]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/buffer.c
net: hns3: Fix for information of phydev lost problem when down/up
[mirror_ubuntu-bionic-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 bh->b_end_io = handler;
59 bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91 {
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118 /*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
135 }
136
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144
145 /*
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
152 */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162 }
163
164 /*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 mark_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188
189 /*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
247 }
248 out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251 out:
252 return ret;
253 }
254
255 /*
256 * I/O completion handler for block_read_full_page() - pages
257 * which come unlocked at the end of I/O.
258 */
259 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
260 {
261 unsigned long flags;
262 struct buffer_head *first;
263 struct buffer_head *tmp;
264 struct page *page;
265 int page_uptodate = 1;
266
267 BUG_ON(!buffer_async_read(bh));
268
269 page = bh->b_page;
270 if (uptodate) {
271 set_buffer_uptodate(bh);
272 } else {
273 clear_buffer_uptodate(bh);
274 buffer_io_error(bh, ", async page read");
275 SetPageError(page);
276 }
277
278 /*
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
282 */
283 first = page_buffers(page);
284 local_irq_save(flags);
285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 clear_buffer_async_read(bh);
287 unlock_buffer(bh);
288 tmp = bh;
289 do {
290 if (!buffer_uptodate(tmp))
291 page_uptodate = 0;
292 if (buffer_async_read(tmp)) {
293 BUG_ON(!buffer_locked(tmp));
294 goto still_busy;
295 }
296 tmp = tmp->b_this_page;
297 } while (tmp != bh);
298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 local_irq_restore(flags);
300
301 /*
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
304 */
305 if (page_uptodate && !PageError(page))
306 SetPageUptodate(page);
307 unlock_page(page);
308 return;
309
310 still_busy:
311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 local_irq_restore(flags);
313 return;
314 }
315
316 /*
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 unsigned long flags;
323 struct buffer_head *first;
324 struct buffer_head *tmp;
325 struct page *page;
326
327 BUG_ON(!buffer_async_write(bh));
328
329 page = bh->b_page;
330 if (uptodate) {
331 set_buffer_uptodate(bh);
332 } else {
333 buffer_io_error(bh, ", lost async page write");
334 mark_buffer_write_io_error(bh);
335 clear_buffer_uptodate(bh);
336 SetPageError(page);
337 }
338
339 first = page_buffers(page);
340 local_irq_save(flags);
341 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
342
343 clear_buffer_async_write(bh);
344 unlock_buffer(bh);
345 tmp = bh->b_this_page;
346 while (tmp != bh) {
347 if (buffer_async_write(tmp)) {
348 BUG_ON(!buffer_locked(tmp));
349 goto still_busy;
350 }
351 tmp = tmp->b_this_page;
352 }
353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 local_irq_restore(flags);
355 end_page_writeback(page);
356 return;
357
358 still_busy:
359 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
360 local_irq_restore(flags);
361 return;
362 }
363 EXPORT_SYMBOL(end_buffer_async_write);
364
365 /*
366 * If a page's buffers are under async readin (end_buffer_async_read
367 * completion) then there is a possibility that another thread of
368 * control could lock one of the buffers after it has completed
369 * but while some of the other buffers have not completed. This
370 * locked buffer would confuse end_buffer_async_read() into not unlocking
371 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
372 * that this buffer is not under async I/O.
373 *
374 * The page comes unlocked when it has no locked buffer_async buffers
375 * left.
376 *
377 * PageLocked prevents anyone starting new async I/O reads any of
378 * the buffers.
379 *
380 * PageWriteback is used to prevent simultaneous writeout of the same
381 * page.
382 *
383 * PageLocked prevents anyone from starting writeback of a page which is
384 * under read I/O (PageWriteback is only ever set against a locked page).
385 */
386 static void mark_buffer_async_read(struct buffer_head *bh)
387 {
388 bh->b_end_io = end_buffer_async_read;
389 set_buffer_async_read(bh);
390 }
391
392 static void mark_buffer_async_write_endio(struct buffer_head *bh,
393 bh_end_io_t *handler)
394 {
395 bh->b_end_io = handler;
396 set_buffer_async_write(bh);
397 }
398
399 void mark_buffer_async_write(struct buffer_head *bh)
400 {
401 mark_buffer_async_write_endio(bh, end_buffer_async_write);
402 }
403 EXPORT_SYMBOL(mark_buffer_async_write);
404
405
406 /*
407 * fs/buffer.c contains helper functions for buffer-backed address space's
408 * fsync functions. A common requirement for buffer-based filesystems is
409 * that certain data from the backing blockdev needs to be written out for
410 * a successful fsync(). For example, ext2 indirect blocks need to be
411 * written back and waited upon before fsync() returns.
412 *
413 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
414 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
415 * management of a list of dependent buffers at ->i_mapping->private_list.
416 *
417 * Locking is a little subtle: try_to_free_buffers() will remove buffers
418 * from their controlling inode's queue when they are being freed. But
419 * try_to_free_buffers() will be operating against the *blockdev* mapping
420 * at the time, not against the S_ISREG file which depends on those buffers.
421 * So the locking for private_list is via the private_lock in the address_space
422 * which backs the buffers. Which is different from the address_space
423 * against which the buffers are listed. So for a particular address_space,
424 * mapping->private_lock does *not* protect mapping->private_list! In fact,
425 * mapping->private_list will always be protected by the backing blockdev's
426 * ->private_lock.
427 *
428 * Which introduces a requirement: all buffers on an address_space's
429 * ->private_list must be from the same address_space: the blockdev's.
430 *
431 * address_spaces which do not place buffers at ->private_list via these
432 * utility functions are free to use private_lock and private_list for
433 * whatever they want. The only requirement is that list_empty(private_list)
434 * be true at clear_inode() time.
435 *
436 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
437 * filesystems should do that. invalidate_inode_buffers() should just go
438 * BUG_ON(!list_empty).
439 *
440 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
441 * take an address_space, not an inode. And it should be called
442 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
443 * queued up.
444 *
445 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
446 * list if it is already on a list. Because if the buffer is on a list,
447 * it *must* already be on the right one. If not, the filesystem is being
448 * silly. This will save a ton of locking. But first we have to ensure
449 * that buffers are taken *off* the old inode's list when they are freed
450 * (presumably in truncate). That requires careful auditing of all
451 * filesystems (do it inside bforget()). It could also be done by bringing
452 * b_inode back.
453 */
454
455 /*
456 * The buffer's backing address_space's private_lock must be held
457 */
458 static void __remove_assoc_queue(struct buffer_head *bh)
459 {
460 list_del_init(&bh->b_assoc_buffers);
461 WARN_ON(!bh->b_assoc_map);
462 bh->b_assoc_map = NULL;
463 }
464
465 int inode_has_buffers(struct inode *inode)
466 {
467 return !list_empty(&inode->i_data.private_list);
468 }
469
470 /*
471 * osync is designed to support O_SYNC io. It waits synchronously for
472 * all already-submitted IO to complete, but does not queue any new
473 * writes to the disk.
474 *
475 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
476 * you dirty the buffers, and then use osync_inode_buffers to wait for
477 * completion. Any other dirty buffers which are not yet queued for
478 * write will not be flushed to disk by the osync.
479 */
480 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
481 {
482 struct buffer_head *bh;
483 struct list_head *p;
484 int err = 0;
485
486 spin_lock(lock);
487 repeat:
488 list_for_each_prev(p, list) {
489 bh = BH_ENTRY(p);
490 if (buffer_locked(bh)) {
491 get_bh(bh);
492 spin_unlock(lock);
493 wait_on_buffer(bh);
494 if (!buffer_uptodate(bh))
495 err = -EIO;
496 brelse(bh);
497 spin_lock(lock);
498 goto repeat;
499 }
500 }
501 spin_unlock(lock);
502 return err;
503 }
504
505 static void do_thaw_one(struct super_block *sb, void *unused)
506 {
507 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
508 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
509 }
510
511 static void do_thaw_all(struct work_struct *work)
512 {
513 iterate_supers(do_thaw_one, NULL);
514 kfree(work);
515 printk(KERN_WARNING "Emergency Thaw complete\n");
516 }
517
518 /**
519 * emergency_thaw_all -- forcibly thaw every frozen filesystem
520 *
521 * Used for emergency unfreeze of all filesystems via SysRq
522 */
523 void emergency_thaw_all(void)
524 {
525 struct work_struct *work;
526
527 work = kmalloc(sizeof(*work), GFP_ATOMIC);
528 if (work) {
529 INIT_WORK(work, do_thaw_all);
530 schedule_work(work);
531 }
532 }
533
534 /**
535 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
536 * @mapping: the mapping which wants those buffers written
537 *
538 * Starts I/O against the buffers at mapping->private_list, and waits upon
539 * that I/O.
540 *
541 * Basically, this is a convenience function for fsync().
542 * @mapping is a file or directory which needs those buffers to be written for
543 * a successful fsync().
544 */
545 int sync_mapping_buffers(struct address_space *mapping)
546 {
547 struct address_space *buffer_mapping = mapping->private_data;
548
549 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
550 return 0;
551
552 return fsync_buffers_list(&buffer_mapping->private_lock,
553 &mapping->private_list);
554 }
555 EXPORT_SYMBOL(sync_mapping_buffers);
556
557 /*
558 * Called when we've recently written block `bblock', and it is known that
559 * `bblock' was for a buffer_boundary() buffer. This means that the block at
560 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
561 * dirty, schedule it for IO. So that indirects merge nicely with their data.
562 */
563 void write_boundary_block(struct block_device *bdev,
564 sector_t bblock, unsigned blocksize)
565 {
566 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
567 if (bh) {
568 if (buffer_dirty(bh))
569 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
570 put_bh(bh);
571 }
572 }
573
574 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
575 {
576 struct address_space *mapping = inode->i_mapping;
577 struct address_space *buffer_mapping = bh->b_page->mapping;
578
579 mark_buffer_dirty(bh);
580 if (!mapping->private_data) {
581 mapping->private_data = buffer_mapping;
582 } else {
583 BUG_ON(mapping->private_data != buffer_mapping);
584 }
585 if (!bh->b_assoc_map) {
586 spin_lock(&buffer_mapping->private_lock);
587 list_move_tail(&bh->b_assoc_buffers,
588 &mapping->private_list);
589 bh->b_assoc_map = mapping;
590 spin_unlock(&buffer_mapping->private_lock);
591 }
592 }
593 EXPORT_SYMBOL(mark_buffer_dirty_inode);
594
595 /*
596 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
597 * dirty.
598 *
599 * If warn is true, then emit a warning if the page is not uptodate and has
600 * not been truncated.
601 *
602 * The caller must hold lock_page_memcg().
603 */
604 static void __set_page_dirty(struct page *page, struct address_space *mapping,
605 int warn)
606 {
607 unsigned long flags;
608
609 spin_lock_irqsave(&mapping->tree_lock, flags);
610 if (page->mapping) { /* Race with truncate? */
611 WARN_ON_ONCE(warn && !PageUptodate(page));
612 account_page_dirtied(page, mapping);
613 radix_tree_tag_set(&mapping->page_tree,
614 page_index(page), PAGECACHE_TAG_DIRTY);
615 }
616 spin_unlock_irqrestore(&mapping->tree_lock, flags);
617 }
618
619 /*
620 * Add a page to the dirty page list.
621 *
622 * It is a sad fact of life that this function is called from several places
623 * deeply under spinlocking. It may not sleep.
624 *
625 * If the page has buffers, the uptodate buffers are set dirty, to preserve
626 * dirty-state coherency between the page and the buffers. It the page does
627 * not have buffers then when they are later attached they will all be set
628 * dirty.
629 *
630 * The buffers are dirtied before the page is dirtied. There's a small race
631 * window in which a writepage caller may see the page cleanness but not the
632 * buffer dirtiness. That's fine. If this code were to set the page dirty
633 * before the buffers, a concurrent writepage caller could clear the page dirty
634 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
635 * page on the dirty page list.
636 *
637 * We use private_lock to lock against try_to_free_buffers while using the
638 * page's buffer list. Also use this to protect against clean buffers being
639 * added to the page after it was set dirty.
640 *
641 * FIXME: may need to call ->reservepage here as well. That's rather up to the
642 * address_space though.
643 */
644 int __set_page_dirty_buffers(struct page *page)
645 {
646 int newly_dirty;
647 struct address_space *mapping = page_mapping(page);
648
649 if (unlikely(!mapping))
650 return !TestSetPageDirty(page);
651
652 spin_lock(&mapping->private_lock);
653 if (page_has_buffers(page)) {
654 struct buffer_head *head = page_buffers(page);
655 struct buffer_head *bh = head;
656
657 do {
658 set_buffer_dirty(bh);
659 bh = bh->b_this_page;
660 } while (bh != head);
661 }
662 /*
663 * Lock out page->mem_cgroup migration to keep PageDirty
664 * synchronized with per-memcg dirty page counters.
665 */
666 lock_page_memcg(page);
667 newly_dirty = !TestSetPageDirty(page);
668 spin_unlock(&mapping->private_lock);
669
670 if (newly_dirty)
671 __set_page_dirty(page, mapping, 1);
672
673 unlock_page_memcg(page);
674
675 if (newly_dirty)
676 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
677
678 return newly_dirty;
679 }
680 EXPORT_SYMBOL(__set_page_dirty_buffers);
681
682 /*
683 * Write out and wait upon a list of buffers.
684 *
685 * We have conflicting pressures: we want to make sure that all
686 * initially dirty buffers get waited on, but that any subsequently
687 * dirtied buffers don't. After all, we don't want fsync to last
688 * forever if somebody is actively writing to the file.
689 *
690 * Do this in two main stages: first we copy dirty buffers to a
691 * temporary inode list, queueing the writes as we go. Then we clean
692 * up, waiting for those writes to complete.
693 *
694 * During this second stage, any subsequent updates to the file may end
695 * up refiling the buffer on the original inode's dirty list again, so
696 * there is a chance we will end up with a buffer queued for write but
697 * not yet completed on that list. So, as a final cleanup we go through
698 * the osync code to catch these locked, dirty buffers without requeuing
699 * any newly dirty buffers for write.
700 */
701 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
702 {
703 struct buffer_head *bh;
704 struct list_head tmp;
705 struct address_space *mapping;
706 int err = 0, err2;
707 struct blk_plug plug;
708
709 INIT_LIST_HEAD(&tmp);
710 blk_start_plug(&plug);
711
712 spin_lock(lock);
713 while (!list_empty(list)) {
714 bh = BH_ENTRY(list->next);
715 mapping = bh->b_assoc_map;
716 __remove_assoc_queue(bh);
717 /* Avoid race with mark_buffer_dirty_inode() which does
718 * a lockless check and we rely on seeing the dirty bit */
719 smp_mb();
720 if (buffer_dirty(bh) || buffer_locked(bh)) {
721 list_add(&bh->b_assoc_buffers, &tmp);
722 bh->b_assoc_map = mapping;
723 if (buffer_dirty(bh)) {
724 get_bh(bh);
725 spin_unlock(lock);
726 /*
727 * Ensure any pending I/O completes so that
728 * write_dirty_buffer() actually writes the
729 * current contents - it is a noop if I/O is
730 * still in flight on potentially older
731 * contents.
732 */
733 write_dirty_buffer(bh, REQ_SYNC);
734
735 /*
736 * Kick off IO for the previous mapping. Note
737 * that we will not run the very last mapping,
738 * wait_on_buffer() will do that for us
739 * through sync_buffer().
740 */
741 brelse(bh);
742 spin_lock(lock);
743 }
744 }
745 }
746
747 spin_unlock(lock);
748 blk_finish_plug(&plug);
749 spin_lock(lock);
750
751 while (!list_empty(&tmp)) {
752 bh = BH_ENTRY(tmp.prev);
753 get_bh(bh);
754 mapping = bh->b_assoc_map;
755 __remove_assoc_queue(bh);
756 /* Avoid race with mark_buffer_dirty_inode() which does
757 * a lockless check and we rely on seeing the dirty bit */
758 smp_mb();
759 if (buffer_dirty(bh)) {
760 list_add(&bh->b_assoc_buffers,
761 &mapping->private_list);
762 bh->b_assoc_map = mapping;
763 }
764 spin_unlock(lock);
765 wait_on_buffer(bh);
766 if (!buffer_uptodate(bh))
767 err = -EIO;
768 brelse(bh);
769 spin_lock(lock);
770 }
771
772 spin_unlock(lock);
773 err2 = osync_buffers_list(lock, list);
774 if (err)
775 return err;
776 else
777 return err2;
778 }
779
780 /*
781 * Invalidate any and all dirty buffers on a given inode. We are
782 * probably unmounting the fs, but that doesn't mean we have already
783 * done a sync(). Just drop the buffers from the inode list.
784 *
785 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
786 * assumes that all the buffers are against the blockdev. Not true
787 * for reiserfs.
788 */
789 void invalidate_inode_buffers(struct inode *inode)
790 {
791 if (inode_has_buffers(inode)) {
792 struct address_space *mapping = &inode->i_data;
793 struct list_head *list = &mapping->private_list;
794 struct address_space *buffer_mapping = mapping->private_data;
795
796 spin_lock(&buffer_mapping->private_lock);
797 while (!list_empty(list))
798 __remove_assoc_queue(BH_ENTRY(list->next));
799 spin_unlock(&buffer_mapping->private_lock);
800 }
801 }
802 EXPORT_SYMBOL(invalidate_inode_buffers);
803
804 /*
805 * Remove any clean buffers from the inode's buffer list. This is called
806 * when we're trying to free the inode itself. Those buffers can pin it.
807 *
808 * Returns true if all buffers were removed.
809 */
810 int remove_inode_buffers(struct inode *inode)
811 {
812 int ret = 1;
813
814 if (inode_has_buffers(inode)) {
815 struct address_space *mapping = &inode->i_data;
816 struct list_head *list = &mapping->private_list;
817 struct address_space *buffer_mapping = mapping->private_data;
818
819 spin_lock(&buffer_mapping->private_lock);
820 while (!list_empty(list)) {
821 struct buffer_head *bh = BH_ENTRY(list->next);
822 if (buffer_dirty(bh)) {
823 ret = 0;
824 break;
825 }
826 __remove_assoc_queue(bh);
827 }
828 spin_unlock(&buffer_mapping->private_lock);
829 }
830 return ret;
831 }
832
833 /*
834 * Create the appropriate buffers when given a page for data area and
835 * the size of each buffer.. Use the bh->b_this_page linked list to
836 * follow the buffers created. Return NULL if unable to create more
837 * buffers.
838 *
839 * The retry flag is used to differentiate async IO (paging, swapping)
840 * which may not fail from ordinary buffer allocations.
841 */
842 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
843 bool retry)
844 {
845 struct buffer_head *bh, *head;
846 gfp_t gfp = GFP_NOFS;
847 long offset;
848
849 if (retry)
850 gfp |= __GFP_NOFAIL;
851
852 head = NULL;
853 offset = PAGE_SIZE;
854 while ((offset -= size) >= 0) {
855 bh = alloc_buffer_head(gfp);
856 if (!bh)
857 goto no_grow;
858
859 bh->b_this_page = head;
860 bh->b_blocknr = -1;
861 head = bh;
862
863 bh->b_size = size;
864
865 /* Link the buffer to its page */
866 set_bh_page(bh, page, offset);
867 }
868 return head;
869 /*
870 * In case anything failed, we just free everything we got.
871 */
872 no_grow:
873 if (head) {
874 do {
875 bh = head;
876 head = head->b_this_page;
877 free_buffer_head(bh);
878 } while (head);
879 }
880
881 return NULL;
882 }
883 EXPORT_SYMBOL_GPL(alloc_page_buffers);
884
885 static inline void
886 link_dev_buffers(struct page *page, struct buffer_head *head)
887 {
888 struct buffer_head *bh, *tail;
889
890 bh = head;
891 do {
892 tail = bh;
893 bh = bh->b_this_page;
894 } while (bh);
895 tail->b_this_page = head;
896 attach_page_buffers(page, head);
897 }
898
899 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
900 {
901 sector_t retval = ~((sector_t)0);
902 loff_t sz = i_size_read(bdev->bd_inode);
903
904 if (sz) {
905 unsigned int sizebits = blksize_bits(size);
906 retval = (sz >> sizebits);
907 }
908 return retval;
909 }
910
911 /*
912 * Initialise the state of a blockdev page's buffers.
913 */
914 static sector_t
915 init_page_buffers(struct page *page, struct block_device *bdev,
916 sector_t block, int size)
917 {
918 struct buffer_head *head = page_buffers(page);
919 struct buffer_head *bh = head;
920 int uptodate = PageUptodate(page);
921 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
922
923 do {
924 if (!buffer_mapped(bh)) {
925 init_buffer(bh, NULL, NULL);
926 bh->b_bdev = bdev;
927 bh->b_blocknr = block;
928 if (uptodate)
929 set_buffer_uptodate(bh);
930 if (block < end_block)
931 set_buffer_mapped(bh);
932 }
933 block++;
934 bh = bh->b_this_page;
935 } while (bh != head);
936
937 /*
938 * Caller needs to validate requested block against end of device.
939 */
940 return end_block;
941 }
942
943 /*
944 * Create the page-cache page that contains the requested block.
945 *
946 * This is used purely for blockdev mappings.
947 */
948 static int
949 grow_dev_page(struct block_device *bdev, sector_t block,
950 pgoff_t index, int size, int sizebits, gfp_t gfp)
951 {
952 struct inode *inode = bdev->bd_inode;
953 struct page *page;
954 struct buffer_head *bh;
955 sector_t end_block;
956 int ret = 0; /* Will call free_more_memory() */
957 gfp_t gfp_mask;
958
959 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
960
961 /*
962 * XXX: __getblk_slow() can not really deal with failure and
963 * will endlessly loop on improvised global reclaim. Prefer
964 * looping in the allocator rather than here, at least that
965 * code knows what it's doing.
966 */
967 gfp_mask |= __GFP_NOFAIL;
968
969 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
970
971 BUG_ON(!PageLocked(page));
972
973 if (page_has_buffers(page)) {
974 bh = page_buffers(page);
975 if (bh->b_size == size) {
976 end_block = init_page_buffers(page, bdev,
977 (sector_t)index << sizebits,
978 size);
979 goto done;
980 }
981 if (!try_to_free_buffers(page))
982 goto failed;
983 }
984
985 /*
986 * Allocate some buffers for this page
987 */
988 bh = alloc_page_buffers(page, size, true);
989
990 /*
991 * Link the page to the buffers and initialise them. Take the
992 * lock to be atomic wrt __find_get_block(), which does not
993 * run under the page lock.
994 */
995 spin_lock(&inode->i_mapping->private_lock);
996 link_dev_buffers(page, bh);
997 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
998 size);
999 spin_unlock(&inode->i_mapping->private_lock);
1000 done:
1001 ret = (block < end_block) ? 1 : -ENXIO;
1002 failed:
1003 unlock_page(page);
1004 put_page(page);
1005 return ret;
1006 }
1007
1008 /*
1009 * Create buffers for the specified block device block's page. If
1010 * that page was dirty, the buffers are set dirty also.
1011 */
1012 static int
1013 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1014 {
1015 pgoff_t index;
1016 int sizebits;
1017
1018 sizebits = -1;
1019 do {
1020 sizebits++;
1021 } while ((size << sizebits) < PAGE_SIZE);
1022
1023 index = block >> sizebits;
1024
1025 /*
1026 * Check for a block which wants to lie outside our maximum possible
1027 * pagecache index. (this comparison is done using sector_t types).
1028 */
1029 if (unlikely(index != block >> sizebits)) {
1030 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1031 "device %pg\n",
1032 __func__, (unsigned long long)block,
1033 bdev);
1034 return -EIO;
1035 }
1036
1037 /* Create a page with the proper size buffers.. */
1038 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1039 }
1040
1041 static struct buffer_head *
1042 __getblk_slow(struct block_device *bdev, sector_t block,
1043 unsigned size, gfp_t gfp)
1044 {
1045 /* Size must be multiple of hard sectorsize */
1046 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1047 (size < 512 || size > PAGE_SIZE))) {
1048 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1049 size);
1050 printk(KERN_ERR "logical block size: %d\n",
1051 bdev_logical_block_size(bdev));
1052
1053 dump_stack();
1054 return NULL;
1055 }
1056
1057 for (;;) {
1058 struct buffer_head *bh;
1059 int ret;
1060
1061 bh = __find_get_block(bdev, block, size);
1062 if (bh)
1063 return bh;
1064
1065 ret = grow_buffers(bdev, block, size, gfp);
1066 if (ret < 0)
1067 return NULL;
1068 }
1069 }
1070
1071 /*
1072 * The relationship between dirty buffers and dirty pages:
1073 *
1074 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1075 * the page is tagged dirty in its radix tree.
1076 *
1077 * At all times, the dirtiness of the buffers represents the dirtiness of
1078 * subsections of the page. If the page has buffers, the page dirty bit is
1079 * merely a hint about the true dirty state.
1080 *
1081 * When a page is set dirty in its entirety, all its buffers are marked dirty
1082 * (if the page has buffers).
1083 *
1084 * When a buffer is marked dirty, its page is dirtied, but the page's other
1085 * buffers are not.
1086 *
1087 * Also. When blockdev buffers are explicitly read with bread(), they
1088 * individually become uptodate. But their backing page remains not
1089 * uptodate - even if all of its buffers are uptodate. A subsequent
1090 * block_read_full_page() against that page will discover all the uptodate
1091 * buffers, will set the page uptodate and will perform no I/O.
1092 */
1093
1094 /**
1095 * mark_buffer_dirty - mark a buffer_head as needing writeout
1096 * @bh: the buffer_head to mark dirty
1097 *
1098 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1099 * backing page dirty, then tag the page as dirty in its address_space's radix
1100 * tree and then attach the address_space's inode to its superblock's dirty
1101 * inode list.
1102 *
1103 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1104 * mapping->tree_lock and mapping->host->i_lock.
1105 */
1106 void mark_buffer_dirty(struct buffer_head *bh)
1107 {
1108 WARN_ON_ONCE(!buffer_uptodate(bh));
1109
1110 trace_block_dirty_buffer(bh);
1111
1112 /*
1113 * Very *carefully* optimize the it-is-already-dirty case.
1114 *
1115 * Don't let the final "is it dirty" escape to before we
1116 * perhaps modified the buffer.
1117 */
1118 if (buffer_dirty(bh)) {
1119 smp_mb();
1120 if (buffer_dirty(bh))
1121 return;
1122 }
1123
1124 if (!test_set_buffer_dirty(bh)) {
1125 struct page *page = bh->b_page;
1126 struct address_space *mapping = NULL;
1127
1128 lock_page_memcg(page);
1129 if (!TestSetPageDirty(page)) {
1130 mapping = page_mapping(page);
1131 if (mapping)
1132 __set_page_dirty(page, mapping, 0);
1133 }
1134 unlock_page_memcg(page);
1135 if (mapping)
1136 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1137 }
1138 }
1139 EXPORT_SYMBOL(mark_buffer_dirty);
1140
1141 void mark_buffer_write_io_error(struct buffer_head *bh)
1142 {
1143 set_buffer_write_io_error(bh);
1144 /* FIXME: do we need to set this in both places? */
1145 if (bh->b_page && bh->b_page->mapping)
1146 mapping_set_error(bh->b_page->mapping, -EIO);
1147 if (bh->b_assoc_map)
1148 mapping_set_error(bh->b_assoc_map, -EIO);
1149 }
1150 EXPORT_SYMBOL(mark_buffer_write_io_error);
1151
1152 /*
1153 * Decrement a buffer_head's reference count. If all buffers against a page
1154 * have zero reference count, are clean and unlocked, and if the page is clean
1155 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1156 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1157 * a page but it ends up not being freed, and buffers may later be reattached).
1158 */
1159 void __brelse(struct buffer_head * buf)
1160 {
1161 if (atomic_read(&buf->b_count)) {
1162 put_bh(buf);
1163 return;
1164 }
1165 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1166 }
1167 EXPORT_SYMBOL(__brelse);
1168
1169 /*
1170 * bforget() is like brelse(), except it discards any
1171 * potentially dirty data.
1172 */
1173 void __bforget(struct buffer_head *bh)
1174 {
1175 clear_buffer_dirty(bh);
1176 if (bh->b_assoc_map) {
1177 struct address_space *buffer_mapping = bh->b_page->mapping;
1178
1179 spin_lock(&buffer_mapping->private_lock);
1180 list_del_init(&bh->b_assoc_buffers);
1181 bh->b_assoc_map = NULL;
1182 spin_unlock(&buffer_mapping->private_lock);
1183 }
1184 __brelse(bh);
1185 }
1186 EXPORT_SYMBOL(__bforget);
1187
1188 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1189 {
1190 lock_buffer(bh);
1191 if (buffer_uptodate(bh)) {
1192 unlock_buffer(bh);
1193 return bh;
1194 } else {
1195 get_bh(bh);
1196 bh->b_end_io = end_buffer_read_sync;
1197 submit_bh(REQ_OP_READ, 0, bh);
1198 wait_on_buffer(bh);
1199 if (buffer_uptodate(bh))
1200 return bh;
1201 }
1202 brelse(bh);
1203 return NULL;
1204 }
1205
1206 /*
1207 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1208 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1209 * refcount elevated by one when they're in an LRU. A buffer can only appear
1210 * once in a particular CPU's LRU. A single buffer can be present in multiple
1211 * CPU's LRUs at the same time.
1212 *
1213 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1214 * sb_find_get_block().
1215 *
1216 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1217 * a local interrupt disable for that.
1218 */
1219
1220 #define BH_LRU_SIZE 16
1221
1222 struct bh_lru {
1223 struct buffer_head *bhs[BH_LRU_SIZE];
1224 };
1225
1226 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1227
1228 #ifdef CONFIG_SMP
1229 #define bh_lru_lock() local_irq_disable()
1230 #define bh_lru_unlock() local_irq_enable()
1231 #else
1232 #define bh_lru_lock() preempt_disable()
1233 #define bh_lru_unlock() preempt_enable()
1234 #endif
1235
1236 static inline void check_irqs_on(void)
1237 {
1238 #ifdef irqs_disabled
1239 BUG_ON(irqs_disabled());
1240 #endif
1241 }
1242
1243 /*
1244 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1245 * inserted at the front, and the buffer_head at the back if any is evicted.
1246 * Or, if already in the LRU it is moved to the front.
1247 */
1248 static void bh_lru_install(struct buffer_head *bh)
1249 {
1250 struct buffer_head *evictee = bh;
1251 struct bh_lru *b;
1252 int i;
1253
1254 check_irqs_on();
1255 bh_lru_lock();
1256
1257 b = this_cpu_ptr(&bh_lrus);
1258 for (i = 0; i < BH_LRU_SIZE; i++) {
1259 swap(evictee, b->bhs[i]);
1260 if (evictee == bh) {
1261 bh_lru_unlock();
1262 return;
1263 }
1264 }
1265
1266 get_bh(bh);
1267 bh_lru_unlock();
1268 brelse(evictee);
1269 }
1270
1271 /*
1272 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1273 */
1274 static struct buffer_head *
1275 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1276 {
1277 struct buffer_head *ret = NULL;
1278 unsigned int i;
1279
1280 check_irqs_on();
1281 bh_lru_lock();
1282 for (i = 0; i < BH_LRU_SIZE; i++) {
1283 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1284
1285 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1286 bh->b_size == size) {
1287 if (i) {
1288 while (i) {
1289 __this_cpu_write(bh_lrus.bhs[i],
1290 __this_cpu_read(bh_lrus.bhs[i - 1]));
1291 i--;
1292 }
1293 __this_cpu_write(bh_lrus.bhs[0], bh);
1294 }
1295 get_bh(bh);
1296 ret = bh;
1297 break;
1298 }
1299 }
1300 bh_lru_unlock();
1301 return ret;
1302 }
1303
1304 /*
1305 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1306 * it in the LRU and mark it as accessed. If it is not present then return
1307 * NULL
1308 */
1309 struct buffer_head *
1310 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1311 {
1312 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1313
1314 if (bh == NULL) {
1315 /* __find_get_block_slow will mark the page accessed */
1316 bh = __find_get_block_slow(bdev, block);
1317 if (bh)
1318 bh_lru_install(bh);
1319 } else
1320 touch_buffer(bh);
1321
1322 return bh;
1323 }
1324 EXPORT_SYMBOL(__find_get_block);
1325
1326 /*
1327 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1328 * which corresponds to the passed block_device, block and size. The
1329 * returned buffer has its reference count incremented.
1330 *
1331 * __getblk_gfp() will lock up the machine if grow_dev_page's
1332 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1333 */
1334 struct buffer_head *
1335 __getblk_gfp(struct block_device *bdev, sector_t block,
1336 unsigned size, gfp_t gfp)
1337 {
1338 struct buffer_head *bh = __find_get_block(bdev, block, size);
1339
1340 might_sleep();
1341 if (bh == NULL)
1342 bh = __getblk_slow(bdev, block, size, gfp);
1343 return bh;
1344 }
1345 EXPORT_SYMBOL(__getblk_gfp);
1346
1347 /*
1348 * Do async read-ahead on a buffer..
1349 */
1350 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352 struct buffer_head *bh = __getblk(bdev, block, size);
1353 if (likely(bh)) {
1354 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1355 brelse(bh);
1356 }
1357 }
1358 EXPORT_SYMBOL(__breadahead);
1359
1360 /**
1361 * __bread_gfp() - reads a specified block and returns the bh
1362 * @bdev: the block_device to read from
1363 * @block: number of block
1364 * @size: size (in bytes) to read
1365 * @gfp: page allocation flag
1366 *
1367 * Reads a specified block, and returns buffer head that contains it.
1368 * The page cache can be allocated from non-movable area
1369 * not to prevent page migration if you set gfp to zero.
1370 * It returns NULL if the block was unreadable.
1371 */
1372 struct buffer_head *
1373 __bread_gfp(struct block_device *bdev, sector_t block,
1374 unsigned size, gfp_t gfp)
1375 {
1376 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1377
1378 if (likely(bh) && !buffer_uptodate(bh))
1379 bh = __bread_slow(bh);
1380 return bh;
1381 }
1382 EXPORT_SYMBOL(__bread_gfp);
1383
1384 /*
1385 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386 * This doesn't race because it runs in each cpu either in irq
1387 * or with preempt disabled.
1388 */
1389 static void invalidate_bh_lru(void *arg)
1390 {
1391 struct bh_lru *b = &get_cpu_var(bh_lrus);
1392 int i;
1393
1394 for (i = 0; i < BH_LRU_SIZE; i++) {
1395 brelse(b->bhs[i]);
1396 b->bhs[i] = NULL;
1397 }
1398 put_cpu_var(bh_lrus);
1399 }
1400
1401 static bool has_bh_in_lru(int cpu, void *dummy)
1402 {
1403 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1404 int i;
1405
1406 for (i = 0; i < BH_LRU_SIZE; i++) {
1407 if (b->bhs[i])
1408 return 1;
1409 }
1410
1411 return 0;
1412 }
1413
1414 void invalidate_bh_lrus(void)
1415 {
1416 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1417 }
1418 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1419
1420 void set_bh_page(struct buffer_head *bh,
1421 struct page *page, unsigned long offset)
1422 {
1423 bh->b_page = page;
1424 BUG_ON(offset >= PAGE_SIZE);
1425 if (PageHighMem(page))
1426 /*
1427 * This catches illegal uses and preserves the offset:
1428 */
1429 bh->b_data = (char *)(0 + offset);
1430 else
1431 bh->b_data = page_address(page) + offset;
1432 }
1433 EXPORT_SYMBOL(set_bh_page);
1434
1435 /*
1436 * Called when truncating a buffer on a page completely.
1437 */
1438
1439 /* Bits that are cleared during an invalidate */
1440 #define BUFFER_FLAGS_DISCARD \
1441 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1442 1 << BH_Delay | 1 << BH_Unwritten)
1443
1444 static void discard_buffer(struct buffer_head * bh)
1445 {
1446 unsigned long b_state, b_state_old;
1447
1448 lock_buffer(bh);
1449 clear_buffer_dirty(bh);
1450 bh->b_bdev = NULL;
1451 b_state = bh->b_state;
1452 for (;;) {
1453 b_state_old = cmpxchg(&bh->b_state, b_state,
1454 (b_state & ~BUFFER_FLAGS_DISCARD));
1455 if (b_state_old == b_state)
1456 break;
1457 b_state = b_state_old;
1458 }
1459 unlock_buffer(bh);
1460 }
1461
1462 /**
1463 * block_invalidatepage - invalidate part or all of a buffer-backed page
1464 *
1465 * @page: the page which is affected
1466 * @offset: start of the range to invalidate
1467 * @length: length of the range to invalidate
1468 *
1469 * block_invalidatepage() is called when all or part of the page has become
1470 * invalidated by a truncate operation.
1471 *
1472 * block_invalidatepage() does not have to release all buffers, but it must
1473 * ensure that no dirty buffer is left outside @offset and that no I/O
1474 * is underway against any of the blocks which are outside the truncation
1475 * point. Because the caller is about to free (and possibly reuse) those
1476 * blocks on-disk.
1477 */
1478 void block_invalidatepage(struct page *page, unsigned int offset,
1479 unsigned int length)
1480 {
1481 struct buffer_head *head, *bh, *next;
1482 unsigned int curr_off = 0;
1483 unsigned int stop = length + offset;
1484
1485 BUG_ON(!PageLocked(page));
1486 if (!page_has_buffers(page))
1487 goto out;
1488
1489 /*
1490 * Check for overflow
1491 */
1492 BUG_ON(stop > PAGE_SIZE || stop < length);
1493
1494 head = page_buffers(page);
1495 bh = head;
1496 do {
1497 unsigned int next_off = curr_off + bh->b_size;
1498 next = bh->b_this_page;
1499
1500 /*
1501 * Are we still fully in range ?
1502 */
1503 if (next_off > stop)
1504 goto out;
1505
1506 /*
1507 * is this block fully invalidated?
1508 */
1509 if (offset <= curr_off)
1510 discard_buffer(bh);
1511 curr_off = next_off;
1512 bh = next;
1513 } while (bh != head);
1514
1515 /*
1516 * We release buffers only if the entire page is being invalidated.
1517 * The get_block cached value has been unconditionally invalidated,
1518 * so real IO is not possible anymore.
1519 */
1520 if (offset == 0)
1521 try_to_release_page(page, 0);
1522 out:
1523 return;
1524 }
1525 EXPORT_SYMBOL(block_invalidatepage);
1526
1527
1528 /*
1529 * We attach and possibly dirty the buffers atomically wrt
1530 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1531 * is already excluded via the page lock.
1532 */
1533 void create_empty_buffers(struct page *page,
1534 unsigned long blocksize, unsigned long b_state)
1535 {
1536 struct buffer_head *bh, *head, *tail;
1537
1538 head = alloc_page_buffers(page, blocksize, true);
1539 bh = head;
1540 do {
1541 bh->b_state |= b_state;
1542 tail = bh;
1543 bh = bh->b_this_page;
1544 } while (bh);
1545 tail->b_this_page = head;
1546
1547 spin_lock(&page->mapping->private_lock);
1548 if (PageUptodate(page) || PageDirty(page)) {
1549 bh = head;
1550 do {
1551 if (PageDirty(page))
1552 set_buffer_dirty(bh);
1553 if (PageUptodate(page))
1554 set_buffer_uptodate(bh);
1555 bh = bh->b_this_page;
1556 } while (bh != head);
1557 }
1558 attach_page_buffers(page, head);
1559 spin_unlock(&page->mapping->private_lock);
1560 }
1561 EXPORT_SYMBOL(create_empty_buffers);
1562
1563 /**
1564 * clean_bdev_aliases: clean a range of buffers in block device
1565 * @bdev: Block device to clean buffers in
1566 * @block: Start of a range of blocks to clean
1567 * @len: Number of blocks to clean
1568 *
1569 * We are taking a range of blocks for data and we don't want writeback of any
1570 * buffer-cache aliases starting from return from this function and until the
1571 * moment when something will explicitly mark the buffer dirty (hopefully that
1572 * will not happen until we will free that block ;-) We don't even need to mark
1573 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1574 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1575 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1576 * would confuse anyone who might pick it with bread() afterwards...
1577 *
1578 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1579 * writeout I/O going on against recently-freed buffers. We don't wait on that
1580 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1581 * need to. That happens here.
1582 */
1583 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1584 {
1585 struct inode *bd_inode = bdev->bd_inode;
1586 struct address_space *bd_mapping = bd_inode->i_mapping;
1587 struct pagevec pvec;
1588 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1589 pgoff_t end;
1590 int i, count;
1591 struct buffer_head *bh;
1592 struct buffer_head *head;
1593
1594 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1595 pagevec_init(&pvec);
1596 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1597 count = pagevec_count(&pvec);
1598 for (i = 0; i < count; i++) {
1599 struct page *page = pvec.pages[i];
1600
1601 if (!page_has_buffers(page))
1602 continue;
1603 /*
1604 * We use page lock instead of bd_mapping->private_lock
1605 * to pin buffers here since we can afford to sleep and
1606 * it scales better than a global spinlock lock.
1607 */
1608 lock_page(page);
1609 /* Recheck when the page is locked which pins bhs */
1610 if (!page_has_buffers(page))
1611 goto unlock_page;
1612 head = page_buffers(page);
1613 bh = head;
1614 do {
1615 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1616 goto next;
1617 if (bh->b_blocknr >= block + len)
1618 break;
1619 clear_buffer_dirty(bh);
1620 wait_on_buffer(bh);
1621 clear_buffer_req(bh);
1622 next:
1623 bh = bh->b_this_page;
1624 } while (bh != head);
1625 unlock_page:
1626 unlock_page(page);
1627 }
1628 pagevec_release(&pvec);
1629 cond_resched();
1630 /* End of range already reached? */
1631 if (index > end || !index)
1632 break;
1633 }
1634 }
1635 EXPORT_SYMBOL(clean_bdev_aliases);
1636
1637 /*
1638 * Size is a power-of-two in the range 512..PAGE_SIZE,
1639 * and the case we care about most is PAGE_SIZE.
1640 *
1641 * So this *could* possibly be written with those
1642 * constraints in mind (relevant mostly if some
1643 * architecture has a slow bit-scan instruction)
1644 */
1645 static inline int block_size_bits(unsigned int blocksize)
1646 {
1647 return ilog2(blocksize);
1648 }
1649
1650 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1651 {
1652 BUG_ON(!PageLocked(page));
1653
1654 if (!page_has_buffers(page))
1655 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1656 b_state);
1657 return page_buffers(page);
1658 }
1659
1660 /*
1661 * NOTE! All mapped/uptodate combinations are valid:
1662 *
1663 * Mapped Uptodate Meaning
1664 *
1665 * No No "unknown" - must do get_block()
1666 * No Yes "hole" - zero-filled
1667 * Yes No "allocated" - allocated on disk, not read in
1668 * Yes Yes "valid" - allocated and up-to-date in memory.
1669 *
1670 * "Dirty" is valid only with the last case (mapped+uptodate).
1671 */
1672
1673 /*
1674 * While block_write_full_page is writing back the dirty buffers under
1675 * the page lock, whoever dirtied the buffers may decide to clean them
1676 * again at any time. We handle that by only looking at the buffer
1677 * state inside lock_buffer().
1678 *
1679 * If block_write_full_page() is called for regular writeback
1680 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1681 * locked buffer. This only can happen if someone has written the buffer
1682 * directly, with submit_bh(). At the address_space level PageWriteback
1683 * prevents this contention from occurring.
1684 *
1685 * If block_write_full_page() is called with wbc->sync_mode ==
1686 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1687 * causes the writes to be flagged as synchronous writes.
1688 */
1689 int __block_write_full_page(struct inode *inode, struct page *page,
1690 get_block_t *get_block, struct writeback_control *wbc,
1691 bh_end_io_t *handler)
1692 {
1693 int err;
1694 sector_t block;
1695 sector_t last_block;
1696 struct buffer_head *bh, *head;
1697 unsigned int blocksize, bbits;
1698 int nr_underway = 0;
1699 int write_flags = wbc_to_write_flags(wbc);
1700
1701 head = create_page_buffers(page, inode,
1702 (1 << BH_Dirty)|(1 << BH_Uptodate));
1703
1704 /*
1705 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1706 * here, and the (potentially unmapped) buffers may become dirty at
1707 * any time. If a buffer becomes dirty here after we've inspected it
1708 * then we just miss that fact, and the page stays dirty.
1709 *
1710 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1711 * handle that here by just cleaning them.
1712 */
1713
1714 bh = head;
1715 blocksize = bh->b_size;
1716 bbits = block_size_bits(blocksize);
1717
1718 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1719 last_block = (i_size_read(inode) - 1) >> bbits;
1720
1721 /*
1722 * Get all the dirty buffers mapped to disk addresses and
1723 * handle any aliases from the underlying blockdev's mapping.
1724 */
1725 do {
1726 if (block > last_block) {
1727 /*
1728 * mapped buffers outside i_size will occur, because
1729 * this page can be outside i_size when there is a
1730 * truncate in progress.
1731 */
1732 /*
1733 * The buffer was zeroed by block_write_full_page()
1734 */
1735 clear_buffer_dirty(bh);
1736 set_buffer_uptodate(bh);
1737 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1738 buffer_dirty(bh)) {
1739 WARN_ON(bh->b_size != blocksize);
1740 err = get_block(inode, block, bh, 1);
1741 if (err)
1742 goto recover;
1743 clear_buffer_delay(bh);
1744 if (buffer_new(bh)) {
1745 /* blockdev mappings never come here */
1746 clear_buffer_new(bh);
1747 clean_bdev_bh_alias(bh);
1748 }
1749 }
1750 bh = bh->b_this_page;
1751 block++;
1752 } while (bh != head);
1753
1754 do {
1755 if (!buffer_mapped(bh))
1756 continue;
1757 /*
1758 * If it's a fully non-blocking write attempt and we cannot
1759 * lock the buffer then redirty the page. Note that this can
1760 * potentially cause a busy-wait loop from writeback threads
1761 * and kswapd activity, but those code paths have their own
1762 * higher-level throttling.
1763 */
1764 if (wbc->sync_mode != WB_SYNC_NONE) {
1765 lock_buffer(bh);
1766 } else if (!trylock_buffer(bh)) {
1767 redirty_page_for_writepage(wbc, page);
1768 continue;
1769 }
1770 if (test_clear_buffer_dirty(bh)) {
1771 mark_buffer_async_write_endio(bh, handler);
1772 } else {
1773 unlock_buffer(bh);
1774 }
1775 } while ((bh = bh->b_this_page) != head);
1776
1777 /*
1778 * The page and its buffers are protected by PageWriteback(), so we can
1779 * drop the bh refcounts early.
1780 */
1781 BUG_ON(PageWriteback(page));
1782 set_page_writeback(page);
1783
1784 do {
1785 struct buffer_head *next = bh->b_this_page;
1786 if (buffer_async_write(bh)) {
1787 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1788 inode->i_write_hint, wbc);
1789 nr_underway++;
1790 }
1791 bh = next;
1792 } while (bh != head);
1793 unlock_page(page);
1794
1795 err = 0;
1796 done:
1797 if (nr_underway == 0) {
1798 /*
1799 * The page was marked dirty, but the buffers were
1800 * clean. Someone wrote them back by hand with
1801 * ll_rw_block/submit_bh. A rare case.
1802 */
1803 end_page_writeback(page);
1804
1805 /*
1806 * The page and buffer_heads can be released at any time from
1807 * here on.
1808 */
1809 }
1810 return err;
1811
1812 recover:
1813 /*
1814 * ENOSPC, or some other error. We may already have added some
1815 * blocks to the file, so we need to write these out to avoid
1816 * exposing stale data.
1817 * The page is currently locked and not marked for writeback
1818 */
1819 bh = head;
1820 /* Recovery: lock and submit the mapped buffers */
1821 do {
1822 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1823 !buffer_delay(bh)) {
1824 lock_buffer(bh);
1825 mark_buffer_async_write_endio(bh, handler);
1826 } else {
1827 /*
1828 * The buffer may have been set dirty during
1829 * attachment to a dirty page.
1830 */
1831 clear_buffer_dirty(bh);
1832 }
1833 } while ((bh = bh->b_this_page) != head);
1834 SetPageError(page);
1835 BUG_ON(PageWriteback(page));
1836 mapping_set_error(page->mapping, err);
1837 set_page_writeback(page);
1838 do {
1839 struct buffer_head *next = bh->b_this_page;
1840 if (buffer_async_write(bh)) {
1841 clear_buffer_dirty(bh);
1842 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1843 inode->i_write_hint, wbc);
1844 nr_underway++;
1845 }
1846 bh = next;
1847 } while (bh != head);
1848 unlock_page(page);
1849 goto done;
1850 }
1851 EXPORT_SYMBOL(__block_write_full_page);
1852
1853 /*
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1857 */
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 {
1860 unsigned int block_start, block_end;
1861 struct buffer_head *head, *bh;
1862
1863 BUG_ON(!PageLocked(page));
1864 if (!page_has_buffers(page))
1865 return;
1866
1867 bh = head = page_buffers(page);
1868 block_start = 0;
1869 do {
1870 block_end = block_start + bh->b_size;
1871
1872 if (buffer_new(bh)) {
1873 if (block_end > from && block_start < to) {
1874 if (!PageUptodate(page)) {
1875 unsigned start, size;
1876
1877 start = max(from, block_start);
1878 size = min(to, block_end) - start;
1879
1880 zero_user(page, start, size);
1881 set_buffer_uptodate(bh);
1882 }
1883
1884 clear_buffer_new(bh);
1885 mark_buffer_dirty(bh);
1886 }
1887 }
1888
1889 block_start = block_end;
1890 bh = bh->b_this_page;
1891 } while (bh != head);
1892 }
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1894
1895 static void
1896 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1897 struct iomap *iomap)
1898 {
1899 loff_t offset = block << inode->i_blkbits;
1900
1901 bh->b_bdev = iomap->bdev;
1902
1903 /*
1904 * Block points to offset in file we need to map, iomap contains
1905 * the offset at which the map starts. If the map ends before the
1906 * current block, then do not map the buffer and let the caller
1907 * handle it.
1908 */
1909 BUG_ON(offset >= iomap->offset + iomap->length);
1910
1911 switch (iomap->type) {
1912 case IOMAP_HOLE:
1913 /*
1914 * If the buffer is not up to date or beyond the current EOF,
1915 * we need to mark it as new to ensure sub-block zeroing is
1916 * executed if necessary.
1917 */
1918 if (!buffer_uptodate(bh) ||
1919 (offset >= i_size_read(inode)))
1920 set_buffer_new(bh);
1921 break;
1922 case IOMAP_DELALLOC:
1923 if (!buffer_uptodate(bh) ||
1924 (offset >= i_size_read(inode)))
1925 set_buffer_new(bh);
1926 set_buffer_uptodate(bh);
1927 set_buffer_mapped(bh);
1928 set_buffer_delay(bh);
1929 break;
1930 case IOMAP_UNWRITTEN:
1931 /*
1932 * For unwritten regions, we always need to ensure that
1933 * sub-block writes cause the regions in the block we are not
1934 * writing to are zeroed. Set the buffer as new to ensure this.
1935 */
1936 set_buffer_new(bh);
1937 set_buffer_unwritten(bh);
1938 /* FALLTHRU */
1939 case IOMAP_MAPPED:
1940 if (offset >= i_size_read(inode))
1941 set_buffer_new(bh);
1942 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1943 inode->i_blkbits;
1944 set_buffer_mapped(bh);
1945 break;
1946 }
1947 }
1948
1949 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1950 get_block_t *get_block, struct iomap *iomap)
1951 {
1952 unsigned from = pos & (PAGE_SIZE - 1);
1953 unsigned to = from + len;
1954 struct inode *inode = page->mapping->host;
1955 unsigned block_start, block_end;
1956 sector_t block;
1957 int err = 0;
1958 unsigned blocksize, bbits;
1959 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1960
1961 BUG_ON(!PageLocked(page));
1962 BUG_ON(from > PAGE_SIZE);
1963 BUG_ON(to > PAGE_SIZE);
1964 BUG_ON(from > to);
1965
1966 head = create_page_buffers(page, inode, 0);
1967 blocksize = head->b_size;
1968 bbits = block_size_bits(blocksize);
1969
1970 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1971
1972 for(bh = head, block_start = 0; bh != head || !block_start;
1973 block++, block_start=block_end, bh = bh->b_this_page) {
1974 block_end = block_start + blocksize;
1975 if (block_end <= from || block_start >= to) {
1976 if (PageUptodate(page)) {
1977 if (!buffer_uptodate(bh))
1978 set_buffer_uptodate(bh);
1979 }
1980 continue;
1981 }
1982 if (buffer_new(bh))
1983 clear_buffer_new(bh);
1984 if (!buffer_mapped(bh)) {
1985 WARN_ON(bh->b_size != blocksize);
1986 if (get_block) {
1987 err = get_block(inode, block, bh, 1);
1988 if (err)
1989 break;
1990 } else {
1991 iomap_to_bh(inode, block, bh, iomap);
1992 }
1993
1994 if (buffer_new(bh)) {
1995 clean_bdev_bh_alias(bh);
1996 if (PageUptodate(page)) {
1997 clear_buffer_new(bh);
1998 set_buffer_uptodate(bh);
1999 mark_buffer_dirty(bh);
2000 continue;
2001 }
2002 if (block_end > to || block_start < from)
2003 zero_user_segments(page,
2004 to, block_end,
2005 block_start, from);
2006 continue;
2007 }
2008 }
2009 if (PageUptodate(page)) {
2010 if (!buffer_uptodate(bh))
2011 set_buffer_uptodate(bh);
2012 continue;
2013 }
2014 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2015 !buffer_unwritten(bh) &&
2016 (block_start < from || block_end > to)) {
2017 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2018 *wait_bh++=bh;
2019 }
2020 }
2021 /*
2022 * If we issued read requests - let them complete.
2023 */
2024 while(wait_bh > wait) {
2025 wait_on_buffer(*--wait_bh);
2026 if (!buffer_uptodate(*wait_bh))
2027 err = -EIO;
2028 }
2029 if (unlikely(err))
2030 page_zero_new_buffers(page, from, to);
2031 return err;
2032 }
2033
2034 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2035 get_block_t *get_block)
2036 {
2037 return __block_write_begin_int(page, pos, len, get_block, NULL);
2038 }
2039 EXPORT_SYMBOL(__block_write_begin);
2040
2041 static int __block_commit_write(struct inode *inode, struct page *page,
2042 unsigned from, unsigned to)
2043 {
2044 unsigned block_start, block_end;
2045 int partial = 0;
2046 unsigned blocksize;
2047 struct buffer_head *bh, *head;
2048
2049 bh = head = page_buffers(page);
2050 blocksize = bh->b_size;
2051
2052 block_start = 0;
2053 do {
2054 block_end = block_start + blocksize;
2055 if (block_end <= from || block_start >= to) {
2056 if (!buffer_uptodate(bh))
2057 partial = 1;
2058 } else {
2059 set_buffer_uptodate(bh);
2060 mark_buffer_dirty(bh);
2061 }
2062 clear_buffer_new(bh);
2063
2064 block_start = block_end;
2065 bh = bh->b_this_page;
2066 } while (bh != head);
2067
2068 /*
2069 * If this is a partial write which happened to make all buffers
2070 * uptodate then we can optimize away a bogus readpage() for
2071 * the next read(). Here we 'discover' whether the page went
2072 * uptodate as a result of this (potentially partial) write.
2073 */
2074 if (!partial)
2075 SetPageUptodate(page);
2076 return 0;
2077 }
2078
2079 /*
2080 * block_write_begin takes care of the basic task of block allocation and
2081 * bringing partial write blocks uptodate first.
2082 *
2083 * The filesystem needs to handle block truncation upon failure.
2084 */
2085 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2086 unsigned flags, struct page **pagep, get_block_t *get_block)
2087 {
2088 pgoff_t index = pos >> PAGE_SHIFT;
2089 struct page *page;
2090 int status;
2091
2092 page = grab_cache_page_write_begin(mapping, index, flags);
2093 if (!page)
2094 return -ENOMEM;
2095
2096 status = __block_write_begin(page, pos, len, get_block);
2097 if (unlikely(status)) {
2098 unlock_page(page);
2099 put_page(page);
2100 page = NULL;
2101 }
2102
2103 *pagep = page;
2104 return status;
2105 }
2106 EXPORT_SYMBOL(block_write_begin);
2107
2108 int block_write_end(struct file *file, struct address_space *mapping,
2109 loff_t pos, unsigned len, unsigned copied,
2110 struct page *page, void *fsdata)
2111 {
2112 struct inode *inode = mapping->host;
2113 unsigned start;
2114
2115 start = pos & (PAGE_SIZE - 1);
2116
2117 if (unlikely(copied < len)) {
2118 /*
2119 * The buffers that were written will now be uptodate, so we
2120 * don't have to worry about a readpage reading them and
2121 * overwriting a partial write. However if we have encountered
2122 * a short write and only partially written into a buffer, it
2123 * will not be marked uptodate, so a readpage might come in and
2124 * destroy our partial write.
2125 *
2126 * Do the simplest thing, and just treat any short write to a
2127 * non uptodate page as a zero-length write, and force the
2128 * caller to redo the whole thing.
2129 */
2130 if (!PageUptodate(page))
2131 copied = 0;
2132
2133 page_zero_new_buffers(page, start+copied, start+len);
2134 }
2135 flush_dcache_page(page);
2136
2137 /* This could be a short (even 0-length) commit */
2138 __block_commit_write(inode, page, start, start+copied);
2139
2140 return copied;
2141 }
2142 EXPORT_SYMBOL(block_write_end);
2143
2144 int generic_write_end(struct file *file, struct address_space *mapping,
2145 loff_t pos, unsigned len, unsigned copied,
2146 struct page *page, void *fsdata)
2147 {
2148 struct inode *inode = mapping->host;
2149 loff_t old_size = inode->i_size;
2150 int i_size_changed = 0;
2151
2152 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2153
2154 /*
2155 * No need to use i_size_read() here, the i_size
2156 * cannot change under us because we hold i_mutex.
2157 *
2158 * But it's important to update i_size while still holding page lock:
2159 * page writeout could otherwise come in and zero beyond i_size.
2160 */
2161 if (pos+copied > inode->i_size) {
2162 i_size_write(inode, pos+copied);
2163 i_size_changed = 1;
2164 }
2165
2166 unlock_page(page);
2167 put_page(page);
2168
2169 if (old_size < pos)
2170 pagecache_isize_extended(inode, old_size, pos);
2171 /*
2172 * Don't mark the inode dirty under page lock. First, it unnecessarily
2173 * makes the holding time of page lock longer. Second, it forces lock
2174 * ordering of page lock and transaction start for journaling
2175 * filesystems.
2176 */
2177 if (i_size_changed)
2178 mark_inode_dirty(inode);
2179
2180 return copied;
2181 }
2182 EXPORT_SYMBOL(generic_write_end);
2183
2184 /*
2185 * block_is_partially_uptodate checks whether buffers within a page are
2186 * uptodate or not.
2187 *
2188 * Returns true if all buffers which correspond to a file portion
2189 * we want to read are uptodate.
2190 */
2191 int block_is_partially_uptodate(struct page *page, unsigned long from,
2192 unsigned long count)
2193 {
2194 unsigned block_start, block_end, blocksize;
2195 unsigned to;
2196 struct buffer_head *bh, *head;
2197 int ret = 1;
2198
2199 if (!page_has_buffers(page))
2200 return 0;
2201
2202 head = page_buffers(page);
2203 blocksize = head->b_size;
2204 to = min_t(unsigned, PAGE_SIZE - from, count);
2205 to = from + to;
2206 if (from < blocksize && to > PAGE_SIZE - blocksize)
2207 return 0;
2208
2209 bh = head;
2210 block_start = 0;
2211 do {
2212 block_end = block_start + blocksize;
2213 if (block_end > from && block_start < to) {
2214 if (!buffer_uptodate(bh)) {
2215 ret = 0;
2216 break;
2217 }
2218 if (block_end >= to)
2219 break;
2220 }
2221 block_start = block_end;
2222 bh = bh->b_this_page;
2223 } while (bh != head);
2224
2225 return ret;
2226 }
2227 EXPORT_SYMBOL(block_is_partially_uptodate);
2228
2229 /*
2230 * Generic "read page" function for block devices that have the normal
2231 * get_block functionality. This is most of the block device filesystems.
2232 * Reads the page asynchronously --- the unlock_buffer() and
2233 * set/clear_buffer_uptodate() functions propagate buffer state into the
2234 * page struct once IO has completed.
2235 */
2236 int block_read_full_page(struct page *page, get_block_t *get_block)
2237 {
2238 struct inode *inode = page->mapping->host;
2239 sector_t iblock, lblock;
2240 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2241 unsigned int blocksize, bbits;
2242 int nr, i;
2243 int fully_mapped = 1;
2244
2245 head = create_page_buffers(page, inode, 0);
2246 blocksize = head->b_size;
2247 bbits = block_size_bits(blocksize);
2248
2249 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2250 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2251 bh = head;
2252 nr = 0;
2253 i = 0;
2254
2255 do {
2256 if (buffer_uptodate(bh))
2257 continue;
2258
2259 if (!buffer_mapped(bh)) {
2260 int err = 0;
2261
2262 fully_mapped = 0;
2263 if (iblock < lblock) {
2264 WARN_ON(bh->b_size != blocksize);
2265 err = get_block(inode, iblock, bh, 0);
2266 if (err)
2267 SetPageError(page);
2268 }
2269 if (!buffer_mapped(bh)) {
2270 zero_user(page, i * blocksize, blocksize);
2271 if (!err)
2272 set_buffer_uptodate(bh);
2273 continue;
2274 }
2275 /*
2276 * get_block() might have updated the buffer
2277 * synchronously
2278 */
2279 if (buffer_uptodate(bh))
2280 continue;
2281 }
2282 arr[nr++] = bh;
2283 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2284
2285 if (fully_mapped)
2286 SetPageMappedToDisk(page);
2287
2288 if (!nr) {
2289 /*
2290 * All buffers are uptodate - we can set the page uptodate
2291 * as well. But not if get_block() returned an error.
2292 */
2293 if (!PageError(page))
2294 SetPageUptodate(page);
2295 unlock_page(page);
2296 return 0;
2297 }
2298
2299 /* Stage two: lock the buffers */
2300 for (i = 0; i < nr; i++) {
2301 bh = arr[i];
2302 lock_buffer(bh);
2303 mark_buffer_async_read(bh);
2304 }
2305
2306 /*
2307 * Stage 3: start the IO. Check for uptodateness
2308 * inside the buffer lock in case another process reading
2309 * the underlying blockdev brought it uptodate (the sct fix).
2310 */
2311 for (i = 0; i < nr; i++) {
2312 bh = arr[i];
2313 if (buffer_uptodate(bh))
2314 end_buffer_async_read(bh, 1);
2315 else
2316 submit_bh(REQ_OP_READ, 0, bh);
2317 }
2318 return 0;
2319 }
2320 EXPORT_SYMBOL(block_read_full_page);
2321
2322 /* utility function for filesystems that need to do work on expanding
2323 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2324 * deal with the hole.
2325 */
2326 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2327 {
2328 struct address_space *mapping = inode->i_mapping;
2329 struct page *page;
2330 void *fsdata;
2331 int err;
2332
2333 err = inode_newsize_ok(inode, size);
2334 if (err)
2335 goto out;
2336
2337 err = pagecache_write_begin(NULL, mapping, size, 0,
2338 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2339 if (err)
2340 goto out;
2341
2342 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2343 BUG_ON(err > 0);
2344
2345 out:
2346 return err;
2347 }
2348 EXPORT_SYMBOL(generic_cont_expand_simple);
2349
2350 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2351 loff_t pos, loff_t *bytes)
2352 {
2353 struct inode *inode = mapping->host;
2354 unsigned int blocksize = i_blocksize(inode);
2355 struct page *page;
2356 void *fsdata;
2357 pgoff_t index, curidx;
2358 loff_t curpos;
2359 unsigned zerofrom, offset, len;
2360 int err = 0;
2361
2362 index = pos >> PAGE_SHIFT;
2363 offset = pos & ~PAGE_MASK;
2364
2365 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2366 zerofrom = curpos & ~PAGE_MASK;
2367 if (zerofrom & (blocksize-1)) {
2368 *bytes |= (blocksize-1);
2369 (*bytes)++;
2370 }
2371 len = PAGE_SIZE - zerofrom;
2372
2373 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2374 &page, &fsdata);
2375 if (err)
2376 goto out;
2377 zero_user(page, zerofrom, len);
2378 err = pagecache_write_end(file, mapping, curpos, len, len,
2379 page, fsdata);
2380 if (err < 0)
2381 goto out;
2382 BUG_ON(err != len);
2383 err = 0;
2384
2385 balance_dirty_pages_ratelimited(mapping);
2386
2387 if (unlikely(fatal_signal_pending(current))) {
2388 err = -EINTR;
2389 goto out;
2390 }
2391 }
2392
2393 /* page covers the boundary, find the boundary offset */
2394 if (index == curidx) {
2395 zerofrom = curpos & ~PAGE_MASK;
2396 /* if we will expand the thing last block will be filled */
2397 if (offset <= zerofrom) {
2398 goto out;
2399 }
2400 if (zerofrom & (blocksize-1)) {
2401 *bytes |= (blocksize-1);
2402 (*bytes)++;
2403 }
2404 len = offset - zerofrom;
2405
2406 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2407 &page, &fsdata);
2408 if (err)
2409 goto out;
2410 zero_user(page, zerofrom, len);
2411 err = pagecache_write_end(file, mapping, curpos, len, len,
2412 page, fsdata);
2413 if (err < 0)
2414 goto out;
2415 BUG_ON(err != len);
2416 err = 0;
2417 }
2418 out:
2419 return err;
2420 }
2421
2422 /*
2423 * For moronic filesystems that do not allow holes in file.
2424 * We may have to extend the file.
2425 */
2426 int cont_write_begin(struct file *file, struct address_space *mapping,
2427 loff_t pos, unsigned len, unsigned flags,
2428 struct page **pagep, void **fsdata,
2429 get_block_t *get_block, loff_t *bytes)
2430 {
2431 struct inode *inode = mapping->host;
2432 unsigned int blocksize = i_blocksize(inode);
2433 unsigned int zerofrom;
2434 int err;
2435
2436 err = cont_expand_zero(file, mapping, pos, bytes);
2437 if (err)
2438 return err;
2439
2440 zerofrom = *bytes & ~PAGE_MASK;
2441 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2442 *bytes |= (blocksize-1);
2443 (*bytes)++;
2444 }
2445
2446 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2447 }
2448 EXPORT_SYMBOL(cont_write_begin);
2449
2450 int block_commit_write(struct page *page, unsigned from, unsigned to)
2451 {
2452 struct inode *inode = page->mapping->host;
2453 __block_commit_write(inode,page,from,to);
2454 return 0;
2455 }
2456 EXPORT_SYMBOL(block_commit_write);
2457
2458 /*
2459 * block_page_mkwrite() is not allowed to change the file size as it gets
2460 * called from a page fault handler when a page is first dirtied. Hence we must
2461 * be careful to check for EOF conditions here. We set the page up correctly
2462 * for a written page which means we get ENOSPC checking when writing into
2463 * holes and correct delalloc and unwritten extent mapping on filesystems that
2464 * support these features.
2465 *
2466 * We are not allowed to take the i_mutex here so we have to play games to
2467 * protect against truncate races as the page could now be beyond EOF. Because
2468 * truncate writes the inode size before removing pages, once we have the
2469 * page lock we can determine safely if the page is beyond EOF. If it is not
2470 * beyond EOF, then the page is guaranteed safe against truncation until we
2471 * unlock the page.
2472 *
2473 * Direct callers of this function should protect against filesystem freezing
2474 * using sb_start_pagefault() - sb_end_pagefault() functions.
2475 */
2476 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2477 get_block_t get_block)
2478 {
2479 struct page *page = vmf->page;
2480 struct inode *inode = file_inode(vma->vm_file);
2481 unsigned long end;
2482 loff_t size;
2483 int ret;
2484
2485 lock_page(page);
2486 size = i_size_read(inode);
2487 if ((page->mapping != inode->i_mapping) ||
2488 (page_offset(page) > size)) {
2489 /* We overload EFAULT to mean page got truncated */
2490 ret = -EFAULT;
2491 goto out_unlock;
2492 }
2493
2494 /* page is wholly or partially inside EOF */
2495 if (((page->index + 1) << PAGE_SHIFT) > size)
2496 end = size & ~PAGE_MASK;
2497 else
2498 end = PAGE_SIZE;
2499
2500 ret = __block_write_begin(page, 0, end, get_block);
2501 if (!ret)
2502 ret = block_commit_write(page, 0, end);
2503
2504 if (unlikely(ret < 0))
2505 goto out_unlock;
2506 set_page_dirty(page);
2507 wait_for_stable_page(page);
2508 return 0;
2509 out_unlock:
2510 unlock_page(page);
2511 return ret;
2512 }
2513 EXPORT_SYMBOL(block_page_mkwrite);
2514
2515 /*
2516 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2517 * immediately, while under the page lock. So it needs a special end_io
2518 * handler which does not touch the bh after unlocking it.
2519 */
2520 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2521 {
2522 __end_buffer_read_notouch(bh, uptodate);
2523 }
2524
2525 /*
2526 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2527 * the page (converting it to circular linked list and taking care of page
2528 * dirty races).
2529 */
2530 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2531 {
2532 struct buffer_head *bh;
2533
2534 BUG_ON(!PageLocked(page));
2535
2536 spin_lock(&page->mapping->private_lock);
2537 bh = head;
2538 do {
2539 if (PageDirty(page))
2540 set_buffer_dirty(bh);
2541 if (!bh->b_this_page)
2542 bh->b_this_page = head;
2543 bh = bh->b_this_page;
2544 } while (bh != head);
2545 attach_page_buffers(page, head);
2546 spin_unlock(&page->mapping->private_lock);
2547 }
2548
2549 /*
2550 * On entry, the page is fully not uptodate.
2551 * On exit the page is fully uptodate in the areas outside (from,to)
2552 * The filesystem needs to handle block truncation upon failure.
2553 */
2554 int nobh_write_begin(struct address_space *mapping,
2555 loff_t pos, unsigned len, unsigned flags,
2556 struct page **pagep, void **fsdata,
2557 get_block_t *get_block)
2558 {
2559 struct inode *inode = mapping->host;
2560 const unsigned blkbits = inode->i_blkbits;
2561 const unsigned blocksize = 1 << blkbits;
2562 struct buffer_head *head, *bh;
2563 struct page *page;
2564 pgoff_t index;
2565 unsigned from, to;
2566 unsigned block_in_page;
2567 unsigned block_start, block_end;
2568 sector_t block_in_file;
2569 int nr_reads = 0;
2570 int ret = 0;
2571 int is_mapped_to_disk = 1;
2572
2573 index = pos >> PAGE_SHIFT;
2574 from = pos & (PAGE_SIZE - 1);
2575 to = from + len;
2576
2577 page = grab_cache_page_write_begin(mapping, index, flags);
2578 if (!page)
2579 return -ENOMEM;
2580 *pagep = page;
2581 *fsdata = NULL;
2582
2583 if (page_has_buffers(page)) {
2584 ret = __block_write_begin(page, pos, len, get_block);
2585 if (unlikely(ret))
2586 goto out_release;
2587 return ret;
2588 }
2589
2590 if (PageMappedToDisk(page))
2591 return 0;
2592
2593 /*
2594 * Allocate buffers so that we can keep track of state, and potentially
2595 * attach them to the page if an error occurs. In the common case of
2596 * no error, they will just be freed again without ever being attached
2597 * to the page (which is all OK, because we're under the page lock).
2598 *
2599 * Be careful: the buffer linked list is a NULL terminated one, rather
2600 * than the circular one we're used to.
2601 */
2602 head = alloc_page_buffers(page, blocksize, false);
2603 if (!head) {
2604 ret = -ENOMEM;
2605 goto out_release;
2606 }
2607
2608 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2609
2610 /*
2611 * We loop across all blocks in the page, whether or not they are
2612 * part of the affected region. This is so we can discover if the
2613 * page is fully mapped-to-disk.
2614 */
2615 for (block_start = 0, block_in_page = 0, bh = head;
2616 block_start < PAGE_SIZE;
2617 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2618 int create;
2619
2620 block_end = block_start + blocksize;
2621 bh->b_state = 0;
2622 create = 1;
2623 if (block_start >= to)
2624 create = 0;
2625 ret = get_block(inode, block_in_file + block_in_page,
2626 bh, create);
2627 if (ret)
2628 goto failed;
2629 if (!buffer_mapped(bh))
2630 is_mapped_to_disk = 0;
2631 if (buffer_new(bh))
2632 clean_bdev_bh_alias(bh);
2633 if (PageUptodate(page)) {
2634 set_buffer_uptodate(bh);
2635 continue;
2636 }
2637 if (buffer_new(bh) || !buffer_mapped(bh)) {
2638 zero_user_segments(page, block_start, from,
2639 to, block_end);
2640 continue;
2641 }
2642 if (buffer_uptodate(bh))
2643 continue; /* reiserfs does this */
2644 if (block_start < from || block_end > to) {
2645 lock_buffer(bh);
2646 bh->b_end_io = end_buffer_read_nobh;
2647 submit_bh(REQ_OP_READ, 0, bh);
2648 nr_reads++;
2649 }
2650 }
2651
2652 if (nr_reads) {
2653 /*
2654 * The page is locked, so these buffers are protected from
2655 * any VM or truncate activity. Hence we don't need to care
2656 * for the buffer_head refcounts.
2657 */
2658 for (bh = head; bh; bh = bh->b_this_page) {
2659 wait_on_buffer(bh);
2660 if (!buffer_uptodate(bh))
2661 ret = -EIO;
2662 }
2663 if (ret)
2664 goto failed;
2665 }
2666
2667 if (is_mapped_to_disk)
2668 SetPageMappedToDisk(page);
2669
2670 *fsdata = head; /* to be released by nobh_write_end */
2671
2672 return 0;
2673
2674 failed:
2675 BUG_ON(!ret);
2676 /*
2677 * Error recovery is a bit difficult. We need to zero out blocks that
2678 * were newly allocated, and dirty them to ensure they get written out.
2679 * Buffers need to be attached to the page at this point, otherwise
2680 * the handling of potential IO errors during writeout would be hard
2681 * (could try doing synchronous writeout, but what if that fails too?)
2682 */
2683 attach_nobh_buffers(page, head);
2684 page_zero_new_buffers(page, from, to);
2685
2686 out_release:
2687 unlock_page(page);
2688 put_page(page);
2689 *pagep = NULL;
2690
2691 return ret;
2692 }
2693 EXPORT_SYMBOL(nobh_write_begin);
2694
2695 int nobh_write_end(struct file *file, struct address_space *mapping,
2696 loff_t pos, unsigned len, unsigned copied,
2697 struct page *page, void *fsdata)
2698 {
2699 struct inode *inode = page->mapping->host;
2700 struct buffer_head *head = fsdata;
2701 struct buffer_head *bh;
2702 BUG_ON(fsdata != NULL && page_has_buffers(page));
2703
2704 if (unlikely(copied < len) && head)
2705 attach_nobh_buffers(page, head);
2706 if (page_has_buffers(page))
2707 return generic_write_end(file, mapping, pos, len,
2708 copied, page, fsdata);
2709
2710 SetPageUptodate(page);
2711 set_page_dirty(page);
2712 if (pos+copied > inode->i_size) {
2713 i_size_write(inode, pos+copied);
2714 mark_inode_dirty(inode);
2715 }
2716
2717 unlock_page(page);
2718 put_page(page);
2719
2720 while (head) {
2721 bh = head;
2722 head = head->b_this_page;
2723 free_buffer_head(bh);
2724 }
2725
2726 return copied;
2727 }
2728 EXPORT_SYMBOL(nobh_write_end);
2729
2730 /*
2731 * nobh_writepage() - based on block_full_write_page() except
2732 * that it tries to operate without attaching bufferheads to
2733 * the page.
2734 */
2735 int nobh_writepage(struct page *page, get_block_t *get_block,
2736 struct writeback_control *wbc)
2737 {
2738 struct inode * const inode = page->mapping->host;
2739 loff_t i_size = i_size_read(inode);
2740 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2741 unsigned offset;
2742 int ret;
2743
2744 /* Is the page fully inside i_size? */
2745 if (page->index < end_index)
2746 goto out;
2747
2748 /* Is the page fully outside i_size? (truncate in progress) */
2749 offset = i_size & (PAGE_SIZE-1);
2750 if (page->index >= end_index+1 || !offset) {
2751 /*
2752 * The page may have dirty, unmapped buffers. For example,
2753 * they may have been added in ext3_writepage(). Make them
2754 * freeable here, so the page does not leak.
2755 */
2756 #if 0
2757 /* Not really sure about this - do we need this ? */
2758 if (page->mapping->a_ops->invalidatepage)
2759 page->mapping->a_ops->invalidatepage(page, offset);
2760 #endif
2761 unlock_page(page);
2762 return 0; /* don't care */
2763 }
2764
2765 /*
2766 * The page straddles i_size. It must be zeroed out on each and every
2767 * writepage invocation because it may be mmapped. "A file is mapped
2768 * in multiples of the page size. For a file that is not a multiple of
2769 * the page size, the remaining memory is zeroed when mapped, and
2770 * writes to that region are not written out to the file."
2771 */
2772 zero_user_segment(page, offset, PAGE_SIZE);
2773 out:
2774 ret = mpage_writepage(page, get_block, wbc);
2775 if (ret == -EAGAIN)
2776 ret = __block_write_full_page(inode, page, get_block, wbc,
2777 end_buffer_async_write);
2778 return ret;
2779 }
2780 EXPORT_SYMBOL(nobh_writepage);
2781
2782 int nobh_truncate_page(struct address_space *mapping,
2783 loff_t from, get_block_t *get_block)
2784 {
2785 pgoff_t index = from >> PAGE_SHIFT;
2786 unsigned offset = from & (PAGE_SIZE-1);
2787 unsigned blocksize;
2788 sector_t iblock;
2789 unsigned length, pos;
2790 struct inode *inode = mapping->host;
2791 struct page *page;
2792 struct buffer_head map_bh;
2793 int err;
2794
2795 blocksize = i_blocksize(inode);
2796 length = offset & (blocksize - 1);
2797
2798 /* Block boundary? Nothing to do */
2799 if (!length)
2800 return 0;
2801
2802 length = blocksize - length;
2803 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2804
2805 page = grab_cache_page(mapping, index);
2806 err = -ENOMEM;
2807 if (!page)
2808 goto out;
2809
2810 if (page_has_buffers(page)) {
2811 has_buffers:
2812 unlock_page(page);
2813 put_page(page);
2814 return block_truncate_page(mapping, from, get_block);
2815 }
2816
2817 /* Find the buffer that contains "offset" */
2818 pos = blocksize;
2819 while (offset >= pos) {
2820 iblock++;
2821 pos += blocksize;
2822 }
2823
2824 map_bh.b_size = blocksize;
2825 map_bh.b_state = 0;
2826 err = get_block(inode, iblock, &map_bh, 0);
2827 if (err)
2828 goto unlock;
2829 /* unmapped? It's a hole - nothing to do */
2830 if (!buffer_mapped(&map_bh))
2831 goto unlock;
2832
2833 /* Ok, it's mapped. Make sure it's up-to-date */
2834 if (!PageUptodate(page)) {
2835 err = mapping->a_ops->readpage(NULL, page);
2836 if (err) {
2837 put_page(page);
2838 goto out;
2839 }
2840 lock_page(page);
2841 if (!PageUptodate(page)) {
2842 err = -EIO;
2843 goto unlock;
2844 }
2845 if (page_has_buffers(page))
2846 goto has_buffers;
2847 }
2848 zero_user(page, offset, length);
2849 set_page_dirty(page);
2850 err = 0;
2851
2852 unlock:
2853 unlock_page(page);
2854 put_page(page);
2855 out:
2856 return err;
2857 }
2858 EXPORT_SYMBOL(nobh_truncate_page);
2859
2860 int block_truncate_page(struct address_space *mapping,
2861 loff_t from, get_block_t *get_block)
2862 {
2863 pgoff_t index = from >> PAGE_SHIFT;
2864 unsigned offset = from & (PAGE_SIZE-1);
2865 unsigned blocksize;
2866 sector_t iblock;
2867 unsigned length, pos;
2868 struct inode *inode = mapping->host;
2869 struct page *page;
2870 struct buffer_head *bh;
2871 int err;
2872
2873 blocksize = i_blocksize(inode);
2874 length = offset & (blocksize - 1);
2875
2876 /* Block boundary? Nothing to do */
2877 if (!length)
2878 return 0;
2879
2880 length = blocksize - length;
2881 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2882
2883 page = grab_cache_page(mapping, index);
2884 err = -ENOMEM;
2885 if (!page)
2886 goto out;
2887
2888 if (!page_has_buffers(page))
2889 create_empty_buffers(page, blocksize, 0);
2890
2891 /* Find the buffer that contains "offset" */
2892 bh = page_buffers(page);
2893 pos = blocksize;
2894 while (offset >= pos) {
2895 bh = bh->b_this_page;
2896 iblock++;
2897 pos += blocksize;
2898 }
2899
2900 err = 0;
2901 if (!buffer_mapped(bh)) {
2902 WARN_ON(bh->b_size != blocksize);
2903 err = get_block(inode, iblock, bh, 0);
2904 if (err)
2905 goto unlock;
2906 /* unmapped? It's a hole - nothing to do */
2907 if (!buffer_mapped(bh))
2908 goto unlock;
2909 }
2910
2911 /* Ok, it's mapped. Make sure it's up-to-date */
2912 if (PageUptodate(page))
2913 set_buffer_uptodate(bh);
2914
2915 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2916 err = -EIO;
2917 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2918 wait_on_buffer(bh);
2919 /* Uhhuh. Read error. Complain and punt. */
2920 if (!buffer_uptodate(bh))
2921 goto unlock;
2922 }
2923
2924 zero_user(page, offset, length);
2925 mark_buffer_dirty(bh);
2926 err = 0;
2927
2928 unlock:
2929 unlock_page(page);
2930 put_page(page);
2931 out:
2932 return err;
2933 }
2934 EXPORT_SYMBOL(block_truncate_page);
2935
2936 /*
2937 * The generic ->writepage function for buffer-backed address_spaces
2938 */
2939 int block_write_full_page(struct page *page, get_block_t *get_block,
2940 struct writeback_control *wbc)
2941 {
2942 struct inode * const inode = page->mapping->host;
2943 loff_t i_size = i_size_read(inode);
2944 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2945 unsigned offset;
2946
2947 /* Is the page fully inside i_size? */
2948 if (page->index < end_index)
2949 return __block_write_full_page(inode, page, get_block, wbc,
2950 end_buffer_async_write);
2951
2952 /* Is the page fully outside i_size? (truncate in progress) */
2953 offset = i_size & (PAGE_SIZE-1);
2954 if (page->index >= end_index+1 || !offset) {
2955 /*
2956 * The page may have dirty, unmapped buffers. For example,
2957 * they may have been added in ext3_writepage(). Make them
2958 * freeable here, so the page does not leak.
2959 */
2960 do_invalidatepage(page, 0, PAGE_SIZE);
2961 unlock_page(page);
2962 return 0; /* don't care */
2963 }
2964
2965 /*
2966 * The page straddles i_size. It must be zeroed out on each and every
2967 * writepage invocation because it may be mmapped. "A file is mapped
2968 * in multiples of the page size. For a file that is not a multiple of
2969 * the page size, the remaining memory is zeroed when mapped, and
2970 * writes to that region are not written out to the file."
2971 */
2972 zero_user_segment(page, offset, PAGE_SIZE);
2973 return __block_write_full_page(inode, page, get_block, wbc,
2974 end_buffer_async_write);
2975 }
2976 EXPORT_SYMBOL(block_write_full_page);
2977
2978 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2979 get_block_t *get_block)
2980 {
2981 struct inode *inode = mapping->host;
2982 struct buffer_head tmp = {
2983 .b_size = i_blocksize(inode),
2984 };
2985
2986 get_block(inode, block, &tmp, 0);
2987 return tmp.b_blocknr;
2988 }
2989 EXPORT_SYMBOL(generic_block_bmap);
2990
2991 static void end_bio_bh_io_sync(struct bio *bio)
2992 {
2993 struct buffer_head *bh = bio->bi_private;
2994
2995 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2996 set_bit(BH_Quiet, &bh->b_state);
2997
2998 bh->b_end_io(bh, !bio->bi_status);
2999 bio_put(bio);
3000 }
3001
3002 /*
3003 * This allows us to do IO even on the odd last sectors
3004 * of a device, even if the block size is some multiple
3005 * of the physical sector size.
3006 *
3007 * We'll just truncate the bio to the size of the device,
3008 * and clear the end of the buffer head manually.
3009 *
3010 * Truly out-of-range accesses will turn into actual IO
3011 * errors, this only handles the "we need to be able to
3012 * do IO at the final sector" case.
3013 */
3014 void guard_bio_eod(int op, struct bio *bio)
3015 {
3016 sector_t maxsector;
3017 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3018 unsigned truncated_bytes;
3019 struct hd_struct *part;
3020
3021 rcu_read_lock();
3022 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3023 if (part)
3024 maxsector = part_nr_sects_read(part);
3025 else
3026 maxsector = get_capacity(bio->bi_disk);
3027 rcu_read_unlock();
3028
3029 if (!maxsector)
3030 return;
3031
3032 /*
3033 * If the *whole* IO is past the end of the device,
3034 * let it through, and the IO layer will turn it into
3035 * an EIO.
3036 */
3037 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3038 return;
3039
3040 maxsector -= bio->bi_iter.bi_sector;
3041 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3042 return;
3043
3044 /* Uhhuh. We've got a bio that straddles the device size! */
3045 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3046
3047 /* Truncate the bio.. */
3048 bio->bi_iter.bi_size -= truncated_bytes;
3049 bvec->bv_len -= truncated_bytes;
3050
3051 /* ..and clear the end of the buffer for reads */
3052 if (op == REQ_OP_READ) {
3053 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3054 truncated_bytes);
3055 }
3056 }
3057
3058 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3059 enum rw_hint write_hint, struct writeback_control *wbc)
3060 {
3061 struct bio *bio;
3062
3063 BUG_ON(!buffer_locked(bh));
3064 BUG_ON(!buffer_mapped(bh));
3065 BUG_ON(!bh->b_end_io);
3066 BUG_ON(buffer_delay(bh));
3067 BUG_ON(buffer_unwritten(bh));
3068
3069 /*
3070 * Only clear out a write error when rewriting
3071 */
3072 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3073 clear_buffer_write_io_error(bh);
3074
3075 /*
3076 * from here on down, it's all bio -- do the initial mapping,
3077 * submit_bio -> generic_make_request may further map this bio around
3078 */
3079 bio = bio_alloc(GFP_NOIO, 1);
3080
3081 if (wbc) {
3082 wbc_init_bio(wbc, bio);
3083 wbc_account_io(wbc, bh->b_page, bh->b_size);
3084 }
3085
3086 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3087 bio_set_dev(bio, bh->b_bdev);
3088 bio->bi_write_hint = write_hint;
3089
3090 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3091 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3092
3093 bio->bi_end_io = end_bio_bh_io_sync;
3094 bio->bi_private = bh;
3095
3096 /* Take care of bh's that straddle the end of the device */
3097 guard_bio_eod(op, bio);
3098
3099 if (buffer_meta(bh))
3100 op_flags |= REQ_META;
3101 if (buffer_prio(bh))
3102 op_flags |= REQ_PRIO;
3103 bio_set_op_attrs(bio, op, op_flags);
3104
3105 submit_bio(bio);
3106 return 0;
3107 }
3108
3109 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3110 {
3111 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3112 }
3113 EXPORT_SYMBOL(submit_bh);
3114
3115 /**
3116 * ll_rw_block: low-level access to block devices (DEPRECATED)
3117 * @op: whether to %READ or %WRITE
3118 * @op_flags: req_flag_bits
3119 * @nr: number of &struct buffer_heads in the array
3120 * @bhs: array of pointers to &struct buffer_head
3121 *
3122 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3123 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3124 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3125 * %REQ_RAHEAD.
3126 *
3127 * This function drops any buffer that it cannot get a lock on (with the
3128 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3129 * request, and any buffer that appears to be up-to-date when doing read
3130 * request. Further it marks as clean buffers that are processed for
3131 * writing (the buffer cache won't assume that they are actually clean
3132 * until the buffer gets unlocked).
3133 *
3134 * ll_rw_block sets b_end_io to simple completion handler that marks
3135 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3136 * any waiters.
3137 *
3138 * All of the buffers must be for the same device, and must also be a
3139 * multiple of the current approved size for the device.
3140 */
3141 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3142 {
3143 int i;
3144
3145 for (i = 0; i < nr; i++) {
3146 struct buffer_head *bh = bhs[i];
3147
3148 if (!trylock_buffer(bh))
3149 continue;
3150 if (op == WRITE) {
3151 if (test_clear_buffer_dirty(bh)) {
3152 bh->b_end_io = end_buffer_write_sync;
3153 get_bh(bh);
3154 submit_bh(op, op_flags, bh);
3155 continue;
3156 }
3157 } else {
3158 if (!buffer_uptodate(bh)) {
3159 bh->b_end_io = end_buffer_read_sync;
3160 get_bh(bh);
3161 submit_bh(op, op_flags, bh);
3162 continue;
3163 }
3164 }
3165 unlock_buffer(bh);
3166 }
3167 }
3168 EXPORT_SYMBOL(ll_rw_block);
3169
3170 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3171 {
3172 lock_buffer(bh);
3173 if (!test_clear_buffer_dirty(bh)) {
3174 unlock_buffer(bh);
3175 return;
3176 }
3177 bh->b_end_io = end_buffer_write_sync;
3178 get_bh(bh);
3179 submit_bh(REQ_OP_WRITE, op_flags, bh);
3180 }
3181 EXPORT_SYMBOL(write_dirty_buffer);
3182
3183 /*
3184 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3185 * and then start new I/O and then wait upon it. The caller must have a ref on
3186 * the buffer_head.
3187 */
3188 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3189 {
3190 int ret = 0;
3191
3192 WARN_ON(atomic_read(&bh->b_count) < 1);
3193 lock_buffer(bh);
3194 if (test_clear_buffer_dirty(bh)) {
3195 get_bh(bh);
3196 bh->b_end_io = end_buffer_write_sync;
3197 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3198 wait_on_buffer(bh);
3199 if (!ret && !buffer_uptodate(bh))
3200 ret = -EIO;
3201 } else {
3202 unlock_buffer(bh);
3203 }
3204 return ret;
3205 }
3206 EXPORT_SYMBOL(__sync_dirty_buffer);
3207
3208 int sync_dirty_buffer(struct buffer_head *bh)
3209 {
3210 return __sync_dirty_buffer(bh, REQ_SYNC);
3211 }
3212 EXPORT_SYMBOL(sync_dirty_buffer);
3213
3214 /*
3215 * try_to_free_buffers() checks if all the buffers on this particular page
3216 * are unused, and releases them if so.
3217 *
3218 * Exclusion against try_to_free_buffers may be obtained by either
3219 * locking the page or by holding its mapping's private_lock.
3220 *
3221 * If the page is dirty but all the buffers are clean then we need to
3222 * be sure to mark the page clean as well. This is because the page
3223 * may be against a block device, and a later reattachment of buffers
3224 * to a dirty page will set *all* buffers dirty. Which would corrupt
3225 * filesystem data on the same device.
3226 *
3227 * The same applies to regular filesystem pages: if all the buffers are
3228 * clean then we set the page clean and proceed. To do that, we require
3229 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3230 * private_lock.
3231 *
3232 * try_to_free_buffers() is non-blocking.
3233 */
3234 static inline int buffer_busy(struct buffer_head *bh)
3235 {
3236 return atomic_read(&bh->b_count) |
3237 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3238 }
3239
3240 static int
3241 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3242 {
3243 struct buffer_head *head = page_buffers(page);
3244 struct buffer_head *bh;
3245
3246 bh = head;
3247 do {
3248 if (buffer_busy(bh))
3249 goto failed;
3250 bh = bh->b_this_page;
3251 } while (bh != head);
3252
3253 do {
3254 struct buffer_head *next = bh->b_this_page;
3255
3256 if (bh->b_assoc_map)
3257 __remove_assoc_queue(bh);
3258 bh = next;
3259 } while (bh != head);
3260 *buffers_to_free = head;
3261 __clear_page_buffers(page);
3262 return 1;
3263 failed:
3264 return 0;
3265 }
3266
3267 int try_to_free_buffers(struct page *page)
3268 {
3269 struct address_space * const mapping = page->mapping;
3270 struct buffer_head *buffers_to_free = NULL;
3271 int ret = 0;
3272
3273 BUG_ON(!PageLocked(page));
3274 if (PageWriteback(page))
3275 return 0;
3276
3277 if (mapping == NULL) { /* can this still happen? */
3278 ret = drop_buffers(page, &buffers_to_free);
3279 goto out;
3280 }
3281
3282 spin_lock(&mapping->private_lock);
3283 ret = drop_buffers(page, &buffers_to_free);
3284
3285 /*
3286 * If the filesystem writes its buffers by hand (eg ext3)
3287 * then we can have clean buffers against a dirty page. We
3288 * clean the page here; otherwise the VM will never notice
3289 * that the filesystem did any IO at all.
3290 *
3291 * Also, during truncate, discard_buffer will have marked all
3292 * the page's buffers clean. We discover that here and clean
3293 * the page also.
3294 *
3295 * private_lock must be held over this entire operation in order
3296 * to synchronise against __set_page_dirty_buffers and prevent the
3297 * dirty bit from being lost.
3298 */
3299 if (ret)
3300 cancel_dirty_page(page);
3301 spin_unlock(&mapping->private_lock);
3302 out:
3303 if (buffers_to_free) {
3304 struct buffer_head *bh = buffers_to_free;
3305
3306 do {
3307 struct buffer_head *next = bh->b_this_page;
3308 free_buffer_head(bh);
3309 bh = next;
3310 } while (bh != buffers_to_free);
3311 }
3312 return ret;
3313 }
3314 EXPORT_SYMBOL(try_to_free_buffers);
3315
3316 /*
3317 * There are no bdflush tunables left. But distributions are
3318 * still running obsolete flush daemons, so we terminate them here.
3319 *
3320 * Use of bdflush() is deprecated and will be removed in a future kernel.
3321 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3322 */
3323 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3324 {
3325 static int msg_count;
3326
3327 if (!capable(CAP_SYS_ADMIN))
3328 return -EPERM;
3329
3330 if (msg_count < 5) {
3331 msg_count++;
3332 printk(KERN_INFO
3333 "warning: process `%s' used the obsolete bdflush"
3334 " system call\n", current->comm);
3335 printk(KERN_INFO "Fix your initscripts?\n");
3336 }
3337
3338 if (func == 1)
3339 do_exit(0);
3340 return 0;
3341 }
3342
3343 /*
3344 * Buffer-head allocation
3345 */
3346 static struct kmem_cache *bh_cachep __read_mostly;
3347
3348 /*
3349 * Once the number of bh's in the machine exceeds this level, we start
3350 * stripping them in writeback.
3351 */
3352 static unsigned long max_buffer_heads;
3353
3354 int buffer_heads_over_limit;
3355
3356 struct bh_accounting {
3357 int nr; /* Number of live bh's */
3358 int ratelimit; /* Limit cacheline bouncing */
3359 };
3360
3361 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3362
3363 static void recalc_bh_state(void)
3364 {
3365 int i;
3366 int tot = 0;
3367
3368 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3369 return;
3370 __this_cpu_write(bh_accounting.ratelimit, 0);
3371 for_each_online_cpu(i)
3372 tot += per_cpu(bh_accounting, i).nr;
3373 buffer_heads_over_limit = (tot > max_buffer_heads);
3374 }
3375
3376 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3377 {
3378 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3379 if (ret) {
3380 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3381 preempt_disable();
3382 __this_cpu_inc(bh_accounting.nr);
3383 recalc_bh_state();
3384 preempt_enable();
3385 }
3386 return ret;
3387 }
3388 EXPORT_SYMBOL(alloc_buffer_head);
3389
3390 void free_buffer_head(struct buffer_head *bh)
3391 {
3392 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3393 kmem_cache_free(bh_cachep, bh);
3394 preempt_disable();
3395 __this_cpu_dec(bh_accounting.nr);
3396 recalc_bh_state();
3397 preempt_enable();
3398 }
3399 EXPORT_SYMBOL(free_buffer_head);
3400
3401 static int buffer_exit_cpu_dead(unsigned int cpu)
3402 {
3403 int i;
3404 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3405
3406 for (i = 0; i < BH_LRU_SIZE; i++) {
3407 brelse(b->bhs[i]);
3408 b->bhs[i] = NULL;
3409 }
3410 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3411 per_cpu(bh_accounting, cpu).nr = 0;
3412 return 0;
3413 }
3414
3415 /**
3416 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3417 * @bh: struct buffer_head
3418 *
3419 * Return true if the buffer is up-to-date and false,
3420 * with the buffer locked, if not.
3421 */
3422 int bh_uptodate_or_lock(struct buffer_head *bh)
3423 {
3424 if (!buffer_uptodate(bh)) {
3425 lock_buffer(bh);
3426 if (!buffer_uptodate(bh))
3427 return 0;
3428 unlock_buffer(bh);
3429 }
3430 return 1;
3431 }
3432 EXPORT_SYMBOL(bh_uptodate_or_lock);
3433
3434 /**
3435 * bh_submit_read - Submit a locked buffer for reading
3436 * @bh: struct buffer_head
3437 *
3438 * Returns zero on success and -EIO on error.
3439 */
3440 int bh_submit_read(struct buffer_head *bh)
3441 {
3442 BUG_ON(!buffer_locked(bh));
3443
3444 if (buffer_uptodate(bh)) {
3445 unlock_buffer(bh);
3446 return 0;
3447 }
3448
3449 get_bh(bh);
3450 bh->b_end_io = end_buffer_read_sync;
3451 submit_bh(REQ_OP_READ, 0, bh);
3452 wait_on_buffer(bh);
3453 if (buffer_uptodate(bh))
3454 return 0;
3455 return -EIO;
3456 }
3457 EXPORT_SYMBOL(bh_submit_read);
3458
3459 /*
3460 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3461 *
3462 * Returns the offset within the file on success, and -ENOENT otherwise.
3463 */
3464 static loff_t
3465 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3466 {
3467 loff_t offset = page_offset(page);
3468 struct buffer_head *bh, *head;
3469 bool seek_data = whence == SEEK_DATA;
3470
3471 if (lastoff < offset)
3472 lastoff = offset;
3473
3474 bh = head = page_buffers(page);
3475 do {
3476 offset += bh->b_size;
3477 if (lastoff >= offset)
3478 continue;
3479
3480 /*
3481 * Unwritten extents that have data in the page cache covering
3482 * them can be identified by the BH_Unwritten state flag.
3483 * Pages with multiple buffers might have a mix of holes, data
3484 * and unwritten extents - any buffer with valid data in it
3485 * should have BH_Uptodate flag set on it.
3486 */
3487
3488 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3489 return lastoff;
3490
3491 lastoff = offset;
3492 } while ((bh = bh->b_this_page) != head);
3493 return -ENOENT;
3494 }
3495
3496 /*
3497 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3498 *
3499 * Within unwritten extents, the page cache determines which parts are holes
3500 * and which are data: unwritten and uptodate buffer heads count as data;
3501 * everything else counts as a hole.
3502 *
3503 * Returns the resulting offset on successs, and -ENOENT otherwise.
3504 */
3505 loff_t
3506 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3507 int whence)
3508 {
3509 pgoff_t index = offset >> PAGE_SHIFT;
3510 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3511 loff_t lastoff = offset;
3512 struct pagevec pvec;
3513
3514 if (length <= 0)
3515 return -ENOENT;
3516
3517 pagevec_init(&pvec);
3518
3519 do {
3520 unsigned nr_pages, i;
3521
3522 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3523 end - 1);
3524 if (nr_pages == 0)
3525 break;
3526
3527 for (i = 0; i < nr_pages; i++) {
3528 struct page *page = pvec.pages[i];
3529
3530 /*
3531 * At this point, the page may be truncated or
3532 * invalidated (changing page->mapping to NULL), or
3533 * even swizzled back from swapper_space to tmpfs file
3534 * mapping. However, page->index will not change
3535 * because we have a reference on the page.
3536 *
3537 * If current page offset is beyond where we've ended,
3538 * we've found a hole.
3539 */
3540 if (whence == SEEK_HOLE &&
3541 lastoff < page_offset(page))
3542 goto check_range;
3543
3544 lock_page(page);
3545 if (likely(page->mapping == inode->i_mapping) &&
3546 page_has_buffers(page)) {
3547 lastoff = page_seek_hole_data(page, lastoff, whence);
3548 if (lastoff >= 0) {
3549 unlock_page(page);
3550 goto check_range;
3551 }
3552 }
3553 unlock_page(page);
3554 lastoff = page_offset(page) + PAGE_SIZE;
3555 }
3556 pagevec_release(&pvec);
3557 } while (index < end);
3558
3559 /* When no page at lastoff and we are not done, we found a hole. */
3560 if (whence != SEEK_HOLE)
3561 goto not_found;
3562
3563 check_range:
3564 if (lastoff < offset + length)
3565 goto out;
3566 not_found:
3567 lastoff = -ENOENT;
3568 out:
3569 pagevec_release(&pvec);
3570 return lastoff;
3571 }
3572
3573 void __init buffer_init(void)
3574 {
3575 unsigned long nrpages;
3576 int ret;
3577
3578 bh_cachep = kmem_cache_create("buffer_head",
3579 sizeof(struct buffer_head), 0,
3580 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3581 SLAB_MEM_SPREAD),
3582 NULL);
3583
3584 /*
3585 * Limit the bh occupancy to 10% of ZONE_NORMAL
3586 */
3587 nrpages = (nr_free_buffer_pages() * 10) / 100;
3588 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3589 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3590 NULL, buffer_exit_cpu_dead);
3591 WARN_ON(ret < 0);
3592 }