk_super
) > PAGE_SIZE
)
1066 /* make sure our super doesn't straddle pages on disk */
1067 index
= bytenr
>> PAGE_SHIFT
;
1068 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1071 /* pull in the page with our super */
1072 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1075 if (IS_ERR_OR_NULL(*page
))
1080 /* align our pointer to the offset of the super block */
1081 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1083 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1084 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1085 btrfs_release_disk_super(*page
);
1089 if ((*disk_super
)->label
[0] &&
1090 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1091 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1097 * Look for a btrfs signature on a device. This may be called out of the mount path
1098 * and we are not allowed to call set_blocksize during the scan. The superblock
1099 * is read via pagecache
1101 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1102 struct btrfs_fs_devices
**fs_devices_ret
)
1104 struct btrfs_super_block
*disk_super
;
1105 struct block_device
*bdev
;
1114 * we would like to check all the supers, but that would make
1115 * a btrfs mount succeed after a mkfs from a different FS.
1116 * So, we need to add a special mount option to scan for
1117 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1119 bytenr
= btrfs_sb_offset(0);
1120 flags
|= FMODE_EXCL
;
1121 mutex_lock(&uuid_mutex
);
1123 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1125 ret
= PTR_ERR(bdev
);
1129 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1130 goto error_bdev_put
;
1132 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1133 transid
= btrfs_super_generation(disk_super
);
1134 total_devices
= btrfs_super_num_devices(disk_super
);
1136 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1138 if (disk_super
->label
[0]) {
1139 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
1141 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
1144 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
1147 if (!ret
&& fs_devices_ret
)
1148 (*fs_devices_ret
)->total_devices
= total_devices
;
1150 btrfs_release_disk_super(page
);
1153 blkdev_put(bdev
, flags
);
1155 mutex_unlock(&uuid_mutex
);
1159 /* helper to account the used device space in the range */
1160 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1161 u64 end
, u64
*length
)
1163 struct btrfs_key key
;
1164 struct btrfs_root
*root
= device
->dev_root
;
1165 struct btrfs_dev_extent
*dev_extent
;
1166 struct btrfs_path
*path
;
1170 struct extent_buffer
*l
;
1174 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1177 path
= btrfs_alloc_path();
1180 path
->reada
= READA_FORWARD
;
1182 key
.objectid
= device
->devid
;
1184 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1186 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1190 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1197 slot
= path
->slots
[0];
1198 if (slot
>= btrfs_header_nritems(l
)) {
1199 ret
= btrfs_next_leaf(root
, path
);
1207 btrfs_item_key_to_cpu(l
, &key
, slot
);
1209 if (key
.objectid
< device
->devid
)
1212 if (key
.objectid
> device
->devid
)
1215 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1218 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1219 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1221 if (key
.offset
<= start
&& extent_end
> end
) {
1222 *length
= end
- start
+ 1;
1224 } else if (key
.offset
<= start
&& extent_end
> start
)
1225 *length
+= extent_end
- start
;
1226 else if (key
.offset
> start
&& extent_end
<= end
)
1227 *length
+= extent_end
- key
.offset
;
1228 else if (key
.offset
> start
&& key
.offset
<= end
) {
1229 *length
+= end
- key
.offset
+ 1;
1231 } else if (key
.offset
> end
)
1239 btrfs_free_path(path
);
1243 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1244 struct btrfs_device
*device
,
1245 u64
*start
, u64 len
)
1247 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
1248 struct extent_map
*em
;
1249 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1251 u64 physical_start
= *start
;
1254 search_list
= &transaction
->pending_chunks
;
1256 list_for_each_entry(em
, search_list
, list
) {
1257 struct map_lookup
*map
;
1260 map
= em
->map_lookup
;
1261 for (i
= 0; i
< map
->num_stripes
; i
++) {
1264 if (map
->stripes
[i
].dev
!= device
)
1266 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1267 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1271 * Make sure that while processing the pinned list we do
1272 * not override our *start with a lower value, because
1273 * we can have pinned chunks that fall within this
1274 * device hole and that have lower physical addresses
1275 * than the pending chunks we processed before. If we
1276 * do not take this special care we can end up getting
1277 * 2 pending chunks that start at the same physical
1278 * device offsets because the end offset of a pinned
1279 * chunk can be equal to the start offset of some
1282 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1289 if (search_list
!= &fs_info
->pinned_chunks
) {
1290 search_list
= &fs_info
->pinned_chunks
;
1299 * find_free_dev_extent_start - find free space in the specified device
1300 * @device: the device which we search the free space in
1301 * @num_bytes: the size of the free space that we need
1302 * @search_start: the position from which to begin the search
1303 * @start: store the start of the free space.
1304 * @len: the size of the free space. that we find, or the size
1305 * of the max free space if we don't find suitable free space
1307 * this uses a pretty simple search, the expectation is that it is
1308 * called very infrequently and that a given device has a small number
1311 * @start is used to store the start of the free space if we find. But if we
1312 * don't find suitable free space, it will be used to store the start position
1313 * of the max free space.
1315 * @len is used to store the size of the free space that we find.
1316 * But if we don't find suitable free space, it is used to store the size of
1317 * the max free space.
1319 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1320 struct btrfs_device
*device
, u64 num_bytes
,
1321 u64 search_start
, u64
*start
, u64
*len
)
1323 struct btrfs_key key
;
1324 struct btrfs_root
*root
= device
->dev_root
;
1325 struct btrfs_dev_extent
*dev_extent
;
1326 struct btrfs_path
*path
;
1331 u64 search_end
= device
->total_bytes
;
1334 struct extent_buffer
*l
;
1335 u64 min_search_start
;
1338 * We don't want to overwrite the superblock on the drive nor any area
1339 * used by the boot loader (grub for example), so we make sure to start
1340 * at an offset of at least 1MB.
1342 min_search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1343 search_start
= max(search_start
, min_search_start
);
1345 path
= btrfs_alloc_path();
1349 max_hole_start
= search_start
;
1353 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1358 path
->reada
= READA_FORWARD
;
1359 path
->search_commit_root
= 1;
1360 path
->skip_locking
= 1;
1362 key
.objectid
= device
->devid
;
1363 key
.offset
= search_start
;
1364 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1366 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1370 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1377 slot
= path
->slots
[0];
1378 if (slot
>= btrfs_header_nritems(l
)) {
1379 ret
= btrfs_next_leaf(root
, path
);
1387 btrfs_item_key_to_cpu(l
, &key
, slot
);
1389 if (key
.objectid
< device
->devid
)
1392 if (key
.objectid
> device
->devid
)
1395 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1398 if (key
.offset
> search_start
) {
1399 hole_size
= key
.offset
- search_start
;
1402 * Have to check before we set max_hole_start, otherwise
1403 * we could end up sending back this offset anyway.
1405 if (contains_pending_extent(transaction
, device
,
1408 if (key
.offset
>= search_start
) {
1409 hole_size
= key
.offset
- search_start
;
1416 if (hole_size
> max_hole_size
) {
1417 max_hole_start
= search_start
;
1418 max_hole_size
= hole_size
;
1422 * If this free space is greater than which we need,
1423 * it must be the max free space that we have found
1424 * until now, so max_hole_start must point to the start
1425 * of this free space and the length of this free space
1426 * is stored in max_hole_size. Thus, we return
1427 * max_hole_start and max_hole_size and go back to the
1430 if (hole_size
>= num_bytes
) {
1436 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1437 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1439 if (extent_end
> search_start
)
1440 search_start
= extent_end
;
1447 * At this point, search_start should be the end of
1448 * allocated dev extents, and when shrinking the device,
1449 * search_end may be smaller than search_start.
1451 if (search_end
> search_start
) {
1452 hole_size
= search_end
- search_start
;
1454 if (contains_pending_extent(transaction
, device
, &search_start
,
1456 btrfs_release_path(path
);
1460 if (hole_size
> max_hole_size
) {
1461 max_hole_start
= search_start
;
1462 max_hole_size
= hole_size
;
1467 if (max_hole_size
< num_bytes
)
1473 btrfs_free_path(path
);
1474 *start
= max_hole_start
;
1476 *len
= max_hole_size
;
1480 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1481 struct btrfs_device
*device
, u64 num_bytes
,
1482 u64
*start
, u64
*len
)
1484 /* FIXME use last free of some kind */
1485 return find_free_dev_extent_start(trans
->transaction
, device
,
1486 num_bytes
, 0, start
, len
);
1489 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1490 struct btrfs_device
*device
,
1491 u64 start
, u64
*dev_extent_len
)
1494 struct btrfs_path
*path
;
1495 struct btrfs_root
*root
= device
->dev_root
;
1496 struct btrfs_key key
;
1497 struct btrfs_key found_key
;
1498 struct extent_buffer
*leaf
= NULL
;
1499 struct btrfs_dev_extent
*extent
= NULL
;
1501 path
= btrfs_alloc_path();
1505 key
.objectid
= device
->devid
;
1507 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1509 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1511 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1512 BTRFS_DEV_EXTENT_KEY
);
1515 leaf
= path
->nodes
[0];
1516 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1517 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1518 struct btrfs_dev_extent
);
1519 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1520 btrfs_dev_extent_length(leaf
, extent
) < start
);
1522 btrfs_release_path(path
);
1524 } else if (ret
== 0) {
1525 leaf
= path
->nodes
[0];
1526 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1527 struct btrfs_dev_extent
);
1529 btrfs_handle_fs_error(root
->fs_info
, ret
, "Slot search failed");
1533 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1535 ret
= btrfs_del_item(trans
, root
, path
);
1537 btrfs_handle_fs_error(root
->fs_info
, ret
,
1538 "Failed to remove dev extent item");
1540 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1543 btrfs_free_path(path
);
1547 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1548 struct btrfs_device
*device
,
1549 u64 chunk_tree
, u64 chunk_objectid
,
1550 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1553 struct btrfs_path
*path
;
1554 struct btrfs_root
*root
= device
->dev_root
;
1555 struct btrfs_dev_extent
*extent
;
1556 struct extent_buffer
*leaf
;
1557 struct btrfs_key key
;
1559 WARN_ON(!device
->in_fs_metadata
);
1560 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1561 path
= btrfs_alloc_path();
1565 key
.objectid
= device
->devid
;
1567 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1568 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1573 leaf
= path
->nodes
[0];
1574 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1575 struct btrfs_dev_extent
);
1576 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1577 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1578 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1580 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1581 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1583 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1584 btrfs_mark_buffer_dirty(leaf
);
1586 btrfs_free_path(path
);
1590 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1592 struct extent_map_tree
*em_tree
;
1593 struct extent_map
*em
;
1597 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1598 read_lock(&em_tree
->lock
);
1599 n
= rb_last(&em_tree
->map
);
1601 em
= rb_entry(n
, struct extent_map
, rb_node
);
1602 ret
= em
->start
+ em
->len
;
1604 read_unlock(&em_tree
->lock
);
1609 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1613 struct btrfs_key key
;
1614 struct btrfs_key found_key
;
1615 struct btrfs_path
*path
;
1617 path
= btrfs_alloc_path();
1621 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1622 key
.type
= BTRFS_DEV_ITEM_KEY
;
1623 key
.offset
= (u64
)-1;
1625 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1629 BUG_ON(ret
== 0); /* Corruption */
1631 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1632 BTRFS_DEV_ITEMS_OBJECTID
,
1633 BTRFS_DEV_ITEM_KEY
);
1637 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1639 *devid_ret
= found_key
.offset
+ 1;
1643 btrfs_free_path(path
);
1648 * the device information is stored in the chunk root
1649 * the btrfs_device struct should be fully filled in
1651 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1652 struct btrfs_root
*root
,
1653 struct btrfs_device
*device
)
1656 struct btrfs_path
*path
;
1657 struct btrfs_dev_item
*dev_item
;
1658 struct extent_buffer
*leaf
;
1659 struct btrfs_key key
;
1662 root
= root
->fs_info
->chunk_root
;
1664 path
= btrfs_alloc_path();
1668 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1669 key
.type
= BTRFS_DEV_ITEM_KEY
;
1670 key
.offset
= device
->devid
;
1672 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1677 leaf
= path
->nodes
[0];
1678 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1680 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1681 btrfs_set_device_generation(leaf
, dev_item
, 0);
1682 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1683 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1684 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1685 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1686 btrfs_set_device_total_bytes(leaf
, dev_item
,
1687 btrfs_device_get_disk_total_bytes(device
));
1688 btrfs_set_device_bytes_used(leaf
, dev_item
,
1689 btrfs_device_get_bytes_used(device
));
1690 btrfs_set_device_group(leaf
, dev_item
, 0);
1691 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1692 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1693 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1695 ptr
= btrfs_device_uuid(dev_item
);
1696 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1697 ptr
= btrfs_device_fsid(dev_item
);
1698 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1699 btrfs_mark_buffer_dirty(leaf
);
1703 btrfs_free_path(path
);
1708 * Function to update ctime/mtime for a given device path.
1709 * Mainly used for ctime/mtime based probe like libblkid.
1711 static void update_dev_time(char *path_name
)
1715 filp
= filp_open(path_name
, O_RDWR
, 0);
1718 file_update_time(filp
);
1719 filp_close(filp
, NULL
);
1722 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1723 struct btrfs_device
*device
)
1726 struct btrfs_path
*path
;
1727 struct btrfs_key key
;
1728 struct btrfs_trans_handle
*trans
;
1730 root
= root
->fs_info
->chunk_root
;
1732 path
= btrfs_alloc_path();
1736 trans
= btrfs_start_transaction(root
, 0);
1737 if (IS_ERR(trans
)) {
1738 btrfs_free_path(path
);
1739 return PTR_ERR(trans
);
1741 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1742 key
.type
= BTRFS_DEV_ITEM_KEY
;
1743 key
.offset
= device
->devid
;
1745 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1754 ret
= btrfs_del_item(trans
, root
, path
);
1758 btrfs_free_path(path
);
1759 btrfs_commit_transaction(trans
, root
);
1764 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1765 * filesystem. It's up to the caller to adjust that number regarding eg. device
1768 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1776 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1778 all_avail
= fs_info
->avail_data_alloc_bits
|
1779 fs_info
->avail_system_alloc_bits
|
1780 fs_info
->avail_metadata_alloc_bits
;
1781 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1783 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1784 if (!(all_avail
& btrfs_raid_group
[i
]))
1787 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1788 int ret
= btrfs_raid_mindev_error
[i
];
1798 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1799 struct btrfs_device
*device
)
1801 struct btrfs_device
*next_device
;
1803 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1804 if (next_device
!= device
&&
1805 !next_device
->missing
&& next_device
->bdev
)
1813 * Helper function to check if the given device is part of s_bdev / latest_bdev
1814 * and replace it with the provided or the next active device, in the context
1815 * where this function called, there should be always be another device (or
1816 * this_dev) which is active.
1818 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1819 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1821 struct btrfs_device
*next_device
;
1824 next_device
= this_dev
;
1826 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1828 ASSERT(next_device
);
1830 if (fs_info
->sb
->s_bdev
&&
1831 (fs_info
->sb
->s_bdev
== device
->bdev
))
1832 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1834 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1835 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1838 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
, u64 devid
)
1840 struct btrfs_device
*device
;
1841 struct btrfs_fs_devices
*cur_devices
;
1844 bool clear_super
= false;
1845 char *dev_name
= NULL
;
1847 mutex_lock(&uuid_mutex
);
1849 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1850 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
, 0);
1851 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1852 WARN_ON(num_devices
< 1);
1855 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
, 0);
1857 ret
= btrfs_check_raid_min_devices(root
->fs_info
, num_devices
- 1);
1861 ret
= btrfs_find_device_by_devspec(root
, devid
, device_path
,
1866 if (device
->is_tgtdev_for_dev_replace
) {
1867 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1871 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1872 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1876 if (device
->writeable
) {
1878 list_del_init(&device
->dev_alloc_list
);
1879 device
->fs_devices
->rw_devices
--;
1880 unlock_chunks(root
);
1881 dev_name
= kstrdup(device
->name
->str
, GFP_KERNEL
);
1889 mutex_unlock(&uuid_mutex
);
1890 ret
= btrfs_shrink_device(device
, 0);
1891 mutex_lock(&uuid_mutex
);
1896 * TODO: the superblock still includes this device in its num_devices
1897 * counter although write_all_supers() is not locked out. This
1898 * could give a filesystem state which requires a degraded mount.
1900 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1904 device
->in_fs_metadata
= 0;
1905 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1908 * the device list mutex makes sure that we don't change
1909 * the device list while someone else is writing out all
1910 * the device supers. Whoever is writing all supers, should
1911 * lock the device list mutex before getting the number of
1912 * devices in the super block (super_copy). Conversely,
1913 * whoever updates the number of devices in the super block
1914 * (super_copy) should hold the device list mutex.
1917 cur_devices
= device
->fs_devices
;
1918 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1919 list_del_rcu(&device
->dev_list
);
1921 device
->fs_devices
->num_devices
--;
1922 device
->fs_devices
->total_devices
--;
1924 if (device
->missing
)
1925 device
->fs_devices
->missing_devices
--;
1927 btrfs_assign_next_active_device(root
->fs_info
, device
, NULL
);
1930 device
->fs_devices
->open_devices
--;
1931 /* remove sysfs entry */
1932 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
1935 call_rcu(&device
->rcu
, free_device
);
1937 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1938 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1939 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1941 if (cur_devices
->open_devices
== 0) {
1942 struct btrfs_fs_devices
*fs_devices
;
1943 fs_devices
= root
->fs_info
->fs_devices
;
1944 while (fs_devices
) {
1945 if (fs_devices
->seed
== cur_devices
) {
1946 fs_devices
->seed
= cur_devices
->seed
;
1949 fs_devices
= fs_devices
->seed
;
1951 cur_devices
->seed
= NULL
;
1952 __btrfs_close_devices(cur_devices
);
1953 free_fs_devices(cur_devices
);
1956 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1957 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1960 * at this point, the device is zero sized. We want to
1961 * remove it from the devices list and zero out the old super
1964 struct block_device
*bdev
;
1966 bdev
= blkdev_get_by_path(dev_name
, FMODE_READ
| FMODE_EXCL
,
1967 root
->fs_info
->bdev_holder
);
1968 if (!IS_ERR(bdev
)) {
1969 btrfs_scratch_superblocks(bdev
, dev_name
);
1970 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1977 mutex_unlock(&uuid_mutex
);
1981 if (device
->writeable
) {
1983 list_add(&device
->dev_alloc_list
,
1984 &root
->fs_info
->fs_devices
->alloc_list
);
1985 device
->fs_devices
->rw_devices
++;
1986 unlock_chunks(root
);
1991 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1992 struct btrfs_device
*srcdev
)
1994 struct btrfs_fs_devices
*fs_devices
;
1996 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1999 * in case of fs with no seed, srcdev->fs_devices will point
2000 * to fs_devices of fs_info. However when the dev being replaced is
2001 * a seed dev it will point to the seed's local fs_devices. In short
2002 * srcdev will have its correct fs_devices in both the cases.
2004 fs_devices
= srcdev
->fs_devices
;
2006 list_del_rcu(&srcdev
->dev_list
);
2007 list_del_rcu(&srcdev
->dev_alloc_list
);
2008 fs_devices
->num_devices
--;
2009 if (srcdev
->missing
)
2010 fs_devices
->missing_devices
--;
2012 if (srcdev
->writeable
)
2013 fs_devices
->rw_devices
--;
2016 fs_devices
->open_devices
--;
2019 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2020 struct btrfs_device
*srcdev
)
2022 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2024 if (srcdev
->writeable
) {
2025 /* zero out the old super if it is writable */
2026 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2028 call_rcu(&srcdev
->rcu
, free_device
);
2031 * unless fs_devices is seed fs, num_devices shouldn't go
2034 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
2036 /* if this is no devs we rather delete the fs_devices */
2037 if (!fs_devices
->num_devices
) {
2038 struct btrfs_fs_devices
*tmp_fs_devices
;
2040 tmp_fs_devices
= fs_info
->fs_devices
;
2041 while (tmp_fs_devices
) {
2042 if (tmp_fs_devices
->seed
== fs_devices
) {
2043 tmp_fs_devices
->seed
= fs_devices
->seed
;
2046 tmp_fs_devices
= tmp_fs_devices
->seed
;
2048 fs_devices
->seed
= NULL
;
2049 __btrfs_close_devices(fs_devices
);
2050 free_fs_devices(fs_devices
);
2054 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2055 struct btrfs_device
*tgtdev
)
2057 mutex_lock(&uuid_mutex
);
2059 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2061 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2064 fs_info
->fs_devices
->open_devices
--;
2066 fs_info
->fs_devices
->num_devices
--;
2068 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2070 list_del_rcu(&tgtdev
->dev_list
);
2072 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2073 mutex_unlock(&uuid_mutex
);
2076 * The update_dev_time() with in btrfs_scratch_superblocks()
2077 * may lead to a call to btrfs_show_devname() which will try
2078 * to hold device_list_mutex. And here this device
2079 * is already out of device list, so we don't have to hold
2080 * the device_list_mutex lock.
2082 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2083 call_rcu(&tgtdev
->rcu
, free_device
);
2086 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
2087 struct btrfs_device
**device
)
2090 struct btrfs_super_block
*disk_super
;
2093 struct block_device
*bdev
;
2094 struct buffer_head
*bh
;
2097 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2098 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2101 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2102 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2103 dev_uuid
= disk_super
->dev_item
.uuid
;
2104 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2109 blkdev_put(bdev
, FMODE_READ
);
2113 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
2115 struct btrfs_device
**device
)
2118 if (strcmp(device_path
, "missing") == 0) {
2119 struct list_head
*devices
;
2120 struct btrfs_device
*tmp
;
2122 devices
= &root
->fs_info
->fs_devices
->devices
;
2124 * It is safe to read the devices since the volume_mutex
2125 * is held by the caller.
2127 list_for_each_entry(tmp
, devices
, dev_list
) {
2128 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2135 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2139 return btrfs_find_device_by_path(root
, device_path
, device
);
2144 * Lookup a device given by device id, or the path if the id is 0.
2146 int btrfs_find_device_by_devspec(struct btrfs_root
*root
, u64 devid
,
2148 struct btrfs_device
**device
)
2154 *device
= btrfs_find_device(root
->fs_info
, devid
, NULL
,
2159 if (!devpath
|| !devpath
[0])
2162 ret
= btrfs_find_device_missing_or_by_path(root
, devpath
,
2169 * does all the dirty work required for changing file system's UUID.
2171 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
2173 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2174 struct btrfs_fs_devices
*old_devices
;
2175 struct btrfs_fs_devices
*seed_devices
;
2176 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
2177 struct btrfs_device
*device
;
2180 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2181 if (!fs_devices
->seeding
)
2184 seed_devices
= __alloc_fs_devices();
2185 if (IS_ERR(seed_devices
))
2186 return PTR_ERR(seed_devices
);
2188 old_devices
= clone_fs_devices(fs_devices
);
2189 if (IS_ERR(old_devices
)) {
2190 kfree(seed_devices
);
2191 return PTR_ERR(old_devices
);
2194 list_add(&old_devices
->list
, &fs_uuids
);
2196 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2197 seed_devices
->opened
= 1;
2198 INIT_LIST_HEAD(&seed_devices
->devices
);
2199 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2200 mutex_init(&seed_devices
->device_list_mutex
);
2202 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2203 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2205 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2206 device
->fs_devices
= seed_devices
;
2209 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2210 unlock_chunks(root
);
2212 fs_devices
->seeding
= 0;
2213 fs_devices
->num_devices
= 0;
2214 fs_devices
->open_devices
= 0;
2215 fs_devices
->missing_devices
= 0;
2216 fs_devices
->rotating
= 0;
2217 fs_devices
->seed
= seed_devices
;
2219 generate_random_uuid(fs_devices
->fsid
);
2220 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2221 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2222 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2224 super_flags
= btrfs_super_flags(disk_super
) &
2225 ~BTRFS_SUPER_FLAG_SEEDING
;
2226 btrfs_set_super_flags(disk_super
, super_flags
);
2232 * Store the expected generation for seed devices in device items.
2234 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2235 struct btrfs_root
*root
)
2237 struct btrfs_path
*path
;
2238 struct extent_buffer
*leaf
;
2239 struct btrfs_dev_item
*dev_item
;
2240 struct btrfs_device
*device
;
2241 struct btrfs_key key
;
2242 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2243 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2247 path
= btrfs_alloc_path();
2251 root
= root
->fs_info
->chunk_root
;
2252 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2254 key
.type
= BTRFS_DEV_ITEM_KEY
;
2257 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2261 leaf
= path
->nodes
[0];
2263 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2264 ret
= btrfs_next_leaf(root
, path
);
2269 leaf
= path
->nodes
[0];
2270 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2271 btrfs_release_path(path
);
2275 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2276 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2277 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2280 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2281 struct btrfs_dev_item
);
2282 devid
= btrfs_device_id(leaf
, dev_item
);
2283 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2285 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2287 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2289 BUG_ON(!device
); /* Logic error */
2291 if (device
->fs_devices
->seeding
) {
2292 btrfs_set_device_generation(leaf
, dev_item
,
2293 device
->generation
);
2294 btrfs_mark_buffer_dirty(leaf
);
2302 btrfs_free_path(path
);
2306 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2308 struct request_queue
*q
;
2309 struct btrfs_trans_handle
*trans
;
2310 struct btrfs_device
*device
;
2311 struct block_device
*bdev
;
2312 struct list_head
*devices
;
2313 struct super_block
*sb
= root
->fs_info
->sb
;
2314 struct rcu_string
*name
;
2316 int seeding_dev
= 0;
2319 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2322 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2323 root
->fs_info
->bdev_holder
);
2325 return PTR_ERR(bdev
);
2327 if (root
->fs_info
->fs_devices
->seeding
) {
2329 down_write(&sb
->s_umount
);
2330 mutex_lock(&uuid_mutex
);
2333 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2335 devices
= &root
->fs_info
->fs_devices
->devices
;
2337 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2338 list_for_each_entry(device
, devices
, dev_list
) {
2339 if (device
->bdev
== bdev
) {
2342 &root
->fs_info
->fs_devices
->device_list_mutex
);
2346 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2348 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2349 if (IS_ERR(device
)) {
2350 /* we can safely leave the fs_devices entry around */
2351 ret
= PTR_ERR(device
);
2355 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2361 rcu_assign_pointer(device
->name
, name
);
2363 trans
= btrfs_start_transaction(root
, 0);
2364 if (IS_ERR(trans
)) {
2365 rcu_string_free(device
->name
);
2367 ret
= PTR_ERR(trans
);
2371 q
= bdev_get_queue(bdev
);
2372 if (blk_queue_discard(q
))
2373 device
->can_discard
= 1;
2374 device
->writeable
= 1;
2375 device
->generation
= trans
->transid
;
2376 device
->io_width
= root
->sectorsize
;
2377 device
->io_align
= root
->sectorsize
;
2378 device
->sector_size
= root
->sectorsize
;
2379 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2380 device
->disk_total_bytes
= device
->total_bytes
;
2381 device
->commit_total_bytes
= device
->total_bytes
;
2382 device
->dev_root
= root
->fs_info
->dev_root
;
2383 device
->bdev
= bdev
;
2384 device
->in_fs_metadata
= 1;
2385 device
->is_tgtdev_for_dev_replace
= 0;
2386 device
->mode
= FMODE_EXCL
;
2387 device
->dev_stats_valid
= 1;
2388 set_blocksize(device
->bdev
, 4096);
2391 sb
->s_flags
&= ~MS_RDONLY
;
2392 ret
= btrfs_prepare_sprout(root
);
2393 BUG_ON(ret
); /* -ENOMEM */
2396 device
->fs_devices
= root
->fs_info
->fs_devices
;
2398 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2400 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2401 list_add(&device
->dev_alloc_list
,
2402 &root
->fs_info
->fs_devices
->alloc_list
);
2403 root
->fs_info
->fs_devices
->num_devices
++;
2404 root
->fs_info
->fs_devices
->open_devices
++;
2405 root
->fs_info
->fs_devices
->rw_devices
++;
2406 root
->fs_info
->fs_devices
->total_devices
++;
2407 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2409 spin_lock(&root
->fs_info
->free_chunk_lock
);
2410 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2411 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2413 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2414 root
->fs_info
->fs_devices
->rotating
= 1;
2416 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2417 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2418 tmp
+ device
->total_bytes
);
2420 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2421 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2424 /* add sysfs device entry */
2425 btrfs_sysfs_add_device_link(root
->fs_info
->fs_devices
, device
);
2428 * we've got more storage, clear any full flags on the space
2431 btrfs_clear_space_info_full(root
->fs_info
);
2433 unlock_chunks(root
);
2434 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2438 ret
= init_first_rw_device(trans
, root
, device
);
2439 unlock_chunks(root
);
2441 btrfs_abort_transaction(trans
, root
, ret
);
2446 ret
= btrfs_add_device(trans
, root
, device
);
2448 btrfs_abort_transaction(trans
, root
, ret
);
2453 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2455 ret
= btrfs_finish_sprout(trans
, root
);
2457 btrfs_abort_transaction(trans
, root
, ret
);
2461 /* Sprouting would change fsid of the mounted root,
2462 * so rename the fsid on the sysfs
2464 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2465 root
->fs_info
->fsid
);
2466 if (kobject_rename(&root
->fs_info
->fs_devices
->fsid_kobj
,
2468 btrfs_warn(root
->fs_info
,
2469 "sysfs: failed to create fsid for sprout");
2472 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2473 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2474 ret
= btrfs_commit_transaction(trans
, root
);
2477 mutex_unlock(&uuid_mutex
);
2478 up_write(&sb
->s_umount
);
2480 if (ret
) /* transaction commit */
2483 ret
= btrfs_relocate_sys_chunks(root
);
2485 btrfs_handle_fs_error(root
->fs_info
, ret
,
2486 "Failed to relocate sys chunks after "
2487 "device initialization. This can be fixed "
2488 "using the \"btrfs balance\" command.");
2489 trans
= btrfs_attach_transaction(root
);
2490 if (IS_ERR(trans
)) {
2491 if (PTR_ERR(trans
) == -ENOENT
)
2493 return PTR_ERR(trans
);
2495 ret
= btrfs_commit_transaction(trans
, root
);
2498 /* Update ctime/mtime for libblkid */
2499 update_dev_time(device_path
);
2503 btrfs_end_transaction(trans
, root
);
2504 rcu_string_free(device
->name
);
2505 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
2508 blkdev_put(bdev
, FMODE_EXCL
);
2510 mutex_unlock(&uuid_mutex
);
2511 up_write(&sb
->s_umount
);
2516 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2517 struct btrfs_device
*srcdev
,
2518 struct btrfs_device
**device_out
)
2520 struct request_queue
*q
;
2521 struct btrfs_device
*device
;
2522 struct block_device
*bdev
;
2523 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2524 struct list_head
*devices
;
2525 struct rcu_string
*name
;
2526 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2530 if (fs_info
->fs_devices
->seeding
) {
2531 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2535 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2536 fs_info
->bdev_holder
);
2538 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2539 return PTR_ERR(bdev
);
2542 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2544 devices
= &fs_info
->fs_devices
->devices
;
2545 list_for_each_entry(device
, devices
, dev_list
) {
2546 if (device
->bdev
== bdev
) {
2547 btrfs_err(fs_info
, "target device is in the filesystem!");
2554 if (i_size_read(bdev
->bd_inode
) <
2555 btrfs_device_get_total_bytes(srcdev
)) {
2556 btrfs_err(fs_info
, "target device is smaller than source device!");
2562 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2563 if (IS_ERR(device
)) {
2564 ret
= PTR_ERR(device
);
2568 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2574 rcu_assign_pointer(device
->name
, name
);
2576 q
= bdev_get_queue(bdev
);
2577 if (blk_queue_discard(q
))
2578 device
->can_discard
= 1;
2579 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2580 device
->writeable
= 1;
2581 device
->generation
= 0;
2582 device
->io_width
= root
->sectorsize
;
2583 device
->io_align
= root
->sectorsize
;
2584 device
->sector_size
= root
->sectorsize
;
2585 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2586 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2587 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2588 ASSERT(list_empty(&srcdev
->resized_list
));
2589 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2590 device
->commit_bytes_used
= device
->bytes_used
;
2591 device
->dev_root
= fs_info
->dev_root
;
2592 device
->bdev
= bdev
;
2593 device
->in_fs_metadata
= 1;
2594 device
->is_tgtdev_for_dev_replace
= 1;
2595 device
->mode
= FMODE_EXCL
;
2596 device
->dev_stats_valid
= 1;
2597 set_blocksize(device
->bdev
, 4096);
2598 device
->fs_devices
= fs_info
->fs_devices
;
2599 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2600 fs_info
->fs_devices
->num_devices
++;
2601 fs_info
->fs_devices
->open_devices
++;
2602 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2604 *device_out
= device
;
2608 blkdev_put(bdev
, FMODE_EXCL
);
2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2613 struct btrfs_device
*tgtdev
)
2615 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2616 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2617 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2618 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2619 tgtdev
->dev_root
= fs_info
->dev_root
;
2620 tgtdev
->in_fs_metadata
= 1;
2623 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2624 struct btrfs_device
*device
)
2627 struct btrfs_path
*path
;
2628 struct btrfs_root
*root
;
2629 struct btrfs_dev_item
*dev_item
;
2630 struct extent_buffer
*leaf
;
2631 struct btrfs_key key
;
2633 root
= device
->dev_root
->fs_info
->chunk_root
;
2635 path
= btrfs_alloc_path();
2639 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2640 key
.type
= BTRFS_DEV_ITEM_KEY
;
2641 key
.offset
= device
->devid
;
2643 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2652 leaf
= path
->nodes
[0];
2653 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2655 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2656 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2657 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2658 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2659 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2660 btrfs_set_device_total_bytes(leaf
, dev_item
,
2661 btrfs_device_get_disk_total_bytes(device
));
2662 btrfs_set_device_bytes_used(leaf
, dev_item
,
2663 btrfs_device_get_bytes_used(device
));
2664 btrfs_mark_buffer_dirty(leaf
);
2667 btrfs_free_path(path
);
2671 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2672 struct btrfs_device
*device
, u64 new_size
)
2674 struct btrfs_super_block
*super_copy
=
2675 device
->dev_root
->fs_info
->super_copy
;
2676 struct btrfs_fs_devices
*fs_devices
;
2680 if (!device
->writeable
)
2683 lock_chunks(device
->dev_root
);
2684 old_total
= btrfs_super_total_bytes(super_copy
);
2685 diff
= new_size
- device
->total_bytes
;
2687 if (new_size
<= device
->total_bytes
||
2688 device
->is_tgtdev_for_dev_replace
) {
2689 unlock_chunks(device
->dev_root
);
2693 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2695 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2696 device
->fs_devices
->total_rw_bytes
+= diff
;
2698 btrfs_device_set_total_bytes(device
, new_size
);
2699 btrfs_device_set_disk_total_bytes(device
, new_size
);
2700 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2701 if (list_empty(&device
->resized_list
))
2702 list_add_tail(&device
->resized_list
,
2703 &fs_devices
->resized_devices
);
2704 unlock_chunks(device
->dev_root
);
2706 return btrfs_update_device(trans
, device
);
2709 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2710 struct btrfs_root
*root
, u64 chunk_objectid
,
2714 struct btrfs_path
*path
;
2715 struct btrfs_key key
;
2717 root
= root
->fs_info
->chunk_root
;
2718 path
= btrfs_alloc_path();
2722 key
.objectid
= chunk_objectid
;
2723 key
.offset
= chunk_offset
;
2724 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2726 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2729 else if (ret
> 0) { /* Logic error or corruption */
2730 btrfs_handle_fs_error(root
->fs_info
, -ENOENT
,
2731 "Failed lookup while freeing chunk.");
2736 ret
= btrfs_del_item(trans
, root
, path
);
2738 btrfs_handle_fs_error(root
->fs_info
, ret
,
2739 "Failed to delete chunk item.");
2741 btrfs_free_path(path
);
2745 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2748 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2749 struct btrfs_disk_key
*disk_key
;
2750 struct btrfs_chunk
*chunk
;
2757 struct btrfs_key key
;
2760 array_size
= btrfs_super_sys_array_size(super_copy
);
2762 ptr
= super_copy
->sys_chunk_array
;
2765 while (cur
< array_size
) {
2766 disk_key
= (struct btrfs_disk_key
*)ptr
;
2767 btrfs_disk_key_to_cpu(&key
, disk_key
);
2769 len
= sizeof(*disk_key
);
2771 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2772 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2773 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2774 len
+= btrfs_chunk_item_size(num_stripes
);
2779 if (key
.objectid
== chunk_objectid
&&
2780 key
.offset
== chunk_offset
) {
2781 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2783 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2789 unlock_chunks(root
);
2793 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2794 struct btrfs_root
*root
, u64 chunk_offset
)
2796 struct extent_map_tree
*em_tree
;
2797 struct extent_map
*em
;
2798 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2799 struct map_lookup
*map
;
2800 u64 dev_extent_len
= 0;
2801 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2803 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2806 root
= root
->fs_info
->chunk_root
;
2807 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2809 read_lock(&em_tree
->lock
);
2810 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2811 read_unlock(&em_tree
->lock
);
2813 if (!em
|| em
->start
> chunk_offset
||
2814 em
->start
+ em
->len
< chunk_offset
) {
2816 * This is a logic error, but we don't want to just rely on the
2817 * user having built with ASSERT enabled, so if ASSERT doesn't
2818 * do anything we still error out.
2822 free_extent_map(em
);
2825 map
= em
->map_lookup
;
2826 lock_chunks(root
->fs_info
->chunk_root
);
2827 check_system_chunk(trans
, extent_root
, map
->type
);
2828 unlock_chunks(root
->fs_info
->chunk_root
);
2831 * Take the device list mutex to prevent races with the final phase of
2832 * a device replace operation that replaces the device object associated
2833 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2835 mutex_lock(&fs_devices
->device_list_mutex
);
2836 for (i
= 0; i
< map
->num_stripes
; i
++) {
2837 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2838 ret
= btrfs_free_dev_extent(trans
, device
,
2839 map
->stripes
[i
].physical
,
2842 mutex_unlock(&fs_devices
->device_list_mutex
);
2843 btrfs_abort_transaction(trans
, root
, ret
);
2847 if (device
->bytes_used
> 0) {
2849 btrfs_device_set_bytes_used(device
,
2850 device
->bytes_used
- dev_extent_len
);
2851 spin_lock(&root
->fs_info
->free_chunk_lock
);
2852 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2853 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2854 btrfs_clear_space_info_full(root
->fs_info
);
2855 unlock_chunks(root
);
2858 if (map
->stripes
[i
].dev
) {
2859 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2861 mutex_unlock(&fs_devices
->device_list_mutex
);
2862 btrfs_abort_transaction(trans
, root
, ret
);
2867 mutex_unlock(&fs_devices
->device_list_mutex
);
2869 ret
= btrfs_free_chunk(trans
, root
, chunk_objectid
, chunk_offset
);
2871 btrfs_abort_transaction(trans
, root
, ret
);
2875 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2877 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2878 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2880 btrfs_abort_transaction(trans
, root
, ret
);
2885 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2887 btrfs_abort_transaction(trans
, extent_root
, ret
);
2893 free_extent_map(em
);
2897 static int btrfs_relocate_chunk(struct btrfs_root
*root
, u64 chunk_offset
)
2899 struct btrfs_root
*extent_root
;
2900 struct btrfs_trans_handle
*trans
;
2903 root
= root
->fs_info
->chunk_root
;
2904 extent_root
= root
->fs_info
->extent_root
;
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2918 ASSERT(mutex_is_locked(&root
->fs_info
->delete_unused_bgs_mutex
));
2920 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2924 /* step one, relocate all the extents inside this chunk */
2925 btrfs_scrub_pause(root
);
2926 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2927 btrfs_scrub_continue(root
);
2931 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2933 if (IS_ERR(trans
)) {
2934 ret
= PTR_ERR(trans
);
2935 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2940 * step two, delete the device extents and the
2941 * chunk tree entries
2943 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2944 btrfs_end_transaction(trans
, root
);
2948 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2950 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2951 struct btrfs_path
*path
;
2952 struct extent_buffer
*leaf
;
2953 struct btrfs_chunk
*chunk
;
2954 struct btrfs_key key
;
2955 struct btrfs_key found_key
;
2957 bool retried
= false;
2961 path
= btrfs_alloc_path();
2966 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2967 key
.offset
= (u64
)-1;
2968 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2971 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
2972 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2974 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2977 BUG_ON(ret
== 0); /* Corruption */
2979 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2982 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2988 leaf
= path
->nodes
[0];
2989 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2991 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2992 struct btrfs_chunk
);
2993 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2994 btrfs_release_path(path
);
2996 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2997 ret
= btrfs_relocate_chunk(chunk_root
,
3004 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
3006 if (found_key
.offset
== 0)
3008 key
.offset
= found_key
.offset
- 1;
3011 if (failed
&& !retried
) {
3015 } else if (WARN_ON(failed
&& retried
)) {
3019 btrfs_free_path(path
);
3023 static int insert_balance_item(struct btrfs_root
*root
,
3024 struct btrfs_balance_control
*bctl
)
3026 struct btrfs_trans_handle
*trans
;
3027 struct btrfs_balance_item
*item
;
3028 struct btrfs_disk_balance_args disk_bargs
;
3029 struct btrfs_path
*path
;
3030 struct extent_buffer
*leaf
;
3031 struct btrfs_key key
;
3034 path
= btrfs_alloc_path();
3038 trans
= btrfs_start_transaction(root
, 0);
3039 if (IS_ERR(trans
)) {
3040 btrfs_free_path(path
);
3041 return PTR_ERR(trans
);
3044 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3045 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3048 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3053 leaf
= path
->nodes
[0];
3054 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3056 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
3058 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3059 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3060 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3061 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3062 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3063 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3065 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3067 btrfs_mark_buffer_dirty(leaf
);
3069 btrfs_free_path(path
);
3070 err
= btrfs_commit_transaction(trans
, root
);
3076 static int del_balance_item(struct btrfs_root
*root
)
3078 struct btrfs_trans_handle
*trans
;
3079 struct btrfs_path
*path
;
3080 struct btrfs_key key
;
3083 path
= btrfs_alloc_path();
3087 trans
= btrfs_start_transaction(root
, 0);
3088 if (IS_ERR(trans
)) {
3089 btrfs_free_path(path
);
3090 return PTR_ERR(trans
);
3093 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3094 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3097 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3105 ret
= btrfs_del_item(trans
, root
, path
);
3107 btrfs_free_path(path
);
3108 err
= btrfs_commit_transaction(trans
, root
);
3115 * This is a heuristic used to reduce the number of chunks balanced on
3116 * resume after balance was interrupted.
3118 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3121 * Turn on soft mode for chunk types that were being converted.
3123 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3124 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3125 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3126 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3127 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3128 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3131 * Turn on usage filter if is not already used. The idea is
3132 * that chunks that we have already balanced should be
3133 * reasonably full. Don't do it for chunks that are being
3134 * converted - that will keep us from relocating unconverted
3135 * (albeit full) chunks.
3137 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3138 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3139 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3140 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3141 bctl
->data
.usage
= 90;
3143 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3144 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3145 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3146 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3147 bctl
->sys
.usage
= 90;
3149 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3150 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3151 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3152 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3153 bctl
->meta
.usage
= 90;
3158 * Should be called with both balance and volume mutexes held to
3159 * serialize other volume operations (add_dev/rm_dev/resize) with
3160 * restriper. Same goes for unset_balance_control.
3162 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3164 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3166 BUG_ON(fs_info
->balance_ctl
);
3168 spin_lock(&fs_info
->balance_lock
);
3169 fs_info
->balance_ctl
= bctl
;
3170 spin_unlock(&fs_info
->balance_lock
);
3173 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3175 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3177 BUG_ON(!fs_info
->balance_ctl
);
3179 spin_lock(&fs_info
->balance_lock
);
3180 fs_info
->balance_ctl
= NULL
;
3181 spin_unlock(&fs_info
->balance_lock
);
3187 * Balance filters. Return 1 if chunk should be filtered out
3188 * (should not be balanced).
3190 static int chunk_profiles_filter(u64 chunk_type
,
3191 struct btrfs_balance_args
*bargs
)
3193 chunk_type
= chunk_to_extended(chunk_type
) &
3194 BTRFS_EXTENDED_PROFILE_MASK
;
3196 if (bargs
->profiles
& chunk_type
)
3202 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3203 struct btrfs_balance_args
*bargs
)
3205 struct btrfs_block_group_cache
*cache
;
3207 u64 user_thresh_min
;
3208 u64 user_thresh_max
;
3211 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3212 chunk_used
= btrfs_block_group_used(&cache
->item
);
3214 if (bargs
->usage_min
== 0)
3215 user_thresh_min
= 0;
3217 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3220 if (bargs
->usage_max
== 0)
3221 user_thresh_max
= 1;
3222 else if (bargs
->usage_max
> 100)
3223 user_thresh_max
= cache
->key
.offset
;
3225 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3228 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3231 btrfs_put_block_group(cache
);
3235 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3236 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3238 struct btrfs_block_group_cache
*cache
;
3239 u64 chunk_used
, user_thresh
;
3242 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3243 chunk_used
= btrfs_block_group_used(&cache
->item
);
3245 if (bargs
->usage_min
== 0)
3247 else if (bargs
->usage
> 100)
3248 user_thresh
= cache
->key
.offset
;
3250 user_thresh
= div_factor_fine(cache
->key
.offset
,
3253 if (chunk_used
< user_thresh
)
3256 btrfs_put_block_group(cache
);
3260 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3261 struct btrfs_chunk
*chunk
,
3262 struct btrfs_balance_args
*bargs
)
3264 struct btrfs_stripe
*stripe
;
3265 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3268 for (i
= 0; i
< num_stripes
; i
++) {
3269 stripe
= btrfs_stripe_nr(chunk
, i
);
3270 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3277 /* [pstart, pend) */
3278 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3279 struct btrfs_chunk
*chunk
,
3281 struct btrfs_balance_args
*bargs
)
3283 struct btrfs_stripe
*stripe
;
3284 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3290 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3293 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3294 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3295 factor
= num_stripes
/ 2;
3296 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3297 factor
= num_stripes
- 1;
3298 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3299 factor
= num_stripes
- 2;
3301 factor
= num_stripes
;
3304 for (i
= 0; i
< num_stripes
; i
++) {
3305 stripe
= btrfs_stripe_nr(chunk
, i
);
3306 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3309 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3310 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3311 stripe_length
= div_u64(stripe_length
, factor
);
3313 if (stripe_offset
< bargs
->pend
&&
3314 stripe_offset
+ stripe_length
> bargs
->pstart
)
3321 /* [vstart, vend) */
3322 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3323 struct btrfs_chunk
*chunk
,
3325 struct btrfs_balance_args
*bargs
)
3327 if (chunk_offset
< bargs
->vend
&&
3328 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3329 /* at least part of the chunk is inside this vrange */
3335 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3336 struct btrfs_chunk
*chunk
,
3337 struct btrfs_balance_args
*bargs
)
3339 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3341 if (bargs
->stripes_min
<= num_stripes
3342 && num_stripes
<= bargs
->stripes_max
)
3348 static int chunk_soft_convert_filter(u64 chunk_type
,
3349 struct btrfs_balance_args
*bargs
)
3351 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3354 chunk_type
= chunk_to_extended(chunk_type
) &
3355 BTRFS_EXTENDED_PROFILE_MASK
;
3357 if (bargs
->target
== chunk_type
)
3363 static int should_balance_chunk(struct btrfs_root
*root
,
3364 struct extent_buffer
*leaf
,
3365 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3367 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3368 struct btrfs_balance_args
*bargs
= NULL
;
3369 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3372 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3373 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3377 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3378 bargs
= &bctl
->data
;
3379 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3381 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3382 bargs
= &bctl
->meta
;
3384 /* profiles filter */
3385 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3386 chunk_profiles_filter(chunk_type
, bargs
)) {
3391 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3392 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3394 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3395 chunk_usage_range_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3400 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3401 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3405 /* drange filter, makes sense only with devid filter */
3406 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3407 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3412 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3413 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3417 /* stripes filter */
3418 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3419 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3423 /* soft profile changing mode */
3424 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3425 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3430 * limited by count, must be the last filter
3432 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3433 if (bargs
->limit
== 0)
3437 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3439 * Same logic as the 'limit' filter; the minimum cannot be
3440 * determined here because we do not have the global information
3441 * about the count of all chunks that satisfy the filters.
3443 if (bargs
->limit_max
== 0)
3452 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3454 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3455 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3456 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3457 struct list_head
*devices
;
3458 struct btrfs_device
*device
;
3462 struct btrfs_chunk
*chunk
;
3463 struct btrfs_path
*path
;
3464 struct btrfs_key key
;
3465 struct btrfs_key found_key
;
3466 struct btrfs_trans_handle
*trans
;
3467 struct extent_buffer
*leaf
;
3470 int enospc_errors
= 0;
3471 bool counting
= true;
3472 /* The single value limit and min/max limits use the same bytes in the */
3473 u64 limit_data
= bctl
->data
.limit
;
3474 u64 limit_meta
= bctl
->meta
.limit
;
3475 u64 limit_sys
= bctl
->sys
.limit
;
3479 int chunk_reserved
= 0;
3482 /* step one make some room on all the devices */
3483 devices
= &fs_info
->fs_devices
->devices
;
3484 list_for_each_entry(device
, devices
, dev_list
) {
3485 old_size
= btrfs_device_get_total_bytes(device
);
3486 size_to_free
= div_factor(old_size
, 1);
3487 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3488 if (!device
->writeable
||
3489 btrfs_device_get_total_bytes(device
) -
3490 btrfs_device_get_bytes_used(device
) > size_to_free
||
3491 device
->is_tgtdev_for_dev_replace
)
3494 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3499 trans
= btrfs_start_transaction(dev_root
, 0);
3500 BUG_ON(IS_ERR(trans
));
3502 ret
= btrfs_grow_device(trans
, device
, old_size
);
3505 btrfs_end_transaction(trans
, dev_root
);
3508 /* step two, relocate all the chunks */
3509 path
= btrfs_alloc_path();
3515 /* zero out stat counters */
3516 spin_lock(&fs_info
->balance_lock
);
3517 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3518 spin_unlock(&fs_info
->balance_lock
);
3522 * The single value limit and min/max limits use the same bytes
3525 bctl
->data
.limit
= limit_data
;
3526 bctl
->meta
.limit
= limit_meta
;
3527 bctl
->sys
.limit
= limit_sys
;
3529 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3530 key
.offset
= (u64
)-1;
3531 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3534 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3535 atomic_read(&fs_info
->balance_cancel_req
)) {
3540 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3541 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3543 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3548 * this shouldn't happen, it means the last relocate
3552 BUG(); /* FIXME break ? */
3554 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3555 BTRFS_CHUNK_ITEM_KEY
);
3557 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3562 leaf
= path
->nodes
[0];
3563 slot
= path
->slots
[0];
3564 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3566 if (found_key
.objectid
!= key
.objectid
) {
3567 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3571 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3572 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3575 spin_lock(&fs_info
->balance_lock
);
3576 bctl
->stat
.considered
++;
3577 spin_unlock(&fs_info
->balance_lock
);
3580 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3583 btrfs_release_path(path
);
3585 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3590 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3591 spin_lock(&fs_info
->balance_lock
);
3592 bctl
->stat
.expected
++;
3593 spin_unlock(&fs_info
->balance_lock
);
3595 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3597 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3599 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3606 * Apply limit_min filter, no need to check if the LIMITS
3607 * filter is used, limit_min is 0 by default
3609 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3610 count_data
< bctl
->data
.limit_min
)
3611 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3612 count_meta
< bctl
->meta
.limit_min
)
3613 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3614 count_sys
< bctl
->sys
.limit_min
)) {
3615 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3619 ASSERT(fs_info
->data_sinfo
);
3620 spin_lock(&fs_info
->data_sinfo
->lock
);
3621 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3622 spin_unlock(&fs_info
->data_sinfo
->lock
);
3624 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3625 !chunk_reserved
&& !bytes_used
) {
3626 trans
= btrfs_start_transaction(chunk_root
, 0);
3627 if (IS_ERR(trans
)) {
3628 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3629 ret
= PTR_ERR(trans
);
3633 ret
= btrfs_force_chunk_alloc(trans
, chunk_root
,
3634 BTRFS_BLOCK_GROUP_DATA
);
3635 btrfs_end_transaction(trans
, chunk_root
);
3637 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3643 ret
= btrfs_relocate_chunk(chunk_root
,
3645 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3646 if (ret
&& ret
!= -ENOSPC
)
3648 if (ret
== -ENOSPC
) {
3651 spin_lock(&fs_info
->balance_lock
);
3652 bctl
->stat
.completed
++;
3653 spin_unlock(&fs_info
->balance_lock
);
3656 if (found_key
.offset
== 0)
3658 key
.offset
= found_key
.offset
- 1;
3662 btrfs_release_path(path
);
3667 btrfs_free_path(path
);
3668 if (enospc_errors
) {
3669 btrfs_info(fs_info
, "%d enospc errors during balance",
3679 * alloc_profile_is_valid - see if a given profile is valid and reduced
3680 * @flags: profile to validate
3681 * @extended: if true @flags is treated as an extended profile
3683 static int alloc_profile_is_valid(u64 flags
, int extended
)
3685 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3686 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3688 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3690 /* 1) check that all other bits are zeroed */
3694 /* 2) see if profile is reduced */
3696 return !extended
; /* "0" is valid for usual profiles */
3698 /* true if exactly one bit set */
3699 return (flags
& (flags
- 1)) == 0;
3702 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3704 /* cancel requested || normal exit path */
3705 return atomic_read(&fs_info
->balance_cancel_req
) ||
3706 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3707 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3710 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3714 unset_balance_control(fs_info
);
3715 ret
= del_balance_item(fs_info
->tree_root
);
3717 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3719 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3722 /* Non-zero return value signifies invalidity */
3723 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3726 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3727 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3728 (bctl_arg
->target
& ~allowed
)));
3732 * Should be called with both balance and volume mutexes held
3734 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3735 struct btrfs_ioctl_balance_args
*bargs
)
3737 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3744 if (btrfs_fs_closing(fs_info
) ||
3745 atomic_read(&fs_info
->balance_pause_req
) ||
3746 atomic_read(&fs_info
->balance_cancel_req
)) {
3751 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3752 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3756 * In case of mixed groups both data and meta should be picked,
3757 * and identical options should be given for both of them.
3759 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3760 if (mixed
&& (bctl
->flags
& allowed
)) {
3761 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3762 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3763 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3764 btrfs_err(fs_info
, "with mixed groups data and "
3765 "metadata balance options must be the same");
3771 num_devices
= fs_info
->fs_devices
->num_devices
;
3772 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3773 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3774 BUG_ON(num_devices
< 1);
3777 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3778 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3779 if (num_devices
> 1)
3780 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3781 if (num_devices
> 2)
3782 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3783 if (num_devices
> 3)
3784 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3785 BTRFS_BLOCK_GROUP_RAID6
);
3786 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3787 btrfs_err(fs_info
, "unable to start balance with target "
3788 "data profile %llu",
3793 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3795 "unable to start balance with target metadata profile %llu",
3800 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3802 "unable to start balance with target system profile %llu",
3808 /* allow to reduce meta or sys integrity only if force set */
3809 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3810 BTRFS_BLOCK_GROUP_RAID10
|
3811 BTRFS_BLOCK_GROUP_RAID5
|
3812 BTRFS_BLOCK_GROUP_RAID6
;
3814 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3816 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3817 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3818 !(bctl
->sys
.target
& allowed
)) ||
3819 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3820 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3821 !(bctl
->meta
.target
& allowed
))) {
3822 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3823 btrfs_info(fs_info
, "force reducing metadata integrity");
3825 btrfs_err(fs_info
, "balance will reduce metadata "
3826 "integrity, use force if you want this");
3831 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3833 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl
->meta
.target
) <
3834 btrfs_get_num_tolerated_disk_barrier_failures(bctl
->data
.target
)) {
3836 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3837 bctl
->meta
.target
, bctl
->data
.target
);
3840 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3841 fs_info
->num_tolerated_disk_barrier_failures
= min(
3842 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3843 btrfs_get_num_tolerated_disk_barrier_failures(
3847 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3848 if (ret
&& ret
!= -EEXIST
)
3851 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3852 BUG_ON(ret
== -EEXIST
);
3853 set_balance_control(bctl
);
3855 BUG_ON(ret
!= -EEXIST
);
3856 spin_lock(&fs_info
->balance_lock
);
3857 update_balance_args(bctl
);
3858 spin_unlock(&fs_info
->balance_lock
);
3861 atomic_inc(&fs_info
->balance_running
);
3862 mutex_unlock(&fs_info
->balance_mutex
);
3864 ret
= __btrfs_balance(fs_info
);
3866 mutex_lock(&fs_info
->balance_mutex
);
3867 atomic_dec(&fs_info
->balance_running
);
3869 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3870 fs_info
->num_tolerated_disk_barrier_failures
=
3871 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3875 memset(bargs
, 0, sizeof(*bargs
));
3876 update_ioctl_balance_args(fs_info
, 0, bargs
);
3879 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3880 balance_need_close(fs_info
)) {
3881 __cancel_balance(fs_info
);
3884 wake_up(&fs_info
->balance_wait_q
);
3888 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3889 __cancel_balance(fs_info
);
3892 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3897 static int balance_kthread(void *data
)
3899 struct btrfs_fs_info
*fs_info
= data
;
3902 mutex_lock(&fs_info
->volume_mutex
);
3903 mutex_lock(&fs_info
->balance_mutex
);
3905 if (fs_info
->balance_ctl
) {
3906 btrfs_info(fs_info
, "continuing balance");
3907 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3910 mutex_unlock(&fs_info
->balance_mutex
);
3911 mutex_unlock(&fs_info
->volume_mutex
);
3916 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3918 struct task_struct
*tsk
;
3920 spin_lock(&fs_info
->balance_lock
);
3921 if (!fs_info
->balance_ctl
) {
3922 spin_unlock(&fs_info
->balance_lock
);
3925 spin_unlock(&fs_info
->balance_lock
);
3927 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3928 btrfs_info(fs_info
, "force skipping balance");
3932 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3933 return PTR_ERR_OR_ZERO(tsk
);
3936 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3938 struct btrfs_balance_control
*bctl
;
3939 struct btrfs_balance_item
*item
;
3940 struct btrfs_disk_balance_args disk_bargs
;
3941 struct btrfs_path
*path
;
3942 struct extent_buffer
*leaf
;
3943 struct btrfs_key key
;
3946 path
= btrfs_alloc_path();
3950 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3951 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3954 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3957 if (ret
> 0) { /* ret = -ENOENT; */
3962 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3968 leaf
= path
->nodes
[0];
3969 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3971 bctl
->fs_info
= fs_info
;
3972 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3973 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3975 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3976 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3977 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3978 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3979 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3980 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3982 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3984 mutex_lock(&fs_info
->volume_mutex
);
3985 mutex_lock(&fs_info
->balance_mutex
);
3987 set_balance_control(bctl
);
3989 mutex_unlock(&fs_info
->balance_mutex
);
3990 mutex_unlock(&fs_info
->volume_mutex
);
3992 btrfs_free_path(path
);
3996 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4000 mutex_lock(&fs_info
->balance_mutex
);
4001 if (!fs_info
->balance_ctl
) {
4002 mutex_unlock(&fs_info
->balance_mutex
);
4006 if (atomic_read(&fs_info
->balance_running
)) {
4007 atomic_inc(&fs_info
->balance_pause_req
);
4008 mutex_unlock(&fs_info
->balance_mutex
);
4010 wait_event(fs_info
->balance_wait_q
,
4011 atomic_read(&fs_info
->balance_running
) == 0);
4013 mutex_lock(&fs_info
->balance_mutex
);
4014 /* we are good with balance_ctl ripped off from under us */
4015 BUG_ON(atomic_read(&fs_info
->balance_running
));
4016 atomic_dec(&fs_info
->balance_pause_req
);
4021 mutex_unlock(&fs_info
->balance_mutex
);
4025 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4027 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
4030 mutex_lock(&fs_info
->balance_mutex
);
4031 if (!fs_info
->balance_ctl
) {
4032 mutex_unlock(&fs_info
->balance_mutex
);
4036 atomic_inc(&fs_info
->balance_cancel_req
);
4038 * if we are running just wait and return, balance item is
4039 * deleted in btrfs_balance in this case
4041 if (atomic_read(&fs_info
->balance_running
)) {
4042 mutex_unlock(&fs_info
->balance_mutex
);
4043 wait_event(fs_info
->balance_wait_q
,
4044 atomic_read(&fs_info
->balance_running
) == 0);
4045 mutex_lock(&fs_info
->balance_mutex
);
4047 /* __cancel_balance needs volume_mutex */
4048 mutex_unlock(&fs_info
->balance_mutex
);
4049 mutex_lock(&fs_info
->volume_mutex
);
4050 mutex_lock(&fs_info
->balance_mutex
);
4052 if (fs_info
->balance_ctl
)
4053 __cancel_balance(fs_info
);
4055 mutex_unlock(&fs_info
->volume_mutex
);
4058 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4059 atomic_dec(&fs_info
->balance_cancel_req
);
4060 mutex_unlock(&fs_info
->balance_mutex
);
4064 static int btrfs_uuid_scan_kthread(void *data
)
4066 struct btrfs_fs_info
*fs_info
= data
;
4067 struct btrfs_root
*root
= fs_info
->tree_root
;
4068 struct btrfs_key key
;
4069 struct btrfs_key max_key
;
4070 struct btrfs_path
*path
= NULL
;
4072 struct extent_buffer
*eb
;
4074 struct btrfs_root_item root_item
;
4076 struct btrfs_trans_handle
*trans
= NULL
;
4078 path
= btrfs_alloc_path();
4085 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4088 max_key
.objectid
= (u64
)-1;
4089 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4090 max_key
.offset
= (u64
)-1;
4093 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4100 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4101 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4102 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4103 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4106 eb
= path
->nodes
[0];
4107 slot
= path
->slots
[0];
4108 item_size
= btrfs_item_size_nr(eb
, slot
);
4109 if (item_size
< sizeof(root_item
))
4112 read_extent_buffer(eb
, &root_item
,
4113 btrfs_item_ptr_offset(eb
, slot
),
4114 (int)sizeof(root_item
));
4115 if (btrfs_root_refs(&root_item
) == 0)
4118 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4119 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4123 btrfs_release_path(path
);
4125 * 1 - subvol uuid item
4126 * 1 - received_subvol uuid item
4128 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4129 if (IS_ERR(trans
)) {
4130 ret
= PTR_ERR(trans
);
4138 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4139 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4141 BTRFS_UUID_KEY_SUBVOL
,
4144 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4150 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4151 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4152 root_item
.received_uuid
,
4153 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4156 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4164 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4170 btrfs_release_path(path
);
4171 if (key
.offset
< (u64
)-1) {
4173 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4175 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4176 } else if (key
.objectid
< (u64
)-1) {
4178 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4187 btrfs_free_path(path
);
4188 if (trans
&& !IS_ERR(trans
))
4189 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4191 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4193 fs_info
->update_uuid_tree_gen
= 1;
4194 up(&fs_info
->uuid_tree_rescan_sem
);
4199 * Callback for btrfs_uuid_tree_iterate().
4201 * 0 check succeeded, the entry is not outdated.
4202 * < 0 if an error occurred.
4203 * > 0 if the check failed, which means the caller shall remove the entry.
4205 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4206 u8
*uuid
, u8 type
, u64 subid
)
4208 struct btrfs_key key
;
4210 struct btrfs_root
*subvol_root
;
4212 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4213 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4216 key
.objectid
= subid
;
4217 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4218 key
.offset
= (u64
)-1;
4219 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4220 if (IS_ERR(subvol_root
)) {
4221 ret
= PTR_ERR(subvol_root
);
4228 case BTRFS_UUID_KEY_SUBVOL
:
4229 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4232 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4233 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4243 static int btrfs_uuid_rescan_kthread(void *data
)
4245 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4249 * 1st step is to iterate through the existing UUID tree and
4250 * to delete all entries that contain outdated data.
4251 * 2nd step is to add all missing entries to the UUID tree.
4253 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4255 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4256 up(&fs_info
->uuid_tree_rescan_sem
);
4259 return btrfs_uuid_scan_kthread(data
);
4262 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4264 struct btrfs_trans_handle
*trans
;
4265 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4266 struct btrfs_root
*uuid_root
;
4267 struct task_struct
*task
;
4274 trans
= btrfs_start_transaction(tree_root
, 2);
4276 return PTR_ERR(trans
);
4278 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4279 BTRFS_UUID_TREE_OBJECTID
);
4280 if (IS_ERR(uuid_root
)) {
4281 ret
= PTR_ERR(uuid_root
);
4282 btrfs_abort_transaction(trans
, tree_root
, ret
);
4283 btrfs_end_transaction(trans
, tree_root
);
4287 fs_info
->uuid_root
= uuid_root
;
4289 ret
= btrfs_commit_transaction(trans
, tree_root
);
4293 down(&fs_info
->uuid_tree_rescan_sem
);
4294 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4296 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4297 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4298 up(&fs_info
->uuid_tree_rescan_sem
);
4299 return PTR_ERR(task
);
4305 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4307 struct task_struct
*task
;
4309 down(&fs_info
->uuid_tree_rescan_sem
);
4310 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4312 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4313 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4314 up(&fs_info
->uuid_tree_rescan_sem
);
4315 return PTR_ERR(task
);
4322 * shrinking a device means finding all of the device extents past
4323 * the new size, and then following the back refs to the chunks.
4324 * The chunk relocation code actually frees the device extent
4326 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4328 struct btrfs_trans_handle
*trans
;
4329 struct btrfs_root
*root
= device
->dev_root
;
4330 struct btrfs_dev_extent
*dev_extent
= NULL
;
4331 struct btrfs_path
*path
;
4337 bool retried
= false;
4338 bool checked_pending_chunks
= false;
4339 struct extent_buffer
*l
;
4340 struct btrfs_key key
;
4341 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4342 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4343 u64 old_size
= btrfs_device_get_total_bytes(device
);
4344 u64 diff
= old_size
- new_size
;
4346 if (device
->is_tgtdev_for_dev_replace
)
4349 path
= btrfs_alloc_path();
4353 path
->reada
= READA_FORWARD
;
4357 btrfs_device_set_total_bytes(device
, new_size
);
4358 if (device
->writeable
) {
4359 device
->fs_devices
->total_rw_bytes
-= diff
;
4360 spin_lock(&root
->fs_info
->free_chunk_lock
);
4361 root
->fs_info
->free_chunk_space
-= diff
;
4362 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4364 unlock_chunks(root
);
4367 key
.objectid
= device
->devid
;
4368 key
.offset
= (u64
)-1;
4369 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4372 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
4373 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4375 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4379 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4381 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4386 btrfs_release_path(path
);
4391 slot
= path
->slots
[0];
4392 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4394 if (key
.objectid
!= device
->devid
) {
4395 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4396 btrfs_release_path(path
);
4400 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4401 length
= btrfs_dev_extent_length(l
, dev_extent
);
4403 if (key
.offset
+ length
<= new_size
) {
4404 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4405 btrfs_release_path(path
);
4409 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4410 btrfs_release_path(path
);
4412 ret
= btrfs_relocate_chunk(root
, chunk_offset
);
4413 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4414 if (ret
&& ret
!= -ENOSPC
)
4418 } while (key
.offset
-- > 0);
4420 if (failed
&& !retried
) {
4424 } else if (failed
&& retried
) {
4429 /* Shrinking succeeded, else we would be at "done". */
4430 trans
= btrfs_start_transaction(root
, 0);
4431 if (IS_ERR(trans
)) {
4432 ret
= PTR_ERR(trans
);
4439 * We checked in the above loop all device extents that were already in
4440 * the device tree. However before we have updated the device's
4441 * total_bytes to the new size, we might have had chunk allocations that
4442 * have not complete yet (new block groups attached to transaction
4443 * handles), and therefore their device extents were not yet in the
4444 * device tree and we missed them in the loop above. So if we have any
4445 * pending chunk using a device extent that overlaps the device range
4446 * that we can not use anymore, commit the current transaction and
4447 * repeat the search on the device tree - this way we guarantee we will
4448 * not have chunks using device extents that end beyond 'new_size'.
4450 if (!checked_pending_chunks
) {
4451 u64 start
= new_size
;
4452 u64 len
= old_size
- new_size
;
4454 if (contains_pending_extent(trans
->transaction
, device
,
4456 unlock_chunks(root
);
4457 checked_pending_chunks
= true;
4460 ret
= btrfs_commit_transaction(trans
, root
);
4467 btrfs_device_set_disk_total_bytes(device
, new_size
);
4468 if (list_empty(&device
->resized_list
))
4469 list_add_tail(&device
->resized_list
,
4470 &root
->fs_info
->fs_devices
->resized_devices
);
4472 WARN_ON(diff
> old_total
);
4473 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4474 unlock_chunks(root
);
4476 /* Now btrfs_update_device() will change the on-disk size. */
4477 ret
= btrfs_update_device(trans
, device
);
4478 btrfs_end_transaction(trans
, root
);
4480 btrfs_free_path(path
);
4483 btrfs_device_set_total_bytes(device
, old_size
);
4484 if (device
->writeable
)
4485 device
->fs_devices
->total_rw_bytes
+= diff
;
4486 spin_lock(&root
->fs_info
->free_chunk_lock
);
4487 root
->fs_info
->free_chunk_space
+= diff
;
4488 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4489 unlock_chunks(root
);
4494 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4495 struct btrfs_key
*key
,
4496 struct btrfs_chunk
*chunk
, int item_size
)
4498 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4499 struct btrfs_disk_key disk_key
;
4504 array_size
= btrfs_super_sys_array_size(super_copy
);
4505 if (array_size
+ item_size
+ sizeof(disk_key
)
4506 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4507 unlock_chunks(root
);
4511 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4512 btrfs_cpu_key_to_disk(&disk_key
, key
);
4513 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4514 ptr
+= sizeof(disk_key
);
4515 memcpy(ptr
, chunk
, item_size
);
4516 item_size
+= sizeof(disk_key
);
4517 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4518 unlock_chunks(root
);
4524 * sort the devices in descending order by max_avail, total_avail
4526 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4528 const struct btrfs_device_info
*di_a
= a
;
4529 const struct btrfs_device_info
*di_b
= b
;
4531 if (di_a
->max_avail
> di_b
->max_avail
)
4533 if (di_a
->max_avail
< di_b
->max_avail
)
4535 if (di_a
->total_avail
> di_b
->total_avail
)
4537 if (di_a
->total_avail
< di_b
->total_avail
)
4542 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4544 /* TODO allow them to set a preferred stripe size */
4548 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4550 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4553 btrfs_set_fs_incompat(info
, RAID56
);
4556 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4557 - sizeof(struct btrfs_item) \
4558 - sizeof(struct btrfs_chunk)) \
4559 / sizeof(struct btrfs_stripe) + 1)
4561 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4562 - 2 * sizeof(struct btrfs_disk_key) \
4563 - 2 * sizeof(struct btrfs_chunk)) \
4564 / sizeof(struct btrfs_stripe) + 1)
4566 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4567 struct btrfs_root
*extent_root
, u64 start
,
4570 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4571 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4572 struct list_head
*cur
;
4573 struct map_lookup
*map
= NULL
;
4574 struct extent_map_tree
*em_tree
;
4575 struct extent_map
*em
;
4576 struct btrfs_device_info
*devices_info
= NULL
;
4578 int num_stripes
; /* total number of stripes to allocate */
4579 int data_stripes
; /* number of stripes that count for
4581 int sub_stripes
; /* sub_stripes info for map */
4582 int dev_stripes
; /* stripes per dev */
4583 int devs_max
; /* max devs to use */
4584 int devs_min
; /* min devs needed */
4585 int devs_increment
; /* ndevs has to be a multiple of this */
4586 int ncopies
; /* how many copies to data has */
4588 u64 max_stripe_size
;
4592 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4598 BUG_ON(!alloc_profile_is_valid(type
, 0));
4600 if (list_empty(&fs_devices
->alloc_list
))
4603 index
= __get_raid_index(type
);
4605 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4606 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4607 devs_max
= btrfs_raid_array
[index
].devs_max
;
4608 devs_min
= btrfs_raid_array
[index
].devs_min
;
4609 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4610 ncopies
= btrfs_raid_array
[index
].ncopies
;
4612 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4613 max_stripe_size
= SZ_1G
;
4614 max_chunk_size
= 10 * max_stripe_size
;
4616 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4617 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4618 /* for larger filesystems, use larger metadata chunks */
4619 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4620 max_stripe_size
= SZ_1G
;
4622 max_stripe_size
= SZ_256M
;
4623 max_chunk_size
= max_stripe_size
;
4625 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4626 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4627 max_stripe_size
= SZ_32M
;
4628 max_chunk_size
= 2 * max_stripe_size
;
4630 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4632 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4637 /* we don't want a chunk larger than 10% of writeable space */
4638 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4641 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4646 cur
= fs_devices
->alloc_list
.next
;
4649 * in the first pass through the devices list, we gather information
4650 * about the available holes on each device.
4653 while (cur
!= &fs_devices
->alloc_list
) {
4654 struct btrfs_device
*device
;
4658 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4662 if (!device
->writeable
) {
4664 "BTRFS: read-only device in alloc_list\n");
4668 if (!device
->in_fs_metadata
||
4669 device
->is_tgtdev_for_dev_replace
)
4672 if (device
->total_bytes
> device
->bytes_used
)
4673 total_avail
= device
->total_bytes
- device
->bytes_used
;
4677 /* If there is no space on this device, skip it. */
4678 if (total_avail
== 0)
4681 ret
= find_free_dev_extent(trans
, device
,
4682 max_stripe_size
* dev_stripes
,
4683 &dev_offset
, &max_avail
);
4684 if (ret
&& ret
!= -ENOSPC
)
4688 max_avail
= max_stripe_size
* dev_stripes
;
4690 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4693 if (ndevs
== fs_devices
->rw_devices
) {
4694 WARN(1, "%s: found more than %llu devices\n",
4695 __func__
, fs_devices
->rw_devices
);
4698 devices_info
[ndevs
].dev_offset
= dev_offset
;
4699 devices_info
[ndevs
].max_avail
= max_avail
;
4700 devices_info
[ndevs
].total_avail
= total_avail
;
4701 devices_info
[ndevs
].dev
= device
;
4706 * now sort the devices by hole size / available space
4708 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4709 btrfs_cmp_device_info
, NULL
);
4711 /* round down to number of usable stripes */
4712 ndevs
-= ndevs
% devs_increment
;
4714 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4719 if (devs_max
&& ndevs
> devs_max
)
4722 * the primary goal is to maximize the number of stripes, so use as many
4723 * devices as possible, even if the stripes are not maximum sized.
4725 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4726 num_stripes
= ndevs
* dev_stripes
;
4729 * this will have to be fixed for RAID1 and RAID10 over
4732 data_stripes
= num_stripes
/ ncopies
;
4734 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4735 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4736 extent_root
->stripesize
);
4737 data_stripes
= num_stripes
- 1;
4739 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4740 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4741 extent_root
->stripesize
);
4742 data_stripes
= num_stripes
- 2;
4746 * Use the number of data stripes to figure out how big this chunk
4747 * is really going to be in terms of logical address space,
4748 * and compare that answer with the max chunk size
4750 if (stripe_size
* data_stripes
> max_chunk_size
) {
4751 u64 mask
= (1ULL << 24) - 1;
4753 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4755 /* bump the answer up to a 16MB boundary */
4756 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4758 /* but don't go higher than the limits we found
4759 * while searching for free extents
4761 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4762 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4765 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4767 /* align to BTRFS_STRIPE_LEN */
4768 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4769 stripe_size
*= raid_stripe_len
;
4771 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4776 map
->num_stripes
= num_stripes
;
4778 for (i
= 0; i
< ndevs
; ++i
) {
4779 for (j
= 0; j
< dev_stripes
; ++j
) {
4780 int s
= i
* dev_stripes
+ j
;
4781 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4782 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4786 map
->sector_size
= extent_root
->sectorsize
;
4787 map
->stripe_len
= raid_stripe_len
;
4788 map
->io_align
= raid_stripe_len
;
4789 map
->io_width
= raid_stripe_len
;
4791 map
->sub_stripes
= sub_stripes
;
4793 num_bytes
= stripe_size
* data_stripes
;
4795 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4797 em
= alloc_extent_map();
4803 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4804 em
->map_lookup
= map
;
4806 em
->len
= num_bytes
;
4807 em
->block_start
= 0;
4808 em
->block_len
= em
->len
;
4809 em
->orig_block_len
= stripe_size
;
4811 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4812 write_lock(&em_tree
->lock
);
4813 ret
= add_extent_mapping(em_tree
, em
, 0);
4815 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4816 atomic_inc(&em
->refs
);
4818 write_unlock(&em_tree
->lock
);
4820 free_extent_map(em
);
4824 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4825 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4828 goto error_del_extent
;
4830 for (i
= 0; i
< map
->num_stripes
; i
++) {
4831 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4832 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4835 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4836 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4838 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4840 free_extent_map(em
);
4841 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4843 kfree(devices_info
);
4847 write_lock(&em_tree
->lock
);
4848 remove_extent_mapping(em_tree
, em
);
4849 write_unlock(&em_tree
->lock
);
4851 /* One for our allocation */
4852 free_extent_map(em
);
4853 /* One for the tree reference */
4854 free_extent_map(em
);
4855 /* One for the pending_chunks list reference */
4856 free_extent_map(em
);
4858 kfree(devices_info
);
4862 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4863 struct btrfs_root
*extent_root
,
4864 u64 chunk_offset
, u64 chunk_size
)
4866 struct btrfs_key key
;
4867 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4868 struct btrfs_device
*device
;
4869 struct btrfs_chunk
*chunk
;
4870 struct btrfs_stripe
*stripe
;
4871 struct extent_map_tree
*em_tree
;
4872 struct extent_map
*em
;
4873 struct map_lookup
*map
;
4880 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4881 read_lock(&em_tree
->lock
);
4882 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4883 read_unlock(&em_tree
->lock
);
4886 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4887 "%Lu len %Lu", chunk_offset
, chunk_size
);
4891 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4892 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4893 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4894 chunk_size
, em
->start
, em
->len
);
4895 free_extent_map(em
);
4899 map
= em
->map_lookup
;
4900 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4901 stripe_size
= em
->orig_block_len
;
4903 chunk
= kzalloc(item_size
, GFP_NOFS
);
4910 * Take the device list mutex to prevent races with the final phase of
4911 * a device replace operation that replaces the device object associated
4912 * with the map's stripes, because the device object's id can change
4913 * at any time during that final phase of the device replace operation
4914 * (dev-replace.c:btrfs_dev_replace_finishing()).
4916 mutex_lock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4917 for (i
= 0; i
< map
->num_stripes
; i
++) {
4918 device
= map
->stripes
[i
].dev
;
4919 dev_offset
= map
->stripes
[i
].physical
;
4921 ret
= btrfs_update_device(trans
, device
);
4924 ret
= btrfs_alloc_dev_extent(trans
, device
,
4925 chunk_root
->root_key
.objectid
,
4926 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4927 chunk_offset
, dev_offset
,
4933 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4937 stripe
= &chunk
->stripe
;
4938 for (i
= 0; i
< map
->num_stripes
; i
++) {
4939 device
= map
->stripes
[i
].dev
;
4940 dev_offset
= map
->stripes
[i
].physical
;
4942 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4943 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4944 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4947 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4949 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4950 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4951 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4952 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4953 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4954 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4955 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4956 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4957 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4959 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4960 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4961 key
.offset
= chunk_offset
;
4963 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4964 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4966 * TODO: Cleanup of inserted chunk root in case of
4969 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4975 free_extent_map(em
);
4980 * Chunk allocation falls into two parts. The first part does works
4981 * that make the new allocated chunk useable, but not do any operation
4982 * that modifies the chunk tree. The second part does the works that
4983 * require modifying the chunk tree. This division is important for the
4984 * bootstrap process of adding storage to a seed btrfs.
4986 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4987 struct btrfs_root
*extent_root
, u64 type
)
4991 ASSERT(mutex_is_locked(&extent_root
->fs_info
->chunk_mutex
));
4992 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4993 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4996 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4997 struct btrfs_root
*root
,
4998 struct btrfs_device
*device
)
5001 u64 sys_chunk_offset
;
5003 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5004 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5007 chunk_offset
= find_next_chunk(fs_info
);
5008 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
5009 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
5014 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
5015 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
5016 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
5021 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5025 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5026 BTRFS_BLOCK_GROUP_RAID10
|
5027 BTRFS_BLOCK_GROUP_RAID5
|
5028 BTRFS_BLOCK_GROUP_DUP
)) {
5030 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5039 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
5041 struct extent_map
*em
;
5042 struct map_lookup
*map
;
5043 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5048 read_lock(&map_tree
->map_tree
.lock
);
5049 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
5050 read_unlock(&map_tree
->map_tree
.lock
);
5054 map
= em
->map_lookup
;
5055 for (i
= 0; i
< map
->num_stripes
; i
++) {
5056 if (map
->stripes
[i
].dev
->missing
) {
5061 if (!map
->stripes
[i
].dev
->writeable
) {
5068 * If the number of missing devices is larger than max errors,
5069 * we can not write the data into that chunk successfully, so
5072 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5075 free_extent_map(em
);
5079 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5081 extent_map_tree_init(&tree
->map_tree
);
5084 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5086 struct extent_map
*em
;
5089 write_lock(&tree
->map_tree
.lock
);
5090 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5092 remove_extent_mapping(&tree
->map_tree
, em
);
5093 write_unlock(&tree
->map_tree
.lock
);
5097 free_extent_map(em
);
5098 /* once for the tree */
5099 free_extent_map(em
);
5103 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5105 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5106 struct extent_map
*em
;
5107 struct map_lookup
*map
;
5108 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5111 read_lock(&em_tree
->lock
);
5112 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5113 read_unlock(&em_tree
->lock
);
5116 * We could return errors for these cases, but that could get ugly and
5117 * we'd probably do the same thing which is just not do anything else
5118 * and exit, so return 1 so the callers don't try to use other copies.
5121 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5126 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5127 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
5128 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
5129 em
->start
+ em
->len
);
5130 free_extent_map(em
);
5134 map
= em
->map_lookup
;
5135 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5136 ret
= map
->num_stripes
;
5137 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5138 ret
= map
->sub_stripes
;
5139 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5141 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5145 free_extent_map(em
);
5147 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5148 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5150 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5155 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
5156 struct btrfs_mapping_tree
*map_tree
,
5159 struct extent_map
*em
;
5160 struct map_lookup
*map
;
5161 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5162 unsigned long len
= root
->sectorsize
;
5164 read_lock(&em_tree
->lock
);
5165 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5166 read_unlock(&em_tree
->lock
);
5169 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5170 map
= em
->map_lookup
;
5171 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5172 len
= map
->stripe_len
* nr_data_stripes(map
);
5173 free_extent_map(em
);
5177 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5178 u64 logical
, u64 len
, int mirror_num
)
5180 struct extent_map
*em
;
5181 struct map_lookup
*map
;
5182 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5185 read_lock(&em_tree
->lock
);
5186 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5187 read_unlock(&em_tree
->lock
);
5190 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5191 map
= em
->map_lookup
;
5192 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5194 free_extent_map(em
);
5198 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5199 struct map_lookup
*map
, int first
, int num
,
5200 int optimal
, int dev_replace_is_ongoing
)
5204 struct btrfs_device
*srcdev
;
5206 if (dev_replace_is_ongoing
&&
5207 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5208 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5209 srcdev
= fs_info
->dev_replace
.srcdev
;
5214 * try to avoid the drive that is the source drive for a
5215 * dev-replace procedure, only choose it if no other non-missing
5216 * mirror is available
5218 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5219 if (map
->stripes
[optimal
].dev
->bdev
&&
5220 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5222 for (i
= first
; i
< first
+ num
; i
++) {
5223 if (map
->stripes
[i
].dev
->bdev
&&
5224 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5229 /* we couldn't find one that doesn't fail. Just return something
5230 * and the io error handling code will clean up eventually
5235 static inline int parity_smaller(u64 a
, u64 b
)
5240 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5241 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5243 struct btrfs_bio_stripe s
;
5250 for (i
= 0; i
< num_stripes
- 1; i
++) {
5251 if (parity_smaller(bbio
->raid_map
[i
],
5252 bbio
->raid_map
[i
+1])) {
5253 s
= bbio
->stripes
[i
];
5254 l
= bbio
->raid_map
[i
];
5255 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5256 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5257 bbio
->stripes
[i
+1] = s
;
5258 bbio
->raid_map
[i
+1] = l
;
5266 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5268 struct btrfs_bio
*bbio
= kzalloc(
5269 /* the size of the btrfs_bio */
5270 sizeof(struct btrfs_bio
) +
5271 /* plus the variable array for the stripes */
5272 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5273 /* plus the variable array for the tgt dev */
5274 sizeof(int) * (real_stripes
) +
5276 * plus the raid_map, which includes both the tgt dev
5279 sizeof(u64
) * (total_stripes
),
5280 GFP_NOFS
|__GFP_NOFAIL
);
5282 atomic_set(&bbio
->error
, 0);
5283 atomic_set(&bbio
->refs
, 1);
5288 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5290 WARN_ON(!atomic_read(&bbio
->refs
));
5291 atomic_inc(&bbio
->refs
);
5294 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5298 if (atomic_dec_and_test(&bbio
->refs
))
5302 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5303 u64 logical
, u64
*length
,
5304 struct btrfs_bio
**bbio_ret
,
5305 int mirror_num
, int need_raid_map
)
5307 struct extent_map
*em
;
5308 struct map_lookup
*map
;
5309 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5310 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5313 u64 stripe_end_offset
;
5323 int tgtdev_indexes
= 0;
5324 struct btrfs_bio
*bbio
= NULL
;
5325 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5326 int dev_replace_is_ongoing
= 0;
5327 int num_alloc_stripes
;
5328 int patch_the_first_stripe_for_dev_replace
= 0;
5329 u64 physical_to_patch_in_first_stripe
= 0;
5330 u64 raid56_full_stripe_start
= (u64
)-1;
5332 read_lock(&em_tree
->lock
);
5333 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5334 read_unlock(&em_tree
->lock
);
5337 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5342 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5343 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
5344 "found %Lu-%Lu", logical
, em
->start
,
5345 em
->start
+ em
->len
);
5346 free_extent_map(em
);
5350 map
= em
->map_lookup
;
5351 offset
= logical
- em
->start
;
5353 stripe_len
= map
->stripe_len
;
5356 * stripe_nr counts the total number of stripes we have to stride
5357 * to get to this block
5359 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5361 stripe_offset
= stripe_nr
* stripe_len
;
5362 if (offset
< stripe_offset
) {
5363 btrfs_crit(fs_info
, "stripe math has gone wrong, "
5364 "stripe_offset=%llu, offset=%llu, start=%llu, "
5365 "logical=%llu, stripe_len=%llu",
5366 stripe_offset
, offset
, em
->start
, logical
,
5368 free_extent_map(em
);
5372 /* stripe_offset is the offset of this block in its stripe*/
5373 stripe_offset
= offset
- stripe_offset
;
5375 /* if we're here for raid56, we need to know the stripe aligned start */
5376 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5377 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5378 raid56_full_stripe_start
= offset
;
5380 /* allow a write of a full stripe, but make sure we don't
5381 * allow straddling of stripes
5383 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5385 raid56_full_stripe_start
*= full_stripe_len
;
5388 if (rw
& REQ_DISCARD
) {
5389 /* we don't discard raid56 yet */
5390 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5394 *length
= min_t(u64
, em
->len
- offset
, *length
);
5395 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5397 /* For writes to RAID[56], allow a full stripeset across all disks.
5398 For other RAID types and for RAID[56] reads, just allow a single
5399 stripe (on a single disk). */
5400 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5402 max_len
= stripe_len
* nr_data_stripes(map
) -
5403 (offset
- raid56_full_stripe_start
);
5405 /* we limit the length of each bio to what fits in a stripe */
5406 max_len
= stripe_len
- stripe_offset
;
5408 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5410 *length
= em
->len
- offset
;
5413 /* This is for when we're called from btrfs_merge_bio_hook() and all
5414 it cares about is the length */
5418 btrfs_dev_replace_lock(dev_replace
, 0);
5419 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5420 if (!dev_replace_is_ongoing
)
5421 btrfs_dev_replace_unlock(dev_replace
, 0);
5423 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5425 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5426 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
5427 dev_replace
->tgtdev
!= NULL
) {
5429 * in dev-replace case, for repair case (that's the only
5430 * case where the mirror is selected explicitly when
5431 * calling btrfs_map_block), blocks left of the left cursor
5432 * can also be read from the target drive.
5433 * For REQ_GET_READ_MIRRORS, the target drive is added as
5434 * the last one to the array of stripes. For READ, it also
5435 * needs to be supported using the same mirror number.
5436 * If the requested block is not left of the left cursor,
5437 * EIO is returned. This can happen because btrfs_num_copies()
5438 * returns one more in the dev-replace case.
5440 u64 tmp_length
= *length
;
5441 struct btrfs_bio
*tmp_bbio
= NULL
;
5442 int tmp_num_stripes
;
5443 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5444 int index_srcdev
= 0;
5446 u64 physical_of_found
= 0;
5448 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5449 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5451 WARN_ON(tmp_bbio
!= NULL
);
5455 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5456 if (mirror_num
> tmp_num_stripes
) {
5458 * REQ_GET_READ_MIRRORS does not contain this
5459 * mirror, that means that the requested area
5460 * is not left of the left cursor
5463 btrfs_put_bbio(tmp_bbio
);
5468 * process the rest of the function using the mirror_num
5469 * of the source drive. Therefore look it up first.
5470 * At the end, patch the device pointer to the one of the
5473 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5474 if (tmp_bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5478 * In case of DUP, in order to keep it simple, only add
5479 * the mirror with the lowest physical address
5482 physical_of_found
<= tmp_bbio
->stripes
[i
].physical
)
5487 physical_of_found
= tmp_bbio
->stripes
[i
].physical
;
5490 btrfs_put_bbio(tmp_bbio
);
5498 mirror_num
= index_srcdev
+ 1;
5499 patch_the_first_stripe_for_dev_replace
= 1;
5500 physical_to_patch_in_first_stripe
= physical_of_found
;
5501 } else if (mirror_num
> map
->num_stripes
) {
5507 stripe_nr_orig
= stripe_nr
;
5508 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5509 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5510 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5513 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5514 if (rw
& REQ_DISCARD
)
5515 num_stripes
= min_t(u64
, map
->num_stripes
,
5516 stripe_nr_end
- stripe_nr_orig
);
5517 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5519 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)))
5521 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5522 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
5523 num_stripes
= map
->num_stripes
;
5524 else if (mirror_num
)
5525 stripe_index
= mirror_num
- 1;
5527 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5529 current
->pid
% map
->num_stripes
,
5530 dev_replace_is_ongoing
);
5531 mirror_num
= stripe_index
+ 1;
5534 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5535 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
5536 num_stripes
= map
->num_stripes
;
5537 } else if (mirror_num
) {
5538 stripe_index
= mirror_num
- 1;
5543 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5544 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5546 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5547 stripe_index
*= map
->sub_stripes
;
5549 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5550 num_stripes
= map
->sub_stripes
;
5551 else if (rw
& REQ_DISCARD
)
5552 num_stripes
= min_t(u64
, map
->sub_stripes
*
5553 (stripe_nr_end
- stripe_nr_orig
),
5555 else if (mirror_num
)
5556 stripe_index
+= mirror_num
- 1;
5558 int old_stripe_index
= stripe_index
;
5559 stripe_index
= find_live_mirror(fs_info
, map
,
5561 map
->sub_stripes
, stripe_index
+
5562 current
->pid
% map
->sub_stripes
,
5563 dev_replace_is_ongoing
);
5564 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5567 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5568 if (need_raid_map
&&
5569 ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5571 /* push stripe_nr back to the start of the full stripe */
5572 stripe_nr
= div_u64(raid56_full_stripe_start
,
5573 stripe_len
* nr_data_stripes(map
));
5575 /* RAID[56] write or recovery. Return all stripes */
5576 num_stripes
= map
->num_stripes
;
5577 max_errors
= nr_parity_stripes(map
);
5579 *length
= map
->stripe_len
;
5584 * Mirror #0 or #1 means the original data block.
5585 * Mirror #2 is RAID5 parity block.
5586 * Mirror #3 is RAID6 Q block.
5588 stripe_nr
= div_u64_rem(stripe_nr
,
5589 nr_data_stripes(map
), &stripe_index
);
5591 stripe_index
= nr_data_stripes(map
) +
5594 /* We distribute the parity blocks across stripes */
5595 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5597 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
|
5598 REQ_GET_READ_MIRRORS
)) && mirror_num
<= 1)
5603 * after this, stripe_nr is the number of stripes on this
5604 * device we have to walk to find the data, and stripe_index is
5605 * the number of our device in the stripe array
5607 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5609 mirror_num
= stripe_index
+ 1;
5611 if (stripe_index
>= map
->num_stripes
) {
5612 btrfs_crit(fs_info
, "stripe index math went horribly wrong, "
5613 "got stripe_index=%u, num_stripes=%u",
5614 stripe_index
, map
->num_stripes
);
5619 num_alloc_stripes
= num_stripes
;
5620 if (dev_replace_is_ongoing
) {
5621 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5622 num_alloc_stripes
<<= 1;
5623 if (rw
& REQ_GET_READ_MIRRORS
)
5624 num_alloc_stripes
++;
5625 tgtdev_indexes
= num_stripes
;
5628 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5633 if (dev_replace_is_ongoing
)
5634 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5636 /* build raid_map */
5637 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5638 need_raid_map
&& ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5643 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5644 sizeof(struct btrfs_bio_stripe
) *
5646 sizeof(int) * tgtdev_indexes
);
5648 /* Work out the disk rotation on this stripe-set */
5649 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5651 /* Fill in the logical address of each stripe */
5652 tmp
= stripe_nr
* nr_data_stripes(map
);
5653 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5654 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5655 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5657 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5658 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5659 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5663 if (rw
& REQ_DISCARD
) {
5665 u32 sub_stripes
= 0;
5666 u64 stripes_per_dev
= 0;
5667 u32 remaining_stripes
= 0;
5668 u32 last_stripe
= 0;
5671 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5672 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5675 sub_stripes
= map
->sub_stripes
;
5677 factor
= map
->num_stripes
/ sub_stripes
;
5678 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5681 &remaining_stripes
);
5682 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5683 last_stripe
*= sub_stripes
;
5686 for (i
= 0; i
< num_stripes
; i
++) {
5687 bbio
->stripes
[i
].physical
=
5688 map
->stripes
[stripe_index
].physical
+
5689 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5690 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5692 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5693 BTRFS_BLOCK_GROUP_RAID10
)) {
5694 bbio
->stripes
[i
].length
= stripes_per_dev
*
5697 if (i
/ sub_stripes
< remaining_stripes
)
5698 bbio
->stripes
[i
].length
+=
5702 * Special for the first stripe and
5705 * |-------|...|-------|
5709 if (i
< sub_stripes
)
5710 bbio
->stripes
[i
].length
-=
5713 if (stripe_index
>= last_stripe
&&
5714 stripe_index
<= (last_stripe
+
5716 bbio
->stripes
[i
].length
-=
5719 if (i
== sub_stripes
- 1)
5722 bbio
->stripes
[i
].length
= *length
;
5725 if (stripe_index
== map
->num_stripes
) {
5726 /* This could only happen for RAID0/10 */
5732 for (i
= 0; i
< num_stripes
; i
++) {
5733 bbio
->stripes
[i
].physical
=
5734 map
->stripes
[stripe_index
].physical
+
5736 stripe_nr
* map
->stripe_len
;
5737 bbio
->stripes
[i
].dev
=
5738 map
->stripes
[stripe_index
].dev
;
5743 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5744 max_errors
= btrfs_chunk_max_errors(map
);
5747 sort_parity_stripes(bbio
, num_stripes
);
5750 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5751 dev_replace
->tgtdev
!= NULL
) {
5752 int index_where_to_add
;
5753 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5756 * duplicate the write operations while the dev replace
5757 * procedure is running. Since the copying of the old disk
5758 * to the new disk takes place at run time while the
5759 * filesystem is mounted writable, the regular write
5760 * operations to the old disk have to be duplicated to go
5761 * to the new disk as well.
5762 * Note that device->missing is handled by the caller, and
5763 * that the write to the old disk is already set up in the
5766 index_where_to_add
= num_stripes
;
5767 for (i
= 0; i
< num_stripes
; i
++) {
5768 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5769 /* write to new disk, too */
5770 struct btrfs_bio_stripe
*new =
5771 bbio
->stripes
+ index_where_to_add
;
5772 struct btrfs_bio_stripe
*old
=
5775 new->physical
= old
->physical
;
5776 new->length
= old
->length
;
5777 new->dev
= dev_replace
->tgtdev
;
5778 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5779 index_where_to_add
++;
5784 num_stripes
= index_where_to_add
;
5785 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5786 dev_replace
->tgtdev
!= NULL
) {
5787 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5788 int index_srcdev
= 0;
5790 u64 physical_of_found
= 0;
5793 * During the dev-replace procedure, the target drive can
5794 * also be used to read data in case it is needed to repair
5795 * a corrupt block elsewhere. This is possible if the
5796 * requested area is left of the left cursor. In this area,
5797 * the target drive is a full copy of the source drive.
5799 for (i
= 0; i
< num_stripes
; i
++) {
5800 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5802 * In case of DUP, in order to keep it
5803 * simple, only add the mirror with the
5804 * lowest physical address
5807 physical_of_found
<=
5808 bbio
->stripes
[i
].physical
)
5812 physical_of_found
= bbio
->stripes
[i
].physical
;
5816 struct btrfs_bio_stripe
*tgtdev_stripe
=
5817 bbio
->stripes
+ num_stripes
;
5819 tgtdev_stripe
->physical
= physical_of_found
;
5820 tgtdev_stripe
->length
=
5821 bbio
->stripes
[index_srcdev
].length
;
5822 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5823 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5831 bbio
->map_type
= map
->type
;
5832 bbio
->num_stripes
= num_stripes
;
5833 bbio
->max_errors
= max_errors
;
5834 bbio
->mirror_num
= mirror_num
;
5835 bbio
->num_tgtdevs
= tgtdev_indexes
;
5838 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5839 * mirror_num == num_stripes + 1 && dev_replace target drive is
5840 * available as a mirror
5842 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5843 WARN_ON(num_stripes
> 1);
5844 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5845 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5846 bbio
->mirror_num
= map
->num_stripes
+ 1;
5849 if (dev_replace_is_ongoing
) {
5850 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5851 btrfs_dev_replace_unlock(dev_replace
, 0);
5853 free_extent_map(em
);
5857 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5858 u64 logical
, u64
*length
,
5859 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5861 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5865 /* For Scrub/replace */
5866 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int rw
,
5867 u64 logical
, u64
*length
,
5868 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5871 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5872 mirror_num
, need_raid_map
);
5875 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5876 u64 chunk_start
, u64 physical
, u64 devid
,
5877 u64
**logical
, int *naddrs
, int *stripe_len
)
5879 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5880 struct extent_map
*em
;
5881 struct map_lookup
*map
;
5889 read_lock(&em_tree
->lock
);
5890 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5891 read_unlock(&em_tree
->lock
);
5894 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5899 if (em
->start
!= chunk_start
) {
5900 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5901 em
->start
, chunk_start
);
5902 free_extent_map(em
);
5905 map
= em
->map_lookup
;
5908 rmap_len
= map
->stripe_len
;
5910 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5911 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5912 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5913 length
= div_u64(length
, map
->num_stripes
);
5914 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5915 length
= div_u64(length
, nr_data_stripes(map
));
5916 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5919 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5920 BUG_ON(!buf
); /* -ENOMEM */
5922 for (i
= 0; i
< map
->num_stripes
; i
++) {
5923 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5925 if (map
->stripes
[i
].physical
> physical
||
5926 map
->stripes
[i
].physical
+ length
<= physical
)
5929 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5930 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5932 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5933 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5934 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5935 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5936 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5937 } /* else if RAID[56], multiply by nr_data_stripes().
5938 * Alternatively, just use rmap_len below instead of
5939 * map->stripe_len */
5941 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5942 WARN_ON(nr
>= map
->num_stripes
);
5943 for (j
= 0; j
< nr
; j
++) {
5944 if (buf
[j
] == bytenr
)
5948 WARN_ON(nr
>= map
->num_stripes
);
5955 *stripe_len
= rmap_len
;
5957 free_extent_map(em
);
5961 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
5963 bio
->bi_private
= bbio
->private;
5964 bio
->bi_end_io
= bbio
->end_io
;
5967 btrfs_put_bbio(bbio
);
5970 static void btrfs_end_bio(struct bio
*bio
)
5972 struct btrfs_bio
*bbio
= bio
->bi_private
;
5973 int is_orig_bio
= 0;
5975 if (bio
->bi_error
) {
5976 atomic_inc(&bbio
->error
);
5977 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
5978 unsigned int stripe_index
=
5979 btrfs_io_bio(bio
)->stripe_index
;
5980 struct btrfs_device
*dev
;
5982 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5983 dev
= bbio
->stripes
[stripe_index
].dev
;
5985 if (bio
->bi_rw
& WRITE
)
5986 btrfs_dev_stat_inc(dev
,
5987 BTRFS_DEV_STAT_WRITE_ERRS
);
5989 btrfs_dev_stat_inc(dev
,
5990 BTRFS_DEV_STAT_READ_ERRS
);
5991 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5992 btrfs_dev_stat_inc(dev
,
5993 BTRFS_DEV_STAT_FLUSH_ERRS
);
5994 btrfs_dev_stat_print_on_error(dev
);
5999 if (bio
== bbio
->orig_bio
)
6002 btrfs_bio_counter_dec(bbio
->fs_info
);
6004 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6007 bio
= bbio
->orig_bio
;
6010 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6011 /* only send an error to the higher layers if it is
6012 * beyond the tolerance of the btrfs bio
6014 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6015 bio
->bi_error
= -EIO
;
6018 * this bio is actually up to date, we didn't
6019 * go over the max number of errors
6024 btrfs_end_bbio(bbio
, bio
);
6025 } else if (!is_orig_bio
) {
6031 * see run_scheduled_bios for a description of why bios are collected for
6034 * This will add one bio to the pending list for a device and make sure
6035 * the work struct is scheduled.
6037 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
6038 struct btrfs_device
*device
,
6039 int rw
, struct bio
*bio
)
6041 int should_queue
= 1;
6042 struct btrfs_pending_bios
*pending_bios
;
6044 if (device
->missing
|| !device
->bdev
) {
6049 /* don't bother with additional async steps for reads, right now */
6050 if (!(rw
& REQ_WRITE
)) {
6052 btrfsic_submit_bio(rw
, bio
);
6058 * nr_async_bios allows us to reliably return congestion to the
6059 * higher layers. Otherwise, the async bio makes it appear we have
6060 * made progress against dirty pages when we've really just put it
6061 * on a queue for later
6063 atomic_inc(&root
->fs_info
->nr_async_bios
);
6064 WARN_ON(bio
->bi_next
);
6065 bio
->bi_next
= NULL
;
6068 spin_lock(&device
->io_lock
);
6069 if (bio
->bi_rw
& REQ_SYNC
)
6070 pending_bios
= &device
->pending_sync_bios
;
6072 pending_bios
= &device
->pending_bios
;
6074 if (pending_bios
->tail
)
6075 pending_bios
->tail
->bi_next
= bio
;
6077 pending_bios
->tail
= bio
;
6078 if (!pending_bios
->head
)
6079 pending_bios
->head
= bio
;
6080 if (device
->running_pending
)
6083 spin_unlock(&device
->io_lock
);
6086 btrfs_queue_work(root
->fs_info
->submit_workers
,
6090 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
6091 struct bio
*bio
, u64 physical
, int dev_nr
,
6094 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6096 bio
->bi_private
= bbio
;
6097 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6098 bio
->bi_end_io
= btrfs_end_bio
;
6099 bio
->bi_iter
.bi_sector
= physical
>> 9;
6102 struct rcu_string
*name
;
6105 name
= rcu_dereference(dev
->name
);
6106 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6107 "(%s id %llu), size=%u\n", rw
,
6108 (u64
)bio
->bi_iter
.bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
6109 name
->str
, dev
->devid
, bio
->bi_iter
.bi_size
);
6113 bio
->bi_bdev
= dev
->bdev
;
6115 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
6118 btrfs_schedule_bio(root
, dev
, rw
, bio
);
6120 btrfsic_submit_bio(rw
, bio
);
6123 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6125 atomic_inc(&bbio
->error
);
6126 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6127 /* Should be the original bio. */
6128 WARN_ON(bio
!= bbio
->orig_bio
);
6130 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6131 bio
->bi_iter
.bi_sector
= logical
>> 9;
6132 bio
->bi_error
= -EIO
;
6133 btrfs_end_bbio(bbio
, bio
);
6137 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
6138 int mirror_num
, int async_submit
)
6140 struct btrfs_device
*dev
;
6141 struct bio
*first_bio
= bio
;
6142 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6148 struct btrfs_bio
*bbio
= NULL
;
6150 length
= bio
->bi_iter
.bi_size
;
6151 map_length
= length
;
6153 btrfs_bio_counter_inc_blocked(root
->fs_info
);
6154 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
6157 btrfs_bio_counter_dec(root
->fs_info
);
6161 total_devs
= bbio
->num_stripes
;
6162 bbio
->orig_bio
= first_bio
;
6163 bbio
->private = first_bio
->bi_private
;
6164 bbio
->end_io
= first_bio
->bi_end_io
;
6165 bbio
->fs_info
= root
->fs_info
;
6166 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6168 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6169 ((rw
& WRITE
) || (mirror_num
> 1))) {
6170 /* In this case, map_length has been set to the length of
6171 a single stripe; not the whole write */
6173 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
6175 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
6179 btrfs_bio_counter_dec(root
->fs_info
);
6183 if (map_length
< length
) {
6184 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
6185 logical
, length
, map_length
);
6189 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6190 dev
= bbio
->stripes
[dev_nr
].dev
;
6191 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
6192 bbio_error(bbio
, first_bio
, logical
);
6196 if (dev_nr
< total_devs
- 1) {
6197 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6198 BUG_ON(!bio
); /* -ENOMEM */
6202 submit_stripe_bio(root
, bbio
, bio
,
6203 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
6206 btrfs_bio_counter_dec(root
->fs_info
);
6210 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6213 struct btrfs_device
*device
;
6214 struct btrfs_fs_devices
*cur_devices
;
6216 cur_devices
= fs_info
->fs_devices
;
6217 while (cur_devices
) {
6219 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6220 device
= __find_device(&cur_devices
->devices
,
6225 cur_devices
= cur_devices
->seed
;
6230 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
6231 struct btrfs_fs_devices
*fs_devices
,
6232 u64 devid
, u8
*dev_uuid
)
6234 struct btrfs_device
*device
;
6236 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6240 list_add(&device
->dev_list
, &fs_devices
->devices
);
6241 device
->fs_devices
= fs_devices
;
6242 fs_devices
->num_devices
++;
6244 device
->missing
= 1;
6245 fs_devices
->missing_devices
++;
6251 * btrfs_alloc_device - allocate struct btrfs_device
6252 * @fs_info: used only for generating a new devid, can be NULL if
6253 * devid is provided (i.e. @devid != NULL).
6254 * @devid: a pointer to devid for this device. If NULL a new devid
6256 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6259 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6260 * on error. Returned struct is not linked onto any lists and can be
6261 * destroyed with kfree() right away.
6263 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6267 struct btrfs_device
*dev
;
6270 if (WARN_ON(!devid
&& !fs_info
))
6271 return ERR_PTR(-EINVAL
);
6273 dev
= __alloc_device();
6282 ret
= find_next_devid(fs_info
, &tmp
);
6285 return ERR_PTR(ret
);
6291 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6293 generate_random_uuid(dev
->uuid
);
6295 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6296 pending_bios_fn
, NULL
, NULL
);
6301 /* Return -EIO if any error, otherwise return 0. */
6302 static int btrfs_check_chunk_valid(struct btrfs_root
*root
,
6303 struct extent_buffer
*leaf
,
6304 struct btrfs_chunk
*chunk
, u64 logical
)
6312 length
= btrfs_chunk_length(leaf
, chunk
);
6313 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6314 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6315 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6316 type
= btrfs_chunk_type(leaf
, chunk
);
6319 btrfs_err(root
->fs_info
, "invalid chunk num_stripes: %u",
6323 if (!IS_ALIGNED(logical
, root
->sectorsize
)) {
6324 btrfs_err(root
->fs_info
,
6325 "invalid chunk logical %llu", logical
);
6328 if (btrfs_chunk_sector_size(leaf
, chunk
) != root
->sectorsize
) {
6329 btrfs_err(root
->fs_info
, "invalid chunk sectorsize %u",
6330 btrfs_chunk_sector_size(leaf
, chunk
));
6333 if (!length
|| !IS_ALIGNED(length
, root
->sectorsize
)) {
6334 btrfs_err(root
->fs_info
,
6335 "invalid chunk length %llu", length
);
6338 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6339 btrfs_err(root
->fs_info
, "invalid chunk stripe length: %llu",
6343 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6345 btrfs_err(root
->fs_info
, "unrecognized chunk type: %llu",
6346 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6347 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6348 btrfs_chunk_type(leaf
, chunk
));
6351 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6352 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6353 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6354 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6355 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6356 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6357 num_stripes
!= 1)) {
6358 btrfs_err(root
->fs_info
,
6359 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6360 num_stripes
, sub_stripes
,
6361 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6368 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6369 struct extent_buffer
*leaf
,
6370 struct btrfs_chunk
*chunk
)
6372 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6373 struct map_lookup
*map
;
6374 struct extent_map
*em
;
6379 u8 uuid
[BTRFS_UUID_SIZE
];
6384 logical
= key
->offset
;
6385 length
= btrfs_chunk_length(leaf
, chunk
);
6386 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6387 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6389 ret
= btrfs_check_chunk_valid(root
, leaf
, chunk
, logical
);
6393 read_lock(&map_tree
->map_tree
.lock
);
6394 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6395 read_unlock(&map_tree
->map_tree
.lock
);
6397 /* already mapped? */
6398 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6399 free_extent_map(em
);
6402 free_extent_map(em
);
6405 em
= alloc_extent_map();
6408 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6410 free_extent_map(em
);
6414 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6415 em
->map_lookup
= map
;
6416 em
->start
= logical
;
6419 em
->block_start
= 0;
6420 em
->block_len
= em
->len
;
6422 map
->num_stripes
= num_stripes
;
6423 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6424 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6425 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6426 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6427 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6428 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6429 for (i
= 0; i
< num_stripes
; i
++) {
6430 map
->stripes
[i
].physical
=
6431 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6432 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6433 read_extent_buffer(leaf
, uuid
, (unsigned long)
6434 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6436 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6438 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
6439 free_extent_map(em
);
6442 if (!map
->stripes
[i
].dev
) {
6443 map
->stripes
[i
].dev
=
6444 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6446 if (!map
->stripes
[i
].dev
) {
6447 free_extent_map(em
);
6450 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU is missing",
6453 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6456 write_lock(&map_tree
->map_tree
.lock
);
6457 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6458 write_unlock(&map_tree
->map_tree
.lock
);
6459 BUG_ON(ret
); /* Tree corruption */
6460 free_extent_map(em
);
6465 static void fill_device_from_item(struct extent_buffer
*leaf
,
6466 struct btrfs_dev_item
*dev_item
,
6467 struct btrfs_device
*device
)
6471 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6472 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6473 device
->total_bytes
= device
->disk_total_bytes
;
6474 device
->commit_total_bytes
= device
->disk_total_bytes
;
6475 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6476 device
->commit_bytes_used
= device
->bytes_used
;
6477 device
->type
= btrfs_device_type(leaf
, dev_item
);
6478 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6479 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6480 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6481 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6482 device
->is_tgtdev_for_dev_replace
= 0;
6484 ptr
= btrfs_device_uuid(dev_item
);
6485 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6488 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6491 struct btrfs_fs_devices
*fs_devices
;
6494 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6496 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6497 while (fs_devices
) {
6498 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6501 fs_devices
= fs_devices
->seed
;
6504 fs_devices
= find_fsid(fsid
);
6506 if (!btrfs_test_opt(root
, DEGRADED
))
6507 return ERR_PTR(-ENOENT
);
6509 fs_devices
= alloc_fs_devices(fsid
);
6510 if (IS_ERR(fs_devices
))
6513 fs_devices
->seeding
= 1;
6514 fs_devices
->opened
= 1;
6518 fs_devices
= clone_fs_devices(fs_devices
);
6519 if (IS_ERR(fs_devices
))
6522 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6523 root
->fs_info
->bdev_holder
);
6525 free_fs_devices(fs_devices
);
6526 fs_devices
= ERR_PTR(ret
);
6530 if (!fs_devices
->seeding
) {
6531 __btrfs_close_devices(fs_devices
);
6532 free_fs_devices(fs_devices
);
6533 fs_devices
= ERR_PTR(-EINVAL
);
6537 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6538 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6543 static int read_one_dev(struct btrfs_root
*root
,
6544 struct extent_buffer
*leaf
,
6545 struct btrfs_dev_item
*dev_item
)
6547 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6548 struct btrfs_device
*device
;
6551 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6552 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6554 devid
= btrfs_device_id(leaf
, dev_item
);
6555 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6557 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6560 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6561 fs_devices
= open_seed_devices(root
, fs_uuid
);
6562 if (IS_ERR(fs_devices
))
6563 return PTR_ERR(fs_devices
);
6566 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6568 if (!btrfs_test_opt(root
, DEGRADED
))
6571 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6574 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU missing",
6577 if (!device
->bdev
&& !btrfs_test_opt(root
, DEGRADED
))
6580 if(!device
->bdev
&& !device
->missing
) {
6582 * this happens when a device that was properly setup
6583 * in the device info lists suddenly goes bad.
6584 * device->bdev is NULL, and so we have to set
6585 * device->missing to one here
6587 device
->fs_devices
->missing_devices
++;
6588 device
->missing
= 1;
6591 /* Move the device to its own fs_devices */
6592 if (device
->fs_devices
!= fs_devices
) {
6593 ASSERT(device
->missing
);
6595 list_move(&device
->dev_list
, &fs_devices
->devices
);
6596 device
->fs_devices
->num_devices
--;
6597 fs_devices
->num_devices
++;
6599 device
->fs_devices
->missing_devices
--;
6600 fs_devices
->missing_devices
++;
6602 device
->fs_devices
= fs_devices
;
6606 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6607 BUG_ON(device
->writeable
);
6608 if (device
->generation
!=
6609 btrfs_device_generation(leaf
, dev_item
))
6613 fill_device_from_item(leaf
, dev_item
, device
);
6614 device
->in_fs_metadata
= 1;
6615 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6616 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6617 spin_lock(&root
->fs_info
->free_chunk_lock
);
6618 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6620 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6626 int btrfs_read_sys_array(struct btrfs_root
*root
)
6628 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6629 struct extent_buffer
*sb
;
6630 struct btrfs_disk_key
*disk_key
;
6631 struct btrfs_chunk
*chunk
;
6633 unsigned long sb_array_offset
;
6640 struct btrfs_key key
;
6642 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6644 * This will create extent buffer of nodesize, superblock size is
6645 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6646 * overallocate but we can keep it as-is, only the first page is used.
6648 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6651 set_extent_buffer_uptodate(sb
);
6652 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6654 * The sb extent buffer is artificial and just used to read the system array.
6655 * set_extent_buffer_uptodate() call does not properly mark all it's
6656 * pages up-to-date when the page is larger: extent does not cover the
6657 * whole page and consequently check_page_uptodate does not find all
6658 * the page's extents up-to-date (the hole beyond sb),
6659 * write_extent_buffer then triggers a WARN_ON.
6661 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6662 * but sb spans only this function. Add an explicit SetPageUptodate call
6663 * to silence the warning eg. on PowerPC 64.
6665 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6666 SetPageUptodate(sb
->pages
[0]);
6668 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6669 array_size
= btrfs_super_sys_array_size(super_copy
);
6671 array_ptr
= super_copy
->sys_chunk_array
;
6672 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6675 while (cur_offset
< array_size
) {
6676 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6677 len
= sizeof(*disk_key
);
6678 if (cur_offset
+ len
> array_size
)
6679 goto out_short_read
;
6681 btrfs_disk_key_to_cpu(&key
, disk_key
);
6684 sb_array_offset
+= len
;
6687 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6688 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6690 * At least one btrfs_chunk with one stripe must be
6691 * present, exact stripe count check comes afterwards
6693 len
= btrfs_chunk_item_size(1);
6694 if (cur_offset
+ len
> array_size
)
6695 goto out_short_read
;
6697 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6700 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6701 num_stripes
, cur_offset
);
6706 type
= btrfs_chunk_type(sb
, chunk
);
6707 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6708 btrfs_err(root
->fs_info
,
6709 "invalid chunk type %llu in sys_array at offset %u",
6715 len
= btrfs_chunk_item_size(num_stripes
);
6716 if (cur_offset
+ len
> array_size
)
6717 goto out_short_read
;
6719 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6724 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6725 (u32
)key
.type
, cur_offset
);
6730 sb_array_offset
+= len
;
6733 clear_extent_buffer_uptodate(sb
);
6734 free_extent_buffer_stale(sb
);
6738 printk(KERN_ERR
"BTRFS: sys_array too short to read %u bytes at offset %u\n",
6740 clear_extent_buffer_uptodate(sb
);
6741 free_extent_buffer_stale(sb
);
6745 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6747 struct btrfs_path
*path
;
6748 struct extent_buffer
*leaf
;
6749 struct btrfs_key key
;
6750 struct btrfs_key found_key
;
6755 root
= root
->fs_info
->chunk_root
;
6757 path
= btrfs_alloc_path();
6761 mutex_lock(&uuid_mutex
);
6765 * Read all device items, and then all the chunk items. All
6766 * device items are found before any chunk item (their object id
6767 * is smaller than the lowest possible object id for a chunk
6768 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6770 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6773 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6777 leaf
= path
->nodes
[0];
6778 slot
= path
->slots
[0];
6779 if (slot
>= btrfs_header_nritems(leaf
)) {
6780 ret
= btrfs_next_leaf(root
, path
);
6787 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6788 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6789 struct btrfs_dev_item
*dev_item
;
6790 dev_item
= btrfs_item_ptr(leaf
, slot
,
6791 struct btrfs_dev_item
);
6792 ret
= read_one_dev(root
, leaf
, dev_item
);
6796 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6797 struct btrfs_chunk
*chunk
;
6798 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6799 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6807 * After loading chunk tree, we've got all device information,
6808 * do another round of validation checks.
6810 if (total_dev
!= root
->fs_info
->fs_devices
->total_devices
) {
6811 btrfs_err(root
->fs_info
,
6812 "super_num_devices %llu mismatch with num_devices %llu found here",
6813 btrfs_super_num_devices(root
->fs_info
->super_copy
),
6818 if (btrfs_super_total_bytes(root
->fs_info
->super_copy
) <
6819 root
->fs_info
->fs_devices
->total_rw_bytes
) {
6820 btrfs_err(root
->fs_info
,
6821 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6822 btrfs_super_total_bytes(root
->fs_info
->super_copy
),
6823 root
->fs_info
->fs_devices
->total_rw_bytes
);
6829 unlock_chunks(root
);
6830 mutex_unlock(&uuid_mutex
);
6832 btrfs_free_path(path
);
6836 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6838 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6839 struct btrfs_device
*device
;
6841 while (fs_devices
) {
6842 mutex_lock(&fs_devices
->device_list_mutex
);
6843 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6844 device
->dev_root
= fs_info
->dev_root
;
6845 mutex_unlock(&fs_devices
->device_list_mutex
);
6847 fs_devices
= fs_devices
->seed
;
6851 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6855 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6856 btrfs_dev_stat_reset(dev
, i
);
6859 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6861 struct btrfs_key key
;
6862 struct btrfs_key found_key
;
6863 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6864 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6865 struct extent_buffer
*eb
;
6868 struct btrfs_device
*device
;
6869 struct btrfs_path
*path
= NULL
;
6872 path
= btrfs_alloc_path();
6878 mutex_lock(&fs_devices
->device_list_mutex
);
6879 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6881 struct btrfs_dev_stats_item
*ptr
;
6883 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6884 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6885 key
.offset
= device
->devid
;
6886 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6888 __btrfs_reset_dev_stats(device
);
6889 device
->dev_stats_valid
= 1;
6890 btrfs_release_path(path
);
6893 slot
= path
->slots
[0];
6894 eb
= path
->nodes
[0];
6895 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6896 item_size
= btrfs_item_size_nr(eb
, slot
);
6898 ptr
= btrfs_item_ptr(eb
, slot
,
6899 struct btrfs_dev_stats_item
);
6901 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6902 if (item_size
>= (1 + i
) * sizeof(__le64
))
6903 btrfs_dev_stat_set(device
, i
,
6904 btrfs_dev_stats_value(eb
, ptr
, i
));
6906 btrfs_dev_stat_reset(device
, i
);
6909 device
->dev_stats_valid
= 1;
6910 btrfs_dev_stat_print_on_load(device
);
6911 btrfs_release_path(path
);
6913 mutex_unlock(&fs_devices
->device_list_mutex
);
6916 btrfs_free_path(path
);
6917 return ret
< 0 ? ret
: 0;
6920 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6921 struct btrfs_root
*dev_root
,
6922 struct btrfs_device
*device
)
6924 struct btrfs_path
*path
;
6925 struct btrfs_key key
;
6926 struct extent_buffer
*eb
;
6927 struct btrfs_dev_stats_item
*ptr
;
6931 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6932 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6933 key
.offset
= device
->devid
;
6935 path
= btrfs_alloc_path();
6937 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6939 btrfs_warn_in_rcu(dev_root
->fs_info
,
6940 "error %d while searching for dev_stats item for device %s",
6941 ret
, rcu_str_deref(device
->name
));
6946 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6947 /* need to delete old one and insert a new one */
6948 ret
= btrfs_del_item(trans
, dev_root
, path
);
6950 btrfs_warn_in_rcu(dev_root
->fs_info
,
6951 "delete too small dev_stats item for device %s failed %d",
6952 rcu_str_deref(device
->name
), ret
);
6959 /* need to insert a new item */
6960 btrfs_release_path(path
);
6961 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6962 &key
, sizeof(*ptr
));
6964 btrfs_warn_in_rcu(dev_root
->fs_info
,
6965 "insert dev_stats item for device %s failed %d",
6966 rcu_str_deref(device
->name
), ret
);
6971 eb
= path
->nodes
[0];
6972 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6973 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6974 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6975 btrfs_dev_stat_read(device
, i
));
6976 btrfs_mark_buffer_dirty(eb
);
6979 btrfs_free_path(path
);
6984 * called from commit_transaction. Writes all changed device stats to disk.
6986 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6987 struct btrfs_fs_info
*fs_info
)
6989 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6990 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6991 struct btrfs_device
*device
;
6995 mutex_lock(&fs_devices
->device_list_mutex
);
6996 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6997 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
7000 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7001 ret
= update_dev_stat_item(trans
, dev_root
, device
);
7003 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7005 mutex_unlock(&fs_devices
->device_list_mutex
);
7010 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7012 btrfs_dev_stat_inc(dev
, index
);
7013 btrfs_dev_stat_print_on_error(dev
);
7016 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7018 if (!dev
->dev_stats_valid
)
7020 btrfs_err_rl_in_rcu(dev
->dev_root
->fs_info
,
7021 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7022 rcu_str_deref(dev
->name
),
7023 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7024 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7025 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7026 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7027 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7030 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7034 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7035 if (btrfs_dev_stat_read(dev
, i
) != 0)
7037 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7038 return; /* all values == 0, suppress message */
7040 btrfs_info_in_rcu(dev
->dev_root
->fs_info
,
7041 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7042 rcu_str_deref(dev
->name
),
7043 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7044 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7045 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7046 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7047 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7050 int btrfs_get_dev_stats(struct btrfs_root
*root
,
7051 struct btrfs_ioctl_get_dev_stats
*stats
)
7053 struct btrfs_device
*dev
;
7054 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7057 mutex_lock(&fs_devices
->device_list_mutex
);
7058 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
7059 mutex_unlock(&fs_devices
->device_list_mutex
);
7062 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
7064 } else if (!dev
->dev_stats_valid
) {
7065 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
7067 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7068 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7069 if (stats
->nr_items
> i
)
7071 btrfs_dev_stat_read_and_reset(dev
, i
);
7073 btrfs_dev_stat_reset(dev
, i
);
7076 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7077 if (stats
->nr_items
> i
)
7078 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7080 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7081 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7085 void btrfs_scratch_superblocks(struct block_device
*bdev
, char *device_path
)
7087 struct buffer_head
*bh
;
7088 struct btrfs_super_block
*disk_super
;
7094 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7097 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7100 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7102 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7103 set_buffer_dirty(bh
);
7104 sync_dirty_buffer(bh
);
7108 /* Notify udev that device has changed */
7109 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7111 /* Update ctime/mtime for device path for libblkid */
7112 update_dev_time(device_path
);
7116 * Update the size of all devices, which is used for writing out the
7119 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7121 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7122 struct btrfs_device
*curr
, *next
;
7124 if (list_empty(&fs_devices
->resized_devices
))
7127 mutex_lock(&fs_devices
->device_list_mutex
);
7128 lock_chunks(fs_info
->dev_root
);
7129 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7131 list_del_init(&curr
->resized_list
);
7132 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7134 unlock_chunks(fs_info
->dev_root
);
7135 mutex_unlock(&fs_devices
->device_list_mutex
);
7138 /* Must be invoked during the transaction commit */
7139 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
7140 struct btrfs_transaction
*transaction
)
7142 struct extent_map
*em
;
7143 struct map_lookup
*map
;
7144 struct btrfs_device
*dev
;
7147 if (list_empty(&transaction
->pending_chunks
))
7150 /* In order to kick the device replace finish process */
7152 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7153 map
= em
->map_lookup
;
7155 for (i
= 0; i
< map
->num_stripes
; i
++) {
7156 dev
= map
->stripes
[i
].dev
;
7157 dev
->commit_bytes_used
= dev
->bytes_used
;
7160 unlock_chunks(root
);
7163 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7165 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7166 while (fs_devices
) {
7167 fs_devices
->fs_info
= fs_info
;
7168 fs_devices
= fs_devices
->seed
;
7172 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7174 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7175 while (fs_devices
) {
7176 fs_devices
->fs_info
= NULL
;
7177 fs_devices
= fs_devices
->seed
;