]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/volumes.h
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_VOLUMES_
20 #define __BTRFS_VOLUMES_
21
22 #include <linux/bio.h>
23 #include <linux/sort.h>
24 #include <linux/btrfs.h>
25 #include "async-thread.h"
26
27 extern struct mutex uuid_mutex;
28
29 #define BTRFS_STRIPE_LEN SZ_64K
30
31 struct buffer_head;
32 struct btrfs_pending_bios {
33 struct bio *head;
34 struct bio *tail;
35 };
36
37 /*
38 * Use sequence counter to get consistent device stat data on
39 * 32-bit processors.
40 */
41 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
42 #include <linux/seqlock.h>
43 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
44 #define btrfs_device_data_ordered_init(device) \
45 seqcount_init(&device->data_seqcount)
46 #else
47 #define btrfs_device_data_ordered_init(device) do { } while (0)
48 #endif
49
50 struct btrfs_device {
51 struct list_head dev_list;
52 struct list_head dev_alloc_list;
53 struct btrfs_fs_devices *fs_devices;
54 struct btrfs_fs_info *fs_info;
55
56 struct rcu_string *name;
57
58 u64 generation;
59
60 spinlock_t io_lock ____cacheline_aligned;
61 int running_pending;
62 /* regular prio bios */
63 struct btrfs_pending_bios pending_bios;
64 /* sync bios */
65 struct btrfs_pending_bios pending_sync_bios;
66
67 struct block_device *bdev;
68
69 /* the mode sent to blkdev_get */
70 fmode_t mode;
71
72 int writeable;
73 int in_fs_metadata;
74 int missing;
75 int can_discard;
76 int is_tgtdev_for_dev_replace;
77 int last_flush_error;
78 int flush_bio_sent;
79
80 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
81 seqcount_t data_seqcount;
82 #endif
83
84 /* the internal btrfs device id */
85 u64 devid;
86
87 /* size of the device in memory */
88 u64 total_bytes;
89
90 /* size of the device on disk */
91 u64 disk_total_bytes;
92
93 /* bytes used */
94 u64 bytes_used;
95
96 /* optimal io alignment for this device */
97 u32 io_align;
98
99 /* optimal io width for this device */
100 u32 io_width;
101 /* type and info about this device */
102 u64 type;
103
104 /* minimal io size for this device */
105 u32 sector_size;
106
107 /* physical drive uuid (or lvm uuid) */
108 u8 uuid[BTRFS_UUID_SIZE];
109
110 /*
111 * size of the device on the current transaction
112 *
113 * This variant is update when committing the transaction,
114 * and protected by device_list_mutex
115 */
116 u64 commit_total_bytes;
117
118 /* bytes used on the current transaction */
119 u64 commit_bytes_used;
120 /*
121 * used to manage the device which is resized
122 *
123 * It is protected by chunk_lock.
124 */
125 struct list_head resized_list;
126
127 /* for sending down flush barriers */
128 struct bio *flush_bio;
129 struct completion flush_wait;
130
131 /* per-device scrub information */
132 struct scrub_ctx *scrub_device;
133
134 struct btrfs_work work;
135 struct rcu_head rcu;
136 struct work_struct rcu_work;
137
138 /* readahead state */
139 spinlock_t reada_lock;
140 atomic_t reada_in_flight;
141 u64 reada_next;
142 struct reada_zone *reada_curr_zone;
143 struct radix_tree_root reada_zones;
144 struct radix_tree_root reada_extents;
145
146 /* disk I/O failure stats. For detailed description refer to
147 * enum btrfs_dev_stat_values in ioctl.h */
148 int dev_stats_valid;
149
150 /* Counter to record the change of device stats */
151 atomic_t dev_stats_ccnt;
152 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
153 };
154
155 /*
156 * If we read those variants at the context of their own lock, we needn't
157 * use the following helpers, reading them directly is safe.
158 */
159 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
160 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
161 static inline u64 \
162 btrfs_device_get_##name(const struct btrfs_device *dev) \
163 { \
164 u64 size; \
165 unsigned int seq; \
166 \
167 do { \
168 seq = read_seqcount_begin(&dev->data_seqcount); \
169 size = dev->name; \
170 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
171 return size; \
172 } \
173 \
174 static inline void \
175 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
176 { \
177 preempt_disable(); \
178 write_seqcount_begin(&dev->data_seqcount); \
179 dev->name = size; \
180 write_seqcount_end(&dev->data_seqcount); \
181 preempt_enable(); \
182 }
183 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
184 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
185 static inline u64 \
186 btrfs_device_get_##name(const struct btrfs_device *dev) \
187 { \
188 u64 size; \
189 \
190 preempt_disable(); \
191 size = dev->name; \
192 preempt_enable(); \
193 return size; \
194 } \
195 \
196 static inline void \
197 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
198 { \
199 preempt_disable(); \
200 dev->name = size; \
201 preempt_enable(); \
202 }
203 #else
204 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
205 static inline u64 \
206 btrfs_device_get_##name(const struct btrfs_device *dev) \
207 { \
208 return dev->name; \
209 } \
210 \
211 static inline void \
212 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
213 { \
214 dev->name = size; \
215 }
216 #endif
217
218 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
219 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
220 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
221
222 struct btrfs_fs_devices {
223 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
224
225 u64 num_devices;
226 u64 open_devices;
227 u64 rw_devices;
228 u64 missing_devices;
229 u64 total_rw_bytes;
230 u64 total_devices;
231 struct block_device *latest_bdev;
232
233 /* all of the devices in the FS, protected by a mutex
234 * so we can safely walk it to write out the supers without
235 * worrying about add/remove by the multi-device code.
236 * Scrubbing super can kick off supers writing by holding
237 * this mutex lock.
238 */
239 struct mutex device_list_mutex;
240 struct list_head devices;
241
242 struct list_head resized_devices;
243 /* devices not currently being allocated */
244 struct list_head alloc_list;
245 struct list_head list;
246
247 struct btrfs_fs_devices *seed;
248 int seeding;
249
250 int opened;
251
252 /* set when we find or add a device that doesn't have the
253 * nonrot flag set
254 */
255 int rotating;
256
257 struct btrfs_fs_info *fs_info;
258 /* sysfs kobjects */
259 struct kobject fsid_kobj;
260 struct kobject *device_dir_kobj;
261 struct completion kobj_unregister;
262 };
263
264 #define BTRFS_BIO_INLINE_CSUM_SIZE 64
265
266 /*
267 * we need the mirror number and stripe index to be passed around
268 * the call chain while we are processing end_io (especially errors).
269 * Really, what we need is a btrfs_bio structure that has this info
270 * and is properly sized with its stripe array, but we're not there
271 * quite yet. We have our own btrfs bioset, and all of the bios
272 * we allocate are actually btrfs_io_bios. We'll cram as much of
273 * struct btrfs_bio as we can into this over time.
274 */
275 typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err);
276 struct btrfs_io_bio {
277 unsigned int mirror_num;
278 unsigned int stripe_index;
279 u64 logical;
280 u8 *csum;
281 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
282 u8 *csum_allocated;
283 btrfs_io_bio_end_io_t *end_io;
284 struct bvec_iter iter;
285 /*
286 * This member must come last, bio_alloc_bioset will allocate enough
287 * bytes for entire btrfs_io_bio but relies on bio being last.
288 */
289 struct bio bio;
290 };
291
292 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
293 {
294 return container_of(bio, struct btrfs_io_bio, bio);
295 }
296
297 struct btrfs_bio_stripe {
298 struct btrfs_device *dev;
299 u64 physical;
300 u64 length; /* only used for discard mappings */
301 };
302
303 struct btrfs_bio;
304 typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
305
306 struct btrfs_bio {
307 refcount_t refs;
308 atomic_t stripes_pending;
309 struct btrfs_fs_info *fs_info;
310 u64 map_type; /* get from map_lookup->type */
311 bio_end_io_t *end_io;
312 struct bio *orig_bio;
313 unsigned long flags;
314 void *private;
315 atomic_t error;
316 int max_errors;
317 int num_stripes;
318 int mirror_num;
319 int num_tgtdevs;
320 int *tgtdev_map;
321 /*
322 * logical block numbers for the start of each stripe
323 * The last one or two are p/q. These are sorted,
324 * so raid_map[0] is the start of our full stripe
325 */
326 u64 *raid_map;
327 struct btrfs_bio_stripe stripes[];
328 };
329
330 struct btrfs_device_info {
331 struct btrfs_device *dev;
332 u64 dev_offset;
333 u64 max_avail;
334 u64 total_avail;
335 };
336
337 struct btrfs_raid_attr {
338 int sub_stripes; /* sub_stripes info for map */
339 int dev_stripes; /* stripes per dev */
340 int devs_max; /* max devs to use */
341 int devs_min; /* min devs needed */
342 int tolerated_failures; /* max tolerated fail devs */
343 int devs_increment; /* ndevs has to be a multiple of this */
344 int ncopies; /* how many copies to data has */
345 };
346
347 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
348 extern const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES];
349 extern const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES];
350
351 struct map_lookup {
352 u64 type;
353 int io_align;
354 int io_width;
355 u64 stripe_len;
356 int sector_size;
357 int num_stripes;
358 int sub_stripes;
359 struct btrfs_bio_stripe stripes[];
360 };
361
362 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
363 (sizeof(struct btrfs_bio_stripe) * (n)))
364
365 struct btrfs_balance_args;
366 struct btrfs_balance_progress;
367 struct btrfs_balance_control {
368 struct btrfs_fs_info *fs_info;
369
370 struct btrfs_balance_args data;
371 struct btrfs_balance_args meta;
372 struct btrfs_balance_args sys;
373
374 u64 flags;
375
376 struct btrfs_balance_progress stat;
377 };
378
379 enum btrfs_map_op {
380 BTRFS_MAP_READ,
381 BTRFS_MAP_WRITE,
382 BTRFS_MAP_DISCARD,
383 BTRFS_MAP_GET_READ_MIRRORS,
384 };
385
386 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
387 {
388 switch (bio_op(bio)) {
389 case REQ_OP_DISCARD:
390 return BTRFS_MAP_DISCARD;
391 case REQ_OP_WRITE:
392 return BTRFS_MAP_WRITE;
393 default:
394 WARN_ON_ONCE(1);
395 case REQ_OP_READ:
396 return BTRFS_MAP_READ;
397 }
398 }
399
400 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
401 u64 end, u64 *length);
402 void btrfs_get_bbio(struct btrfs_bio *bbio);
403 void btrfs_put_bbio(struct btrfs_bio *bbio);
404 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
405 u64 logical, u64 *length,
406 struct btrfs_bio **bbio_ret, int mirror_num);
407 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
408 u64 logical, u64 *length,
409 struct btrfs_bio **bbio_ret);
410 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
411 u64 chunk_start, u64 physical, u64 devid,
412 u64 **logical, int *naddrs, int *stripe_len);
413 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
414 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
415 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
416 struct btrfs_fs_info *fs_info, u64 type);
417 void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
418 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
419 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
420 int mirror_num, int async_submit);
421 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
422 fmode_t flags, void *holder);
423 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
424 struct btrfs_fs_devices **fs_devices_ret);
425 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
426 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step);
427 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
428 struct btrfs_device *device, struct btrfs_device *this_dev);
429 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
430 const char *device_path,
431 struct btrfs_device **device);
432 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
433 const char *devpath,
434 struct btrfs_device **device);
435 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
436 const u64 *devid,
437 const u8 *uuid);
438 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
439 const char *device_path, u64 devid);
440 void btrfs_cleanup_fs_uuids(void);
441 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
442 int btrfs_grow_device(struct btrfs_trans_handle *trans,
443 struct btrfs_device *device, u64 new_size);
444 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
445 u8 *uuid, u8 *fsid);
446 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
447 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
448 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
449 const char *device_path,
450 struct btrfs_device *srcdev,
451 struct btrfs_device **device_out);
452 int btrfs_balance(struct btrfs_balance_control *bctl,
453 struct btrfs_ioctl_balance_args *bargs);
454 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
455 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
456 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
457 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
458 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
459 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
460 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
461 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
462 struct btrfs_device *device, u64 num_bytes,
463 u64 search_start, u64 *start, u64 *max_avail);
464 int find_free_dev_extent(struct btrfs_trans_handle *trans,
465 struct btrfs_device *device, u64 num_bytes,
466 u64 *start, u64 *max_avail);
467 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
468 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
469 struct btrfs_ioctl_get_dev_stats *stats);
470 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
471 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
472 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
473 struct btrfs_fs_info *fs_info);
474 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
475 struct btrfs_device *srcdev);
476 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
477 struct btrfs_device *srcdev);
478 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
479 struct btrfs_device *tgtdev);
480 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
481 struct btrfs_device *tgtdev);
482 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
483 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
484 u64 logical, u64 len, int mirror_num);
485 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
486 struct btrfs_mapping_tree *map_tree,
487 u64 logical);
488 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
489 struct btrfs_fs_info *fs_info,
490 u64 chunk_offset, u64 chunk_size);
491 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
492 struct btrfs_fs_info *fs_info, u64 chunk_offset);
493
494 static inline int btrfs_dev_stats_dirty(struct btrfs_device *dev)
495 {
496 return atomic_read(&dev->dev_stats_ccnt);
497 }
498
499 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
500 int index)
501 {
502 atomic_inc(dev->dev_stat_values + index);
503 smp_mb__before_atomic();
504 atomic_inc(&dev->dev_stats_ccnt);
505 }
506
507 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
508 int index)
509 {
510 return atomic_read(dev->dev_stat_values + index);
511 }
512
513 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
514 int index)
515 {
516 int ret;
517
518 ret = atomic_xchg(dev->dev_stat_values + index, 0);
519 smp_mb__before_atomic();
520 atomic_inc(&dev->dev_stats_ccnt);
521 return ret;
522 }
523
524 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
525 int index, unsigned long val)
526 {
527 atomic_set(dev->dev_stat_values + index, val);
528 smp_mb__before_atomic();
529 atomic_inc(&dev->dev_stats_ccnt);
530 }
531
532 static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
533 int index)
534 {
535 btrfs_dev_stat_set(dev, index, 0);
536 }
537
538 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info);
539 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
540 struct btrfs_transaction *transaction);
541
542 struct list_head *btrfs_get_fs_uuids(void);
543 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
544 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
545
546 #endif