]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/volumes.c
Merge branch 'cleanups-post-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58 struct btrfs_fs_devices *fs_devs;
59
60 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61 if (!fs_devs)
62 return ERR_PTR(-ENOMEM);
63
64 mutex_init(&fs_devs->device_list_mutex);
65
66 INIT_LIST_HEAD(&fs_devs->devices);
67 INIT_LIST_HEAD(&fs_devs->resized_devices);
68 INIT_LIST_HEAD(&fs_devs->alloc_list);
69 INIT_LIST_HEAD(&fs_devs->list);
70
71 return fs_devs;
72 }
73
74 /**
75 * alloc_fs_devices - allocate struct btrfs_fs_devices
76 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
77 * generated.
78 *
79 * Return: a pointer to a new &struct btrfs_fs_devices on success;
80 * ERR_PTR() on error. Returned struct is not linked onto any lists and
81 * can be destroyed with kfree() right away.
82 */
83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85 struct btrfs_fs_devices *fs_devs;
86
87 fs_devs = __alloc_fs_devices();
88 if (IS_ERR(fs_devs))
89 return fs_devs;
90
91 if (fsid)
92 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93 else
94 generate_random_uuid(fs_devs->fsid);
95
96 return fs_devs;
97 }
98
99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101 struct btrfs_device *device;
102 WARN_ON(fs_devices->opened);
103 while (!list_empty(&fs_devices->devices)) {
104 device = list_entry(fs_devices->devices.next,
105 struct btrfs_device, dev_list);
106 list_del(&device->dev_list);
107 rcu_string_free(device->name);
108 kfree(device);
109 }
110 kfree(fs_devices);
111 }
112
113 static void btrfs_kobject_uevent(struct block_device *bdev,
114 enum kobject_action action)
115 {
116 int ret;
117
118 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119 if (ret)
120 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121 action,
122 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123 &disk_to_dev(bdev->bd_disk)->kobj);
124 }
125
126 void btrfs_cleanup_fs_uuids(void)
127 {
128 struct btrfs_fs_devices *fs_devices;
129
130 while (!list_empty(&fs_uuids)) {
131 fs_devices = list_entry(fs_uuids.next,
132 struct btrfs_fs_devices, list);
133 list_del(&fs_devices->list);
134 free_fs_devices(fs_devices);
135 }
136 }
137
138 static struct btrfs_device *__alloc_device(void)
139 {
140 struct btrfs_device *dev;
141
142 dev = kzalloc(sizeof(*dev), GFP_NOFS);
143 if (!dev)
144 return ERR_PTR(-ENOMEM);
145
146 INIT_LIST_HEAD(&dev->dev_list);
147 INIT_LIST_HEAD(&dev->dev_alloc_list);
148 INIT_LIST_HEAD(&dev->resized_list);
149
150 spin_lock_init(&dev->io_lock);
151
152 spin_lock_init(&dev->reada_lock);
153 atomic_set(&dev->reada_in_flight, 0);
154 atomic_set(&dev->dev_stats_ccnt, 0);
155 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157
158 return dev;
159 }
160
161 static noinline struct btrfs_device *__find_device(struct list_head *head,
162 u64 devid, u8 *uuid)
163 {
164 struct btrfs_device *dev;
165
166 list_for_each_entry(dev, head, dev_list) {
167 if (dev->devid == devid &&
168 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
169 return dev;
170 }
171 }
172 return NULL;
173 }
174
175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
176 {
177 struct btrfs_fs_devices *fs_devices;
178
179 list_for_each_entry(fs_devices, &fs_uuids, list) {
180 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181 return fs_devices;
182 }
183 return NULL;
184 }
185
186 static int
187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188 int flush, struct block_device **bdev,
189 struct buffer_head **bh)
190 {
191 int ret;
192
193 *bdev = blkdev_get_by_path(device_path, flags, holder);
194
195 if (IS_ERR(*bdev)) {
196 ret = PTR_ERR(*bdev);
197 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
198 goto error;
199 }
200
201 if (flush)
202 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203 ret = set_blocksize(*bdev, 4096);
204 if (ret) {
205 blkdev_put(*bdev, flags);
206 goto error;
207 }
208 invalidate_bdev(*bdev);
209 *bh = btrfs_read_dev_super(*bdev);
210 if (!*bh) {
211 ret = -EINVAL;
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215
216 return 0;
217
218 error:
219 *bdev = NULL;
220 *bh = NULL;
221 return ret;
222 }
223
224 static void requeue_list(struct btrfs_pending_bios *pending_bios,
225 struct bio *head, struct bio *tail)
226 {
227
228 struct bio *old_head;
229
230 old_head = pending_bios->head;
231 pending_bios->head = head;
232 if (pending_bios->tail)
233 tail->bi_next = old_head;
234 else
235 pending_bios->tail = tail;
236 }
237
238 /*
239 * we try to collect pending bios for a device so we don't get a large
240 * number of procs sending bios down to the same device. This greatly
241 * improves the schedulers ability to collect and merge the bios.
242 *
243 * But, it also turns into a long list of bios to process and that is sure
244 * to eventually make the worker thread block. The solution here is to
245 * make some progress and then put this work struct back at the end of
246 * the list if the block device is congested. This way, multiple devices
247 * can make progress from a single worker thread.
248 */
249 static noinline void run_scheduled_bios(struct btrfs_device *device)
250 {
251 struct bio *pending;
252 struct backing_dev_info *bdi;
253 struct btrfs_fs_info *fs_info;
254 struct btrfs_pending_bios *pending_bios;
255 struct bio *tail;
256 struct bio *cur;
257 int again = 0;
258 unsigned long num_run;
259 unsigned long batch_run = 0;
260 unsigned long limit;
261 unsigned long last_waited = 0;
262 int force_reg = 0;
263 int sync_pending = 0;
264 struct blk_plug plug;
265
266 /*
267 * this function runs all the bios we've collected for
268 * a particular device. We don't want to wander off to
269 * another device without first sending all of these down.
270 * So, setup a plug here and finish it off before we return
271 */
272 blk_start_plug(&plug);
273
274 bdi = blk_get_backing_dev_info(device->bdev);
275 fs_info = device->dev_root->fs_info;
276 limit = btrfs_async_submit_limit(fs_info);
277 limit = limit * 2 / 3;
278
279 loop:
280 spin_lock(&device->io_lock);
281
282 loop_lock:
283 num_run = 0;
284
285 /* take all the bios off the list at once and process them
286 * later on (without the lock held). But, remember the
287 * tail and other pointers so the bios can be properly reinserted
288 * into the list if we hit congestion
289 */
290 if (!force_reg && device->pending_sync_bios.head) {
291 pending_bios = &device->pending_sync_bios;
292 force_reg = 1;
293 } else {
294 pending_bios = &device->pending_bios;
295 force_reg = 0;
296 }
297
298 pending = pending_bios->head;
299 tail = pending_bios->tail;
300 WARN_ON(pending && !tail);
301
302 /*
303 * if pending was null this time around, no bios need processing
304 * at all and we can stop. Otherwise it'll loop back up again
305 * and do an additional check so no bios are missed.
306 *
307 * device->running_pending is used to synchronize with the
308 * schedule_bio code.
309 */
310 if (device->pending_sync_bios.head == NULL &&
311 device->pending_bios.head == NULL) {
312 again = 0;
313 device->running_pending = 0;
314 } else {
315 again = 1;
316 device->running_pending = 1;
317 }
318
319 pending_bios->head = NULL;
320 pending_bios->tail = NULL;
321
322 spin_unlock(&device->io_lock);
323
324 while (pending) {
325
326 rmb();
327 /* we want to work on both lists, but do more bios on the
328 * sync list than the regular list
329 */
330 if ((num_run > 32 &&
331 pending_bios != &device->pending_sync_bios &&
332 device->pending_sync_bios.head) ||
333 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334 device->pending_bios.head)) {
335 spin_lock(&device->io_lock);
336 requeue_list(pending_bios, pending, tail);
337 goto loop_lock;
338 }
339
340 cur = pending;
341 pending = pending->bi_next;
342 cur->bi_next = NULL;
343
344 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
345 waitqueue_active(&fs_info->async_submit_wait))
346 wake_up(&fs_info->async_submit_wait);
347
348 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
349
350 /*
351 * if we're doing the sync list, record that our
352 * plug has some sync requests on it
353 *
354 * If we're doing the regular list and there are
355 * sync requests sitting around, unplug before
356 * we add more
357 */
358 if (pending_bios == &device->pending_sync_bios) {
359 sync_pending = 1;
360 } else if (sync_pending) {
361 blk_finish_plug(&plug);
362 blk_start_plug(&plug);
363 sync_pending = 0;
364 }
365
366 btrfsic_submit_bio(cur->bi_rw, cur);
367 num_run++;
368 batch_run++;
369
370 cond_resched();
371
372 /*
373 * we made progress, there is more work to do and the bdi
374 * is now congested. Back off and let other work structs
375 * run instead
376 */
377 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
378 fs_info->fs_devices->open_devices > 1) {
379 struct io_context *ioc;
380
381 ioc = current->io_context;
382
383 /*
384 * the main goal here is that we don't want to
385 * block if we're going to be able to submit
386 * more requests without blocking.
387 *
388 * This code does two great things, it pokes into
389 * the elevator code from a filesystem _and_
390 * it makes assumptions about how batching works.
391 */
392 if (ioc && ioc->nr_batch_requests > 0 &&
393 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394 (last_waited == 0 ||
395 ioc->last_waited == last_waited)) {
396 /*
397 * we want to go through our batch of
398 * requests and stop. So, we copy out
399 * the ioc->last_waited time and test
400 * against it before looping
401 */
402 last_waited = ioc->last_waited;
403 cond_resched();
404 continue;
405 }
406 spin_lock(&device->io_lock);
407 requeue_list(pending_bios, pending, tail);
408 device->running_pending = 1;
409
410 spin_unlock(&device->io_lock);
411 btrfs_queue_work(fs_info->submit_workers,
412 &device->work);
413 goto done;
414 }
415 /* unplug every 64 requests just for good measure */
416 if (batch_run % 64 == 0) {
417 blk_finish_plug(&plug);
418 blk_start_plug(&plug);
419 sync_pending = 0;
420 }
421 }
422
423 cond_resched();
424 if (again)
425 goto loop;
426
427 spin_lock(&device->io_lock);
428 if (device->pending_bios.head || device->pending_sync_bios.head)
429 goto loop_lock;
430 spin_unlock(&device->io_lock);
431
432 done:
433 blk_finish_plug(&plug);
434 }
435
436 static void pending_bios_fn(struct btrfs_work *work)
437 {
438 struct btrfs_device *device;
439
440 device = container_of(work, struct btrfs_device, work);
441 run_scheduled_bios(device);
442 }
443
444 /*
445 * Add new device to list of registered devices
446 *
447 * Returns:
448 * 1 - first time device is seen
449 * 0 - device already known
450 * < 0 - error
451 */
452 static noinline int device_list_add(const char *path,
453 struct btrfs_super_block *disk_super,
454 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
455 {
456 struct btrfs_device *device;
457 struct btrfs_fs_devices *fs_devices;
458 struct rcu_string *name;
459 int ret = 0;
460 u64 found_transid = btrfs_super_generation(disk_super);
461
462 fs_devices = find_fsid(disk_super->fsid);
463 if (!fs_devices) {
464 fs_devices = alloc_fs_devices(disk_super->fsid);
465 if (IS_ERR(fs_devices))
466 return PTR_ERR(fs_devices);
467
468 list_add(&fs_devices->list, &fs_uuids);
469
470 device = NULL;
471 } else {
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
474 }
475
476 if (!device) {
477 if (fs_devices->opened)
478 return -EBUSY;
479
480 device = btrfs_alloc_device(NULL, &devid,
481 disk_super->dev_item.uuid);
482 if (IS_ERR(device)) {
483 /* we can safely leave the fs_devices entry around */
484 return PTR_ERR(device);
485 }
486
487 name = rcu_string_strdup(path, GFP_NOFS);
488 if (!name) {
489 kfree(device);
490 return -ENOMEM;
491 }
492 rcu_assign_pointer(device->name, name);
493
494 mutex_lock(&fs_devices->device_list_mutex);
495 list_add_rcu(&device->dev_list, &fs_devices->devices);
496 fs_devices->num_devices++;
497 mutex_unlock(&fs_devices->device_list_mutex);
498
499 ret = 1;
500 device->fs_devices = fs_devices;
501 } else if (!device->name || strcmp(device->name->str, path)) {
502 /*
503 * When FS is already mounted.
504 * 1. If you are here and if the device->name is NULL that
505 * means this device was missing at time of FS mount.
506 * 2. If you are here and if the device->name is different
507 * from 'path' that means either
508 * a. The same device disappeared and reappeared with
509 * different name. or
510 * b. The missing-disk-which-was-replaced, has
511 * reappeared now.
512 *
513 * We must allow 1 and 2a above. But 2b would be a spurious
514 * and unintentional.
515 *
516 * Further in case of 1 and 2a above, the disk at 'path'
517 * would have missed some transaction when it was away and
518 * in case of 2a the stale bdev has to be updated as well.
519 * 2b must not be allowed at all time.
520 */
521
522 /*
523 * For now, we do allow update to btrfs_fs_device through the
524 * btrfs dev scan cli after FS has been mounted. We're still
525 * tracking a problem where systems fail mount by subvolume id
526 * when we reject replacement on a mounted FS.
527 */
528 if (!fs_devices->opened && found_transid < device->generation) {
529 /*
530 * That is if the FS is _not_ mounted and if you
531 * are here, that means there is more than one
532 * disk with same uuid and devid.We keep the one
533 * with larger generation number or the last-in if
534 * generation are equal.
535 */
536 return -EEXIST;
537 }
538
539 name = rcu_string_strdup(path, GFP_NOFS);
540 if (!name)
541 return -ENOMEM;
542 rcu_string_free(device->name);
543 rcu_assign_pointer(device->name, name);
544 if (device->missing) {
545 fs_devices->missing_devices--;
546 device->missing = 0;
547 }
548 }
549
550 /*
551 * Unmount does not free the btrfs_device struct but would zero
552 * generation along with most of the other members. So just update
553 * it back. We need it to pick the disk with largest generation
554 * (as above).
555 */
556 if (!fs_devices->opened)
557 device->generation = found_transid;
558
559 *fs_devices_ret = fs_devices;
560
561 return ret;
562 }
563
564 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
565 {
566 struct btrfs_fs_devices *fs_devices;
567 struct btrfs_device *device;
568 struct btrfs_device *orig_dev;
569
570 fs_devices = alloc_fs_devices(orig->fsid);
571 if (IS_ERR(fs_devices))
572 return fs_devices;
573
574 mutex_lock(&orig->device_list_mutex);
575 fs_devices->total_devices = orig->total_devices;
576
577 /* We have held the volume lock, it is safe to get the devices. */
578 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
579 struct rcu_string *name;
580
581 device = btrfs_alloc_device(NULL, &orig_dev->devid,
582 orig_dev->uuid);
583 if (IS_ERR(device))
584 goto error;
585
586 /*
587 * This is ok to do without rcu read locked because we hold the
588 * uuid mutex so nothing we touch in here is going to disappear.
589 */
590 if (orig_dev->name) {
591 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
592 if (!name) {
593 kfree(device);
594 goto error;
595 }
596 rcu_assign_pointer(device->name, name);
597 }
598
599 list_add(&device->dev_list, &fs_devices->devices);
600 device->fs_devices = fs_devices;
601 fs_devices->num_devices++;
602 }
603 mutex_unlock(&orig->device_list_mutex);
604 return fs_devices;
605 error:
606 mutex_unlock(&orig->device_list_mutex);
607 free_fs_devices(fs_devices);
608 return ERR_PTR(-ENOMEM);
609 }
610
611 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
612 {
613 struct btrfs_device *device, *next;
614 struct btrfs_device *latest_dev = NULL;
615
616 mutex_lock(&uuid_mutex);
617 again:
618 /* This is the initialized path, it is safe to release the devices. */
619 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
620 if (device->in_fs_metadata) {
621 if (!device->is_tgtdev_for_dev_replace &&
622 (!latest_dev ||
623 device->generation > latest_dev->generation)) {
624 latest_dev = device;
625 }
626 continue;
627 }
628
629 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
630 /*
631 * In the first step, keep the device which has
632 * the correct fsid and the devid that is used
633 * for the dev_replace procedure.
634 * In the second step, the dev_replace state is
635 * read from the device tree and it is known
636 * whether the procedure is really active or
637 * not, which means whether this device is
638 * used or whether it should be removed.
639 */
640 if (step == 0 || device->is_tgtdev_for_dev_replace) {
641 continue;
642 }
643 }
644 if (device->bdev) {
645 blkdev_put(device->bdev, device->mode);
646 device->bdev = NULL;
647 fs_devices->open_devices--;
648 }
649 if (device->writeable) {
650 list_del_init(&device->dev_alloc_list);
651 device->writeable = 0;
652 if (!device->is_tgtdev_for_dev_replace)
653 fs_devices->rw_devices--;
654 }
655 list_del_init(&device->dev_list);
656 fs_devices->num_devices--;
657 rcu_string_free(device->name);
658 kfree(device);
659 }
660
661 if (fs_devices->seed) {
662 fs_devices = fs_devices->seed;
663 goto again;
664 }
665
666 fs_devices->latest_bdev = latest_dev->bdev;
667
668 mutex_unlock(&uuid_mutex);
669 }
670
671 static void __free_device(struct work_struct *work)
672 {
673 struct btrfs_device *device;
674
675 device = container_of(work, struct btrfs_device, rcu_work);
676
677 if (device->bdev)
678 blkdev_put(device->bdev, device->mode);
679
680 rcu_string_free(device->name);
681 kfree(device);
682 }
683
684 static void free_device(struct rcu_head *head)
685 {
686 struct btrfs_device *device;
687
688 device = container_of(head, struct btrfs_device, rcu);
689
690 INIT_WORK(&device->rcu_work, __free_device);
691 schedule_work(&device->rcu_work);
692 }
693
694 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
695 {
696 struct btrfs_device *device;
697
698 if (--fs_devices->opened > 0)
699 return 0;
700
701 mutex_lock(&fs_devices->device_list_mutex);
702 list_for_each_entry(device, &fs_devices->devices, dev_list) {
703 struct btrfs_device *new_device;
704 struct rcu_string *name;
705
706 if (device->bdev)
707 fs_devices->open_devices--;
708
709 if (device->writeable &&
710 device->devid != BTRFS_DEV_REPLACE_DEVID) {
711 list_del_init(&device->dev_alloc_list);
712 fs_devices->rw_devices--;
713 }
714
715 if (device->missing)
716 fs_devices->missing_devices--;
717
718 new_device = btrfs_alloc_device(NULL, &device->devid,
719 device->uuid);
720 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
721
722 /* Safe because we are under uuid_mutex */
723 if (device->name) {
724 name = rcu_string_strdup(device->name->str, GFP_NOFS);
725 BUG_ON(!name); /* -ENOMEM */
726 rcu_assign_pointer(new_device->name, name);
727 }
728
729 list_replace_rcu(&device->dev_list, &new_device->dev_list);
730 new_device->fs_devices = device->fs_devices;
731
732 call_rcu(&device->rcu, free_device);
733 }
734 mutex_unlock(&fs_devices->device_list_mutex);
735
736 WARN_ON(fs_devices->open_devices);
737 WARN_ON(fs_devices->rw_devices);
738 fs_devices->opened = 0;
739 fs_devices->seeding = 0;
740
741 return 0;
742 }
743
744 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
745 {
746 struct btrfs_fs_devices *seed_devices = NULL;
747 int ret;
748
749 mutex_lock(&uuid_mutex);
750 ret = __btrfs_close_devices(fs_devices);
751 if (!fs_devices->opened) {
752 seed_devices = fs_devices->seed;
753 fs_devices->seed = NULL;
754 }
755 mutex_unlock(&uuid_mutex);
756
757 while (seed_devices) {
758 fs_devices = seed_devices;
759 seed_devices = fs_devices->seed;
760 __btrfs_close_devices(fs_devices);
761 free_fs_devices(fs_devices);
762 }
763 /*
764 * Wait for rcu kworkers under __btrfs_close_devices
765 * to finish all blkdev_puts so device is really
766 * free when umount is done.
767 */
768 rcu_barrier();
769 return ret;
770 }
771
772 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
773 fmode_t flags, void *holder)
774 {
775 struct request_queue *q;
776 struct block_device *bdev;
777 struct list_head *head = &fs_devices->devices;
778 struct btrfs_device *device;
779 struct btrfs_device *latest_dev = NULL;
780 struct buffer_head *bh;
781 struct btrfs_super_block *disk_super;
782 u64 devid;
783 int seeding = 1;
784 int ret = 0;
785
786 flags |= FMODE_EXCL;
787
788 list_for_each_entry(device, head, dev_list) {
789 if (device->bdev)
790 continue;
791 if (!device->name)
792 continue;
793
794 /* Just open everything we can; ignore failures here */
795 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
796 &bdev, &bh))
797 continue;
798
799 disk_super = (struct btrfs_super_block *)bh->b_data;
800 devid = btrfs_stack_device_id(&disk_super->dev_item);
801 if (devid != device->devid)
802 goto error_brelse;
803
804 if (memcmp(device->uuid, disk_super->dev_item.uuid,
805 BTRFS_UUID_SIZE))
806 goto error_brelse;
807
808 device->generation = btrfs_super_generation(disk_super);
809 if (!latest_dev ||
810 device->generation > latest_dev->generation)
811 latest_dev = device;
812
813 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
814 device->writeable = 0;
815 } else {
816 device->writeable = !bdev_read_only(bdev);
817 seeding = 0;
818 }
819
820 q = bdev_get_queue(bdev);
821 if (blk_queue_discard(q))
822 device->can_discard = 1;
823
824 device->bdev = bdev;
825 device->in_fs_metadata = 0;
826 device->mode = flags;
827
828 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
829 fs_devices->rotating = 1;
830
831 fs_devices->open_devices++;
832 if (device->writeable &&
833 device->devid != BTRFS_DEV_REPLACE_DEVID) {
834 fs_devices->rw_devices++;
835 list_add(&device->dev_alloc_list,
836 &fs_devices->alloc_list);
837 }
838 brelse(bh);
839 continue;
840
841 error_brelse:
842 brelse(bh);
843 blkdev_put(bdev, flags);
844 continue;
845 }
846 if (fs_devices->open_devices == 0) {
847 ret = -EINVAL;
848 goto out;
849 }
850 fs_devices->seeding = seeding;
851 fs_devices->opened = 1;
852 fs_devices->latest_bdev = latest_dev->bdev;
853 fs_devices->total_rw_bytes = 0;
854 out:
855 return ret;
856 }
857
858 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
859 fmode_t flags, void *holder)
860 {
861 int ret;
862
863 mutex_lock(&uuid_mutex);
864 if (fs_devices->opened) {
865 fs_devices->opened++;
866 ret = 0;
867 } else {
868 ret = __btrfs_open_devices(fs_devices, flags, holder);
869 }
870 mutex_unlock(&uuid_mutex);
871 return ret;
872 }
873
874 /*
875 * Look for a btrfs signature on a device. This may be called out of the mount path
876 * and we are not allowed to call set_blocksize during the scan. The superblock
877 * is read via pagecache
878 */
879 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
880 struct btrfs_fs_devices **fs_devices_ret)
881 {
882 struct btrfs_super_block *disk_super;
883 struct block_device *bdev;
884 struct page *page;
885 void *p;
886 int ret = -EINVAL;
887 u64 devid;
888 u64 transid;
889 u64 total_devices;
890 u64 bytenr;
891 pgoff_t index;
892
893 /*
894 * we would like to check all the supers, but that would make
895 * a btrfs mount succeed after a mkfs from a different FS.
896 * So, we need to add a special mount option to scan for
897 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
898 */
899 bytenr = btrfs_sb_offset(0);
900 flags |= FMODE_EXCL;
901 mutex_lock(&uuid_mutex);
902
903 bdev = blkdev_get_by_path(path, flags, holder);
904
905 if (IS_ERR(bdev)) {
906 ret = PTR_ERR(bdev);
907 goto error;
908 }
909
910 /* make sure our super fits in the device */
911 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
912 goto error_bdev_put;
913
914 /* make sure our super fits in the page */
915 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
916 goto error_bdev_put;
917
918 /* make sure our super doesn't straddle pages on disk */
919 index = bytenr >> PAGE_CACHE_SHIFT;
920 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
921 goto error_bdev_put;
922
923 /* pull in the page with our super */
924 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
925 index, GFP_NOFS);
926
927 if (IS_ERR_OR_NULL(page))
928 goto error_bdev_put;
929
930 p = kmap(page);
931
932 /* align our pointer to the offset of the super block */
933 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
934
935 if (btrfs_super_bytenr(disk_super) != bytenr ||
936 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
937 goto error_unmap;
938
939 devid = btrfs_stack_device_id(&disk_super->dev_item);
940 transid = btrfs_super_generation(disk_super);
941 total_devices = btrfs_super_num_devices(disk_super);
942
943 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
944 if (ret > 0) {
945 if (disk_super->label[0]) {
946 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
947 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
948 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
949 } else {
950 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
951 }
952
953 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
954 ret = 0;
955 }
956 if (!ret && fs_devices_ret)
957 (*fs_devices_ret)->total_devices = total_devices;
958
959 error_unmap:
960 kunmap(page);
961 page_cache_release(page);
962
963 error_bdev_put:
964 blkdev_put(bdev, flags);
965 error:
966 mutex_unlock(&uuid_mutex);
967 return ret;
968 }
969
970 /* helper to account the used device space in the range */
971 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
972 u64 end, u64 *length)
973 {
974 struct btrfs_key key;
975 struct btrfs_root *root = device->dev_root;
976 struct btrfs_dev_extent *dev_extent;
977 struct btrfs_path *path;
978 u64 extent_end;
979 int ret;
980 int slot;
981 struct extent_buffer *l;
982
983 *length = 0;
984
985 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
986 return 0;
987
988 path = btrfs_alloc_path();
989 if (!path)
990 return -ENOMEM;
991 path->reada = 2;
992
993 key.objectid = device->devid;
994 key.offset = start;
995 key.type = BTRFS_DEV_EXTENT_KEY;
996
997 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
998 if (ret < 0)
999 goto out;
1000 if (ret > 0) {
1001 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1002 if (ret < 0)
1003 goto out;
1004 }
1005
1006 while (1) {
1007 l = path->nodes[0];
1008 slot = path->slots[0];
1009 if (slot >= btrfs_header_nritems(l)) {
1010 ret = btrfs_next_leaf(root, path);
1011 if (ret == 0)
1012 continue;
1013 if (ret < 0)
1014 goto out;
1015
1016 break;
1017 }
1018 btrfs_item_key_to_cpu(l, &key, slot);
1019
1020 if (key.objectid < device->devid)
1021 goto next;
1022
1023 if (key.objectid > device->devid)
1024 break;
1025
1026 if (key.type != BTRFS_DEV_EXTENT_KEY)
1027 goto next;
1028
1029 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1030 extent_end = key.offset + btrfs_dev_extent_length(l,
1031 dev_extent);
1032 if (key.offset <= start && extent_end > end) {
1033 *length = end - start + 1;
1034 break;
1035 } else if (key.offset <= start && extent_end > start)
1036 *length += extent_end - start;
1037 else if (key.offset > start && extent_end <= end)
1038 *length += extent_end - key.offset;
1039 else if (key.offset > start && key.offset <= end) {
1040 *length += end - key.offset + 1;
1041 break;
1042 } else if (key.offset > end)
1043 break;
1044
1045 next:
1046 path->slots[0]++;
1047 }
1048 ret = 0;
1049 out:
1050 btrfs_free_path(path);
1051 return ret;
1052 }
1053
1054 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1055 struct btrfs_device *device,
1056 u64 *start, u64 len)
1057 {
1058 struct extent_map *em;
1059 struct list_head *search_list = &trans->transaction->pending_chunks;
1060 int ret = 0;
1061
1062 again:
1063 list_for_each_entry(em, search_list, list) {
1064 struct map_lookup *map;
1065 int i;
1066
1067 map = (struct map_lookup *)em->bdev;
1068 for (i = 0; i < map->num_stripes; i++) {
1069 if (map->stripes[i].dev != device)
1070 continue;
1071 if (map->stripes[i].physical >= *start + len ||
1072 map->stripes[i].physical + em->orig_block_len <=
1073 *start)
1074 continue;
1075 *start = map->stripes[i].physical +
1076 em->orig_block_len;
1077 ret = 1;
1078 }
1079 }
1080 if (search_list == &trans->transaction->pending_chunks) {
1081 search_list = &trans->root->fs_info->pinned_chunks;
1082 goto again;
1083 }
1084
1085 return ret;
1086 }
1087
1088
1089 /*
1090 * find_free_dev_extent - find free space in the specified device
1091 * @device: the device which we search the free space in
1092 * @num_bytes: the size of the free space that we need
1093 * @start: store the start of the free space.
1094 * @len: the size of the free space. that we find, or the size of the max
1095 * free space if we don't find suitable free space
1096 *
1097 * this uses a pretty simple search, the expectation is that it is
1098 * called very infrequently and that a given device has a small number
1099 * of extents
1100 *
1101 * @start is used to store the start of the free space if we find. But if we
1102 * don't find suitable free space, it will be used to store the start position
1103 * of the max free space.
1104 *
1105 * @len is used to store the size of the free space that we find.
1106 * But if we don't find suitable free space, it is used to store the size of
1107 * the max free space.
1108 */
1109 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1110 struct btrfs_device *device, u64 num_bytes,
1111 u64 *start, u64 *len)
1112 {
1113 struct btrfs_key key;
1114 struct btrfs_root *root = device->dev_root;
1115 struct btrfs_dev_extent *dev_extent;
1116 struct btrfs_path *path;
1117 u64 hole_size;
1118 u64 max_hole_start;
1119 u64 max_hole_size;
1120 u64 extent_end;
1121 u64 search_start;
1122 u64 search_end = device->total_bytes;
1123 int ret;
1124 int slot;
1125 struct extent_buffer *l;
1126
1127 /* FIXME use last free of some kind */
1128
1129 /* we don't want to overwrite the superblock on the drive,
1130 * so we make sure to start at an offset of at least 1MB
1131 */
1132 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1133
1134 path = btrfs_alloc_path();
1135 if (!path)
1136 return -ENOMEM;
1137 again:
1138 max_hole_start = search_start;
1139 max_hole_size = 0;
1140 hole_size = 0;
1141
1142 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1143 ret = -ENOSPC;
1144 goto out;
1145 }
1146
1147 path->reada = 2;
1148 path->search_commit_root = 1;
1149 path->skip_locking = 1;
1150
1151 key.objectid = device->devid;
1152 key.offset = search_start;
1153 key.type = BTRFS_DEV_EXTENT_KEY;
1154
1155 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1156 if (ret < 0)
1157 goto out;
1158 if (ret > 0) {
1159 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1160 if (ret < 0)
1161 goto out;
1162 }
1163
1164 while (1) {
1165 l = path->nodes[0];
1166 slot = path->slots[0];
1167 if (slot >= btrfs_header_nritems(l)) {
1168 ret = btrfs_next_leaf(root, path);
1169 if (ret == 0)
1170 continue;
1171 if (ret < 0)
1172 goto out;
1173
1174 break;
1175 }
1176 btrfs_item_key_to_cpu(l, &key, slot);
1177
1178 if (key.objectid < device->devid)
1179 goto next;
1180
1181 if (key.objectid > device->devid)
1182 break;
1183
1184 if (key.type != BTRFS_DEV_EXTENT_KEY)
1185 goto next;
1186
1187 if (key.offset > search_start) {
1188 hole_size = key.offset - search_start;
1189
1190 /*
1191 * Have to check before we set max_hole_start, otherwise
1192 * we could end up sending back this offset anyway.
1193 */
1194 if (contains_pending_extent(trans, device,
1195 &search_start,
1196 hole_size))
1197 hole_size = 0;
1198
1199 if (hole_size > max_hole_size) {
1200 max_hole_start = search_start;
1201 max_hole_size = hole_size;
1202 }
1203
1204 /*
1205 * If this free space is greater than which we need,
1206 * it must be the max free space that we have found
1207 * until now, so max_hole_start must point to the start
1208 * of this free space and the length of this free space
1209 * is stored in max_hole_size. Thus, we return
1210 * max_hole_start and max_hole_size and go back to the
1211 * caller.
1212 */
1213 if (hole_size >= num_bytes) {
1214 ret = 0;
1215 goto out;
1216 }
1217 }
1218
1219 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1220 extent_end = key.offset + btrfs_dev_extent_length(l,
1221 dev_extent);
1222 if (extent_end > search_start)
1223 search_start = extent_end;
1224 next:
1225 path->slots[0]++;
1226 cond_resched();
1227 }
1228
1229 /*
1230 * At this point, search_start should be the end of
1231 * allocated dev extents, and when shrinking the device,
1232 * search_end may be smaller than search_start.
1233 */
1234 if (search_end > search_start)
1235 hole_size = search_end - search_start;
1236
1237 if (hole_size > max_hole_size) {
1238 max_hole_start = search_start;
1239 max_hole_size = hole_size;
1240 }
1241
1242 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1243 btrfs_release_path(path);
1244 goto again;
1245 }
1246
1247 /* See above. */
1248 if (hole_size < num_bytes)
1249 ret = -ENOSPC;
1250 else
1251 ret = 0;
1252
1253 out:
1254 btrfs_free_path(path);
1255 *start = max_hole_start;
1256 if (len)
1257 *len = max_hole_size;
1258 return ret;
1259 }
1260
1261 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1262 struct btrfs_device *device,
1263 u64 start, u64 *dev_extent_len)
1264 {
1265 int ret;
1266 struct btrfs_path *path;
1267 struct btrfs_root *root = device->dev_root;
1268 struct btrfs_key key;
1269 struct btrfs_key found_key;
1270 struct extent_buffer *leaf = NULL;
1271 struct btrfs_dev_extent *extent = NULL;
1272
1273 path = btrfs_alloc_path();
1274 if (!path)
1275 return -ENOMEM;
1276
1277 key.objectid = device->devid;
1278 key.offset = start;
1279 key.type = BTRFS_DEV_EXTENT_KEY;
1280 again:
1281 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1282 if (ret > 0) {
1283 ret = btrfs_previous_item(root, path, key.objectid,
1284 BTRFS_DEV_EXTENT_KEY);
1285 if (ret)
1286 goto out;
1287 leaf = path->nodes[0];
1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289 extent = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_dev_extent);
1291 BUG_ON(found_key.offset > start || found_key.offset +
1292 btrfs_dev_extent_length(leaf, extent) < start);
1293 key = found_key;
1294 btrfs_release_path(path);
1295 goto again;
1296 } else if (ret == 0) {
1297 leaf = path->nodes[0];
1298 extent = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_dev_extent);
1300 } else {
1301 btrfs_error(root->fs_info, ret, "Slot search failed");
1302 goto out;
1303 }
1304
1305 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1306
1307 ret = btrfs_del_item(trans, root, path);
1308 if (ret) {
1309 btrfs_error(root->fs_info, ret,
1310 "Failed to remove dev extent item");
1311 } else {
1312 trans->transaction->have_free_bgs = 1;
1313 }
1314 out:
1315 btrfs_free_path(path);
1316 return ret;
1317 }
1318
1319 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1320 struct btrfs_device *device,
1321 u64 chunk_tree, u64 chunk_objectid,
1322 u64 chunk_offset, u64 start, u64 num_bytes)
1323 {
1324 int ret;
1325 struct btrfs_path *path;
1326 struct btrfs_root *root = device->dev_root;
1327 struct btrfs_dev_extent *extent;
1328 struct extent_buffer *leaf;
1329 struct btrfs_key key;
1330
1331 WARN_ON(!device->in_fs_metadata);
1332 WARN_ON(device->is_tgtdev_for_dev_replace);
1333 path = btrfs_alloc_path();
1334 if (!path)
1335 return -ENOMEM;
1336
1337 key.objectid = device->devid;
1338 key.offset = start;
1339 key.type = BTRFS_DEV_EXTENT_KEY;
1340 ret = btrfs_insert_empty_item(trans, root, path, &key,
1341 sizeof(*extent));
1342 if (ret)
1343 goto out;
1344
1345 leaf = path->nodes[0];
1346 extent = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_dev_extent);
1348 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1349 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1350 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1351
1352 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1353 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1354
1355 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1356 btrfs_mark_buffer_dirty(leaf);
1357 out:
1358 btrfs_free_path(path);
1359 return ret;
1360 }
1361
1362 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1363 {
1364 struct extent_map_tree *em_tree;
1365 struct extent_map *em;
1366 struct rb_node *n;
1367 u64 ret = 0;
1368
1369 em_tree = &fs_info->mapping_tree.map_tree;
1370 read_lock(&em_tree->lock);
1371 n = rb_last(&em_tree->map);
1372 if (n) {
1373 em = rb_entry(n, struct extent_map, rb_node);
1374 ret = em->start + em->len;
1375 }
1376 read_unlock(&em_tree->lock);
1377
1378 return ret;
1379 }
1380
1381 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1382 u64 *devid_ret)
1383 {
1384 int ret;
1385 struct btrfs_key key;
1386 struct btrfs_key found_key;
1387 struct btrfs_path *path;
1388
1389 path = btrfs_alloc_path();
1390 if (!path)
1391 return -ENOMEM;
1392
1393 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1394 key.type = BTRFS_DEV_ITEM_KEY;
1395 key.offset = (u64)-1;
1396
1397 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1398 if (ret < 0)
1399 goto error;
1400
1401 BUG_ON(ret == 0); /* Corruption */
1402
1403 ret = btrfs_previous_item(fs_info->chunk_root, path,
1404 BTRFS_DEV_ITEMS_OBJECTID,
1405 BTRFS_DEV_ITEM_KEY);
1406 if (ret) {
1407 *devid_ret = 1;
1408 } else {
1409 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1410 path->slots[0]);
1411 *devid_ret = found_key.offset + 1;
1412 }
1413 ret = 0;
1414 error:
1415 btrfs_free_path(path);
1416 return ret;
1417 }
1418
1419 /*
1420 * the device information is stored in the chunk root
1421 * the btrfs_device struct should be fully filled in
1422 */
1423 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1424 struct btrfs_root *root,
1425 struct btrfs_device *device)
1426 {
1427 int ret;
1428 struct btrfs_path *path;
1429 struct btrfs_dev_item *dev_item;
1430 struct extent_buffer *leaf;
1431 struct btrfs_key key;
1432 unsigned long ptr;
1433
1434 root = root->fs_info->chunk_root;
1435
1436 path = btrfs_alloc_path();
1437 if (!path)
1438 return -ENOMEM;
1439
1440 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1441 key.type = BTRFS_DEV_ITEM_KEY;
1442 key.offset = device->devid;
1443
1444 ret = btrfs_insert_empty_item(trans, root, path, &key,
1445 sizeof(*dev_item));
1446 if (ret)
1447 goto out;
1448
1449 leaf = path->nodes[0];
1450 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1451
1452 btrfs_set_device_id(leaf, dev_item, device->devid);
1453 btrfs_set_device_generation(leaf, dev_item, 0);
1454 btrfs_set_device_type(leaf, dev_item, device->type);
1455 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1456 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1457 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1458 btrfs_set_device_total_bytes(leaf, dev_item,
1459 btrfs_device_get_disk_total_bytes(device));
1460 btrfs_set_device_bytes_used(leaf, dev_item,
1461 btrfs_device_get_bytes_used(device));
1462 btrfs_set_device_group(leaf, dev_item, 0);
1463 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1464 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1465 btrfs_set_device_start_offset(leaf, dev_item, 0);
1466
1467 ptr = btrfs_device_uuid(dev_item);
1468 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1469 ptr = btrfs_device_fsid(dev_item);
1470 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1471 btrfs_mark_buffer_dirty(leaf);
1472
1473 ret = 0;
1474 out:
1475 btrfs_free_path(path);
1476 return ret;
1477 }
1478
1479 /*
1480 * Function to update ctime/mtime for a given device path.
1481 * Mainly used for ctime/mtime based probe like libblkid.
1482 */
1483 static void update_dev_time(char *path_name)
1484 {
1485 struct file *filp;
1486
1487 filp = filp_open(path_name, O_RDWR, 0);
1488 if (IS_ERR(filp))
1489 return;
1490 file_update_time(filp);
1491 filp_close(filp, NULL);
1492 return;
1493 }
1494
1495 static int btrfs_rm_dev_item(struct btrfs_root *root,
1496 struct btrfs_device *device)
1497 {
1498 int ret;
1499 struct btrfs_path *path;
1500 struct btrfs_key key;
1501 struct btrfs_trans_handle *trans;
1502
1503 root = root->fs_info->chunk_root;
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
1509 trans = btrfs_start_transaction(root, 0);
1510 if (IS_ERR(trans)) {
1511 btrfs_free_path(path);
1512 return PTR_ERR(trans);
1513 }
1514 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1515 key.type = BTRFS_DEV_ITEM_KEY;
1516 key.offset = device->devid;
1517
1518 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1519 if (ret < 0)
1520 goto out;
1521
1522 if (ret > 0) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
1526
1527 ret = btrfs_del_item(trans, root, path);
1528 if (ret)
1529 goto out;
1530 out:
1531 btrfs_free_path(path);
1532 btrfs_commit_transaction(trans, root);
1533 return ret;
1534 }
1535
1536 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1537 {
1538 struct btrfs_device *device;
1539 struct btrfs_device *next_device;
1540 struct block_device *bdev;
1541 struct buffer_head *bh = NULL;
1542 struct btrfs_super_block *disk_super;
1543 struct btrfs_fs_devices *cur_devices;
1544 u64 all_avail;
1545 u64 devid;
1546 u64 num_devices;
1547 u8 *dev_uuid;
1548 unsigned seq;
1549 int ret = 0;
1550 bool clear_super = false;
1551
1552 mutex_lock(&uuid_mutex);
1553
1554 do {
1555 seq = read_seqbegin(&root->fs_info->profiles_lock);
1556
1557 all_avail = root->fs_info->avail_data_alloc_bits |
1558 root->fs_info->avail_system_alloc_bits |
1559 root->fs_info->avail_metadata_alloc_bits;
1560 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1561
1562 num_devices = root->fs_info->fs_devices->num_devices;
1563 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1564 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1565 WARN_ON(num_devices < 1);
1566 num_devices--;
1567 }
1568 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1569
1570 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1571 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1572 goto out;
1573 }
1574
1575 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1576 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1577 goto out;
1578 }
1579
1580 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1581 root->fs_info->fs_devices->rw_devices <= 2) {
1582 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1583 goto out;
1584 }
1585 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1586 root->fs_info->fs_devices->rw_devices <= 3) {
1587 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1588 goto out;
1589 }
1590
1591 if (strcmp(device_path, "missing") == 0) {
1592 struct list_head *devices;
1593 struct btrfs_device *tmp;
1594
1595 device = NULL;
1596 devices = &root->fs_info->fs_devices->devices;
1597 /*
1598 * It is safe to read the devices since the volume_mutex
1599 * is held.
1600 */
1601 list_for_each_entry(tmp, devices, dev_list) {
1602 if (tmp->in_fs_metadata &&
1603 !tmp->is_tgtdev_for_dev_replace &&
1604 !tmp->bdev) {
1605 device = tmp;
1606 break;
1607 }
1608 }
1609 bdev = NULL;
1610 bh = NULL;
1611 disk_super = NULL;
1612 if (!device) {
1613 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1614 goto out;
1615 }
1616 } else {
1617 ret = btrfs_get_bdev_and_sb(device_path,
1618 FMODE_WRITE | FMODE_EXCL,
1619 root->fs_info->bdev_holder, 0,
1620 &bdev, &bh);
1621 if (ret)
1622 goto out;
1623 disk_super = (struct btrfs_super_block *)bh->b_data;
1624 devid = btrfs_stack_device_id(&disk_super->dev_item);
1625 dev_uuid = disk_super->dev_item.uuid;
1626 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1627 disk_super->fsid);
1628 if (!device) {
1629 ret = -ENOENT;
1630 goto error_brelse;
1631 }
1632 }
1633
1634 if (device->is_tgtdev_for_dev_replace) {
1635 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1636 goto error_brelse;
1637 }
1638
1639 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1640 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1641 goto error_brelse;
1642 }
1643
1644 if (device->writeable) {
1645 lock_chunks(root);
1646 list_del_init(&device->dev_alloc_list);
1647 device->fs_devices->rw_devices--;
1648 unlock_chunks(root);
1649 clear_super = true;
1650 }
1651
1652 mutex_unlock(&uuid_mutex);
1653 ret = btrfs_shrink_device(device, 0);
1654 mutex_lock(&uuid_mutex);
1655 if (ret)
1656 goto error_undo;
1657
1658 /*
1659 * TODO: the superblock still includes this device in its num_devices
1660 * counter although write_all_supers() is not locked out. This
1661 * could give a filesystem state which requires a degraded mount.
1662 */
1663 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1664 if (ret)
1665 goto error_undo;
1666
1667 device->in_fs_metadata = 0;
1668 btrfs_scrub_cancel_dev(root->fs_info, device);
1669
1670 /*
1671 * the device list mutex makes sure that we don't change
1672 * the device list while someone else is writing out all
1673 * the device supers. Whoever is writing all supers, should
1674 * lock the device list mutex before getting the number of
1675 * devices in the super block (super_copy). Conversely,
1676 * whoever updates the number of devices in the super block
1677 * (super_copy) should hold the device list mutex.
1678 */
1679
1680 cur_devices = device->fs_devices;
1681 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1682 list_del_rcu(&device->dev_list);
1683
1684 device->fs_devices->num_devices--;
1685 device->fs_devices->total_devices--;
1686
1687 if (device->missing)
1688 device->fs_devices->missing_devices--;
1689
1690 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1691 struct btrfs_device, dev_list);
1692 if (device->bdev == root->fs_info->sb->s_bdev)
1693 root->fs_info->sb->s_bdev = next_device->bdev;
1694 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1695 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1696
1697 if (device->bdev) {
1698 device->fs_devices->open_devices--;
1699 /* remove sysfs entry */
1700 btrfs_kobj_rm_device(root->fs_info, device);
1701 }
1702
1703 call_rcu(&device->rcu, free_device);
1704
1705 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1706 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1707 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1708
1709 if (cur_devices->open_devices == 0) {
1710 struct btrfs_fs_devices *fs_devices;
1711 fs_devices = root->fs_info->fs_devices;
1712 while (fs_devices) {
1713 if (fs_devices->seed == cur_devices) {
1714 fs_devices->seed = cur_devices->seed;
1715 break;
1716 }
1717 fs_devices = fs_devices->seed;
1718 }
1719 cur_devices->seed = NULL;
1720 __btrfs_close_devices(cur_devices);
1721 free_fs_devices(cur_devices);
1722 }
1723
1724 root->fs_info->num_tolerated_disk_barrier_failures =
1725 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1726
1727 /*
1728 * at this point, the device is zero sized. We want to
1729 * remove it from the devices list and zero out the old super
1730 */
1731 if (clear_super && disk_super) {
1732 u64 bytenr;
1733 int i;
1734
1735 /* make sure this device isn't detected as part of
1736 * the FS anymore
1737 */
1738 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1739 set_buffer_dirty(bh);
1740 sync_dirty_buffer(bh);
1741
1742 /* clear the mirror copies of super block on the disk
1743 * being removed, 0th copy is been taken care above and
1744 * the below would take of the rest
1745 */
1746 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1747 bytenr = btrfs_sb_offset(i);
1748 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1749 i_size_read(bdev->bd_inode))
1750 break;
1751
1752 brelse(bh);
1753 bh = __bread(bdev, bytenr / 4096,
1754 BTRFS_SUPER_INFO_SIZE);
1755 if (!bh)
1756 continue;
1757
1758 disk_super = (struct btrfs_super_block *)bh->b_data;
1759
1760 if (btrfs_super_bytenr(disk_super) != bytenr ||
1761 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1762 continue;
1763 }
1764 memset(&disk_super->magic, 0,
1765 sizeof(disk_super->magic));
1766 set_buffer_dirty(bh);
1767 sync_dirty_buffer(bh);
1768 }
1769 }
1770
1771 ret = 0;
1772
1773 if (bdev) {
1774 /* Notify udev that device has changed */
1775 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1776
1777 /* Update ctime/mtime for device path for libblkid */
1778 update_dev_time(device_path);
1779 }
1780
1781 error_brelse:
1782 brelse(bh);
1783 if (bdev)
1784 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1785 out:
1786 mutex_unlock(&uuid_mutex);
1787 return ret;
1788 error_undo:
1789 if (device->writeable) {
1790 lock_chunks(root);
1791 list_add(&device->dev_alloc_list,
1792 &root->fs_info->fs_devices->alloc_list);
1793 device->fs_devices->rw_devices++;
1794 unlock_chunks(root);
1795 }
1796 goto error_brelse;
1797 }
1798
1799 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1800 struct btrfs_device *srcdev)
1801 {
1802 struct btrfs_fs_devices *fs_devices;
1803
1804 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1805
1806 /*
1807 * in case of fs with no seed, srcdev->fs_devices will point
1808 * to fs_devices of fs_info. However when the dev being replaced is
1809 * a seed dev it will point to the seed's local fs_devices. In short
1810 * srcdev will have its correct fs_devices in both the cases.
1811 */
1812 fs_devices = srcdev->fs_devices;
1813
1814 list_del_rcu(&srcdev->dev_list);
1815 list_del_rcu(&srcdev->dev_alloc_list);
1816 fs_devices->num_devices--;
1817 if (srcdev->missing)
1818 fs_devices->missing_devices--;
1819
1820 if (srcdev->writeable) {
1821 fs_devices->rw_devices--;
1822 /* zero out the old super if it is writable */
1823 btrfs_scratch_superblock(srcdev);
1824 }
1825
1826 if (srcdev->bdev)
1827 fs_devices->open_devices--;
1828 }
1829
1830 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1831 struct btrfs_device *srcdev)
1832 {
1833 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1834
1835 call_rcu(&srcdev->rcu, free_device);
1836
1837 /*
1838 * unless fs_devices is seed fs, num_devices shouldn't go
1839 * zero
1840 */
1841 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1842
1843 /* if this is no devs we rather delete the fs_devices */
1844 if (!fs_devices->num_devices) {
1845 struct btrfs_fs_devices *tmp_fs_devices;
1846
1847 tmp_fs_devices = fs_info->fs_devices;
1848 while (tmp_fs_devices) {
1849 if (tmp_fs_devices->seed == fs_devices) {
1850 tmp_fs_devices->seed = fs_devices->seed;
1851 break;
1852 }
1853 tmp_fs_devices = tmp_fs_devices->seed;
1854 }
1855 fs_devices->seed = NULL;
1856 __btrfs_close_devices(fs_devices);
1857 free_fs_devices(fs_devices);
1858 }
1859 }
1860
1861 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1862 struct btrfs_device *tgtdev)
1863 {
1864 struct btrfs_device *next_device;
1865
1866 mutex_lock(&uuid_mutex);
1867 WARN_ON(!tgtdev);
1868 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1869 if (tgtdev->bdev) {
1870 btrfs_scratch_superblock(tgtdev);
1871 fs_info->fs_devices->open_devices--;
1872 }
1873 fs_info->fs_devices->num_devices--;
1874
1875 next_device = list_entry(fs_info->fs_devices->devices.next,
1876 struct btrfs_device, dev_list);
1877 if (tgtdev->bdev == fs_info->sb->s_bdev)
1878 fs_info->sb->s_bdev = next_device->bdev;
1879 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1880 fs_info->fs_devices->latest_bdev = next_device->bdev;
1881 list_del_rcu(&tgtdev->dev_list);
1882
1883 call_rcu(&tgtdev->rcu, free_device);
1884
1885 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1886 mutex_unlock(&uuid_mutex);
1887 }
1888
1889 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1890 struct btrfs_device **device)
1891 {
1892 int ret = 0;
1893 struct btrfs_super_block *disk_super;
1894 u64 devid;
1895 u8 *dev_uuid;
1896 struct block_device *bdev;
1897 struct buffer_head *bh;
1898
1899 *device = NULL;
1900 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1901 root->fs_info->bdev_holder, 0, &bdev, &bh);
1902 if (ret)
1903 return ret;
1904 disk_super = (struct btrfs_super_block *)bh->b_data;
1905 devid = btrfs_stack_device_id(&disk_super->dev_item);
1906 dev_uuid = disk_super->dev_item.uuid;
1907 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1908 disk_super->fsid);
1909 brelse(bh);
1910 if (!*device)
1911 ret = -ENOENT;
1912 blkdev_put(bdev, FMODE_READ);
1913 return ret;
1914 }
1915
1916 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1917 char *device_path,
1918 struct btrfs_device **device)
1919 {
1920 *device = NULL;
1921 if (strcmp(device_path, "missing") == 0) {
1922 struct list_head *devices;
1923 struct btrfs_device *tmp;
1924
1925 devices = &root->fs_info->fs_devices->devices;
1926 /*
1927 * It is safe to read the devices since the volume_mutex
1928 * is held by the caller.
1929 */
1930 list_for_each_entry(tmp, devices, dev_list) {
1931 if (tmp->in_fs_metadata && !tmp->bdev) {
1932 *device = tmp;
1933 break;
1934 }
1935 }
1936
1937 if (!*device) {
1938 btrfs_err(root->fs_info, "no missing device found");
1939 return -ENOENT;
1940 }
1941
1942 return 0;
1943 } else {
1944 return btrfs_find_device_by_path(root, device_path, device);
1945 }
1946 }
1947
1948 /*
1949 * does all the dirty work required for changing file system's UUID.
1950 */
1951 static int btrfs_prepare_sprout(struct btrfs_root *root)
1952 {
1953 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1954 struct btrfs_fs_devices *old_devices;
1955 struct btrfs_fs_devices *seed_devices;
1956 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1957 struct btrfs_device *device;
1958 u64 super_flags;
1959
1960 BUG_ON(!mutex_is_locked(&uuid_mutex));
1961 if (!fs_devices->seeding)
1962 return -EINVAL;
1963
1964 seed_devices = __alloc_fs_devices();
1965 if (IS_ERR(seed_devices))
1966 return PTR_ERR(seed_devices);
1967
1968 old_devices = clone_fs_devices(fs_devices);
1969 if (IS_ERR(old_devices)) {
1970 kfree(seed_devices);
1971 return PTR_ERR(old_devices);
1972 }
1973
1974 list_add(&old_devices->list, &fs_uuids);
1975
1976 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1977 seed_devices->opened = 1;
1978 INIT_LIST_HEAD(&seed_devices->devices);
1979 INIT_LIST_HEAD(&seed_devices->alloc_list);
1980 mutex_init(&seed_devices->device_list_mutex);
1981
1982 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1983 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1984 synchronize_rcu);
1985 list_for_each_entry(device, &seed_devices->devices, dev_list)
1986 device->fs_devices = seed_devices;
1987
1988 lock_chunks(root);
1989 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1990 unlock_chunks(root);
1991
1992 fs_devices->seeding = 0;
1993 fs_devices->num_devices = 0;
1994 fs_devices->open_devices = 0;
1995 fs_devices->missing_devices = 0;
1996 fs_devices->rotating = 0;
1997 fs_devices->seed = seed_devices;
1998
1999 generate_random_uuid(fs_devices->fsid);
2000 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2001 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2002 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2003
2004 super_flags = btrfs_super_flags(disk_super) &
2005 ~BTRFS_SUPER_FLAG_SEEDING;
2006 btrfs_set_super_flags(disk_super, super_flags);
2007
2008 return 0;
2009 }
2010
2011 /*
2012 * strore the expected generation for seed devices in device items.
2013 */
2014 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2015 struct btrfs_root *root)
2016 {
2017 struct btrfs_path *path;
2018 struct extent_buffer *leaf;
2019 struct btrfs_dev_item *dev_item;
2020 struct btrfs_device *device;
2021 struct btrfs_key key;
2022 u8 fs_uuid[BTRFS_UUID_SIZE];
2023 u8 dev_uuid[BTRFS_UUID_SIZE];
2024 u64 devid;
2025 int ret;
2026
2027 path = btrfs_alloc_path();
2028 if (!path)
2029 return -ENOMEM;
2030
2031 root = root->fs_info->chunk_root;
2032 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2033 key.offset = 0;
2034 key.type = BTRFS_DEV_ITEM_KEY;
2035
2036 while (1) {
2037 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2038 if (ret < 0)
2039 goto error;
2040
2041 leaf = path->nodes[0];
2042 next_slot:
2043 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2044 ret = btrfs_next_leaf(root, path);
2045 if (ret > 0)
2046 break;
2047 if (ret < 0)
2048 goto error;
2049 leaf = path->nodes[0];
2050 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2051 btrfs_release_path(path);
2052 continue;
2053 }
2054
2055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2056 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2057 key.type != BTRFS_DEV_ITEM_KEY)
2058 break;
2059
2060 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2061 struct btrfs_dev_item);
2062 devid = btrfs_device_id(leaf, dev_item);
2063 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2064 BTRFS_UUID_SIZE);
2065 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2066 BTRFS_UUID_SIZE);
2067 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2068 fs_uuid);
2069 BUG_ON(!device); /* Logic error */
2070
2071 if (device->fs_devices->seeding) {
2072 btrfs_set_device_generation(leaf, dev_item,
2073 device->generation);
2074 btrfs_mark_buffer_dirty(leaf);
2075 }
2076
2077 path->slots[0]++;
2078 goto next_slot;
2079 }
2080 ret = 0;
2081 error:
2082 btrfs_free_path(path);
2083 return ret;
2084 }
2085
2086 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2087 {
2088 struct request_queue *q;
2089 struct btrfs_trans_handle *trans;
2090 struct btrfs_device *device;
2091 struct block_device *bdev;
2092 struct list_head *devices;
2093 struct super_block *sb = root->fs_info->sb;
2094 struct rcu_string *name;
2095 u64 tmp;
2096 int seeding_dev = 0;
2097 int ret = 0;
2098
2099 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2100 return -EROFS;
2101
2102 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2103 root->fs_info->bdev_holder);
2104 if (IS_ERR(bdev))
2105 return PTR_ERR(bdev);
2106
2107 if (root->fs_info->fs_devices->seeding) {
2108 seeding_dev = 1;
2109 down_write(&sb->s_umount);
2110 mutex_lock(&uuid_mutex);
2111 }
2112
2113 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2114
2115 devices = &root->fs_info->fs_devices->devices;
2116
2117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2118 list_for_each_entry(device, devices, dev_list) {
2119 if (device->bdev == bdev) {
2120 ret = -EEXIST;
2121 mutex_unlock(
2122 &root->fs_info->fs_devices->device_list_mutex);
2123 goto error;
2124 }
2125 }
2126 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2127
2128 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2129 if (IS_ERR(device)) {
2130 /* we can safely leave the fs_devices entry around */
2131 ret = PTR_ERR(device);
2132 goto error;
2133 }
2134
2135 name = rcu_string_strdup(device_path, GFP_NOFS);
2136 if (!name) {
2137 kfree(device);
2138 ret = -ENOMEM;
2139 goto error;
2140 }
2141 rcu_assign_pointer(device->name, name);
2142
2143 trans = btrfs_start_transaction(root, 0);
2144 if (IS_ERR(trans)) {
2145 rcu_string_free(device->name);
2146 kfree(device);
2147 ret = PTR_ERR(trans);
2148 goto error;
2149 }
2150
2151 q = bdev_get_queue(bdev);
2152 if (blk_queue_discard(q))
2153 device->can_discard = 1;
2154 device->writeable = 1;
2155 device->generation = trans->transid;
2156 device->io_width = root->sectorsize;
2157 device->io_align = root->sectorsize;
2158 device->sector_size = root->sectorsize;
2159 device->total_bytes = i_size_read(bdev->bd_inode);
2160 device->disk_total_bytes = device->total_bytes;
2161 device->commit_total_bytes = device->total_bytes;
2162 device->dev_root = root->fs_info->dev_root;
2163 device->bdev = bdev;
2164 device->in_fs_metadata = 1;
2165 device->is_tgtdev_for_dev_replace = 0;
2166 device->mode = FMODE_EXCL;
2167 device->dev_stats_valid = 1;
2168 set_blocksize(device->bdev, 4096);
2169
2170 if (seeding_dev) {
2171 sb->s_flags &= ~MS_RDONLY;
2172 ret = btrfs_prepare_sprout(root);
2173 BUG_ON(ret); /* -ENOMEM */
2174 }
2175
2176 device->fs_devices = root->fs_info->fs_devices;
2177
2178 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2179 lock_chunks(root);
2180 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2181 list_add(&device->dev_alloc_list,
2182 &root->fs_info->fs_devices->alloc_list);
2183 root->fs_info->fs_devices->num_devices++;
2184 root->fs_info->fs_devices->open_devices++;
2185 root->fs_info->fs_devices->rw_devices++;
2186 root->fs_info->fs_devices->total_devices++;
2187 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2188
2189 spin_lock(&root->fs_info->free_chunk_lock);
2190 root->fs_info->free_chunk_space += device->total_bytes;
2191 spin_unlock(&root->fs_info->free_chunk_lock);
2192
2193 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2194 root->fs_info->fs_devices->rotating = 1;
2195
2196 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2197 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2198 tmp + device->total_bytes);
2199
2200 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2201 btrfs_set_super_num_devices(root->fs_info->super_copy,
2202 tmp + 1);
2203
2204 /* add sysfs device entry */
2205 btrfs_kobj_add_device(root->fs_info, device);
2206
2207 /*
2208 * we've got more storage, clear any full flags on the space
2209 * infos
2210 */
2211 btrfs_clear_space_info_full(root->fs_info);
2212
2213 unlock_chunks(root);
2214 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2215
2216 if (seeding_dev) {
2217 lock_chunks(root);
2218 ret = init_first_rw_device(trans, root, device);
2219 unlock_chunks(root);
2220 if (ret) {
2221 btrfs_abort_transaction(trans, root, ret);
2222 goto error_trans;
2223 }
2224 }
2225
2226 ret = btrfs_add_device(trans, root, device);
2227 if (ret) {
2228 btrfs_abort_transaction(trans, root, ret);
2229 goto error_trans;
2230 }
2231
2232 if (seeding_dev) {
2233 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2234
2235 ret = btrfs_finish_sprout(trans, root);
2236 if (ret) {
2237 btrfs_abort_transaction(trans, root, ret);
2238 goto error_trans;
2239 }
2240
2241 /* Sprouting would change fsid of the mounted root,
2242 * so rename the fsid on the sysfs
2243 */
2244 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2245 root->fs_info->fsid);
2246 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2247 goto error_trans;
2248 }
2249
2250 root->fs_info->num_tolerated_disk_barrier_failures =
2251 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2252 ret = btrfs_commit_transaction(trans, root);
2253
2254 if (seeding_dev) {
2255 mutex_unlock(&uuid_mutex);
2256 up_write(&sb->s_umount);
2257
2258 if (ret) /* transaction commit */
2259 return ret;
2260
2261 ret = btrfs_relocate_sys_chunks(root);
2262 if (ret < 0)
2263 btrfs_error(root->fs_info, ret,
2264 "Failed to relocate sys chunks after "
2265 "device initialization. This can be fixed "
2266 "using the \"btrfs balance\" command.");
2267 trans = btrfs_attach_transaction(root);
2268 if (IS_ERR(trans)) {
2269 if (PTR_ERR(trans) == -ENOENT)
2270 return 0;
2271 return PTR_ERR(trans);
2272 }
2273 ret = btrfs_commit_transaction(trans, root);
2274 }
2275
2276 /* Update ctime/mtime for libblkid */
2277 update_dev_time(device_path);
2278 return ret;
2279
2280 error_trans:
2281 btrfs_end_transaction(trans, root);
2282 rcu_string_free(device->name);
2283 btrfs_kobj_rm_device(root->fs_info, device);
2284 kfree(device);
2285 error:
2286 blkdev_put(bdev, FMODE_EXCL);
2287 if (seeding_dev) {
2288 mutex_unlock(&uuid_mutex);
2289 up_write(&sb->s_umount);
2290 }
2291 return ret;
2292 }
2293
2294 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2295 struct btrfs_device *srcdev,
2296 struct btrfs_device **device_out)
2297 {
2298 struct request_queue *q;
2299 struct btrfs_device *device;
2300 struct block_device *bdev;
2301 struct btrfs_fs_info *fs_info = root->fs_info;
2302 struct list_head *devices;
2303 struct rcu_string *name;
2304 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2305 int ret = 0;
2306
2307 *device_out = NULL;
2308 if (fs_info->fs_devices->seeding) {
2309 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2310 return -EINVAL;
2311 }
2312
2313 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2314 fs_info->bdev_holder);
2315 if (IS_ERR(bdev)) {
2316 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2317 return PTR_ERR(bdev);
2318 }
2319
2320 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2321
2322 devices = &fs_info->fs_devices->devices;
2323 list_for_each_entry(device, devices, dev_list) {
2324 if (device->bdev == bdev) {
2325 btrfs_err(fs_info, "target device is in the filesystem!");
2326 ret = -EEXIST;
2327 goto error;
2328 }
2329 }
2330
2331
2332 if (i_size_read(bdev->bd_inode) <
2333 btrfs_device_get_total_bytes(srcdev)) {
2334 btrfs_err(fs_info, "target device is smaller than source device!");
2335 ret = -EINVAL;
2336 goto error;
2337 }
2338
2339
2340 device = btrfs_alloc_device(NULL, &devid, NULL);
2341 if (IS_ERR(device)) {
2342 ret = PTR_ERR(device);
2343 goto error;
2344 }
2345
2346 name = rcu_string_strdup(device_path, GFP_NOFS);
2347 if (!name) {
2348 kfree(device);
2349 ret = -ENOMEM;
2350 goto error;
2351 }
2352 rcu_assign_pointer(device->name, name);
2353
2354 q = bdev_get_queue(bdev);
2355 if (blk_queue_discard(q))
2356 device->can_discard = 1;
2357 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2358 device->writeable = 1;
2359 device->generation = 0;
2360 device->io_width = root->sectorsize;
2361 device->io_align = root->sectorsize;
2362 device->sector_size = root->sectorsize;
2363 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2364 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2365 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2366 ASSERT(list_empty(&srcdev->resized_list));
2367 device->commit_total_bytes = srcdev->commit_total_bytes;
2368 device->commit_bytes_used = device->bytes_used;
2369 device->dev_root = fs_info->dev_root;
2370 device->bdev = bdev;
2371 device->in_fs_metadata = 1;
2372 device->is_tgtdev_for_dev_replace = 1;
2373 device->mode = FMODE_EXCL;
2374 device->dev_stats_valid = 1;
2375 set_blocksize(device->bdev, 4096);
2376 device->fs_devices = fs_info->fs_devices;
2377 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2378 fs_info->fs_devices->num_devices++;
2379 fs_info->fs_devices->open_devices++;
2380 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2381
2382 *device_out = device;
2383 return ret;
2384
2385 error:
2386 blkdev_put(bdev, FMODE_EXCL);
2387 return ret;
2388 }
2389
2390 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2391 struct btrfs_device *tgtdev)
2392 {
2393 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2394 tgtdev->io_width = fs_info->dev_root->sectorsize;
2395 tgtdev->io_align = fs_info->dev_root->sectorsize;
2396 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2397 tgtdev->dev_root = fs_info->dev_root;
2398 tgtdev->in_fs_metadata = 1;
2399 }
2400
2401 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2402 struct btrfs_device *device)
2403 {
2404 int ret;
2405 struct btrfs_path *path;
2406 struct btrfs_root *root;
2407 struct btrfs_dev_item *dev_item;
2408 struct extent_buffer *leaf;
2409 struct btrfs_key key;
2410
2411 root = device->dev_root->fs_info->chunk_root;
2412
2413 path = btrfs_alloc_path();
2414 if (!path)
2415 return -ENOMEM;
2416
2417 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2418 key.type = BTRFS_DEV_ITEM_KEY;
2419 key.offset = device->devid;
2420
2421 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2422 if (ret < 0)
2423 goto out;
2424
2425 if (ret > 0) {
2426 ret = -ENOENT;
2427 goto out;
2428 }
2429
2430 leaf = path->nodes[0];
2431 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2432
2433 btrfs_set_device_id(leaf, dev_item, device->devid);
2434 btrfs_set_device_type(leaf, dev_item, device->type);
2435 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2436 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2437 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2438 btrfs_set_device_total_bytes(leaf, dev_item,
2439 btrfs_device_get_disk_total_bytes(device));
2440 btrfs_set_device_bytes_used(leaf, dev_item,
2441 btrfs_device_get_bytes_used(device));
2442 btrfs_mark_buffer_dirty(leaf);
2443
2444 out:
2445 btrfs_free_path(path);
2446 return ret;
2447 }
2448
2449 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2450 struct btrfs_device *device, u64 new_size)
2451 {
2452 struct btrfs_super_block *super_copy =
2453 device->dev_root->fs_info->super_copy;
2454 struct btrfs_fs_devices *fs_devices;
2455 u64 old_total;
2456 u64 diff;
2457
2458 if (!device->writeable)
2459 return -EACCES;
2460
2461 lock_chunks(device->dev_root);
2462 old_total = btrfs_super_total_bytes(super_copy);
2463 diff = new_size - device->total_bytes;
2464
2465 if (new_size <= device->total_bytes ||
2466 device->is_tgtdev_for_dev_replace) {
2467 unlock_chunks(device->dev_root);
2468 return -EINVAL;
2469 }
2470
2471 fs_devices = device->dev_root->fs_info->fs_devices;
2472
2473 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2474 device->fs_devices->total_rw_bytes += diff;
2475
2476 btrfs_device_set_total_bytes(device, new_size);
2477 btrfs_device_set_disk_total_bytes(device, new_size);
2478 btrfs_clear_space_info_full(device->dev_root->fs_info);
2479 if (list_empty(&device->resized_list))
2480 list_add_tail(&device->resized_list,
2481 &fs_devices->resized_devices);
2482 unlock_chunks(device->dev_root);
2483
2484 return btrfs_update_device(trans, device);
2485 }
2486
2487 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2488 struct btrfs_root *root, u64 chunk_objectid,
2489 u64 chunk_offset)
2490 {
2491 int ret;
2492 struct btrfs_path *path;
2493 struct btrfs_key key;
2494
2495 root = root->fs_info->chunk_root;
2496 path = btrfs_alloc_path();
2497 if (!path)
2498 return -ENOMEM;
2499
2500 key.objectid = chunk_objectid;
2501 key.offset = chunk_offset;
2502 key.type = BTRFS_CHUNK_ITEM_KEY;
2503
2504 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2505 if (ret < 0)
2506 goto out;
2507 else if (ret > 0) { /* Logic error or corruption */
2508 btrfs_error(root->fs_info, -ENOENT,
2509 "Failed lookup while freeing chunk.");
2510 ret = -ENOENT;
2511 goto out;
2512 }
2513
2514 ret = btrfs_del_item(trans, root, path);
2515 if (ret < 0)
2516 btrfs_error(root->fs_info, ret,
2517 "Failed to delete chunk item.");
2518 out:
2519 btrfs_free_path(path);
2520 return ret;
2521 }
2522
2523 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2524 chunk_offset)
2525 {
2526 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2527 struct btrfs_disk_key *disk_key;
2528 struct btrfs_chunk *chunk;
2529 u8 *ptr;
2530 int ret = 0;
2531 u32 num_stripes;
2532 u32 array_size;
2533 u32 len = 0;
2534 u32 cur;
2535 struct btrfs_key key;
2536
2537 lock_chunks(root);
2538 array_size = btrfs_super_sys_array_size(super_copy);
2539
2540 ptr = super_copy->sys_chunk_array;
2541 cur = 0;
2542
2543 while (cur < array_size) {
2544 disk_key = (struct btrfs_disk_key *)ptr;
2545 btrfs_disk_key_to_cpu(&key, disk_key);
2546
2547 len = sizeof(*disk_key);
2548
2549 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2550 chunk = (struct btrfs_chunk *)(ptr + len);
2551 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2552 len += btrfs_chunk_item_size(num_stripes);
2553 } else {
2554 ret = -EIO;
2555 break;
2556 }
2557 if (key.objectid == chunk_objectid &&
2558 key.offset == chunk_offset) {
2559 memmove(ptr, ptr + len, array_size - (cur + len));
2560 array_size -= len;
2561 btrfs_set_super_sys_array_size(super_copy, array_size);
2562 } else {
2563 ptr += len;
2564 cur += len;
2565 }
2566 }
2567 unlock_chunks(root);
2568 return ret;
2569 }
2570
2571 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2572 struct btrfs_root *root, u64 chunk_offset)
2573 {
2574 struct extent_map_tree *em_tree;
2575 struct extent_map *em;
2576 struct btrfs_root *extent_root = root->fs_info->extent_root;
2577 struct map_lookup *map;
2578 u64 dev_extent_len = 0;
2579 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2580 int i, ret = 0;
2581
2582 /* Just in case */
2583 root = root->fs_info->chunk_root;
2584 em_tree = &root->fs_info->mapping_tree.map_tree;
2585
2586 read_lock(&em_tree->lock);
2587 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2588 read_unlock(&em_tree->lock);
2589
2590 if (!em || em->start > chunk_offset ||
2591 em->start + em->len < chunk_offset) {
2592 /*
2593 * This is a logic error, but we don't want to just rely on the
2594 * user having built with ASSERT enabled, so if ASSERT doens't
2595 * do anything we still error out.
2596 */
2597 ASSERT(0);
2598 if (em)
2599 free_extent_map(em);
2600 return -EINVAL;
2601 }
2602 map = (struct map_lookup *)em->bdev;
2603
2604 for (i = 0; i < map->num_stripes; i++) {
2605 struct btrfs_device *device = map->stripes[i].dev;
2606 ret = btrfs_free_dev_extent(trans, device,
2607 map->stripes[i].physical,
2608 &dev_extent_len);
2609 if (ret) {
2610 btrfs_abort_transaction(trans, root, ret);
2611 goto out;
2612 }
2613
2614 if (device->bytes_used > 0) {
2615 lock_chunks(root);
2616 btrfs_device_set_bytes_used(device,
2617 device->bytes_used - dev_extent_len);
2618 spin_lock(&root->fs_info->free_chunk_lock);
2619 root->fs_info->free_chunk_space += dev_extent_len;
2620 spin_unlock(&root->fs_info->free_chunk_lock);
2621 btrfs_clear_space_info_full(root->fs_info);
2622 unlock_chunks(root);
2623 }
2624
2625 if (map->stripes[i].dev) {
2626 ret = btrfs_update_device(trans, map->stripes[i].dev);
2627 if (ret) {
2628 btrfs_abort_transaction(trans, root, ret);
2629 goto out;
2630 }
2631 }
2632 }
2633 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2634 if (ret) {
2635 btrfs_abort_transaction(trans, root, ret);
2636 goto out;
2637 }
2638
2639 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2640
2641 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2642 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2643 if (ret) {
2644 btrfs_abort_transaction(trans, root, ret);
2645 goto out;
2646 }
2647 }
2648
2649 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2650 if (ret) {
2651 btrfs_abort_transaction(trans, extent_root, ret);
2652 goto out;
2653 }
2654
2655 out:
2656 /* once for us */
2657 free_extent_map(em);
2658 return ret;
2659 }
2660
2661 static int btrfs_relocate_chunk(struct btrfs_root *root,
2662 u64 chunk_objectid,
2663 u64 chunk_offset)
2664 {
2665 struct btrfs_root *extent_root;
2666 struct btrfs_trans_handle *trans;
2667 int ret;
2668
2669 root = root->fs_info->chunk_root;
2670 extent_root = root->fs_info->extent_root;
2671
2672 ret = btrfs_can_relocate(extent_root, chunk_offset);
2673 if (ret)
2674 return -ENOSPC;
2675
2676 /* step one, relocate all the extents inside this chunk */
2677 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2678 if (ret)
2679 return ret;
2680
2681 trans = btrfs_start_transaction(root, 0);
2682 if (IS_ERR(trans)) {
2683 ret = PTR_ERR(trans);
2684 btrfs_std_error(root->fs_info, ret);
2685 return ret;
2686 }
2687
2688 /*
2689 * step two, delete the device extents and the
2690 * chunk tree entries
2691 */
2692 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2693 btrfs_end_transaction(trans, root);
2694 return ret;
2695 }
2696
2697 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2698 {
2699 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2700 struct btrfs_path *path;
2701 struct extent_buffer *leaf;
2702 struct btrfs_chunk *chunk;
2703 struct btrfs_key key;
2704 struct btrfs_key found_key;
2705 u64 chunk_type;
2706 bool retried = false;
2707 int failed = 0;
2708 int ret;
2709
2710 path = btrfs_alloc_path();
2711 if (!path)
2712 return -ENOMEM;
2713
2714 again:
2715 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2716 key.offset = (u64)-1;
2717 key.type = BTRFS_CHUNK_ITEM_KEY;
2718
2719 while (1) {
2720 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2721 if (ret < 0)
2722 goto error;
2723 BUG_ON(ret == 0); /* Corruption */
2724
2725 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2726 key.type);
2727 if (ret < 0)
2728 goto error;
2729 if (ret > 0)
2730 break;
2731
2732 leaf = path->nodes[0];
2733 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2734
2735 chunk = btrfs_item_ptr(leaf, path->slots[0],
2736 struct btrfs_chunk);
2737 chunk_type = btrfs_chunk_type(leaf, chunk);
2738 btrfs_release_path(path);
2739
2740 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2741 ret = btrfs_relocate_chunk(chunk_root,
2742 found_key.objectid,
2743 found_key.offset);
2744 if (ret == -ENOSPC)
2745 failed++;
2746 else
2747 BUG_ON(ret);
2748 }
2749
2750 if (found_key.offset == 0)
2751 break;
2752 key.offset = found_key.offset - 1;
2753 }
2754 ret = 0;
2755 if (failed && !retried) {
2756 failed = 0;
2757 retried = true;
2758 goto again;
2759 } else if (WARN_ON(failed && retried)) {
2760 ret = -ENOSPC;
2761 }
2762 error:
2763 btrfs_free_path(path);
2764 return ret;
2765 }
2766
2767 static int insert_balance_item(struct btrfs_root *root,
2768 struct btrfs_balance_control *bctl)
2769 {
2770 struct btrfs_trans_handle *trans;
2771 struct btrfs_balance_item *item;
2772 struct btrfs_disk_balance_args disk_bargs;
2773 struct btrfs_path *path;
2774 struct extent_buffer *leaf;
2775 struct btrfs_key key;
2776 int ret, err;
2777
2778 path = btrfs_alloc_path();
2779 if (!path)
2780 return -ENOMEM;
2781
2782 trans = btrfs_start_transaction(root, 0);
2783 if (IS_ERR(trans)) {
2784 btrfs_free_path(path);
2785 return PTR_ERR(trans);
2786 }
2787
2788 key.objectid = BTRFS_BALANCE_OBJECTID;
2789 key.type = BTRFS_BALANCE_ITEM_KEY;
2790 key.offset = 0;
2791
2792 ret = btrfs_insert_empty_item(trans, root, path, &key,
2793 sizeof(*item));
2794 if (ret)
2795 goto out;
2796
2797 leaf = path->nodes[0];
2798 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2799
2800 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2801
2802 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2803 btrfs_set_balance_data(leaf, item, &disk_bargs);
2804 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2805 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2806 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2807 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2808
2809 btrfs_set_balance_flags(leaf, item, bctl->flags);
2810
2811 btrfs_mark_buffer_dirty(leaf);
2812 out:
2813 btrfs_free_path(path);
2814 err = btrfs_commit_transaction(trans, root);
2815 if (err && !ret)
2816 ret = err;
2817 return ret;
2818 }
2819
2820 static int del_balance_item(struct btrfs_root *root)
2821 {
2822 struct btrfs_trans_handle *trans;
2823 struct btrfs_path *path;
2824 struct btrfs_key key;
2825 int ret, err;
2826
2827 path = btrfs_alloc_path();
2828 if (!path)
2829 return -ENOMEM;
2830
2831 trans = btrfs_start_transaction(root, 0);
2832 if (IS_ERR(trans)) {
2833 btrfs_free_path(path);
2834 return PTR_ERR(trans);
2835 }
2836
2837 key.objectid = BTRFS_BALANCE_OBJECTID;
2838 key.type = BTRFS_BALANCE_ITEM_KEY;
2839 key.offset = 0;
2840
2841 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2842 if (ret < 0)
2843 goto out;
2844 if (ret > 0) {
2845 ret = -ENOENT;
2846 goto out;
2847 }
2848
2849 ret = btrfs_del_item(trans, root, path);
2850 out:
2851 btrfs_free_path(path);
2852 err = btrfs_commit_transaction(trans, root);
2853 if (err && !ret)
2854 ret = err;
2855 return ret;
2856 }
2857
2858 /*
2859 * This is a heuristic used to reduce the number of chunks balanced on
2860 * resume after balance was interrupted.
2861 */
2862 static void update_balance_args(struct btrfs_balance_control *bctl)
2863 {
2864 /*
2865 * Turn on soft mode for chunk types that were being converted.
2866 */
2867 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2868 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2869 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2870 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2871 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2872 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2873
2874 /*
2875 * Turn on usage filter if is not already used. The idea is
2876 * that chunks that we have already balanced should be
2877 * reasonably full. Don't do it for chunks that are being
2878 * converted - that will keep us from relocating unconverted
2879 * (albeit full) chunks.
2880 */
2881 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2882 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2883 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2884 bctl->data.usage = 90;
2885 }
2886 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2887 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2888 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2889 bctl->sys.usage = 90;
2890 }
2891 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2892 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2893 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2894 bctl->meta.usage = 90;
2895 }
2896 }
2897
2898 /*
2899 * Should be called with both balance and volume mutexes held to
2900 * serialize other volume operations (add_dev/rm_dev/resize) with
2901 * restriper. Same goes for unset_balance_control.
2902 */
2903 static void set_balance_control(struct btrfs_balance_control *bctl)
2904 {
2905 struct btrfs_fs_info *fs_info = bctl->fs_info;
2906
2907 BUG_ON(fs_info->balance_ctl);
2908
2909 spin_lock(&fs_info->balance_lock);
2910 fs_info->balance_ctl = bctl;
2911 spin_unlock(&fs_info->balance_lock);
2912 }
2913
2914 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2915 {
2916 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2917
2918 BUG_ON(!fs_info->balance_ctl);
2919
2920 spin_lock(&fs_info->balance_lock);
2921 fs_info->balance_ctl = NULL;
2922 spin_unlock(&fs_info->balance_lock);
2923
2924 kfree(bctl);
2925 }
2926
2927 /*
2928 * Balance filters. Return 1 if chunk should be filtered out
2929 * (should not be balanced).
2930 */
2931 static int chunk_profiles_filter(u64 chunk_type,
2932 struct btrfs_balance_args *bargs)
2933 {
2934 chunk_type = chunk_to_extended(chunk_type) &
2935 BTRFS_EXTENDED_PROFILE_MASK;
2936
2937 if (bargs->profiles & chunk_type)
2938 return 0;
2939
2940 return 1;
2941 }
2942
2943 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2944 struct btrfs_balance_args *bargs)
2945 {
2946 struct btrfs_block_group_cache *cache;
2947 u64 chunk_used, user_thresh;
2948 int ret = 1;
2949
2950 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2951 chunk_used = btrfs_block_group_used(&cache->item);
2952
2953 if (bargs->usage == 0)
2954 user_thresh = 1;
2955 else if (bargs->usage > 100)
2956 user_thresh = cache->key.offset;
2957 else
2958 user_thresh = div_factor_fine(cache->key.offset,
2959 bargs->usage);
2960
2961 if (chunk_used < user_thresh)
2962 ret = 0;
2963
2964 btrfs_put_block_group(cache);
2965 return ret;
2966 }
2967
2968 static int chunk_devid_filter(struct extent_buffer *leaf,
2969 struct btrfs_chunk *chunk,
2970 struct btrfs_balance_args *bargs)
2971 {
2972 struct btrfs_stripe *stripe;
2973 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2974 int i;
2975
2976 for (i = 0; i < num_stripes; i++) {
2977 stripe = btrfs_stripe_nr(chunk, i);
2978 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2979 return 0;
2980 }
2981
2982 return 1;
2983 }
2984
2985 /* [pstart, pend) */
2986 static int chunk_drange_filter(struct extent_buffer *leaf,
2987 struct btrfs_chunk *chunk,
2988 u64 chunk_offset,
2989 struct btrfs_balance_args *bargs)
2990 {
2991 struct btrfs_stripe *stripe;
2992 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2993 u64 stripe_offset;
2994 u64 stripe_length;
2995 int factor;
2996 int i;
2997
2998 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2999 return 0;
3000
3001 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3002 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3003 factor = num_stripes / 2;
3004 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3005 factor = num_stripes - 1;
3006 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3007 factor = num_stripes - 2;
3008 } else {
3009 factor = num_stripes;
3010 }
3011
3012 for (i = 0; i < num_stripes; i++) {
3013 stripe = btrfs_stripe_nr(chunk, i);
3014 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3015 continue;
3016
3017 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3018 stripe_length = btrfs_chunk_length(leaf, chunk);
3019 stripe_length = div_u64(stripe_length, factor);
3020
3021 if (stripe_offset < bargs->pend &&
3022 stripe_offset + stripe_length > bargs->pstart)
3023 return 0;
3024 }
3025
3026 return 1;
3027 }
3028
3029 /* [vstart, vend) */
3030 static int chunk_vrange_filter(struct extent_buffer *leaf,
3031 struct btrfs_chunk *chunk,
3032 u64 chunk_offset,
3033 struct btrfs_balance_args *bargs)
3034 {
3035 if (chunk_offset < bargs->vend &&
3036 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3037 /* at least part of the chunk is inside this vrange */
3038 return 0;
3039
3040 return 1;
3041 }
3042
3043 static int chunk_soft_convert_filter(u64 chunk_type,
3044 struct btrfs_balance_args *bargs)
3045 {
3046 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3047 return 0;
3048
3049 chunk_type = chunk_to_extended(chunk_type) &
3050 BTRFS_EXTENDED_PROFILE_MASK;
3051
3052 if (bargs->target == chunk_type)
3053 return 1;
3054
3055 return 0;
3056 }
3057
3058 static int should_balance_chunk(struct btrfs_root *root,
3059 struct extent_buffer *leaf,
3060 struct btrfs_chunk *chunk, u64 chunk_offset)
3061 {
3062 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3063 struct btrfs_balance_args *bargs = NULL;
3064 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3065
3066 /* type filter */
3067 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3068 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3069 return 0;
3070 }
3071
3072 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3073 bargs = &bctl->data;
3074 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3075 bargs = &bctl->sys;
3076 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3077 bargs = &bctl->meta;
3078
3079 /* profiles filter */
3080 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3081 chunk_profiles_filter(chunk_type, bargs)) {
3082 return 0;
3083 }
3084
3085 /* usage filter */
3086 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3087 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3088 return 0;
3089 }
3090
3091 /* devid filter */
3092 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3093 chunk_devid_filter(leaf, chunk, bargs)) {
3094 return 0;
3095 }
3096
3097 /* drange filter, makes sense only with devid filter */
3098 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3099 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3100 return 0;
3101 }
3102
3103 /* vrange filter */
3104 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3105 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3106 return 0;
3107 }
3108
3109 /* soft profile changing mode */
3110 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3111 chunk_soft_convert_filter(chunk_type, bargs)) {
3112 return 0;
3113 }
3114
3115 /*
3116 * limited by count, must be the last filter
3117 */
3118 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3119 if (bargs->limit == 0)
3120 return 0;
3121 else
3122 bargs->limit--;
3123 }
3124
3125 return 1;
3126 }
3127
3128 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3129 {
3130 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3131 struct btrfs_root *chunk_root = fs_info->chunk_root;
3132 struct btrfs_root *dev_root = fs_info->dev_root;
3133 struct list_head *devices;
3134 struct btrfs_device *device;
3135 u64 old_size;
3136 u64 size_to_free;
3137 struct btrfs_chunk *chunk;
3138 struct btrfs_path *path;
3139 struct btrfs_key key;
3140 struct btrfs_key found_key;
3141 struct btrfs_trans_handle *trans;
3142 struct extent_buffer *leaf;
3143 int slot;
3144 int ret;
3145 int enospc_errors = 0;
3146 bool counting = true;
3147 u64 limit_data = bctl->data.limit;
3148 u64 limit_meta = bctl->meta.limit;
3149 u64 limit_sys = bctl->sys.limit;
3150
3151 /* step one make some room on all the devices */
3152 devices = &fs_info->fs_devices->devices;
3153 list_for_each_entry(device, devices, dev_list) {
3154 old_size = btrfs_device_get_total_bytes(device);
3155 size_to_free = div_factor(old_size, 1);
3156 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3157 if (!device->writeable ||
3158 btrfs_device_get_total_bytes(device) -
3159 btrfs_device_get_bytes_used(device) > size_to_free ||
3160 device->is_tgtdev_for_dev_replace)
3161 continue;
3162
3163 ret = btrfs_shrink_device(device, old_size - size_to_free);
3164 if (ret == -ENOSPC)
3165 break;
3166 BUG_ON(ret);
3167
3168 trans = btrfs_start_transaction(dev_root, 0);
3169 BUG_ON(IS_ERR(trans));
3170
3171 ret = btrfs_grow_device(trans, device, old_size);
3172 BUG_ON(ret);
3173
3174 btrfs_end_transaction(trans, dev_root);
3175 }
3176
3177 /* step two, relocate all the chunks */
3178 path = btrfs_alloc_path();
3179 if (!path) {
3180 ret = -ENOMEM;
3181 goto error;
3182 }
3183
3184 /* zero out stat counters */
3185 spin_lock(&fs_info->balance_lock);
3186 memset(&bctl->stat, 0, sizeof(bctl->stat));
3187 spin_unlock(&fs_info->balance_lock);
3188 again:
3189 if (!counting) {
3190 bctl->data.limit = limit_data;
3191 bctl->meta.limit = limit_meta;
3192 bctl->sys.limit = limit_sys;
3193 }
3194 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3195 key.offset = (u64)-1;
3196 key.type = BTRFS_CHUNK_ITEM_KEY;
3197
3198 while (1) {
3199 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3200 atomic_read(&fs_info->balance_cancel_req)) {
3201 ret = -ECANCELED;
3202 goto error;
3203 }
3204
3205 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3206 if (ret < 0)
3207 goto error;
3208
3209 /*
3210 * this shouldn't happen, it means the last relocate
3211 * failed
3212 */
3213 if (ret == 0)
3214 BUG(); /* FIXME break ? */
3215
3216 ret = btrfs_previous_item(chunk_root, path, 0,
3217 BTRFS_CHUNK_ITEM_KEY);
3218 if (ret) {
3219 ret = 0;
3220 break;
3221 }
3222
3223 leaf = path->nodes[0];
3224 slot = path->slots[0];
3225 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3226
3227 if (found_key.objectid != key.objectid)
3228 break;
3229
3230 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3231
3232 if (!counting) {
3233 spin_lock(&fs_info->balance_lock);
3234 bctl->stat.considered++;
3235 spin_unlock(&fs_info->balance_lock);
3236 }
3237
3238 ret = should_balance_chunk(chunk_root, leaf, chunk,
3239 found_key.offset);
3240 btrfs_release_path(path);
3241 if (!ret)
3242 goto loop;
3243
3244 if (counting) {
3245 spin_lock(&fs_info->balance_lock);
3246 bctl->stat.expected++;
3247 spin_unlock(&fs_info->balance_lock);
3248 goto loop;
3249 }
3250
3251 ret = btrfs_relocate_chunk(chunk_root,
3252 found_key.objectid,
3253 found_key.offset);
3254 if (ret && ret != -ENOSPC)
3255 goto error;
3256 if (ret == -ENOSPC) {
3257 enospc_errors++;
3258 } else {
3259 spin_lock(&fs_info->balance_lock);
3260 bctl->stat.completed++;
3261 spin_unlock(&fs_info->balance_lock);
3262 }
3263 loop:
3264 if (found_key.offset == 0)
3265 break;
3266 key.offset = found_key.offset - 1;
3267 }
3268
3269 if (counting) {
3270 btrfs_release_path(path);
3271 counting = false;
3272 goto again;
3273 }
3274 error:
3275 btrfs_free_path(path);
3276 if (enospc_errors) {
3277 btrfs_info(fs_info, "%d enospc errors during balance",
3278 enospc_errors);
3279 if (!ret)
3280 ret = -ENOSPC;
3281 }
3282
3283 return ret;
3284 }
3285
3286 /**
3287 * alloc_profile_is_valid - see if a given profile is valid and reduced
3288 * @flags: profile to validate
3289 * @extended: if true @flags is treated as an extended profile
3290 */
3291 static int alloc_profile_is_valid(u64 flags, int extended)
3292 {
3293 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3294 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3295
3296 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3297
3298 /* 1) check that all other bits are zeroed */
3299 if (flags & ~mask)
3300 return 0;
3301
3302 /* 2) see if profile is reduced */
3303 if (flags == 0)
3304 return !extended; /* "0" is valid for usual profiles */
3305
3306 /* true if exactly one bit set */
3307 return (flags & (flags - 1)) == 0;
3308 }
3309
3310 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3311 {
3312 /* cancel requested || normal exit path */
3313 return atomic_read(&fs_info->balance_cancel_req) ||
3314 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3315 atomic_read(&fs_info->balance_cancel_req) == 0);
3316 }
3317
3318 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3319 {
3320 int ret;
3321
3322 unset_balance_control(fs_info);
3323 ret = del_balance_item(fs_info->tree_root);
3324 if (ret)
3325 btrfs_std_error(fs_info, ret);
3326
3327 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3328 }
3329
3330 /*
3331 * Should be called with both balance and volume mutexes held
3332 */
3333 int btrfs_balance(struct btrfs_balance_control *bctl,
3334 struct btrfs_ioctl_balance_args *bargs)
3335 {
3336 struct btrfs_fs_info *fs_info = bctl->fs_info;
3337 u64 allowed;
3338 int mixed = 0;
3339 int ret;
3340 u64 num_devices;
3341 unsigned seq;
3342
3343 if (btrfs_fs_closing(fs_info) ||
3344 atomic_read(&fs_info->balance_pause_req) ||
3345 atomic_read(&fs_info->balance_cancel_req)) {
3346 ret = -EINVAL;
3347 goto out;
3348 }
3349
3350 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3351 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3352 mixed = 1;
3353
3354 /*
3355 * In case of mixed groups both data and meta should be picked,
3356 * and identical options should be given for both of them.
3357 */
3358 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3359 if (mixed && (bctl->flags & allowed)) {
3360 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3361 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3362 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3363 btrfs_err(fs_info, "with mixed groups data and "
3364 "metadata balance options must be the same");
3365 ret = -EINVAL;
3366 goto out;
3367 }
3368 }
3369
3370 num_devices = fs_info->fs_devices->num_devices;
3371 btrfs_dev_replace_lock(&fs_info->dev_replace);
3372 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3373 BUG_ON(num_devices < 1);
3374 num_devices--;
3375 }
3376 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3377 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3378 if (num_devices == 1)
3379 allowed |= BTRFS_BLOCK_GROUP_DUP;
3380 else if (num_devices > 1)
3381 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3382 if (num_devices > 2)
3383 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3384 if (num_devices > 3)
3385 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3386 BTRFS_BLOCK_GROUP_RAID6);
3387 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3388 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3389 (bctl->data.target & ~allowed))) {
3390 btrfs_err(fs_info, "unable to start balance with target "
3391 "data profile %llu",
3392 bctl->data.target);
3393 ret = -EINVAL;
3394 goto out;
3395 }
3396 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3397 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3398 (bctl->meta.target & ~allowed))) {
3399 btrfs_err(fs_info,
3400 "unable to start balance with target metadata profile %llu",
3401 bctl->meta.target);
3402 ret = -EINVAL;
3403 goto out;
3404 }
3405 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3406 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3407 (bctl->sys.target & ~allowed))) {
3408 btrfs_err(fs_info,
3409 "unable to start balance with target system profile %llu",
3410 bctl->sys.target);
3411 ret = -EINVAL;
3412 goto out;
3413 }
3414
3415 /* allow dup'ed data chunks only in mixed mode */
3416 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3417 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3418 btrfs_err(fs_info, "dup for data is not allowed");
3419 ret = -EINVAL;
3420 goto out;
3421 }
3422
3423 /* allow to reduce meta or sys integrity only if force set */
3424 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3425 BTRFS_BLOCK_GROUP_RAID10 |
3426 BTRFS_BLOCK_GROUP_RAID5 |
3427 BTRFS_BLOCK_GROUP_RAID6;
3428 do {
3429 seq = read_seqbegin(&fs_info->profiles_lock);
3430
3431 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3432 (fs_info->avail_system_alloc_bits & allowed) &&
3433 !(bctl->sys.target & allowed)) ||
3434 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3435 (fs_info->avail_metadata_alloc_bits & allowed) &&
3436 !(bctl->meta.target & allowed))) {
3437 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3438 btrfs_info(fs_info, "force reducing metadata integrity");
3439 } else {
3440 btrfs_err(fs_info, "balance will reduce metadata "
3441 "integrity, use force if you want this");
3442 ret = -EINVAL;
3443 goto out;
3444 }
3445 }
3446 } while (read_seqretry(&fs_info->profiles_lock, seq));
3447
3448 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3449 int num_tolerated_disk_barrier_failures;
3450 u64 target = bctl->sys.target;
3451
3452 num_tolerated_disk_barrier_failures =
3453 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3454 if (num_tolerated_disk_barrier_failures > 0 &&
3455 (target &
3456 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3457 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3458 num_tolerated_disk_barrier_failures = 0;
3459 else if (num_tolerated_disk_barrier_failures > 1 &&
3460 (target &
3461 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3462 num_tolerated_disk_barrier_failures = 1;
3463
3464 fs_info->num_tolerated_disk_barrier_failures =
3465 num_tolerated_disk_barrier_failures;
3466 }
3467
3468 ret = insert_balance_item(fs_info->tree_root, bctl);
3469 if (ret && ret != -EEXIST)
3470 goto out;
3471
3472 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3473 BUG_ON(ret == -EEXIST);
3474 set_balance_control(bctl);
3475 } else {
3476 BUG_ON(ret != -EEXIST);
3477 spin_lock(&fs_info->balance_lock);
3478 update_balance_args(bctl);
3479 spin_unlock(&fs_info->balance_lock);
3480 }
3481
3482 atomic_inc(&fs_info->balance_running);
3483 mutex_unlock(&fs_info->balance_mutex);
3484
3485 ret = __btrfs_balance(fs_info);
3486
3487 mutex_lock(&fs_info->balance_mutex);
3488 atomic_dec(&fs_info->balance_running);
3489
3490 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491 fs_info->num_tolerated_disk_barrier_failures =
3492 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3493 }
3494
3495 if (bargs) {
3496 memset(bargs, 0, sizeof(*bargs));
3497 update_ioctl_balance_args(fs_info, 0, bargs);
3498 }
3499
3500 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3501 balance_need_close(fs_info)) {
3502 __cancel_balance(fs_info);
3503 }
3504
3505 wake_up(&fs_info->balance_wait_q);
3506
3507 return ret;
3508 out:
3509 if (bctl->flags & BTRFS_BALANCE_RESUME)
3510 __cancel_balance(fs_info);
3511 else {
3512 kfree(bctl);
3513 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3514 }
3515 return ret;
3516 }
3517
3518 static int balance_kthread(void *data)
3519 {
3520 struct btrfs_fs_info *fs_info = data;
3521 int ret = 0;
3522
3523 mutex_lock(&fs_info->volume_mutex);
3524 mutex_lock(&fs_info->balance_mutex);
3525
3526 if (fs_info->balance_ctl) {
3527 btrfs_info(fs_info, "continuing balance");
3528 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3529 }
3530
3531 mutex_unlock(&fs_info->balance_mutex);
3532 mutex_unlock(&fs_info->volume_mutex);
3533
3534 return ret;
3535 }
3536
3537 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3538 {
3539 struct task_struct *tsk;
3540
3541 spin_lock(&fs_info->balance_lock);
3542 if (!fs_info->balance_ctl) {
3543 spin_unlock(&fs_info->balance_lock);
3544 return 0;
3545 }
3546 spin_unlock(&fs_info->balance_lock);
3547
3548 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3549 btrfs_info(fs_info, "force skipping balance");
3550 return 0;
3551 }
3552
3553 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3554 return PTR_ERR_OR_ZERO(tsk);
3555 }
3556
3557 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3558 {
3559 struct btrfs_balance_control *bctl;
3560 struct btrfs_balance_item *item;
3561 struct btrfs_disk_balance_args disk_bargs;
3562 struct btrfs_path *path;
3563 struct extent_buffer *leaf;
3564 struct btrfs_key key;
3565 int ret;
3566
3567 path = btrfs_alloc_path();
3568 if (!path)
3569 return -ENOMEM;
3570
3571 key.objectid = BTRFS_BALANCE_OBJECTID;
3572 key.type = BTRFS_BALANCE_ITEM_KEY;
3573 key.offset = 0;
3574
3575 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3576 if (ret < 0)
3577 goto out;
3578 if (ret > 0) { /* ret = -ENOENT; */
3579 ret = 0;
3580 goto out;
3581 }
3582
3583 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3584 if (!bctl) {
3585 ret = -ENOMEM;
3586 goto out;
3587 }
3588
3589 leaf = path->nodes[0];
3590 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3591
3592 bctl->fs_info = fs_info;
3593 bctl->flags = btrfs_balance_flags(leaf, item);
3594 bctl->flags |= BTRFS_BALANCE_RESUME;
3595
3596 btrfs_balance_data(leaf, item, &disk_bargs);
3597 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3598 btrfs_balance_meta(leaf, item, &disk_bargs);
3599 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3600 btrfs_balance_sys(leaf, item, &disk_bargs);
3601 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3602
3603 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3604
3605 mutex_lock(&fs_info->volume_mutex);
3606 mutex_lock(&fs_info->balance_mutex);
3607
3608 set_balance_control(bctl);
3609
3610 mutex_unlock(&fs_info->balance_mutex);
3611 mutex_unlock(&fs_info->volume_mutex);
3612 out:
3613 btrfs_free_path(path);
3614 return ret;
3615 }
3616
3617 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3618 {
3619 int ret = 0;
3620
3621 mutex_lock(&fs_info->balance_mutex);
3622 if (!fs_info->balance_ctl) {
3623 mutex_unlock(&fs_info->balance_mutex);
3624 return -ENOTCONN;
3625 }
3626
3627 if (atomic_read(&fs_info->balance_running)) {
3628 atomic_inc(&fs_info->balance_pause_req);
3629 mutex_unlock(&fs_info->balance_mutex);
3630
3631 wait_event(fs_info->balance_wait_q,
3632 atomic_read(&fs_info->balance_running) == 0);
3633
3634 mutex_lock(&fs_info->balance_mutex);
3635 /* we are good with balance_ctl ripped off from under us */
3636 BUG_ON(atomic_read(&fs_info->balance_running));
3637 atomic_dec(&fs_info->balance_pause_req);
3638 } else {
3639 ret = -ENOTCONN;
3640 }
3641
3642 mutex_unlock(&fs_info->balance_mutex);
3643 return ret;
3644 }
3645
3646 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3647 {
3648 if (fs_info->sb->s_flags & MS_RDONLY)
3649 return -EROFS;
3650
3651 mutex_lock(&fs_info->balance_mutex);
3652 if (!fs_info->balance_ctl) {
3653 mutex_unlock(&fs_info->balance_mutex);
3654 return -ENOTCONN;
3655 }
3656
3657 atomic_inc(&fs_info->balance_cancel_req);
3658 /*
3659 * if we are running just wait and return, balance item is
3660 * deleted in btrfs_balance in this case
3661 */
3662 if (atomic_read(&fs_info->balance_running)) {
3663 mutex_unlock(&fs_info->balance_mutex);
3664 wait_event(fs_info->balance_wait_q,
3665 atomic_read(&fs_info->balance_running) == 0);
3666 mutex_lock(&fs_info->balance_mutex);
3667 } else {
3668 /* __cancel_balance needs volume_mutex */
3669 mutex_unlock(&fs_info->balance_mutex);
3670 mutex_lock(&fs_info->volume_mutex);
3671 mutex_lock(&fs_info->balance_mutex);
3672
3673 if (fs_info->balance_ctl)
3674 __cancel_balance(fs_info);
3675
3676 mutex_unlock(&fs_info->volume_mutex);
3677 }
3678
3679 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3680 atomic_dec(&fs_info->balance_cancel_req);
3681 mutex_unlock(&fs_info->balance_mutex);
3682 return 0;
3683 }
3684
3685 static int btrfs_uuid_scan_kthread(void *data)
3686 {
3687 struct btrfs_fs_info *fs_info = data;
3688 struct btrfs_root *root = fs_info->tree_root;
3689 struct btrfs_key key;
3690 struct btrfs_key max_key;
3691 struct btrfs_path *path = NULL;
3692 int ret = 0;
3693 struct extent_buffer *eb;
3694 int slot;
3695 struct btrfs_root_item root_item;
3696 u32 item_size;
3697 struct btrfs_trans_handle *trans = NULL;
3698
3699 path = btrfs_alloc_path();
3700 if (!path) {
3701 ret = -ENOMEM;
3702 goto out;
3703 }
3704
3705 key.objectid = 0;
3706 key.type = BTRFS_ROOT_ITEM_KEY;
3707 key.offset = 0;
3708
3709 max_key.objectid = (u64)-1;
3710 max_key.type = BTRFS_ROOT_ITEM_KEY;
3711 max_key.offset = (u64)-1;
3712
3713 while (1) {
3714 ret = btrfs_search_forward(root, &key, path, 0);
3715 if (ret) {
3716 if (ret > 0)
3717 ret = 0;
3718 break;
3719 }
3720
3721 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3722 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3723 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3724 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3725 goto skip;
3726
3727 eb = path->nodes[0];
3728 slot = path->slots[0];
3729 item_size = btrfs_item_size_nr(eb, slot);
3730 if (item_size < sizeof(root_item))
3731 goto skip;
3732
3733 read_extent_buffer(eb, &root_item,
3734 btrfs_item_ptr_offset(eb, slot),
3735 (int)sizeof(root_item));
3736 if (btrfs_root_refs(&root_item) == 0)
3737 goto skip;
3738
3739 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3740 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3741 if (trans)
3742 goto update_tree;
3743
3744 btrfs_release_path(path);
3745 /*
3746 * 1 - subvol uuid item
3747 * 1 - received_subvol uuid item
3748 */
3749 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3750 if (IS_ERR(trans)) {
3751 ret = PTR_ERR(trans);
3752 break;
3753 }
3754 continue;
3755 } else {
3756 goto skip;
3757 }
3758 update_tree:
3759 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3760 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3761 root_item.uuid,
3762 BTRFS_UUID_KEY_SUBVOL,
3763 key.objectid);
3764 if (ret < 0) {
3765 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3766 ret);
3767 break;
3768 }
3769 }
3770
3771 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3772 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3773 root_item.received_uuid,
3774 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3775 key.objectid);
3776 if (ret < 0) {
3777 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3778 ret);
3779 break;
3780 }
3781 }
3782
3783 skip:
3784 if (trans) {
3785 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3786 trans = NULL;
3787 if (ret)
3788 break;
3789 }
3790
3791 btrfs_release_path(path);
3792 if (key.offset < (u64)-1) {
3793 key.offset++;
3794 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3795 key.offset = 0;
3796 key.type = BTRFS_ROOT_ITEM_KEY;
3797 } else if (key.objectid < (u64)-1) {
3798 key.offset = 0;
3799 key.type = BTRFS_ROOT_ITEM_KEY;
3800 key.objectid++;
3801 } else {
3802 break;
3803 }
3804 cond_resched();
3805 }
3806
3807 out:
3808 btrfs_free_path(path);
3809 if (trans && !IS_ERR(trans))
3810 btrfs_end_transaction(trans, fs_info->uuid_root);
3811 if (ret)
3812 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3813 else
3814 fs_info->update_uuid_tree_gen = 1;
3815 up(&fs_info->uuid_tree_rescan_sem);
3816 return 0;
3817 }
3818
3819 /*
3820 * Callback for btrfs_uuid_tree_iterate().
3821 * returns:
3822 * 0 check succeeded, the entry is not outdated.
3823 * < 0 if an error occured.
3824 * > 0 if the check failed, which means the caller shall remove the entry.
3825 */
3826 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3827 u8 *uuid, u8 type, u64 subid)
3828 {
3829 struct btrfs_key key;
3830 int ret = 0;
3831 struct btrfs_root *subvol_root;
3832
3833 if (type != BTRFS_UUID_KEY_SUBVOL &&
3834 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3835 goto out;
3836
3837 key.objectid = subid;
3838 key.type = BTRFS_ROOT_ITEM_KEY;
3839 key.offset = (u64)-1;
3840 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3841 if (IS_ERR(subvol_root)) {
3842 ret = PTR_ERR(subvol_root);
3843 if (ret == -ENOENT)
3844 ret = 1;
3845 goto out;
3846 }
3847
3848 switch (type) {
3849 case BTRFS_UUID_KEY_SUBVOL:
3850 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3851 ret = 1;
3852 break;
3853 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3854 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3855 BTRFS_UUID_SIZE))
3856 ret = 1;
3857 break;
3858 }
3859
3860 out:
3861 return ret;
3862 }
3863
3864 static int btrfs_uuid_rescan_kthread(void *data)
3865 {
3866 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3867 int ret;
3868
3869 /*
3870 * 1st step is to iterate through the existing UUID tree and
3871 * to delete all entries that contain outdated data.
3872 * 2nd step is to add all missing entries to the UUID tree.
3873 */
3874 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3875 if (ret < 0) {
3876 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3877 up(&fs_info->uuid_tree_rescan_sem);
3878 return ret;
3879 }
3880 return btrfs_uuid_scan_kthread(data);
3881 }
3882
3883 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3884 {
3885 struct btrfs_trans_handle *trans;
3886 struct btrfs_root *tree_root = fs_info->tree_root;
3887 struct btrfs_root *uuid_root;
3888 struct task_struct *task;
3889 int ret;
3890
3891 /*
3892 * 1 - root node
3893 * 1 - root item
3894 */
3895 trans = btrfs_start_transaction(tree_root, 2);
3896 if (IS_ERR(trans))
3897 return PTR_ERR(trans);
3898
3899 uuid_root = btrfs_create_tree(trans, fs_info,
3900 BTRFS_UUID_TREE_OBJECTID);
3901 if (IS_ERR(uuid_root)) {
3902 btrfs_abort_transaction(trans, tree_root,
3903 PTR_ERR(uuid_root));
3904 return PTR_ERR(uuid_root);
3905 }
3906
3907 fs_info->uuid_root = uuid_root;
3908
3909 ret = btrfs_commit_transaction(trans, tree_root);
3910 if (ret)
3911 return ret;
3912
3913 down(&fs_info->uuid_tree_rescan_sem);
3914 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3915 if (IS_ERR(task)) {
3916 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3917 btrfs_warn(fs_info, "failed to start uuid_scan task");
3918 up(&fs_info->uuid_tree_rescan_sem);
3919 return PTR_ERR(task);
3920 }
3921
3922 return 0;
3923 }
3924
3925 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3926 {
3927 struct task_struct *task;
3928
3929 down(&fs_info->uuid_tree_rescan_sem);
3930 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3931 if (IS_ERR(task)) {
3932 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3933 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3934 up(&fs_info->uuid_tree_rescan_sem);
3935 return PTR_ERR(task);
3936 }
3937
3938 return 0;
3939 }
3940
3941 /*
3942 * shrinking a device means finding all of the device extents past
3943 * the new size, and then following the back refs to the chunks.
3944 * The chunk relocation code actually frees the device extent
3945 */
3946 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3947 {
3948 struct btrfs_trans_handle *trans;
3949 struct btrfs_root *root = device->dev_root;
3950 struct btrfs_dev_extent *dev_extent = NULL;
3951 struct btrfs_path *path;
3952 u64 length;
3953 u64 chunk_objectid;
3954 u64 chunk_offset;
3955 int ret;
3956 int slot;
3957 int failed = 0;
3958 bool retried = false;
3959 struct extent_buffer *l;
3960 struct btrfs_key key;
3961 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3962 u64 old_total = btrfs_super_total_bytes(super_copy);
3963 u64 old_size = btrfs_device_get_total_bytes(device);
3964 u64 diff = old_size - new_size;
3965
3966 if (device->is_tgtdev_for_dev_replace)
3967 return -EINVAL;
3968
3969 path = btrfs_alloc_path();
3970 if (!path)
3971 return -ENOMEM;
3972
3973 path->reada = 2;
3974
3975 lock_chunks(root);
3976
3977 btrfs_device_set_total_bytes(device, new_size);
3978 if (device->writeable) {
3979 device->fs_devices->total_rw_bytes -= diff;
3980 spin_lock(&root->fs_info->free_chunk_lock);
3981 root->fs_info->free_chunk_space -= diff;
3982 spin_unlock(&root->fs_info->free_chunk_lock);
3983 }
3984 unlock_chunks(root);
3985
3986 again:
3987 key.objectid = device->devid;
3988 key.offset = (u64)-1;
3989 key.type = BTRFS_DEV_EXTENT_KEY;
3990
3991 do {
3992 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3993 if (ret < 0)
3994 goto done;
3995
3996 ret = btrfs_previous_item(root, path, 0, key.type);
3997 if (ret < 0)
3998 goto done;
3999 if (ret) {
4000 ret = 0;
4001 btrfs_release_path(path);
4002 break;
4003 }
4004
4005 l = path->nodes[0];
4006 slot = path->slots[0];
4007 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4008
4009 if (key.objectid != device->devid) {
4010 btrfs_release_path(path);
4011 break;
4012 }
4013
4014 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4015 length = btrfs_dev_extent_length(l, dev_extent);
4016
4017 if (key.offset + length <= new_size) {
4018 btrfs_release_path(path);
4019 break;
4020 }
4021
4022 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4023 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4024 btrfs_release_path(path);
4025
4026 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4027 if (ret && ret != -ENOSPC)
4028 goto done;
4029 if (ret == -ENOSPC)
4030 failed++;
4031 } while (key.offset-- > 0);
4032
4033 if (failed && !retried) {
4034 failed = 0;
4035 retried = true;
4036 goto again;
4037 } else if (failed && retried) {
4038 ret = -ENOSPC;
4039 lock_chunks(root);
4040
4041 btrfs_device_set_total_bytes(device, old_size);
4042 if (device->writeable)
4043 device->fs_devices->total_rw_bytes += diff;
4044 spin_lock(&root->fs_info->free_chunk_lock);
4045 root->fs_info->free_chunk_space += diff;
4046 spin_unlock(&root->fs_info->free_chunk_lock);
4047 unlock_chunks(root);
4048 goto done;
4049 }
4050
4051 /* Shrinking succeeded, else we would be at "done". */
4052 trans = btrfs_start_transaction(root, 0);
4053 if (IS_ERR(trans)) {
4054 ret = PTR_ERR(trans);
4055 goto done;
4056 }
4057
4058 lock_chunks(root);
4059 btrfs_device_set_disk_total_bytes(device, new_size);
4060 if (list_empty(&device->resized_list))
4061 list_add_tail(&device->resized_list,
4062 &root->fs_info->fs_devices->resized_devices);
4063
4064 WARN_ON(diff > old_total);
4065 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4066 unlock_chunks(root);
4067
4068 /* Now btrfs_update_device() will change the on-disk size. */
4069 ret = btrfs_update_device(trans, device);
4070 btrfs_end_transaction(trans, root);
4071 done:
4072 btrfs_free_path(path);
4073 return ret;
4074 }
4075
4076 static int btrfs_add_system_chunk(struct btrfs_root *root,
4077 struct btrfs_key *key,
4078 struct btrfs_chunk *chunk, int item_size)
4079 {
4080 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4081 struct btrfs_disk_key disk_key;
4082 u32 array_size;
4083 u8 *ptr;
4084
4085 lock_chunks(root);
4086 array_size = btrfs_super_sys_array_size(super_copy);
4087 if (array_size + item_size + sizeof(disk_key)
4088 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4089 unlock_chunks(root);
4090 return -EFBIG;
4091 }
4092
4093 ptr = super_copy->sys_chunk_array + array_size;
4094 btrfs_cpu_key_to_disk(&disk_key, key);
4095 memcpy(ptr, &disk_key, sizeof(disk_key));
4096 ptr += sizeof(disk_key);
4097 memcpy(ptr, chunk, item_size);
4098 item_size += sizeof(disk_key);
4099 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4100 unlock_chunks(root);
4101
4102 return 0;
4103 }
4104
4105 /*
4106 * sort the devices in descending order by max_avail, total_avail
4107 */
4108 static int btrfs_cmp_device_info(const void *a, const void *b)
4109 {
4110 const struct btrfs_device_info *di_a = a;
4111 const struct btrfs_device_info *di_b = b;
4112
4113 if (di_a->max_avail > di_b->max_avail)
4114 return -1;
4115 if (di_a->max_avail < di_b->max_avail)
4116 return 1;
4117 if (di_a->total_avail > di_b->total_avail)
4118 return -1;
4119 if (di_a->total_avail < di_b->total_avail)
4120 return 1;
4121 return 0;
4122 }
4123
4124 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4125 [BTRFS_RAID_RAID10] = {
4126 .sub_stripes = 2,
4127 .dev_stripes = 1,
4128 .devs_max = 0, /* 0 == as many as possible */
4129 .devs_min = 4,
4130 .devs_increment = 2,
4131 .ncopies = 2,
4132 },
4133 [BTRFS_RAID_RAID1] = {
4134 .sub_stripes = 1,
4135 .dev_stripes = 1,
4136 .devs_max = 2,
4137 .devs_min = 2,
4138 .devs_increment = 2,
4139 .ncopies = 2,
4140 },
4141 [BTRFS_RAID_DUP] = {
4142 .sub_stripes = 1,
4143 .dev_stripes = 2,
4144 .devs_max = 1,
4145 .devs_min = 1,
4146 .devs_increment = 1,
4147 .ncopies = 2,
4148 },
4149 [BTRFS_RAID_RAID0] = {
4150 .sub_stripes = 1,
4151 .dev_stripes = 1,
4152 .devs_max = 0,
4153 .devs_min = 2,
4154 .devs_increment = 1,
4155 .ncopies = 1,
4156 },
4157 [BTRFS_RAID_SINGLE] = {
4158 .sub_stripes = 1,
4159 .dev_stripes = 1,
4160 .devs_max = 1,
4161 .devs_min = 1,
4162 .devs_increment = 1,
4163 .ncopies = 1,
4164 },
4165 [BTRFS_RAID_RAID5] = {
4166 .sub_stripes = 1,
4167 .dev_stripes = 1,
4168 .devs_max = 0,
4169 .devs_min = 2,
4170 .devs_increment = 1,
4171 .ncopies = 2,
4172 },
4173 [BTRFS_RAID_RAID6] = {
4174 .sub_stripes = 1,
4175 .dev_stripes = 1,
4176 .devs_max = 0,
4177 .devs_min = 3,
4178 .devs_increment = 1,
4179 .ncopies = 3,
4180 },
4181 };
4182
4183 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4184 {
4185 /* TODO allow them to set a preferred stripe size */
4186 return 64 * 1024;
4187 }
4188
4189 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4190 {
4191 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4192 return;
4193
4194 btrfs_set_fs_incompat(info, RAID56);
4195 }
4196
4197 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4198 - sizeof(struct btrfs_item) \
4199 - sizeof(struct btrfs_chunk)) \
4200 / sizeof(struct btrfs_stripe) + 1)
4201
4202 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4203 - 2 * sizeof(struct btrfs_disk_key) \
4204 - 2 * sizeof(struct btrfs_chunk)) \
4205 / sizeof(struct btrfs_stripe) + 1)
4206
4207 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *extent_root, u64 start,
4209 u64 type)
4210 {
4211 struct btrfs_fs_info *info = extent_root->fs_info;
4212 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4213 struct list_head *cur;
4214 struct map_lookup *map = NULL;
4215 struct extent_map_tree *em_tree;
4216 struct extent_map *em;
4217 struct btrfs_device_info *devices_info = NULL;
4218 u64 total_avail;
4219 int num_stripes; /* total number of stripes to allocate */
4220 int data_stripes; /* number of stripes that count for
4221 block group size */
4222 int sub_stripes; /* sub_stripes info for map */
4223 int dev_stripes; /* stripes per dev */
4224 int devs_max; /* max devs to use */
4225 int devs_min; /* min devs needed */
4226 int devs_increment; /* ndevs has to be a multiple of this */
4227 int ncopies; /* how many copies to data has */
4228 int ret;
4229 u64 max_stripe_size;
4230 u64 max_chunk_size;
4231 u64 stripe_size;
4232 u64 num_bytes;
4233 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4234 int ndevs;
4235 int i;
4236 int j;
4237 int index;
4238
4239 BUG_ON(!alloc_profile_is_valid(type, 0));
4240
4241 if (list_empty(&fs_devices->alloc_list))
4242 return -ENOSPC;
4243
4244 index = __get_raid_index(type);
4245
4246 sub_stripes = btrfs_raid_array[index].sub_stripes;
4247 dev_stripes = btrfs_raid_array[index].dev_stripes;
4248 devs_max = btrfs_raid_array[index].devs_max;
4249 devs_min = btrfs_raid_array[index].devs_min;
4250 devs_increment = btrfs_raid_array[index].devs_increment;
4251 ncopies = btrfs_raid_array[index].ncopies;
4252
4253 if (type & BTRFS_BLOCK_GROUP_DATA) {
4254 max_stripe_size = 1024 * 1024 * 1024;
4255 max_chunk_size = 10 * max_stripe_size;
4256 if (!devs_max)
4257 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4258 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4259 /* for larger filesystems, use larger metadata chunks */
4260 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4261 max_stripe_size = 1024 * 1024 * 1024;
4262 else
4263 max_stripe_size = 256 * 1024 * 1024;
4264 max_chunk_size = max_stripe_size;
4265 if (!devs_max)
4266 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4267 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4268 max_stripe_size = 32 * 1024 * 1024;
4269 max_chunk_size = 2 * max_stripe_size;
4270 if (!devs_max)
4271 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4272 } else {
4273 btrfs_err(info, "invalid chunk type 0x%llx requested",
4274 type);
4275 BUG_ON(1);
4276 }
4277
4278 /* we don't want a chunk larger than 10% of writeable space */
4279 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4280 max_chunk_size);
4281
4282 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4283 GFP_NOFS);
4284 if (!devices_info)
4285 return -ENOMEM;
4286
4287 cur = fs_devices->alloc_list.next;
4288
4289 /*
4290 * in the first pass through the devices list, we gather information
4291 * about the available holes on each device.
4292 */
4293 ndevs = 0;
4294 while (cur != &fs_devices->alloc_list) {
4295 struct btrfs_device *device;
4296 u64 max_avail;
4297 u64 dev_offset;
4298
4299 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4300
4301 cur = cur->next;
4302
4303 if (!device->writeable) {
4304 WARN(1, KERN_ERR
4305 "BTRFS: read-only device in alloc_list\n");
4306 continue;
4307 }
4308
4309 if (!device->in_fs_metadata ||
4310 device->is_tgtdev_for_dev_replace)
4311 continue;
4312
4313 if (device->total_bytes > device->bytes_used)
4314 total_avail = device->total_bytes - device->bytes_used;
4315 else
4316 total_avail = 0;
4317
4318 /* If there is no space on this device, skip it. */
4319 if (total_avail == 0)
4320 continue;
4321
4322 ret = find_free_dev_extent(trans, device,
4323 max_stripe_size * dev_stripes,
4324 &dev_offset, &max_avail);
4325 if (ret && ret != -ENOSPC)
4326 goto error;
4327
4328 if (ret == 0)
4329 max_avail = max_stripe_size * dev_stripes;
4330
4331 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4332 continue;
4333
4334 if (ndevs == fs_devices->rw_devices) {
4335 WARN(1, "%s: found more than %llu devices\n",
4336 __func__, fs_devices->rw_devices);
4337 break;
4338 }
4339 devices_info[ndevs].dev_offset = dev_offset;
4340 devices_info[ndevs].max_avail = max_avail;
4341 devices_info[ndevs].total_avail = total_avail;
4342 devices_info[ndevs].dev = device;
4343 ++ndevs;
4344 }
4345
4346 /*
4347 * now sort the devices by hole size / available space
4348 */
4349 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4350 btrfs_cmp_device_info, NULL);
4351
4352 /* round down to number of usable stripes */
4353 ndevs -= ndevs % devs_increment;
4354
4355 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4356 ret = -ENOSPC;
4357 goto error;
4358 }
4359
4360 if (devs_max && ndevs > devs_max)
4361 ndevs = devs_max;
4362 /*
4363 * the primary goal is to maximize the number of stripes, so use as many
4364 * devices as possible, even if the stripes are not maximum sized.
4365 */
4366 stripe_size = devices_info[ndevs-1].max_avail;
4367 num_stripes = ndevs * dev_stripes;
4368
4369 /*
4370 * this will have to be fixed for RAID1 and RAID10 over
4371 * more drives
4372 */
4373 data_stripes = num_stripes / ncopies;
4374
4375 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4376 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4377 btrfs_super_stripesize(info->super_copy));
4378 data_stripes = num_stripes - 1;
4379 }
4380 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4381 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4382 btrfs_super_stripesize(info->super_copy));
4383 data_stripes = num_stripes - 2;
4384 }
4385
4386 /*
4387 * Use the number of data stripes to figure out how big this chunk
4388 * is really going to be in terms of logical address space,
4389 * and compare that answer with the max chunk size
4390 */
4391 if (stripe_size * data_stripes > max_chunk_size) {
4392 u64 mask = (1ULL << 24) - 1;
4393
4394 stripe_size = div_u64(max_chunk_size, data_stripes);
4395
4396 /* bump the answer up to a 16MB boundary */
4397 stripe_size = (stripe_size + mask) & ~mask;
4398
4399 /* but don't go higher than the limits we found
4400 * while searching for free extents
4401 */
4402 if (stripe_size > devices_info[ndevs-1].max_avail)
4403 stripe_size = devices_info[ndevs-1].max_avail;
4404 }
4405
4406 stripe_size = div_u64(stripe_size, dev_stripes);
4407
4408 /* align to BTRFS_STRIPE_LEN */
4409 stripe_size = div_u64(stripe_size, raid_stripe_len);
4410 stripe_size *= raid_stripe_len;
4411
4412 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4413 if (!map) {
4414 ret = -ENOMEM;
4415 goto error;
4416 }
4417 map->num_stripes = num_stripes;
4418
4419 for (i = 0; i < ndevs; ++i) {
4420 for (j = 0; j < dev_stripes; ++j) {
4421 int s = i * dev_stripes + j;
4422 map->stripes[s].dev = devices_info[i].dev;
4423 map->stripes[s].physical = devices_info[i].dev_offset +
4424 j * stripe_size;
4425 }
4426 }
4427 map->sector_size = extent_root->sectorsize;
4428 map->stripe_len = raid_stripe_len;
4429 map->io_align = raid_stripe_len;
4430 map->io_width = raid_stripe_len;
4431 map->type = type;
4432 map->sub_stripes = sub_stripes;
4433
4434 num_bytes = stripe_size * data_stripes;
4435
4436 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4437
4438 em = alloc_extent_map();
4439 if (!em) {
4440 kfree(map);
4441 ret = -ENOMEM;
4442 goto error;
4443 }
4444 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4445 em->bdev = (struct block_device *)map;
4446 em->start = start;
4447 em->len = num_bytes;
4448 em->block_start = 0;
4449 em->block_len = em->len;
4450 em->orig_block_len = stripe_size;
4451
4452 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4453 write_lock(&em_tree->lock);
4454 ret = add_extent_mapping(em_tree, em, 0);
4455 if (!ret) {
4456 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4457 atomic_inc(&em->refs);
4458 }
4459 write_unlock(&em_tree->lock);
4460 if (ret) {
4461 free_extent_map(em);
4462 goto error;
4463 }
4464
4465 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4466 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4467 start, num_bytes);
4468 if (ret)
4469 goto error_del_extent;
4470
4471 for (i = 0; i < map->num_stripes; i++) {
4472 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4473 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4474 }
4475
4476 spin_lock(&extent_root->fs_info->free_chunk_lock);
4477 extent_root->fs_info->free_chunk_space -= (stripe_size *
4478 map->num_stripes);
4479 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4480
4481 free_extent_map(em);
4482 check_raid56_incompat_flag(extent_root->fs_info, type);
4483
4484 kfree(devices_info);
4485 return 0;
4486
4487 error_del_extent:
4488 write_lock(&em_tree->lock);
4489 remove_extent_mapping(em_tree, em);
4490 write_unlock(&em_tree->lock);
4491
4492 /* One for our allocation */
4493 free_extent_map(em);
4494 /* One for the tree reference */
4495 free_extent_map(em);
4496 /* One for the pending_chunks list reference */
4497 free_extent_map(em);
4498 error:
4499 kfree(devices_info);
4500 return ret;
4501 }
4502
4503 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4504 struct btrfs_root *extent_root,
4505 u64 chunk_offset, u64 chunk_size)
4506 {
4507 struct btrfs_key key;
4508 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4509 struct btrfs_device *device;
4510 struct btrfs_chunk *chunk;
4511 struct btrfs_stripe *stripe;
4512 struct extent_map_tree *em_tree;
4513 struct extent_map *em;
4514 struct map_lookup *map;
4515 size_t item_size;
4516 u64 dev_offset;
4517 u64 stripe_size;
4518 int i = 0;
4519 int ret;
4520
4521 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4522 read_lock(&em_tree->lock);
4523 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4524 read_unlock(&em_tree->lock);
4525
4526 if (!em) {
4527 btrfs_crit(extent_root->fs_info, "unable to find logical "
4528 "%Lu len %Lu", chunk_offset, chunk_size);
4529 return -EINVAL;
4530 }
4531
4532 if (em->start != chunk_offset || em->len != chunk_size) {
4533 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4534 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4535 chunk_size, em->start, em->len);
4536 free_extent_map(em);
4537 return -EINVAL;
4538 }
4539
4540 map = (struct map_lookup *)em->bdev;
4541 item_size = btrfs_chunk_item_size(map->num_stripes);
4542 stripe_size = em->orig_block_len;
4543
4544 chunk = kzalloc(item_size, GFP_NOFS);
4545 if (!chunk) {
4546 ret = -ENOMEM;
4547 goto out;
4548 }
4549
4550 for (i = 0; i < map->num_stripes; i++) {
4551 device = map->stripes[i].dev;
4552 dev_offset = map->stripes[i].physical;
4553
4554 ret = btrfs_update_device(trans, device);
4555 if (ret)
4556 goto out;
4557 ret = btrfs_alloc_dev_extent(trans, device,
4558 chunk_root->root_key.objectid,
4559 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4560 chunk_offset, dev_offset,
4561 stripe_size);
4562 if (ret)
4563 goto out;
4564 }
4565
4566 stripe = &chunk->stripe;
4567 for (i = 0; i < map->num_stripes; i++) {
4568 device = map->stripes[i].dev;
4569 dev_offset = map->stripes[i].physical;
4570
4571 btrfs_set_stack_stripe_devid(stripe, device->devid);
4572 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4573 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4574 stripe++;
4575 }
4576
4577 btrfs_set_stack_chunk_length(chunk, chunk_size);
4578 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4579 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4580 btrfs_set_stack_chunk_type(chunk, map->type);
4581 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4582 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4583 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4584 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4585 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4586
4587 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4588 key.type = BTRFS_CHUNK_ITEM_KEY;
4589 key.offset = chunk_offset;
4590
4591 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4592 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4593 /*
4594 * TODO: Cleanup of inserted chunk root in case of
4595 * failure.
4596 */
4597 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4598 item_size);
4599 }
4600
4601 out:
4602 kfree(chunk);
4603 free_extent_map(em);
4604 return ret;
4605 }
4606
4607 /*
4608 * Chunk allocation falls into two parts. The first part does works
4609 * that make the new allocated chunk useable, but not do any operation
4610 * that modifies the chunk tree. The second part does the works that
4611 * require modifying the chunk tree. This division is important for the
4612 * bootstrap process of adding storage to a seed btrfs.
4613 */
4614 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4615 struct btrfs_root *extent_root, u64 type)
4616 {
4617 u64 chunk_offset;
4618
4619 chunk_offset = find_next_chunk(extent_root->fs_info);
4620 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4621 }
4622
4623 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4624 struct btrfs_root *root,
4625 struct btrfs_device *device)
4626 {
4627 u64 chunk_offset;
4628 u64 sys_chunk_offset;
4629 u64 alloc_profile;
4630 struct btrfs_fs_info *fs_info = root->fs_info;
4631 struct btrfs_root *extent_root = fs_info->extent_root;
4632 int ret;
4633
4634 chunk_offset = find_next_chunk(fs_info);
4635 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4636 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4637 alloc_profile);
4638 if (ret)
4639 return ret;
4640
4641 sys_chunk_offset = find_next_chunk(root->fs_info);
4642 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4643 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4644 alloc_profile);
4645 return ret;
4646 }
4647
4648 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4649 {
4650 int max_errors;
4651
4652 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4653 BTRFS_BLOCK_GROUP_RAID10 |
4654 BTRFS_BLOCK_GROUP_RAID5 |
4655 BTRFS_BLOCK_GROUP_DUP)) {
4656 max_errors = 1;
4657 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4658 max_errors = 2;
4659 } else {
4660 max_errors = 0;
4661 }
4662
4663 return max_errors;
4664 }
4665
4666 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4667 {
4668 struct extent_map *em;
4669 struct map_lookup *map;
4670 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4671 int readonly = 0;
4672 int miss_ndevs = 0;
4673 int i;
4674
4675 read_lock(&map_tree->map_tree.lock);
4676 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4677 read_unlock(&map_tree->map_tree.lock);
4678 if (!em)
4679 return 1;
4680
4681 map = (struct map_lookup *)em->bdev;
4682 for (i = 0; i < map->num_stripes; i++) {
4683 if (map->stripes[i].dev->missing) {
4684 miss_ndevs++;
4685 continue;
4686 }
4687
4688 if (!map->stripes[i].dev->writeable) {
4689 readonly = 1;
4690 goto end;
4691 }
4692 }
4693
4694 /*
4695 * If the number of missing devices is larger than max errors,
4696 * we can not write the data into that chunk successfully, so
4697 * set it readonly.
4698 */
4699 if (miss_ndevs > btrfs_chunk_max_errors(map))
4700 readonly = 1;
4701 end:
4702 free_extent_map(em);
4703 return readonly;
4704 }
4705
4706 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4707 {
4708 extent_map_tree_init(&tree->map_tree);
4709 }
4710
4711 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4712 {
4713 struct extent_map *em;
4714
4715 while (1) {
4716 write_lock(&tree->map_tree.lock);
4717 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4718 if (em)
4719 remove_extent_mapping(&tree->map_tree, em);
4720 write_unlock(&tree->map_tree.lock);
4721 if (!em)
4722 break;
4723 /* once for us */
4724 free_extent_map(em);
4725 /* once for the tree */
4726 free_extent_map(em);
4727 }
4728 }
4729
4730 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4731 {
4732 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4733 struct extent_map *em;
4734 struct map_lookup *map;
4735 struct extent_map_tree *em_tree = &map_tree->map_tree;
4736 int ret;
4737
4738 read_lock(&em_tree->lock);
4739 em = lookup_extent_mapping(em_tree, logical, len);
4740 read_unlock(&em_tree->lock);
4741
4742 /*
4743 * We could return errors for these cases, but that could get ugly and
4744 * we'd probably do the same thing which is just not do anything else
4745 * and exit, so return 1 so the callers don't try to use other copies.
4746 */
4747 if (!em) {
4748 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4749 logical+len);
4750 return 1;
4751 }
4752
4753 if (em->start > logical || em->start + em->len < logical) {
4754 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4755 "%Lu-%Lu", logical, logical+len, em->start,
4756 em->start + em->len);
4757 free_extent_map(em);
4758 return 1;
4759 }
4760
4761 map = (struct map_lookup *)em->bdev;
4762 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4763 ret = map->num_stripes;
4764 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4765 ret = map->sub_stripes;
4766 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4767 ret = 2;
4768 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4769 ret = 3;
4770 else
4771 ret = 1;
4772 free_extent_map(em);
4773
4774 btrfs_dev_replace_lock(&fs_info->dev_replace);
4775 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4776 ret++;
4777 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4778
4779 return ret;
4780 }
4781
4782 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4783 struct btrfs_mapping_tree *map_tree,
4784 u64 logical)
4785 {
4786 struct extent_map *em;
4787 struct map_lookup *map;
4788 struct extent_map_tree *em_tree = &map_tree->map_tree;
4789 unsigned long len = root->sectorsize;
4790
4791 read_lock(&em_tree->lock);
4792 em = lookup_extent_mapping(em_tree, logical, len);
4793 read_unlock(&em_tree->lock);
4794 BUG_ON(!em);
4795
4796 BUG_ON(em->start > logical || em->start + em->len < logical);
4797 map = (struct map_lookup *)em->bdev;
4798 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4799 len = map->stripe_len * nr_data_stripes(map);
4800 free_extent_map(em);
4801 return len;
4802 }
4803
4804 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4805 u64 logical, u64 len, int mirror_num)
4806 {
4807 struct extent_map *em;
4808 struct map_lookup *map;
4809 struct extent_map_tree *em_tree = &map_tree->map_tree;
4810 int ret = 0;
4811
4812 read_lock(&em_tree->lock);
4813 em = lookup_extent_mapping(em_tree, logical, len);
4814 read_unlock(&em_tree->lock);
4815 BUG_ON(!em);
4816
4817 BUG_ON(em->start > logical || em->start + em->len < logical);
4818 map = (struct map_lookup *)em->bdev;
4819 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4820 ret = 1;
4821 free_extent_map(em);
4822 return ret;
4823 }
4824
4825 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4826 struct map_lookup *map, int first, int num,
4827 int optimal, int dev_replace_is_ongoing)
4828 {
4829 int i;
4830 int tolerance;
4831 struct btrfs_device *srcdev;
4832
4833 if (dev_replace_is_ongoing &&
4834 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4835 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4836 srcdev = fs_info->dev_replace.srcdev;
4837 else
4838 srcdev = NULL;
4839
4840 /*
4841 * try to avoid the drive that is the source drive for a
4842 * dev-replace procedure, only choose it if no other non-missing
4843 * mirror is available
4844 */
4845 for (tolerance = 0; tolerance < 2; tolerance++) {
4846 if (map->stripes[optimal].dev->bdev &&
4847 (tolerance || map->stripes[optimal].dev != srcdev))
4848 return optimal;
4849 for (i = first; i < first + num; i++) {
4850 if (map->stripes[i].dev->bdev &&
4851 (tolerance || map->stripes[i].dev != srcdev))
4852 return i;
4853 }
4854 }
4855
4856 /* we couldn't find one that doesn't fail. Just return something
4857 * and the io error handling code will clean up eventually
4858 */
4859 return optimal;
4860 }
4861
4862 static inline int parity_smaller(u64 a, u64 b)
4863 {
4864 return a > b;
4865 }
4866
4867 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4868 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4869 {
4870 struct btrfs_bio_stripe s;
4871 int i;
4872 u64 l;
4873 int again = 1;
4874
4875 while (again) {
4876 again = 0;
4877 for (i = 0; i < num_stripes - 1; i++) {
4878 if (parity_smaller(bbio->raid_map[i],
4879 bbio->raid_map[i+1])) {
4880 s = bbio->stripes[i];
4881 l = bbio->raid_map[i];
4882 bbio->stripes[i] = bbio->stripes[i+1];
4883 bbio->raid_map[i] = bbio->raid_map[i+1];
4884 bbio->stripes[i+1] = s;
4885 bbio->raid_map[i+1] = l;
4886
4887 again = 1;
4888 }
4889 }
4890 }
4891 }
4892
4893 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4894 {
4895 struct btrfs_bio *bbio = kzalloc(
4896 /* the size of the btrfs_bio */
4897 sizeof(struct btrfs_bio) +
4898 /* plus the variable array for the stripes */
4899 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4900 /* plus the variable array for the tgt dev */
4901 sizeof(int) * (real_stripes) +
4902 /*
4903 * plus the raid_map, which includes both the tgt dev
4904 * and the stripes
4905 */
4906 sizeof(u64) * (total_stripes),
4907 GFP_NOFS);
4908 if (!bbio)
4909 return NULL;
4910
4911 atomic_set(&bbio->error, 0);
4912 atomic_set(&bbio->refs, 1);
4913
4914 return bbio;
4915 }
4916
4917 void btrfs_get_bbio(struct btrfs_bio *bbio)
4918 {
4919 WARN_ON(!atomic_read(&bbio->refs));
4920 atomic_inc(&bbio->refs);
4921 }
4922
4923 void btrfs_put_bbio(struct btrfs_bio *bbio)
4924 {
4925 if (!bbio)
4926 return;
4927 if (atomic_dec_and_test(&bbio->refs))
4928 kfree(bbio);
4929 }
4930
4931 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4932 u64 logical, u64 *length,
4933 struct btrfs_bio **bbio_ret,
4934 int mirror_num, int need_raid_map)
4935 {
4936 struct extent_map *em;
4937 struct map_lookup *map;
4938 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4939 struct extent_map_tree *em_tree = &map_tree->map_tree;
4940 u64 offset;
4941 u64 stripe_offset;
4942 u64 stripe_end_offset;
4943 u64 stripe_nr;
4944 u64 stripe_nr_orig;
4945 u64 stripe_nr_end;
4946 u64 stripe_len;
4947 u32 stripe_index;
4948 int i;
4949 int ret = 0;
4950 int num_stripes;
4951 int max_errors = 0;
4952 int tgtdev_indexes = 0;
4953 struct btrfs_bio *bbio = NULL;
4954 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4955 int dev_replace_is_ongoing = 0;
4956 int num_alloc_stripes;
4957 int patch_the_first_stripe_for_dev_replace = 0;
4958 u64 physical_to_patch_in_first_stripe = 0;
4959 u64 raid56_full_stripe_start = (u64)-1;
4960
4961 read_lock(&em_tree->lock);
4962 em = lookup_extent_mapping(em_tree, logical, *length);
4963 read_unlock(&em_tree->lock);
4964
4965 if (!em) {
4966 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4967 logical, *length);
4968 return -EINVAL;
4969 }
4970
4971 if (em->start > logical || em->start + em->len < logical) {
4972 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4973 "found %Lu-%Lu", logical, em->start,
4974 em->start + em->len);
4975 free_extent_map(em);
4976 return -EINVAL;
4977 }
4978
4979 map = (struct map_lookup *)em->bdev;
4980 offset = logical - em->start;
4981
4982 stripe_len = map->stripe_len;
4983 stripe_nr = offset;
4984 /*
4985 * stripe_nr counts the total number of stripes we have to stride
4986 * to get to this block
4987 */
4988 stripe_nr = div64_u64(stripe_nr, stripe_len);
4989
4990 stripe_offset = stripe_nr * stripe_len;
4991 BUG_ON(offset < stripe_offset);
4992
4993 /* stripe_offset is the offset of this block in its stripe*/
4994 stripe_offset = offset - stripe_offset;
4995
4996 /* if we're here for raid56, we need to know the stripe aligned start */
4997 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4998 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4999 raid56_full_stripe_start = offset;
5000
5001 /* allow a write of a full stripe, but make sure we don't
5002 * allow straddling of stripes
5003 */
5004 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5005 full_stripe_len);
5006 raid56_full_stripe_start *= full_stripe_len;
5007 }
5008
5009 if (rw & REQ_DISCARD) {
5010 /* we don't discard raid56 yet */
5011 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5012 ret = -EOPNOTSUPP;
5013 goto out;
5014 }
5015 *length = min_t(u64, em->len - offset, *length);
5016 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5017 u64 max_len;
5018 /* For writes to RAID[56], allow a full stripeset across all disks.
5019 For other RAID types and for RAID[56] reads, just allow a single
5020 stripe (on a single disk). */
5021 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5022 (rw & REQ_WRITE)) {
5023 max_len = stripe_len * nr_data_stripes(map) -
5024 (offset - raid56_full_stripe_start);
5025 } else {
5026 /* we limit the length of each bio to what fits in a stripe */
5027 max_len = stripe_len - stripe_offset;
5028 }
5029 *length = min_t(u64, em->len - offset, max_len);
5030 } else {
5031 *length = em->len - offset;
5032 }
5033
5034 /* This is for when we're called from btrfs_merge_bio_hook() and all
5035 it cares about is the length */
5036 if (!bbio_ret)
5037 goto out;
5038
5039 btrfs_dev_replace_lock(dev_replace);
5040 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5041 if (!dev_replace_is_ongoing)
5042 btrfs_dev_replace_unlock(dev_replace);
5043
5044 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5045 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5046 dev_replace->tgtdev != NULL) {
5047 /*
5048 * in dev-replace case, for repair case (that's the only
5049 * case where the mirror is selected explicitly when
5050 * calling btrfs_map_block), blocks left of the left cursor
5051 * can also be read from the target drive.
5052 * For REQ_GET_READ_MIRRORS, the target drive is added as
5053 * the last one to the array of stripes. For READ, it also
5054 * needs to be supported using the same mirror number.
5055 * If the requested block is not left of the left cursor,
5056 * EIO is returned. This can happen because btrfs_num_copies()
5057 * returns one more in the dev-replace case.
5058 */
5059 u64 tmp_length = *length;
5060 struct btrfs_bio *tmp_bbio = NULL;
5061 int tmp_num_stripes;
5062 u64 srcdev_devid = dev_replace->srcdev->devid;
5063 int index_srcdev = 0;
5064 int found = 0;
5065 u64 physical_of_found = 0;
5066
5067 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5068 logical, &tmp_length, &tmp_bbio, 0, 0);
5069 if (ret) {
5070 WARN_ON(tmp_bbio != NULL);
5071 goto out;
5072 }
5073
5074 tmp_num_stripes = tmp_bbio->num_stripes;
5075 if (mirror_num > tmp_num_stripes) {
5076 /*
5077 * REQ_GET_READ_MIRRORS does not contain this
5078 * mirror, that means that the requested area
5079 * is not left of the left cursor
5080 */
5081 ret = -EIO;
5082 btrfs_put_bbio(tmp_bbio);
5083 goto out;
5084 }
5085
5086 /*
5087 * process the rest of the function using the mirror_num
5088 * of the source drive. Therefore look it up first.
5089 * At the end, patch the device pointer to the one of the
5090 * target drive.
5091 */
5092 for (i = 0; i < tmp_num_stripes; i++) {
5093 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5094 /*
5095 * In case of DUP, in order to keep it
5096 * simple, only add the mirror with the
5097 * lowest physical address
5098 */
5099 if (found &&
5100 physical_of_found <=
5101 tmp_bbio->stripes[i].physical)
5102 continue;
5103 index_srcdev = i;
5104 found = 1;
5105 physical_of_found =
5106 tmp_bbio->stripes[i].physical;
5107 }
5108 }
5109
5110 if (found) {
5111 mirror_num = index_srcdev + 1;
5112 patch_the_first_stripe_for_dev_replace = 1;
5113 physical_to_patch_in_first_stripe = physical_of_found;
5114 } else {
5115 WARN_ON(1);
5116 ret = -EIO;
5117 btrfs_put_bbio(tmp_bbio);
5118 goto out;
5119 }
5120
5121 btrfs_put_bbio(tmp_bbio);
5122 } else if (mirror_num > map->num_stripes) {
5123 mirror_num = 0;
5124 }
5125
5126 num_stripes = 1;
5127 stripe_index = 0;
5128 stripe_nr_orig = stripe_nr;
5129 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5130 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5131 stripe_end_offset = stripe_nr_end * map->stripe_len -
5132 (offset + *length);
5133
5134 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5135 if (rw & REQ_DISCARD)
5136 num_stripes = min_t(u64, map->num_stripes,
5137 stripe_nr_end - stripe_nr_orig);
5138 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5139 &stripe_index);
5140 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5141 mirror_num = 1;
5142 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5143 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5144 num_stripes = map->num_stripes;
5145 else if (mirror_num)
5146 stripe_index = mirror_num - 1;
5147 else {
5148 stripe_index = find_live_mirror(fs_info, map, 0,
5149 map->num_stripes,
5150 current->pid % map->num_stripes,
5151 dev_replace_is_ongoing);
5152 mirror_num = stripe_index + 1;
5153 }
5154
5155 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5156 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5157 num_stripes = map->num_stripes;
5158 } else if (mirror_num) {
5159 stripe_index = mirror_num - 1;
5160 } else {
5161 mirror_num = 1;
5162 }
5163
5164 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5165 u32 factor = map->num_stripes / map->sub_stripes;
5166
5167 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5168 stripe_index *= map->sub_stripes;
5169
5170 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5171 num_stripes = map->sub_stripes;
5172 else if (rw & REQ_DISCARD)
5173 num_stripes = min_t(u64, map->sub_stripes *
5174 (stripe_nr_end - stripe_nr_orig),
5175 map->num_stripes);
5176 else if (mirror_num)
5177 stripe_index += mirror_num - 1;
5178 else {
5179 int old_stripe_index = stripe_index;
5180 stripe_index = find_live_mirror(fs_info, map,
5181 stripe_index,
5182 map->sub_stripes, stripe_index +
5183 current->pid % map->sub_stripes,
5184 dev_replace_is_ongoing);
5185 mirror_num = stripe_index - old_stripe_index + 1;
5186 }
5187
5188 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5189 if (need_raid_map &&
5190 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5191 mirror_num > 1)) {
5192 /* push stripe_nr back to the start of the full stripe */
5193 stripe_nr = div_u64(raid56_full_stripe_start,
5194 stripe_len * nr_data_stripes(map));
5195
5196 /* RAID[56] write or recovery. Return all stripes */
5197 num_stripes = map->num_stripes;
5198 max_errors = nr_parity_stripes(map);
5199
5200 *length = map->stripe_len;
5201 stripe_index = 0;
5202 stripe_offset = 0;
5203 } else {
5204 /*
5205 * Mirror #0 or #1 means the original data block.
5206 * Mirror #2 is RAID5 parity block.
5207 * Mirror #3 is RAID6 Q block.
5208 */
5209 stripe_nr = div_u64_rem(stripe_nr,
5210 nr_data_stripes(map), &stripe_index);
5211 if (mirror_num > 1)
5212 stripe_index = nr_data_stripes(map) +
5213 mirror_num - 2;
5214
5215 /* We distribute the parity blocks across stripes */
5216 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5217 &stripe_index);
5218 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5219 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5220 mirror_num = 1;
5221 }
5222 } else {
5223 /*
5224 * after this, stripe_nr is the number of stripes on this
5225 * device we have to walk to find the data, and stripe_index is
5226 * the number of our device in the stripe array
5227 */
5228 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5229 &stripe_index);
5230 mirror_num = stripe_index + 1;
5231 }
5232 BUG_ON(stripe_index >= map->num_stripes);
5233
5234 num_alloc_stripes = num_stripes;
5235 if (dev_replace_is_ongoing) {
5236 if (rw & (REQ_WRITE | REQ_DISCARD))
5237 num_alloc_stripes <<= 1;
5238 if (rw & REQ_GET_READ_MIRRORS)
5239 num_alloc_stripes++;
5240 tgtdev_indexes = num_stripes;
5241 }
5242
5243 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5244 if (!bbio) {
5245 ret = -ENOMEM;
5246 goto out;
5247 }
5248 if (dev_replace_is_ongoing)
5249 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5250
5251 /* build raid_map */
5252 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5253 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5254 mirror_num > 1)) {
5255 u64 tmp;
5256 unsigned rot;
5257
5258 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5259 sizeof(struct btrfs_bio_stripe) *
5260 num_alloc_stripes +
5261 sizeof(int) * tgtdev_indexes);
5262
5263 /* Work out the disk rotation on this stripe-set */
5264 div_u64_rem(stripe_nr, num_stripes, &rot);
5265
5266 /* Fill in the logical address of each stripe */
5267 tmp = stripe_nr * nr_data_stripes(map);
5268 for (i = 0; i < nr_data_stripes(map); i++)
5269 bbio->raid_map[(i+rot) % num_stripes] =
5270 em->start + (tmp + i) * map->stripe_len;
5271
5272 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5273 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5274 bbio->raid_map[(i+rot+1) % num_stripes] =
5275 RAID6_Q_STRIPE;
5276 }
5277
5278 if (rw & REQ_DISCARD) {
5279 u32 factor = 0;
5280 u32 sub_stripes = 0;
5281 u64 stripes_per_dev = 0;
5282 u32 remaining_stripes = 0;
5283 u32 last_stripe = 0;
5284
5285 if (map->type &
5286 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5288 sub_stripes = 1;
5289 else
5290 sub_stripes = map->sub_stripes;
5291
5292 factor = map->num_stripes / sub_stripes;
5293 stripes_per_dev = div_u64_rem(stripe_nr_end -
5294 stripe_nr_orig,
5295 factor,
5296 &remaining_stripes);
5297 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5298 last_stripe *= sub_stripes;
5299 }
5300
5301 for (i = 0; i < num_stripes; i++) {
5302 bbio->stripes[i].physical =
5303 map->stripes[stripe_index].physical +
5304 stripe_offset + stripe_nr * map->stripe_len;
5305 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5306
5307 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5308 BTRFS_BLOCK_GROUP_RAID10)) {
5309 bbio->stripes[i].length = stripes_per_dev *
5310 map->stripe_len;
5311
5312 if (i / sub_stripes < remaining_stripes)
5313 bbio->stripes[i].length +=
5314 map->stripe_len;
5315
5316 /*
5317 * Special for the first stripe and
5318 * the last stripe:
5319 *
5320 * |-------|...|-------|
5321 * |----------|
5322 * off end_off
5323 */
5324 if (i < sub_stripes)
5325 bbio->stripes[i].length -=
5326 stripe_offset;
5327
5328 if (stripe_index >= last_stripe &&
5329 stripe_index <= (last_stripe +
5330 sub_stripes - 1))
5331 bbio->stripes[i].length -=
5332 stripe_end_offset;
5333
5334 if (i == sub_stripes - 1)
5335 stripe_offset = 0;
5336 } else
5337 bbio->stripes[i].length = *length;
5338
5339 stripe_index++;
5340 if (stripe_index == map->num_stripes) {
5341 /* This could only happen for RAID0/10 */
5342 stripe_index = 0;
5343 stripe_nr++;
5344 }
5345 }
5346 } else {
5347 for (i = 0; i < num_stripes; i++) {
5348 bbio->stripes[i].physical =
5349 map->stripes[stripe_index].physical +
5350 stripe_offset +
5351 stripe_nr * map->stripe_len;
5352 bbio->stripes[i].dev =
5353 map->stripes[stripe_index].dev;
5354 stripe_index++;
5355 }
5356 }
5357
5358 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5359 max_errors = btrfs_chunk_max_errors(map);
5360
5361 if (bbio->raid_map)
5362 sort_parity_stripes(bbio, num_stripes);
5363
5364 tgtdev_indexes = 0;
5365 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5366 dev_replace->tgtdev != NULL) {
5367 int index_where_to_add;
5368 u64 srcdev_devid = dev_replace->srcdev->devid;
5369
5370 /*
5371 * duplicate the write operations while the dev replace
5372 * procedure is running. Since the copying of the old disk
5373 * to the new disk takes place at run time while the
5374 * filesystem is mounted writable, the regular write
5375 * operations to the old disk have to be duplicated to go
5376 * to the new disk as well.
5377 * Note that device->missing is handled by the caller, and
5378 * that the write to the old disk is already set up in the
5379 * stripes array.
5380 */
5381 index_where_to_add = num_stripes;
5382 for (i = 0; i < num_stripes; i++) {
5383 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5384 /* write to new disk, too */
5385 struct btrfs_bio_stripe *new =
5386 bbio->stripes + index_where_to_add;
5387 struct btrfs_bio_stripe *old =
5388 bbio->stripes + i;
5389
5390 new->physical = old->physical;
5391 new->length = old->length;
5392 new->dev = dev_replace->tgtdev;
5393 bbio->tgtdev_map[i] = index_where_to_add;
5394 index_where_to_add++;
5395 max_errors++;
5396 tgtdev_indexes++;
5397 }
5398 }
5399 num_stripes = index_where_to_add;
5400 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5401 dev_replace->tgtdev != NULL) {
5402 u64 srcdev_devid = dev_replace->srcdev->devid;
5403 int index_srcdev = 0;
5404 int found = 0;
5405 u64 physical_of_found = 0;
5406
5407 /*
5408 * During the dev-replace procedure, the target drive can
5409 * also be used to read data in case it is needed to repair
5410 * a corrupt block elsewhere. This is possible if the
5411 * requested area is left of the left cursor. In this area,
5412 * the target drive is a full copy of the source drive.
5413 */
5414 for (i = 0; i < num_stripes; i++) {
5415 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5416 /*
5417 * In case of DUP, in order to keep it
5418 * simple, only add the mirror with the
5419 * lowest physical address
5420 */
5421 if (found &&
5422 physical_of_found <=
5423 bbio->stripes[i].physical)
5424 continue;
5425 index_srcdev = i;
5426 found = 1;
5427 physical_of_found = bbio->stripes[i].physical;
5428 }
5429 }
5430 if (found) {
5431 if (physical_of_found + map->stripe_len <=
5432 dev_replace->cursor_left) {
5433 struct btrfs_bio_stripe *tgtdev_stripe =
5434 bbio->stripes + num_stripes;
5435
5436 tgtdev_stripe->physical = physical_of_found;
5437 tgtdev_stripe->length =
5438 bbio->stripes[index_srcdev].length;
5439 tgtdev_stripe->dev = dev_replace->tgtdev;
5440 bbio->tgtdev_map[index_srcdev] = num_stripes;
5441
5442 tgtdev_indexes++;
5443 num_stripes++;
5444 }
5445 }
5446 }
5447
5448 *bbio_ret = bbio;
5449 bbio->map_type = map->type;
5450 bbio->num_stripes = num_stripes;
5451 bbio->max_errors = max_errors;
5452 bbio->mirror_num = mirror_num;
5453 bbio->num_tgtdevs = tgtdev_indexes;
5454
5455 /*
5456 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5457 * mirror_num == num_stripes + 1 && dev_replace target drive is
5458 * available as a mirror
5459 */
5460 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5461 WARN_ON(num_stripes > 1);
5462 bbio->stripes[0].dev = dev_replace->tgtdev;
5463 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5464 bbio->mirror_num = map->num_stripes + 1;
5465 }
5466 out:
5467 if (dev_replace_is_ongoing)
5468 btrfs_dev_replace_unlock(dev_replace);
5469 free_extent_map(em);
5470 return ret;
5471 }
5472
5473 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5474 u64 logical, u64 *length,
5475 struct btrfs_bio **bbio_ret, int mirror_num)
5476 {
5477 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5478 mirror_num, 0);
5479 }
5480
5481 /* For Scrub/replace */
5482 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5483 u64 logical, u64 *length,
5484 struct btrfs_bio **bbio_ret, int mirror_num,
5485 int need_raid_map)
5486 {
5487 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5488 mirror_num, need_raid_map);
5489 }
5490
5491 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5492 u64 chunk_start, u64 physical, u64 devid,
5493 u64 **logical, int *naddrs, int *stripe_len)
5494 {
5495 struct extent_map_tree *em_tree = &map_tree->map_tree;
5496 struct extent_map *em;
5497 struct map_lookup *map;
5498 u64 *buf;
5499 u64 bytenr;
5500 u64 length;
5501 u64 stripe_nr;
5502 u64 rmap_len;
5503 int i, j, nr = 0;
5504
5505 read_lock(&em_tree->lock);
5506 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5507 read_unlock(&em_tree->lock);
5508
5509 if (!em) {
5510 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5511 chunk_start);
5512 return -EIO;
5513 }
5514
5515 if (em->start != chunk_start) {
5516 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5517 em->start, chunk_start);
5518 free_extent_map(em);
5519 return -EIO;
5520 }
5521 map = (struct map_lookup *)em->bdev;
5522
5523 length = em->len;
5524 rmap_len = map->stripe_len;
5525
5526 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5527 length = div_u64(length, map->num_stripes / map->sub_stripes);
5528 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5529 length = div_u64(length, map->num_stripes);
5530 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5531 length = div_u64(length, nr_data_stripes(map));
5532 rmap_len = map->stripe_len * nr_data_stripes(map);
5533 }
5534
5535 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5536 BUG_ON(!buf); /* -ENOMEM */
5537
5538 for (i = 0; i < map->num_stripes; i++) {
5539 if (devid && map->stripes[i].dev->devid != devid)
5540 continue;
5541 if (map->stripes[i].physical > physical ||
5542 map->stripes[i].physical + length <= physical)
5543 continue;
5544
5545 stripe_nr = physical - map->stripes[i].physical;
5546 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5547
5548 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5549 stripe_nr = stripe_nr * map->num_stripes + i;
5550 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5551 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5552 stripe_nr = stripe_nr * map->num_stripes + i;
5553 } /* else if RAID[56], multiply by nr_data_stripes().
5554 * Alternatively, just use rmap_len below instead of
5555 * map->stripe_len */
5556
5557 bytenr = chunk_start + stripe_nr * rmap_len;
5558 WARN_ON(nr >= map->num_stripes);
5559 for (j = 0; j < nr; j++) {
5560 if (buf[j] == bytenr)
5561 break;
5562 }
5563 if (j == nr) {
5564 WARN_ON(nr >= map->num_stripes);
5565 buf[nr++] = bytenr;
5566 }
5567 }
5568
5569 *logical = buf;
5570 *naddrs = nr;
5571 *stripe_len = rmap_len;
5572
5573 free_extent_map(em);
5574 return 0;
5575 }
5576
5577 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5578 {
5579 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5580 bio_endio_nodec(bio, err);
5581 else
5582 bio_endio(bio, err);
5583 btrfs_put_bbio(bbio);
5584 }
5585
5586 static void btrfs_end_bio(struct bio *bio, int err)
5587 {
5588 struct btrfs_bio *bbio = bio->bi_private;
5589 struct btrfs_device *dev = bbio->stripes[0].dev;
5590 int is_orig_bio = 0;
5591
5592 if (err) {
5593 atomic_inc(&bbio->error);
5594 if (err == -EIO || err == -EREMOTEIO) {
5595 unsigned int stripe_index =
5596 btrfs_io_bio(bio)->stripe_index;
5597
5598 BUG_ON(stripe_index >= bbio->num_stripes);
5599 dev = bbio->stripes[stripe_index].dev;
5600 if (dev->bdev) {
5601 if (bio->bi_rw & WRITE)
5602 btrfs_dev_stat_inc(dev,
5603 BTRFS_DEV_STAT_WRITE_ERRS);
5604 else
5605 btrfs_dev_stat_inc(dev,
5606 BTRFS_DEV_STAT_READ_ERRS);
5607 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5608 btrfs_dev_stat_inc(dev,
5609 BTRFS_DEV_STAT_FLUSH_ERRS);
5610 btrfs_dev_stat_print_on_error(dev);
5611 }
5612 }
5613 }
5614
5615 if (bio == bbio->orig_bio)
5616 is_orig_bio = 1;
5617
5618 btrfs_bio_counter_dec(bbio->fs_info);
5619
5620 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5621 if (!is_orig_bio) {
5622 bio_put(bio);
5623 bio = bbio->orig_bio;
5624 }
5625
5626 bio->bi_private = bbio->private;
5627 bio->bi_end_io = bbio->end_io;
5628 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5629 /* only send an error to the higher layers if it is
5630 * beyond the tolerance of the btrfs bio
5631 */
5632 if (atomic_read(&bbio->error) > bbio->max_errors) {
5633 err = -EIO;
5634 } else {
5635 /*
5636 * this bio is actually up to date, we didn't
5637 * go over the max number of errors
5638 */
5639 set_bit(BIO_UPTODATE, &bio->bi_flags);
5640 err = 0;
5641 }
5642
5643 btrfs_end_bbio(bbio, bio, err);
5644 } else if (!is_orig_bio) {
5645 bio_put(bio);
5646 }
5647 }
5648
5649 /*
5650 * see run_scheduled_bios for a description of why bios are collected for
5651 * async submit.
5652 *
5653 * This will add one bio to the pending list for a device and make sure
5654 * the work struct is scheduled.
5655 */
5656 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5657 struct btrfs_device *device,
5658 int rw, struct bio *bio)
5659 {
5660 int should_queue = 1;
5661 struct btrfs_pending_bios *pending_bios;
5662
5663 if (device->missing || !device->bdev) {
5664 bio_endio(bio, -EIO);
5665 return;
5666 }
5667
5668 /* don't bother with additional async steps for reads, right now */
5669 if (!(rw & REQ_WRITE)) {
5670 bio_get(bio);
5671 btrfsic_submit_bio(rw, bio);
5672 bio_put(bio);
5673 return;
5674 }
5675
5676 /*
5677 * nr_async_bios allows us to reliably return congestion to the
5678 * higher layers. Otherwise, the async bio makes it appear we have
5679 * made progress against dirty pages when we've really just put it
5680 * on a queue for later
5681 */
5682 atomic_inc(&root->fs_info->nr_async_bios);
5683 WARN_ON(bio->bi_next);
5684 bio->bi_next = NULL;
5685 bio->bi_rw |= rw;
5686
5687 spin_lock(&device->io_lock);
5688 if (bio->bi_rw & REQ_SYNC)
5689 pending_bios = &device->pending_sync_bios;
5690 else
5691 pending_bios = &device->pending_bios;
5692
5693 if (pending_bios->tail)
5694 pending_bios->tail->bi_next = bio;
5695
5696 pending_bios->tail = bio;
5697 if (!pending_bios->head)
5698 pending_bios->head = bio;
5699 if (device->running_pending)
5700 should_queue = 0;
5701
5702 spin_unlock(&device->io_lock);
5703
5704 if (should_queue)
5705 btrfs_queue_work(root->fs_info->submit_workers,
5706 &device->work);
5707 }
5708
5709 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5710 sector_t sector)
5711 {
5712 struct bio_vec *prev;
5713 struct request_queue *q = bdev_get_queue(bdev);
5714 unsigned int max_sectors = queue_max_sectors(q);
5715 struct bvec_merge_data bvm = {
5716 .bi_bdev = bdev,
5717 .bi_sector = sector,
5718 .bi_rw = bio->bi_rw,
5719 };
5720
5721 if (WARN_ON(bio->bi_vcnt == 0))
5722 return 1;
5723
5724 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5725 if (bio_sectors(bio) > max_sectors)
5726 return 0;
5727
5728 if (!q->merge_bvec_fn)
5729 return 1;
5730
5731 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5732 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5733 return 0;
5734 return 1;
5735 }
5736
5737 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5738 struct bio *bio, u64 physical, int dev_nr,
5739 int rw, int async)
5740 {
5741 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5742
5743 bio->bi_private = bbio;
5744 btrfs_io_bio(bio)->stripe_index = dev_nr;
5745 bio->bi_end_io = btrfs_end_bio;
5746 bio->bi_iter.bi_sector = physical >> 9;
5747 #ifdef DEBUG
5748 {
5749 struct rcu_string *name;
5750
5751 rcu_read_lock();
5752 name = rcu_dereference(dev->name);
5753 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5754 "(%s id %llu), size=%u\n", rw,
5755 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5756 name->str, dev->devid, bio->bi_iter.bi_size);
5757 rcu_read_unlock();
5758 }
5759 #endif
5760 bio->bi_bdev = dev->bdev;
5761
5762 btrfs_bio_counter_inc_noblocked(root->fs_info);
5763
5764 if (async)
5765 btrfs_schedule_bio(root, dev, rw, bio);
5766 else
5767 btrfsic_submit_bio(rw, bio);
5768 }
5769
5770 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5771 struct bio *first_bio, struct btrfs_device *dev,
5772 int dev_nr, int rw, int async)
5773 {
5774 struct bio_vec *bvec = first_bio->bi_io_vec;
5775 struct bio *bio;
5776 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5777 u64 physical = bbio->stripes[dev_nr].physical;
5778
5779 again:
5780 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5781 if (!bio)
5782 return -ENOMEM;
5783
5784 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5785 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5786 bvec->bv_offset) < bvec->bv_len) {
5787 u64 len = bio->bi_iter.bi_size;
5788
5789 atomic_inc(&bbio->stripes_pending);
5790 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5791 rw, async);
5792 physical += len;
5793 goto again;
5794 }
5795 bvec++;
5796 }
5797
5798 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5799 return 0;
5800 }
5801
5802 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5803 {
5804 atomic_inc(&bbio->error);
5805 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5806 /* Shoud be the original bio. */
5807 WARN_ON(bio != bbio->orig_bio);
5808
5809 bio->bi_private = bbio->private;
5810 bio->bi_end_io = bbio->end_io;
5811 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5812 bio->bi_iter.bi_sector = logical >> 9;
5813
5814 btrfs_end_bbio(bbio, bio, -EIO);
5815 }
5816 }
5817
5818 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5819 int mirror_num, int async_submit)
5820 {
5821 struct btrfs_device *dev;
5822 struct bio *first_bio = bio;
5823 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5824 u64 length = 0;
5825 u64 map_length;
5826 int ret;
5827 int dev_nr;
5828 int total_devs;
5829 struct btrfs_bio *bbio = NULL;
5830
5831 length = bio->bi_iter.bi_size;
5832 map_length = length;
5833
5834 btrfs_bio_counter_inc_blocked(root->fs_info);
5835 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5836 mirror_num, 1);
5837 if (ret) {
5838 btrfs_bio_counter_dec(root->fs_info);
5839 return ret;
5840 }
5841
5842 total_devs = bbio->num_stripes;
5843 bbio->orig_bio = first_bio;
5844 bbio->private = first_bio->bi_private;
5845 bbio->end_io = first_bio->bi_end_io;
5846 bbio->fs_info = root->fs_info;
5847 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5848
5849 if (bbio->raid_map) {
5850 /* In this case, map_length has been set to the length of
5851 a single stripe; not the whole write */
5852 if (rw & WRITE) {
5853 ret = raid56_parity_write(root, bio, bbio, map_length);
5854 } else {
5855 ret = raid56_parity_recover(root, bio, bbio, map_length,
5856 mirror_num, 1);
5857 }
5858
5859 btrfs_bio_counter_dec(root->fs_info);
5860 return ret;
5861 }
5862
5863 if (map_length < length) {
5864 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5865 logical, length, map_length);
5866 BUG();
5867 }
5868
5869 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5870 dev = bbio->stripes[dev_nr].dev;
5871 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5872 bbio_error(bbio, first_bio, logical);
5873 continue;
5874 }
5875
5876 /*
5877 * Check and see if we're ok with this bio based on it's size
5878 * and offset with the given device.
5879 */
5880 if (!bio_size_ok(dev->bdev, first_bio,
5881 bbio->stripes[dev_nr].physical >> 9)) {
5882 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5883 dev_nr, rw, async_submit);
5884 BUG_ON(ret);
5885 continue;
5886 }
5887
5888 if (dev_nr < total_devs - 1) {
5889 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5890 BUG_ON(!bio); /* -ENOMEM */
5891 } else {
5892 bio = first_bio;
5893 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5894 }
5895
5896 submit_stripe_bio(root, bbio, bio,
5897 bbio->stripes[dev_nr].physical, dev_nr, rw,
5898 async_submit);
5899 }
5900 btrfs_bio_counter_dec(root->fs_info);
5901 return 0;
5902 }
5903
5904 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5905 u8 *uuid, u8 *fsid)
5906 {
5907 struct btrfs_device *device;
5908 struct btrfs_fs_devices *cur_devices;
5909
5910 cur_devices = fs_info->fs_devices;
5911 while (cur_devices) {
5912 if (!fsid ||
5913 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5914 device = __find_device(&cur_devices->devices,
5915 devid, uuid);
5916 if (device)
5917 return device;
5918 }
5919 cur_devices = cur_devices->seed;
5920 }
5921 return NULL;
5922 }
5923
5924 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5925 struct btrfs_fs_devices *fs_devices,
5926 u64 devid, u8 *dev_uuid)
5927 {
5928 struct btrfs_device *device;
5929
5930 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5931 if (IS_ERR(device))
5932 return NULL;
5933
5934 list_add(&device->dev_list, &fs_devices->devices);
5935 device->fs_devices = fs_devices;
5936 fs_devices->num_devices++;
5937
5938 device->missing = 1;
5939 fs_devices->missing_devices++;
5940
5941 return device;
5942 }
5943
5944 /**
5945 * btrfs_alloc_device - allocate struct btrfs_device
5946 * @fs_info: used only for generating a new devid, can be NULL if
5947 * devid is provided (i.e. @devid != NULL).
5948 * @devid: a pointer to devid for this device. If NULL a new devid
5949 * is generated.
5950 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5951 * is generated.
5952 *
5953 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5954 * on error. Returned struct is not linked onto any lists and can be
5955 * destroyed with kfree() right away.
5956 */
5957 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5958 const u64 *devid,
5959 const u8 *uuid)
5960 {
5961 struct btrfs_device *dev;
5962 u64 tmp;
5963
5964 if (WARN_ON(!devid && !fs_info))
5965 return ERR_PTR(-EINVAL);
5966
5967 dev = __alloc_device();
5968 if (IS_ERR(dev))
5969 return dev;
5970
5971 if (devid)
5972 tmp = *devid;
5973 else {
5974 int ret;
5975
5976 ret = find_next_devid(fs_info, &tmp);
5977 if (ret) {
5978 kfree(dev);
5979 return ERR_PTR(ret);
5980 }
5981 }
5982 dev->devid = tmp;
5983
5984 if (uuid)
5985 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5986 else
5987 generate_random_uuid(dev->uuid);
5988
5989 btrfs_init_work(&dev->work, btrfs_submit_helper,
5990 pending_bios_fn, NULL, NULL);
5991
5992 return dev;
5993 }
5994
5995 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5996 struct extent_buffer *leaf,
5997 struct btrfs_chunk *chunk)
5998 {
5999 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6000 struct map_lookup *map;
6001 struct extent_map *em;
6002 u64 logical;
6003 u64 length;
6004 u64 devid;
6005 u8 uuid[BTRFS_UUID_SIZE];
6006 int num_stripes;
6007 int ret;
6008 int i;
6009
6010 logical = key->offset;
6011 length = btrfs_chunk_length(leaf, chunk);
6012
6013 read_lock(&map_tree->map_tree.lock);
6014 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6015 read_unlock(&map_tree->map_tree.lock);
6016
6017 /* already mapped? */
6018 if (em && em->start <= logical && em->start + em->len > logical) {
6019 free_extent_map(em);
6020 return 0;
6021 } else if (em) {
6022 free_extent_map(em);
6023 }
6024
6025 em = alloc_extent_map();
6026 if (!em)
6027 return -ENOMEM;
6028 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6029 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6030 if (!map) {
6031 free_extent_map(em);
6032 return -ENOMEM;
6033 }
6034
6035 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6036 em->bdev = (struct block_device *)map;
6037 em->start = logical;
6038 em->len = length;
6039 em->orig_start = 0;
6040 em->block_start = 0;
6041 em->block_len = em->len;
6042
6043 map->num_stripes = num_stripes;
6044 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6045 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6046 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6047 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6048 map->type = btrfs_chunk_type(leaf, chunk);
6049 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6050 for (i = 0; i < num_stripes; i++) {
6051 map->stripes[i].physical =
6052 btrfs_stripe_offset_nr(leaf, chunk, i);
6053 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6054 read_extent_buffer(leaf, uuid, (unsigned long)
6055 btrfs_stripe_dev_uuid_nr(chunk, i),
6056 BTRFS_UUID_SIZE);
6057 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6058 uuid, NULL);
6059 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6060 free_extent_map(em);
6061 return -EIO;
6062 }
6063 if (!map->stripes[i].dev) {
6064 map->stripes[i].dev =
6065 add_missing_dev(root, root->fs_info->fs_devices,
6066 devid, uuid);
6067 if (!map->stripes[i].dev) {
6068 free_extent_map(em);
6069 return -EIO;
6070 }
6071 }
6072 map->stripes[i].dev->in_fs_metadata = 1;
6073 }
6074
6075 write_lock(&map_tree->map_tree.lock);
6076 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6077 write_unlock(&map_tree->map_tree.lock);
6078 BUG_ON(ret); /* Tree corruption */
6079 free_extent_map(em);
6080
6081 return 0;
6082 }
6083
6084 static void fill_device_from_item(struct extent_buffer *leaf,
6085 struct btrfs_dev_item *dev_item,
6086 struct btrfs_device *device)
6087 {
6088 unsigned long ptr;
6089
6090 device->devid = btrfs_device_id(leaf, dev_item);
6091 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6092 device->total_bytes = device->disk_total_bytes;
6093 device->commit_total_bytes = device->disk_total_bytes;
6094 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6095 device->commit_bytes_used = device->bytes_used;
6096 device->type = btrfs_device_type(leaf, dev_item);
6097 device->io_align = btrfs_device_io_align(leaf, dev_item);
6098 device->io_width = btrfs_device_io_width(leaf, dev_item);
6099 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6100 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6101 device->is_tgtdev_for_dev_replace = 0;
6102
6103 ptr = btrfs_device_uuid(dev_item);
6104 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6105 }
6106
6107 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6108 u8 *fsid)
6109 {
6110 struct btrfs_fs_devices *fs_devices;
6111 int ret;
6112
6113 BUG_ON(!mutex_is_locked(&uuid_mutex));
6114
6115 fs_devices = root->fs_info->fs_devices->seed;
6116 while (fs_devices) {
6117 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6118 return fs_devices;
6119
6120 fs_devices = fs_devices->seed;
6121 }
6122
6123 fs_devices = find_fsid(fsid);
6124 if (!fs_devices) {
6125 if (!btrfs_test_opt(root, DEGRADED))
6126 return ERR_PTR(-ENOENT);
6127
6128 fs_devices = alloc_fs_devices(fsid);
6129 if (IS_ERR(fs_devices))
6130 return fs_devices;
6131
6132 fs_devices->seeding = 1;
6133 fs_devices->opened = 1;
6134 return fs_devices;
6135 }
6136
6137 fs_devices = clone_fs_devices(fs_devices);
6138 if (IS_ERR(fs_devices))
6139 return fs_devices;
6140
6141 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6142 root->fs_info->bdev_holder);
6143 if (ret) {
6144 free_fs_devices(fs_devices);
6145 fs_devices = ERR_PTR(ret);
6146 goto out;
6147 }
6148
6149 if (!fs_devices->seeding) {
6150 __btrfs_close_devices(fs_devices);
6151 free_fs_devices(fs_devices);
6152 fs_devices = ERR_PTR(-EINVAL);
6153 goto out;
6154 }
6155
6156 fs_devices->seed = root->fs_info->fs_devices->seed;
6157 root->fs_info->fs_devices->seed = fs_devices;
6158 out:
6159 return fs_devices;
6160 }
6161
6162 static int read_one_dev(struct btrfs_root *root,
6163 struct extent_buffer *leaf,
6164 struct btrfs_dev_item *dev_item)
6165 {
6166 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6167 struct btrfs_device *device;
6168 u64 devid;
6169 int ret;
6170 u8 fs_uuid[BTRFS_UUID_SIZE];
6171 u8 dev_uuid[BTRFS_UUID_SIZE];
6172
6173 devid = btrfs_device_id(leaf, dev_item);
6174 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6175 BTRFS_UUID_SIZE);
6176 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6177 BTRFS_UUID_SIZE);
6178
6179 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6180 fs_devices = open_seed_devices(root, fs_uuid);
6181 if (IS_ERR(fs_devices))
6182 return PTR_ERR(fs_devices);
6183 }
6184
6185 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6186 if (!device) {
6187 if (!btrfs_test_opt(root, DEGRADED))
6188 return -EIO;
6189
6190 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6191 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6192 if (!device)
6193 return -ENOMEM;
6194 } else {
6195 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6196 return -EIO;
6197
6198 if(!device->bdev && !device->missing) {
6199 /*
6200 * this happens when a device that was properly setup
6201 * in the device info lists suddenly goes bad.
6202 * device->bdev is NULL, and so we have to set
6203 * device->missing to one here
6204 */
6205 device->fs_devices->missing_devices++;
6206 device->missing = 1;
6207 }
6208
6209 /* Move the device to its own fs_devices */
6210 if (device->fs_devices != fs_devices) {
6211 ASSERT(device->missing);
6212
6213 list_move(&device->dev_list, &fs_devices->devices);
6214 device->fs_devices->num_devices--;
6215 fs_devices->num_devices++;
6216
6217 device->fs_devices->missing_devices--;
6218 fs_devices->missing_devices++;
6219
6220 device->fs_devices = fs_devices;
6221 }
6222 }
6223
6224 if (device->fs_devices != root->fs_info->fs_devices) {
6225 BUG_ON(device->writeable);
6226 if (device->generation !=
6227 btrfs_device_generation(leaf, dev_item))
6228 return -EINVAL;
6229 }
6230
6231 fill_device_from_item(leaf, dev_item, device);
6232 device->in_fs_metadata = 1;
6233 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6234 device->fs_devices->total_rw_bytes += device->total_bytes;
6235 spin_lock(&root->fs_info->free_chunk_lock);
6236 root->fs_info->free_chunk_space += device->total_bytes -
6237 device->bytes_used;
6238 spin_unlock(&root->fs_info->free_chunk_lock);
6239 }
6240 ret = 0;
6241 return ret;
6242 }
6243
6244 int btrfs_read_sys_array(struct btrfs_root *root)
6245 {
6246 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6247 struct extent_buffer *sb;
6248 struct btrfs_disk_key *disk_key;
6249 struct btrfs_chunk *chunk;
6250 u8 *array_ptr;
6251 unsigned long sb_array_offset;
6252 int ret = 0;
6253 u32 num_stripes;
6254 u32 array_size;
6255 u32 len = 0;
6256 u32 cur_offset;
6257 struct btrfs_key key;
6258
6259 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6260 /*
6261 * This will create extent buffer of nodesize, superblock size is
6262 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6263 * overallocate but we can keep it as-is, only the first page is used.
6264 */
6265 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6266 if (!sb)
6267 return -ENOMEM;
6268 btrfs_set_buffer_uptodate(sb);
6269 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6270 /*
6271 * The sb extent buffer is artifical and just used to read the system array.
6272 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6273 * pages up-to-date when the page is larger: extent does not cover the
6274 * whole page and consequently check_page_uptodate does not find all
6275 * the page's extents up-to-date (the hole beyond sb),
6276 * write_extent_buffer then triggers a WARN_ON.
6277 *
6278 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6279 * but sb spans only this function. Add an explicit SetPageUptodate call
6280 * to silence the warning eg. on PowerPC 64.
6281 */
6282 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6283 SetPageUptodate(sb->pages[0]);
6284
6285 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6286 array_size = btrfs_super_sys_array_size(super_copy);
6287
6288 array_ptr = super_copy->sys_chunk_array;
6289 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6290 cur_offset = 0;
6291
6292 while (cur_offset < array_size) {
6293 disk_key = (struct btrfs_disk_key *)array_ptr;
6294 len = sizeof(*disk_key);
6295 if (cur_offset + len > array_size)
6296 goto out_short_read;
6297
6298 btrfs_disk_key_to_cpu(&key, disk_key);
6299
6300 array_ptr += len;
6301 sb_array_offset += len;
6302 cur_offset += len;
6303
6304 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6305 chunk = (struct btrfs_chunk *)sb_array_offset;
6306 /*
6307 * At least one btrfs_chunk with one stripe must be
6308 * present, exact stripe count check comes afterwards
6309 */
6310 len = btrfs_chunk_item_size(1);
6311 if (cur_offset + len > array_size)
6312 goto out_short_read;
6313
6314 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6315 len = btrfs_chunk_item_size(num_stripes);
6316 if (cur_offset + len > array_size)
6317 goto out_short_read;
6318
6319 ret = read_one_chunk(root, &key, sb, chunk);
6320 if (ret)
6321 break;
6322 } else {
6323 ret = -EIO;
6324 break;
6325 }
6326 array_ptr += len;
6327 sb_array_offset += len;
6328 cur_offset += len;
6329 }
6330 free_extent_buffer(sb);
6331 return ret;
6332
6333 out_short_read:
6334 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6335 len, cur_offset);
6336 free_extent_buffer(sb);
6337 return -EIO;
6338 }
6339
6340 int btrfs_read_chunk_tree(struct btrfs_root *root)
6341 {
6342 struct btrfs_path *path;
6343 struct extent_buffer *leaf;
6344 struct btrfs_key key;
6345 struct btrfs_key found_key;
6346 int ret;
6347 int slot;
6348
6349 root = root->fs_info->chunk_root;
6350
6351 path = btrfs_alloc_path();
6352 if (!path)
6353 return -ENOMEM;
6354
6355 mutex_lock(&uuid_mutex);
6356 lock_chunks(root);
6357
6358 /*
6359 * Read all device items, and then all the chunk items. All
6360 * device items are found before any chunk item (their object id
6361 * is smaller than the lowest possible object id for a chunk
6362 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6363 */
6364 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6365 key.offset = 0;
6366 key.type = 0;
6367 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6368 if (ret < 0)
6369 goto error;
6370 while (1) {
6371 leaf = path->nodes[0];
6372 slot = path->slots[0];
6373 if (slot >= btrfs_header_nritems(leaf)) {
6374 ret = btrfs_next_leaf(root, path);
6375 if (ret == 0)
6376 continue;
6377 if (ret < 0)
6378 goto error;
6379 break;
6380 }
6381 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6382 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6383 struct btrfs_dev_item *dev_item;
6384 dev_item = btrfs_item_ptr(leaf, slot,
6385 struct btrfs_dev_item);
6386 ret = read_one_dev(root, leaf, dev_item);
6387 if (ret)
6388 goto error;
6389 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6390 struct btrfs_chunk *chunk;
6391 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6392 ret = read_one_chunk(root, &found_key, leaf, chunk);
6393 if (ret)
6394 goto error;
6395 }
6396 path->slots[0]++;
6397 }
6398 ret = 0;
6399 error:
6400 unlock_chunks(root);
6401 mutex_unlock(&uuid_mutex);
6402
6403 btrfs_free_path(path);
6404 return ret;
6405 }
6406
6407 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6408 {
6409 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6410 struct btrfs_device *device;
6411
6412 while (fs_devices) {
6413 mutex_lock(&fs_devices->device_list_mutex);
6414 list_for_each_entry(device, &fs_devices->devices, dev_list)
6415 device->dev_root = fs_info->dev_root;
6416 mutex_unlock(&fs_devices->device_list_mutex);
6417
6418 fs_devices = fs_devices->seed;
6419 }
6420 }
6421
6422 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6423 {
6424 int i;
6425
6426 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6427 btrfs_dev_stat_reset(dev, i);
6428 }
6429
6430 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6431 {
6432 struct btrfs_key key;
6433 struct btrfs_key found_key;
6434 struct btrfs_root *dev_root = fs_info->dev_root;
6435 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6436 struct extent_buffer *eb;
6437 int slot;
6438 int ret = 0;
6439 struct btrfs_device *device;
6440 struct btrfs_path *path = NULL;
6441 int i;
6442
6443 path = btrfs_alloc_path();
6444 if (!path) {
6445 ret = -ENOMEM;
6446 goto out;
6447 }
6448
6449 mutex_lock(&fs_devices->device_list_mutex);
6450 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6451 int item_size;
6452 struct btrfs_dev_stats_item *ptr;
6453
6454 key.objectid = 0;
6455 key.type = BTRFS_DEV_STATS_KEY;
6456 key.offset = device->devid;
6457 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6458 if (ret) {
6459 __btrfs_reset_dev_stats(device);
6460 device->dev_stats_valid = 1;
6461 btrfs_release_path(path);
6462 continue;
6463 }
6464 slot = path->slots[0];
6465 eb = path->nodes[0];
6466 btrfs_item_key_to_cpu(eb, &found_key, slot);
6467 item_size = btrfs_item_size_nr(eb, slot);
6468
6469 ptr = btrfs_item_ptr(eb, slot,
6470 struct btrfs_dev_stats_item);
6471
6472 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6473 if (item_size >= (1 + i) * sizeof(__le64))
6474 btrfs_dev_stat_set(device, i,
6475 btrfs_dev_stats_value(eb, ptr, i));
6476 else
6477 btrfs_dev_stat_reset(device, i);
6478 }
6479
6480 device->dev_stats_valid = 1;
6481 btrfs_dev_stat_print_on_load(device);
6482 btrfs_release_path(path);
6483 }
6484 mutex_unlock(&fs_devices->device_list_mutex);
6485
6486 out:
6487 btrfs_free_path(path);
6488 return ret < 0 ? ret : 0;
6489 }
6490
6491 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6492 struct btrfs_root *dev_root,
6493 struct btrfs_device *device)
6494 {
6495 struct btrfs_path *path;
6496 struct btrfs_key key;
6497 struct extent_buffer *eb;
6498 struct btrfs_dev_stats_item *ptr;
6499 int ret;
6500 int i;
6501
6502 key.objectid = 0;
6503 key.type = BTRFS_DEV_STATS_KEY;
6504 key.offset = device->devid;
6505
6506 path = btrfs_alloc_path();
6507 BUG_ON(!path);
6508 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6509 if (ret < 0) {
6510 printk_in_rcu(KERN_WARNING "BTRFS: "
6511 "error %d while searching for dev_stats item for device %s!\n",
6512 ret, rcu_str_deref(device->name));
6513 goto out;
6514 }
6515
6516 if (ret == 0 &&
6517 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6518 /* need to delete old one and insert a new one */
6519 ret = btrfs_del_item(trans, dev_root, path);
6520 if (ret != 0) {
6521 printk_in_rcu(KERN_WARNING "BTRFS: "
6522 "delete too small dev_stats item for device %s failed %d!\n",
6523 rcu_str_deref(device->name), ret);
6524 goto out;
6525 }
6526 ret = 1;
6527 }
6528
6529 if (ret == 1) {
6530 /* need to insert a new item */
6531 btrfs_release_path(path);
6532 ret = btrfs_insert_empty_item(trans, dev_root, path,
6533 &key, sizeof(*ptr));
6534 if (ret < 0) {
6535 printk_in_rcu(KERN_WARNING "BTRFS: "
6536 "insert dev_stats item for device %s failed %d!\n",
6537 rcu_str_deref(device->name), ret);
6538 goto out;
6539 }
6540 }
6541
6542 eb = path->nodes[0];
6543 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6544 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6545 btrfs_set_dev_stats_value(eb, ptr, i,
6546 btrfs_dev_stat_read(device, i));
6547 btrfs_mark_buffer_dirty(eb);
6548
6549 out:
6550 btrfs_free_path(path);
6551 return ret;
6552 }
6553
6554 /*
6555 * called from commit_transaction. Writes all changed device stats to disk.
6556 */
6557 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6558 struct btrfs_fs_info *fs_info)
6559 {
6560 struct btrfs_root *dev_root = fs_info->dev_root;
6561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562 struct btrfs_device *device;
6563 int stats_cnt;
6564 int ret = 0;
6565
6566 mutex_lock(&fs_devices->device_list_mutex);
6567 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6568 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6569 continue;
6570
6571 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6572 ret = update_dev_stat_item(trans, dev_root, device);
6573 if (!ret)
6574 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6575 }
6576 mutex_unlock(&fs_devices->device_list_mutex);
6577
6578 return ret;
6579 }
6580
6581 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6582 {
6583 btrfs_dev_stat_inc(dev, index);
6584 btrfs_dev_stat_print_on_error(dev);
6585 }
6586
6587 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6588 {
6589 if (!dev->dev_stats_valid)
6590 return;
6591 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6592 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6593 rcu_str_deref(dev->name),
6594 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6595 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6596 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6597 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6598 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6599 }
6600
6601 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6602 {
6603 int i;
6604
6605 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6606 if (btrfs_dev_stat_read(dev, i) != 0)
6607 break;
6608 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6609 return; /* all values == 0, suppress message */
6610
6611 printk_in_rcu(KERN_INFO "BTRFS: "
6612 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6613 rcu_str_deref(dev->name),
6614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6617 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6618 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6619 }
6620
6621 int btrfs_get_dev_stats(struct btrfs_root *root,
6622 struct btrfs_ioctl_get_dev_stats *stats)
6623 {
6624 struct btrfs_device *dev;
6625 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6626 int i;
6627
6628 mutex_lock(&fs_devices->device_list_mutex);
6629 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6630 mutex_unlock(&fs_devices->device_list_mutex);
6631
6632 if (!dev) {
6633 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6634 return -ENODEV;
6635 } else if (!dev->dev_stats_valid) {
6636 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6637 return -ENODEV;
6638 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6639 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6640 if (stats->nr_items > i)
6641 stats->values[i] =
6642 btrfs_dev_stat_read_and_reset(dev, i);
6643 else
6644 btrfs_dev_stat_reset(dev, i);
6645 }
6646 } else {
6647 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6648 if (stats->nr_items > i)
6649 stats->values[i] = btrfs_dev_stat_read(dev, i);
6650 }
6651 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6652 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6653 return 0;
6654 }
6655
6656 int btrfs_scratch_superblock(struct btrfs_device *device)
6657 {
6658 struct buffer_head *bh;
6659 struct btrfs_super_block *disk_super;
6660
6661 bh = btrfs_read_dev_super(device->bdev);
6662 if (!bh)
6663 return -EINVAL;
6664 disk_super = (struct btrfs_super_block *)bh->b_data;
6665
6666 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6667 set_buffer_dirty(bh);
6668 sync_dirty_buffer(bh);
6669 brelse(bh);
6670
6671 return 0;
6672 }
6673
6674 /*
6675 * Update the size of all devices, which is used for writing out the
6676 * super blocks.
6677 */
6678 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6679 {
6680 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6681 struct btrfs_device *curr, *next;
6682
6683 if (list_empty(&fs_devices->resized_devices))
6684 return;
6685
6686 mutex_lock(&fs_devices->device_list_mutex);
6687 lock_chunks(fs_info->dev_root);
6688 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6689 resized_list) {
6690 list_del_init(&curr->resized_list);
6691 curr->commit_total_bytes = curr->disk_total_bytes;
6692 }
6693 unlock_chunks(fs_info->dev_root);
6694 mutex_unlock(&fs_devices->device_list_mutex);
6695 }
6696
6697 /* Must be invoked during the transaction commit */
6698 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6699 struct btrfs_transaction *transaction)
6700 {
6701 struct extent_map *em;
6702 struct map_lookup *map;
6703 struct btrfs_device *dev;
6704 int i;
6705
6706 if (list_empty(&transaction->pending_chunks))
6707 return;
6708
6709 /* In order to kick the device replace finish process */
6710 lock_chunks(root);
6711 list_for_each_entry(em, &transaction->pending_chunks, list) {
6712 map = (struct map_lookup *)em->bdev;
6713
6714 for (i = 0; i < map->num_stripes; i++) {
6715 dev = map->stripes[i].dev;
6716 dev->commit_bytes_used = dev->bytes_used;
6717 }
6718 }
6719 unlock_chunks(root);
6720 }