]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/volumes.c
btrfs: Enhance chunk validation check
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128 static void btrfs_close_one_device(struct btrfs_device *device);
129
130 DEFINE_MUTEX(uuid_mutex);
131 static LIST_HEAD(fs_uuids);
132 struct list_head *btrfs_get_fs_uuids(void)
133 {
134 return &fs_uuids;
135 }
136
137 static struct btrfs_fs_devices *__alloc_fs_devices(void)
138 {
139 struct btrfs_fs_devices *fs_devs;
140
141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
148 INIT_LIST_HEAD(&fs_devs->resized_devices);
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153 }
154
155 /**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165 {
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178 }
179
180 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181 {
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
188 rcu_string_free(device->name);
189 kfree(device);
190 }
191 kfree(fs_devices);
192 }
193
194 static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196 {
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205 }
206
207 void btrfs_cleanup_fs_uuids(void)
208 {
209 struct btrfs_fs_devices *fs_devices;
210
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
215 free_fs_devices(fs_devices);
216 }
217 }
218
219 static struct btrfs_device *__alloc_device(void)
220 {
221 struct btrfs_device *dev;
222
223 dev = kzalloc(sizeof(*dev), GFP_NOFS);
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
229 INIT_LIST_HEAD(&dev->resized_list);
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
235 atomic_set(&dev->dev_stats_ccnt, 0);
236 btrfs_device_data_ordered_init(dev);
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
239
240 return dev;
241 }
242
243 static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
245 {
246 struct btrfs_device *dev;
247
248 list_for_each_entry(dev, head, dev_list) {
249 if (dev->devid == devid &&
250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
251 return dev;
252 }
253 }
254 return NULL;
255 }
256
257 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
258 {
259 struct btrfs_fs_devices *fs_devices;
260
261 list_for_each_entry(fs_devices, &fs_uuids, list) {
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266 }
267
268 static int
269 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272 {
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299 error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303 }
304
305 static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307 {
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317 }
318
319 /*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
330 static noinline void run_scheduled_bios(struct btrfs_device *device)
331 {
332 struct bio *pending;
333 struct backing_dev_info *bdi;
334 struct btrfs_fs_info *fs_info;
335 struct btrfs_pending_bios *pending_bios;
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
339 unsigned long num_run;
340 unsigned long batch_run = 0;
341 unsigned long limit;
342 unsigned long last_waited = 0;
343 int force_reg = 0;
344 int sync_pending = 0;
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
354
355 bdi = blk_get_backing_dev_info(device->bdev);
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
360 loop:
361 spin_lock(&device->io_lock);
362
363 loop_lock:
364 num_run = 0;
365
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
371 if (!force_reg && device->pending_sync_bios.head) {
372 pending_bios = &device->pending_sync_bios;
373 force_reg = 1;
374 } else {
375 pending_bios = &device->pending_bios;
376 force_reg = 0;
377 }
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
381 WARN_ON(pending && !tail);
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
393 again = 0;
394 device->running_pending = 0;
395 } else {
396 again = 1;
397 device->running_pending = 1;
398 }
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
403 spin_unlock(&device->io_lock);
404
405 while (pending) {
406
407 rmb();
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
424
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
431
432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
433
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
450 btrfsic_submit_bio(cur->bi_rw, cur);
451 num_run++;
452 batch_run++;
453
454 cond_resched();
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
462 fs_info->fs_devices->open_devices > 1) {
463 struct io_context *ioc;
464
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
487 cond_resched();
488 continue;
489 }
490 spin_lock(&device->io_lock);
491 requeue_list(pending_bios, pending, tail);
492 device->running_pending = 1;
493
494 spin_unlock(&device->io_lock);
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
497 goto done;
498 }
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
505 }
506
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
516 done:
517 blk_finish_plug(&plug);
518 }
519
520 static void pending_bios_fn(struct btrfs_work *work)
521 {
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526 }
527
528
529 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530 {
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581 }
582
583 /*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
591 static noinline int device_list_add(const char *path,
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594 {
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
597 struct rcu_string *name;
598 int ret = 0;
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
607 list_add(&fs_devices->list, &fs_uuids);
608
609 device = NULL;
610 } else {
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
613 }
614
615 if (!device) {
616 if (fs_devices->opened)
617 return -EBUSY;
618
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
622 /* we can safely leave the fs_devices entry around */
623 return PTR_ERR(device);
624 }
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
628 kfree(device);
629 return -ENOMEM;
630 }
631 rcu_assign_pointer(device->name, name);
632
633 mutex_lock(&fs_devices->device_list_mutex);
634 list_add_rcu(&device->dev_list, &fs_devices->devices);
635 fs_devices->num_devices++;
636 mutex_unlock(&fs_devices->device_list_mutex);
637
638 ret = 1;
639 device->fs_devices = fs_devices;
640 } else if (!device->name || strcmp(device->name->str, path)) {
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
666 */
667 if (!fs_devices->opened && found_transid < device->generation) {
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
675 return -EEXIST;
676 }
677
678 name = rcu_string_strdup(path, GFP_NOFS);
679 if (!name)
680 return -ENOMEM;
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
687 }
688
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
704 *fs_devices_ret = fs_devices;
705
706 return ret;
707 }
708
709 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710 {
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
718
719 mutex_lock(&orig->device_list_mutex);
720 fs_devices->total_devices = orig->total_devices;
721
722 /* We have held the volume lock, it is safe to get the devices. */
723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
724 struct rcu_string *name;
725
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
729 goto error;
730
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
735 if (orig_dev->name) {
736 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
737 if (!name) {
738 kfree(device);
739 goto error;
740 }
741 rcu_assign_pointer(device->name, name);
742 }
743
744 list_add(&device->dev_list, &fs_devices->devices);
745 device->fs_devices = fs_devices;
746 fs_devices->num_devices++;
747 }
748 mutex_unlock(&orig->device_list_mutex);
749 return fs_devices;
750 error:
751 mutex_unlock(&orig->device_list_mutex);
752 free_fs_devices(fs_devices);
753 return ERR_PTR(-ENOMEM);
754 }
755
756 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
757 {
758 struct btrfs_device *device, *next;
759 struct btrfs_device *latest_dev = NULL;
760
761 mutex_lock(&uuid_mutex);
762 again:
763 /* This is the initialized path, it is safe to release the devices. */
764 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
765 if (device->in_fs_metadata) {
766 if (!device->is_tgtdev_for_dev_replace &&
767 (!latest_dev ||
768 device->generation > latest_dev->generation)) {
769 latest_dev = device;
770 }
771 continue;
772 }
773
774 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
775 /*
776 * In the first step, keep the device which has
777 * the correct fsid and the devid that is used
778 * for the dev_replace procedure.
779 * In the second step, the dev_replace state is
780 * read from the device tree and it is known
781 * whether the procedure is really active or
782 * not, which means whether this device is
783 * used or whether it should be removed.
784 */
785 if (step == 0 || device->is_tgtdev_for_dev_replace) {
786 continue;
787 }
788 }
789 if (device->bdev) {
790 blkdev_put(device->bdev, device->mode);
791 device->bdev = NULL;
792 fs_devices->open_devices--;
793 }
794 if (device->writeable) {
795 list_del_init(&device->dev_alloc_list);
796 device->writeable = 0;
797 if (!device->is_tgtdev_for_dev_replace)
798 fs_devices->rw_devices--;
799 }
800 list_del_init(&device->dev_list);
801 fs_devices->num_devices--;
802 rcu_string_free(device->name);
803 kfree(device);
804 }
805
806 if (fs_devices->seed) {
807 fs_devices = fs_devices->seed;
808 goto again;
809 }
810
811 fs_devices->latest_bdev = latest_dev->bdev;
812
813 mutex_unlock(&uuid_mutex);
814 }
815
816 static void __free_device(struct work_struct *work)
817 {
818 struct btrfs_device *device;
819
820 device = container_of(work, struct btrfs_device, rcu_work);
821
822 if (device->bdev)
823 blkdev_put(device->bdev, device->mode);
824
825 rcu_string_free(device->name);
826 kfree(device);
827 }
828
829 static void free_device(struct rcu_head *head)
830 {
831 struct btrfs_device *device;
832
833 device = container_of(head, struct btrfs_device, rcu);
834
835 INIT_WORK(&device->rcu_work, __free_device);
836 schedule_work(&device->rcu_work);
837 }
838
839 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
840 {
841 struct btrfs_device *device, *tmp;
842
843 if (--fs_devices->opened > 0)
844 return 0;
845
846 mutex_lock(&fs_devices->device_list_mutex);
847 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
848 btrfs_close_one_device(device);
849 }
850 mutex_unlock(&fs_devices->device_list_mutex);
851
852 WARN_ON(fs_devices->open_devices);
853 WARN_ON(fs_devices->rw_devices);
854 fs_devices->opened = 0;
855 fs_devices->seeding = 0;
856
857 return 0;
858 }
859
860 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
861 {
862 struct btrfs_fs_devices *seed_devices = NULL;
863 int ret;
864
865 mutex_lock(&uuid_mutex);
866 ret = __btrfs_close_devices(fs_devices);
867 if (!fs_devices->opened) {
868 seed_devices = fs_devices->seed;
869 fs_devices->seed = NULL;
870 }
871 mutex_unlock(&uuid_mutex);
872
873 while (seed_devices) {
874 fs_devices = seed_devices;
875 seed_devices = fs_devices->seed;
876 __btrfs_close_devices(fs_devices);
877 free_fs_devices(fs_devices);
878 }
879 /*
880 * Wait for rcu kworkers under __btrfs_close_devices
881 * to finish all blkdev_puts so device is really
882 * free when umount is done.
883 */
884 rcu_barrier();
885 return ret;
886 }
887
888 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
889 fmode_t flags, void *holder)
890 {
891 struct request_queue *q;
892 struct block_device *bdev;
893 struct list_head *head = &fs_devices->devices;
894 struct btrfs_device *device;
895 struct btrfs_device *latest_dev = NULL;
896 struct buffer_head *bh;
897 struct btrfs_super_block *disk_super;
898 u64 devid;
899 int seeding = 1;
900 int ret = 0;
901
902 flags |= FMODE_EXCL;
903
904 list_for_each_entry(device, head, dev_list) {
905 if (device->bdev)
906 continue;
907 if (!device->name)
908 continue;
909
910 /* Just open everything we can; ignore failures here */
911 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
912 &bdev, &bh))
913 continue;
914
915 disk_super = (struct btrfs_super_block *)bh->b_data;
916 devid = btrfs_stack_device_id(&disk_super->dev_item);
917 if (devid != device->devid)
918 goto error_brelse;
919
920 if (memcmp(device->uuid, disk_super->dev_item.uuid,
921 BTRFS_UUID_SIZE))
922 goto error_brelse;
923
924 device->generation = btrfs_super_generation(disk_super);
925 if (!latest_dev ||
926 device->generation > latest_dev->generation)
927 latest_dev = device;
928
929 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
930 device->writeable = 0;
931 } else {
932 device->writeable = !bdev_read_only(bdev);
933 seeding = 0;
934 }
935
936 q = bdev_get_queue(bdev);
937 if (blk_queue_discard(q))
938 device->can_discard = 1;
939
940 device->bdev = bdev;
941 device->in_fs_metadata = 0;
942 device->mode = flags;
943
944 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
945 fs_devices->rotating = 1;
946
947 fs_devices->open_devices++;
948 if (device->writeable &&
949 device->devid != BTRFS_DEV_REPLACE_DEVID) {
950 fs_devices->rw_devices++;
951 list_add(&device->dev_alloc_list,
952 &fs_devices->alloc_list);
953 }
954 brelse(bh);
955 continue;
956
957 error_brelse:
958 brelse(bh);
959 blkdev_put(bdev, flags);
960 continue;
961 }
962 if (fs_devices->open_devices == 0) {
963 ret = -EINVAL;
964 goto out;
965 }
966 fs_devices->seeding = seeding;
967 fs_devices->opened = 1;
968 fs_devices->latest_bdev = latest_dev->bdev;
969 fs_devices->total_rw_bytes = 0;
970 out:
971 return ret;
972 }
973
974 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
975 fmode_t flags, void *holder)
976 {
977 int ret;
978
979 mutex_lock(&uuid_mutex);
980 if (fs_devices->opened) {
981 fs_devices->opened++;
982 ret = 0;
983 } else {
984 ret = __btrfs_open_devices(fs_devices, flags, holder);
985 }
986 mutex_unlock(&uuid_mutex);
987 return ret;
988 }
989
990 /*
991 * Look for a btrfs signature on a device. This may be called out of the mount path
992 * and we are not allowed to call set_blocksize during the scan. The superblock
993 * is read via pagecache
994 */
995 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
996 struct btrfs_fs_devices **fs_devices_ret)
997 {
998 struct btrfs_super_block *disk_super;
999 struct block_device *bdev;
1000 struct page *page;
1001 void *p;
1002 int ret = -EINVAL;
1003 u64 devid;
1004 u64 transid;
1005 u64 total_devices;
1006 u64 bytenr;
1007 pgoff_t index;
1008
1009 /*
1010 * we would like to check all the supers, but that would make
1011 * a btrfs mount succeed after a mkfs from a different FS.
1012 * So, we need to add a special mount option to scan for
1013 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1014 */
1015 bytenr = btrfs_sb_offset(0);
1016 flags |= FMODE_EXCL;
1017 mutex_lock(&uuid_mutex);
1018
1019 bdev = blkdev_get_by_path(path, flags, holder);
1020
1021 if (IS_ERR(bdev)) {
1022 ret = PTR_ERR(bdev);
1023 goto error;
1024 }
1025
1026 /* make sure our super fits in the device */
1027 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1028 goto error_bdev_put;
1029
1030 /* make sure our super fits in the page */
1031 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1032 goto error_bdev_put;
1033
1034 /* make sure our super doesn't straddle pages on disk */
1035 index = bytenr >> PAGE_CACHE_SHIFT;
1036 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1037 goto error_bdev_put;
1038
1039 /* pull in the page with our super */
1040 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1041 index, GFP_NOFS);
1042
1043 if (IS_ERR_OR_NULL(page))
1044 goto error_bdev_put;
1045
1046 p = kmap(page);
1047
1048 /* align our pointer to the offset of the super block */
1049 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1050
1051 if (btrfs_super_bytenr(disk_super) != bytenr ||
1052 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1053 goto error_unmap;
1054
1055 devid = btrfs_stack_device_id(&disk_super->dev_item);
1056 transid = btrfs_super_generation(disk_super);
1057 total_devices = btrfs_super_num_devices(disk_super);
1058
1059 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1060 if (ret > 0) {
1061 if (disk_super->label[0]) {
1062 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1063 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1064 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1065 } else {
1066 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1067 }
1068
1069 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1070 ret = 0;
1071 }
1072 if (!ret && fs_devices_ret)
1073 (*fs_devices_ret)->total_devices = total_devices;
1074
1075 error_unmap:
1076 kunmap(page);
1077 page_cache_release(page);
1078
1079 error_bdev_put:
1080 blkdev_put(bdev, flags);
1081 error:
1082 mutex_unlock(&uuid_mutex);
1083 return ret;
1084 }
1085
1086 /* helper to account the used device space in the range */
1087 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1088 u64 end, u64 *length)
1089 {
1090 struct btrfs_key key;
1091 struct btrfs_root *root = device->dev_root;
1092 struct btrfs_dev_extent *dev_extent;
1093 struct btrfs_path *path;
1094 u64 extent_end;
1095 int ret;
1096 int slot;
1097 struct extent_buffer *l;
1098
1099 *length = 0;
1100
1101 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1102 return 0;
1103
1104 path = btrfs_alloc_path();
1105 if (!path)
1106 return -ENOMEM;
1107 path->reada = READA_FORWARD;
1108
1109 key.objectid = device->devid;
1110 key.offset = start;
1111 key.type = BTRFS_DEV_EXTENT_KEY;
1112
1113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1114 if (ret < 0)
1115 goto out;
1116 if (ret > 0) {
1117 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 if (ret < 0)
1119 goto out;
1120 }
1121
1122 while (1) {
1123 l = path->nodes[0];
1124 slot = path->slots[0];
1125 if (slot >= btrfs_header_nritems(l)) {
1126 ret = btrfs_next_leaf(root, path);
1127 if (ret == 0)
1128 continue;
1129 if (ret < 0)
1130 goto out;
1131
1132 break;
1133 }
1134 btrfs_item_key_to_cpu(l, &key, slot);
1135
1136 if (key.objectid < device->devid)
1137 goto next;
1138
1139 if (key.objectid > device->devid)
1140 break;
1141
1142 if (key.type != BTRFS_DEV_EXTENT_KEY)
1143 goto next;
1144
1145 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1146 extent_end = key.offset + btrfs_dev_extent_length(l,
1147 dev_extent);
1148 if (key.offset <= start && extent_end > end) {
1149 *length = end - start + 1;
1150 break;
1151 } else if (key.offset <= start && extent_end > start)
1152 *length += extent_end - start;
1153 else if (key.offset > start && extent_end <= end)
1154 *length += extent_end - key.offset;
1155 else if (key.offset > start && key.offset <= end) {
1156 *length += end - key.offset + 1;
1157 break;
1158 } else if (key.offset > end)
1159 break;
1160
1161 next:
1162 path->slots[0]++;
1163 }
1164 ret = 0;
1165 out:
1166 btrfs_free_path(path);
1167 return ret;
1168 }
1169
1170 static int contains_pending_extent(struct btrfs_transaction *transaction,
1171 struct btrfs_device *device,
1172 u64 *start, u64 len)
1173 {
1174 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1175 struct extent_map *em;
1176 struct list_head *search_list = &fs_info->pinned_chunks;
1177 int ret = 0;
1178 u64 physical_start = *start;
1179
1180 if (transaction)
1181 search_list = &transaction->pending_chunks;
1182 again:
1183 list_for_each_entry(em, search_list, list) {
1184 struct map_lookup *map;
1185 int i;
1186
1187 map = em->map_lookup;
1188 for (i = 0; i < map->num_stripes; i++) {
1189 u64 end;
1190
1191 if (map->stripes[i].dev != device)
1192 continue;
1193 if (map->stripes[i].physical >= physical_start + len ||
1194 map->stripes[i].physical + em->orig_block_len <=
1195 physical_start)
1196 continue;
1197 /*
1198 * Make sure that while processing the pinned list we do
1199 * not override our *start with a lower value, because
1200 * we can have pinned chunks that fall within this
1201 * device hole and that have lower physical addresses
1202 * than the pending chunks we processed before. If we
1203 * do not take this special care we can end up getting
1204 * 2 pending chunks that start at the same physical
1205 * device offsets because the end offset of a pinned
1206 * chunk can be equal to the start offset of some
1207 * pending chunk.
1208 */
1209 end = map->stripes[i].physical + em->orig_block_len;
1210 if (end > *start) {
1211 *start = end;
1212 ret = 1;
1213 }
1214 }
1215 }
1216 if (search_list != &fs_info->pinned_chunks) {
1217 search_list = &fs_info->pinned_chunks;
1218 goto again;
1219 }
1220
1221 return ret;
1222 }
1223
1224
1225 /*
1226 * find_free_dev_extent_start - find free space in the specified device
1227 * @device: the device which we search the free space in
1228 * @num_bytes: the size of the free space that we need
1229 * @search_start: the position from which to begin the search
1230 * @start: store the start of the free space.
1231 * @len: the size of the free space. that we find, or the size
1232 * of the max free space if we don't find suitable free space
1233 *
1234 * this uses a pretty simple search, the expectation is that it is
1235 * called very infrequently and that a given device has a small number
1236 * of extents
1237 *
1238 * @start is used to store the start of the free space if we find. But if we
1239 * don't find suitable free space, it will be used to store the start position
1240 * of the max free space.
1241 *
1242 * @len is used to store the size of the free space that we find.
1243 * But if we don't find suitable free space, it is used to store the size of
1244 * the max free space.
1245 */
1246 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1247 struct btrfs_device *device, u64 num_bytes,
1248 u64 search_start, u64 *start, u64 *len)
1249 {
1250 struct btrfs_key key;
1251 struct btrfs_root *root = device->dev_root;
1252 struct btrfs_dev_extent *dev_extent;
1253 struct btrfs_path *path;
1254 u64 hole_size;
1255 u64 max_hole_start;
1256 u64 max_hole_size;
1257 u64 extent_end;
1258 u64 search_end = device->total_bytes;
1259 int ret;
1260 int slot;
1261 struct extent_buffer *l;
1262 u64 min_search_start;
1263
1264 /*
1265 * We don't want to overwrite the superblock on the drive nor any area
1266 * used by the boot loader (grub for example), so we make sure to start
1267 * at an offset of at least 1MB.
1268 */
1269 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1270 search_start = max(search_start, min_search_start);
1271
1272 path = btrfs_alloc_path();
1273 if (!path)
1274 return -ENOMEM;
1275
1276 max_hole_start = search_start;
1277 max_hole_size = 0;
1278
1279 again:
1280 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1281 ret = -ENOSPC;
1282 goto out;
1283 }
1284
1285 path->reada = READA_FORWARD;
1286 path->search_commit_root = 1;
1287 path->skip_locking = 1;
1288
1289 key.objectid = device->devid;
1290 key.offset = search_start;
1291 key.type = BTRFS_DEV_EXTENT_KEY;
1292
1293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1294 if (ret < 0)
1295 goto out;
1296 if (ret > 0) {
1297 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1298 if (ret < 0)
1299 goto out;
1300 }
1301
1302 while (1) {
1303 l = path->nodes[0];
1304 slot = path->slots[0];
1305 if (slot >= btrfs_header_nritems(l)) {
1306 ret = btrfs_next_leaf(root, path);
1307 if (ret == 0)
1308 continue;
1309 if (ret < 0)
1310 goto out;
1311
1312 break;
1313 }
1314 btrfs_item_key_to_cpu(l, &key, slot);
1315
1316 if (key.objectid < device->devid)
1317 goto next;
1318
1319 if (key.objectid > device->devid)
1320 break;
1321
1322 if (key.type != BTRFS_DEV_EXTENT_KEY)
1323 goto next;
1324
1325 if (key.offset > search_start) {
1326 hole_size = key.offset - search_start;
1327
1328 /*
1329 * Have to check before we set max_hole_start, otherwise
1330 * we could end up sending back this offset anyway.
1331 */
1332 if (contains_pending_extent(transaction, device,
1333 &search_start,
1334 hole_size)) {
1335 if (key.offset >= search_start) {
1336 hole_size = key.offset - search_start;
1337 } else {
1338 WARN_ON_ONCE(1);
1339 hole_size = 0;
1340 }
1341 }
1342
1343 if (hole_size > max_hole_size) {
1344 max_hole_start = search_start;
1345 max_hole_size = hole_size;
1346 }
1347
1348 /*
1349 * If this free space is greater than which we need,
1350 * it must be the max free space that we have found
1351 * until now, so max_hole_start must point to the start
1352 * of this free space and the length of this free space
1353 * is stored in max_hole_size. Thus, we return
1354 * max_hole_start and max_hole_size and go back to the
1355 * caller.
1356 */
1357 if (hole_size >= num_bytes) {
1358 ret = 0;
1359 goto out;
1360 }
1361 }
1362
1363 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1364 extent_end = key.offset + btrfs_dev_extent_length(l,
1365 dev_extent);
1366 if (extent_end > search_start)
1367 search_start = extent_end;
1368 next:
1369 path->slots[0]++;
1370 cond_resched();
1371 }
1372
1373 /*
1374 * At this point, search_start should be the end of
1375 * allocated dev extents, and when shrinking the device,
1376 * search_end may be smaller than search_start.
1377 */
1378 if (search_end > search_start) {
1379 hole_size = search_end - search_start;
1380
1381 if (contains_pending_extent(transaction, device, &search_start,
1382 hole_size)) {
1383 btrfs_release_path(path);
1384 goto again;
1385 }
1386
1387 if (hole_size > max_hole_size) {
1388 max_hole_start = search_start;
1389 max_hole_size = hole_size;
1390 }
1391 }
1392
1393 /* See above. */
1394 if (max_hole_size < num_bytes)
1395 ret = -ENOSPC;
1396 else
1397 ret = 0;
1398
1399 out:
1400 btrfs_free_path(path);
1401 *start = max_hole_start;
1402 if (len)
1403 *len = max_hole_size;
1404 return ret;
1405 }
1406
1407 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1408 struct btrfs_device *device, u64 num_bytes,
1409 u64 *start, u64 *len)
1410 {
1411 /* FIXME use last free of some kind */
1412 return find_free_dev_extent_start(trans->transaction, device,
1413 num_bytes, 0, start, len);
1414 }
1415
1416 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1417 struct btrfs_device *device,
1418 u64 start, u64 *dev_extent_len)
1419 {
1420 int ret;
1421 struct btrfs_path *path;
1422 struct btrfs_root *root = device->dev_root;
1423 struct btrfs_key key;
1424 struct btrfs_key found_key;
1425 struct extent_buffer *leaf = NULL;
1426 struct btrfs_dev_extent *extent = NULL;
1427
1428 path = btrfs_alloc_path();
1429 if (!path)
1430 return -ENOMEM;
1431
1432 key.objectid = device->devid;
1433 key.offset = start;
1434 key.type = BTRFS_DEV_EXTENT_KEY;
1435 again:
1436 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1437 if (ret > 0) {
1438 ret = btrfs_previous_item(root, path, key.objectid,
1439 BTRFS_DEV_EXTENT_KEY);
1440 if (ret)
1441 goto out;
1442 leaf = path->nodes[0];
1443 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1444 extent = btrfs_item_ptr(leaf, path->slots[0],
1445 struct btrfs_dev_extent);
1446 BUG_ON(found_key.offset > start || found_key.offset +
1447 btrfs_dev_extent_length(leaf, extent) < start);
1448 key = found_key;
1449 btrfs_release_path(path);
1450 goto again;
1451 } else if (ret == 0) {
1452 leaf = path->nodes[0];
1453 extent = btrfs_item_ptr(leaf, path->slots[0],
1454 struct btrfs_dev_extent);
1455 } else {
1456 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1457 goto out;
1458 }
1459
1460 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1461
1462 ret = btrfs_del_item(trans, root, path);
1463 if (ret) {
1464 btrfs_std_error(root->fs_info, ret,
1465 "Failed to remove dev extent item");
1466 } else {
1467 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1468 }
1469 out:
1470 btrfs_free_path(path);
1471 return ret;
1472 }
1473
1474 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1475 struct btrfs_device *device,
1476 u64 chunk_tree, u64 chunk_objectid,
1477 u64 chunk_offset, u64 start, u64 num_bytes)
1478 {
1479 int ret;
1480 struct btrfs_path *path;
1481 struct btrfs_root *root = device->dev_root;
1482 struct btrfs_dev_extent *extent;
1483 struct extent_buffer *leaf;
1484 struct btrfs_key key;
1485
1486 WARN_ON(!device->in_fs_metadata);
1487 WARN_ON(device->is_tgtdev_for_dev_replace);
1488 path = btrfs_alloc_path();
1489 if (!path)
1490 return -ENOMEM;
1491
1492 key.objectid = device->devid;
1493 key.offset = start;
1494 key.type = BTRFS_DEV_EXTENT_KEY;
1495 ret = btrfs_insert_empty_item(trans, root, path, &key,
1496 sizeof(*extent));
1497 if (ret)
1498 goto out;
1499
1500 leaf = path->nodes[0];
1501 extent = btrfs_item_ptr(leaf, path->slots[0],
1502 struct btrfs_dev_extent);
1503 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1504 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1505 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1506
1507 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1508 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1509
1510 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1511 btrfs_mark_buffer_dirty(leaf);
1512 out:
1513 btrfs_free_path(path);
1514 return ret;
1515 }
1516
1517 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1518 {
1519 struct extent_map_tree *em_tree;
1520 struct extent_map *em;
1521 struct rb_node *n;
1522 u64 ret = 0;
1523
1524 em_tree = &fs_info->mapping_tree.map_tree;
1525 read_lock(&em_tree->lock);
1526 n = rb_last(&em_tree->map);
1527 if (n) {
1528 em = rb_entry(n, struct extent_map, rb_node);
1529 ret = em->start + em->len;
1530 }
1531 read_unlock(&em_tree->lock);
1532
1533 return ret;
1534 }
1535
1536 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1537 u64 *devid_ret)
1538 {
1539 int ret;
1540 struct btrfs_key key;
1541 struct btrfs_key found_key;
1542 struct btrfs_path *path;
1543
1544 path = btrfs_alloc_path();
1545 if (!path)
1546 return -ENOMEM;
1547
1548 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1549 key.type = BTRFS_DEV_ITEM_KEY;
1550 key.offset = (u64)-1;
1551
1552 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1553 if (ret < 0)
1554 goto error;
1555
1556 BUG_ON(ret == 0); /* Corruption */
1557
1558 ret = btrfs_previous_item(fs_info->chunk_root, path,
1559 BTRFS_DEV_ITEMS_OBJECTID,
1560 BTRFS_DEV_ITEM_KEY);
1561 if (ret) {
1562 *devid_ret = 1;
1563 } else {
1564 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1565 path->slots[0]);
1566 *devid_ret = found_key.offset + 1;
1567 }
1568 ret = 0;
1569 error:
1570 btrfs_free_path(path);
1571 return ret;
1572 }
1573
1574 /*
1575 * the device information is stored in the chunk root
1576 * the btrfs_device struct should be fully filled in
1577 */
1578 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1579 struct btrfs_root *root,
1580 struct btrfs_device *device)
1581 {
1582 int ret;
1583 struct btrfs_path *path;
1584 struct btrfs_dev_item *dev_item;
1585 struct extent_buffer *leaf;
1586 struct btrfs_key key;
1587 unsigned long ptr;
1588
1589 root = root->fs_info->chunk_root;
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1596 key.type = BTRFS_DEV_ITEM_KEY;
1597 key.offset = device->devid;
1598
1599 ret = btrfs_insert_empty_item(trans, root, path, &key,
1600 sizeof(*dev_item));
1601 if (ret)
1602 goto out;
1603
1604 leaf = path->nodes[0];
1605 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1606
1607 btrfs_set_device_id(leaf, dev_item, device->devid);
1608 btrfs_set_device_generation(leaf, dev_item, 0);
1609 btrfs_set_device_type(leaf, dev_item, device->type);
1610 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1611 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1612 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1613 btrfs_set_device_total_bytes(leaf, dev_item,
1614 btrfs_device_get_disk_total_bytes(device));
1615 btrfs_set_device_bytes_used(leaf, dev_item,
1616 btrfs_device_get_bytes_used(device));
1617 btrfs_set_device_group(leaf, dev_item, 0);
1618 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1619 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1620 btrfs_set_device_start_offset(leaf, dev_item, 0);
1621
1622 ptr = btrfs_device_uuid(dev_item);
1623 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1624 ptr = btrfs_device_fsid(dev_item);
1625 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1626 btrfs_mark_buffer_dirty(leaf);
1627
1628 ret = 0;
1629 out:
1630 btrfs_free_path(path);
1631 return ret;
1632 }
1633
1634 /*
1635 * Function to update ctime/mtime for a given device path.
1636 * Mainly used for ctime/mtime based probe like libblkid.
1637 */
1638 static void update_dev_time(char *path_name)
1639 {
1640 struct file *filp;
1641
1642 filp = filp_open(path_name, O_RDWR, 0);
1643 if (IS_ERR(filp))
1644 return;
1645 file_update_time(filp);
1646 filp_close(filp, NULL);
1647 }
1648
1649 static int btrfs_rm_dev_item(struct btrfs_root *root,
1650 struct btrfs_device *device)
1651 {
1652 int ret;
1653 struct btrfs_path *path;
1654 struct btrfs_key key;
1655 struct btrfs_trans_handle *trans;
1656
1657 root = root->fs_info->chunk_root;
1658
1659 path = btrfs_alloc_path();
1660 if (!path)
1661 return -ENOMEM;
1662
1663 trans = btrfs_start_transaction(root, 0);
1664 if (IS_ERR(trans)) {
1665 btrfs_free_path(path);
1666 return PTR_ERR(trans);
1667 }
1668 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1669 key.type = BTRFS_DEV_ITEM_KEY;
1670 key.offset = device->devid;
1671
1672 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1673 if (ret < 0)
1674 goto out;
1675
1676 if (ret > 0) {
1677 ret = -ENOENT;
1678 goto out;
1679 }
1680
1681 ret = btrfs_del_item(trans, root, path);
1682 if (ret)
1683 goto out;
1684 out:
1685 btrfs_free_path(path);
1686 btrfs_commit_transaction(trans, root);
1687 return ret;
1688 }
1689
1690 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1691 {
1692 struct btrfs_device *device;
1693 struct btrfs_device *next_device;
1694 struct block_device *bdev;
1695 struct buffer_head *bh = NULL;
1696 struct btrfs_super_block *disk_super;
1697 struct btrfs_fs_devices *cur_devices;
1698 u64 all_avail;
1699 u64 devid;
1700 u64 num_devices;
1701 u8 *dev_uuid;
1702 unsigned seq;
1703 int ret = 0;
1704 bool clear_super = false;
1705
1706 mutex_lock(&uuid_mutex);
1707
1708 do {
1709 seq = read_seqbegin(&root->fs_info->profiles_lock);
1710
1711 all_avail = root->fs_info->avail_data_alloc_bits |
1712 root->fs_info->avail_system_alloc_bits |
1713 root->fs_info->avail_metadata_alloc_bits;
1714 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1715
1716 num_devices = root->fs_info->fs_devices->num_devices;
1717 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1718 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1719 WARN_ON(num_devices < 1);
1720 num_devices--;
1721 }
1722 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1723
1724 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1725 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1726 goto out;
1727 }
1728
1729 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1730 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1731 goto out;
1732 }
1733
1734 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1735 root->fs_info->fs_devices->rw_devices <= 2) {
1736 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1737 goto out;
1738 }
1739 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1740 root->fs_info->fs_devices->rw_devices <= 3) {
1741 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1742 goto out;
1743 }
1744
1745 if (strcmp(device_path, "missing") == 0) {
1746 struct list_head *devices;
1747 struct btrfs_device *tmp;
1748
1749 device = NULL;
1750 devices = &root->fs_info->fs_devices->devices;
1751 /*
1752 * It is safe to read the devices since the volume_mutex
1753 * is held.
1754 */
1755 list_for_each_entry(tmp, devices, dev_list) {
1756 if (tmp->in_fs_metadata &&
1757 !tmp->is_tgtdev_for_dev_replace &&
1758 !tmp->bdev) {
1759 device = tmp;
1760 break;
1761 }
1762 }
1763 bdev = NULL;
1764 bh = NULL;
1765 disk_super = NULL;
1766 if (!device) {
1767 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1768 goto out;
1769 }
1770 } else {
1771 ret = btrfs_get_bdev_and_sb(device_path,
1772 FMODE_WRITE | FMODE_EXCL,
1773 root->fs_info->bdev_holder, 0,
1774 &bdev, &bh);
1775 if (ret)
1776 goto out;
1777 disk_super = (struct btrfs_super_block *)bh->b_data;
1778 devid = btrfs_stack_device_id(&disk_super->dev_item);
1779 dev_uuid = disk_super->dev_item.uuid;
1780 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1781 disk_super->fsid);
1782 if (!device) {
1783 ret = -ENOENT;
1784 goto error_brelse;
1785 }
1786 }
1787
1788 if (device->is_tgtdev_for_dev_replace) {
1789 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1790 goto error_brelse;
1791 }
1792
1793 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1794 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1795 goto error_brelse;
1796 }
1797
1798 if (device->writeable) {
1799 lock_chunks(root);
1800 list_del_init(&device->dev_alloc_list);
1801 device->fs_devices->rw_devices--;
1802 unlock_chunks(root);
1803 clear_super = true;
1804 }
1805
1806 mutex_unlock(&uuid_mutex);
1807 ret = btrfs_shrink_device(device, 0);
1808 mutex_lock(&uuid_mutex);
1809 if (ret)
1810 goto error_undo;
1811
1812 /*
1813 * TODO: the superblock still includes this device in its num_devices
1814 * counter although write_all_supers() is not locked out. This
1815 * could give a filesystem state which requires a degraded mount.
1816 */
1817 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1818 if (ret)
1819 goto error_undo;
1820
1821 device->in_fs_metadata = 0;
1822 btrfs_scrub_cancel_dev(root->fs_info, device);
1823
1824 /*
1825 * the device list mutex makes sure that we don't change
1826 * the device list while someone else is writing out all
1827 * the device supers. Whoever is writing all supers, should
1828 * lock the device list mutex before getting the number of
1829 * devices in the super block (super_copy). Conversely,
1830 * whoever updates the number of devices in the super block
1831 * (super_copy) should hold the device list mutex.
1832 */
1833
1834 cur_devices = device->fs_devices;
1835 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1836 list_del_rcu(&device->dev_list);
1837
1838 device->fs_devices->num_devices--;
1839 device->fs_devices->total_devices--;
1840
1841 if (device->missing)
1842 device->fs_devices->missing_devices--;
1843
1844 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1845 struct btrfs_device, dev_list);
1846 if (device->bdev == root->fs_info->sb->s_bdev)
1847 root->fs_info->sb->s_bdev = next_device->bdev;
1848 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1849 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1850
1851 if (device->bdev) {
1852 device->fs_devices->open_devices--;
1853 /* remove sysfs entry */
1854 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1855 }
1856
1857 call_rcu(&device->rcu, free_device);
1858
1859 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1860 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1861 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1862
1863 if (cur_devices->open_devices == 0) {
1864 struct btrfs_fs_devices *fs_devices;
1865 fs_devices = root->fs_info->fs_devices;
1866 while (fs_devices) {
1867 if (fs_devices->seed == cur_devices) {
1868 fs_devices->seed = cur_devices->seed;
1869 break;
1870 }
1871 fs_devices = fs_devices->seed;
1872 }
1873 cur_devices->seed = NULL;
1874 __btrfs_close_devices(cur_devices);
1875 free_fs_devices(cur_devices);
1876 }
1877
1878 root->fs_info->num_tolerated_disk_barrier_failures =
1879 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1880
1881 /*
1882 * at this point, the device is zero sized. We want to
1883 * remove it from the devices list and zero out the old super
1884 */
1885 if (clear_super && disk_super) {
1886 u64 bytenr;
1887 int i;
1888
1889 /* make sure this device isn't detected as part of
1890 * the FS anymore
1891 */
1892 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1893 set_buffer_dirty(bh);
1894 sync_dirty_buffer(bh);
1895
1896 /* clear the mirror copies of super block on the disk
1897 * being removed, 0th copy is been taken care above and
1898 * the below would take of the rest
1899 */
1900 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1901 bytenr = btrfs_sb_offset(i);
1902 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1903 i_size_read(bdev->bd_inode))
1904 break;
1905
1906 brelse(bh);
1907 bh = __bread(bdev, bytenr / 4096,
1908 BTRFS_SUPER_INFO_SIZE);
1909 if (!bh)
1910 continue;
1911
1912 disk_super = (struct btrfs_super_block *)bh->b_data;
1913
1914 if (btrfs_super_bytenr(disk_super) != bytenr ||
1915 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1916 continue;
1917 }
1918 memset(&disk_super->magic, 0,
1919 sizeof(disk_super->magic));
1920 set_buffer_dirty(bh);
1921 sync_dirty_buffer(bh);
1922 }
1923 }
1924
1925 ret = 0;
1926
1927 if (bdev) {
1928 /* Notify udev that device has changed */
1929 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1930
1931 /* Update ctime/mtime for device path for libblkid */
1932 update_dev_time(device_path);
1933 }
1934
1935 error_brelse:
1936 brelse(bh);
1937 if (bdev)
1938 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1939 out:
1940 mutex_unlock(&uuid_mutex);
1941 return ret;
1942 error_undo:
1943 if (device->writeable) {
1944 lock_chunks(root);
1945 list_add(&device->dev_alloc_list,
1946 &root->fs_info->fs_devices->alloc_list);
1947 device->fs_devices->rw_devices++;
1948 unlock_chunks(root);
1949 }
1950 goto error_brelse;
1951 }
1952
1953 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1954 struct btrfs_device *srcdev)
1955 {
1956 struct btrfs_fs_devices *fs_devices;
1957
1958 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1959
1960 /*
1961 * in case of fs with no seed, srcdev->fs_devices will point
1962 * to fs_devices of fs_info. However when the dev being replaced is
1963 * a seed dev it will point to the seed's local fs_devices. In short
1964 * srcdev will have its correct fs_devices in both the cases.
1965 */
1966 fs_devices = srcdev->fs_devices;
1967
1968 list_del_rcu(&srcdev->dev_list);
1969 list_del_rcu(&srcdev->dev_alloc_list);
1970 fs_devices->num_devices--;
1971 if (srcdev->missing)
1972 fs_devices->missing_devices--;
1973
1974 if (srcdev->writeable) {
1975 fs_devices->rw_devices--;
1976 /* zero out the old super if it is writable */
1977 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1978 }
1979
1980 if (srcdev->bdev)
1981 fs_devices->open_devices--;
1982 }
1983
1984 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1985 struct btrfs_device *srcdev)
1986 {
1987 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1988
1989 call_rcu(&srcdev->rcu, free_device);
1990
1991 /*
1992 * unless fs_devices is seed fs, num_devices shouldn't go
1993 * zero
1994 */
1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1996
1997 /* if this is no devs we rather delete the fs_devices */
1998 if (!fs_devices->num_devices) {
1999 struct btrfs_fs_devices *tmp_fs_devices;
2000
2001 tmp_fs_devices = fs_info->fs_devices;
2002 while (tmp_fs_devices) {
2003 if (tmp_fs_devices->seed == fs_devices) {
2004 tmp_fs_devices->seed = fs_devices->seed;
2005 break;
2006 }
2007 tmp_fs_devices = tmp_fs_devices->seed;
2008 }
2009 fs_devices->seed = NULL;
2010 __btrfs_close_devices(fs_devices);
2011 free_fs_devices(fs_devices);
2012 }
2013 }
2014
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 struct btrfs_device *tgtdev)
2017 {
2018 struct btrfs_device *next_device;
2019
2020 mutex_lock(&uuid_mutex);
2021 WARN_ON(!tgtdev);
2022 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2023
2024 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2025
2026 if (tgtdev->bdev) {
2027 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2028 fs_info->fs_devices->open_devices--;
2029 }
2030 fs_info->fs_devices->num_devices--;
2031
2032 next_device = list_entry(fs_info->fs_devices->devices.next,
2033 struct btrfs_device, dev_list);
2034 if (tgtdev->bdev == fs_info->sb->s_bdev)
2035 fs_info->sb->s_bdev = next_device->bdev;
2036 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2037 fs_info->fs_devices->latest_bdev = next_device->bdev;
2038 list_del_rcu(&tgtdev->dev_list);
2039
2040 call_rcu(&tgtdev->rcu, free_device);
2041
2042 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2043 mutex_unlock(&uuid_mutex);
2044 }
2045
2046 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2047 struct btrfs_device **device)
2048 {
2049 int ret = 0;
2050 struct btrfs_super_block *disk_super;
2051 u64 devid;
2052 u8 *dev_uuid;
2053 struct block_device *bdev;
2054 struct buffer_head *bh;
2055
2056 *device = NULL;
2057 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2058 root->fs_info->bdev_holder, 0, &bdev, &bh);
2059 if (ret)
2060 return ret;
2061 disk_super = (struct btrfs_super_block *)bh->b_data;
2062 devid = btrfs_stack_device_id(&disk_super->dev_item);
2063 dev_uuid = disk_super->dev_item.uuid;
2064 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2065 disk_super->fsid);
2066 brelse(bh);
2067 if (!*device)
2068 ret = -ENOENT;
2069 blkdev_put(bdev, FMODE_READ);
2070 return ret;
2071 }
2072
2073 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2074 char *device_path,
2075 struct btrfs_device **device)
2076 {
2077 *device = NULL;
2078 if (strcmp(device_path, "missing") == 0) {
2079 struct list_head *devices;
2080 struct btrfs_device *tmp;
2081
2082 devices = &root->fs_info->fs_devices->devices;
2083 /*
2084 * It is safe to read the devices since the volume_mutex
2085 * is held by the caller.
2086 */
2087 list_for_each_entry(tmp, devices, dev_list) {
2088 if (tmp->in_fs_metadata && !tmp->bdev) {
2089 *device = tmp;
2090 break;
2091 }
2092 }
2093
2094 if (!*device)
2095 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2096
2097 return 0;
2098 } else {
2099 return btrfs_find_device_by_path(root, device_path, device);
2100 }
2101 }
2102
2103 /*
2104 * does all the dirty work required for changing file system's UUID.
2105 */
2106 static int btrfs_prepare_sprout(struct btrfs_root *root)
2107 {
2108 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2109 struct btrfs_fs_devices *old_devices;
2110 struct btrfs_fs_devices *seed_devices;
2111 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2112 struct btrfs_device *device;
2113 u64 super_flags;
2114
2115 BUG_ON(!mutex_is_locked(&uuid_mutex));
2116 if (!fs_devices->seeding)
2117 return -EINVAL;
2118
2119 seed_devices = __alloc_fs_devices();
2120 if (IS_ERR(seed_devices))
2121 return PTR_ERR(seed_devices);
2122
2123 old_devices = clone_fs_devices(fs_devices);
2124 if (IS_ERR(old_devices)) {
2125 kfree(seed_devices);
2126 return PTR_ERR(old_devices);
2127 }
2128
2129 list_add(&old_devices->list, &fs_uuids);
2130
2131 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2132 seed_devices->opened = 1;
2133 INIT_LIST_HEAD(&seed_devices->devices);
2134 INIT_LIST_HEAD(&seed_devices->alloc_list);
2135 mutex_init(&seed_devices->device_list_mutex);
2136
2137 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2138 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2139 synchronize_rcu);
2140 list_for_each_entry(device, &seed_devices->devices, dev_list)
2141 device->fs_devices = seed_devices;
2142
2143 lock_chunks(root);
2144 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2145 unlock_chunks(root);
2146
2147 fs_devices->seeding = 0;
2148 fs_devices->num_devices = 0;
2149 fs_devices->open_devices = 0;
2150 fs_devices->missing_devices = 0;
2151 fs_devices->rotating = 0;
2152 fs_devices->seed = seed_devices;
2153
2154 generate_random_uuid(fs_devices->fsid);
2155 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2156 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2158
2159 super_flags = btrfs_super_flags(disk_super) &
2160 ~BTRFS_SUPER_FLAG_SEEDING;
2161 btrfs_set_super_flags(disk_super, super_flags);
2162
2163 return 0;
2164 }
2165
2166 /*
2167 * strore the expected generation for seed devices in device items.
2168 */
2169 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2170 struct btrfs_root *root)
2171 {
2172 struct btrfs_path *path;
2173 struct extent_buffer *leaf;
2174 struct btrfs_dev_item *dev_item;
2175 struct btrfs_device *device;
2176 struct btrfs_key key;
2177 u8 fs_uuid[BTRFS_UUID_SIZE];
2178 u8 dev_uuid[BTRFS_UUID_SIZE];
2179 u64 devid;
2180 int ret;
2181
2182 path = btrfs_alloc_path();
2183 if (!path)
2184 return -ENOMEM;
2185
2186 root = root->fs_info->chunk_root;
2187 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2188 key.offset = 0;
2189 key.type = BTRFS_DEV_ITEM_KEY;
2190
2191 while (1) {
2192 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2193 if (ret < 0)
2194 goto error;
2195
2196 leaf = path->nodes[0];
2197 next_slot:
2198 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2199 ret = btrfs_next_leaf(root, path);
2200 if (ret > 0)
2201 break;
2202 if (ret < 0)
2203 goto error;
2204 leaf = path->nodes[0];
2205 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2206 btrfs_release_path(path);
2207 continue;
2208 }
2209
2210 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2211 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2212 key.type != BTRFS_DEV_ITEM_KEY)
2213 break;
2214
2215 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2216 struct btrfs_dev_item);
2217 devid = btrfs_device_id(leaf, dev_item);
2218 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2219 BTRFS_UUID_SIZE);
2220 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2221 BTRFS_UUID_SIZE);
2222 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2223 fs_uuid);
2224 BUG_ON(!device); /* Logic error */
2225
2226 if (device->fs_devices->seeding) {
2227 btrfs_set_device_generation(leaf, dev_item,
2228 device->generation);
2229 btrfs_mark_buffer_dirty(leaf);
2230 }
2231
2232 path->slots[0]++;
2233 goto next_slot;
2234 }
2235 ret = 0;
2236 error:
2237 btrfs_free_path(path);
2238 return ret;
2239 }
2240
2241 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2242 {
2243 struct request_queue *q;
2244 struct btrfs_trans_handle *trans;
2245 struct btrfs_device *device;
2246 struct block_device *bdev;
2247 struct list_head *devices;
2248 struct super_block *sb = root->fs_info->sb;
2249 struct rcu_string *name;
2250 u64 tmp;
2251 int seeding_dev = 0;
2252 int ret = 0;
2253
2254 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2255 return -EROFS;
2256
2257 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2258 root->fs_info->bdev_holder);
2259 if (IS_ERR(bdev))
2260 return PTR_ERR(bdev);
2261
2262 if (root->fs_info->fs_devices->seeding) {
2263 seeding_dev = 1;
2264 down_write(&sb->s_umount);
2265 mutex_lock(&uuid_mutex);
2266 }
2267
2268 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2269
2270 devices = &root->fs_info->fs_devices->devices;
2271
2272 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2273 list_for_each_entry(device, devices, dev_list) {
2274 if (device->bdev == bdev) {
2275 ret = -EEXIST;
2276 mutex_unlock(
2277 &root->fs_info->fs_devices->device_list_mutex);
2278 goto error;
2279 }
2280 }
2281 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2282
2283 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2284 if (IS_ERR(device)) {
2285 /* we can safely leave the fs_devices entry around */
2286 ret = PTR_ERR(device);
2287 goto error;
2288 }
2289
2290 name = rcu_string_strdup(device_path, GFP_NOFS);
2291 if (!name) {
2292 kfree(device);
2293 ret = -ENOMEM;
2294 goto error;
2295 }
2296 rcu_assign_pointer(device->name, name);
2297
2298 trans = btrfs_start_transaction(root, 0);
2299 if (IS_ERR(trans)) {
2300 rcu_string_free(device->name);
2301 kfree(device);
2302 ret = PTR_ERR(trans);
2303 goto error;
2304 }
2305
2306 q = bdev_get_queue(bdev);
2307 if (blk_queue_discard(q))
2308 device->can_discard = 1;
2309 device->writeable = 1;
2310 device->generation = trans->transid;
2311 device->io_width = root->sectorsize;
2312 device->io_align = root->sectorsize;
2313 device->sector_size = root->sectorsize;
2314 device->total_bytes = i_size_read(bdev->bd_inode);
2315 device->disk_total_bytes = device->total_bytes;
2316 device->commit_total_bytes = device->total_bytes;
2317 device->dev_root = root->fs_info->dev_root;
2318 device->bdev = bdev;
2319 device->in_fs_metadata = 1;
2320 device->is_tgtdev_for_dev_replace = 0;
2321 device->mode = FMODE_EXCL;
2322 device->dev_stats_valid = 1;
2323 set_blocksize(device->bdev, 4096);
2324
2325 if (seeding_dev) {
2326 sb->s_flags &= ~MS_RDONLY;
2327 ret = btrfs_prepare_sprout(root);
2328 BUG_ON(ret); /* -ENOMEM */
2329 }
2330
2331 device->fs_devices = root->fs_info->fs_devices;
2332
2333 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2334 lock_chunks(root);
2335 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2336 list_add(&device->dev_alloc_list,
2337 &root->fs_info->fs_devices->alloc_list);
2338 root->fs_info->fs_devices->num_devices++;
2339 root->fs_info->fs_devices->open_devices++;
2340 root->fs_info->fs_devices->rw_devices++;
2341 root->fs_info->fs_devices->total_devices++;
2342 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2343
2344 spin_lock(&root->fs_info->free_chunk_lock);
2345 root->fs_info->free_chunk_space += device->total_bytes;
2346 spin_unlock(&root->fs_info->free_chunk_lock);
2347
2348 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2349 root->fs_info->fs_devices->rotating = 1;
2350
2351 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2352 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2353 tmp + device->total_bytes);
2354
2355 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2356 btrfs_set_super_num_devices(root->fs_info->super_copy,
2357 tmp + 1);
2358
2359 /* add sysfs device entry */
2360 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2361
2362 /*
2363 * we've got more storage, clear any full flags on the space
2364 * infos
2365 */
2366 btrfs_clear_space_info_full(root->fs_info);
2367
2368 unlock_chunks(root);
2369 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2370
2371 if (seeding_dev) {
2372 lock_chunks(root);
2373 ret = init_first_rw_device(trans, root, device);
2374 unlock_chunks(root);
2375 if (ret) {
2376 btrfs_abort_transaction(trans, root, ret);
2377 goto error_trans;
2378 }
2379 }
2380
2381 ret = btrfs_add_device(trans, root, device);
2382 if (ret) {
2383 btrfs_abort_transaction(trans, root, ret);
2384 goto error_trans;
2385 }
2386
2387 if (seeding_dev) {
2388 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2389
2390 ret = btrfs_finish_sprout(trans, root);
2391 if (ret) {
2392 btrfs_abort_transaction(trans, root, ret);
2393 goto error_trans;
2394 }
2395
2396 /* Sprouting would change fsid of the mounted root,
2397 * so rename the fsid on the sysfs
2398 */
2399 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2400 root->fs_info->fsid);
2401 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2402 fsid_buf))
2403 btrfs_warn(root->fs_info,
2404 "sysfs: failed to create fsid for sprout");
2405 }
2406
2407 root->fs_info->num_tolerated_disk_barrier_failures =
2408 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2409 ret = btrfs_commit_transaction(trans, root);
2410
2411 if (seeding_dev) {
2412 mutex_unlock(&uuid_mutex);
2413 up_write(&sb->s_umount);
2414
2415 if (ret) /* transaction commit */
2416 return ret;
2417
2418 ret = btrfs_relocate_sys_chunks(root);
2419 if (ret < 0)
2420 btrfs_std_error(root->fs_info, ret,
2421 "Failed to relocate sys chunks after "
2422 "device initialization. This can be fixed "
2423 "using the \"btrfs balance\" command.");
2424 trans = btrfs_attach_transaction(root);
2425 if (IS_ERR(trans)) {
2426 if (PTR_ERR(trans) == -ENOENT)
2427 return 0;
2428 return PTR_ERR(trans);
2429 }
2430 ret = btrfs_commit_transaction(trans, root);
2431 }
2432
2433 /* Update ctime/mtime for libblkid */
2434 update_dev_time(device_path);
2435 return ret;
2436
2437 error_trans:
2438 btrfs_end_transaction(trans, root);
2439 rcu_string_free(device->name);
2440 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2441 kfree(device);
2442 error:
2443 blkdev_put(bdev, FMODE_EXCL);
2444 if (seeding_dev) {
2445 mutex_unlock(&uuid_mutex);
2446 up_write(&sb->s_umount);
2447 }
2448 return ret;
2449 }
2450
2451 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2452 struct btrfs_device *srcdev,
2453 struct btrfs_device **device_out)
2454 {
2455 struct request_queue *q;
2456 struct btrfs_device *device;
2457 struct block_device *bdev;
2458 struct btrfs_fs_info *fs_info = root->fs_info;
2459 struct list_head *devices;
2460 struct rcu_string *name;
2461 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2462 int ret = 0;
2463
2464 *device_out = NULL;
2465 if (fs_info->fs_devices->seeding) {
2466 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2467 return -EINVAL;
2468 }
2469
2470 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2471 fs_info->bdev_holder);
2472 if (IS_ERR(bdev)) {
2473 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2474 return PTR_ERR(bdev);
2475 }
2476
2477 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2478
2479 devices = &fs_info->fs_devices->devices;
2480 list_for_each_entry(device, devices, dev_list) {
2481 if (device->bdev == bdev) {
2482 btrfs_err(fs_info, "target device is in the filesystem!");
2483 ret = -EEXIST;
2484 goto error;
2485 }
2486 }
2487
2488
2489 if (i_size_read(bdev->bd_inode) <
2490 btrfs_device_get_total_bytes(srcdev)) {
2491 btrfs_err(fs_info, "target device is smaller than source device!");
2492 ret = -EINVAL;
2493 goto error;
2494 }
2495
2496
2497 device = btrfs_alloc_device(NULL, &devid, NULL);
2498 if (IS_ERR(device)) {
2499 ret = PTR_ERR(device);
2500 goto error;
2501 }
2502
2503 name = rcu_string_strdup(device_path, GFP_NOFS);
2504 if (!name) {
2505 kfree(device);
2506 ret = -ENOMEM;
2507 goto error;
2508 }
2509 rcu_assign_pointer(device->name, name);
2510
2511 q = bdev_get_queue(bdev);
2512 if (blk_queue_discard(q))
2513 device->can_discard = 1;
2514 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2515 device->writeable = 1;
2516 device->generation = 0;
2517 device->io_width = root->sectorsize;
2518 device->io_align = root->sectorsize;
2519 device->sector_size = root->sectorsize;
2520 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2521 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2522 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2523 ASSERT(list_empty(&srcdev->resized_list));
2524 device->commit_total_bytes = srcdev->commit_total_bytes;
2525 device->commit_bytes_used = device->bytes_used;
2526 device->dev_root = fs_info->dev_root;
2527 device->bdev = bdev;
2528 device->in_fs_metadata = 1;
2529 device->is_tgtdev_for_dev_replace = 1;
2530 device->mode = FMODE_EXCL;
2531 device->dev_stats_valid = 1;
2532 set_blocksize(device->bdev, 4096);
2533 device->fs_devices = fs_info->fs_devices;
2534 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2535 fs_info->fs_devices->num_devices++;
2536 fs_info->fs_devices->open_devices++;
2537 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2538
2539 *device_out = device;
2540 return ret;
2541
2542 error:
2543 blkdev_put(bdev, FMODE_EXCL);
2544 return ret;
2545 }
2546
2547 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2548 struct btrfs_device *tgtdev)
2549 {
2550 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2551 tgtdev->io_width = fs_info->dev_root->sectorsize;
2552 tgtdev->io_align = fs_info->dev_root->sectorsize;
2553 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2554 tgtdev->dev_root = fs_info->dev_root;
2555 tgtdev->in_fs_metadata = 1;
2556 }
2557
2558 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2559 struct btrfs_device *device)
2560 {
2561 int ret;
2562 struct btrfs_path *path;
2563 struct btrfs_root *root;
2564 struct btrfs_dev_item *dev_item;
2565 struct extent_buffer *leaf;
2566 struct btrfs_key key;
2567
2568 root = device->dev_root->fs_info->chunk_root;
2569
2570 path = btrfs_alloc_path();
2571 if (!path)
2572 return -ENOMEM;
2573
2574 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2575 key.type = BTRFS_DEV_ITEM_KEY;
2576 key.offset = device->devid;
2577
2578 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2579 if (ret < 0)
2580 goto out;
2581
2582 if (ret > 0) {
2583 ret = -ENOENT;
2584 goto out;
2585 }
2586
2587 leaf = path->nodes[0];
2588 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2589
2590 btrfs_set_device_id(leaf, dev_item, device->devid);
2591 btrfs_set_device_type(leaf, dev_item, device->type);
2592 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2593 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2594 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2595 btrfs_set_device_total_bytes(leaf, dev_item,
2596 btrfs_device_get_disk_total_bytes(device));
2597 btrfs_set_device_bytes_used(leaf, dev_item,
2598 btrfs_device_get_bytes_used(device));
2599 btrfs_mark_buffer_dirty(leaf);
2600
2601 out:
2602 btrfs_free_path(path);
2603 return ret;
2604 }
2605
2606 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2607 struct btrfs_device *device, u64 new_size)
2608 {
2609 struct btrfs_super_block *super_copy =
2610 device->dev_root->fs_info->super_copy;
2611 struct btrfs_fs_devices *fs_devices;
2612 u64 old_total;
2613 u64 diff;
2614
2615 if (!device->writeable)
2616 return -EACCES;
2617
2618 lock_chunks(device->dev_root);
2619 old_total = btrfs_super_total_bytes(super_copy);
2620 diff = new_size - device->total_bytes;
2621
2622 if (new_size <= device->total_bytes ||
2623 device->is_tgtdev_for_dev_replace) {
2624 unlock_chunks(device->dev_root);
2625 return -EINVAL;
2626 }
2627
2628 fs_devices = device->dev_root->fs_info->fs_devices;
2629
2630 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2631 device->fs_devices->total_rw_bytes += diff;
2632
2633 btrfs_device_set_total_bytes(device, new_size);
2634 btrfs_device_set_disk_total_bytes(device, new_size);
2635 btrfs_clear_space_info_full(device->dev_root->fs_info);
2636 if (list_empty(&device->resized_list))
2637 list_add_tail(&device->resized_list,
2638 &fs_devices->resized_devices);
2639 unlock_chunks(device->dev_root);
2640
2641 return btrfs_update_device(trans, device);
2642 }
2643
2644 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root, u64 chunk_objectid,
2646 u64 chunk_offset)
2647 {
2648 int ret;
2649 struct btrfs_path *path;
2650 struct btrfs_key key;
2651
2652 root = root->fs_info->chunk_root;
2653 path = btrfs_alloc_path();
2654 if (!path)
2655 return -ENOMEM;
2656
2657 key.objectid = chunk_objectid;
2658 key.offset = chunk_offset;
2659 key.type = BTRFS_CHUNK_ITEM_KEY;
2660
2661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2662 if (ret < 0)
2663 goto out;
2664 else if (ret > 0) { /* Logic error or corruption */
2665 btrfs_std_error(root->fs_info, -ENOENT,
2666 "Failed lookup while freeing chunk.");
2667 ret = -ENOENT;
2668 goto out;
2669 }
2670
2671 ret = btrfs_del_item(trans, root, path);
2672 if (ret < 0)
2673 btrfs_std_error(root->fs_info, ret,
2674 "Failed to delete chunk item.");
2675 out:
2676 btrfs_free_path(path);
2677 return ret;
2678 }
2679
2680 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2681 chunk_offset)
2682 {
2683 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2684 struct btrfs_disk_key *disk_key;
2685 struct btrfs_chunk *chunk;
2686 u8 *ptr;
2687 int ret = 0;
2688 u32 num_stripes;
2689 u32 array_size;
2690 u32 len = 0;
2691 u32 cur;
2692 struct btrfs_key key;
2693
2694 lock_chunks(root);
2695 array_size = btrfs_super_sys_array_size(super_copy);
2696
2697 ptr = super_copy->sys_chunk_array;
2698 cur = 0;
2699
2700 while (cur < array_size) {
2701 disk_key = (struct btrfs_disk_key *)ptr;
2702 btrfs_disk_key_to_cpu(&key, disk_key);
2703
2704 len = sizeof(*disk_key);
2705
2706 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2707 chunk = (struct btrfs_chunk *)(ptr + len);
2708 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2709 len += btrfs_chunk_item_size(num_stripes);
2710 } else {
2711 ret = -EIO;
2712 break;
2713 }
2714 if (key.objectid == chunk_objectid &&
2715 key.offset == chunk_offset) {
2716 memmove(ptr, ptr + len, array_size - (cur + len));
2717 array_size -= len;
2718 btrfs_set_super_sys_array_size(super_copy, array_size);
2719 } else {
2720 ptr += len;
2721 cur += len;
2722 }
2723 }
2724 unlock_chunks(root);
2725 return ret;
2726 }
2727
2728 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2729 struct btrfs_root *root, u64 chunk_offset)
2730 {
2731 struct extent_map_tree *em_tree;
2732 struct extent_map *em;
2733 struct btrfs_root *extent_root = root->fs_info->extent_root;
2734 struct map_lookup *map;
2735 u64 dev_extent_len = 0;
2736 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2737 int i, ret = 0;
2738
2739 /* Just in case */
2740 root = root->fs_info->chunk_root;
2741 em_tree = &root->fs_info->mapping_tree.map_tree;
2742
2743 read_lock(&em_tree->lock);
2744 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2745 read_unlock(&em_tree->lock);
2746
2747 if (!em || em->start > chunk_offset ||
2748 em->start + em->len < chunk_offset) {
2749 /*
2750 * This is a logic error, but we don't want to just rely on the
2751 * user having built with ASSERT enabled, so if ASSERT doens't
2752 * do anything we still error out.
2753 */
2754 ASSERT(0);
2755 if (em)
2756 free_extent_map(em);
2757 return -EINVAL;
2758 }
2759 map = em->map_lookup;
2760 lock_chunks(root->fs_info->chunk_root);
2761 check_system_chunk(trans, extent_root, map->type);
2762 unlock_chunks(root->fs_info->chunk_root);
2763
2764 for (i = 0; i < map->num_stripes; i++) {
2765 struct btrfs_device *device = map->stripes[i].dev;
2766 ret = btrfs_free_dev_extent(trans, device,
2767 map->stripes[i].physical,
2768 &dev_extent_len);
2769 if (ret) {
2770 btrfs_abort_transaction(trans, root, ret);
2771 goto out;
2772 }
2773
2774 if (device->bytes_used > 0) {
2775 lock_chunks(root);
2776 btrfs_device_set_bytes_used(device,
2777 device->bytes_used - dev_extent_len);
2778 spin_lock(&root->fs_info->free_chunk_lock);
2779 root->fs_info->free_chunk_space += dev_extent_len;
2780 spin_unlock(&root->fs_info->free_chunk_lock);
2781 btrfs_clear_space_info_full(root->fs_info);
2782 unlock_chunks(root);
2783 }
2784
2785 if (map->stripes[i].dev) {
2786 ret = btrfs_update_device(trans, map->stripes[i].dev);
2787 if (ret) {
2788 btrfs_abort_transaction(trans, root, ret);
2789 goto out;
2790 }
2791 }
2792 }
2793 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2794 if (ret) {
2795 btrfs_abort_transaction(trans, root, ret);
2796 goto out;
2797 }
2798
2799 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2800
2801 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2802 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2803 if (ret) {
2804 btrfs_abort_transaction(trans, root, ret);
2805 goto out;
2806 }
2807 }
2808
2809 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2810 if (ret) {
2811 btrfs_abort_transaction(trans, extent_root, ret);
2812 goto out;
2813 }
2814
2815 out:
2816 /* once for us */
2817 free_extent_map(em);
2818 return ret;
2819 }
2820
2821 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2822 {
2823 struct btrfs_root *extent_root;
2824 struct btrfs_trans_handle *trans;
2825 int ret;
2826
2827 root = root->fs_info->chunk_root;
2828 extent_root = root->fs_info->extent_root;
2829
2830 /*
2831 * Prevent races with automatic removal of unused block groups.
2832 * After we relocate and before we remove the chunk with offset
2833 * chunk_offset, automatic removal of the block group can kick in,
2834 * resulting in a failure when calling btrfs_remove_chunk() below.
2835 *
2836 * Make sure to acquire this mutex before doing a tree search (dev
2837 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2838 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2839 * we release the path used to search the chunk/dev tree and before
2840 * the current task acquires this mutex and calls us.
2841 */
2842 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2843
2844 ret = btrfs_can_relocate(extent_root, chunk_offset);
2845 if (ret)
2846 return -ENOSPC;
2847
2848 /* step one, relocate all the extents inside this chunk */
2849 btrfs_scrub_pause(root);
2850 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2851 btrfs_scrub_continue(root);
2852 if (ret)
2853 return ret;
2854
2855 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2856 chunk_offset);
2857 if (IS_ERR(trans)) {
2858 ret = PTR_ERR(trans);
2859 btrfs_std_error(root->fs_info, ret, NULL);
2860 return ret;
2861 }
2862
2863 /*
2864 * step two, delete the device extents and the
2865 * chunk tree entries
2866 */
2867 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2868 btrfs_end_transaction(trans, root);
2869 return ret;
2870 }
2871
2872 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2873 {
2874 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2875 struct btrfs_path *path;
2876 struct extent_buffer *leaf;
2877 struct btrfs_chunk *chunk;
2878 struct btrfs_key key;
2879 struct btrfs_key found_key;
2880 u64 chunk_type;
2881 bool retried = false;
2882 int failed = 0;
2883 int ret;
2884
2885 path = btrfs_alloc_path();
2886 if (!path)
2887 return -ENOMEM;
2888
2889 again:
2890 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2891 key.offset = (u64)-1;
2892 key.type = BTRFS_CHUNK_ITEM_KEY;
2893
2894 while (1) {
2895 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2896 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2897 if (ret < 0) {
2898 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2899 goto error;
2900 }
2901 BUG_ON(ret == 0); /* Corruption */
2902
2903 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2904 key.type);
2905 if (ret)
2906 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2907 if (ret < 0)
2908 goto error;
2909 if (ret > 0)
2910 break;
2911
2912 leaf = path->nodes[0];
2913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2914
2915 chunk = btrfs_item_ptr(leaf, path->slots[0],
2916 struct btrfs_chunk);
2917 chunk_type = btrfs_chunk_type(leaf, chunk);
2918 btrfs_release_path(path);
2919
2920 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2921 ret = btrfs_relocate_chunk(chunk_root,
2922 found_key.offset);
2923 if (ret == -ENOSPC)
2924 failed++;
2925 else
2926 BUG_ON(ret);
2927 }
2928 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2929
2930 if (found_key.offset == 0)
2931 break;
2932 key.offset = found_key.offset - 1;
2933 }
2934 ret = 0;
2935 if (failed && !retried) {
2936 failed = 0;
2937 retried = true;
2938 goto again;
2939 } else if (WARN_ON(failed && retried)) {
2940 ret = -ENOSPC;
2941 }
2942 error:
2943 btrfs_free_path(path);
2944 return ret;
2945 }
2946
2947 static int insert_balance_item(struct btrfs_root *root,
2948 struct btrfs_balance_control *bctl)
2949 {
2950 struct btrfs_trans_handle *trans;
2951 struct btrfs_balance_item *item;
2952 struct btrfs_disk_balance_args disk_bargs;
2953 struct btrfs_path *path;
2954 struct extent_buffer *leaf;
2955 struct btrfs_key key;
2956 int ret, err;
2957
2958 path = btrfs_alloc_path();
2959 if (!path)
2960 return -ENOMEM;
2961
2962 trans = btrfs_start_transaction(root, 0);
2963 if (IS_ERR(trans)) {
2964 btrfs_free_path(path);
2965 return PTR_ERR(trans);
2966 }
2967
2968 key.objectid = BTRFS_BALANCE_OBJECTID;
2969 key.type = BTRFS_BALANCE_ITEM_KEY;
2970 key.offset = 0;
2971
2972 ret = btrfs_insert_empty_item(trans, root, path, &key,
2973 sizeof(*item));
2974 if (ret)
2975 goto out;
2976
2977 leaf = path->nodes[0];
2978 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2979
2980 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2981
2982 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2983 btrfs_set_balance_data(leaf, item, &disk_bargs);
2984 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2985 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2986 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2987 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2988
2989 btrfs_set_balance_flags(leaf, item, bctl->flags);
2990
2991 btrfs_mark_buffer_dirty(leaf);
2992 out:
2993 btrfs_free_path(path);
2994 err = btrfs_commit_transaction(trans, root);
2995 if (err && !ret)
2996 ret = err;
2997 return ret;
2998 }
2999
3000 static int del_balance_item(struct btrfs_root *root)
3001 {
3002 struct btrfs_trans_handle *trans;
3003 struct btrfs_path *path;
3004 struct btrfs_key key;
3005 int ret, err;
3006
3007 path = btrfs_alloc_path();
3008 if (!path)
3009 return -ENOMEM;
3010
3011 trans = btrfs_start_transaction(root, 0);
3012 if (IS_ERR(trans)) {
3013 btrfs_free_path(path);
3014 return PTR_ERR(trans);
3015 }
3016
3017 key.objectid = BTRFS_BALANCE_OBJECTID;
3018 key.type = BTRFS_BALANCE_ITEM_KEY;
3019 key.offset = 0;
3020
3021 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3022 if (ret < 0)
3023 goto out;
3024 if (ret > 0) {
3025 ret = -ENOENT;
3026 goto out;
3027 }
3028
3029 ret = btrfs_del_item(trans, root, path);
3030 out:
3031 btrfs_free_path(path);
3032 err = btrfs_commit_transaction(trans, root);
3033 if (err && !ret)
3034 ret = err;
3035 return ret;
3036 }
3037
3038 /*
3039 * This is a heuristic used to reduce the number of chunks balanced on
3040 * resume after balance was interrupted.
3041 */
3042 static void update_balance_args(struct btrfs_balance_control *bctl)
3043 {
3044 /*
3045 * Turn on soft mode for chunk types that were being converted.
3046 */
3047 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3048 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3049 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3052 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3053
3054 /*
3055 * Turn on usage filter if is not already used. The idea is
3056 * that chunks that we have already balanced should be
3057 * reasonably full. Don't do it for chunks that are being
3058 * converted - that will keep us from relocating unconverted
3059 * (albeit full) chunks.
3060 */
3061 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3064 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3065 bctl->data.usage = 90;
3066 }
3067 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3068 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3070 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3071 bctl->sys.usage = 90;
3072 }
3073 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3074 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3076 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3077 bctl->meta.usage = 90;
3078 }
3079 }
3080
3081 /*
3082 * Should be called with both balance and volume mutexes held to
3083 * serialize other volume operations (add_dev/rm_dev/resize) with
3084 * restriper. Same goes for unset_balance_control.
3085 */
3086 static void set_balance_control(struct btrfs_balance_control *bctl)
3087 {
3088 struct btrfs_fs_info *fs_info = bctl->fs_info;
3089
3090 BUG_ON(fs_info->balance_ctl);
3091
3092 spin_lock(&fs_info->balance_lock);
3093 fs_info->balance_ctl = bctl;
3094 spin_unlock(&fs_info->balance_lock);
3095 }
3096
3097 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3098 {
3099 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3100
3101 BUG_ON(!fs_info->balance_ctl);
3102
3103 spin_lock(&fs_info->balance_lock);
3104 fs_info->balance_ctl = NULL;
3105 spin_unlock(&fs_info->balance_lock);
3106
3107 kfree(bctl);
3108 }
3109
3110 /*
3111 * Balance filters. Return 1 if chunk should be filtered out
3112 * (should not be balanced).
3113 */
3114 static int chunk_profiles_filter(u64 chunk_type,
3115 struct btrfs_balance_args *bargs)
3116 {
3117 chunk_type = chunk_to_extended(chunk_type) &
3118 BTRFS_EXTENDED_PROFILE_MASK;
3119
3120 if (bargs->profiles & chunk_type)
3121 return 0;
3122
3123 return 1;
3124 }
3125
3126 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3127 struct btrfs_balance_args *bargs)
3128 {
3129 struct btrfs_block_group_cache *cache;
3130 u64 chunk_used;
3131 u64 user_thresh_min;
3132 u64 user_thresh_max;
3133 int ret = 1;
3134
3135 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3136 chunk_used = btrfs_block_group_used(&cache->item);
3137
3138 if (bargs->usage_min == 0)
3139 user_thresh_min = 0;
3140 else
3141 user_thresh_min = div_factor_fine(cache->key.offset,
3142 bargs->usage_min);
3143
3144 if (bargs->usage_max == 0)
3145 user_thresh_max = 1;
3146 else if (bargs->usage_max > 100)
3147 user_thresh_max = cache->key.offset;
3148 else
3149 user_thresh_max = div_factor_fine(cache->key.offset,
3150 bargs->usage_max);
3151
3152 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3153 ret = 0;
3154
3155 btrfs_put_block_group(cache);
3156 return ret;
3157 }
3158
3159 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3160 u64 chunk_offset, struct btrfs_balance_args *bargs)
3161 {
3162 struct btrfs_block_group_cache *cache;
3163 u64 chunk_used, user_thresh;
3164 int ret = 1;
3165
3166 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3167 chunk_used = btrfs_block_group_used(&cache->item);
3168
3169 if (bargs->usage_min == 0)
3170 user_thresh = 1;
3171 else if (bargs->usage > 100)
3172 user_thresh = cache->key.offset;
3173 else
3174 user_thresh = div_factor_fine(cache->key.offset,
3175 bargs->usage);
3176
3177 if (chunk_used < user_thresh)
3178 ret = 0;
3179
3180 btrfs_put_block_group(cache);
3181 return ret;
3182 }
3183
3184 static int chunk_devid_filter(struct extent_buffer *leaf,
3185 struct btrfs_chunk *chunk,
3186 struct btrfs_balance_args *bargs)
3187 {
3188 struct btrfs_stripe *stripe;
3189 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3190 int i;
3191
3192 for (i = 0; i < num_stripes; i++) {
3193 stripe = btrfs_stripe_nr(chunk, i);
3194 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3195 return 0;
3196 }
3197
3198 return 1;
3199 }
3200
3201 /* [pstart, pend) */
3202 static int chunk_drange_filter(struct extent_buffer *leaf,
3203 struct btrfs_chunk *chunk,
3204 u64 chunk_offset,
3205 struct btrfs_balance_args *bargs)
3206 {
3207 struct btrfs_stripe *stripe;
3208 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3209 u64 stripe_offset;
3210 u64 stripe_length;
3211 int factor;
3212 int i;
3213
3214 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3215 return 0;
3216
3217 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3218 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3219 factor = num_stripes / 2;
3220 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3221 factor = num_stripes - 1;
3222 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3223 factor = num_stripes - 2;
3224 } else {
3225 factor = num_stripes;
3226 }
3227
3228 for (i = 0; i < num_stripes; i++) {
3229 stripe = btrfs_stripe_nr(chunk, i);
3230 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3231 continue;
3232
3233 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3234 stripe_length = btrfs_chunk_length(leaf, chunk);
3235 stripe_length = div_u64(stripe_length, factor);
3236
3237 if (stripe_offset < bargs->pend &&
3238 stripe_offset + stripe_length > bargs->pstart)
3239 return 0;
3240 }
3241
3242 return 1;
3243 }
3244
3245 /* [vstart, vend) */
3246 static int chunk_vrange_filter(struct extent_buffer *leaf,
3247 struct btrfs_chunk *chunk,
3248 u64 chunk_offset,
3249 struct btrfs_balance_args *bargs)
3250 {
3251 if (chunk_offset < bargs->vend &&
3252 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3253 /* at least part of the chunk is inside this vrange */
3254 return 0;
3255
3256 return 1;
3257 }
3258
3259 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3260 struct btrfs_chunk *chunk,
3261 struct btrfs_balance_args *bargs)
3262 {
3263 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3264
3265 if (bargs->stripes_min <= num_stripes
3266 && num_stripes <= bargs->stripes_max)
3267 return 0;
3268
3269 return 1;
3270 }
3271
3272 static int chunk_soft_convert_filter(u64 chunk_type,
3273 struct btrfs_balance_args *bargs)
3274 {
3275 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3276 return 0;
3277
3278 chunk_type = chunk_to_extended(chunk_type) &
3279 BTRFS_EXTENDED_PROFILE_MASK;
3280
3281 if (bargs->target == chunk_type)
3282 return 1;
3283
3284 return 0;
3285 }
3286
3287 static int should_balance_chunk(struct btrfs_root *root,
3288 struct extent_buffer *leaf,
3289 struct btrfs_chunk *chunk, u64 chunk_offset)
3290 {
3291 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3292 struct btrfs_balance_args *bargs = NULL;
3293 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3294
3295 /* type filter */
3296 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3297 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3298 return 0;
3299 }
3300
3301 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3302 bargs = &bctl->data;
3303 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3304 bargs = &bctl->sys;
3305 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3306 bargs = &bctl->meta;
3307
3308 /* profiles filter */
3309 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3310 chunk_profiles_filter(chunk_type, bargs)) {
3311 return 0;
3312 }
3313
3314 /* usage filter */
3315 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3316 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3317 return 0;
3318 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3319 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3320 return 0;
3321 }
3322
3323 /* devid filter */
3324 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3325 chunk_devid_filter(leaf, chunk, bargs)) {
3326 return 0;
3327 }
3328
3329 /* drange filter, makes sense only with devid filter */
3330 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3331 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3332 return 0;
3333 }
3334
3335 /* vrange filter */
3336 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3337 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3338 return 0;
3339 }
3340
3341 /* stripes filter */
3342 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3343 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3344 return 0;
3345 }
3346
3347 /* soft profile changing mode */
3348 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3349 chunk_soft_convert_filter(chunk_type, bargs)) {
3350 return 0;
3351 }
3352
3353 /*
3354 * limited by count, must be the last filter
3355 */
3356 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3357 if (bargs->limit == 0)
3358 return 0;
3359 else
3360 bargs->limit--;
3361 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3362 /*
3363 * Same logic as the 'limit' filter; the minimum cannot be
3364 * determined here because we do not have the global informatoin
3365 * about the count of all chunks that satisfy the filters.
3366 */
3367 if (bargs->limit_max == 0)
3368 return 0;
3369 else
3370 bargs->limit_max--;
3371 }
3372
3373 return 1;
3374 }
3375
3376 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3377 {
3378 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3379 struct btrfs_root *chunk_root = fs_info->chunk_root;
3380 struct btrfs_root *dev_root = fs_info->dev_root;
3381 struct list_head *devices;
3382 struct btrfs_device *device;
3383 u64 old_size;
3384 u64 size_to_free;
3385 u64 chunk_type;
3386 struct btrfs_chunk *chunk;
3387 struct btrfs_path *path;
3388 struct btrfs_key key;
3389 struct btrfs_key found_key;
3390 struct btrfs_trans_handle *trans;
3391 struct extent_buffer *leaf;
3392 int slot;
3393 int ret;
3394 int enospc_errors = 0;
3395 bool counting = true;
3396 /* The single value limit and min/max limits use the same bytes in the */
3397 u64 limit_data = bctl->data.limit;
3398 u64 limit_meta = bctl->meta.limit;
3399 u64 limit_sys = bctl->sys.limit;
3400 u32 count_data = 0;
3401 u32 count_meta = 0;
3402 u32 count_sys = 0;
3403 int chunk_reserved = 0;
3404
3405 /* step one make some room on all the devices */
3406 devices = &fs_info->fs_devices->devices;
3407 list_for_each_entry(device, devices, dev_list) {
3408 old_size = btrfs_device_get_total_bytes(device);
3409 size_to_free = div_factor(old_size, 1);
3410 size_to_free = min_t(u64, size_to_free, SZ_1M);
3411 if (!device->writeable ||
3412 btrfs_device_get_total_bytes(device) -
3413 btrfs_device_get_bytes_used(device) > size_to_free ||
3414 device->is_tgtdev_for_dev_replace)
3415 continue;
3416
3417 ret = btrfs_shrink_device(device, old_size - size_to_free);
3418 if (ret == -ENOSPC)
3419 break;
3420 BUG_ON(ret);
3421
3422 trans = btrfs_start_transaction(dev_root, 0);
3423 BUG_ON(IS_ERR(trans));
3424
3425 ret = btrfs_grow_device(trans, device, old_size);
3426 BUG_ON(ret);
3427
3428 btrfs_end_transaction(trans, dev_root);
3429 }
3430
3431 /* step two, relocate all the chunks */
3432 path = btrfs_alloc_path();
3433 if (!path) {
3434 ret = -ENOMEM;
3435 goto error;
3436 }
3437
3438 /* zero out stat counters */
3439 spin_lock(&fs_info->balance_lock);
3440 memset(&bctl->stat, 0, sizeof(bctl->stat));
3441 spin_unlock(&fs_info->balance_lock);
3442 again:
3443 if (!counting) {
3444 /*
3445 * The single value limit and min/max limits use the same bytes
3446 * in the
3447 */
3448 bctl->data.limit = limit_data;
3449 bctl->meta.limit = limit_meta;
3450 bctl->sys.limit = limit_sys;
3451 }
3452 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3453 key.offset = (u64)-1;
3454 key.type = BTRFS_CHUNK_ITEM_KEY;
3455
3456 while (1) {
3457 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3458 atomic_read(&fs_info->balance_cancel_req)) {
3459 ret = -ECANCELED;
3460 goto error;
3461 }
3462
3463 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3464 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3465 if (ret < 0) {
3466 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3467 goto error;
3468 }
3469
3470 /*
3471 * this shouldn't happen, it means the last relocate
3472 * failed
3473 */
3474 if (ret == 0)
3475 BUG(); /* FIXME break ? */
3476
3477 ret = btrfs_previous_item(chunk_root, path, 0,
3478 BTRFS_CHUNK_ITEM_KEY);
3479 if (ret) {
3480 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3481 ret = 0;
3482 break;
3483 }
3484
3485 leaf = path->nodes[0];
3486 slot = path->slots[0];
3487 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3488
3489 if (found_key.objectid != key.objectid) {
3490 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3491 break;
3492 }
3493
3494 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3495 chunk_type = btrfs_chunk_type(leaf, chunk);
3496
3497 if (!counting) {
3498 spin_lock(&fs_info->balance_lock);
3499 bctl->stat.considered++;
3500 spin_unlock(&fs_info->balance_lock);
3501 }
3502
3503 ret = should_balance_chunk(chunk_root, leaf, chunk,
3504 found_key.offset);
3505
3506 btrfs_release_path(path);
3507 if (!ret) {
3508 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3509 goto loop;
3510 }
3511
3512 if (counting) {
3513 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3514 spin_lock(&fs_info->balance_lock);
3515 bctl->stat.expected++;
3516 spin_unlock(&fs_info->balance_lock);
3517
3518 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3519 count_data++;
3520 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3521 count_sys++;
3522 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3523 count_meta++;
3524
3525 goto loop;
3526 }
3527
3528 /*
3529 * Apply limit_min filter, no need to check if the LIMITS
3530 * filter is used, limit_min is 0 by default
3531 */
3532 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3533 count_data < bctl->data.limit_min)
3534 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3535 count_meta < bctl->meta.limit_min)
3536 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3537 count_sys < bctl->sys.limit_min)) {
3538 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3539 goto loop;
3540 }
3541
3542 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3543 trans = btrfs_start_transaction(chunk_root, 0);
3544 if (IS_ERR(trans)) {
3545 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3546 ret = PTR_ERR(trans);
3547 goto error;
3548 }
3549
3550 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3551 BTRFS_BLOCK_GROUP_DATA);
3552 btrfs_end_transaction(trans, chunk_root);
3553 if (ret < 0) {
3554 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3555 goto error;
3556 }
3557 chunk_reserved = 1;
3558 }
3559
3560 ret = btrfs_relocate_chunk(chunk_root,
3561 found_key.offset);
3562 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3563 if (ret && ret != -ENOSPC)
3564 goto error;
3565 if (ret == -ENOSPC) {
3566 enospc_errors++;
3567 } else {
3568 spin_lock(&fs_info->balance_lock);
3569 bctl->stat.completed++;
3570 spin_unlock(&fs_info->balance_lock);
3571 }
3572 loop:
3573 if (found_key.offset == 0)
3574 break;
3575 key.offset = found_key.offset - 1;
3576 }
3577
3578 if (counting) {
3579 btrfs_release_path(path);
3580 counting = false;
3581 goto again;
3582 }
3583 error:
3584 btrfs_free_path(path);
3585 if (enospc_errors) {
3586 btrfs_info(fs_info, "%d enospc errors during balance",
3587 enospc_errors);
3588 if (!ret)
3589 ret = -ENOSPC;
3590 }
3591
3592 return ret;
3593 }
3594
3595 /**
3596 * alloc_profile_is_valid - see if a given profile is valid and reduced
3597 * @flags: profile to validate
3598 * @extended: if true @flags is treated as an extended profile
3599 */
3600 static int alloc_profile_is_valid(u64 flags, int extended)
3601 {
3602 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3603 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3604
3605 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3606
3607 /* 1) check that all other bits are zeroed */
3608 if (flags & ~mask)
3609 return 0;
3610
3611 /* 2) see if profile is reduced */
3612 if (flags == 0)
3613 return !extended; /* "0" is valid for usual profiles */
3614
3615 /* true if exactly one bit set */
3616 return (flags & (flags - 1)) == 0;
3617 }
3618
3619 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3620 {
3621 /* cancel requested || normal exit path */
3622 return atomic_read(&fs_info->balance_cancel_req) ||
3623 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3624 atomic_read(&fs_info->balance_cancel_req) == 0);
3625 }
3626
3627 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3628 {
3629 int ret;
3630
3631 unset_balance_control(fs_info);
3632 ret = del_balance_item(fs_info->tree_root);
3633 if (ret)
3634 btrfs_std_error(fs_info, ret, NULL);
3635
3636 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3637 }
3638
3639 /* Non-zero return value signifies invalidity */
3640 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3641 u64 allowed)
3642 {
3643 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3644 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3645 (bctl_arg->target & ~allowed)));
3646 }
3647
3648 /*
3649 * Should be called with both balance and volume mutexes held
3650 */
3651 int btrfs_balance(struct btrfs_balance_control *bctl,
3652 struct btrfs_ioctl_balance_args *bargs)
3653 {
3654 struct btrfs_fs_info *fs_info = bctl->fs_info;
3655 u64 allowed;
3656 int mixed = 0;
3657 int ret;
3658 u64 num_devices;
3659 unsigned seq;
3660
3661 if (btrfs_fs_closing(fs_info) ||
3662 atomic_read(&fs_info->balance_pause_req) ||
3663 atomic_read(&fs_info->balance_cancel_req)) {
3664 ret = -EINVAL;
3665 goto out;
3666 }
3667
3668 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3669 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3670 mixed = 1;
3671
3672 /*
3673 * In case of mixed groups both data and meta should be picked,
3674 * and identical options should be given for both of them.
3675 */
3676 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3677 if (mixed && (bctl->flags & allowed)) {
3678 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3679 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3680 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3681 btrfs_err(fs_info, "with mixed groups data and "
3682 "metadata balance options must be the same");
3683 ret = -EINVAL;
3684 goto out;
3685 }
3686 }
3687
3688 num_devices = fs_info->fs_devices->num_devices;
3689 btrfs_dev_replace_lock(&fs_info->dev_replace);
3690 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3691 BUG_ON(num_devices < 1);
3692 num_devices--;
3693 }
3694 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3695 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3696 if (num_devices == 1)
3697 allowed |= BTRFS_BLOCK_GROUP_DUP;
3698 else if (num_devices > 1)
3699 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3700 if (num_devices > 2)
3701 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3702 if (num_devices > 3)
3703 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3704 BTRFS_BLOCK_GROUP_RAID6);
3705 if (validate_convert_profile(&bctl->data, allowed)) {
3706 btrfs_err(fs_info, "unable to start balance with target "
3707 "data profile %llu",
3708 bctl->data.target);
3709 ret = -EINVAL;
3710 goto out;
3711 }
3712 if (validate_convert_profile(&bctl->meta, allowed)) {
3713 btrfs_err(fs_info,
3714 "unable to start balance with target metadata profile %llu",
3715 bctl->meta.target);
3716 ret = -EINVAL;
3717 goto out;
3718 }
3719 if (validate_convert_profile(&bctl->sys, allowed)) {
3720 btrfs_err(fs_info,
3721 "unable to start balance with target system profile %llu",
3722 bctl->sys.target);
3723 ret = -EINVAL;
3724 goto out;
3725 }
3726
3727 /* allow to reduce meta or sys integrity only if force set */
3728 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3729 BTRFS_BLOCK_GROUP_RAID10 |
3730 BTRFS_BLOCK_GROUP_RAID5 |
3731 BTRFS_BLOCK_GROUP_RAID6;
3732 do {
3733 seq = read_seqbegin(&fs_info->profiles_lock);
3734
3735 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3736 (fs_info->avail_system_alloc_bits & allowed) &&
3737 !(bctl->sys.target & allowed)) ||
3738 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3739 (fs_info->avail_metadata_alloc_bits & allowed) &&
3740 !(bctl->meta.target & allowed))) {
3741 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3742 btrfs_info(fs_info, "force reducing metadata integrity");
3743 } else {
3744 btrfs_err(fs_info, "balance will reduce metadata "
3745 "integrity, use force if you want this");
3746 ret = -EINVAL;
3747 goto out;
3748 }
3749 }
3750 } while (read_seqretry(&fs_info->profiles_lock, seq));
3751
3752 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3753 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3754 btrfs_warn(fs_info,
3755 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3756 bctl->meta.target, bctl->data.target);
3757 }
3758
3759 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3760 fs_info->num_tolerated_disk_barrier_failures = min(
3761 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3762 btrfs_get_num_tolerated_disk_barrier_failures(
3763 bctl->sys.target));
3764 }
3765
3766 ret = insert_balance_item(fs_info->tree_root, bctl);
3767 if (ret && ret != -EEXIST)
3768 goto out;
3769
3770 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3771 BUG_ON(ret == -EEXIST);
3772 set_balance_control(bctl);
3773 } else {
3774 BUG_ON(ret != -EEXIST);
3775 spin_lock(&fs_info->balance_lock);
3776 update_balance_args(bctl);
3777 spin_unlock(&fs_info->balance_lock);
3778 }
3779
3780 atomic_inc(&fs_info->balance_running);
3781 mutex_unlock(&fs_info->balance_mutex);
3782
3783 ret = __btrfs_balance(fs_info);
3784
3785 mutex_lock(&fs_info->balance_mutex);
3786 atomic_dec(&fs_info->balance_running);
3787
3788 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3789 fs_info->num_tolerated_disk_barrier_failures =
3790 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3791 }
3792
3793 if (bargs) {
3794 memset(bargs, 0, sizeof(*bargs));
3795 update_ioctl_balance_args(fs_info, 0, bargs);
3796 }
3797
3798 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3799 balance_need_close(fs_info)) {
3800 __cancel_balance(fs_info);
3801 }
3802
3803 wake_up(&fs_info->balance_wait_q);
3804
3805 return ret;
3806 out:
3807 if (bctl->flags & BTRFS_BALANCE_RESUME)
3808 __cancel_balance(fs_info);
3809 else {
3810 kfree(bctl);
3811 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3812 }
3813 return ret;
3814 }
3815
3816 static int balance_kthread(void *data)
3817 {
3818 struct btrfs_fs_info *fs_info = data;
3819 int ret = 0;
3820
3821 mutex_lock(&fs_info->volume_mutex);
3822 mutex_lock(&fs_info->balance_mutex);
3823
3824 if (fs_info->balance_ctl) {
3825 btrfs_info(fs_info, "continuing balance");
3826 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3827 }
3828
3829 mutex_unlock(&fs_info->balance_mutex);
3830 mutex_unlock(&fs_info->volume_mutex);
3831
3832 return ret;
3833 }
3834
3835 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3836 {
3837 struct task_struct *tsk;
3838
3839 spin_lock(&fs_info->balance_lock);
3840 if (!fs_info->balance_ctl) {
3841 spin_unlock(&fs_info->balance_lock);
3842 return 0;
3843 }
3844 spin_unlock(&fs_info->balance_lock);
3845
3846 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3847 btrfs_info(fs_info, "force skipping balance");
3848 return 0;
3849 }
3850
3851 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3852 return PTR_ERR_OR_ZERO(tsk);
3853 }
3854
3855 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3856 {
3857 struct btrfs_balance_control *bctl;
3858 struct btrfs_balance_item *item;
3859 struct btrfs_disk_balance_args disk_bargs;
3860 struct btrfs_path *path;
3861 struct extent_buffer *leaf;
3862 struct btrfs_key key;
3863 int ret;
3864
3865 path = btrfs_alloc_path();
3866 if (!path)
3867 return -ENOMEM;
3868
3869 key.objectid = BTRFS_BALANCE_OBJECTID;
3870 key.type = BTRFS_BALANCE_ITEM_KEY;
3871 key.offset = 0;
3872
3873 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3874 if (ret < 0)
3875 goto out;
3876 if (ret > 0) { /* ret = -ENOENT; */
3877 ret = 0;
3878 goto out;
3879 }
3880
3881 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3882 if (!bctl) {
3883 ret = -ENOMEM;
3884 goto out;
3885 }
3886
3887 leaf = path->nodes[0];
3888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3889
3890 bctl->fs_info = fs_info;
3891 bctl->flags = btrfs_balance_flags(leaf, item);
3892 bctl->flags |= BTRFS_BALANCE_RESUME;
3893
3894 btrfs_balance_data(leaf, item, &disk_bargs);
3895 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3896 btrfs_balance_meta(leaf, item, &disk_bargs);
3897 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3898 btrfs_balance_sys(leaf, item, &disk_bargs);
3899 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3900
3901 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3902
3903 mutex_lock(&fs_info->volume_mutex);
3904 mutex_lock(&fs_info->balance_mutex);
3905
3906 set_balance_control(bctl);
3907
3908 mutex_unlock(&fs_info->balance_mutex);
3909 mutex_unlock(&fs_info->volume_mutex);
3910 out:
3911 btrfs_free_path(path);
3912 return ret;
3913 }
3914
3915 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3916 {
3917 int ret = 0;
3918
3919 mutex_lock(&fs_info->balance_mutex);
3920 if (!fs_info->balance_ctl) {
3921 mutex_unlock(&fs_info->balance_mutex);
3922 return -ENOTCONN;
3923 }
3924
3925 if (atomic_read(&fs_info->balance_running)) {
3926 atomic_inc(&fs_info->balance_pause_req);
3927 mutex_unlock(&fs_info->balance_mutex);
3928
3929 wait_event(fs_info->balance_wait_q,
3930 atomic_read(&fs_info->balance_running) == 0);
3931
3932 mutex_lock(&fs_info->balance_mutex);
3933 /* we are good with balance_ctl ripped off from under us */
3934 BUG_ON(atomic_read(&fs_info->balance_running));
3935 atomic_dec(&fs_info->balance_pause_req);
3936 } else {
3937 ret = -ENOTCONN;
3938 }
3939
3940 mutex_unlock(&fs_info->balance_mutex);
3941 return ret;
3942 }
3943
3944 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3945 {
3946 if (fs_info->sb->s_flags & MS_RDONLY)
3947 return -EROFS;
3948
3949 mutex_lock(&fs_info->balance_mutex);
3950 if (!fs_info->balance_ctl) {
3951 mutex_unlock(&fs_info->balance_mutex);
3952 return -ENOTCONN;
3953 }
3954
3955 atomic_inc(&fs_info->balance_cancel_req);
3956 /*
3957 * if we are running just wait and return, balance item is
3958 * deleted in btrfs_balance in this case
3959 */
3960 if (atomic_read(&fs_info->balance_running)) {
3961 mutex_unlock(&fs_info->balance_mutex);
3962 wait_event(fs_info->balance_wait_q,
3963 atomic_read(&fs_info->balance_running) == 0);
3964 mutex_lock(&fs_info->balance_mutex);
3965 } else {
3966 /* __cancel_balance needs volume_mutex */
3967 mutex_unlock(&fs_info->balance_mutex);
3968 mutex_lock(&fs_info->volume_mutex);
3969 mutex_lock(&fs_info->balance_mutex);
3970
3971 if (fs_info->balance_ctl)
3972 __cancel_balance(fs_info);
3973
3974 mutex_unlock(&fs_info->volume_mutex);
3975 }
3976
3977 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3978 atomic_dec(&fs_info->balance_cancel_req);
3979 mutex_unlock(&fs_info->balance_mutex);
3980 return 0;
3981 }
3982
3983 static int btrfs_uuid_scan_kthread(void *data)
3984 {
3985 struct btrfs_fs_info *fs_info = data;
3986 struct btrfs_root *root = fs_info->tree_root;
3987 struct btrfs_key key;
3988 struct btrfs_key max_key;
3989 struct btrfs_path *path = NULL;
3990 int ret = 0;
3991 struct extent_buffer *eb;
3992 int slot;
3993 struct btrfs_root_item root_item;
3994 u32 item_size;
3995 struct btrfs_trans_handle *trans = NULL;
3996
3997 path = btrfs_alloc_path();
3998 if (!path) {
3999 ret = -ENOMEM;
4000 goto out;
4001 }
4002
4003 key.objectid = 0;
4004 key.type = BTRFS_ROOT_ITEM_KEY;
4005 key.offset = 0;
4006
4007 max_key.objectid = (u64)-1;
4008 max_key.type = BTRFS_ROOT_ITEM_KEY;
4009 max_key.offset = (u64)-1;
4010
4011 while (1) {
4012 ret = btrfs_search_forward(root, &key, path, 0);
4013 if (ret) {
4014 if (ret > 0)
4015 ret = 0;
4016 break;
4017 }
4018
4019 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4020 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4021 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4022 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4023 goto skip;
4024
4025 eb = path->nodes[0];
4026 slot = path->slots[0];
4027 item_size = btrfs_item_size_nr(eb, slot);
4028 if (item_size < sizeof(root_item))
4029 goto skip;
4030
4031 read_extent_buffer(eb, &root_item,
4032 btrfs_item_ptr_offset(eb, slot),
4033 (int)sizeof(root_item));
4034 if (btrfs_root_refs(&root_item) == 0)
4035 goto skip;
4036
4037 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4038 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4039 if (trans)
4040 goto update_tree;
4041
4042 btrfs_release_path(path);
4043 /*
4044 * 1 - subvol uuid item
4045 * 1 - received_subvol uuid item
4046 */
4047 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4048 if (IS_ERR(trans)) {
4049 ret = PTR_ERR(trans);
4050 break;
4051 }
4052 continue;
4053 } else {
4054 goto skip;
4055 }
4056 update_tree:
4057 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4058 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4059 root_item.uuid,
4060 BTRFS_UUID_KEY_SUBVOL,
4061 key.objectid);
4062 if (ret < 0) {
4063 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4064 ret);
4065 break;
4066 }
4067 }
4068
4069 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4070 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4071 root_item.received_uuid,
4072 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4073 key.objectid);
4074 if (ret < 0) {
4075 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4076 ret);
4077 break;
4078 }
4079 }
4080
4081 skip:
4082 if (trans) {
4083 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4084 trans = NULL;
4085 if (ret)
4086 break;
4087 }
4088
4089 btrfs_release_path(path);
4090 if (key.offset < (u64)-1) {
4091 key.offset++;
4092 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4093 key.offset = 0;
4094 key.type = BTRFS_ROOT_ITEM_KEY;
4095 } else if (key.objectid < (u64)-1) {
4096 key.offset = 0;
4097 key.type = BTRFS_ROOT_ITEM_KEY;
4098 key.objectid++;
4099 } else {
4100 break;
4101 }
4102 cond_resched();
4103 }
4104
4105 out:
4106 btrfs_free_path(path);
4107 if (trans && !IS_ERR(trans))
4108 btrfs_end_transaction(trans, fs_info->uuid_root);
4109 if (ret)
4110 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4111 else
4112 fs_info->update_uuid_tree_gen = 1;
4113 up(&fs_info->uuid_tree_rescan_sem);
4114 return 0;
4115 }
4116
4117 /*
4118 * Callback for btrfs_uuid_tree_iterate().
4119 * returns:
4120 * 0 check succeeded, the entry is not outdated.
4121 * < 0 if an error occured.
4122 * > 0 if the check failed, which means the caller shall remove the entry.
4123 */
4124 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4125 u8 *uuid, u8 type, u64 subid)
4126 {
4127 struct btrfs_key key;
4128 int ret = 0;
4129 struct btrfs_root *subvol_root;
4130
4131 if (type != BTRFS_UUID_KEY_SUBVOL &&
4132 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4133 goto out;
4134
4135 key.objectid = subid;
4136 key.type = BTRFS_ROOT_ITEM_KEY;
4137 key.offset = (u64)-1;
4138 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4139 if (IS_ERR(subvol_root)) {
4140 ret = PTR_ERR(subvol_root);
4141 if (ret == -ENOENT)
4142 ret = 1;
4143 goto out;
4144 }
4145
4146 switch (type) {
4147 case BTRFS_UUID_KEY_SUBVOL:
4148 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4149 ret = 1;
4150 break;
4151 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4152 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4153 BTRFS_UUID_SIZE))
4154 ret = 1;
4155 break;
4156 }
4157
4158 out:
4159 return ret;
4160 }
4161
4162 static int btrfs_uuid_rescan_kthread(void *data)
4163 {
4164 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4165 int ret;
4166
4167 /*
4168 * 1st step is to iterate through the existing UUID tree and
4169 * to delete all entries that contain outdated data.
4170 * 2nd step is to add all missing entries to the UUID tree.
4171 */
4172 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4173 if (ret < 0) {
4174 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4175 up(&fs_info->uuid_tree_rescan_sem);
4176 return ret;
4177 }
4178 return btrfs_uuid_scan_kthread(data);
4179 }
4180
4181 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4182 {
4183 struct btrfs_trans_handle *trans;
4184 struct btrfs_root *tree_root = fs_info->tree_root;
4185 struct btrfs_root *uuid_root;
4186 struct task_struct *task;
4187 int ret;
4188
4189 /*
4190 * 1 - root node
4191 * 1 - root item
4192 */
4193 trans = btrfs_start_transaction(tree_root, 2);
4194 if (IS_ERR(trans))
4195 return PTR_ERR(trans);
4196
4197 uuid_root = btrfs_create_tree(trans, fs_info,
4198 BTRFS_UUID_TREE_OBJECTID);
4199 if (IS_ERR(uuid_root)) {
4200 ret = PTR_ERR(uuid_root);
4201 btrfs_abort_transaction(trans, tree_root, ret);
4202 return ret;
4203 }
4204
4205 fs_info->uuid_root = uuid_root;
4206
4207 ret = btrfs_commit_transaction(trans, tree_root);
4208 if (ret)
4209 return ret;
4210
4211 down(&fs_info->uuid_tree_rescan_sem);
4212 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4213 if (IS_ERR(task)) {
4214 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4215 btrfs_warn(fs_info, "failed to start uuid_scan task");
4216 up(&fs_info->uuid_tree_rescan_sem);
4217 return PTR_ERR(task);
4218 }
4219
4220 return 0;
4221 }
4222
4223 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4224 {
4225 struct task_struct *task;
4226
4227 down(&fs_info->uuid_tree_rescan_sem);
4228 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4229 if (IS_ERR(task)) {
4230 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4231 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4232 up(&fs_info->uuid_tree_rescan_sem);
4233 return PTR_ERR(task);
4234 }
4235
4236 return 0;
4237 }
4238
4239 /*
4240 * shrinking a device means finding all of the device extents past
4241 * the new size, and then following the back refs to the chunks.
4242 * The chunk relocation code actually frees the device extent
4243 */
4244 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4245 {
4246 struct btrfs_trans_handle *trans;
4247 struct btrfs_root *root = device->dev_root;
4248 struct btrfs_dev_extent *dev_extent = NULL;
4249 struct btrfs_path *path;
4250 u64 length;
4251 u64 chunk_offset;
4252 int ret;
4253 int slot;
4254 int failed = 0;
4255 bool retried = false;
4256 bool checked_pending_chunks = false;
4257 struct extent_buffer *l;
4258 struct btrfs_key key;
4259 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4260 u64 old_total = btrfs_super_total_bytes(super_copy);
4261 u64 old_size = btrfs_device_get_total_bytes(device);
4262 u64 diff = old_size - new_size;
4263
4264 if (device->is_tgtdev_for_dev_replace)
4265 return -EINVAL;
4266
4267 path = btrfs_alloc_path();
4268 if (!path)
4269 return -ENOMEM;
4270
4271 path->reada = READA_FORWARD;
4272
4273 lock_chunks(root);
4274
4275 btrfs_device_set_total_bytes(device, new_size);
4276 if (device->writeable) {
4277 device->fs_devices->total_rw_bytes -= diff;
4278 spin_lock(&root->fs_info->free_chunk_lock);
4279 root->fs_info->free_chunk_space -= diff;
4280 spin_unlock(&root->fs_info->free_chunk_lock);
4281 }
4282 unlock_chunks(root);
4283
4284 again:
4285 key.objectid = device->devid;
4286 key.offset = (u64)-1;
4287 key.type = BTRFS_DEV_EXTENT_KEY;
4288
4289 do {
4290 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4291 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4292 if (ret < 0) {
4293 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4294 goto done;
4295 }
4296
4297 ret = btrfs_previous_item(root, path, 0, key.type);
4298 if (ret)
4299 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4300 if (ret < 0)
4301 goto done;
4302 if (ret) {
4303 ret = 0;
4304 btrfs_release_path(path);
4305 break;
4306 }
4307
4308 l = path->nodes[0];
4309 slot = path->slots[0];
4310 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4311
4312 if (key.objectid != device->devid) {
4313 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4314 btrfs_release_path(path);
4315 break;
4316 }
4317
4318 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4319 length = btrfs_dev_extent_length(l, dev_extent);
4320
4321 if (key.offset + length <= new_size) {
4322 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4323 btrfs_release_path(path);
4324 break;
4325 }
4326
4327 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4328 btrfs_release_path(path);
4329
4330 ret = btrfs_relocate_chunk(root, chunk_offset);
4331 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4332 if (ret && ret != -ENOSPC)
4333 goto done;
4334 if (ret == -ENOSPC)
4335 failed++;
4336 } while (key.offset-- > 0);
4337
4338 if (failed && !retried) {
4339 failed = 0;
4340 retried = true;
4341 goto again;
4342 } else if (failed && retried) {
4343 ret = -ENOSPC;
4344 goto done;
4345 }
4346
4347 /* Shrinking succeeded, else we would be at "done". */
4348 trans = btrfs_start_transaction(root, 0);
4349 if (IS_ERR(trans)) {
4350 ret = PTR_ERR(trans);
4351 goto done;
4352 }
4353
4354 lock_chunks(root);
4355
4356 /*
4357 * We checked in the above loop all device extents that were already in
4358 * the device tree. However before we have updated the device's
4359 * total_bytes to the new size, we might have had chunk allocations that
4360 * have not complete yet (new block groups attached to transaction
4361 * handles), and therefore their device extents were not yet in the
4362 * device tree and we missed them in the loop above. So if we have any
4363 * pending chunk using a device extent that overlaps the device range
4364 * that we can not use anymore, commit the current transaction and
4365 * repeat the search on the device tree - this way we guarantee we will
4366 * not have chunks using device extents that end beyond 'new_size'.
4367 */
4368 if (!checked_pending_chunks) {
4369 u64 start = new_size;
4370 u64 len = old_size - new_size;
4371
4372 if (contains_pending_extent(trans->transaction, device,
4373 &start, len)) {
4374 unlock_chunks(root);
4375 checked_pending_chunks = true;
4376 failed = 0;
4377 retried = false;
4378 ret = btrfs_commit_transaction(trans, root);
4379 if (ret)
4380 goto done;
4381 goto again;
4382 }
4383 }
4384
4385 btrfs_device_set_disk_total_bytes(device, new_size);
4386 if (list_empty(&device->resized_list))
4387 list_add_tail(&device->resized_list,
4388 &root->fs_info->fs_devices->resized_devices);
4389
4390 WARN_ON(diff > old_total);
4391 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4392 unlock_chunks(root);
4393
4394 /* Now btrfs_update_device() will change the on-disk size. */
4395 ret = btrfs_update_device(trans, device);
4396 btrfs_end_transaction(trans, root);
4397 done:
4398 btrfs_free_path(path);
4399 if (ret) {
4400 lock_chunks(root);
4401 btrfs_device_set_total_bytes(device, old_size);
4402 if (device->writeable)
4403 device->fs_devices->total_rw_bytes += diff;
4404 spin_lock(&root->fs_info->free_chunk_lock);
4405 root->fs_info->free_chunk_space += diff;
4406 spin_unlock(&root->fs_info->free_chunk_lock);
4407 unlock_chunks(root);
4408 }
4409 return ret;
4410 }
4411
4412 static int btrfs_add_system_chunk(struct btrfs_root *root,
4413 struct btrfs_key *key,
4414 struct btrfs_chunk *chunk, int item_size)
4415 {
4416 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4417 struct btrfs_disk_key disk_key;
4418 u32 array_size;
4419 u8 *ptr;
4420
4421 lock_chunks(root);
4422 array_size = btrfs_super_sys_array_size(super_copy);
4423 if (array_size + item_size + sizeof(disk_key)
4424 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4425 unlock_chunks(root);
4426 return -EFBIG;
4427 }
4428
4429 ptr = super_copy->sys_chunk_array + array_size;
4430 btrfs_cpu_key_to_disk(&disk_key, key);
4431 memcpy(ptr, &disk_key, sizeof(disk_key));
4432 ptr += sizeof(disk_key);
4433 memcpy(ptr, chunk, item_size);
4434 item_size += sizeof(disk_key);
4435 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4436 unlock_chunks(root);
4437
4438 return 0;
4439 }
4440
4441 /*
4442 * sort the devices in descending order by max_avail, total_avail
4443 */
4444 static int btrfs_cmp_device_info(const void *a, const void *b)
4445 {
4446 const struct btrfs_device_info *di_a = a;
4447 const struct btrfs_device_info *di_b = b;
4448
4449 if (di_a->max_avail > di_b->max_avail)
4450 return -1;
4451 if (di_a->max_avail < di_b->max_avail)
4452 return 1;
4453 if (di_a->total_avail > di_b->total_avail)
4454 return -1;
4455 if (di_a->total_avail < di_b->total_avail)
4456 return 1;
4457 return 0;
4458 }
4459
4460 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4461 {
4462 /* TODO allow them to set a preferred stripe size */
4463 return SZ_64K;
4464 }
4465
4466 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4467 {
4468 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4469 return;
4470
4471 btrfs_set_fs_incompat(info, RAID56);
4472 }
4473
4474 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4475 - sizeof(struct btrfs_item) \
4476 - sizeof(struct btrfs_chunk)) \
4477 / sizeof(struct btrfs_stripe) + 1)
4478
4479 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4480 - 2 * sizeof(struct btrfs_disk_key) \
4481 - 2 * sizeof(struct btrfs_chunk)) \
4482 / sizeof(struct btrfs_stripe) + 1)
4483
4484 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4485 struct btrfs_root *extent_root, u64 start,
4486 u64 type)
4487 {
4488 struct btrfs_fs_info *info = extent_root->fs_info;
4489 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4490 struct list_head *cur;
4491 struct map_lookup *map = NULL;
4492 struct extent_map_tree *em_tree;
4493 struct extent_map *em;
4494 struct btrfs_device_info *devices_info = NULL;
4495 u64 total_avail;
4496 int num_stripes; /* total number of stripes to allocate */
4497 int data_stripes; /* number of stripes that count for
4498 block group size */
4499 int sub_stripes; /* sub_stripes info for map */
4500 int dev_stripes; /* stripes per dev */
4501 int devs_max; /* max devs to use */
4502 int devs_min; /* min devs needed */
4503 int devs_increment; /* ndevs has to be a multiple of this */
4504 int ncopies; /* how many copies to data has */
4505 int ret;
4506 u64 max_stripe_size;
4507 u64 max_chunk_size;
4508 u64 stripe_size;
4509 u64 num_bytes;
4510 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4511 int ndevs;
4512 int i;
4513 int j;
4514 int index;
4515
4516 BUG_ON(!alloc_profile_is_valid(type, 0));
4517
4518 if (list_empty(&fs_devices->alloc_list))
4519 return -ENOSPC;
4520
4521 index = __get_raid_index(type);
4522
4523 sub_stripes = btrfs_raid_array[index].sub_stripes;
4524 dev_stripes = btrfs_raid_array[index].dev_stripes;
4525 devs_max = btrfs_raid_array[index].devs_max;
4526 devs_min = btrfs_raid_array[index].devs_min;
4527 devs_increment = btrfs_raid_array[index].devs_increment;
4528 ncopies = btrfs_raid_array[index].ncopies;
4529
4530 if (type & BTRFS_BLOCK_GROUP_DATA) {
4531 max_stripe_size = SZ_1G;
4532 max_chunk_size = 10 * max_stripe_size;
4533 if (!devs_max)
4534 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4535 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4536 /* for larger filesystems, use larger metadata chunks */
4537 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4538 max_stripe_size = SZ_1G;
4539 else
4540 max_stripe_size = SZ_256M;
4541 max_chunk_size = max_stripe_size;
4542 if (!devs_max)
4543 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4544 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4545 max_stripe_size = SZ_32M;
4546 max_chunk_size = 2 * max_stripe_size;
4547 if (!devs_max)
4548 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4549 } else {
4550 btrfs_err(info, "invalid chunk type 0x%llx requested",
4551 type);
4552 BUG_ON(1);
4553 }
4554
4555 /* we don't want a chunk larger than 10% of writeable space */
4556 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4557 max_chunk_size);
4558
4559 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4560 GFP_NOFS);
4561 if (!devices_info)
4562 return -ENOMEM;
4563
4564 cur = fs_devices->alloc_list.next;
4565
4566 /*
4567 * in the first pass through the devices list, we gather information
4568 * about the available holes on each device.
4569 */
4570 ndevs = 0;
4571 while (cur != &fs_devices->alloc_list) {
4572 struct btrfs_device *device;
4573 u64 max_avail;
4574 u64 dev_offset;
4575
4576 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4577
4578 cur = cur->next;
4579
4580 if (!device->writeable) {
4581 WARN(1, KERN_ERR
4582 "BTRFS: read-only device in alloc_list\n");
4583 continue;
4584 }
4585
4586 if (!device->in_fs_metadata ||
4587 device->is_tgtdev_for_dev_replace)
4588 continue;
4589
4590 if (device->total_bytes > device->bytes_used)
4591 total_avail = device->total_bytes - device->bytes_used;
4592 else
4593 total_avail = 0;
4594
4595 /* If there is no space on this device, skip it. */
4596 if (total_avail == 0)
4597 continue;
4598
4599 ret = find_free_dev_extent(trans, device,
4600 max_stripe_size * dev_stripes,
4601 &dev_offset, &max_avail);
4602 if (ret && ret != -ENOSPC)
4603 goto error;
4604
4605 if (ret == 0)
4606 max_avail = max_stripe_size * dev_stripes;
4607
4608 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4609 continue;
4610
4611 if (ndevs == fs_devices->rw_devices) {
4612 WARN(1, "%s: found more than %llu devices\n",
4613 __func__, fs_devices->rw_devices);
4614 break;
4615 }
4616 devices_info[ndevs].dev_offset = dev_offset;
4617 devices_info[ndevs].max_avail = max_avail;
4618 devices_info[ndevs].total_avail = total_avail;
4619 devices_info[ndevs].dev = device;
4620 ++ndevs;
4621 }
4622
4623 /*
4624 * now sort the devices by hole size / available space
4625 */
4626 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4627 btrfs_cmp_device_info, NULL);
4628
4629 /* round down to number of usable stripes */
4630 ndevs -= ndevs % devs_increment;
4631
4632 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4633 ret = -ENOSPC;
4634 goto error;
4635 }
4636
4637 if (devs_max && ndevs > devs_max)
4638 ndevs = devs_max;
4639 /*
4640 * the primary goal is to maximize the number of stripes, so use as many
4641 * devices as possible, even if the stripes are not maximum sized.
4642 */
4643 stripe_size = devices_info[ndevs-1].max_avail;
4644 num_stripes = ndevs * dev_stripes;
4645
4646 /*
4647 * this will have to be fixed for RAID1 and RAID10 over
4648 * more drives
4649 */
4650 data_stripes = num_stripes / ncopies;
4651
4652 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4653 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4654 btrfs_super_stripesize(info->super_copy));
4655 data_stripes = num_stripes - 1;
4656 }
4657 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4658 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4659 btrfs_super_stripesize(info->super_copy));
4660 data_stripes = num_stripes - 2;
4661 }
4662
4663 /*
4664 * Use the number of data stripes to figure out how big this chunk
4665 * is really going to be in terms of logical address space,
4666 * and compare that answer with the max chunk size
4667 */
4668 if (stripe_size * data_stripes > max_chunk_size) {
4669 u64 mask = (1ULL << 24) - 1;
4670
4671 stripe_size = div_u64(max_chunk_size, data_stripes);
4672
4673 /* bump the answer up to a 16MB boundary */
4674 stripe_size = (stripe_size + mask) & ~mask;
4675
4676 /* but don't go higher than the limits we found
4677 * while searching for free extents
4678 */
4679 if (stripe_size > devices_info[ndevs-1].max_avail)
4680 stripe_size = devices_info[ndevs-1].max_avail;
4681 }
4682
4683 stripe_size = div_u64(stripe_size, dev_stripes);
4684
4685 /* align to BTRFS_STRIPE_LEN */
4686 stripe_size = div_u64(stripe_size, raid_stripe_len);
4687 stripe_size *= raid_stripe_len;
4688
4689 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4690 if (!map) {
4691 ret = -ENOMEM;
4692 goto error;
4693 }
4694 map->num_stripes = num_stripes;
4695
4696 for (i = 0; i < ndevs; ++i) {
4697 for (j = 0; j < dev_stripes; ++j) {
4698 int s = i * dev_stripes + j;
4699 map->stripes[s].dev = devices_info[i].dev;
4700 map->stripes[s].physical = devices_info[i].dev_offset +
4701 j * stripe_size;
4702 }
4703 }
4704 map->sector_size = extent_root->sectorsize;
4705 map->stripe_len = raid_stripe_len;
4706 map->io_align = raid_stripe_len;
4707 map->io_width = raid_stripe_len;
4708 map->type = type;
4709 map->sub_stripes = sub_stripes;
4710
4711 num_bytes = stripe_size * data_stripes;
4712
4713 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4714
4715 em = alloc_extent_map();
4716 if (!em) {
4717 kfree(map);
4718 ret = -ENOMEM;
4719 goto error;
4720 }
4721 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4722 em->map_lookup = map;
4723 em->start = start;
4724 em->len = num_bytes;
4725 em->block_start = 0;
4726 em->block_len = em->len;
4727 em->orig_block_len = stripe_size;
4728
4729 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4730 write_lock(&em_tree->lock);
4731 ret = add_extent_mapping(em_tree, em, 0);
4732 if (!ret) {
4733 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4734 atomic_inc(&em->refs);
4735 }
4736 write_unlock(&em_tree->lock);
4737 if (ret) {
4738 free_extent_map(em);
4739 goto error;
4740 }
4741
4742 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4743 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4744 start, num_bytes);
4745 if (ret)
4746 goto error_del_extent;
4747
4748 for (i = 0; i < map->num_stripes; i++) {
4749 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4750 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4751 }
4752
4753 spin_lock(&extent_root->fs_info->free_chunk_lock);
4754 extent_root->fs_info->free_chunk_space -= (stripe_size *
4755 map->num_stripes);
4756 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4757
4758 free_extent_map(em);
4759 check_raid56_incompat_flag(extent_root->fs_info, type);
4760
4761 kfree(devices_info);
4762 return 0;
4763
4764 error_del_extent:
4765 write_lock(&em_tree->lock);
4766 remove_extent_mapping(em_tree, em);
4767 write_unlock(&em_tree->lock);
4768
4769 /* One for our allocation */
4770 free_extent_map(em);
4771 /* One for the tree reference */
4772 free_extent_map(em);
4773 /* One for the pending_chunks list reference */
4774 free_extent_map(em);
4775 error:
4776 kfree(devices_info);
4777 return ret;
4778 }
4779
4780 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4781 struct btrfs_root *extent_root,
4782 u64 chunk_offset, u64 chunk_size)
4783 {
4784 struct btrfs_key key;
4785 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4786 struct btrfs_device *device;
4787 struct btrfs_chunk *chunk;
4788 struct btrfs_stripe *stripe;
4789 struct extent_map_tree *em_tree;
4790 struct extent_map *em;
4791 struct map_lookup *map;
4792 size_t item_size;
4793 u64 dev_offset;
4794 u64 stripe_size;
4795 int i = 0;
4796 int ret = 0;
4797
4798 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4799 read_lock(&em_tree->lock);
4800 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4801 read_unlock(&em_tree->lock);
4802
4803 if (!em) {
4804 btrfs_crit(extent_root->fs_info, "unable to find logical "
4805 "%Lu len %Lu", chunk_offset, chunk_size);
4806 return -EINVAL;
4807 }
4808
4809 if (em->start != chunk_offset || em->len != chunk_size) {
4810 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4811 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4812 chunk_size, em->start, em->len);
4813 free_extent_map(em);
4814 return -EINVAL;
4815 }
4816
4817 map = em->map_lookup;
4818 item_size = btrfs_chunk_item_size(map->num_stripes);
4819 stripe_size = em->orig_block_len;
4820
4821 chunk = kzalloc(item_size, GFP_NOFS);
4822 if (!chunk) {
4823 ret = -ENOMEM;
4824 goto out;
4825 }
4826
4827 /*
4828 * Take the device list mutex to prevent races with the final phase of
4829 * a device replace operation that replaces the device object associated
4830 * with the map's stripes, because the device object's id can change
4831 * at any time during that final phase of the device replace operation
4832 * (dev-replace.c:btrfs_dev_replace_finishing()).
4833 */
4834 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4835 for (i = 0; i < map->num_stripes; i++) {
4836 device = map->stripes[i].dev;
4837 dev_offset = map->stripes[i].physical;
4838
4839 ret = btrfs_update_device(trans, device);
4840 if (ret)
4841 break;
4842 ret = btrfs_alloc_dev_extent(trans, device,
4843 chunk_root->root_key.objectid,
4844 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4845 chunk_offset, dev_offset,
4846 stripe_size);
4847 if (ret)
4848 break;
4849 }
4850 if (ret) {
4851 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4852 goto out;
4853 }
4854
4855 stripe = &chunk->stripe;
4856 for (i = 0; i < map->num_stripes; i++) {
4857 device = map->stripes[i].dev;
4858 dev_offset = map->stripes[i].physical;
4859
4860 btrfs_set_stack_stripe_devid(stripe, device->devid);
4861 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4862 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4863 stripe++;
4864 }
4865 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4866
4867 btrfs_set_stack_chunk_length(chunk, chunk_size);
4868 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4869 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4870 btrfs_set_stack_chunk_type(chunk, map->type);
4871 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4872 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4873 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4874 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4875 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4876
4877 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4878 key.type = BTRFS_CHUNK_ITEM_KEY;
4879 key.offset = chunk_offset;
4880
4881 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4882 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4883 /*
4884 * TODO: Cleanup of inserted chunk root in case of
4885 * failure.
4886 */
4887 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4888 item_size);
4889 }
4890
4891 out:
4892 kfree(chunk);
4893 free_extent_map(em);
4894 return ret;
4895 }
4896
4897 /*
4898 * Chunk allocation falls into two parts. The first part does works
4899 * that make the new allocated chunk useable, but not do any operation
4900 * that modifies the chunk tree. The second part does the works that
4901 * require modifying the chunk tree. This division is important for the
4902 * bootstrap process of adding storage to a seed btrfs.
4903 */
4904 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4905 struct btrfs_root *extent_root, u64 type)
4906 {
4907 u64 chunk_offset;
4908
4909 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4910 chunk_offset = find_next_chunk(extent_root->fs_info);
4911 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4912 }
4913
4914 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4915 struct btrfs_root *root,
4916 struct btrfs_device *device)
4917 {
4918 u64 chunk_offset;
4919 u64 sys_chunk_offset;
4920 u64 alloc_profile;
4921 struct btrfs_fs_info *fs_info = root->fs_info;
4922 struct btrfs_root *extent_root = fs_info->extent_root;
4923 int ret;
4924
4925 chunk_offset = find_next_chunk(fs_info);
4926 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4927 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4928 alloc_profile);
4929 if (ret)
4930 return ret;
4931
4932 sys_chunk_offset = find_next_chunk(root->fs_info);
4933 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4934 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4935 alloc_profile);
4936 return ret;
4937 }
4938
4939 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4940 {
4941 int max_errors;
4942
4943 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4944 BTRFS_BLOCK_GROUP_RAID10 |
4945 BTRFS_BLOCK_GROUP_RAID5 |
4946 BTRFS_BLOCK_GROUP_DUP)) {
4947 max_errors = 1;
4948 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4949 max_errors = 2;
4950 } else {
4951 max_errors = 0;
4952 }
4953
4954 return max_errors;
4955 }
4956
4957 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4958 {
4959 struct extent_map *em;
4960 struct map_lookup *map;
4961 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4962 int readonly = 0;
4963 int miss_ndevs = 0;
4964 int i;
4965
4966 read_lock(&map_tree->map_tree.lock);
4967 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4968 read_unlock(&map_tree->map_tree.lock);
4969 if (!em)
4970 return 1;
4971
4972 map = em->map_lookup;
4973 for (i = 0; i < map->num_stripes; i++) {
4974 if (map->stripes[i].dev->missing) {
4975 miss_ndevs++;
4976 continue;
4977 }
4978
4979 if (!map->stripes[i].dev->writeable) {
4980 readonly = 1;
4981 goto end;
4982 }
4983 }
4984
4985 /*
4986 * If the number of missing devices is larger than max errors,
4987 * we can not write the data into that chunk successfully, so
4988 * set it readonly.
4989 */
4990 if (miss_ndevs > btrfs_chunk_max_errors(map))
4991 readonly = 1;
4992 end:
4993 free_extent_map(em);
4994 return readonly;
4995 }
4996
4997 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4998 {
4999 extent_map_tree_init(&tree->map_tree);
5000 }
5001
5002 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5003 {
5004 struct extent_map *em;
5005
5006 while (1) {
5007 write_lock(&tree->map_tree.lock);
5008 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5009 if (em)
5010 remove_extent_mapping(&tree->map_tree, em);
5011 write_unlock(&tree->map_tree.lock);
5012 if (!em)
5013 break;
5014 /* once for us */
5015 free_extent_map(em);
5016 /* once for the tree */
5017 free_extent_map(em);
5018 }
5019 }
5020
5021 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5022 {
5023 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5024 struct extent_map *em;
5025 struct map_lookup *map;
5026 struct extent_map_tree *em_tree = &map_tree->map_tree;
5027 int ret;
5028
5029 read_lock(&em_tree->lock);
5030 em = lookup_extent_mapping(em_tree, logical, len);
5031 read_unlock(&em_tree->lock);
5032
5033 /*
5034 * We could return errors for these cases, but that could get ugly and
5035 * we'd probably do the same thing which is just not do anything else
5036 * and exit, so return 1 so the callers don't try to use other copies.
5037 */
5038 if (!em) {
5039 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5040 logical+len);
5041 return 1;
5042 }
5043
5044 if (em->start > logical || em->start + em->len < logical) {
5045 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5046 "%Lu-%Lu", logical, logical+len, em->start,
5047 em->start + em->len);
5048 free_extent_map(em);
5049 return 1;
5050 }
5051
5052 map = em->map_lookup;
5053 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5054 ret = map->num_stripes;
5055 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5056 ret = map->sub_stripes;
5057 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5058 ret = 2;
5059 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5060 ret = 3;
5061 else
5062 ret = 1;
5063 free_extent_map(em);
5064
5065 btrfs_dev_replace_lock(&fs_info->dev_replace);
5066 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5067 ret++;
5068 btrfs_dev_replace_unlock(&fs_info->dev_replace);
5069
5070 return ret;
5071 }
5072
5073 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5074 struct btrfs_mapping_tree *map_tree,
5075 u64 logical)
5076 {
5077 struct extent_map *em;
5078 struct map_lookup *map;
5079 struct extent_map_tree *em_tree = &map_tree->map_tree;
5080 unsigned long len = root->sectorsize;
5081
5082 read_lock(&em_tree->lock);
5083 em = lookup_extent_mapping(em_tree, logical, len);
5084 read_unlock(&em_tree->lock);
5085 BUG_ON(!em);
5086
5087 BUG_ON(em->start > logical || em->start + em->len < logical);
5088 map = em->map_lookup;
5089 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5090 len = map->stripe_len * nr_data_stripes(map);
5091 free_extent_map(em);
5092 return len;
5093 }
5094
5095 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5096 u64 logical, u64 len, int mirror_num)
5097 {
5098 struct extent_map *em;
5099 struct map_lookup *map;
5100 struct extent_map_tree *em_tree = &map_tree->map_tree;
5101 int ret = 0;
5102
5103 read_lock(&em_tree->lock);
5104 em = lookup_extent_mapping(em_tree, logical, len);
5105 read_unlock(&em_tree->lock);
5106 BUG_ON(!em);
5107
5108 BUG_ON(em->start > logical || em->start + em->len < logical);
5109 map = em->map_lookup;
5110 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5111 ret = 1;
5112 free_extent_map(em);
5113 return ret;
5114 }
5115
5116 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5117 struct map_lookup *map, int first, int num,
5118 int optimal, int dev_replace_is_ongoing)
5119 {
5120 int i;
5121 int tolerance;
5122 struct btrfs_device *srcdev;
5123
5124 if (dev_replace_is_ongoing &&
5125 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5126 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5127 srcdev = fs_info->dev_replace.srcdev;
5128 else
5129 srcdev = NULL;
5130
5131 /*
5132 * try to avoid the drive that is the source drive for a
5133 * dev-replace procedure, only choose it if no other non-missing
5134 * mirror is available
5135 */
5136 for (tolerance = 0; tolerance < 2; tolerance++) {
5137 if (map->stripes[optimal].dev->bdev &&
5138 (tolerance || map->stripes[optimal].dev != srcdev))
5139 return optimal;
5140 for (i = first; i < first + num; i++) {
5141 if (map->stripes[i].dev->bdev &&
5142 (tolerance || map->stripes[i].dev != srcdev))
5143 return i;
5144 }
5145 }
5146
5147 /* we couldn't find one that doesn't fail. Just return something
5148 * and the io error handling code will clean up eventually
5149 */
5150 return optimal;
5151 }
5152
5153 static inline int parity_smaller(u64 a, u64 b)
5154 {
5155 return a > b;
5156 }
5157
5158 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5159 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5160 {
5161 struct btrfs_bio_stripe s;
5162 int i;
5163 u64 l;
5164 int again = 1;
5165
5166 while (again) {
5167 again = 0;
5168 for (i = 0; i < num_stripes - 1; i++) {
5169 if (parity_smaller(bbio->raid_map[i],
5170 bbio->raid_map[i+1])) {
5171 s = bbio->stripes[i];
5172 l = bbio->raid_map[i];
5173 bbio->stripes[i] = bbio->stripes[i+1];
5174 bbio->raid_map[i] = bbio->raid_map[i+1];
5175 bbio->stripes[i+1] = s;
5176 bbio->raid_map[i+1] = l;
5177
5178 again = 1;
5179 }
5180 }
5181 }
5182 }
5183
5184 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5185 {
5186 struct btrfs_bio *bbio = kzalloc(
5187 /* the size of the btrfs_bio */
5188 sizeof(struct btrfs_bio) +
5189 /* plus the variable array for the stripes */
5190 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5191 /* plus the variable array for the tgt dev */
5192 sizeof(int) * (real_stripes) +
5193 /*
5194 * plus the raid_map, which includes both the tgt dev
5195 * and the stripes
5196 */
5197 sizeof(u64) * (total_stripes),
5198 GFP_NOFS|__GFP_NOFAIL);
5199
5200 atomic_set(&bbio->error, 0);
5201 atomic_set(&bbio->refs, 1);
5202
5203 return bbio;
5204 }
5205
5206 void btrfs_get_bbio(struct btrfs_bio *bbio)
5207 {
5208 WARN_ON(!atomic_read(&bbio->refs));
5209 atomic_inc(&bbio->refs);
5210 }
5211
5212 void btrfs_put_bbio(struct btrfs_bio *bbio)
5213 {
5214 if (!bbio)
5215 return;
5216 if (atomic_dec_and_test(&bbio->refs))
5217 kfree(bbio);
5218 }
5219
5220 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5221 u64 logical, u64 *length,
5222 struct btrfs_bio **bbio_ret,
5223 int mirror_num, int need_raid_map)
5224 {
5225 struct extent_map *em;
5226 struct map_lookup *map;
5227 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5228 struct extent_map_tree *em_tree = &map_tree->map_tree;
5229 u64 offset;
5230 u64 stripe_offset;
5231 u64 stripe_end_offset;
5232 u64 stripe_nr;
5233 u64 stripe_nr_orig;
5234 u64 stripe_nr_end;
5235 u64 stripe_len;
5236 u32 stripe_index;
5237 int i;
5238 int ret = 0;
5239 int num_stripes;
5240 int max_errors = 0;
5241 int tgtdev_indexes = 0;
5242 struct btrfs_bio *bbio = NULL;
5243 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5244 int dev_replace_is_ongoing = 0;
5245 int num_alloc_stripes;
5246 int patch_the_first_stripe_for_dev_replace = 0;
5247 u64 physical_to_patch_in_first_stripe = 0;
5248 u64 raid56_full_stripe_start = (u64)-1;
5249
5250 read_lock(&em_tree->lock);
5251 em = lookup_extent_mapping(em_tree, logical, *length);
5252 read_unlock(&em_tree->lock);
5253
5254 if (!em) {
5255 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5256 logical, *length);
5257 return -EINVAL;
5258 }
5259
5260 if (em->start > logical || em->start + em->len < logical) {
5261 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5262 "found %Lu-%Lu", logical, em->start,
5263 em->start + em->len);
5264 free_extent_map(em);
5265 return -EINVAL;
5266 }
5267
5268 map = em->map_lookup;
5269 offset = logical - em->start;
5270
5271 stripe_len = map->stripe_len;
5272 stripe_nr = offset;
5273 /*
5274 * stripe_nr counts the total number of stripes we have to stride
5275 * to get to this block
5276 */
5277 stripe_nr = div64_u64(stripe_nr, stripe_len);
5278
5279 stripe_offset = stripe_nr * stripe_len;
5280 BUG_ON(offset < stripe_offset);
5281
5282 /* stripe_offset is the offset of this block in its stripe*/
5283 stripe_offset = offset - stripe_offset;
5284
5285 /* if we're here for raid56, we need to know the stripe aligned start */
5286 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5287 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5288 raid56_full_stripe_start = offset;
5289
5290 /* allow a write of a full stripe, but make sure we don't
5291 * allow straddling of stripes
5292 */
5293 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5294 full_stripe_len);
5295 raid56_full_stripe_start *= full_stripe_len;
5296 }
5297
5298 if (rw & REQ_DISCARD) {
5299 /* we don't discard raid56 yet */
5300 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5301 ret = -EOPNOTSUPP;
5302 goto out;
5303 }
5304 *length = min_t(u64, em->len - offset, *length);
5305 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5306 u64 max_len;
5307 /* For writes to RAID[56], allow a full stripeset across all disks.
5308 For other RAID types and for RAID[56] reads, just allow a single
5309 stripe (on a single disk). */
5310 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5311 (rw & REQ_WRITE)) {
5312 max_len = stripe_len * nr_data_stripes(map) -
5313 (offset - raid56_full_stripe_start);
5314 } else {
5315 /* we limit the length of each bio to what fits in a stripe */
5316 max_len = stripe_len - stripe_offset;
5317 }
5318 *length = min_t(u64, em->len - offset, max_len);
5319 } else {
5320 *length = em->len - offset;
5321 }
5322
5323 /* This is for when we're called from btrfs_merge_bio_hook() and all
5324 it cares about is the length */
5325 if (!bbio_ret)
5326 goto out;
5327
5328 btrfs_dev_replace_lock(dev_replace);
5329 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5330 if (!dev_replace_is_ongoing)
5331 btrfs_dev_replace_unlock(dev_replace);
5332
5333 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5334 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5335 dev_replace->tgtdev != NULL) {
5336 /*
5337 * in dev-replace case, for repair case (that's the only
5338 * case where the mirror is selected explicitly when
5339 * calling btrfs_map_block), blocks left of the left cursor
5340 * can also be read from the target drive.
5341 * For REQ_GET_READ_MIRRORS, the target drive is added as
5342 * the last one to the array of stripes. For READ, it also
5343 * needs to be supported using the same mirror number.
5344 * If the requested block is not left of the left cursor,
5345 * EIO is returned. This can happen because btrfs_num_copies()
5346 * returns one more in the dev-replace case.
5347 */
5348 u64 tmp_length = *length;
5349 struct btrfs_bio *tmp_bbio = NULL;
5350 int tmp_num_stripes;
5351 u64 srcdev_devid = dev_replace->srcdev->devid;
5352 int index_srcdev = 0;
5353 int found = 0;
5354 u64 physical_of_found = 0;
5355
5356 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5357 logical, &tmp_length, &tmp_bbio, 0, 0);
5358 if (ret) {
5359 WARN_ON(tmp_bbio != NULL);
5360 goto out;
5361 }
5362
5363 tmp_num_stripes = tmp_bbio->num_stripes;
5364 if (mirror_num > tmp_num_stripes) {
5365 /*
5366 * REQ_GET_READ_MIRRORS does not contain this
5367 * mirror, that means that the requested area
5368 * is not left of the left cursor
5369 */
5370 ret = -EIO;
5371 btrfs_put_bbio(tmp_bbio);
5372 goto out;
5373 }
5374
5375 /*
5376 * process the rest of the function using the mirror_num
5377 * of the source drive. Therefore look it up first.
5378 * At the end, patch the device pointer to the one of the
5379 * target drive.
5380 */
5381 for (i = 0; i < tmp_num_stripes; i++) {
5382 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5383 /*
5384 * In case of DUP, in order to keep it
5385 * simple, only add the mirror with the
5386 * lowest physical address
5387 */
5388 if (found &&
5389 physical_of_found <=
5390 tmp_bbio->stripes[i].physical)
5391 continue;
5392 index_srcdev = i;
5393 found = 1;
5394 physical_of_found =
5395 tmp_bbio->stripes[i].physical;
5396 }
5397 }
5398
5399 if (found) {
5400 mirror_num = index_srcdev + 1;
5401 patch_the_first_stripe_for_dev_replace = 1;
5402 physical_to_patch_in_first_stripe = physical_of_found;
5403 } else {
5404 WARN_ON(1);
5405 ret = -EIO;
5406 btrfs_put_bbio(tmp_bbio);
5407 goto out;
5408 }
5409
5410 btrfs_put_bbio(tmp_bbio);
5411 } else if (mirror_num > map->num_stripes) {
5412 mirror_num = 0;
5413 }
5414
5415 num_stripes = 1;
5416 stripe_index = 0;
5417 stripe_nr_orig = stripe_nr;
5418 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5419 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5420 stripe_end_offset = stripe_nr_end * map->stripe_len -
5421 (offset + *length);
5422
5423 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5424 if (rw & REQ_DISCARD)
5425 num_stripes = min_t(u64, map->num_stripes,
5426 stripe_nr_end - stripe_nr_orig);
5427 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5428 &stripe_index);
5429 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5430 mirror_num = 1;
5431 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5432 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5433 num_stripes = map->num_stripes;
5434 else if (mirror_num)
5435 stripe_index = mirror_num - 1;
5436 else {
5437 stripe_index = find_live_mirror(fs_info, map, 0,
5438 map->num_stripes,
5439 current->pid % map->num_stripes,
5440 dev_replace_is_ongoing);
5441 mirror_num = stripe_index + 1;
5442 }
5443
5444 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5445 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5446 num_stripes = map->num_stripes;
5447 } else if (mirror_num) {
5448 stripe_index = mirror_num - 1;
5449 } else {
5450 mirror_num = 1;
5451 }
5452
5453 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5454 u32 factor = map->num_stripes / map->sub_stripes;
5455
5456 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5457 stripe_index *= map->sub_stripes;
5458
5459 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5460 num_stripes = map->sub_stripes;
5461 else if (rw & REQ_DISCARD)
5462 num_stripes = min_t(u64, map->sub_stripes *
5463 (stripe_nr_end - stripe_nr_orig),
5464 map->num_stripes);
5465 else if (mirror_num)
5466 stripe_index += mirror_num - 1;
5467 else {
5468 int old_stripe_index = stripe_index;
5469 stripe_index = find_live_mirror(fs_info, map,
5470 stripe_index,
5471 map->sub_stripes, stripe_index +
5472 current->pid % map->sub_stripes,
5473 dev_replace_is_ongoing);
5474 mirror_num = stripe_index - old_stripe_index + 1;
5475 }
5476
5477 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5478 if (need_raid_map &&
5479 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5480 mirror_num > 1)) {
5481 /* push stripe_nr back to the start of the full stripe */
5482 stripe_nr = div_u64(raid56_full_stripe_start,
5483 stripe_len * nr_data_stripes(map));
5484
5485 /* RAID[56] write or recovery. Return all stripes */
5486 num_stripes = map->num_stripes;
5487 max_errors = nr_parity_stripes(map);
5488
5489 *length = map->stripe_len;
5490 stripe_index = 0;
5491 stripe_offset = 0;
5492 } else {
5493 /*
5494 * Mirror #0 or #1 means the original data block.
5495 * Mirror #2 is RAID5 parity block.
5496 * Mirror #3 is RAID6 Q block.
5497 */
5498 stripe_nr = div_u64_rem(stripe_nr,
5499 nr_data_stripes(map), &stripe_index);
5500 if (mirror_num > 1)
5501 stripe_index = nr_data_stripes(map) +
5502 mirror_num - 2;
5503
5504 /* We distribute the parity blocks across stripes */
5505 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5506 &stripe_index);
5507 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5508 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5509 mirror_num = 1;
5510 }
5511 } else {
5512 /*
5513 * after this, stripe_nr is the number of stripes on this
5514 * device we have to walk to find the data, and stripe_index is
5515 * the number of our device in the stripe array
5516 */
5517 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5518 &stripe_index);
5519 mirror_num = stripe_index + 1;
5520 }
5521 BUG_ON(stripe_index >= map->num_stripes);
5522
5523 num_alloc_stripes = num_stripes;
5524 if (dev_replace_is_ongoing) {
5525 if (rw & (REQ_WRITE | REQ_DISCARD))
5526 num_alloc_stripes <<= 1;
5527 if (rw & REQ_GET_READ_MIRRORS)
5528 num_alloc_stripes++;
5529 tgtdev_indexes = num_stripes;
5530 }
5531
5532 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5533 if (!bbio) {
5534 ret = -ENOMEM;
5535 goto out;
5536 }
5537 if (dev_replace_is_ongoing)
5538 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5539
5540 /* build raid_map */
5541 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5542 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5543 mirror_num > 1)) {
5544 u64 tmp;
5545 unsigned rot;
5546
5547 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5548 sizeof(struct btrfs_bio_stripe) *
5549 num_alloc_stripes +
5550 sizeof(int) * tgtdev_indexes);
5551
5552 /* Work out the disk rotation on this stripe-set */
5553 div_u64_rem(stripe_nr, num_stripes, &rot);
5554
5555 /* Fill in the logical address of each stripe */
5556 tmp = stripe_nr * nr_data_stripes(map);
5557 for (i = 0; i < nr_data_stripes(map); i++)
5558 bbio->raid_map[(i+rot) % num_stripes] =
5559 em->start + (tmp + i) * map->stripe_len;
5560
5561 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5562 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5563 bbio->raid_map[(i+rot+1) % num_stripes] =
5564 RAID6_Q_STRIPE;
5565 }
5566
5567 if (rw & REQ_DISCARD) {
5568 u32 factor = 0;
5569 u32 sub_stripes = 0;
5570 u64 stripes_per_dev = 0;
5571 u32 remaining_stripes = 0;
5572 u32 last_stripe = 0;
5573
5574 if (map->type &
5575 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5576 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5577 sub_stripes = 1;
5578 else
5579 sub_stripes = map->sub_stripes;
5580
5581 factor = map->num_stripes / sub_stripes;
5582 stripes_per_dev = div_u64_rem(stripe_nr_end -
5583 stripe_nr_orig,
5584 factor,
5585 &remaining_stripes);
5586 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5587 last_stripe *= sub_stripes;
5588 }
5589
5590 for (i = 0; i < num_stripes; i++) {
5591 bbio->stripes[i].physical =
5592 map->stripes[stripe_index].physical +
5593 stripe_offset + stripe_nr * map->stripe_len;
5594 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5595
5596 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5597 BTRFS_BLOCK_GROUP_RAID10)) {
5598 bbio->stripes[i].length = stripes_per_dev *
5599 map->stripe_len;
5600
5601 if (i / sub_stripes < remaining_stripes)
5602 bbio->stripes[i].length +=
5603 map->stripe_len;
5604
5605 /*
5606 * Special for the first stripe and
5607 * the last stripe:
5608 *
5609 * |-------|...|-------|
5610 * |----------|
5611 * off end_off
5612 */
5613 if (i < sub_stripes)
5614 bbio->stripes[i].length -=
5615 stripe_offset;
5616
5617 if (stripe_index >= last_stripe &&
5618 stripe_index <= (last_stripe +
5619 sub_stripes - 1))
5620 bbio->stripes[i].length -=
5621 stripe_end_offset;
5622
5623 if (i == sub_stripes - 1)
5624 stripe_offset = 0;
5625 } else
5626 bbio->stripes[i].length = *length;
5627
5628 stripe_index++;
5629 if (stripe_index == map->num_stripes) {
5630 /* This could only happen for RAID0/10 */
5631 stripe_index = 0;
5632 stripe_nr++;
5633 }
5634 }
5635 } else {
5636 for (i = 0; i < num_stripes; i++) {
5637 bbio->stripes[i].physical =
5638 map->stripes[stripe_index].physical +
5639 stripe_offset +
5640 stripe_nr * map->stripe_len;
5641 bbio->stripes[i].dev =
5642 map->stripes[stripe_index].dev;
5643 stripe_index++;
5644 }
5645 }
5646
5647 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5648 max_errors = btrfs_chunk_max_errors(map);
5649
5650 if (bbio->raid_map)
5651 sort_parity_stripes(bbio, num_stripes);
5652
5653 tgtdev_indexes = 0;
5654 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5655 dev_replace->tgtdev != NULL) {
5656 int index_where_to_add;
5657 u64 srcdev_devid = dev_replace->srcdev->devid;
5658
5659 /*
5660 * duplicate the write operations while the dev replace
5661 * procedure is running. Since the copying of the old disk
5662 * to the new disk takes place at run time while the
5663 * filesystem is mounted writable, the regular write
5664 * operations to the old disk have to be duplicated to go
5665 * to the new disk as well.
5666 * Note that device->missing is handled by the caller, and
5667 * that the write to the old disk is already set up in the
5668 * stripes array.
5669 */
5670 index_where_to_add = num_stripes;
5671 for (i = 0; i < num_stripes; i++) {
5672 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5673 /* write to new disk, too */
5674 struct btrfs_bio_stripe *new =
5675 bbio->stripes + index_where_to_add;
5676 struct btrfs_bio_stripe *old =
5677 bbio->stripes + i;
5678
5679 new->physical = old->physical;
5680 new->length = old->length;
5681 new->dev = dev_replace->tgtdev;
5682 bbio->tgtdev_map[i] = index_where_to_add;
5683 index_where_to_add++;
5684 max_errors++;
5685 tgtdev_indexes++;
5686 }
5687 }
5688 num_stripes = index_where_to_add;
5689 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5690 dev_replace->tgtdev != NULL) {
5691 u64 srcdev_devid = dev_replace->srcdev->devid;
5692 int index_srcdev = 0;
5693 int found = 0;
5694 u64 physical_of_found = 0;
5695
5696 /*
5697 * During the dev-replace procedure, the target drive can
5698 * also be used to read data in case it is needed to repair
5699 * a corrupt block elsewhere. This is possible if the
5700 * requested area is left of the left cursor. In this area,
5701 * the target drive is a full copy of the source drive.
5702 */
5703 for (i = 0; i < num_stripes; i++) {
5704 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5705 /*
5706 * In case of DUP, in order to keep it
5707 * simple, only add the mirror with the
5708 * lowest physical address
5709 */
5710 if (found &&
5711 physical_of_found <=
5712 bbio->stripes[i].physical)
5713 continue;
5714 index_srcdev = i;
5715 found = 1;
5716 physical_of_found = bbio->stripes[i].physical;
5717 }
5718 }
5719 if (found) {
5720 if (physical_of_found + map->stripe_len <=
5721 dev_replace->cursor_left) {
5722 struct btrfs_bio_stripe *tgtdev_stripe =
5723 bbio->stripes + num_stripes;
5724
5725 tgtdev_stripe->physical = physical_of_found;
5726 tgtdev_stripe->length =
5727 bbio->stripes[index_srcdev].length;
5728 tgtdev_stripe->dev = dev_replace->tgtdev;
5729 bbio->tgtdev_map[index_srcdev] = num_stripes;
5730
5731 tgtdev_indexes++;
5732 num_stripes++;
5733 }
5734 }
5735 }
5736
5737 *bbio_ret = bbio;
5738 bbio->map_type = map->type;
5739 bbio->num_stripes = num_stripes;
5740 bbio->max_errors = max_errors;
5741 bbio->mirror_num = mirror_num;
5742 bbio->num_tgtdevs = tgtdev_indexes;
5743
5744 /*
5745 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5746 * mirror_num == num_stripes + 1 && dev_replace target drive is
5747 * available as a mirror
5748 */
5749 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5750 WARN_ON(num_stripes > 1);
5751 bbio->stripes[0].dev = dev_replace->tgtdev;
5752 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5753 bbio->mirror_num = map->num_stripes + 1;
5754 }
5755 out:
5756 if (dev_replace_is_ongoing)
5757 btrfs_dev_replace_unlock(dev_replace);
5758 free_extent_map(em);
5759 return ret;
5760 }
5761
5762 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5763 u64 logical, u64 *length,
5764 struct btrfs_bio **bbio_ret, int mirror_num)
5765 {
5766 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5767 mirror_num, 0);
5768 }
5769
5770 /* For Scrub/replace */
5771 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5772 u64 logical, u64 *length,
5773 struct btrfs_bio **bbio_ret, int mirror_num,
5774 int need_raid_map)
5775 {
5776 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5777 mirror_num, need_raid_map);
5778 }
5779
5780 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5781 u64 chunk_start, u64 physical, u64 devid,
5782 u64 **logical, int *naddrs, int *stripe_len)
5783 {
5784 struct extent_map_tree *em_tree = &map_tree->map_tree;
5785 struct extent_map *em;
5786 struct map_lookup *map;
5787 u64 *buf;
5788 u64 bytenr;
5789 u64 length;
5790 u64 stripe_nr;
5791 u64 rmap_len;
5792 int i, j, nr = 0;
5793
5794 read_lock(&em_tree->lock);
5795 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5796 read_unlock(&em_tree->lock);
5797
5798 if (!em) {
5799 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5800 chunk_start);
5801 return -EIO;
5802 }
5803
5804 if (em->start != chunk_start) {
5805 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5806 em->start, chunk_start);
5807 free_extent_map(em);
5808 return -EIO;
5809 }
5810 map = em->map_lookup;
5811
5812 length = em->len;
5813 rmap_len = map->stripe_len;
5814
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5816 length = div_u64(length, map->num_stripes / map->sub_stripes);
5817 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5818 length = div_u64(length, map->num_stripes);
5819 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5820 length = div_u64(length, nr_data_stripes(map));
5821 rmap_len = map->stripe_len * nr_data_stripes(map);
5822 }
5823
5824 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5825 BUG_ON(!buf); /* -ENOMEM */
5826
5827 for (i = 0; i < map->num_stripes; i++) {
5828 if (devid && map->stripes[i].dev->devid != devid)
5829 continue;
5830 if (map->stripes[i].physical > physical ||
5831 map->stripes[i].physical + length <= physical)
5832 continue;
5833
5834 stripe_nr = physical - map->stripes[i].physical;
5835 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5836
5837 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5838 stripe_nr = stripe_nr * map->num_stripes + i;
5839 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5840 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5841 stripe_nr = stripe_nr * map->num_stripes + i;
5842 } /* else if RAID[56], multiply by nr_data_stripes().
5843 * Alternatively, just use rmap_len below instead of
5844 * map->stripe_len */
5845
5846 bytenr = chunk_start + stripe_nr * rmap_len;
5847 WARN_ON(nr >= map->num_stripes);
5848 for (j = 0; j < nr; j++) {
5849 if (buf[j] == bytenr)
5850 break;
5851 }
5852 if (j == nr) {
5853 WARN_ON(nr >= map->num_stripes);
5854 buf[nr++] = bytenr;
5855 }
5856 }
5857
5858 *logical = buf;
5859 *naddrs = nr;
5860 *stripe_len = rmap_len;
5861
5862 free_extent_map(em);
5863 return 0;
5864 }
5865
5866 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5867 {
5868 bio->bi_private = bbio->private;
5869 bio->bi_end_io = bbio->end_io;
5870 bio_endio(bio);
5871
5872 btrfs_put_bbio(bbio);
5873 }
5874
5875 static void btrfs_end_bio(struct bio *bio)
5876 {
5877 struct btrfs_bio *bbio = bio->bi_private;
5878 int is_orig_bio = 0;
5879
5880 if (bio->bi_error) {
5881 atomic_inc(&bbio->error);
5882 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5883 unsigned int stripe_index =
5884 btrfs_io_bio(bio)->stripe_index;
5885 struct btrfs_device *dev;
5886
5887 BUG_ON(stripe_index >= bbio->num_stripes);
5888 dev = bbio->stripes[stripe_index].dev;
5889 if (dev->bdev) {
5890 if (bio->bi_rw & WRITE)
5891 btrfs_dev_stat_inc(dev,
5892 BTRFS_DEV_STAT_WRITE_ERRS);
5893 else
5894 btrfs_dev_stat_inc(dev,
5895 BTRFS_DEV_STAT_READ_ERRS);
5896 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5897 btrfs_dev_stat_inc(dev,
5898 BTRFS_DEV_STAT_FLUSH_ERRS);
5899 btrfs_dev_stat_print_on_error(dev);
5900 }
5901 }
5902 }
5903
5904 if (bio == bbio->orig_bio)
5905 is_orig_bio = 1;
5906
5907 btrfs_bio_counter_dec(bbio->fs_info);
5908
5909 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5910 if (!is_orig_bio) {
5911 bio_put(bio);
5912 bio = bbio->orig_bio;
5913 }
5914
5915 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5916 /* only send an error to the higher layers if it is
5917 * beyond the tolerance of the btrfs bio
5918 */
5919 if (atomic_read(&bbio->error) > bbio->max_errors) {
5920 bio->bi_error = -EIO;
5921 } else {
5922 /*
5923 * this bio is actually up to date, we didn't
5924 * go over the max number of errors
5925 */
5926 bio->bi_error = 0;
5927 }
5928
5929 btrfs_end_bbio(bbio, bio);
5930 } else if (!is_orig_bio) {
5931 bio_put(bio);
5932 }
5933 }
5934
5935 /*
5936 * see run_scheduled_bios for a description of why bios are collected for
5937 * async submit.
5938 *
5939 * This will add one bio to the pending list for a device and make sure
5940 * the work struct is scheduled.
5941 */
5942 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5943 struct btrfs_device *device,
5944 int rw, struct bio *bio)
5945 {
5946 int should_queue = 1;
5947 struct btrfs_pending_bios *pending_bios;
5948
5949 if (device->missing || !device->bdev) {
5950 bio_io_error(bio);
5951 return;
5952 }
5953
5954 /* don't bother with additional async steps for reads, right now */
5955 if (!(rw & REQ_WRITE)) {
5956 bio_get(bio);
5957 btrfsic_submit_bio(rw, bio);
5958 bio_put(bio);
5959 return;
5960 }
5961
5962 /*
5963 * nr_async_bios allows us to reliably return congestion to the
5964 * higher layers. Otherwise, the async bio makes it appear we have
5965 * made progress against dirty pages when we've really just put it
5966 * on a queue for later
5967 */
5968 atomic_inc(&root->fs_info->nr_async_bios);
5969 WARN_ON(bio->bi_next);
5970 bio->bi_next = NULL;
5971 bio->bi_rw |= rw;
5972
5973 spin_lock(&device->io_lock);
5974 if (bio->bi_rw & REQ_SYNC)
5975 pending_bios = &device->pending_sync_bios;
5976 else
5977 pending_bios = &device->pending_bios;
5978
5979 if (pending_bios->tail)
5980 pending_bios->tail->bi_next = bio;
5981
5982 pending_bios->tail = bio;
5983 if (!pending_bios->head)
5984 pending_bios->head = bio;
5985 if (device->running_pending)
5986 should_queue = 0;
5987
5988 spin_unlock(&device->io_lock);
5989
5990 if (should_queue)
5991 btrfs_queue_work(root->fs_info->submit_workers,
5992 &device->work);
5993 }
5994
5995 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5996 struct bio *bio, u64 physical, int dev_nr,
5997 int rw, int async)
5998 {
5999 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6000
6001 bio->bi_private = bbio;
6002 btrfs_io_bio(bio)->stripe_index = dev_nr;
6003 bio->bi_end_io = btrfs_end_bio;
6004 bio->bi_iter.bi_sector = physical >> 9;
6005 #ifdef DEBUG
6006 {
6007 struct rcu_string *name;
6008
6009 rcu_read_lock();
6010 name = rcu_dereference(dev->name);
6011 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6012 "(%s id %llu), size=%u\n", rw,
6013 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6014 name->str, dev->devid, bio->bi_iter.bi_size);
6015 rcu_read_unlock();
6016 }
6017 #endif
6018 bio->bi_bdev = dev->bdev;
6019
6020 btrfs_bio_counter_inc_noblocked(root->fs_info);
6021
6022 if (async)
6023 btrfs_schedule_bio(root, dev, rw, bio);
6024 else
6025 btrfsic_submit_bio(rw, bio);
6026 }
6027
6028 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6029 {
6030 atomic_inc(&bbio->error);
6031 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6032 /* Shoud be the original bio. */
6033 WARN_ON(bio != bbio->orig_bio);
6034
6035 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6036 bio->bi_iter.bi_sector = logical >> 9;
6037 bio->bi_error = -EIO;
6038 btrfs_end_bbio(bbio, bio);
6039 }
6040 }
6041
6042 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6043 int mirror_num, int async_submit)
6044 {
6045 struct btrfs_device *dev;
6046 struct bio *first_bio = bio;
6047 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6048 u64 length = 0;
6049 u64 map_length;
6050 int ret;
6051 int dev_nr;
6052 int total_devs;
6053 struct btrfs_bio *bbio = NULL;
6054
6055 length = bio->bi_iter.bi_size;
6056 map_length = length;
6057
6058 btrfs_bio_counter_inc_blocked(root->fs_info);
6059 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6060 mirror_num, 1);
6061 if (ret) {
6062 btrfs_bio_counter_dec(root->fs_info);
6063 return ret;
6064 }
6065
6066 total_devs = bbio->num_stripes;
6067 bbio->orig_bio = first_bio;
6068 bbio->private = first_bio->bi_private;
6069 bbio->end_io = first_bio->bi_end_io;
6070 bbio->fs_info = root->fs_info;
6071 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6072
6073 if (bbio->raid_map) {
6074 /* In this case, map_length has been set to the length of
6075 a single stripe; not the whole write */
6076 if (rw & WRITE) {
6077 ret = raid56_parity_write(root, bio, bbio, map_length);
6078 } else {
6079 ret = raid56_parity_recover(root, bio, bbio, map_length,
6080 mirror_num, 1);
6081 }
6082
6083 btrfs_bio_counter_dec(root->fs_info);
6084 return ret;
6085 }
6086
6087 if (map_length < length) {
6088 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6089 logical, length, map_length);
6090 BUG();
6091 }
6092
6093 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6094 dev = bbio->stripes[dev_nr].dev;
6095 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6096 bbio_error(bbio, first_bio, logical);
6097 continue;
6098 }
6099
6100 if (dev_nr < total_devs - 1) {
6101 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6102 BUG_ON(!bio); /* -ENOMEM */
6103 } else
6104 bio = first_bio;
6105
6106 submit_stripe_bio(root, bbio, bio,
6107 bbio->stripes[dev_nr].physical, dev_nr, rw,
6108 async_submit);
6109 }
6110 btrfs_bio_counter_dec(root->fs_info);
6111 return 0;
6112 }
6113
6114 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6115 u8 *uuid, u8 *fsid)
6116 {
6117 struct btrfs_device *device;
6118 struct btrfs_fs_devices *cur_devices;
6119
6120 cur_devices = fs_info->fs_devices;
6121 while (cur_devices) {
6122 if (!fsid ||
6123 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6124 device = __find_device(&cur_devices->devices,
6125 devid, uuid);
6126 if (device)
6127 return device;
6128 }
6129 cur_devices = cur_devices->seed;
6130 }
6131 return NULL;
6132 }
6133
6134 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6135 struct btrfs_fs_devices *fs_devices,
6136 u64 devid, u8 *dev_uuid)
6137 {
6138 struct btrfs_device *device;
6139
6140 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6141 if (IS_ERR(device))
6142 return NULL;
6143
6144 list_add(&device->dev_list, &fs_devices->devices);
6145 device->fs_devices = fs_devices;
6146 fs_devices->num_devices++;
6147
6148 device->missing = 1;
6149 fs_devices->missing_devices++;
6150
6151 return device;
6152 }
6153
6154 /**
6155 * btrfs_alloc_device - allocate struct btrfs_device
6156 * @fs_info: used only for generating a new devid, can be NULL if
6157 * devid is provided (i.e. @devid != NULL).
6158 * @devid: a pointer to devid for this device. If NULL a new devid
6159 * is generated.
6160 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6161 * is generated.
6162 *
6163 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6164 * on error. Returned struct is not linked onto any lists and can be
6165 * destroyed with kfree() right away.
6166 */
6167 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6168 const u64 *devid,
6169 const u8 *uuid)
6170 {
6171 struct btrfs_device *dev;
6172 u64 tmp;
6173
6174 if (WARN_ON(!devid && !fs_info))
6175 return ERR_PTR(-EINVAL);
6176
6177 dev = __alloc_device();
6178 if (IS_ERR(dev))
6179 return dev;
6180
6181 if (devid)
6182 tmp = *devid;
6183 else {
6184 int ret;
6185
6186 ret = find_next_devid(fs_info, &tmp);
6187 if (ret) {
6188 kfree(dev);
6189 return ERR_PTR(ret);
6190 }
6191 }
6192 dev->devid = tmp;
6193
6194 if (uuid)
6195 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6196 else
6197 generate_random_uuid(dev->uuid);
6198
6199 btrfs_init_work(&dev->work, btrfs_submit_helper,
6200 pending_bios_fn, NULL, NULL);
6201
6202 return dev;
6203 }
6204
6205 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6206 struct extent_buffer *leaf,
6207 struct btrfs_chunk *chunk)
6208 {
6209 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6210 struct map_lookup *map;
6211 struct extent_map *em;
6212 u64 logical;
6213 u64 length;
6214 u64 stripe_len;
6215 u64 devid;
6216 u8 uuid[BTRFS_UUID_SIZE];
6217 int num_stripes;
6218 int ret;
6219 int i;
6220
6221 logical = key->offset;
6222 length = btrfs_chunk_length(leaf, chunk);
6223 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6224 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6225 /* Validation check */
6226 if (!num_stripes) {
6227 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6228 num_stripes);
6229 return -EIO;
6230 }
6231 if (!IS_ALIGNED(logical, root->sectorsize)) {
6232 btrfs_err(root->fs_info,
6233 "invalid chunk logical %llu", logical);
6234 return -EIO;
6235 }
6236 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6237 btrfs_err(root->fs_info,
6238 "invalid chunk length %llu", length);
6239 return -EIO;
6240 }
6241 if (!is_power_of_2(stripe_len)) {
6242 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6243 stripe_len);
6244 return -EIO;
6245 }
6246 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6247 btrfs_chunk_type(leaf, chunk)) {
6248 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6249 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6250 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6251 btrfs_chunk_type(leaf, chunk));
6252 return -EIO;
6253 }
6254
6255 read_lock(&map_tree->map_tree.lock);
6256 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6257 read_unlock(&map_tree->map_tree.lock);
6258
6259 /* already mapped? */
6260 if (em && em->start <= logical && em->start + em->len > logical) {
6261 free_extent_map(em);
6262 return 0;
6263 } else if (em) {
6264 free_extent_map(em);
6265 }
6266
6267 em = alloc_extent_map();
6268 if (!em)
6269 return -ENOMEM;
6270 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6271 if (!map) {
6272 free_extent_map(em);
6273 return -ENOMEM;
6274 }
6275
6276 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6277 em->map_lookup = map;
6278 em->start = logical;
6279 em->len = length;
6280 em->orig_start = 0;
6281 em->block_start = 0;
6282 em->block_len = em->len;
6283
6284 map->num_stripes = num_stripes;
6285 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6286 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6287 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6288 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6289 map->type = btrfs_chunk_type(leaf, chunk);
6290 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6291 for (i = 0; i < num_stripes; i++) {
6292 map->stripes[i].physical =
6293 btrfs_stripe_offset_nr(leaf, chunk, i);
6294 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6295 read_extent_buffer(leaf, uuid, (unsigned long)
6296 btrfs_stripe_dev_uuid_nr(chunk, i),
6297 BTRFS_UUID_SIZE);
6298 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6299 uuid, NULL);
6300 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6301 free_extent_map(em);
6302 return -EIO;
6303 }
6304 if (!map->stripes[i].dev) {
6305 map->stripes[i].dev =
6306 add_missing_dev(root, root->fs_info->fs_devices,
6307 devid, uuid);
6308 if (!map->stripes[i].dev) {
6309 free_extent_map(em);
6310 return -EIO;
6311 }
6312 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6313 devid, uuid);
6314 }
6315 map->stripes[i].dev->in_fs_metadata = 1;
6316 }
6317
6318 write_lock(&map_tree->map_tree.lock);
6319 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6320 write_unlock(&map_tree->map_tree.lock);
6321 BUG_ON(ret); /* Tree corruption */
6322 free_extent_map(em);
6323
6324 return 0;
6325 }
6326
6327 static void fill_device_from_item(struct extent_buffer *leaf,
6328 struct btrfs_dev_item *dev_item,
6329 struct btrfs_device *device)
6330 {
6331 unsigned long ptr;
6332
6333 device->devid = btrfs_device_id(leaf, dev_item);
6334 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6335 device->total_bytes = device->disk_total_bytes;
6336 device->commit_total_bytes = device->disk_total_bytes;
6337 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6338 device->commit_bytes_used = device->bytes_used;
6339 device->type = btrfs_device_type(leaf, dev_item);
6340 device->io_align = btrfs_device_io_align(leaf, dev_item);
6341 device->io_width = btrfs_device_io_width(leaf, dev_item);
6342 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6343 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6344 device->is_tgtdev_for_dev_replace = 0;
6345
6346 ptr = btrfs_device_uuid(dev_item);
6347 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6348 }
6349
6350 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6351 u8 *fsid)
6352 {
6353 struct btrfs_fs_devices *fs_devices;
6354 int ret;
6355
6356 BUG_ON(!mutex_is_locked(&uuid_mutex));
6357
6358 fs_devices = root->fs_info->fs_devices->seed;
6359 while (fs_devices) {
6360 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6361 return fs_devices;
6362
6363 fs_devices = fs_devices->seed;
6364 }
6365
6366 fs_devices = find_fsid(fsid);
6367 if (!fs_devices) {
6368 if (!btrfs_test_opt(root, DEGRADED))
6369 return ERR_PTR(-ENOENT);
6370
6371 fs_devices = alloc_fs_devices(fsid);
6372 if (IS_ERR(fs_devices))
6373 return fs_devices;
6374
6375 fs_devices->seeding = 1;
6376 fs_devices->opened = 1;
6377 return fs_devices;
6378 }
6379
6380 fs_devices = clone_fs_devices(fs_devices);
6381 if (IS_ERR(fs_devices))
6382 return fs_devices;
6383
6384 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6385 root->fs_info->bdev_holder);
6386 if (ret) {
6387 free_fs_devices(fs_devices);
6388 fs_devices = ERR_PTR(ret);
6389 goto out;
6390 }
6391
6392 if (!fs_devices->seeding) {
6393 __btrfs_close_devices(fs_devices);
6394 free_fs_devices(fs_devices);
6395 fs_devices = ERR_PTR(-EINVAL);
6396 goto out;
6397 }
6398
6399 fs_devices->seed = root->fs_info->fs_devices->seed;
6400 root->fs_info->fs_devices->seed = fs_devices;
6401 out:
6402 return fs_devices;
6403 }
6404
6405 static int read_one_dev(struct btrfs_root *root,
6406 struct extent_buffer *leaf,
6407 struct btrfs_dev_item *dev_item)
6408 {
6409 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6410 struct btrfs_device *device;
6411 u64 devid;
6412 int ret;
6413 u8 fs_uuid[BTRFS_UUID_SIZE];
6414 u8 dev_uuid[BTRFS_UUID_SIZE];
6415
6416 devid = btrfs_device_id(leaf, dev_item);
6417 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6418 BTRFS_UUID_SIZE);
6419 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6420 BTRFS_UUID_SIZE);
6421
6422 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6423 fs_devices = open_seed_devices(root, fs_uuid);
6424 if (IS_ERR(fs_devices))
6425 return PTR_ERR(fs_devices);
6426 }
6427
6428 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6429 if (!device) {
6430 if (!btrfs_test_opt(root, DEGRADED))
6431 return -EIO;
6432
6433 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6434 if (!device)
6435 return -ENOMEM;
6436 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6437 devid, dev_uuid);
6438 } else {
6439 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6440 return -EIO;
6441
6442 if(!device->bdev && !device->missing) {
6443 /*
6444 * this happens when a device that was properly setup
6445 * in the device info lists suddenly goes bad.
6446 * device->bdev is NULL, and so we have to set
6447 * device->missing to one here
6448 */
6449 device->fs_devices->missing_devices++;
6450 device->missing = 1;
6451 }
6452
6453 /* Move the device to its own fs_devices */
6454 if (device->fs_devices != fs_devices) {
6455 ASSERT(device->missing);
6456
6457 list_move(&device->dev_list, &fs_devices->devices);
6458 device->fs_devices->num_devices--;
6459 fs_devices->num_devices++;
6460
6461 device->fs_devices->missing_devices--;
6462 fs_devices->missing_devices++;
6463
6464 device->fs_devices = fs_devices;
6465 }
6466 }
6467
6468 if (device->fs_devices != root->fs_info->fs_devices) {
6469 BUG_ON(device->writeable);
6470 if (device->generation !=
6471 btrfs_device_generation(leaf, dev_item))
6472 return -EINVAL;
6473 }
6474
6475 fill_device_from_item(leaf, dev_item, device);
6476 device->in_fs_metadata = 1;
6477 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6478 device->fs_devices->total_rw_bytes += device->total_bytes;
6479 spin_lock(&root->fs_info->free_chunk_lock);
6480 root->fs_info->free_chunk_space += device->total_bytes -
6481 device->bytes_used;
6482 spin_unlock(&root->fs_info->free_chunk_lock);
6483 }
6484 ret = 0;
6485 return ret;
6486 }
6487
6488 int btrfs_read_sys_array(struct btrfs_root *root)
6489 {
6490 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6491 struct extent_buffer *sb;
6492 struct btrfs_disk_key *disk_key;
6493 struct btrfs_chunk *chunk;
6494 u8 *array_ptr;
6495 unsigned long sb_array_offset;
6496 int ret = 0;
6497 u32 num_stripes;
6498 u32 array_size;
6499 u32 len = 0;
6500 u32 cur_offset;
6501 struct btrfs_key key;
6502
6503 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6504 /*
6505 * This will create extent buffer of nodesize, superblock size is
6506 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6507 * overallocate but we can keep it as-is, only the first page is used.
6508 */
6509 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6510 if (!sb)
6511 return -ENOMEM;
6512 set_extent_buffer_uptodate(sb);
6513 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6514 /*
6515 * The sb extent buffer is artifical and just used to read the system array.
6516 * set_extent_buffer_uptodate() call does not properly mark all it's
6517 * pages up-to-date when the page is larger: extent does not cover the
6518 * whole page and consequently check_page_uptodate does not find all
6519 * the page's extents up-to-date (the hole beyond sb),
6520 * write_extent_buffer then triggers a WARN_ON.
6521 *
6522 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6523 * but sb spans only this function. Add an explicit SetPageUptodate call
6524 * to silence the warning eg. on PowerPC 64.
6525 */
6526 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6527 SetPageUptodate(sb->pages[0]);
6528
6529 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6530 array_size = btrfs_super_sys_array_size(super_copy);
6531
6532 array_ptr = super_copy->sys_chunk_array;
6533 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6534 cur_offset = 0;
6535
6536 while (cur_offset < array_size) {
6537 disk_key = (struct btrfs_disk_key *)array_ptr;
6538 len = sizeof(*disk_key);
6539 if (cur_offset + len > array_size)
6540 goto out_short_read;
6541
6542 btrfs_disk_key_to_cpu(&key, disk_key);
6543
6544 array_ptr += len;
6545 sb_array_offset += len;
6546 cur_offset += len;
6547
6548 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6549 chunk = (struct btrfs_chunk *)sb_array_offset;
6550 /*
6551 * At least one btrfs_chunk with one stripe must be
6552 * present, exact stripe count check comes afterwards
6553 */
6554 len = btrfs_chunk_item_size(1);
6555 if (cur_offset + len > array_size)
6556 goto out_short_read;
6557
6558 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6559 if (!num_stripes) {
6560 printk(KERN_ERR
6561 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6562 num_stripes, cur_offset);
6563 ret = -EIO;
6564 break;
6565 }
6566
6567 len = btrfs_chunk_item_size(num_stripes);
6568 if (cur_offset + len > array_size)
6569 goto out_short_read;
6570
6571 ret = read_one_chunk(root, &key, sb, chunk);
6572 if (ret)
6573 break;
6574 } else {
6575 printk(KERN_ERR
6576 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6577 (u32)key.type, cur_offset);
6578 ret = -EIO;
6579 break;
6580 }
6581 array_ptr += len;
6582 sb_array_offset += len;
6583 cur_offset += len;
6584 }
6585 free_extent_buffer(sb);
6586 return ret;
6587
6588 out_short_read:
6589 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6590 len, cur_offset);
6591 free_extent_buffer(sb);
6592 return -EIO;
6593 }
6594
6595 int btrfs_read_chunk_tree(struct btrfs_root *root)
6596 {
6597 struct btrfs_path *path;
6598 struct extent_buffer *leaf;
6599 struct btrfs_key key;
6600 struct btrfs_key found_key;
6601 int ret;
6602 int slot;
6603
6604 root = root->fs_info->chunk_root;
6605
6606 path = btrfs_alloc_path();
6607 if (!path)
6608 return -ENOMEM;
6609
6610 mutex_lock(&uuid_mutex);
6611 lock_chunks(root);
6612
6613 /*
6614 * Read all device items, and then all the chunk items. All
6615 * device items are found before any chunk item (their object id
6616 * is smaller than the lowest possible object id for a chunk
6617 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6618 */
6619 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6620 key.offset = 0;
6621 key.type = 0;
6622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6623 if (ret < 0)
6624 goto error;
6625 while (1) {
6626 leaf = path->nodes[0];
6627 slot = path->slots[0];
6628 if (slot >= btrfs_header_nritems(leaf)) {
6629 ret = btrfs_next_leaf(root, path);
6630 if (ret == 0)
6631 continue;
6632 if (ret < 0)
6633 goto error;
6634 break;
6635 }
6636 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6637 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6638 struct btrfs_dev_item *dev_item;
6639 dev_item = btrfs_item_ptr(leaf, slot,
6640 struct btrfs_dev_item);
6641 ret = read_one_dev(root, leaf, dev_item);
6642 if (ret)
6643 goto error;
6644 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6645 struct btrfs_chunk *chunk;
6646 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6647 ret = read_one_chunk(root, &found_key, leaf, chunk);
6648 if (ret)
6649 goto error;
6650 }
6651 path->slots[0]++;
6652 }
6653 ret = 0;
6654 error:
6655 unlock_chunks(root);
6656 mutex_unlock(&uuid_mutex);
6657
6658 btrfs_free_path(path);
6659 return ret;
6660 }
6661
6662 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6663 {
6664 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6665 struct btrfs_device *device;
6666
6667 while (fs_devices) {
6668 mutex_lock(&fs_devices->device_list_mutex);
6669 list_for_each_entry(device, &fs_devices->devices, dev_list)
6670 device->dev_root = fs_info->dev_root;
6671 mutex_unlock(&fs_devices->device_list_mutex);
6672
6673 fs_devices = fs_devices->seed;
6674 }
6675 }
6676
6677 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6678 {
6679 int i;
6680
6681 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6682 btrfs_dev_stat_reset(dev, i);
6683 }
6684
6685 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6686 {
6687 struct btrfs_key key;
6688 struct btrfs_key found_key;
6689 struct btrfs_root *dev_root = fs_info->dev_root;
6690 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6691 struct extent_buffer *eb;
6692 int slot;
6693 int ret = 0;
6694 struct btrfs_device *device;
6695 struct btrfs_path *path = NULL;
6696 int i;
6697
6698 path = btrfs_alloc_path();
6699 if (!path) {
6700 ret = -ENOMEM;
6701 goto out;
6702 }
6703
6704 mutex_lock(&fs_devices->device_list_mutex);
6705 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6706 int item_size;
6707 struct btrfs_dev_stats_item *ptr;
6708
6709 key.objectid = 0;
6710 key.type = BTRFS_DEV_STATS_KEY;
6711 key.offset = device->devid;
6712 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6713 if (ret) {
6714 __btrfs_reset_dev_stats(device);
6715 device->dev_stats_valid = 1;
6716 btrfs_release_path(path);
6717 continue;
6718 }
6719 slot = path->slots[0];
6720 eb = path->nodes[0];
6721 btrfs_item_key_to_cpu(eb, &found_key, slot);
6722 item_size = btrfs_item_size_nr(eb, slot);
6723
6724 ptr = btrfs_item_ptr(eb, slot,
6725 struct btrfs_dev_stats_item);
6726
6727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6728 if (item_size >= (1 + i) * sizeof(__le64))
6729 btrfs_dev_stat_set(device, i,
6730 btrfs_dev_stats_value(eb, ptr, i));
6731 else
6732 btrfs_dev_stat_reset(device, i);
6733 }
6734
6735 device->dev_stats_valid = 1;
6736 btrfs_dev_stat_print_on_load(device);
6737 btrfs_release_path(path);
6738 }
6739 mutex_unlock(&fs_devices->device_list_mutex);
6740
6741 out:
6742 btrfs_free_path(path);
6743 return ret < 0 ? ret : 0;
6744 }
6745
6746 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6747 struct btrfs_root *dev_root,
6748 struct btrfs_device *device)
6749 {
6750 struct btrfs_path *path;
6751 struct btrfs_key key;
6752 struct extent_buffer *eb;
6753 struct btrfs_dev_stats_item *ptr;
6754 int ret;
6755 int i;
6756
6757 key.objectid = 0;
6758 key.type = BTRFS_DEV_STATS_KEY;
6759 key.offset = device->devid;
6760
6761 path = btrfs_alloc_path();
6762 BUG_ON(!path);
6763 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6764 if (ret < 0) {
6765 btrfs_warn_in_rcu(dev_root->fs_info,
6766 "error %d while searching for dev_stats item for device %s",
6767 ret, rcu_str_deref(device->name));
6768 goto out;
6769 }
6770
6771 if (ret == 0 &&
6772 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6773 /* need to delete old one and insert a new one */
6774 ret = btrfs_del_item(trans, dev_root, path);
6775 if (ret != 0) {
6776 btrfs_warn_in_rcu(dev_root->fs_info,
6777 "delete too small dev_stats item for device %s failed %d",
6778 rcu_str_deref(device->name), ret);
6779 goto out;
6780 }
6781 ret = 1;
6782 }
6783
6784 if (ret == 1) {
6785 /* need to insert a new item */
6786 btrfs_release_path(path);
6787 ret = btrfs_insert_empty_item(trans, dev_root, path,
6788 &key, sizeof(*ptr));
6789 if (ret < 0) {
6790 btrfs_warn_in_rcu(dev_root->fs_info,
6791 "insert dev_stats item for device %s failed %d",
6792 rcu_str_deref(device->name), ret);
6793 goto out;
6794 }
6795 }
6796
6797 eb = path->nodes[0];
6798 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6799 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6800 btrfs_set_dev_stats_value(eb, ptr, i,
6801 btrfs_dev_stat_read(device, i));
6802 btrfs_mark_buffer_dirty(eb);
6803
6804 out:
6805 btrfs_free_path(path);
6806 return ret;
6807 }
6808
6809 /*
6810 * called from commit_transaction. Writes all changed device stats to disk.
6811 */
6812 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6813 struct btrfs_fs_info *fs_info)
6814 {
6815 struct btrfs_root *dev_root = fs_info->dev_root;
6816 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6817 struct btrfs_device *device;
6818 int stats_cnt;
6819 int ret = 0;
6820
6821 mutex_lock(&fs_devices->device_list_mutex);
6822 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6823 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6824 continue;
6825
6826 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6827 ret = update_dev_stat_item(trans, dev_root, device);
6828 if (!ret)
6829 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6830 }
6831 mutex_unlock(&fs_devices->device_list_mutex);
6832
6833 return ret;
6834 }
6835
6836 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6837 {
6838 btrfs_dev_stat_inc(dev, index);
6839 btrfs_dev_stat_print_on_error(dev);
6840 }
6841
6842 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6843 {
6844 if (!dev->dev_stats_valid)
6845 return;
6846 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6847 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6848 rcu_str_deref(dev->name),
6849 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6850 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6854 }
6855
6856 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6857 {
6858 int i;
6859
6860 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6861 if (btrfs_dev_stat_read(dev, i) != 0)
6862 break;
6863 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6864 return; /* all values == 0, suppress message */
6865
6866 btrfs_info_in_rcu(dev->dev_root->fs_info,
6867 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6868 rcu_str_deref(dev->name),
6869 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6870 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6871 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6874 }
6875
6876 int btrfs_get_dev_stats(struct btrfs_root *root,
6877 struct btrfs_ioctl_get_dev_stats *stats)
6878 {
6879 struct btrfs_device *dev;
6880 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6881 int i;
6882
6883 mutex_lock(&fs_devices->device_list_mutex);
6884 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6885 mutex_unlock(&fs_devices->device_list_mutex);
6886
6887 if (!dev) {
6888 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6889 return -ENODEV;
6890 } else if (!dev->dev_stats_valid) {
6891 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6892 return -ENODEV;
6893 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6894 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6895 if (stats->nr_items > i)
6896 stats->values[i] =
6897 btrfs_dev_stat_read_and_reset(dev, i);
6898 else
6899 btrfs_dev_stat_reset(dev, i);
6900 }
6901 } else {
6902 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6903 if (stats->nr_items > i)
6904 stats->values[i] = btrfs_dev_stat_read(dev, i);
6905 }
6906 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6907 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6908 return 0;
6909 }
6910
6911 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6912 {
6913 struct buffer_head *bh;
6914 struct btrfs_super_block *disk_super;
6915 int copy_num;
6916
6917 if (!bdev)
6918 return;
6919
6920 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6921 copy_num++) {
6922
6923 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6924 continue;
6925
6926 disk_super = (struct btrfs_super_block *)bh->b_data;
6927
6928 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6929 set_buffer_dirty(bh);
6930 sync_dirty_buffer(bh);
6931 brelse(bh);
6932 }
6933
6934 /* Notify udev that device has changed */
6935 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6936
6937 /* Update ctime/mtime for device path for libblkid */
6938 update_dev_time(device_path);
6939 }
6940
6941 /*
6942 * Update the size of all devices, which is used for writing out the
6943 * super blocks.
6944 */
6945 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6946 {
6947 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948 struct btrfs_device *curr, *next;
6949
6950 if (list_empty(&fs_devices->resized_devices))
6951 return;
6952
6953 mutex_lock(&fs_devices->device_list_mutex);
6954 lock_chunks(fs_info->dev_root);
6955 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6956 resized_list) {
6957 list_del_init(&curr->resized_list);
6958 curr->commit_total_bytes = curr->disk_total_bytes;
6959 }
6960 unlock_chunks(fs_info->dev_root);
6961 mutex_unlock(&fs_devices->device_list_mutex);
6962 }
6963
6964 /* Must be invoked during the transaction commit */
6965 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6966 struct btrfs_transaction *transaction)
6967 {
6968 struct extent_map *em;
6969 struct map_lookup *map;
6970 struct btrfs_device *dev;
6971 int i;
6972
6973 if (list_empty(&transaction->pending_chunks))
6974 return;
6975
6976 /* In order to kick the device replace finish process */
6977 lock_chunks(root);
6978 list_for_each_entry(em, &transaction->pending_chunks, list) {
6979 map = em->map_lookup;
6980
6981 for (i = 0; i < map->num_stripes; i++) {
6982 dev = map->stripes[i].dev;
6983 dev->commit_bytes_used = dev->bytes_used;
6984 }
6985 }
6986 unlock_chunks(root);
6987 }
6988
6989 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6990 {
6991 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6992 while (fs_devices) {
6993 fs_devices->fs_info = fs_info;
6994 fs_devices = fs_devices->seed;
6995 }
6996 }
6997
6998 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6999 {
7000 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7001 while (fs_devices) {
7002 fs_devices->fs_info = NULL;
7003 fs_devices = fs_devices->seed;
7004 }
7005 }
7006
7007 static void btrfs_close_one_device(struct btrfs_device *device)
7008 {
7009 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7010 struct btrfs_device *new_device;
7011 struct rcu_string *name;
7012
7013 if (device->bdev)
7014 fs_devices->open_devices--;
7015
7016 if (device->writeable &&
7017 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7018 list_del_init(&device->dev_alloc_list);
7019 fs_devices->rw_devices--;
7020 }
7021
7022 if (device->missing)
7023 fs_devices->missing_devices--;
7024
7025 new_device = btrfs_alloc_device(NULL, &device->devid,
7026 device->uuid);
7027 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7028
7029 /* Safe because we are under uuid_mutex */
7030 if (device->name) {
7031 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7032 BUG_ON(!name); /* -ENOMEM */
7033 rcu_assign_pointer(new_device->name, name);
7034 }
7035
7036 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7037 new_device->fs_devices = device->fs_devices;
7038
7039 call_rcu(&device->rcu, free_device);
7040 }