2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_root
*root
,
138 struct btrfs_device
*device
);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
140 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
143 static void btrfs_close_one_device(struct btrfs_device
*device
);
145 DEFINE_MUTEX(uuid_mutex
);
146 static LIST_HEAD(fs_uuids
);
147 struct list_head
*btrfs_get_fs_uuids(void)
152 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
154 struct btrfs_fs_devices
*fs_devs
;
156 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
158 return ERR_PTR(-ENOMEM
);
160 mutex_init(&fs_devs
->device_list_mutex
);
162 INIT_LIST_HEAD(&fs_devs
->devices
);
163 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
164 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
165 INIT_LIST_HEAD(&fs_devs
->list
);
171 * alloc_fs_devices - allocate struct btrfs_fs_devices
172 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
175 * Return: a pointer to a new &struct btrfs_fs_devices on success;
176 * ERR_PTR() on error. Returned struct is not linked onto any lists and
177 * can be destroyed with kfree() right away.
179 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
181 struct btrfs_fs_devices
*fs_devs
;
183 fs_devs
= __alloc_fs_devices();
188 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
190 generate_random_uuid(fs_devs
->fsid
);
195 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
197 struct btrfs_device
*device
;
198 WARN_ON(fs_devices
->opened
);
199 while (!list_empty(&fs_devices
->devices
)) {
200 device
= list_entry(fs_devices
->devices
.next
,
201 struct btrfs_device
, dev_list
);
202 list_del(&device
->dev_list
);
203 rcu_string_free(device
->name
);
209 static void btrfs_kobject_uevent(struct block_device
*bdev
,
210 enum kobject_action action
)
214 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
216 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
218 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
219 &disk_to_dev(bdev
->bd_disk
)->kobj
);
222 void btrfs_cleanup_fs_uuids(void)
224 struct btrfs_fs_devices
*fs_devices
;
226 while (!list_empty(&fs_uuids
)) {
227 fs_devices
= list_entry(fs_uuids
.next
,
228 struct btrfs_fs_devices
, list
);
229 list_del(&fs_devices
->list
);
230 free_fs_devices(fs_devices
);
234 static struct btrfs_device
*__alloc_device(void)
236 struct btrfs_device
*dev
;
238 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
240 return ERR_PTR(-ENOMEM
);
242 INIT_LIST_HEAD(&dev
->dev_list
);
243 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
244 INIT_LIST_HEAD(&dev
->resized_list
);
246 spin_lock_init(&dev
->io_lock
);
248 spin_lock_init(&dev
->reada_lock
);
249 atomic_set(&dev
->reada_in_flight
, 0);
250 atomic_set(&dev
->dev_stats_ccnt
, 0);
251 btrfs_device_data_ordered_init(dev
);
252 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
253 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
258 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
261 struct btrfs_device
*dev
;
263 list_for_each_entry(dev
, head
, dev_list
) {
264 if (dev
->devid
== devid
&&
265 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
272 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
274 struct btrfs_fs_devices
*fs_devices
;
276 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
277 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
284 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
285 int flush
, struct block_device
**bdev
,
286 struct buffer_head
**bh
)
290 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
293 ret
= PTR_ERR(*bdev
);
298 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
299 ret
= set_blocksize(*bdev
, 4096);
301 blkdev_put(*bdev
, flags
);
304 invalidate_bdev(*bdev
);
305 *bh
= btrfs_read_dev_super(*bdev
);
308 blkdev_put(*bdev
, flags
);
320 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
321 struct bio
*head
, struct bio
*tail
)
324 struct bio
*old_head
;
326 old_head
= pending_bios
->head
;
327 pending_bios
->head
= head
;
328 if (pending_bios
->tail
)
329 tail
->bi_next
= old_head
;
331 pending_bios
->tail
= tail
;
335 * we try to collect pending bios for a device so we don't get a large
336 * number of procs sending bios down to the same device. This greatly
337 * improves the schedulers ability to collect and merge the bios.
339 * But, it also turns into a long list of bios to process and that is sure
340 * to eventually make the worker thread block. The solution here is to
341 * make some progress and then put this work struct back at the end of
342 * the list if the block device is congested. This way, multiple devices
343 * can make progress from a single worker thread.
345 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
348 struct backing_dev_info
*bdi
;
349 struct btrfs_fs_info
*fs_info
;
350 struct btrfs_pending_bios
*pending_bios
;
354 unsigned long num_run
;
355 unsigned long batch_run
= 0;
357 unsigned long last_waited
= 0;
359 int sync_pending
= 0;
360 struct blk_plug plug
;
363 * this function runs all the bios we've collected for
364 * a particular device. We don't want to wander off to
365 * another device without first sending all of these down.
366 * So, setup a plug here and finish it off before we return
368 blk_start_plug(&plug
);
370 bdi
= blk_get_backing_dev_info(device
->bdev
);
371 fs_info
= device
->dev_root
->fs_info
;
372 limit
= btrfs_async_submit_limit(fs_info
);
373 limit
= limit
* 2 / 3;
376 spin_lock(&device
->io_lock
);
381 /* take all the bios off the list at once and process them
382 * later on (without the lock held). But, remember the
383 * tail and other pointers so the bios can be properly reinserted
384 * into the list if we hit congestion
386 if (!force_reg
&& device
->pending_sync_bios
.head
) {
387 pending_bios
= &device
->pending_sync_bios
;
390 pending_bios
= &device
->pending_bios
;
394 pending
= pending_bios
->head
;
395 tail
= pending_bios
->tail
;
396 WARN_ON(pending
&& !tail
);
399 * if pending was null this time around, no bios need processing
400 * at all and we can stop. Otherwise it'll loop back up again
401 * and do an additional check so no bios are missed.
403 * device->running_pending is used to synchronize with the
406 if (device
->pending_sync_bios
.head
== NULL
&&
407 device
->pending_bios
.head
== NULL
) {
409 device
->running_pending
= 0;
412 device
->running_pending
= 1;
415 pending_bios
->head
= NULL
;
416 pending_bios
->tail
= NULL
;
418 spin_unlock(&device
->io_lock
);
423 /* we want to work on both lists, but do more bios on the
424 * sync list than the regular list
427 pending_bios
!= &device
->pending_sync_bios
&&
428 device
->pending_sync_bios
.head
) ||
429 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
430 device
->pending_bios
.head
)) {
431 spin_lock(&device
->io_lock
);
432 requeue_list(pending_bios
, pending
, tail
);
437 pending
= pending
->bi_next
;
441 * atomic_dec_return implies a barrier for waitqueue_active
443 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
444 waitqueue_active(&fs_info
->async_submit_wait
))
445 wake_up(&fs_info
->async_submit_wait
);
447 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
450 * if we're doing the sync list, record that our
451 * plug has some sync requests on it
453 * If we're doing the regular list and there are
454 * sync requests sitting around, unplug before
457 if (pending_bios
== &device
->pending_sync_bios
) {
459 } else if (sync_pending
) {
460 blk_finish_plug(&plug
);
461 blk_start_plug(&plug
);
465 btrfsic_submit_bio(cur
->bi_rw
, cur
);
472 * we made progress, there is more work to do and the bdi
473 * is now congested. Back off and let other work structs
476 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
477 fs_info
->fs_devices
->open_devices
> 1) {
478 struct io_context
*ioc
;
480 ioc
= current
->io_context
;
483 * the main goal here is that we don't want to
484 * block if we're going to be able to submit
485 * more requests without blocking.
487 * This code does two great things, it pokes into
488 * the elevator code from a filesystem _and_
489 * it makes assumptions about how batching works.
491 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
492 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
494 ioc
->last_waited
== last_waited
)) {
496 * we want to go through our batch of
497 * requests and stop. So, we copy out
498 * the ioc->last_waited time and test
499 * against it before looping
501 last_waited
= ioc
->last_waited
;
505 spin_lock(&device
->io_lock
);
506 requeue_list(pending_bios
, pending
, tail
);
507 device
->running_pending
= 1;
509 spin_unlock(&device
->io_lock
);
510 btrfs_queue_work(fs_info
->submit_workers
,
514 /* unplug every 64 requests just for good measure */
515 if (batch_run
% 64 == 0) {
516 blk_finish_plug(&plug
);
517 blk_start_plug(&plug
);
526 spin_lock(&device
->io_lock
);
527 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
529 spin_unlock(&device
->io_lock
);
532 blk_finish_plug(&plug
);
535 static void pending_bios_fn(struct btrfs_work
*work
)
537 struct btrfs_device
*device
;
539 device
= container_of(work
, struct btrfs_device
, work
);
540 run_scheduled_bios(device
);
544 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
546 struct btrfs_fs_devices
*fs_devs
;
547 struct btrfs_device
*dev
;
552 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
557 if (fs_devs
->seeding
)
560 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
568 * Todo: This won't be enough. What if the same device
569 * comes back (with new uuid and) with its mapper path?
570 * But for now, this does help as mostly an admin will
571 * either use mapper or non mapper path throughout.
574 del
= strcmp(rcu_str_deref(dev
->name
),
575 rcu_str_deref(cur_dev
->name
));
582 /* delete the stale device */
583 if (fs_devs
->num_devices
== 1) {
584 btrfs_sysfs_remove_fsid(fs_devs
);
585 list_del(&fs_devs
->list
);
586 free_fs_devices(fs_devs
);
588 fs_devs
->num_devices
--;
589 list_del(&dev
->dev_list
);
590 rcu_string_free(dev
->name
);
599 * Add new device to list of registered devices
602 * 1 - first time device is seen
603 * 0 - device already known
606 static noinline
int device_list_add(const char *path
,
607 struct btrfs_super_block
*disk_super
,
608 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
610 struct btrfs_device
*device
;
611 struct btrfs_fs_devices
*fs_devices
;
612 struct rcu_string
*name
;
614 u64 found_transid
= btrfs_super_generation(disk_super
);
616 fs_devices
= find_fsid(disk_super
->fsid
);
618 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
619 if (IS_ERR(fs_devices
))
620 return PTR_ERR(fs_devices
);
622 list_add(&fs_devices
->list
, &fs_uuids
);
626 device
= __find_device(&fs_devices
->devices
, devid
,
627 disk_super
->dev_item
.uuid
);
631 if (fs_devices
->opened
)
634 device
= btrfs_alloc_device(NULL
, &devid
,
635 disk_super
->dev_item
.uuid
);
636 if (IS_ERR(device
)) {
637 /* we can safely leave the fs_devices entry around */
638 return PTR_ERR(device
);
641 name
= rcu_string_strdup(path
, GFP_NOFS
);
646 rcu_assign_pointer(device
->name
, name
);
648 mutex_lock(&fs_devices
->device_list_mutex
);
649 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
650 fs_devices
->num_devices
++;
651 mutex_unlock(&fs_devices
->device_list_mutex
);
654 device
->fs_devices
= fs_devices
;
655 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
664 * b. The missing-disk-which-was-replaced, has
667 * We must allow 1 and 2a above. But 2b would be a spurious
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
682 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
693 name
= rcu_string_strdup(path
, GFP_NOFS
);
696 rcu_string_free(device
->name
);
697 rcu_assign_pointer(device
->name
, name
);
698 if (device
->missing
) {
699 fs_devices
->missing_devices
--;
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
710 if (!fs_devices
->opened
)
711 device
->generation
= found_transid
;
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
718 btrfs_free_stale_device(device
);
720 *fs_devices_ret
= fs_devices
;
725 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
727 struct btrfs_fs_devices
*fs_devices
;
728 struct btrfs_device
*device
;
729 struct btrfs_device
*orig_dev
;
731 fs_devices
= alloc_fs_devices(orig
->fsid
);
732 if (IS_ERR(fs_devices
))
735 mutex_lock(&orig
->device_list_mutex
);
736 fs_devices
->total_devices
= orig
->total_devices
;
738 /* We have held the volume lock, it is safe to get the devices. */
739 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
740 struct rcu_string
*name
;
742 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
751 if (orig_dev
->name
) {
752 name
= rcu_string_strdup(orig_dev
->name
->str
,
758 rcu_assign_pointer(device
->name
, name
);
761 list_add(&device
->dev_list
, &fs_devices
->devices
);
762 device
->fs_devices
= fs_devices
;
763 fs_devices
->num_devices
++;
765 mutex_unlock(&orig
->device_list_mutex
);
768 mutex_unlock(&orig
->device_list_mutex
);
769 free_fs_devices(fs_devices
);
770 return ERR_PTR(-ENOMEM
);
773 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
775 struct btrfs_device
*device
, *next
;
776 struct btrfs_device
*latest_dev
= NULL
;
778 mutex_lock(&uuid_mutex
);
780 /* This is the initialized path, it is safe to release the devices. */
781 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
782 if (device
->in_fs_metadata
) {
783 if (!device
->is_tgtdev_for_dev_replace
&&
785 device
->generation
> latest_dev
->generation
)) {
791 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
802 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
807 blkdev_put(device
->bdev
, device
->mode
);
809 fs_devices
->open_devices
--;
811 if (device
->writeable
) {
812 list_del_init(&device
->dev_alloc_list
);
813 device
->writeable
= 0;
814 if (!device
->is_tgtdev_for_dev_replace
)
815 fs_devices
->rw_devices
--;
817 list_del_init(&device
->dev_list
);
818 fs_devices
->num_devices
--;
819 rcu_string_free(device
->name
);
823 if (fs_devices
->seed
) {
824 fs_devices
= fs_devices
->seed
;
828 fs_devices
->latest_bdev
= latest_dev
->bdev
;
830 mutex_unlock(&uuid_mutex
);
833 static void __free_device(struct work_struct
*work
)
835 struct btrfs_device
*device
;
837 device
= container_of(work
, struct btrfs_device
, rcu_work
);
840 blkdev_put(device
->bdev
, device
->mode
);
842 rcu_string_free(device
->name
);
846 static void free_device(struct rcu_head
*head
)
848 struct btrfs_device
*device
;
850 device
= container_of(head
, struct btrfs_device
, rcu
);
852 INIT_WORK(&device
->rcu_work
, __free_device
);
853 schedule_work(&device
->rcu_work
);
856 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
858 struct btrfs_device
*device
, *tmp
;
860 if (--fs_devices
->opened
> 0)
863 mutex_lock(&fs_devices
->device_list_mutex
);
864 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
865 btrfs_close_one_device(device
);
867 mutex_unlock(&fs_devices
->device_list_mutex
);
869 WARN_ON(fs_devices
->open_devices
);
870 WARN_ON(fs_devices
->rw_devices
);
871 fs_devices
->opened
= 0;
872 fs_devices
->seeding
= 0;
877 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
879 struct btrfs_fs_devices
*seed_devices
= NULL
;
882 mutex_lock(&uuid_mutex
);
883 ret
= __btrfs_close_devices(fs_devices
);
884 if (!fs_devices
->opened
) {
885 seed_devices
= fs_devices
->seed
;
886 fs_devices
->seed
= NULL
;
888 mutex_unlock(&uuid_mutex
);
890 while (seed_devices
) {
891 fs_devices
= seed_devices
;
892 seed_devices
= fs_devices
->seed
;
893 __btrfs_close_devices(fs_devices
);
894 free_fs_devices(fs_devices
);
897 * Wait for rcu kworkers under __btrfs_close_devices
898 * to finish all blkdev_puts so device is really
899 * free when umount is done.
905 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
906 fmode_t flags
, void *holder
)
908 struct request_queue
*q
;
909 struct block_device
*bdev
;
910 struct list_head
*head
= &fs_devices
->devices
;
911 struct btrfs_device
*device
;
912 struct btrfs_device
*latest_dev
= NULL
;
913 struct buffer_head
*bh
;
914 struct btrfs_super_block
*disk_super
;
921 list_for_each_entry(device
, head
, dev_list
) {
927 /* Just open everything we can; ignore failures here */
928 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
932 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
933 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
934 if (devid
!= device
->devid
)
937 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
941 device
->generation
= btrfs_super_generation(disk_super
);
943 device
->generation
> latest_dev
->generation
)
946 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
947 device
->writeable
= 0;
949 device
->writeable
= !bdev_read_only(bdev
);
953 q
= bdev_get_queue(bdev
);
954 if (blk_queue_discard(q
))
955 device
->can_discard
= 1;
958 device
->in_fs_metadata
= 0;
959 device
->mode
= flags
;
961 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
962 fs_devices
->rotating
= 1;
964 fs_devices
->open_devices
++;
965 if (device
->writeable
&&
966 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
967 fs_devices
->rw_devices
++;
968 list_add(&device
->dev_alloc_list
,
969 &fs_devices
->alloc_list
);
976 blkdev_put(bdev
, flags
);
979 if (fs_devices
->open_devices
== 0) {
983 fs_devices
->seeding
= seeding
;
984 fs_devices
->opened
= 1;
985 fs_devices
->latest_bdev
= latest_dev
->bdev
;
986 fs_devices
->total_rw_bytes
= 0;
991 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
992 fmode_t flags
, void *holder
)
996 mutex_lock(&uuid_mutex
);
997 if (fs_devices
->opened
) {
998 fs_devices
->opened
++;
1001 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1003 mutex_unlock(&uuid_mutex
);
1007 void btrfs_release_disk_super(struct page
*page
)
1013 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1014 struct page
**page
, struct btrfs_super_block
**disk_super
)
1019 /* make sure our super fits in the device */
1020 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1023 /* make sure our super fits in the page */
1024 if (sizeof(**disk_super
) > PAGE_SIZE
)
1027 /* make sure our super doesn't straddle pages on disk */
1028 index
= bytenr
>> PAGE_SHIFT
;
1029 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1032 /* pull in the page with our super */
1033 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1036 if (IS_ERR_OR_NULL(*page
))
1041 /* align our pointer to the offset of the super block */
1042 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1044 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1045 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1046 btrfs_release_disk_super(*page
);
1050 if ((*disk_super
)->label
[0] &&
1051 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1052 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1058 * Look for a btrfs signature on a device. This may be called out of the mount path
1059 * and we are not allowed to call set_blocksize during the scan. The superblock
1060 * is read via pagecache
1062 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1063 struct btrfs_fs_devices
**fs_devices_ret
)
1065 struct btrfs_super_block
*disk_super
;
1066 struct block_device
*bdev
;
1075 * we would like to check all the supers, but that would make
1076 * a btrfs mount succeed after a mkfs from a different FS.
1077 * So, we need to add a special mount option to scan for
1078 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1080 bytenr
= btrfs_sb_offset(0);
1081 flags
|= FMODE_EXCL
;
1082 mutex_lock(&uuid_mutex
);
1084 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1086 ret
= PTR_ERR(bdev
);
1090 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1091 goto error_bdev_put
;
1093 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1094 transid
= btrfs_super_generation(disk_super
);
1095 total_devices
= btrfs_super_num_devices(disk_super
);
1097 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1099 if (disk_super
->label
[0]) {
1100 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
1102 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
1105 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
1108 if (!ret
&& fs_devices_ret
)
1109 (*fs_devices_ret
)->total_devices
= total_devices
;
1111 btrfs_release_disk_super(page
);
1114 blkdev_put(bdev
, flags
);
1116 mutex_unlock(&uuid_mutex
);
1120 /* helper to account the used device space in the range */
1121 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1122 u64 end
, u64
*length
)
1124 struct btrfs_key key
;
1125 struct btrfs_root
*root
= device
->dev_root
;
1126 struct btrfs_dev_extent
*dev_extent
;
1127 struct btrfs_path
*path
;
1131 struct extent_buffer
*l
;
1135 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1138 path
= btrfs_alloc_path();
1141 path
->reada
= READA_FORWARD
;
1143 key
.objectid
= device
->devid
;
1145 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1147 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1151 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1158 slot
= path
->slots
[0];
1159 if (slot
>= btrfs_header_nritems(l
)) {
1160 ret
= btrfs_next_leaf(root
, path
);
1168 btrfs_item_key_to_cpu(l
, &key
, slot
);
1170 if (key
.objectid
< device
->devid
)
1173 if (key
.objectid
> device
->devid
)
1176 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1179 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1180 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1182 if (key
.offset
<= start
&& extent_end
> end
) {
1183 *length
= end
- start
+ 1;
1185 } else if (key
.offset
<= start
&& extent_end
> start
)
1186 *length
+= extent_end
- start
;
1187 else if (key
.offset
> start
&& extent_end
<= end
)
1188 *length
+= extent_end
- key
.offset
;
1189 else if (key
.offset
> start
&& key
.offset
<= end
) {
1190 *length
+= end
- key
.offset
+ 1;
1192 } else if (key
.offset
> end
)
1200 btrfs_free_path(path
);
1204 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1205 struct btrfs_device
*device
,
1206 u64
*start
, u64 len
)
1208 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
1209 struct extent_map
*em
;
1210 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1212 u64 physical_start
= *start
;
1215 search_list
= &transaction
->pending_chunks
;
1217 list_for_each_entry(em
, search_list
, list
) {
1218 struct map_lookup
*map
;
1221 map
= em
->map_lookup
;
1222 for (i
= 0; i
< map
->num_stripes
; i
++) {
1225 if (map
->stripes
[i
].dev
!= device
)
1227 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1228 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1232 * Make sure that while processing the pinned list we do
1233 * not override our *start with a lower value, because
1234 * we can have pinned chunks that fall within this
1235 * device hole and that have lower physical addresses
1236 * than the pending chunks we processed before. If we
1237 * do not take this special care we can end up getting
1238 * 2 pending chunks that start at the same physical
1239 * device offsets because the end offset of a pinned
1240 * chunk can be equal to the start offset of some
1243 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1250 if (search_list
!= &fs_info
->pinned_chunks
) {
1251 search_list
= &fs_info
->pinned_chunks
;
1260 * find_free_dev_extent_start - find free space in the specified device
1261 * @device: the device which we search the free space in
1262 * @num_bytes: the size of the free space that we need
1263 * @search_start: the position from which to begin the search
1264 * @start: store the start of the free space.
1265 * @len: the size of the free space. that we find, or the size
1266 * of the max free space if we don't find suitable free space
1268 * this uses a pretty simple search, the expectation is that it is
1269 * called very infrequently and that a given device has a small number
1272 * @start is used to store the start of the free space if we find. But if we
1273 * don't find suitable free space, it will be used to store the start position
1274 * of the max free space.
1276 * @len is used to store the size of the free space that we find.
1277 * But if we don't find suitable free space, it is used to store the size of
1278 * the max free space.
1280 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1281 struct btrfs_device
*device
, u64 num_bytes
,
1282 u64 search_start
, u64
*start
, u64
*len
)
1284 struct btrfs_key key
;
1285 struct btrfs_root
*root
= device
->dev_root
;
1286 struct btrfs_dev_extent
*dev_extent
;
1287 struct btrfs_path
*path
;
1292 u64 search_end
= device
->total_bytes
;
1295 struct extent_buffer
*l
;
1296 u64 min_search_start
;
1299 * We don't want to overwrite the superblock on the drive nor any area
1300 * used by the boot loader (grub for example), so we make sure to start
1301 * at an offset of at least 1MB.
1303 min_search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1304 search_start
= max(search_start
, min_search_start
);
1306 path
= btrfs_alloc_path();
1310 max_hole_start
= search_start
;
1314 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1319 path
->reada
= READA_FORWARD
;
1320 path
->search_commit_root
= 1;
1321 path
->skip_locking
= 1;
1323 key
.objectid
= device
->devid
;
1324 key
.offset
= search_start
;
1325 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1327 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1331 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1338 slot
= path
->slots
[0];
1339 if (slot
>= btrfs_header_nritems(l
)) {
1340 ret
= btrfs_next_leaf(root
, path
);
1348 btrfs_item_key_to_cpu(l
, &key
, slot
);
1350 if (key
.objectid
< device
->devid
)
1353 if (key
.objectid
> device
->devid
)
1356 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1359 if (key
.offset
> search_start
) {
1360 hole_size
= key
.offset
- search_start
;
1363 * Have to check before we set max_hole_start, otherwise
1364 * we could end up sending back this offset anyway.
1366 if (contains_pending_extent(transaction
, device
,
1369 if (key
.offset
>= search_start
) {
1370 hole_size
= key
.offset
- search_start
;
1377 if (hole_size
> max_hole_size
) {
1378 max_hole_start
= search_start
;
1379 max_hole_size
= hole_size
;
1383 * If this free space is greater than which we need,
1384 * it must be the max free space that we have found
1385 * until now, so max_hole_start must point to the start
1386 * of this free space and the length of this free space
1387 * is stored in max_hole_size. Thus, we return
1388 * max_hole_start and max_hole_size and go back to the
1391 if (hole_size
>= num_bytes
) {
1397 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1398 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1400 if (extent_end
> search_start
)
1401 search_start
= extent_end
;
1408 * At this point, search_start should be the end of
1409 * allocated dev extents, and when shrinking the device,
1410 * search_end may be smaller than search_start.
1412 if (search_end
> search_start
) {
1413 hole_size
= search_end
- search_start
;
1415 if (contains_pending_extent(transaction
, device
, &search_start
,
1417 btrfs_release_path(path
);
1421 if (hole_size
> max_hole_size
) {
1422 max_hole_start
= search_start
;
1423 max_hole_size
= hole_size
;
1428 if (max_hole_size
< num_bytes
)
1434 btrfs_free_path(path
);
1435 *start
= max_hole_start
;
1437 *len
= max_hole_size
;
1441 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1442 struct btrfs_device
*device
, u64 num_bytes
,
1443 u64
*start
, u64
*len
)
1445 /* FIXME use last free of some kind */
1446 return find_free_dev_extent_start(trans
->transaction
, device
,
1447 num_bytes
, 0, start
, len
);
1450 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1451 struct btrfs_device
*device
,
1452 u64 start
, u64
*dev_extent_len
)
1455 struct btrfs_path
*path
;
1456 struct btrfs_root
*root
= device
->dev_root
;
1457 struct btrfs_key key
;
1458 struct btrfs_key found_key
;
1459 struct extent_buffer
*leaf
= NULL
;
1460 struct btrfs_dev_extent
*extent
= NULL
;
1462 path
= btrfs_alloc_path();
1466 key
.objectid
= device
->devid
;
1468 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1470 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1472 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1473 BTRFS_DEV_EXTENT_KEY
);
1476 leaf
= path
->nodes
[0];
1477 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1478 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1479 struct btrfs_dev_extent
);
1480 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1481 btrfs_dev_extent_length(leaf
, extent
) < start
);
1483 btrfs_release_path(path
);
1485 } else if (ret
== 0) {
1486 leaf
= path
->nodes
[0];
1487 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1488 struct btrfs_dev_extent
);
1490 btrfs_handle_fs_error(root
->fs_info
, ret
, "Slot search failed");
1494 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1496 ret
= btrfs_del_item(trans
, root
, path
);
1498 btrfs_handle_fs_error(root
->fs_info
, ret
,
1499 "Failed to remove dev extent item");
1501 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1504 btrfs_free_path(path
);
1508 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1509 struct btrfs_device
*device
,
1510 u64 chunk_tree
, u64 chunk_objectid
,
1511 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1514 struct btrfs_path
*path
;
1515 struct btrfs_root
*root
= device
->dev_root
;
1516 struct btrfs_dev_extent
*extent
;
1517 struct extent_buffer
*leaf
;
1518 struct btrfs_key key
;
1520 WARN_ON(!device
->in_fs_metadata
);
1521 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1522 path
= btrfs_alloc_path();
1526 key
.objectid
= device
->devid
;
1528 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1529 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1534 leaf
= path
->nodes
[0];
1535 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1536 struct btrfs_dev_extent
);
1537 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1538 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1539 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1541 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1542 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1544 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1545 btrfs_mark_buffer_dirty(leaf
);
1547 btrfs_free_path(path
);
1551 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1553 struct extent_map_tree
*em_tree
;
1554 struct extent_map
*em
;
1558 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1559 read_lock(&em_tree
->lock
);
1560 n
= rb_last(&em_tree
->map
);
1562 em
= rb_entry(n
, struct extent_map
, rb_node
);
1563 ret
= em
->start
+ em
->len
;
1565 read_unlock(&em_tree
->lock
);
1570 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1574 struct btrfs_key key
;
1575 struct btrfs_key found_key
;
1576 struct btrfs_path
*path
;
1578 path
= btrfs_alloc_path();
1582 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1583 key
.type
= BTRFS_DEV_ITEM_KEY
;
1584 key
.offset
= (u64
)-1;
1586 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1590 BUG_ON(ret
== 0); /* Corruption */
1592 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1593 BTRFS_DEV_ITEMS_OBJECTID
,
1594 BTRFS_DEV_ITEM_KEY
);
1598 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1600 *devid_ret
= found_key
.offset
+ 1;
1604 btrfs_free_path(path
);
1609 * the device information is stored in the chunk root
1610 * the btrfs_device struct should be fully filled in
1612 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1613 struct btrfs_root
*root
,
1614 struct btrfs_device
*device
)
1617 struct btrfs_path
*path
;
1618 struct btrfs_dev_item
*dev_item
;
1619 struct extent_buffer
*leaf
;
1620 struct btrfs_key key
;
1623 root
= root
->fs_info
->chunk_root
;
1625 path
= btrfs_alloc_path();
1629 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1630 key
.type
= BTRFS_DEV_ITEM_KEY
;
1631 key
.offset
= device
->devid
;
1633 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1638 leaf
= path
->nodes
[0];
1639 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1641 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1642 btrfs_set_device_generation(leaf
, dev_item
, 0);
1643 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1644 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1645 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1646 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1647 btrfs_set_device_total_bytes(leaf
, dev_item
,
1648 btrfs_device_get_disk_total_bytes(device
));
1649 btrfs_set_device_bytes_used(leaf
, dev_item
,
1650 btrfs_device_get_bytes_used(device
));
1651 btrfs_set_device_group(leaf
, dev_item
, 0);
1652 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1653 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1654 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1656 ptr
= btrfs_device_uuid(dev_item
);
1657 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1658 ptr
= btrfs_device_fsid(dev_item
);
1659 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1660 btrfs_mark_buffer_dirty(leaf
);
1664 btrfs_free_path(path
);
1669 * Function to update ctime/mtime for a given device path.
1670 * Mainly used for ctime/mtime based probe like libblkid.
1672 static void update_dev_time(char *path_name
)
1676 filp
= filp_open(path_name
, O_RDWR
, 0);
1679 file_update_time(filp
);
1680 filp_close(filp
, NULL
);
1683 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1684 struct btrfs_device
*device
)
1687 struct btrfs_path
*path
;
1688 struct btrfs_key key
;
1689 struct btrfs_trans_handle
*trans
;
1691 root
= root
->fs_info
->chunk_root
;
1693 path
= btrfs_alloc_path();
1697 trans
= btrfs_start_transaction(root
, 0);
1698 if (IS_ERR(trans
)) {
1699 btrfs_free_path(path
);
1700 return PTR_ERR(trans
);
1702 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1703 key
.type
= BTRFS_DEV_ITEM_KEY
;
1704 key
.offset
= device
->devid
;
1706 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1715 ret
= btrfs_del_item(trans
, root
, path
);
1719 btrfs_free_path(path
);
1720 btrfs_commit_transaction(trans
, root
);
1725 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1726 * filesystem. It's up to the caller to adjust that number regarding eg. device
1729 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1737 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1739 all_avail
= fs_info
->avail_data_alloc_bits
|
1740 fs_info
->avail_system_alloc_bits
|
1741 fs_info
->avail_metadata_alloc_bits
;
1742 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1744 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1745 if (!(all_avail
& btrfs_raid_group
[i
]))
1748 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1749 int ret
= btrfs_raid_mindev_error
[i
];
1759 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1760 struct btrfs_device
*device
)
1762 struct btrfs_device
*next_device
;
1764 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1765 if (next_device
!= device
&&
1766 !next_device
->missing
&& next_device
->bdev
)
1774 * Helper function to check if the given device is part of s_bdev / latest_bdev
1775 * and replace it with the provided or the next active device, in the context
1776 * where this function called, there should be always be another device (or
1777 * this_dev) which is active.
1779 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1780 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1782 struct btrfs_device
*next_device
;
1785 next_device
= this_dev
;
1787 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1789 ASSERT(next_device
);
1791 if (fs_info
->sb
->s_bdev
&&
1792 (fs_info
->sb
->s_bdev
== device
->bdev
))
1793 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1795 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1796 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1799 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
, u64 devid
)
1801 struct btrfs_device
*device
;
1802 struct btrfs_fs_devices
*cur_devices
;
1805 bool clear_super
= false;
1806 char *dev_name
= NULL
;
1808 mutex_lock(&uuid_mutex
);
1810 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1811 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
, 0);
1812 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1813 WARN_ON(num_devices
< 1);
1816 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
, 0);
1818 ret
= btrfs_check_raid_min_devices(root
->fs_info
, num_devices
- 1);
1822 ret
= btrfs_find_device_by_devspec(root
, devid
, device_path
,
1827 if (device
->is_tgtdev_for_dev_replace
) {
1828 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1832 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1833 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1837 if (device
->writeable
) {
1839 list_del_init(&device
->dev_alloc_list
);
1840 device
->fs_devices
->rw_devices
--;
1841 unlock_chunks(root
);
1842 dev_name
= kstrdup(device
->name
->str
, GFP_KERNEL
);
1850 mutex_unlock(&uuid_mutex
);
1851 ret
= btrfs_shrink_device(device
, 0);
1852 mutex_lock(&uuid_mutex
);
1857 * TODO: the superblock still includes this device in its num_devices
1858 * counter although write_all_supers() is not locked out. This
1859 * could give a filesystem state which requires a degraded mount.
1861 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1865 device
->in_fs_metadata
= 0;
1866 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1869 * the device list mutex makes sure that we don't change
1870 * the device list while someone else is writing out all
1871 * the device supers. Whoever is writing all supers, should
1872 * lock the device list mutex before getting the number of
1873 * devices in the super block (super_copy). Conversely,
1874 * whoever updates the number of devices in the super block
1875 * (super_copy) should hold the device list mutex.
1878 cur_devices
= device
->fs_devices
;
1879 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1880 list_del_rcu(&device
->dev_list
);
1882 device
->fs_devices
->num_devices
--;
1883 device
->fs_devices
->total_devices
--;
1885 if (device
->missing
)
1886 device
->fs_devices
->missing_devices
--;
1888 btrfs_assign_next_active_device(root
->fs_info
, device
, NULL
);
1891 device
->fs_devices
->open_devices
--;
1892 /* remove sysfs entry */
1893 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
1896 call_rcu(&device
->rcu
, free_device
);
1898 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1899 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1900 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1902 if (cur_devices
->open_devices
== 0) {
1903 struct btrfs_fs_devices
*fs_devices
;
1904 fs_devices
= root
->fs_info
->fs_devices
;
1905 while (fs_devices
) {
1906 if (fs_devices
->seed
== cur_devices
) {
1907 fs_devices
->seed
= cur_devices
->seed
;
1910 fs_devices
= fs_devices
->seed
;
1912 cur_devices
->seed
= NULL
;
1913 __btrfs_close_devices(cur_devices
);
1914 free_fs_devices(cur_devices
);
1917 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1918 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1921 * at this point, the device is zero sized. We want to
1922 * remove it from the devices list and zero out the old super
1925 struct block_device
*bdev
;
1927 bdev
= blkdev_get_by_path(dev_name
, FMODE_READ
| FMODE_EXCL
,
1928 root
->fs_info
->bdev_holder
);
1929 if (!IS_ERR(bdev
)) {
1930 btrfs_scratch_superblocks(bdev
, dev_name
);
1931 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1938 mutex_unlock(&uuid_mutex
);
1942 if (device
->writeable
) {
1944 list_add(&device
->dev_alloc_list
,
1945 &root
->fs_info
->fs_devices
->alloc_list
);
1946 device
->fs_devices
->rw_devices
++;
1947 unlock_chunks(root
);
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1953 struct btrfs_device
*srcdev
)
1955 struct btrfs_fs_devices
*fs_devices
;
1957 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1960 * in case of fs with no seed, srcdev->fs_devices will point
1961 * to fs_devices of fs_info. However when the dev being replaced is
1962 * a seed dev it will point to the seed's local fs_devices. In short
1963 * srcdev will have its correct fs_devices in both the cases.
1965 fs_devices
= srcdev
->fs_devices
;
1967 list_del_rcu(&srcdev
->dev_list
);
1968 list_del_rcu(&srcdev
->dev_alloc_list
);
1969 fs_devices
->num_devices
--;
1970 if (srcdev
->missing
)
1971 fs_devices
->missing_devices
--;
1973 if (srcdev
->writeable
)
1974 fs_devices
->rw_devices
--;
1977 fs_devices
->open_devices
--;
1980 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
1981 struct btrfs_device
*srcdev
)
1983 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
1985 if (srcdev
->writeable
) {
1986 /* zero out the old super if it is writable */
1987 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
1989 call_rcu(&srcdev
->rcu
, free_device
);
1992 * unless fs_devices is seed fs, num_devices shouldn't go
1995 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
1997 /* if this is no devs we rather delete the fs_devices */
1998 if (!fs_devices
->num_devices
) {
1999 struct btrfs_fs_devices
*tmp_fs_devices
;
2001 tmp_fs_devices
= fs_info
->fs_devices
;
2002 while (tmp_fs_devices
) {
2003 if (tmp_fs_devices
->seed
== fs_devices
) {
2004 tmp_fs_devices
->seed
= fs_devices
->seed
;
2007 tmp_fs_devices
= tmp_fs_devices
->seed
;
2009 fs_devices
->seed
= NULL
;
2010 __btrfs_close_devices(fs_devices
);
2011 free_fs_devices(fs_devices
);
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2016 struct btrfs_device
*tgtdev
)
2018 mutex_lock(&uuid_mutex
);
2020 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2022 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2025 fs_info
->fs_devices
->open_devices
--;
2027 fs_info
->fs_devices
->num_devices
--;
2029 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2031 list_del_rcu(&tgtdev
->dev_list
);
2033 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2034 mutex_unlock(&uuid_mutex
);
2037 * The update_dev_time() with in btrfs_scratch_superblocks()
2038 * may lead to a call to btrfs_show_devname() which will try
2039 * to hold device_list_mutex. And here this device
2040 * is already out of device list, so we don't have to hold
2041 * the device_list_mutex lock.
2043 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2044 call_rcu(&tgtdev
->rcu
, free_device
);
2047 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
2048 struct btrfs_device
**device
)
2051 struct btrfs_super_block
*disk_super
;
2054 struct block_device
*bdev
;
2055 struct buffer_head
*bh
;
2058 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2059 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2062 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2063 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2064 dev_uuid
= disk_super
->dev_item
.uuid
;
2065 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2070 blkdev_put(bdev
, FMODE_READ
);
2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
2076 struct btrfs_device
**device
)
2079 if (strcmp(device_path
, "missing") == 0) {
2080 struct list_head
*devices
;
2081 struct btrfs_device
*tmp
;
2083 devices
= &root
->fs_info
->fs_devices
->devices
;
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2088 list_for_each_entry(tmp
, devices
, dev_list
) {
2089 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2100 return btrfs_find_device_by_path(root
, device_path
, device
);
2105 * Lookup a device given by device id, or the path if the id is 0.
2107 int btrfs_find_device_by_devspec(struct btrfs_root
*root
, u64 devid
,
2109 struct btrfs_device
**device
)
2115 *device
= btrfs_find_device(root
->fs_info
, devid
, NULL
,
2120 if (!devpath
|| !devpath
[0])
2123 ret
= btrfs_find_device_missing_or_by_path(root
, devpath
,
2130 * does all the dirty work required for changing file system's UUID.
2132 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
2134 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2135 struct btrfs_fs_devices
*old_devices
;
2136 struct btrfs_fs_devices
*seed_devices
;
2137 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
2138 struct btrfs_device
*device
;
2141 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2142 if (!fs_devices
->seeding
)
2145 seed_devices
= __alloc_fs_devices();
2146 if (IS_ERR(seed_devices
))
2147 return PTR_ERR(seed_devices
);
2149 old_devices
= clone_fs_devices(fs_devices
);
2150 if (IS_ERR(old_devices
)) {
2151 kfree(seed_devices
);
2152 return PTR_ERR(old_devices
);
2155 list_add(&old_devices
->list
, &fs_uuids
);
2157 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2158 seed_devices
->opened
= 1;
2159 INIT_LIST_HEAD(&seed_devices
->devices
);
2160 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2161 mutex_init(&seed_devices
->device_list_mutex
);
2163 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2164 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2166 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2167 device
->fs_devices
= seed_devices
;
2170 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2171 unlock_chunks(root
);
2173 fs_devices
->seeding
= 0;
2174 fs_devices
->num_devices
= 0;
2175 fs_devices
->open_devices
= 0;
2176 fs_devices
->missing_devices
= 0;
2177 fs_devices
->rotating
= 0;
2178 fs_devices
->seed
= seed_devices
;
2180 generate_random_uuid(fs_devices
->fsid
);
2181 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2182 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2183 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2185 super_flags
= btrfs_super_flags(disk_super
) &
2186 ~BTRFS_SUPER_FLAG_SEEDING
;
2187 btrfs_set_super_flags(disk_super
, super_flags
);
2193 * Store the expected generation for seed devices in device items.
2195 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2196 struct btrfs_root
*root
)
2198 struct btrfs_path
*path
;
2199 struct extent_buffer
*leaf
;
2200 struct btrfs_dev_item
*dev_item
;
2201 struct btrfs_device
*device
;
2202 struct btrfs_key key
;
2203 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2204 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2208 path
= btrfs_alloc_path();
2212 root
= root
->fs_info
->chunk_root
;
2213 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2215 key
.type
= BTRFS_DEV_ITEM_KEY
;
2218 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2222 leaf
= path
->nodes
[0];
2224 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2225 ret
= btrfs_next_leaf(root
, path
);
2230 leaf
= path
->nodes
[0];
2231 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2232 btrfs_release_path(path
);
2236 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2237 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2238 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2241 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2242 struct btrfs_dev_item
);
2243 devid
= btrfs_device_id(leaf
, dev_item
);
2244 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2246 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2248 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2250 BUG_ON(!device
); /* Logic error */
2252 if (device
->fs_devices
->seeding
) {
2253 btrfs_set_device_generation(leaf
, dev_item
,
2254 device
->generation
);
2255 btrfs_mark_buffer_dirty(leaf
);
2263 btrfs_free_path(path
);
2267 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2269 struct request_queue
*q
;
2270 struct btrfs_trans_handle
*trans
;
2271 struct btrfs_device
*device
;
2272 struct block_device
*bdev
;
2273 struct list_head
*devices
;
2274 struct super_block
*sb
= root
->fs_info
->sb
;
2275 struct rcu_string
*name
;
2277 int seeding_dev
= 0;
2280 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2283 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2284 root
->fs_info
->bdev_holder
);
2286 return PTR_ERR(bdev
);
2288 if (root
->fs_info
->fs_devices
->seeding
) {
2290 down_write(&sb
->s_umount
);
2291 mutex_lock(&uuid_mutex
);
2294 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2296 devices
= &root
->fs_info
->fs_devices
->devices
;
2298 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2299 list_for_each_entry(device
, devices
, dev_list
) {
2300 if (device
->bdev
== bdev
) {
2303 &root
->fs_info
->fs_devices
->device_list_mutex
);
2307 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2309 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2310 if (IS_ERR(device
)) {
2311 /* we can safely leave the fs_devices entry around */
2312 ret
= PTR_ERR(device
);
2316 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2322 rcu_assign_pointer(device
->name
, name
);
2324 trans
= btrfs_start_transaction(root
, 0);
2325 if (IS_ERR(trans
)) {
2326 rcu_string_free(device
->name
);
2328 ret
= PTR_ERR(trans
);
2332 q
= bdev_get_queue(bdev
);
2333 if (blk_queue_discard(q
))
2334 device
->can_discard
= 1;
2335 device
->writeable
= 1;
2336 device
->generation
= trans
->transid
;
2337 device
->io_width
= root
->sectorsize
;
2338 device
->io_align
= root
->sectorsize
;
2339 device
->sector_size
= root
->sectorsize
;
2340 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2341 device
->disk_total_bytes
= device
->total_bytes
;
2342 device
->commit_total_bytes
= device
->total_bytes
;
2343 device
->dev_root
= root
->fs_info
->dev_root
;
2344 device
->bdev
= bdev
;
2345 device
->in_fs_metadata
= 1;
2346 device
->is_tgtdev_for_dev_replace
= 0;
2347 device
->mode
= FMODE_EXCL
;
2348 device
->dev_stats_valid
= 1;
2349 set_blocksize(device
->bdev
, 4096);
2352 sb
->s_flags
&= ~MS_RDONLY
;
2353 ret
= btrfs_prepare_sprout(root
);
2354 BUG_ON(ret
); /* -ENOMEM */
2357 device
->fs_devices
= root
->fs_info
->fs_devices
;
2359 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2361 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2362 list_add(&device
->dev_alloc_list
,
2363 &root
->fs_info
->fs_devices
->alloc_list
);
2364 root
->fs_info
->fs_devices
->num_devices
++;
2365 root
->fs_info
->fs_devices
->open_devices
++;
2366 root
->fs_info
->fs_devices
->rw_devices
++;
2367 root
->fs_info
->fs_devices
->total_devices
++;
2368 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2370 spin_lock(&root
->fs_info
->free_chunk_lock
);
2371 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2372 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2374 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2375 root
->fs_info
->fs_devices
->rotating
= 1;
2377 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2378 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2379 tmp
+ device
->total_bytes
);
2381 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2382 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2385 /* add sysfs device entry */
2386 btrfs_sysfs_add_device_link(root
->fs_info
->fs_devices
, device
);
2389 * we've got more storage, clear any full flags on the space
2392 btrfs_clear_space_info_full(root
->fs_info
);
2394 unlock_chunks(root
);
2395 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2399 ret
= init_first_rw_device(trans
, root
, device
);
2400 unlock_chunks(root
);
2402 btrfs_abort_transaction(trans
, root
, ret
);
2407 ret
= btrfs_add_device(trans
, root
, device
);
2409 btrfs_abort_transaction(trans
, root
, ret
);
2414 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2416 ret
= btrfs_finish_sprout(trans
, root
);
2418 btrfs_abort_transaction(trans
, root
, ret
);
2422 /* Sprouting would change fsid of the mounted root,
2423 * so rename the fsid on the sysfs
2425 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2426 root
->fs_info
->fsid
);
2427 if (kobject_rename(&root
->fs_info
->fs_devices
->fsid_kobj
,
2429 btrfs_warn(root
->fs_info
,
2430 "sysfs: failed to create fsid for sprout");
2433 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2434 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2435 ret
= btrfs_commit_transaction(trans
, root
);
2438 mutex_unlock(&uuid_mutex
);
2439 up_write(&sb
->s_umount
);
2441 if (ret
) /* transaction commit */
2444 ret
= btrfs_relocate_sys_chunks(root
);
2446 btrfs_handle_fs_error(root
->fs_info
, ret
,
2447 "Failed to relocate sys chunks after "
2448 "device initialization. This can be fixed "
2449 "using the \"btrfs balance\" command.");
2450 trans
= btrfs_attach_transaction(root
);
2451 if (IS_ERR(trans
)) {
2452 if (PTR_ERR(trans
) == -ENOENT
)
2454 return PTR_ERR(trans
);
2456 ret
= btrfs_commit_transaction(trans
, root
);
2459 /* Update ctime/mtime for libblkid */
2460 update_dev_time(device_path
);
2464 btrfs_end_transaction(trans
, root
);
2465 rcu_string_free(device
->name
);
2466 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
2469 blkdev_put(bdev
, FMODE_EXCL
);
2471 mutex_unlock(&uuid_mutex
);
2472 up_write(&sb
->s_umount
);
2477 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2478 struct btrfs_device
*srcdev
,
2479 struct btrfs_device
**device_out
)
2481 struct request_queue
*q
;
2482 struct btrfs_device
*device
;
2483 struct block_device
*bdev
;
2484 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2485 struct list_head
*devices
;
2486 struct rcu_string
*name
;
2487 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2491 if (fs_info
->fs_devices
->seeding
) {
2492 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2496 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2497 fs_info
->bdev_holder
);
2499 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2500 return PTR_ERR(bdev
);
2503 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2505 devices
= &fs_info
->fs_devices
->devices
;
2506 list_for_each_entry(device
, devices
, dev_list
) {
2507 if (device
->bdev
== bdev
) {
2508 btrfs_err(fs_info
, "target device is in the filesystem!");
2515 if (i_size_read(bdev
->bd_inode
) <
2516 btrfs_device_get_total_bytes(srcdev
)) {
2517 btrfs_err(fs_info
, "target device is smaller than source device!");
2523 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2524 if (IS_ERR(device
)) {
2525 ret
= PTR_ERR(device
);
2529 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2535 rcu_assign_pointer(device
->name
, name
);
2537 q
= bdev_get_queue(bdev
);
2538 if (blk_queue_discard(q
))
2539 device
->can_discard
= 1;
2540 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2541 device
->writeable
= 1;
2542 device
->generation
= 0;
2543 device
->io_width
= root
->sectorsize
;
2544 device
->io_align
= root
->sectorsize
;
2545 device
->sector_size
= root
->sectorsize
;
2546 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2547 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2548 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2549 ASSERT(list_empty(&srcdev
->resized_list
));
2550 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2551 device
->commit_bytes_used
= device
->bytes_used
;
2552 device
->dev_root
= fs_info
->dev_root
;
2553 device
->bdev
= bdev
;
2554 device
->in_fs_metadata
= 1;
2555 device
->is_tgtdev_for_dev_replace
= 1;
2556 device
->mode
= FMODE_EXCL
;
2557 device
->dev_stats_valid
= 1;
2558 set_blocksize(device
->bdev
, 4096);
2559 device
->fs_devices
= fs_info
->fs_devices
;
2560 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2561 fs_info
->fs_devices
->num_devices
++;
2562 fs_info
->fs_devices
->open_devices
++;
2563 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2565 *device_out
= device
;
2569 blkdev_put(bdev
, FMODE_EXCL
);
2573 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2574 struct btrfs_device
*tgtdev
)
2576 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2577 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2578 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2579 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2580 tgtdev
->dev_root
= fs_info
->dev_root
;
2581 tgtdev
->in_fs_metadata
= 1;
2584 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2585 struct btrfs_device
*device
)
2588 struct btrfs_path
*path
;
2589 struct btrfs_root
*root
;
2590 struct btrfs_dev_item
*dev_item
;
2591 struct extent_buffer
*leaf
;
2592 struct btrfs_key key
;
2594 root
= device
->dev_root
->fs_info
->chunk_root
;
2596 path
= btrfs_alloc_path();
2600 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2601 key
.type
= BTRFS_DEV_ITEM_KEY
;
2602 key
.offset
= device
->devid
;
2604 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2613 leaf
= path
->nodes
[0];
2614 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2616 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2617 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2618 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2619 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2620 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2621 btrfs_set_device_total_bytes(leaf
, dev_item
,
2622 btrfs_device_get_disk_total_bytes(device
));
2623 btrfs_set_device_bytes_used(leaf
, dev_item
,
2624 btrfs_device_get_bytes_used(device
));
2625 btrfs_mark_buffer_dirty(leaf
);
2628 btrfs_free_path(path
);
2632 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2633 struct btrfs_device
*device
, u64 new_size
)
2635 struct btrfs_super_block
*super_copy
=
2636 device
->dev_root
->fs_info
->super_copy
;
2637 struct btrfs_fs_devices
*fs_devices
;
2641 if (!device
->writeable
)
2644 lock_chunks(device
->dev_root
);
2645 old_total
= btrfs_super_total_bytes(super_copy
);
2646 diff
= new_size
- device
->total_bytes
;
2648 if (new_size
<= device
->total_bytes
||
2649 device
->is_tgtdev_for_dev_replace
) {
2650 unlock_chunks(device
->dev_root
);
2654 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2656 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2657 device
->fs_devices
->total_rw_bytes
+= diff
;
2659 btrfs_device_set_total_bytes(device
, new_size
);
2660 btrfs_device_set_disk_total_bytes(device
, new_size
);
2661 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2662 if (list_empty(&device
->resized_list
))
2663 list_add_tail(&device
->resized_list
,
2664 &fs_devices
->resized_devices
);
2665 unlock_chunks(device
->dev_root
);
2667 return btrfs_update_device(trans
, device
);
2670 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2671 struct btrfs_root
*root
, u64 chunk_objectid
,
2675 struct btrfs_path
*path
;
2676 struct btrfs_key key
;
2678 root
= root
->fs_info
->chunk_root
;
2679 path
= btrfs_alloc_path();
2683 key
.objectid
= chunk_objectid
;
2684 key
.offset
= chunk_offset
;
2685 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2687 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2690 else if (ret
> 0) { /* Logic error or corruption */
2691 btrfs_handle_fs_error(root
->fs_info
, -ENOENT
,
2692 "Failed lookup while freeing chunk.");
2697 ret
= btrfs_del_item(trans
, root
, path
);
2699 btrfs_handle_fs_error(root
->fs_info
, ret
,
2700 "Failed to delete chunk item.");
2702 btrfs_free_path(path
);
2706 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2709 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2710 struct btrfs_disk_key
*disk_key
;
2711 struct btrfs_chunk
*chunk
;
2718 struct btrfs_key key
;
2721 array_size
= btrfs_super_sys_array_size(super_copy
);
2723 ptr
= super_copy
->sys_chunk_array
;
2726 while (cur
< array_size
) {
2727 disk_key
= (struct btrfs_disk_key
*)ptr
;
2728 btrfs_disk_key_to_cpu(&key
, disk_key
);
2730 len
= sizeof(*disk_key
);
2732 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2733 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2734 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2735 len
+= btrfs_chunk_item_size(num_stripes
);
2740 if (key
.objectid
== chunk_objectid
&&
2741 key
.offset
== chunk_offset
) {
2742 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2744 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2750 unlock_chunks(root
);
2754 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2755 struct btrfs_root
*root
, u64 chunk_offset
)
2757 struct extent_map_tree
*em_tree
;
2758 struct extent_map
*em
;
2759 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2760 struct map_lookup
*map
;
2761 u64 dev_extent_len
= 0;
2762 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2764 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2767 root
= root
->fs_info
->chunk_root
;
2768 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2770 read_lock(&em_tree
->lock
);
2771 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2772 read_unlock(&em_tree
->lock
);
2774 if (!em
|| em
->start
> chunk_offset
||
2775 em
->start
+ em
->len
< chunk_offset
) {
2777 * This is a logic error, but we don't want to just rely on the
2778 * user having built with ASSERT enabled, so if ASSERT doesn't
2779 * do anything we still error out.
2783 free_extent_map(em
);
2786 map
= em
->map_lookup
;
2787 lock_chunks(root
->fs_info
->chunk_root
);
2788 check_system_chunk(trans
, extent_root
, map
->type
);
2789 unlock_chunks(root
->fs_info
->chunk_root
);
2792 * Take the device list mutex to prevent races with the final phase of
2793 * a device replace operation that replaces the device object associated
2794 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2796 mutex_lock(&fs_devices
->device_list_mutex
);
2797 for (i
= 0; i
< map
->num_stripes
; i
++) {
2798 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2799 ret
= btrfs_free_dev_extent(trans
, device
,
2800 map
->stripes
[i
].physical
,
2803 mutex_unlock(&fs_devices
->device_list_mutex
);
2804 btrfs_abort_transaction(trans
, root
, ret
);
2808 if (device
->bytes_used
> 0) {
2810 btrfs_device_set_bytes_used(device
,
2811 device
->bytes_used
- dev_extent_len
);
2812 spin_lock(&root
->fs_info
->free_chunk_lock
);
2813 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2814 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2815 btrfs_clear_space_info_full(root
->fs_info
);
2816 unlock_chunks(root
);
2819 if (map
->stripes
[i
].dev
) {
2820 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2822 mutex_unlock(&fs_devices
->device_list_mutex
);
2823 btrfs_abort_transaction(trans
, root
, ret
);
2828 mutex_unlock(&fs_devices
->device_list_mutex
);
2830 ret
= btrfs_free_chunk(trans
, root
, chunk_objectid
, chunk_offset
);
2832 btrfs_abort_transaction(trans
, root
, ret
);
2836 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2838 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2839 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2841 btrfs_abort_transaction(trans
, root
, ret
);
2846 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2848 btrfs_abort_transaction(trans
, extent_root
, ret
);
2854 free_extent_map(em
);
2858 static int btrfs_relocate_chunk(struct btrfs_root
*root
, u64 chunk_offset
)
2860 struct btrfs_root
*extent_root
;
2861 struct btrfs_trans_handle
*trans
;
2864 root
= root
->fs_info
->chunk_root
;
2865 extent_root
= root
->fs_info
->extent_root
;
2868 * Prevent races with automatic removal of unused block groups.
2869 * After we relocate and before we remove the chunk with offset
2870 * chunk_offset, automatic removal of the block group can kick in,
2871 * resulting in a failure when calling btrfs_remove_chunk() below.
2873 * Make sure to acquire this mutex before doing a tree search (dev
2874 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2875 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2876 * we release the path used to search the chunk/dev tree and before
2877 * the current task acquires this mutex and calls us.
2879 ASSERT(mutex_is_locked(&root
->fs_info
->delete_unused_bgs_mutex
));
2881 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2885 /* step one, relocate all the extents inside this chunk */
2886 btrfs_scrub_pause(root
);
2887 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2888 btrfs_scrub_continue(root
);
2892 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2894 if (IS_ERR(trans
)) {
2895 ret
= PTR_ERR(trans
);
2896 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2901 * step two, delete the device extents and the
2902 * chunk tree entries
2904 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2905 btrfs_end_transaction(trans
, root
);
2909 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2911 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2912 struct btrfs_path
*path
;
2913 struct extent_buffer
*leaf
;
2914 struct btrfs_chunk
*chunk
;
2915 struct btrfs_key key
;
2916 struct btrfs_key found_key
;
2918 bool retried
= false;
2922 path
= btrfs_alloc_path();
2927 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2928 key
.offset
= (u64
)-1;
2929 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2932 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
2933 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2935 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2938 BUG_ON(ret
== 0); /* Corruption */
2940 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2943 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2949 leaf
= path
->nodes
[0];
2950 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2952 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2953 struct btrfs_chunk
);
2954 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2955 btrfs_release_path(path
);
2957 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2958 ret
= btrfs_relocate_chunk(chunk_root
,
2965 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2967 if (found_key
.offset
== 0)
2969 key
.offset
= found_key
.offset
- 1;
2972 if (failed
&& !retried
) {
2976 } else if (WARN_ON(failed
&& retried
)) {
2980 btrfs_free_path(path
);
2984 static int insert_balance_item(struct btrfs_root
*root
,
2985 struct btrfs_balance_control
*bctl
)
2987 struct btrfs_trans_handle
*trans
;
2988 struct btrfs_balance_item
*item
;
2989 struct btrfs_disk_balance_args disk_bargs
;
2990 struct btrfs_path
*path
;
2991 struct extent_buffer
*leaf
;
2992 struct btrfs_key key
;
2995 path
= btrfs_alloc_path();
2999 trans
= btrfs_start_transaction(root
, 0);
3000 if (IS_ERR(trans
)) {
3001 btrfs_free_path(path
);
3002 return PTR_ERR(trans
);
3005 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3006 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3009 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3014 leaf
= path
->nodes
[0];
3015 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3017 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
3019 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3020 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3021 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3022 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3023 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3024 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3026 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3028 btrfs_mark_buffer_dirty(leaf
);
3030 btrfs_free_path(path
);
3031 err
= btrfs_commit_transaction(trans
, root
);
3037 static int del_balance_item(struct btrfs_root
*root
)
3039 struct btrfs_trans_handle
*trans
;
3040 struct btrfs_path
*path
;
3041 struct btrfs_key key
;
3044 path
= btrfs_alloc_path();
3048 trans
= btrfs_start_transaction(root
, 0);
3049 if (IS_ERR(trans
)) {
3050 btrfs_free_path(path
);
3051 return PTR_ERR(trans
);
3054 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3055 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3058 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3066 ret
= btrfs_del_item(trans
, root
, path
);
3068 btrfs_free_path(path
);
3069 err
= btrfs_commit_transaction(trans
, root
);
3076 * This is a heuristic used to reduce the number of chunks balanced on
3077 * resume after balance was interrupted.
3079 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3082 * Turn on soft mode for chunk types that were being converted.
3084 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3085 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3086 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3087 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3088 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3089 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3092 * Turn on usage filter if is not already used. The idea is
3093 * that chunks that we have already balanced should be
3094 * reasonably full. Don't do it for chunks that are being
3095 * converted - that will keep us from relocating unconverted
3096 * (albeit full) chunks.
3098 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3099 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3100 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3101 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3102 bctl
->data
.usage
= 90;
3104 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3105 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3106 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3107 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3108 bctl
->sys
.usage
= 90;
3110 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3111 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3112 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3113 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3114 bctl
->meta
.usage
= 90;
3119 * Should be called with both balance and volume mutexes held to
3120 * serialize other volume operations (add_dev/rm_dev/resize) with
3121 * restriper. Same goes for unset_balance_control.
3123 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3125 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3127 BUG_ON(fs_info
->balance_ctl
);
3129 spin_lock(&fs_info
->balance_lock
);
3130 fs_info
->balance_ctl
= bctl
;
3131 spin_unlock(&fs_info
->balance_lock
);
3134 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3136 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3138 BUG_ON(!fs_info
->balance_ctl
);
3140 spin_lock(&fs_info
->balance_lock
);
3141 fs_info
->balance_ctl
= NULL
;
3142 spin_unlock(&fs_info
->balance_lock
);
3148 * Balance filters. Return 1 if chunk should be filtered out
3149 * (should not be balanced).
3151 static int chunk_profiles_filter(u64 chunk_type
,
3152 struct btrfs_balance_args
*bargs
)
3154 chunk_type
= chunk_to_extended(chunk_type
) &
3155 BTRFS_EXTENDED_PROFILE_MASK
;
3157 if (bargs
->profiles
& chunk_type
)
3163 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3164 struct btrfs_balance_args
*bargs
)
3166 struct btrfs_block_group_cache
*cache
;
3168 u64 user_thresh_min
;
3169 u64 user_thresh_max
;
3172 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3173 chunk_used
= btrfs_block_group_used(&cache
->item
);
3175 if (bargs
->usage_min
== 0)
3176 user_thresh_min
= 0;
3178 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3181 if (bargs
->usage_max
== 0)
3182 user_thresh_max
= 1;
3183 else if (bargs
->usage_max
> 100)
3184 user_thresh_max
= cache
->key
.offset
;
3186 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3189 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3192 btrfs_put_block_group(cache
);
3196 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3197 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3199 struct btrfs_block_group_cache
*cache
;
3200 u64 chunk_used
, user_thresh
;
3203 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3204 chunk_used
= btrfs_block_group_used(&cache
->item
);
3206 if (bargs
->usage_min
== 0)
3208 else if (bargs
->usage
> 100)
3209 user_thresh
= cache
->key
.offset
;
3211 user_thresh
= div_factor_fine(cache
->key
.offset
,
3214 if (chunk_used
< user_thresh
)
3217 btrfs_put_block_group(cache
);
3221 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3222 struct btrfs_chunk
*chunk
,
3223 struct btrfs_balance_args
*bargs
)
3225 struct btrfs_stripe
*stripe
;
3226 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3229 for (i
= 0; i
< num_stripes
; i
++) {
3230 stripe
= btrfs_stripe_nr(chunk
, i
);
3231 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3238 /* [pstart, pend) */
3239 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3240 struct btrfs_chunk
*chunk
,
3242 struct btrfs_balance_args
*bargs
)
3244 struct btrfs_stripe
*stripe
;
3245 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3251 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3254 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3255 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3256 factor
= num_stripes
/ 2;
3257 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3258 factor
= num_stripes
- 1;
3259 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3260 factor
= num_stripes
- 2;
3262 factor
= num_stripes
;
3265 for (i
= 0; i
< num_stripes
; i
++) {
3266 stripe
= btrfs_stripe_nr(chunk
, i
);
3267 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3270 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3271 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3272 stripe_length
= div_u64(stripe_length
, factor
);
3274 if (stripe_offset
< bargs
->pend
&&
3275 stripe_offset
+ stripe_length
> bargs
->pstart
)
3282 /* [vstart, vend) */
3283 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3284 struct btrfs_chunk
*chunk
,
3286 struct btrfs_balance_args
*bargs
)
3288 if (chunk_offset
< bargs
->vend
&&
3289 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3290 /* at least part of the chunk is inside this vrange */
3296 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3297 struct btrfs_chunk
*chunk
,
3298 struct btrfs_balance_args
*bargs
)
3300 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3302 if (bargs
->stripes_min
<= num_stripes
3303 && num_stripes
<= bargs
->stripes_max
)
3309 static int chunk_soft_convert_filter(u64 chunk_type
,
3310 struct btrfs_balance_args
*bargs
)
3312 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3315 chunk_type
= chunk_to_extended(chunk_type
) &
3316 BTRFS_EXTENDED_PROFILE_MASK
;
3318 if (bargs
->target
== chunk_type
)
3324 static int should_balance_chunk(struct btrfs_root
*root
,
3325 struct extent_buffer
*leaf
,
3326 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3328 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3329 struct btrfs_balance_args
*bargs
= NULL
;
3330 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3333 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3334 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3338 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3339 bargs
= &bctl
->data
;
3340 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3342 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3343 bargs
= &bctl
->meta
;
3345 /* profiles filter */
3346 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3347 chunk_profiles_filter(chunk_type
, bargs
)) {
3352 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3353 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3355 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3356 chunk_usage_range_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3361 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3362 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3366 /* drange filter, makes sense only with devid filter */
3367 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3368 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3373 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3374 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3378 /* stripes filter */
3379 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3380 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3384 /* soft profile changing mode */
3385 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3386 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3391 * limited by count, must be the last filter
3393 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3394 if (bargs
->limit
== 0)
3398 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3400 * Same logic as the 'limit' filter; the minimum cannot be
3401 * determined here because we do not have the global information
3402 * about the count of all chunks that satisfy the filters.
3404 if (bargs
->limit_max
== 0)
3413 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3415 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3416 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3417 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3418 struct list_head
*devices
;
3419 struct btrfs_device
*device
;
3423 struct btrfs_chunk
*chunk
;
3424 struct btrfs_path
*path
;
3425 struct btrfs_key key
;
3426 struct btrfs_key found_key
;
3427 struct btrfs_trans_handle
*trans
;
3428 struct extent_buffer
*leaf
;
3431 int enospc_errors
= 0;
3432 bool counting
= true;
3433 /* The single value limit and min/max limits use the same bytes in the */
3434 u64 limit_data
= bctl
->data
.limit
;
3435 u64 limit_meta
= bctl
->meta
.limit
;
3436 u64 limit_sys
= bctl
->sys
.limit
;
3440 int chunk_reserved
= 0;
3443 /* step one make some room on all the devices */
3444 devices
= &fs_info
->fs_devices
->devices
;
3445 list_for_each_entry(device
, devices
, dev_list
) {
3446 old_size
= btrfs_device_get_total_bytes(device
);
3447 size_to_free
= div_factor(old_size
, 1);
3448 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3449 if (!device
->writeable
||
3450 btrfs_device_get_total_bytes(device
) -
3451 btrfs_device_get_bytes_used(device
) > size_to_free
||
3452 device
->is_tgtdev_for_dev_replace
)
3455 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3460 trans
= btrfs_start_transaction(dev_root
, 0);
3461 BUG_ON(IS_ERR(trans
));
3463 ret
= btrfs_grow_device(trans
, device
, old_size
);
3466 btrfs_end_transaction(trans
, dev_root
);
3469 /* step two, relocate all the chunks */
3470 path
= btrfs_alloc_path();
3476 /* zero out stat counters */
3477 spin_lock(&fs_info
->balance_lock
);
3478 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3479 spin_unlock(&fs_info
->balance_lock
);
3483 * The single value limit and min/max limits use the same bytes
3486 bctl
->data
.limit
= limit_data
;
3487 bctl
->meta
.limit
= limit_meta
;
3488 bctl
->sys
.limit
= limit_sys
;
3490 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3491 key
.offset
= (u64
)-1;
3492 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3495 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3496 atomic_read(&fs_info
->balance_cancel_req
)) {
3501 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3502 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3504 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3509 * this shouldn't happen, it means the last relocate
3513 BUG(); /* FIXME break ? */
3515 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3516 BTRFS_CHUNK_ITEM_KEY
);
3518 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3523 leaf
= path
->nodes
[0];
3524 slot
= path
->slots
[0];
3525 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3527 if (found_key
.objectid
!= key
.objectid
) {
3528 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3532 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3533 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3536 spin_lock(&fs_info
->balance_lock
);
3537 bctl
->stat
.considered
++;
3538 spin_unlock(&fs_info
->balance_lock
);
3541 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3544 btrfs_release_path(path
);
3546 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3551 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3552 spin_lock(&fs_info
->balance_lock
);
3553 bctl
->stat
.expected
++;
3554 spin_unlock(&fs_info
->balance_lock
);
3556 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3558 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3560 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3567 * Apply limit_min filter, no need to check if the LIMITS
3568 * filter is used, limit_min is 0 by default
3570 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3571 count_data
< bctl
->data
.limit_min
)
3572 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3573 count_meta
< bctl
->meta
.limit_min
)
3574 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3575 count_sys
< bctl
->sys
.limit_min
)) {
3576 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3580 ASSERT(fs_info
->data_sinfo
);
3581 spin_lock(&fs_info
->data_sinfo
->lock
);
3582 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3583 spin_unlock(&fs_info
->data_sinfo
->lock
);
3585 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3586 !chunk_reserved
&& !bytes_used
) {
3587 trans
= btrfs_start_transaction(chunk_root
, 0);
3588 if (IS_ERR(trans
)) {
3589 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3590 ret
= PTR_ERR(trans
);
3594 ret
= btrfs_force_chunk_alloc(trans
, chunk_root
,
3595 BTRFS_BLOCK_GROUP_DATA
);
3596 btrfs_end_transaction(trans
, chunk_root
);
3598 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3604 ret
= btrfs_relocate_chunk(chunk_root
,
3606 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3607 if (ret
&& ret
!= -ENOSPC
)
3609 if (ret
== -ENOSPC
) {
3612 spin_lock(&fs_info
->balance_lock
);
3613 bctl
->stat
.completed
++;
3614 spin_unlock(&fs_info
->balance_lock
);
3617 if (found_key
.offset
== 0)
3619 key
.offset
= found_key
.offset
- 1;
3623 btrfs_release_path(path
);
3628 btrfs_free_path(path
);
3629 if (enospc_errors
) {
3630 btrfs_info(fs_info
, "%d enospc errors during balance",
3640 * alloc_profile_is_valid - see if a given profile is valid and reduced
3641 * @flags: profile to validate
3642 * @extended: if true @flags is treated as an extended profile
3644 static int alloc_profile_is_valid(u64 flags
, int extended
)
3646 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3647 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3649 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3651 /* 1) check that all other bits are zeroed */
3655 /* 2) see if profile is reduced */
3657 return !extended
; /* "0" is valid for usual profiles */
3659 /* true if exactly one bit set */
3660 return (flags
& (flags
- 1)) == 0;
3663 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3665 /* cancel requested || normal exit path */
3666 return atomic_read(&fs_info
->balance_cancel_req
) ||
3667 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3668 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3671 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3675 unset_balance_control(fs_info
);
3676 ret
= del_balance_item(fs_info
->tree_root
);
3678 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3680 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3683 /* Non-zero return value signifies invalidity */
3684 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3687 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3688 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3689 (bctl_arg
->target
& ~allowed
)));
3693 * Should be called with both balance and volume mutexes held
3695 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3696 struct btrfs_ioctl_balance_args
*bargs
)
3698 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3705 if (btrfs_fs_closing(fs_info
) ||
3706 atomic_read(&fs_info
->balance_pause_req
) ||
3707 atomic_read(&fs_info
->balance_cancel_req
)) {
3712 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3713 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3717 * In case of mixed groups both data and meta should be picked,
3718 * and identical options should be given for both of them.
3720 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3721 if (mixed
&& (bctl
->flags
& allowed
)) {
3722 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3723 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3724 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3725 btrfs_err(fs_info
, "with mixed groups data and "
3726 "metadata balance options must be the same");
3732 num_devices
= fs_info
->fs_devices
->num_devices
;
3733 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3734 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3735 BUG_ON(num_devices
< 1);
3738 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3739 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3740 if (num_devices
> 1)
3741 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3742 if (num_devices
> 2)
3743 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3744 if (num_devices
> 3)
3745 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3746 BTRFS_BLOCK_GROUP_RAID6
);
3747 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3748 btrfs_err(fs_info
, "unable to start balance with target "
3749 "data profile %llu",
3754 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3756 "unable to start balance with target metadata profile %llu",
3761 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3763 "unable to start balance with target system profile %llu",
3769 /* allow to reduce meta or sys integrity only if force set */
3770 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3771 BTRFS_BLOCK_GROUP_RAID10
|
3772 BTRFS_BLOCK_GROUP_RAID5
|
3773 BTRFS_BLOCK_GROUP_RAID6
;
3775 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3777 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3778 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3779 !(bctl
->sys
.target
& allowed
)) ||
3780 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3781 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3782 !(bctl
->meta
.target
& allowed
))) {
3783 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3784 btrfs_info(fs_info
, "force reducing metadata integrity");
3786 btrfs_err(fs_info
, "balance will reduce metadata "
3787 "integrity, use force if you want this");
3792 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3794 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl
->meta
.target
) <
3795 btrfs_get_num_tolerated_disk_barrier_failures(bctl
->data
.target
)) {
3797 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3798 bctl
->meta
.target
, bctl
->data
.target
);
3801 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3802 fs_info
->num_tolerated_disk_barrier_failures
= min(
3803 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3804 btrfs_get_num_tolerated_disk_barrier_failures(
3808 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3809 if (ret
&& ret
!= -EEXIST
)
3812 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3813 BUG_ON(ret
== -EEXIST
);
3814 set_balance_control(bctl
);
3816 BUG_ON(ret
!= -EEXIST
);
3817 spin_lock(&fs_info
->balance_lock
);
3818 update_balance_args(bctl
);
3819 spin_unlock(&fs_info
->balance_lock
);
3822 atomic_inc(&fs_info
->balance_running
);
3823 mutex_unlock(&fs_info
->balance_mutex
);
3825 ret
= __btrfs_balance(fs_info
);
3827 mutex_lock(&fs_info
->balance_mutex
);
3828 atomic_dec(&fs_info
->balance_running
);
3830 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3831 fs_info
->num_tolerated_disk_barrier_failures
=
3832 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3836 memset(bargs
, 0, sizeof(*bargs
));
3837 update_ioctl_balance_args(fs_info
, 0, bargs
);
3840 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3841 balance_need_close(fs_info
)) {
3842 __cancel_balance(fs_info
);
3845 wake_up(&fs_info
->balance_wait_q
);
3849 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3850 __cancel_balance(fs_info
);
3853 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3858 static int balance_kthread(void *data
)
3860 struct btrfs_fs_info
*fs_info
= data
;
3863 mutex_lock(&fs_info
->volume_mutex
);
3864 mutex_lock(&fs_info
->balance_mutex
);
3866 if (fs_info
->balance_ctl
) {
3867 btrfs_info(fs_info
, "continuing balance");
3868 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3871 mutex_unlock(&fs_info
->balance_mutex
);
3872 mutex_unlock(&fs_info
->volume_mutex
);
3877 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3879 struct task_struct
*tsk
;
3881 spin_lock(&fs_info
->balance_lock
);
3882 if (!fs_info
->balance_ctl
) {
3883 spin_unlock(&fs_info
->balance_lock
);
3886 spin_unlock(&fs_info
->balance_lock
);
3888 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3889 btrfs_info(fs_info
, "force skipping balance");
3893 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3894 return PTR_ERR_OR_ZERO(tsk
);
3897 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3899 struct btrfs_balance_control
*bctl
;
3900 struct btrfs_balance_item
*item
;
3901 struct btrfs_disk_balance_args disk_bargs
;
3902 struct btrfs_path
*path
;
3903 struct extent_buffer
*leaf
;
3904 struct btrfs_key key
;
3907 path
= btrfs_alloc_path();
3911 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3912 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3915 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3918 if (ret
> 0) { /* ret = -ENOENT; */
3923 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3929 leaf
= path
->nodes
[0];
3930 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3932 bctl
->fs_info
= fs_info
;
3933 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3934 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3936 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3937 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3938 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3939 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3940 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3941 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3943 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3945 mutex_lock(&fs_info
->volume_mutex
);
3946 mutex_lock(&fs_info
->balance_mutex
);
3948 set_balance_control(bctl
);
3950 mutex_unlock(&fs_info
->balance_mutex
);
3951 mutex_unlock(&fs_info
->volume_mutex
);
3953 btrfs_free_path(path
);
3957 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3961 mutex_lock(&fs_info
->balance_mutex
);
3962 if (!fs_info
->balance_ctl
) {
3963 mutex_unlock(&fs_info
->balance_mutex
);
3967 if (atomic_read(&fs_info
->balance_running
)) {
3968 atomic_inc(&fs_info
->balance_pause_req
);
3969 mutex_unlock(&fs_info
->balance_mutex
);
3971 wait_event(fs_info
->balance_wait_q
,
3972 atomic_read(&fs_info
->balance_running
) == 0);
3974 mutex_lock(&fs_info
->balance_mutex
);
3975 /* we are good with balance_ctl ripped off from under us */
3976 BUG_ON(atomic_read(&fs_info
->balance_running
));
3977 atomic_dec(&fs_info
->balance_pause_req
);
3982 mutex_unlock(&fs_info
->balance_mutex
);
3986 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3988 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3991 mutex_lock(&fs_info
->balance_mutex
);
3992 if (!fs_info
->balance_ctl
) {
3993 mutex_unlock(&fs_info
->balance_mutex
);
3997 atomic_inc(&fs_info
->balance_cancel_req
);
3999 * if we are running just wait and return, balance item is
4000 * deleted in btrfs_balance in this case
4002 if (atomic_read(&fs_info
->balance_running
)) {
4003 mutex_unlock(&fs_info
->balance_mutex
);
4004 wait_event(fs_info
->balance_wait_q
,
4005 atomic_read(&fs_info
->balance_running
) == 0);
4006 mutex_lock(&fs_info
->balance_mutex
);
4008 /* __cancel_balance needs volume_mutex */
4009 mutex_unlock(&fs_info
->balance_mutex
);
4010 mutex_lock(&fs_info
->volume_mutex
);
4011 mutex_lock(&fs_info
->balance_mutex
);
4013 if (fs_info
->balance_ctl
)
4014 __cancel_balance(fs_info
);
4016 mutex_unlock(&fs_info
->volume_mutex
);
4019 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4020 atomic_dec(&fs_info
->balance_cancel_req
);
4021 mutex_unlock(&fs_info
->balance_mutex
);
4025 static int btrfs_uuid_scan_kthread(void *data
)
4027 struct btrfs_fs_info
*fs_info
= data
;
4028 struct btrfs_root
*root
= fs_info
->tree_root
;
4029 struct btrfs_key key
;
4030 struct btrfs_key max_key
;
4031 struct btrfs_path
*path
= NULL
;
4033 struct extent_buffer
*eb
;
4035 struct btrfs_root_item root_item
;
4037 struct btrfs_trans_handle
*trans
= NULL
;
4039 path
= btrfs_alloc_path();
4046 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4049 max_key
.objectid
= (u64
)-1;
4050 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4051 max_key
.offset
= (u64
)-1;
4054 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4061 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4062 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4063 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4064 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4067 eb
= path
->nodes
[0];
4068 slot
= path
->slots
[0];
4069 item_size
= btrfs_item_size_nr(eb
, slot
);
4070 if (item_size
< sizeof(root_item
))
4073 read_extent_buffer(eb
, &root_item
,
4074 btrfs_item_ptr_offset(eb
, slot
),
4075 (int)sizeof(root_item
));
4076 if (btrfs_root_refs(&root_item
) == 0)
4079 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4080 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4084 btrfs_release_path(path
);
4086 * 1 - subvol uuid item
4087 * 1 - received_subvol uuid item
4089 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4090 if (IS_ERR(trans
)) {
4091 ret
= PTR_ERR(trans
);
4099 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4100 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4102 BTRFS_UUID_KEY_SUBVOL
,
4105 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4111 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4112 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4113 root_item
.received_uuid
,
4114 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4117 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4125 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4131 btrfs_release_path(path
);
4132 if (key
.offset
< (u64
)-1) {
4134 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4136 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4137 } else if (key
.objectid
< (u64
)-1) {
4139 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4148 btrfs_free_path(path
);
4149 if (trans
&& !IS_ERR(trans
))
4150 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4152 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4154 fs_info
->update_uuid_tree_gen
= 1;
4155 up(&fs_info
->uuid_tree_rescan_sem
);
4160 * Callback for btrfs_uuid_tree_iterate().
4162 * 0 check succeeded, the entry is not outdated.
4163 * < 0 if an error occurred.
4164 * > 0 if the check failed, which means the caller shall remove the entry.
4166 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4167 u8
*uuid
, u8 type
, u64 subid
)
4169 struct btrfs_key key
;
4171 struct btrfs_root
*subvol_root
;
4173 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4174 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4177 key
.objectid
= subid
;
4178 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4179 key
.offset
= (u64
)-1;
4180 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4181 if (IS_ERR(subvol_root
)) {
4182 ret
= PTR_ERR(subvol_root
);
4189 case BTRFS_UUID_KEY_SUBVOL
:
4190 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4193 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4194 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4204 static int btrfs_uuid_rescan_kthread(void *data
)
4206 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4210 * 1st step is to iterate through the existing UUID tree and
4211 * to delete all entries that contain outdated data.
4212 * 2nd step is to add all missing entries to the UUID tree.
4214 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4216 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4217 up(&fs_info
->uuid_tree_rescan_sem
);
4220 return btrfs_uuid_scan_kthread(data
);
4223 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4225 struct btrfs_trans_handle
*trans
;
4226 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4227 struct btrfs_root
*uuid_root
;
4228 struct task_struct
*task
;
4235 trans
= btrfs_start_transaction(tree_root
, 2);
4237 return PTR_ERR(trans
);
4239 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4240 BTRFS_UUID_TREE_OBJECTID
);
4241 if (IS_ERR(uuid_root
)) {
4242 ret
= PTR_ERR(uuid_root
);
4243 btrfs_abort_transaction(trans
, tree_root
, ret
);
4244 btrfs_end_transaction(trans
, tree_root
);
4248 fs_info
->uuid_root
= uuid_root
;
4250 ret
= btrfs_commit_transaction(trans
, tree_root
);
4254 down(&fs_info
->uuid_tree_rescan_sem
);
4255 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4257 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4258 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4259 up(&fs_info
->uuid_tree_rescan_sem
);
4260 return PTR_ERR(task
);
4266 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4268 struct task_struct
*task
;
4270 down(&fs_info
->uuid_tree_rescan_sem
);
4271 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4273 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4274 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4275 up(&fs_info
->uuid_tree_rescan_sem
);
4276 return PTR_ERR(task
);
4283 * shrinking a device means finding all of the device extents past
4284 * the new size, and then following the back refs to the chunks.
4285 * The chunk relocation code actually frees the device extent
4287 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4289 struct btrfs_trans_handle
*trans
;
4290 struct btrfs_root
*root
= device
->dev_root
;
4291 struct btrfs_dev_extent
*dev_extent
= NULL
;
4292 struct btrfs_path
*path
;
4298 bool retried
= false;
4299 bool checked_pending_chunks
= false;
4300 struct extent_buffer
*l
;
4301 struct btrfs_key key
;
4302 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4303 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4304 u64 old_size
= btrfs_device_get_total_bytes(device
);
4305 u64 diff
= old_size
- new_size
;
4307 if (device
->is_tgtdev_for_dev_replace
)
4310 path
= btrfs_alloc_path();
4314 path
->reada
= READA_FORWARD
;
4318 btrfs_device_set_total_bytes(device
, new_size
);
4319 if (device
->writeable
) {
4320 device
->fs_devices
->total_rw_bytes
-= diff
;
4321 spin_lock(&root
->fs_info
->free_chunk_lock
);
4322 root
->fs_info
->free_chunk_space
-= diff
;
4323 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4325 unlock_chunks(root
);
4328 key
.objectid
= device
->devid
;
4329 key
.offset
= (u64
)-1;
4330 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4333 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
4334 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4336 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4340 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4342 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4347 btrfs_release_path(path
);
4352 slot
= path
->slots
[0];
4353 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4355 if (key
.objectid
!= device
->devid
) {
4356 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4357 btrfs_release_path(path
);
4361 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4362 length
= btrfs_dev_extent_length(l
, dev_extent
);
4364 if (key
.offset
+ length
<= new_size
) {
4365 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4366 btrfs_release_path(path
);
4370 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4371 btrfs_release_path(path
);
4373 ret
= btrfs_relocate_chunk(root
, chunk_offset
);
4374 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4375 if (ret
&& ret
!= -ENOSPC
)
4379 } while (key
.offset
-- > 0);
4381 if (failed
&& !retried
) {
4385 } else if (failed
&& retried
) {
4390 /* Shrinking succeeded, else we would be at "done". */
4391 trans
= btrfs_start_transaction(root
, 0);
4392 if (IS_ERR(trans
)) {
4393 ret
= PTR_ERR(trans
);
4400 * We checked in the above loop all device extents that were already in
4401 * the device tree. However before we have updated the device's
4402 * total_bytes to the new size, we might have had chunk allocations that
4403 * have not complete yet (new block groups attached to transaction
4404 * handles), and therefore their device extents were not yet in the
4405 * device tree and we missed them in the loop above. So if we have any
4406 * pending chunk using a device extent that overlaps the device range
4407 * that we can not use anymore, commit the current transaction and
4408 * repeat the search on the device tree - this way we guarantee we will
4409 * not have chunks using device extents that end beyond 'new_size'.
4411 if (!checked_pending_chunks
) {
4412 u64 start
= new_size
;
4413 u64 len
= old_size
- new_size
;
4415 if (contains_pending_extent(trans
->transaction
, device
,
4417 unlock_chunks(root
);
4418 checked_pending_chunks
= true;
4421 ret
= btrfs_commit_transaction(trans
, root
);
4428 btrfs_device_set_disk_total_bytes(device
, new_size
);
4429 if (list_empty(&device
->resized_list
))
4430 list_add_tail(&device
->resized_list
,
4431 &root
->fs_info
->fs_devices
->resized_devices
);
4433 WARN_ON(diff
> old_total
);
4434 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4435 unlock_chunks(root
);
4437 /* Now btrfs_update_device() will change the on-disk size. */
4438 ret
= btrfs_update_device(trans
, device
);
4439 btrfs_end_transaction(trans
, root
);
4441 btrfs_free_path(path
);
4444 btrfs_device_set_total_bytes(device
, old_size
);
4445 if (device
->writeable
)
4446 device
->fs_devices
->total_rw_bytes
+= diff
;
4447 spin_lock(&root
->fs_info
->free_chunk_lock
);
4448 root
->fs_info
->free_chunk_space
+= diff
;
4449 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4450 unlock_chunks(root
);
4455 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4456 struct btrfs_key
*key
,
4457 struct btrfs_chunk
*chunk
, int item_size
)
4459 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4460 struct btrfs_disk_key disk_key
;
4465 array_size
= btrfs_super_sys_array_size(super_copy
);
4466 if (array_size
+ item_size
+ sizeof(disk_key
)
4467 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4468 unlock_chunks(root
);
4472 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4473 btrfs_cpu_key_to_disk(&disk_key
, key
);
4474 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4475 ptr
+= sizeof(disk_key
);
4476 memcpy(ptr
, chunk
, item_size
);
4477 item_size
+= sizeof(disk_key
);
4478 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4479 unlock_chunks(root
);
4485 * sort the devices in descending order by max_avail, total_avail
4487 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4489 const struct btrfs_device_info
*di_a
= a
;
4490 const struct btrfs_device_info
*di_b
= b
;
4492 if (di_a
->max_avail
> di_b
->max_avail
)
4494 if (di_a
->max_avail
< di_b
->max_avail
)
4496 if (di_a
->total_avail
> di_b
->total_avail
)
4498 if (di_a
->total_avail
< di_b
->total_avail
)
4503 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4505 /* TODO allow them to set a preferred stripe size */
4509 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4511 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4514 btrfs_set_fs_incompat(info
, RAID56
);
4517 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4518 - sizeof(struct btrfs_item) \
4519 - sizeof(struct btrfs_chunk)) \
4520 / sizeof(struct btrfs_stripe) + 1)
4522 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4523 - 2 * sizeof(struct btrfs_disk_key) \
4524 - 2 * sizeof(struct btrfs_chunk)) \
4525 / sizeof(struct btrfs_stripe) + 1)
4527 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4528 struct btrfs_root
*extent_root
, u64 start
,
4531 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4532 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4533 struct list_head
*cur
;
4534 struct map_lookup
*map
= NULL
;
4535 struct extent_map_tree
*em_tree
;
4536 struct extent_map
*em
;
4537 struct btrfs_device_info
*devices_info
= NULL
;
4539 int num_stripes
; /* total number of stripes to allocate */
4540 int data_stripes
; /* number of stripes that count for
4542 int sub_stripes
; /* sub_stripes info for map */
4543 int dev_stripes
; /* stripes per dev */
4544 int devs_max
; /* max devs to use */
4545 int devs_min
; /* min devs needed */
4546 int devs_increment
; /* ndevs has to be a multiple of this */
4547 int ncopies
; /* how many copies to data has */
4549 u64 max_stripe_size
;
4553 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4559 BUG_ON(!alloc_profile_is_valid(type
, 0));
4561 if (list_empty(&fs_devices
->alloc_list
))
4564 index
= __get_raid_index(type
);
4566 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4567 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4568 devs_max
= btrfs_raid_array
[index
].devs_max
;
4569 devs_min
= btrfs_raid_array
[index
].devs_min
;
4570 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4571 ncopies
= btrfs_raid_array
[index
].ncopies
;
4573 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4574 max_stripe_size
= SZ_1G
;
4575 max_chunk_size
= 10 * max_stripe_size
;
4577 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4578 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4579 /* for larger filesystems, use larger metadata chunks */
4580 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4581 max_stripe_size
= SZ_1G
;
4583 max_stripe_size
= SZ_256M
;
4584 max_chunk_size
= max_stripe_size
;
4586 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4587 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4588 max_stripe_size
= SZ_32M
;
4589 max_chunk_size
= 2 * max_stripe_size
;
4591 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4593 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4598 /* we don't want a chunk larger than 10% of writeable space */
4599 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4602 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4607 cur
= fs_devices
->alloc_list
.next
;
4610 * in the first pass through the devices list, we gather information
4611 * about the available holes on each device.
4614 while (cur
!= &fs_devices
->alloc_list
) {
4615 struct btrfs_device
*device
;
4619 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4623 if (!device
->writeable
) {
4625 "BTRFS: read-only device in alloc_list\n");
4629 if (!device
->in_fs_metadata
||
4630 device
->is_tgtdev_for_dev_replace
)
4633 if (device
->total_bytes
> device
->bytes_used
)
4634 total_avail
= device
->total_bytes
- device
->bytes_used
;
4638 /* If there is no space on this device, skip it. */
4639 if (total_avail
== 0)
4642 ret
= find_free_dev_extent(trans
, device
,
4643 max_stripe_size
* dev_stripes
,
4644 &dev_offset
, &max_avail
);
4645 if (ret
&& ret
!= -ENOSPC
)
4649 max_avail
= max_stripe_size
* dev_stripes
;
4651 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4654 if (ndevs
== fs_devices
->rw_devices
) {
4655 WARN(1, "%s: found more than %llu devices\n",
4656 __func__
, fs_devices
->rw_devices
);
4659 devices_info
[ndevs
].dev_offset
= dev_offset
;
4660 devices_info
[ndevs
].max_avail
= max_avail
;
4661 devices_info
[ndevs
].total_avail
= total_avail
;
4662 devices_info
[ndevs
].dev
= device
;
4667 * now sort the devices by hole size / available space
4669 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4670 btrfs_cmp_device_info
, NULL
);
4672 /* round down to number of usable stripes */
4673 ndevs
-= ndevs
% devs_increment
;
4675 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4680 if (devs_max
&& ndevs
> devs_max
)
4683 * the primary goal is to maximize the number of stripes, so use as many
4684 * devices as possible, even if the stripes are not maximum sized.
4686 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4687 num_stripes
= ndevs
* dev_stripes
;
4690 * this will have to be fixed for RAID1 and RAID10 over
4693 data_stripes
= num_stripes
/ ncopies
;
4695 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4696 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4697 btrfs_super_stripesize(info
->super_copy
));
4698 data_stripes
= num_stripes
- 1;
4700 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4701 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4702 btrfs_super_stripesize(info
->super_copy
));
4703 data_stripes
= num_stripes
- 2;
4707 * Use the number of data stripes to figure out how big this chunk
4708 * is really going to be in terms of logical address space,
4709 * and compare that answer with the max chunk size
4711 if (stripe_size
* data_stripes
> max_chunk_size
) {
4712 u64 mask
= (1ULL << 24) - 1;
4714 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4716 /* bump the answer up to a 16MB boundary */
4717 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4719 /* but don't go higher than the limits we found
4720 * while searching for free extents
4722 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4723 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4726 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4728 /* align to BTRFS_STRIPE_LEN */
4729 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4730 stripe_size
*= raid_stripe_len
;
4732 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4737 map
->num_stripes
= num_stripes
;
4739 for (i
= 0; i
< ndevs
; ++i
) {
4740 for (j
= 0; j
< dev_stripes
; ++j
) {
4741 int s
= i
* dev_stripes
+ j
;
4742 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4743 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4747 map
->sector_size
= extent_root
->sectorsize
;
4748 map
->stripe_len
= raid_stripe_len
;
4749 map
->io_align
= raid_stripe_len
;
4750 map
->io_width
= raid_stripe_len
;
4752 map
->sub_stripes
= sub_stripes
;
4754 num_bytes
= stripe_size
* data_stripes
;
4756 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4758 em
= alloc_extent_map();
4764 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4765 em
->map_lookup
= map
;
4767 em
->len
= num_bytes
;
4768 em
->block_start
= 0;
4769 em
->block_len
= em
->len
;
4770 em
->orig_block_len
= stripe_size
;
4772 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4773 write_lock(&em_tree
->lock
);
4774 ret
= add_extent_mapping(em_tree
, em
, 0);
4776 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4777 atomic_inc(&em
->refs
);
4779 write_unlock(&em_tree
->lock
);
4781 free_extent_map(em
);
4785 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4786 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4789 goto error_del_extent
;
4791 for (i
= 0; i
< map
->num_stripes
; i
++) {
4792 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4793 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4796 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4797 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4799 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4801 free_extent_map(em
);
4802 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4804 kfree(devices_info
);
4808 write_lock(&em_tree
->lock
);
4809 remove_extent_mapping(em_tree
, em
);
4810 write_unlock(&em_tree
->lock
);
4812 /* One for our allocation */
4813 free_extent_map(em
);
4814 /* One for the tree reference */
4815 free_extent_map(em
);
4816 /* One for the pending_chunks list reference */
4817 free_extent_map(em
);
4819 kfree(devices_info
);
4823 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4824 struct btrfs_root
*extent_root
,
4825 u64 chunk_offset
, u64 chunk_size
)
4827 struct btrfs_key key
;
4828 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4829 struct btrfs_device
*device
;
4830 struct btrfs_chunk
*chunk
;
4831 struct btrfs_stripe
*stripe
;
4832 struct extent_map_tree
*em_tree
;
4833 struct extent_map
*em
;
4834 struct map_lookup
*map
;
4841 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4842 read_lock(&em_tree
->lock
);
4843 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4844 read_unlock(&em_tree
->lock
);
4847 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4848 "%Lu len %Lu", chunk_offset
, chunk_size
);
4852 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4853 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4854 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4855 chunk_size
, em
->start
, em
->len
);
4856 free_extent_map(em
);
4860 map
= em
->map_lookup
;
4861 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4862 stripe_size
= em
->orig_block_len
;
4864 chunk
= kzalloc(item_size
, GFP_NOFS
);
4871 * Take the device list mutex to prevent races with the final phase of
4872 * a device replace operation that replaces the device object associated
4873 * with the map's stripes, because the device object's id can change
4874 * at any time during that final phase of the device replace operation
4875 * (dev-replace.c:btrfs_dev_replace_finishing()).
4877 mutex_lock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4878 for (i
= 0; i
< map
->num_stripes
; i
++) {
4879 device
= map
->stripes
[i
].dev
;
4880 dev_offset
= map
->stripes
[i
].physical
;
4882 ret
= btrfs_update_device(trans
, device
);
4885 ret
= btrfs_alloc_dev_extent(trans
, device
,
4886 chunk_root
->root_key
.objectid
,
4887 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4888 chunk_offset
, dev_offset
,
4894 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4898 stripe
= &chunk
->stripe
;
4899 for (i
= 0; i
< map
->num_stripes
; i
++) {
4900 device
= map
->stripes
[i
].dev
;
4901 dev_offset
= map
->stripes
[i
].physical
;
4903 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4904 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4905 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4908 mutex_unlock(&chunk_root
->fs_info
->fs_devices
->device_list_mutex
);
4910 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4911 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4912 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4913 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4914 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4915 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4916 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4917 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4918 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4920 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4921 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4922 key
.offset
= chunk_offset
;
4924 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4925 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4927 * TODO: Cleanup of inserted chunk root in case of
4930 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4936 free_extent_map(em
);
4941 * Chunk allocation falls into two parts. The first part does works
4942 * that make the new allocated chunk useable, but not do any operation
4943 * that modifies the chunk tree. The second part does the works that
4944 * require modifying the chunk tree. This division is important for the
4945 * bootstrap process of adding storage to a seed btrfs.
4947 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4948 struct btrfs_root
*extent_root
, u64 type
)
4952 ASSERT(mutex_is_locked(&extent_root
->fs_info
->chunk_mutex
));
4953 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4954 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4957 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4958 struct btrfs_root
*root
,
4959 struct btrfs_device
*device
)
4962 u64 sys_chunk_offset
;
4964 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4965 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4968 chunk_offset
= find_next_chunk(fs_info
);
4969 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4970 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4975 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4976 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4977 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4982 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
4986 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
4987 BTRFS_BLOCK_GROUP_RAID10
|
4988 BTRFS_BLOCK_GROUP_RAID5
|
4989 BTRFS_BLOCK_GROUP_DUP
)) {
4991 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5000 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
5002 struct extent_map
*em
;
5003 struct map_lookup
*map
;
5004 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5009 read_lock(&map_tree
->map_tree
.lock
);
5010 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
5011 read_unlock(&map_tree
->map_tree
.lock
);
5015 map
= em
->map_lookup
;
5016 for (i
= 0; i
< map
->num_stripes
; i
++) {
5017 if (map
->stripes
[i
].dev
->missing
) {
5022 if (!map
->stripes
[i
].dev
->writeable
) {
5029 * If the number of missing devices is larger than max errors,
5030 * we can not write the data into that chunk successfully, so
5033 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5036 free_extent_map(em
);
5040 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5042 extent_map_tree_init(&tree
->map_tree
);
5045 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5047 struct extent_map
*em
;
5050 write_lock(&tree
->map_tree
.lock
);
5051 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5053 remove_extent_mapping(&tree
->map_tree
, em
);
5054 write_unlock(&tree
->map_tree
.lock
);
5058 free_extent_map(em
);
5059 /* once for the tree */
5060 free_extent_map(em
);
5064 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5066 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5067 struct extent_map
*em
;
5068 struct map_lookup
*map
;
5069 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5072 read_lock(&em_tree
->lock
);
5073 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5074 read_unlock(&em_tree
->lock
);
5077 * We could return errors for these cases, but that could get ugly and
5078 * we'd probably do the same thing which is just not do anything else
5079 * and exit, so return 1 so the callers don't try to use other copies.
5082 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5087 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5088 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
5089 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
5090 em
->start
+ em
->len
);
5091 free_extent_map(em
);
5095 map
= em
->map_lookup
;
5096 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5097 ret
= map
->num_stripes
;
5098 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5099 ret
= map
->sub_stripes
;
5100 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5102 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5106 free_extent_map(em
);
5108 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5109 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5111 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5116 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
5117 struct btrfs_mapping_tree
*map_tree
,
5120 struct extent_map
*em
;
5121 struct map_lookup
*map
;
5122 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5123 unsigned long len
= root
->sectorsize
;
5125 read_lock(&em_tree
->lock
);
5126 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5127 read_unlock(&em_tree
->lock
);
5130 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5131 map
= em
->map_lookup
;
5132 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5133 len
= map
->stripe_len
* nr_data_stripes(map
);
5134 free_extent_map(em
);
5138 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5139 u64 logical
, u64 len
, int mirror_num
)
5141 struct extent_map
*em
;
5142 struct map_lookup
*map
;
5143 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5146 read_lock(&em_tree
->lock
);
5147 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5148 read_unlock(&em_tree
->lock
);
5151 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5152 map
= em
->map_lookup
;
5153 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5155 free_extent_map(em
);
5159 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5160 struct map_lookup
*map
, int first
, int num
,
5161 int optimal
, int dev_replace_is_ongoing
)
5165 struct btrfs_device
*srcdev
;
5167 if (dev_replace_is_ongoing
&&
5168 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5169 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5170 srcdev
= fs_info
->dev_replace
.srcdev
;
5175 * try to avoid the drive that is the source drive for a
5176 * dev-replace procedure, only choose it if no other non-missing
5177 * mirror is available
5179 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5180 if (map
->stripes
[optimal
].dev
->bdev
&&
5181 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5183 for (i
= first
; i
< first
+ num
; i
++) {
5184 if (map
->stripes
[i
].dev
->bdev
&&
5185 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5190 /* we couldn't find one that doesn't fail. Just return something
5191 * and the io error handling code will clean up eventually
5196 static inline int parity_smaller(u64 a
, u64 b
)
5201 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5202 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5204 struct btrfs_bio_stripe s
;
5211 for (i
= 0; i
< num_stripes
- 1; i
++) {
5212 if (parity_smaller(bbio
->raid_map
[i
],
5213 bbio
->raid_map
[i
+1])) {
5214 s
= bbio
->stripes
[i
];
5215 l
= bbio
->raid_map
[i
];
5216 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5217 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5218 bbio
->stripes
[i
+1] = s
;
5219 bbio
->raid_map
[i
+1] = l
;
5227 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5229 struct btrfs_bio
*bbio
= kzalloc(
5230 /* the size of the btrfs_bio */
5231 sizeof(struct btrfs_bio
) +
5232 /* plus the variable array for the stripes */
5233 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5234 /* plus the variable array for the tgt dev */
5235 sizeof(int) * (real_stripes
) +
5237 * plus the raid_map, which includes both the tgt dev
5240 sizeof(u64
) * (total_stripes
),
5241 GFP_NOFS
|__GFP_NOFAIL
);
5243 atomic_set(&bbio
->error
, 0);
5244 atomic_set(&bbio
->refs
, 1);
5249 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5251 WARN_ON(!atomic_read(&bbio
->refs
));
5252 atomic_inc(&bbio
->refs
);
5255 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5259 if (atomic_dec_and_test(&bbio
->refs
))
5263 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5264 u64 logical
, u64
*length
,
5265 struct btrfs_bio
**bbio_ret
,
5266 int mirror_num
, int need_raid_map
)
5268 struct extent_map
*em
;
5269 struct map_lookup
*map
;
5270 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5271 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5274 u64 stripe_end_offset
;
5284 int tgtdev_indexes
= 0;
5285 struct btrfs_bio
*bbio
= NULL
;
5286 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5287 int dev_replace_is_ongoing
= 0;
5288 int num_alloc_stripes
;
5289 int patch_the_first_stripe_for_dev_replace
= 0;
5290 u64 physical_to_patch_in_first_stripe
= 0;
5291 u64 raid56_full_stripe_start
= (u64
)-1;
5293 read_lock(&em_tree
->lock
);
5294 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5295 read_unlock(&em_tree
->lock
);
5298 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5303 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5304 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
5305 "found %Lu-%Lu", logical
, em
->start
,
5306 em
->start
+ em
->len
);
5307 free_extent_map(em
);
5311 map
= em
->map_lookup
;
5312 offset
= logical
- em
->start
;
5314 stripe_len
= map
->stripe_len
;
5317 * stripe_nr counts the total number of stripes we have to stride
5318 * to get to this block
5320 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5322 stripe_offset
= stripe_nr
* stripe_len
;
5323 if (offset
< stripe_offset
) {
5324 btrfs_crit(fs_info
, "stripe math has gone wrong, "
5325 "stripe_offset=%llu, offset=%llu, start=%llu, "
5326 "logical=%llu, stripe_len=%llu",
5327 stripe_offset
, offset
, em
->start
, logical
,
5329 free_extent_map(em
);
5333 /* stripe_offset is the offset of this block in its stripe*/
5334 stripe_offset
= offset
- stripe_offset
;
5336 /* if we're here for raid56, we need to know the stripe aligned start */
5337 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5338 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5339 raid56_full_stripe_start
= offset
;
5341 /* allow a write of a full stripe, but make sure we don't
5342 * allow straddling of stripes
5344 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5346 raid56_full_stripe_start
*= full_stripe_len
;
5349 if (rw
& REQ_DISCARD
) {
5350 /* we don't discard raid56 yet */
5351 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5355 *length
= min_t(u64
, em
->len
- offset
, *length
);
5356 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5358 /* For writes to RAID[56], allow a full stripeset across all disks.
5359 For other RAID types and for RAID[56] reads, just allow a single
5360 stripe (on a single disk). */
5361 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5363 max_len
= stripe_len
* nr_data_stripes(map
) -
5364 (offset
- raid56_full_stripe_start
);
5366 /* we limit the length of each bio to what fits in a stripe */
5367 max_len
= stripe_len
- stripe_offset
;
5369 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5371 *length
= em
->len
- offset
;
5374 /* This is for when we're called from btrfs_merge_bio_hook() and all
5375 it cares about is the length */
5379 btrfs_dev_replace_lock(dev_replace
, 0);
5380 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5381 if (!dev_replace_is_ongoing
)
5382 btrfs_dev_replace_unlock(dev_replace
, 0);
5384 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5386 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5387 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
5388 dev_replace
->tgtdev
!= NULL
) {
5390 * in dev-replace case, for repair case (that's the only
5391 * case where the mirror is selected explicitly when
5392 * calling btrfs_map_block), blocks left of the left cursor
5393 * can also be read from the target drive.
5394 * For REQ_GET_READ_MIRRORS, the target drive is added as
5395 * the last one to the array of stripes. For READ, it also
5396 * needs to be supported using the same mirror number.
5397 * If the requested block is not left of the left cursor,
5398 * EIO is returned. This can happen because btrfs_num_copies()
5399 * returns one more in the dev-replace case.
5401 u64 tmp_length
= *length
;
5402 struct btrfs_bio
*tmp_bbio
= NULL
;
5403 int tmp_num_stripes
;
5404 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5405 int index_srcdev
= 0;
5407 u64 physical_of_found
= 0;
5409 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5410 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5412 WARN_ON(tmp_bbio
!= NULL
);
5416 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5417 if (mirror_num
> tmp_num_stripes
) {
5419 * REQ_GET_READ_MIRRORS does not contain this
5420 * mirror, that means that the requested area
5421 * is not left of the left cursor
5424 btrfs_put_bbio(tmp_bbio
);
5429 * process the rest of the function using the mirror_num
5430 * of the source drive. Therefore look it up first.
5431 * At the end, patch the device pointer to the one of the
5434 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5435 if (tmp_bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5439 * In case of DUP, in order to keep it simple, only add
5440 * the mirror with the lowest physical address
5443 physical_of_found
<= tmp_bbio
->stripes
[i
].physical
)
5448 physical_of_found
= tmp_bbio
->stripes
[i
].physical
;
5451 btrfs_put_bbio(tmp_bbio
);
5459 mirror_num
= index_srcdev
+ 1;
5460 patch_the_first_stripe_for_dev_replace
= 1;
5461 physical_to_patch_in_first_stripe
= physical_of_found
;
5462 } else if (mirror_num
> map
->num_stripes
) {
5468 stripe_nr_orig
= stripe_nr
;
5469 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5470 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5471 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5474 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5475 if (rw
& REQ_DISCARD
)
5476 num_stripes
= min_t(u64
, map
->num_stripes
,
5477 stripe_nr_end
- stripe_nr_orig
);
5478 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5480 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)))
5482 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5483 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
5484 num_stripes
= map
->num_stripes
;
5485 else if (mirror_num
)
5486 stripe_index
= mirror_num
- 1;
5488 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5490 current
->pid
% map
->num_stripes
,
5491 dev_replace_is_ongoing
);
5492 mirror_num
= stripe_index
+ 1;
5495 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5496 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
5497 num_stripes
= map
->num_stripes
;
5498 } else if (mirror_num
) {
5499 stripe_index
= mirror_num
- 1;
5504 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5505 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5507 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5508 stripe_index
*= map
->sub_stripes
;
5510 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5511 num_stripes
= map
->sub_stripes
;
5512 else if (rw
& REQ_DISCARD
)
5513 num_stripes
= min_t(u64
, map
->sub_stripes
*
5514 (stripe_nr_end
- stripe_nr_orig
),
5516 else if (mirror_num
)
5517 stripe_index
+= mirror_num
- 1;
5519 int old_stripe_index
= stripe_index
;
5520 stripe_index
= find_live_mirror(fs_info
, map
,
5522 map
->sub_stripes
, stripe_index
+
5523 current
->pid
% map
->sub_stripes
,
5524 dev_replace_is_ongoing
);
5525 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5528 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5529 if (need_raid_map
&&
5530 ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5532 /* push stripe_nr back to the start of the full stripe */
5533 stripe_nr
= div_u64(raid56_full_stripe_start
,
5534 stripe_len
* nr_data_stripes(map
));
5536 /* RAID[56] write or recovery. Return all stripes */
5537 num_stripes
= map
->num_stripes
;
5538 max_errors
= nr_parity_stripes(map
);
5540 *length
= map
->stripe_len
;
5545 * Mirror #0 or #1 means the original data block.
5546 * Mirror #2 is RAID5 parity block.
5547 * Mirror #3 is RAID6 Q block.
5549 stripe_nr
= div_u64_rem(stripe_nr
,
5550 nr_data_stripes(map
), &stripe_index
);
5552 stripe_index
= nr_data_stripes(map
) +
5555 /* We distribute the parity blocks across stripes */
5556 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5558 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
|
5559 REQ_GET_READ_MIRRORS
)) && mirror_num
<= 1)
5564 * after this, stripe_nr is the number of stripes on this
5565 * device we have to walk to find the data, and stripe_index is
5566 * the number of our device in the stripe array
5568 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5570 mirror_num
= stripe_index
+ 1;
5572 if (stripe_index
>= map
->num_stripes
) {
5573 btrfs_crit(fs_info
, "stripe index math went horribly wrong, "
5574 "got stripe_index=%u, num_stripes=%u",
5575 stripe_index
, map
->num_stripes
);
5580 num_alloc_stripes
= num_stripes
;
5581 if (dev_replace_is_ongoing
) {
5582 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5583 num_alloc_stripes
<<= 1;
5584 if (rw
& REQ_GET_READ_MIRRORS
)
5585 num_alloc_stripes
++;
5586 tgtdev_indexes
= num_stripes
;
5589 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5594 if (dev_replace_is_ongoing
)
5595 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5597 /* build raid_map */
5598 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5599 need_raid_map
&& ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5604 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5605 sizeof(struct btrfs_bio_stripe
) *
5607 sizeof(int) * tgtdev_indexes
);
5609 /* Work out the disk rotation on this stripe-set */
5610 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5612 /* Fill in the logical address of each stripe */
5613 tmp
= stripe_nr
* nr_data_stripes(map
);
5614 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5615 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5616 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5618 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5619 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5620 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5624 if (rw
& REQ_DISCARD
) {
5626 u32 sub_stripes
= 0;
5627 u64 stripes_per_dev
= 0;
5628 u32 remaining_stripes
= 0;
5629 u32 last_stripe
= 0;
5632 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5633 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5636 sub_stripes
= map
->sub_stripes
;
5638 factor
= map
->num_stripes
/ sub_stripes
;
5639 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5642 &remaining_stripes
);
5643 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5644 last_stripe
*= sub_stripes
;
5647 for (i
= 0; i
< num_stripes
; i
++) {
5648 bbio
->stripes
[i
].physical
=
5649 map
->stripes
[stripe_index
].physical
+
5650 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5651 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5653 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5654 BTRFS_BLOCK_GROUP_RAID10
)) {
5655 bbio
->stripes
[i
].length
= stripes_per_dev
*
5658 if (i
/ sub_stripes
< remaining_stripes
)
5659 bbio
->stripes
[i
].length
+=
5663 * Special for the first stripe and
5666 * |-------|...|-------|
5670 if (i
< sub_stripes
)
5671 bbio
->stripes
[i
].length
-=
5674 if (stripe_index
>= last_stripe
&&
5675 stripe_index
<= (last_stripe
+
5677 bbio
->stripes
[i
].length
-=
5680 if (i
== sub_stripes
- 1)
5683 bbio
->stripes
[i
].length
= *length
;
5686 if (stripe_index
== map
->num_stripes
) {
5687 /* This could only happen for RAID0/10 */
5693 for (i
= 0; i
< num_stripes
; i
++) {
5694 bbio
->stripes
[i
].physical
=
5695 map
->stripes
[stripe_index
].physical
+
5697 stripe_nr
* map
->stripe_len
;
5698 bbio
->stripes
[i
].dev
=
5699 map
->stripes
[stripe_index
].dev
;
5704 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5705 max_errors
= btrfs_chunk_max_errors(map
);
5708 sort_parity_stripes(bbio
, num_stripes
);
5711 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5712 dev_replace
->tgtdev
!= NULL
) {
5713 int index_where_to_add
;
5714 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5717 * duplicate the write operations while the dev replace
5718 * procedure is running. Since the copying of the old disk
5719 * to the new disk takes place at run time while the
5720 * filesystem is mounted writable, the regular write
5721 * operations to the old disk have to be duplicated to go
5722 * to the new disk as well.
5723 * Note that device->missing is handled by the caller, and
5724 * that the write to the old disk is already set up in the
5727 index_where_to_add
= num_stripes
;
5728 for (i
= 0; i
< num_stripes
; i
++) {
5729 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5730 /* write to new disk, too */
5731 struct btrfs_bio_stripe
*new =
5732 bbio
->stripes
+ index_where_to_add
;
5733 struct btrfs_bio_stripe
*old
=
5736 new->physical
= old
->physical
;
5737 new->length
= old
->length
;
5738 new->dev
= dev_replace
->tgtdev
;
5739 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5740 index_where_to_add
++;
5745 num_stripes
= index_where_to_add
;
5746 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5747 dev_replace
->tgtdev
!= NULL
) {
5748 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5749 int index_srcdev
= 0;
5751 u64 physical_of_found
= 0;
5754 * During the dev-replace procedure, the target drive can
5755 * also be used to read data in case it is needed to repair
5756 * a corrupt block elsewhere. This is possible if the
5757 * requested area is left of the left cursor. In this area,
5758 * the target drive is a full copy of the source drive.
5760 for (i
= 0; i
< num_stripes
; i
++) {
5761 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5763 * In case of DUP, in order to keep it
5764 * simple, only add the mirror with the
5765 * lowest physical address
5768 physical_of_found
<=
5769 bbio
->stripes
[i
].physical
)
5773 physical_of_found
= bbio
->stripes
[i
].physical
;
5777 struct btrfs_bio_stripe
*tgtdev_stripe
=
5778 bbio
->stripes
+ num_stripes
;
5780 tgtdev_stripe
->physical
= physical_of_found
;
5781 tgtdev_stripe
->length
=
5782 bbio
->stripes
[index_srcdev
].length
;
5783 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5784 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5792 bbio
->map_type
= map
->type
;
5793 bbio
->num_stripes
= num_stripes
;
5794 bbio
->max_errors
= max_errors
;
5795 bbio
->mirror_num
= mirror_num
;
5796 bbio
->num_tgtdevs
= tgtdev_indexes
;
5799 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5800 * mirror_num == num_stripes + 1 && dev_replace target drive is
5801 * available as a mirror
5803 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5804 WARN_ON(num_stripes
> 1);
5805 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5806 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5807 bbio
->mirror_num
= map
->num_stripes
+ 1;
5810 if (dev_replace_is_ongoing
) {
5811 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5812 btrfs_dev_replace_unlock(dev_replace
, 0);
5814 free_extent_map(em
);
5818 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5819 u64 logical
, u64
*length
,
5820 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5822 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5826 /* For Scrub/replace */
5827 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int rw
,
5828 u64 logical
, u64
*length
,
5829 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5832 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5833 mirror_num
, need_raid_map
);
5836 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5837 u64 chunk_start
, u64 physical
, u64 devid
,
5838 u64
**logical
, int *naddrs
, int *stripe_len
)
5840 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5841 struct extent_map
*em
;
5842 struct map_lookup
*map
;
5850 read_lock(&em_tree
->lock
);
5851 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5852 read_unlock(&em_tree
->lock
);
5855 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5860 if (em
->start
!= chunk_start
) {
5861 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5862 em
->start
, chunk_start
);
5863 free_extent_map(em
);
5866 map
= em
->map_lookup
;
5869 rmap_len
= map
->stripe_len
;
5871 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5872 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5873 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5874 length
= div_u64(length
, map
->num_stripes
);
5875 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5876 length
= div_u64(length
, nr_data_stripes(map
));
5877 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5880 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5881 BUG_ON(!buf
); /* -ENOMEM */
5883 for (i
= 0; i
< map
->num_stripes
; i
++) {
5884 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5886 if (map
->stripes
[i
].physical
> physical
||
5887 map
->stripes
[i
].physical
+ length
<= physical
)
5890 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5891 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5893 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5894 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5895 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5896 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5897 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5898 } /* else if RAID[56], multiply by nr_data_stripes().
5899 * Alternatively, just use rmap_len below instead of
5900 * map->stripe_len */
5902 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5903 WARN_ON(nr
>= map
->num_stripes
);
5904 for (j
= 0; j
< nr
; j
++) {
5905 if (buf
[j
] == bytenr
)
5909 WARN_ON(nr
>= map
->num_stripes
);
5916 *stripe_len
= rmap_len
;
5918 free_extent_map(em
);
5922 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
5924 bio
->bi_private
= bbio
->private;
5925 bio
->bi_end_io
= bbio
->end_io
;
5928 btrfs_put_bbio(bbio
);
5931 static void btrfs_end_bio(struct bio
*bio
)
5933 struct btrfs_bio
*bbio
= bio
->bi_private
;
5934 int is_orig_bio
= 0;
5936 if (bio
->bi_error
) {
5937 atomic_inc(&bbio
->error
);
5938 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
5939 unsigned int stripe_index
=
5940 btrfs_io_bio(bio
)->stripe_index
;
5941 struct btrfs_device
*dev
;
5943 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5944 dev
= bbio
->stripes
[stripe_index
].dev
;
5946 if (bio
->bi_rw
& WRITE
)
5947 btrfs_dev_stat_inc(dev
,
5948 BTRFS_DEV_STAT_WRITE_ERRS
);
5950 btrfs_dev_stat_inc(dev
,
5951 BTRFS_DEV_STAT_READ_ERRS
);
5952 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5953 btrfs_dev_stat_inc(dev
,
5954 BTRFS_DEV_STAT_FLUSH_ERRS
);
5955 btrfs_dev_stat_print_on_error(dev
);
5960 if (bio
== bbio
->orig_bio
)
5963 btrfs_bio_counter_dec(bbio
->fs_info
);
5965 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5968 bio
= bbio
->orig_bio
;
5971 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5972 /* only send an error to the higher layers if it is
5973 * beyond the tolerance of the btrfs bio
5975 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5976 bio
->bi_error
= -EIO
;
5979 * this bio is actually up to date, we didn't
5980 * go over the max number of errors
5985 btrfs_end_bbio(bbio
, bio
);
5986 } else if (!is_orig_bio
) {
5992 * see run_scheduled_bios for a description of why bios are collected for
5995 * This will add one bio to the pending list for a device and make sure
5996 * the work struct is scheduled.
5998 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5999 struct btrfs_device
*device
,
6000 int rw
, struct bio
*bio
)
6002 int should_queue
= 1;
6003 struct btrfs_pending_bios
*pending_bios
;
6005 if (device
->missing
|| !device
->bdev
) {
6010 /* don't bother with additional async steps for reads, right now */
6011 if (!(rw
& REQ_WRITE
)) {
6013 btrfsic_submit_bio(rw
, bio
);
6019 * nr_async_bios allows us to reliably return congestion to the
6020 * higher layers. Otherwise, the async bio makes it appear we have
6021 * made progress against dirty pages when we've really just put it
6022 * on a queue for later
6024 atomic_inc(&root
->fs_info
->nr_async_bios
);
6025 WARN_ON(bio
->bi_next
);
6026 bio
->bi_next
= NULL
;
6029 spin_lock(&device
->io_lock
);
6030 if (bio
->bi_rw
& REQ_SYNC
)
6031 pending_bios
= &device
->pending_sync_bios
;
6033 pending_bios
= &device
->pending_bios
;
6035 if (pending_bios
->tail
)
6036 pending_bios
->tail
->bi_next
= bio
;
6038 pending_bios
->tail
= bio
;
6039 if (!pending_bios
->head
)
6040 pending_bios
->head
= bio
;
6041 if (device
->running_pending
)
6044 spin_unlock(&device
->io_lock
);
6047 btrfs_queue_work(root
->fs_info
->submit_workers
,
6051 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
6052 struct bio
*bio
, u64 physical
, int dev_nr
,
6055 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6057 bio
->bi_private
= bbio
;
6058 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6059 bio
->bi_end_io
= btrfs_end_bio
;
6060 bio
->bi_iter
.bi_sector
= physical
>> 9;
6063 struct rcu_string
*name
;
6066 name
= rcu_dereference(dev
->name
);
6067 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6068 "(%s id %llu), size=%u\n", rw
,
6069 (u64
)bio
->bi_iter
.bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
6070 name
->str
, dev
->devid
, bio
->bi_iter
.bi_size
);
6074 bio
->bi_bdev
= dev
->bdev
;
6076 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
6079 btrfs_schedule_bio(root
, dev
, rw
, bio
);
6081 btrfsic_submit_bio(rw
, bio
);
6084 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6086 atomic_inc(&bbio
->error
);
6087 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6088 /* Should be the original bio. */
6089 WARN_ON(bio
!= bbio
->orig_bio
);
6091 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6092 bio
->bi_iter
.bi_sector
= logical
>> 9;
6093 bio
->bi_error
= -EIO
;
6094 btrfs_end_bbio(bbio
, bio
);
6098 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
6099 int mirror_num
, int async_submit
)
6101 struct btrfs_device
*dev
;
6102 struct bio
*first_bio
= bio
;
6103 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6109 struct btrfs_bio
*bbio
= NULL
;
6111 length
= bio
->bi_iter
.bi_size
;
6112 map_length
= length
;
6114 btrfs_bio_counter_inc_blocked(root
->fs_info
);
6115 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
6118 btrfs_bio_counter_dec(root
->fs_info
);
6122 total_devs
= bbio
->num_stripes
;
6123 bbio
->orig_bio
= first_bio
;
6124 bbio
->private = first_bio
->bi_private
;
6125 bbio
->end_io
= first_bio
->bi_end_io
;
6126 bbio
->fs_info
= root
->fs_info
;
6127 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6129 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6130 ((rw
& WRITE
) || (mirror_num
> 1))) {
6131 /* In this case, map_length has been set to the length of
6132 a single stripe; not the whole write */
6134 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
6136 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
6140 btrfs_bio_counter_dec(root
->fs_info
);
6144 if (map_length
< length
) {
6145 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
6146 logical
, length
, map_length
);
6150 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6151 dev
= bbio
->stripes
[dev_nr
].dev
;
6152 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
6153 bbio_error(bbio
, first_bio
, logical
);
6157 if (dev_nr
< total_devs
- 1) {
6158 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6159 BUG_ON(!bio
); /* -ENOMEM */
6163 submit_stripe_bio(root
, bbio
, bio
,
6164 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
6167 btrfs_bio_counter_dec(root
->fs_info
);
6171 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6174 struct btrfs_device
*device
;
6175 struct btrfs_fs_devices
*cur_devices
;
6177 cur_devices
= fs_info
->fs_devices
;
6178 while (cur_devices
) {
6180 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6181 device
= __find_device(&cur_devices
->devices
,
6186 cur_devices
= cur_devices
->seed
;
6191 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
6192 struct btrfs_fs_devices
*fs_devices
,
6193 u64 devid
, u8
*dev_uuid
)
6195 struct btrfs_device
*device
;
6197 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6201 list_add(&device
->dev_list
, &fs_devices
->devices
);
6202 device
->fs_devices
= fs_devices
;
6203 fs_devices
->num_devices
++;
6205 device
->missing
= 1;
6206 fs_devices
->missing_devices
++;
6212 * btrfs_alloc_device - allocate struct btrfs_device
6213 * @fs_info: used only for generating a new devid, can be NULL if
6214 * devid is provided (i.e. @devid != NULL).
6215 * @devid: a pointer to devid for this device. If NULL a new devid
6217 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6220 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6221 * on error. Returned struct is not linked onto any lists and can be
6222 * destroyed with kfree() right away.
6224 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6228 struct btrfs_device
*dev
;
6231 if (WARN_ON(!devid
&& !fs_info
))
6232 return ERR_PTR(-EINVAL
);
6234 dev
= __alloc_device();
6243 ret
= find_next_devid(fs_info
, &tmp
);
6246 return ERR_PTR(ret
);
6252 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6254 generate_random_uuid(dev
->uuid
);
6256 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6257 pending_bios_fn
, NULL
, NULL
);
6262 /* Return -EIO if any error, otherwise return 0. */
6263 static int btrfs_check_chunk_valid(struct btrfs_root
*root
,
6264 struct extent_buffer
*leaf
,
6265 struct btrfs_chunk
*chunk
, u64 logical
)
6273 length
= btrfs_chunk_length(leaf
, chunk
);
6274 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6275 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6276 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6277 type
= btrfs_chunk_type(leaf
, chunk
);
6280 btrfs_err(root
->fs_info
, "invalid chunk num_stripes: %u",
6284 if (!IS_ALIGNED(logical
, root
->sectorsize
)) {
6285 btrfs_err(root
->fs_info
,
6286 "invalid chunk logical %llu", logical
);
6289 if (btrfs_chunk_sector_size(leaf
, chunk
) != root
->sectorsize
) {
6290 btrfs_err(root
->fs_info
, "invalid chunk sectorsize %u",
6291 btrfs_chunk_sector_size(leaf
, chunk
));
6294 if (!length
|| !IS_ALIGNED(length
, root
->sectorsize
)) {
6295 btrfs_err(root
->fs_info
,
6296 "invalid chunk length %llu", length
);
6299 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6300 btrfs_err(root
->fs_info
, "invalid chunk stripe length: %llu",
6304 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6306 btrfs_err(root
->fs_info
, "unrecognized chunk type: %llu",
6307 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6308 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6309 btrfs_chunk_type(leaf
, chunk
));
6312 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6313 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6314 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6315 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6316 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6317 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6318 num_stripes
!= 1)) {
6319 btrfs_err(root
->fs_info
,
6320 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6321 num_stripes
, sub_stripes
,
6322 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6329 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6330 struct extent_buffer
*leaf
,
6331 struct btrfs_chunk
*chunk
)
6333 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6334 struct map_lookup
*map
;
6335 struct extent_map
*em
;
6340 u8 uuid
[BTRFS_UUID_SIZE
];
6345 logical
= key
->offset
;
6346 length
= btrfs_chunk_length(leaf
, chunk
);
6347 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6348 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6350 ret
= btrfs_check_chunk_valid(root
, leaf
, chunk
, logical
);
6354 read_lock(&map_tree
->map_tree
.lock
);
6355 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6356 read_unlock(&map_tree
->map_tree
.lock
);
6358 /* already mapped? */
6359 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6360 free_extent_map(em
);
6363 free_extent_map(em
);
6366 em
= alloc_extent_map();
6369 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6371 free_extent_map(em
);
6375 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6376 em
->map_lookup
= map
;
6377 em
->start
= logical
;
6380 em
->block_start
= 0;
6381 em
->block_len
= em
->len
;
6383 map
->num_stripes
= num_stripes
;
6384 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6385 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6386 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6387 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6388 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6389 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6390 for (i
= 0; i
< num_stripes
; i
++) {
6391 map
->stripes
[i
].physical
=
6392 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6393 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6394 read_extent_buffer(leaf
, uuid
, (unsigned long)
6395 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6397 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6399 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
6400 free_extent_map(em
);
6403 if (!map
->stripes
[i
].dev
) {
6404 map
->stripes
[i
].dev
=
6405 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6407 if (!map
->stripes
[i
].dev
) {
6408 free_extent_map(em
);
6411 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU is missing",
6414 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6417 write_lock(&map_tree
->map_tree
.lock
);
6418 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6419 write_unlock(&map_tree
->map_tree
.lock
);
6420 BUG_ON(ret
); /* Tree corruption */
6421 free_extent_map(em
);
6426 static void fill_device_from_item(struct extent_buffer
*leaf
,
6427 struct btrfs_dev_item
*dev_item
,
6428 struct btrfs_device
*device
)
6432 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6433 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6434 device
->total_bytes
= device
->disk_total_bytes
;
6435 device
->commit_total_bytes
= device
->disk_total_bytes
;
6436 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6437 device
->commit_bytes_used
= device
->bytes_used
;
6438 device
->type
= btrfs_device_type(leaf
, dev_item
);
6439 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6440 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6441 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6442 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6443 device
->is_tgtdev_for_dev_replace
= 0;
6445 ptr
= btrfs_device_uuid(dev_item
);
6446 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6449 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6452 struct btrfs_fs_devices
*fs_devices
;
6455 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6457 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6458 while (fs_devices
) {
6459 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6462 fs_devices
= fs_devices
->seed
;
6465 fs_devices
= find_fsid(fsid
);
6467 if (!btrfs_test_opt(root
, DEGRADED
))
6468 return ERR_PTR(-ENOENT
);
6470 fs_devices
= alloc_fs_devices(fsid
);
6471 if (IS_ERR(fs_devices
))
6474 fs_devices
->seeding
= 1;
6475 fs_devices
->opened
= 1;
6479 fs_devices
= clone_fs_devices(fs_devices
);
6480 if (IS_ERR(fs_devices
))
6483 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6484 root
->fs_info
->bdev_holder
);
6486 free_fs_devices(fs_devices
);
6487 fs_devices
= ERR_PTR(ret
);
6491 if (!fs_devices
->seeding
) {
6492 __btrfs_close_devices(fs_devices
);
6493 free_fs_devices(fs_devices
);
6494 fs_devices
= ERR_PTR(-EINVAL
);
6498 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6499 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6504 static int read_one_dev(struct btrfs_root
*root
,
6505 struct extent_buffer
*leaf
,
6506 struct btrfs_dev_item
*dev_item
)
6508 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6509 struct btrfs_device
*device
;
6512 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6513 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6515 devid
= btrfs_device_id(leaf
, dev_item
);
6516 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6518 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6521 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6522 fs_devices
= open_seed_devices(root
, fs_uuid
);
6523 if (IS_ERR(fs_devices
))
6524 return PTR_ERR(fs_devices
);
6527 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6529 if (!btrfs_test_opt(root
, DEGRADED
))
6532 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6535 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU missing",
6538 if (!device
->bdev
&& !btrfs_test_opt(root
, DEGRADED
))
6541 if(!device
->bdev
&& !device
->missing
) {
6543 * this happens when a device that was properly setup
6544 * in the device info lists suddenly goes bad.
6545 * device->bdev is NULL, and so we have to set
6546 * device->missing to one here
6548 device
->fs_devices
->missing_devices
++;
6549 device
->missing
= 1;
6552 /* Move the device to its own fs_devices */
6553 if (device
->fs_devices
!= fs_devices
) {
6554 ASSERT(device
->missing
);
6556 list_move(&device
->dev_list
, &fs_devices
->devices
);
6557 device
->fs_devices
->num_devices
--;
6558 fs_devices
->num_devices
++;
6560 device
->fs_devices
->missing_devices
--;
6561 fs_devices
->missing_devices
++;
6563 device
->fs_devices
= fs_devices
;
6567 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6568 BUG_ON(device
->writeable
);
6569 if (device
->generation
!=
6570 btrfs_device_generation(leaf
, dev_item
))
6574 fill_device_from_item(leaf
, dev_item
, device
);
6575 device
->in_fs_metadata
= 1;
6576 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6577 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6578 spin_lock(&root
->fs_info
->free_chunk_lock
);
6579 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6581 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6587 int btrfs_read_sys_array(struct btrfs_root
*root
)
6589 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6590 struct extent_buffer
*sb
;
6591 struct btrfs_disk_key
*disk_key
;
6592 struct btrfs_chunk
*chunk
;
6594 unsigned long sb_array_offset
;
6601 struct btrfs_key key
;
6603 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6605 * This will create extent buffer of nodesize, superblock size is
6606 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6607 * overallocate but we can keep it as-is, only the first page is used.
6609 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6612 set_extent_buffer_uptodate(sb
);
6613 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6615 * The sb extent buffer is artificial and just used to read the system array.
6616 * set_extent_buffer_uptodate() call does not properly mark all it's
6617 * pages up-to-date when the page is larger: extent does not cover the
6618 * whole page and consequently check_page_uptodate does not find all
6619 * the page's extents up-to-date (the hole beyond sb),
6620 * write_extent_buffer then triggers a WARN_ON.
6622 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6623 * but sb spans only this function. Add an explicit SetPageUptodate call
6624 * to silence the warning eg. on PowerPC 64.
6626 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6627 SetPageUptodate(sb
->pages
[0]);
6629 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6630 array_size
= btrfs_super_sys_array_size(super_copy
);
6632 array_ptr
= super_copy
->sys_chunk_array
;
6633 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6636 while (cur_offset
< array_size
) {
6637 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6638 len
= sizeof(*disk_key
);
6639 if (cur_offset
+ len
> array_size
)
6640 goto out_short_read
;
6642 btrfs_disk_key_to_cpu(&key
, disk_key
);
6645 sb_array_offset
+= len
;
6648 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6649 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6651 * At least one btrfs_chunk with one stripe must be
6652 * present, exact stripe count check comes afterwards
6654 len
= btrfs_chunk_item_size(1);
6655 if (cur_offset
+ len
> array_size
)
6656 goto out_short_read
;
6658 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6661 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6662 num_stripes
, cur_offset
);
6667 type
= btrfs_chunk_type(sb
, chunk
);
6668 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6669 btrfs_err(root
->fs_info
,
6670 "invalid chunk type %llu in sys_array at offset %u",
6676 len
= btrfs_chunk_item_size(num_stripes
);
6677 if (cur_offset
+ len
> array_size
)
6678 goto out_short_read
;
6680 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6685 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6686 (u32
)key
.type
, cur_offset
);
6691 sb_array_offset
+= len
;
6694 clear_extent_buffer_uptodate(sb
);
6695 free_extent_buffer_stale(sb
);
6699 printk(KERN_ERR
"BTRFS: sys_array too short to read %u bytes at offset %u\n",
6701 clear_extent_buffer_uptodate(sb
);
6702 free_extent_buffer_stale(sb
);
6706 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6708 struct btrfs_path
*path
;
6709 struct extent_buffer
*leaf
;
6710 struct btrfs_key key
;
6711 struct btrfs_key found_key
;
6716 root
= root
->fs_info
->chunk_root
;
6718 path
= btrfs_alloc_path();
6722 mutex_lock(&uuid_mutex
);
6726 * Read all device items, and then all the chunk items. All
6727 * device items are found before any chunk item (their object id
6728 * is smaller than the lowest possible object id for a chunk
6729 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6731 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6734 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6738 leaf
= path
->nodes
[0];
6739 slot
= path
->slots
[0];
6740 if (slot
>= btrfs_header_nritems(leaf
)) {
6741 ret
= btrfs_next_leaf(root
, path
);
6748 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6749 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6750 struct btrfs_dev_item
*dev_item
;
6751 dev_item
= btrfs_item_ptr(leaf
, slot
,
6752 struct btrfs_dev_item
);
6753 ret
= read_one_dev(root
, leaf
, dev_item
);
6757 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6758 struct btrfs_chunk
*chunk
;
6759 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6760 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6768 * After loading chunk tree, we've got all device information,
6769 * do another round of validation checks.
6771 if (total_dev
!= root
->fs_info
->fs_devices
->total_devices
) {
6772 btrfs_err(root
->fs_info
,
6773 "super_num_devices %llu mismatch with num_devices %llu found here",
6774 btrfs_super_num_devices(root
->fs_info
->super_copy
),
6779 if (btrfs_super_total_bytes(root
->fs_info
->super_copy
) <
6780 root
->fs_info
->fs_devices
->total_rw_bytes
) {
6781 btrfs_err(root
->fs_info
,
6782 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6783 btrfs_super_total_bytes(root
->fs_info
->super_copy
),
6784 root
->fs_info
->fs_devices
->total_rw_bytes
);
6790 unlock_chunks(root
);
6791 mutex_unlock(&uuid_mutex
);
6793 btrfs_free_path(path
);
6797 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6799 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6800 struct btrfs_device
*device
;
6802 while (fs_devices
) {
6803 mutex_lock(&fs_devices
->device_list_mutex
);
6804 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6805 device
->dev_root
= fs_info
->dev_root
;
6806 mutex_unlock(&fs_devices
->device_list_mutex
);
6808 fs_devices
= fs_devices
->seed
;
6812 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6816 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6817 btrfs_dev_stat_reset(dev
, i
);
6820 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6822 struct btrfs_key key
;
6823 struct btrfs_key found_key
;
6824 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6825 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6826 struct extent_buffer
*eb
;
6829 struct btrfs_device
*device
;
6830 struct btrfs_path
*path
= NULL
;
6833 path
= btrfs_alloc_path();
6839 mutex_lock(&fs_devices
->device_list_mutex
);
6840 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6842 struct btrfs_dev_stats_item
*ptr
;
6844 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6845 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6846 key
.offset
= device
->devid
;
6847 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6849 __btrfs_reset_dev_stats(device
);
6850 device
->dev_stats_valid
= 1;
6851 btrfs_release_path(path
);
6854 slot
= path
->slots
[0];
6855 eb
= path
->nodes
[0];
6856 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6857 item_size
= btrfs_item_size_nr(eb
, slot
);
6859 ptr
= btrfs_item_ptr(eb
, slot
,
6860 struct btrfs_dev_stats_item
);
6862 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6863 if (item_size
>= (1 + i
) * sizeof(__le64
))
6864 btrfs_dev_stat_set(device
, i
,
6865 btrfs_dev_stats_value(eb
, ptr
, i
));
6867 btrfs_dev_stat_reset(device
, i
);
6870 device
->dev_stats_valid
= 1;
6871 btrfs_dev_stat_print_on_load(device
);
6872 btrfs_release_path(path
);
6874 mutex_unlock(&fs_devices
->device_list_mutex
);
6877 btrfs_free_path(path
);
6878 return ret
< 0 ? ret
: 0;
6881 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6882 struct btrfs_root
*dev_root
,
6883 struct btrfs_device
*device
)
6885 struct btrfs_path
*path
;
6886 struct btrfs_key key
;
6887 struct extent_buffer
*eb
;
6888 struct btrfs_dev_stats_item
*ptr
;
6892 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6893 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6894 key
.offset
= device
->devid
;
6896 path
= btrfs_alloc_path();
6898 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6900 btrfs_warn_in_rcu(dev_root
->fs_info
,
6901 "error %d while searching for dev_stats item for device %s",
6902 ret
, rcu_str_deref(device
->name
));
6907 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6908 /* need to delete old one and insert a new one */
6909 ret
= btrfs_del_item(trans
, dev_root
, path
);
6911 btrfs_warn_in_rcu(dev_root
->fs_info
,
6912 "delete too small dev_stats item for device %s failed %d",
6913 rcu_str_deref(device
->name
), ret
);
6920 /* need to insert a new item */
6921 btrfs_release_path(path
);
6922 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6923 &key
, sizeof(*ptr
));
6925 btrfs_warn_in_rcu(dev_root
->fs_info
,
6926 "insert dev_stats item for device %s failed %d",
6927 rcu_str_deref(device
->name
), ret
);
6932 eb
= path
->nodes
[0];
6933 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6934 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6935 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6936 btrfs_dev_stat_read(device
, i
));
6937 btrfs_mark_buffer_dirty(eb
);
6940 btrfs_free_path(path
);
6945 * called from commit_transaction. Writes all changed device stats to disk.
6947 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6948 struct btrfs_fs_info
*fs_info
)
6950 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6951 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6952 struct btrfs_device
*device
;
6956 mutex_lock(&fs_devices
->device_list_mutex
);
6957 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6958 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
6961 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
6962 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6964 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
6966 mutex_unlock(&fs_devices
->device_list_mutex
);
6971 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6973 btrfs_dev_stat_inc(dev
, index
);
6974 btrfs_dev_stat_print_on_error(dev
);
6977 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6979 if (!dev
->dev_stats_valid
)
6981 btrfs_err_rl_in_rcu(dev
->dev_root
->fs_info
,
6982 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6983 rcu_str_deref(dev
->name
),
6984 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6985 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6986 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6987 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6988 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6991 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6995 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6996 if (btrfs_dev_stat_read(dev
, i
) != 0)
6998 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6999 return; /* all values == 0, suppress message */
7001 btrfs_info_in_rcu(dev
->dev_root
->fs_info
,
7002 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7003 rcu_str_deref(dev
->name
),
7004 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7005 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7006 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7007 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7008 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7011 int btrfs_get_dev_stats(struct btrfs_root
*root
,
7012 struct btrfs_ioctl_get_dev_stats
*stats
)
7014 struct btrfs_device
*dev
;
7015 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7018 mutex_lock(&fs_devices
->device_list_mutex
);
7019 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
7020 mutex_unlock(&fs_devices
->device_list_mutex
);
7023 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
7025 } else if (!dev
->dev_stats_valid
) {
7026 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
7028 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7029 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7030 if (stats
->nr_items
> i
)
7032 btrfs_dev_stat_read_and_reset(dev
, i
);
7034 btrfs_dev_stat_reset(dev
, i
);
7037 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7038 if (stats
->nr_items
> i
)
7039 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7041 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7042 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7046 void btrfs_scratch_superblocks(struct block_device
*bdev
, char *device_path
)
7048 struct buffer_head
*bh
;
7049 struct btrfs_super_block
*disk_super
;
7055 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7058 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7061 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7063 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7064 set_buffer_dirty(bh
);
7065 sync_dirty_buffer(bh
);
7069 /* Notify udev that device has changed */
7070 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7072 /* Update ctime/mtime for device path for libblkid */
7073 update_dev_time(device_path
);
7077 * Update the size of all devices, which is used for writing out the
7080 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7082 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7083 struct btrfs_device
*curr
, *next
;
7085 if (list_empty(&fs_devices
->resized_devices
))
7088 mutex_lock(&fs_devices
->device_list_mutex
);
7089 lock_chunks(fs_info
->dev_root
);
7090 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7092 list_del_init(&curr
->resized_list
);
7093 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7095 unlock_chunks(fs_info
->dev_root
);
7096 mutex_unlock(&fs_devices
->device_list_mutex
);
7099 /* Must be invoked during the transaction commit */
7100 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
7101 struct btrfs_transaction
*transaction
)
7103 struct extent_map
*em
;
7104 struct map_lookup
*map
;
7105 struct btrfs_device
*dev
;
7108 if (list_empty(&transaction
->pending_chunks
))
7111 /* In order to kick the device replace finish process */
7113 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7114 map
= em
->map_lookup
;
7116 for (i
= 0; i
< map
->num_stripes
; i
++) {
7117 dev
= map
->stripes
[i
].dev
;
7118 dev
->commit_bytes_used
= dev
->bytes_used
;
7121 unlock_chunks(root
);
7124 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7126 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7127 while (fs_devices
) {
7128 fs_devices
->fs_info
= fs_info
;
7129 fs_devices
= fs_devices
->seed
;
7133 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7135 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7136 while (fs_devices
) {
7137 fs_devices
->fs_info
= NULL
;
7138 fs_devices
= fs_devices
->seed
;
7142 static void btrfs_close_one_device(struct btrfs_device
*device
)
7144 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
7145 struct btrfs_device
*new_device
;
7146 struct rcu_string
*name
;
7149 fs_devices
->open_devices
--;
7151 if (device
->writeable
&&
7152 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
7153 list_del_init(&device
->dev_alloc_list
);
7154 fs_devices
->rw_devices
--;
7157 if (device
->missing
)
7158 fs_devices
->missing_devices
--;
7160 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
7162 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
7164 /* Safe because we are under uuid_mutex */
7166 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
7167 BUG_ON(!name
); /* -ENOMEM */
7168 rcu_assign_pointer(new_device
->name
, name
);
7171 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
7172 new_device
->fs_devices
= device
->fs_devices
;
7174 call_rcu(&device
->rcu
, free_device
);