]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/xattr.c
Merge tag 'timers_urgent_for_v5.11_rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / xattr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Red Hat. All rights reserved.
4 */
5
6 #include <linux/init.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/rwsem.h>
10 #include <linux/xattr.h>
11 #include <linux/security.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/iversion.h>
14 #include <linux/sched/mm.h>
15 #include "ctree.h"
16 #include "btrfs_inode.h"
17 #include "transaction.h"
18 #include "xattr.h"
19 #include "disk-io.h"
20 #include "props.h"
21 #include "locking.h"
22
23 int btrfs_getxattr(struct inode *inode, const char *name,
24 void *buffer, size_t size)
25 {
26 struct btrfs_dir_item *di;
27 struct btrfs_root *root = BTRFS_I(inode)->root;
28 struct btrfs_path *path;
29 struct extent_buffer *leaf;
30 int ret = 0;
31 unsigned long data_ptr;
32
33 path = btrfs_alloc_path();
34 if (!path)
35 return -ENOMEM;
36
37 /* lookup the xattr by name */
38 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
39 name, strlen(name), 0);
40 if (!di) {
41 ret = -ENODATA;
42 goto out;
43 } else if (IS_ERR(di)) {
44 ret = PTR_ERR(di);
45 goto out;
46 }
47
48 leaf = path->nodes[0];
49 /* if size is 0, that means we want the size of the attr */
50 if (!size) {
51 ret = btrfs_dir_data_len(leaf, di);
52 goto out;
53 }
54
55 /* now get the data out of our dir_item */
56 if (btrfs_dir_data_len(leaf, di) > size) {
57 ret = -ERANGE;
58 goto out;
59 }
60
61 /*
62 * The way things are packed into the leaf is like this
63 * |struct btrfs_dir_item|name|data|
64 * where name is the xattr name, so security.foo, and data is the
65 * content of the xattr. data_ptr points to the location in memory
66 * where the data starts in the in memory leaf
67 */
68 data_ptr = (unsigned long)((char *)(di + 1) +
69 btrfs_dir_name_len(leaf, di));
70 read_extent_buffer(leaf, buffer, data_ptr,
71 btrfs_dir_data_len(leaf, di));
72 ret = btrfs_dir_data_len(leaf, di);
73
74 out:
75 btrfs_free_path(path);
76 return ret;
77 }
78
79 int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
80 const char *name, const void *value, size_t size, int flags)
81 {
82 struct btrfs_dir_item *di = NULL;
83 struct btrfs_root *root = BTRFS_I(inode)->root;
84 struct btrfs_fs_info *fs_info = root->fs_info;
85 struct btrfs_path *path;
86 size_t name_len = strlen(name);
87 int ret = 0;
88
89 ASSERT(trans);
90
91 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
92 return -ENOSPC;
93
94 path = btrfs_alloc_path();
95 if (!path)
96 return -ENOMEM;
97 path->skip_release_on_error = 1;
98
99 if (!value) {
100 di = btrfs_lookup_xattr(trans, root, path,
101 btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102 if (!di && (flags & XATTR_REPLACE))
103 ret = -ENODATA;
104 else if (IS_ERR(di))
105 ret = PTR_ERR(di);
106 else if (di)
107 ret = btrfs_delete_one_dir_name(trans, root, path, di);
108 goto out;
109 }
110
111 /*
112 * For a replace we can't just do the insert blindly.
113 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114 * doesn't exist. If it exists, fall down below to the insert/replace
115 * path - we can't race with a concurrent xattr delete, because the VFS
116 * locks the inode's i_mutex before calling setxattr or removexattr.
117 */
118 if (flags & XATTR_REPLACE) {
119 ASSERT(inode_is_locked(inode));
120 di = btrfs_lookup_xattr(NULL, root, path,
121 btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122 if (!di)
123 ret = -ENODATA;
124 else if (IS_ERR(di))
125 ret = PTR_ERR(di);
126 if (ret)
127 goto out;
128 btrfs_release_path(path);
129 di = NULL;
130 }
131
132 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133 name, name_len, value, size);
134 if (ret == -EOVERFLOW) {
135 /*
136 * We have an existing item in a leaf, split_leaf couldn't
137 * expand it. That item might have or not a dir_item that
138 * matches our target xattr, so lets check.
139 */
140 ret = 0;
141 btrfs_assert_tree_locked(path->nodes[0]);
142 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143 if (!di && !(flags & XATTR_REPLACE)) {
144 ret = -ENOSPC;
145 goto out;
146 }
147 } else if (ret == -EEXIST) {
148 ret = 0;
149 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150 ASSERT(di); /* logic error */
151 } else if (ret) {
152 goto out;
153 }
154
155 if (di && (flags & XATTR_CREATE)) {
156 ret = -EEXIST;
157 goto out;
158 }
159
160 if (di) {
161 /*
162 * We're doing a replace, and it must be atomic, that is, at
163 * any point in time we have either the old or the new xattr
164 * value in the tree. We don't want readers (getxattr and
165 * listxattrs) to miss a value, this is specially important
166 * for ACLs.
167 */
168 const int slot = path->slots[0];
169 struct extent_buffer *leaf = path->nodes[0];
170 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171 const u32 item_size = btrfs_item_size_nr(leaf, slot);
172 const u32 data_size = sizeof(*di) + name_len + size;
173 struct btrfs_item *item;
174 unsigned long data_ptr;
175 char *ptr;
176
177 if (size > old_data_len) {
178 if (btrfs_leaf_free_space(leaf) <
179 (size - old_data_len)) {
180 ret = -ENOSPC;
181 goto out;
182 }
183 }
184
185 if (old_data_len + name_len + sizeof(*di) == item_size) {
186 /* No other xattrs packed in the same leaf item. */
187 if (size > old_data_len)
188 btrfs_extend_item(path, size - old_data_len);
189 else if (size < old_data_len)
190 btrfs_truncate_item(path, data_size, 1);
191 } else {
192 /* There are other xattrs packed in the same item. */
193 ret = btrfs_delete_one_dir_name(trans, root, path, di);
194 if (ret)
195 goto out;
196 btrfs_extend_item(path, data_size);
197 }
198
199 item = btrfs_item_nr(slot);
200 ptr = btrfs_item_ptr(leaf, slot, char);
201 ptr += btrfs_item_size(leaf, item) - data_size;
202 di = (struct btrfs_dir_item *)ptr;
203 btrfs_set_dir_data_len(leaf, di, size);
204 data_ptr = ((unsigned long)(di + 1)) + name_len;
205 write_extent_buffer(leaf, value, data_ptr, size);
206 btrfs_mark_buffer_dirty(leaf);
207 } else {
208 /*
209 * Insert, and we had space for the xattr, so path->slots[0] is
210 * where our xattr dir_item is and btrfs_insert_xattr_item()
211 * filled it.
212 */
213 }
214 out:
215 btrfs_free_path(path);
216 if (!ret) {
217 set_bit(BTRFS_INODE_COPY_EVERYTHING,
218 &BTRFS_I(inode)->runtime_flags);
219 clear_bit(BTRFS_INODE_NO_XATTRS, &BTRFS_I(inode)->runtime_flags);
220 }
221 return ret;
222 }
223
224 /*
225 * @value: "" makes the attribute to empty, NULL removes it
226 */
227 int btrfs_setxattr_trans(struct inode *inode, const char *name,
228 const void *value, size_t size, int flags)
229 {
230 struct btrfs_root *root = BTRFS_I(inode)->root;
231 struct btrfs_trans_handle *trans;
232 int ret;
233
234 trans = btrfs_start_transaction(root, 2);
235 if (IS_ERR(trans))
236 return PTR_ERR(trans);
237
238 ret = btrfs_setxattr(trans, inode, name, value, size, flags);
239 if (ret)
240 goto out;
241
242 inode_inc_iversion(inode);
243 inode->i_ctime = current_time(inode);
244 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
245 BUG_ON(ret);
246 out:
247 btrfs_end_transaction(trans);
248 return ret;
249 }
250
251 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
252 {
253 struct btrfs_key key;
254 struct inode *inode = d_inode(dentry);
255 struct btrfs_root *root = BTRFS_I(inode)->root;
256 struct btrfs_path *path;
257 int ret = 0;
258 size_t total_size = 0, size_left = size;
259
260 /*
261 * ok we want all objects associated with this id.
262 * NOTE: we set key.offset = 0; because we want to start with the
263 * first xattr that we find and walk forward
264 */
265 key.objectid = btrfs_ino(BTRFS_I(inode));
266 key.type = BTRFS_XATTR_ITEM_KEY;
267 key.offset = 0;
268
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272 path->reada = READA_FORWARD;
273
274 /* search for our xattrs */
275 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
276 if (ret < 0)
277 goto err;
278
279 while (1) {
280 struct extent_buffer *leaf;
281 int slot;
282 struct btrfs_dir_item *di;
283 struct btrfs_key found_key;
284 u32 item_size;
285 u32 cur;
286
287 leaf = path->nodes[0];
288 slot = path->slots[0];
289
290 /* this is where we start walking through the path */
291 if (slot >= btrfs_header_nritems(leaf)) {
292 /*
293 * if we've reached the last slot in this leaf we need
294 * to go to the next leaf and reset everything
295 */
296 ret = btrfs_next_leaf(root, path);
297 if (ret < 0)
298 goto err;
299 else if (ret > 0)
300 break;
301 continue;
302 }
303
304 btrfs_item_key_to_cpu(leaf, &found_key, slot);
305
306 /* check to make sure this item is what we want */
307 if (found_key.objectid != key.objectid)
308 break;
309 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
310 break;
311 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
312 goto next_item;
313
314 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
315 item_size = btrfs_item_size_nr(leaf, slot);
316 cur = 0;
317 while (cur < item_size) {
318 u16 name_len = btrfs_dir_name_len(leaf, di);
319 u16 data_len = btrfs_dir_data_len(leaf, di);
320 u32 this_len = sizeof(*di) + name_len + data_len;
321 unsigned long name_ptr = (unsigned long)(di + 1);
322
323 total_size += name_len + 1;
324 /*
325 * We are just looking for how big our buffer needs to
326 * be.
327 */
328 if (!size)
329 goto next;
330
331 if (!buffer || (name_len + 1) > size_left) {
332 ret = -ERANGE;
333 goto err;
334 }
335
336 read_extent_buffer(leaf, buffer, name_ptr, name_len);
337 buffer[name_len] = '\0';
338
339 size_left -= name_len + 1;
340 buffer += name_len + 1;
341 next:
342 cur += this_len;
343 di = (struct btrfs_dir_item *)((char *)di + this_len);
344 }
345 next_item:
346 path->slots[0]++;
347 }
348 ret = total_size;
349
350 err:
351 btrfs_free_path(path);
352
353 return ret;
354 }
355
356 static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
357 struct dentry *unused, struct inode *inode,
358 const char *name, void *buffer, size_t size)
359 {
360 name = xattr_full_name(handler, name);
361 return btrfs_getxattr(inode, name, buffer, size);
362 }
363
364 static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
365 struct dentry *unused, struct inode *inode,
366 const char *name, const void *buffer,
367 size_t size, int flags)
368 {
369 name = xattr_full_name(handler, name);
370 return btrfs_setxattr_trans(inode, name, buffer, size, flags);
371 }
372
373 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
374 struct dentry *unused, struct inode *inode,
375 const char *name, const void *value,
376 size_t size, int flags)
377 {
378 int ret;
379 struct btrfs_trans_handle *trans;
380 struct btrfs_root *root = BTRFS_I(inode)->root;
381
382 name = xattr_full_name(handler, name);
383 ret = btrfs_validate_prop(name, value, size);
384 if (ret)
385 return ret;
386
387 trans = btrfs_start_transaction(root, 2);
388 if (IS_ERR(trans))
389 return PTR_ERR(trans);
390
391 ret = btrfs_set_prop(trans, inode, name, value, size, flags);
392 if (!ret) {
393 inode_inc_iversion(inode);
394 inode->i_ctime = current_time(inode);
395 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
396 BUG_ON(ret);
397 }
398
399 btrfs_end_transaction(trans);
400
401 return ret;
402 }
403
404 static const struct xattr_handler btrfs_security_xattr_handler = {
405 .prefix = XATTR_SECURITY_PREFIX,
406 .get = btrfs_xattr_handler_get,
407 .set = btrfs_xattr_handler_set,
408 };
409
410 static const struct xattr_handler btrfs_trusted_xattr_handler = {
411 .prefix = XATTR_TRUSTED_PREFIX,
412 .get = btrfs_xattr_handler_get,
413 .set = btrfs_xattr_handler_set,
414 };
415
416 static const struct xattr_handler btrfs_user_xattr_handler = {
417 .prefix = XATTR_USER_PREFIX,
418 .get = btrfs_xattr_handler_get,
419 .set = btrfs_xattr_handler_set,
420 };
421
422 static const struct xattr_handler btrfs_btrfs_xattr_handler = {
423 .prefix = XATTR_BTRFS_PREFIX,
424 .get = btrfs_xattr_handler_get,
425 .set = btrfs_xattr_handler_set_prop,
426 };
427
428 const struct xattr_handler *btrfs_xattr_handlers[] = {
429 &btrfs_security_xattr_handler,
430 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
431 &posix_acl_access_xattr_handler,
432 &posix_acl_default_xattr_handler,
433 #endif
434 &btrfs_trusted_xattr_handler,
435 &btrfs_user_xattr_handler,
436 &btrfs_btrfs_xattr_handler,
437 NULL,
438 };
439
440 static int btrfs_initxattrs(struct inode *inode,
441 const struct xattr *xattr_array, void *fs_private)
442 {
443 struct btrfs_trans_handle *trans = fs_private;
444 const struct xattr *xattr;
445 unsigned int nofs_flag;
446 char *name;
447 int err = 0;
448
449 /*
450 * We're holding a transaction handle, so use a NOFS memory allocation
451 * context to avoid deadlock if reclaim happens.
452 */
453 nofs_flag = memalloc_nofs_save();
454 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
455 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
456 strlen(xattr->name) + 1, GFP_KERNEL);
457 if (!name) {
458 err = -ENOMEM;
459 break;
460 }
461 strcpy(name, XATTR_SECURITY_PREFIX);
462 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
463 err = btrfs_setxattr(trans, inode, name, xattr->value,
464 xattr->value_len, 0);
465 kfree(name);
466 if (err < 0)
467 break;
468 }
469 memalloc_nofs_restore(nofs_flag);
470 return err;
471 }
472
473 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
474 struct inode *inode, struct inode *dir,
475 const struct qstr *qstr)
476 {
477 return security_inode_init_security(inode, dir, qstr,
478 &btrfs_initxattrs, trans);
479 }