]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/buffer.c
[PATCH] knfsd: fix auto-sizing of nfsd request/reply buffers
[mirror_ubuntu-bionic-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53 bh->b_end_io = handler;
54 bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
115 */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118 if (uptodate) {
119 set_buffer_uptodate(bh);
120 } else {
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
123 }
124 unlock_buffer(bh);
125 put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130 char b[BDEVNAME_SIZE];
131
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 buffer_io_error(bh);
137 printk(KERN_WARNING "lost page write due to "
138 "I/O error on %s\n",
139 bdevname(bh->b_bdev, b));
140 }
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
143 }
144 unlock_buffer(bh);
145 put_bh(bh);
146 }
147
148 /*
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
151 */
152 int sync_blockdev(struct block_device *bdev)
153 {
154 int ret = 0;
155
156 if (bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158 return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 /*
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
166 */
167 int fsync_bdev(struct block_device *bdev)
168 {
169 struct super_block *sb = get_super(bdev);
170 if (sb) {
171 int res = fsync_super(sb);
172 drop_super(sb);
173 return res;
174 }
175 return sync_blockdev(bdev);
176 }
177
178 /**
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
181 *
182 * This takes the block device bd_mount_mutex to make sure no new mounts
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
186 */
187 struct super_block *freeze_bdev(struct block_device *bdev)
188 {
189 struct super_block *sb;
190
191 mutex_lock(&bdev->bd_mount_mutex);
192 sb = get_super(bdev);
193 if (sb && !(sb->s_flags & MS_RDONLY)) {
194 sb->s_frozen = SB_FREEZE_WRITE;
195 smp_wmb();
196
197 __fsync_super(sb);
198
199 sb->s_frozen = SB_FREEZE_TRANS;
200 smp_wmb();
201
202 sync_blockdev(sb->s_bdev);
203
204 if (sb->s_op->write_super_lockfs)
205 sb->s_op->write_super_lockfs(sb);
206 }
207
208 sync_blockdev(bdev);
209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
210 }
211 EXPORT_SYMBOL(freeze_bdev);
212
213 /**
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
217 *
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219 */
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221 {
222 if (sb) {
223 BUG_ON(sb->s_bdev != bdev);
224
225 if (sb->s_op->unlockfs)
226 sb->s_op->unlockfs(sb);
227 sb->s_frozen = SB_UNFROZEN;
228 smp_wmb();
229 wake_up(&sb->s_wait_unfrozen);
230 drop_super(sb);
231 }
232
233 mutex_unlock(&bdev->bd_mount_mutex);
234 }
235 EXPORT_SYMBOL(thaw_bdev);
236
237 /*
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
241 * private_lock.
242 *
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
247 */
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
250 {
251 struct inode *bd_inode = bdev->bd_inode;
252 struct address_space *bd_mapping = bd_inode->i_mapping;
253 struct buffer_head *ret = NULL;
254 pgoff_t index;
255 struct buffer_head *bh;
256 struct buffer_head *head;
257 struct page *page;
258 int all_mapped = 1;
259
260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 page = find_get_page(bd_mapping, index);
262 if (!page)
263 goto out;
264
265 spin_lock(&bd_mapping->private_lock);
266 if (!page_has_buffers(page))
267 goto out_unlock;
268 head = page_buffers(page);
269 bh = head;
270 do {
271 if (bh->b_blocknr == block) {
272 ret = bh;
273 get_bh(bh);
274 goto out_unlock;
275 }
276 if (!buffer_mapped(bh))
277 all_mapped = 0;
278 bh = bh->b_this_page;
279 } while (bh != head);
280
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
285 */
286 if (all_mapped) {
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
289 (unsigned long long)block,
290 (unsigned long long)bh->b_blocknr);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh->b_state, bh->b_size);
293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294 }
295 out_unlock:
296 spin_unlock(&bd_mapping->private_lock);
297 page_cache_release(page);
298 out:
299 return ret;
300 }
301
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
305 by the user.
306
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
310
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
313
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
326
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
335 {
336 struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338 if (mapping->nrpages == 0)
339 return;
340
341 invalidate_bh_lrus();
342 /*
343 * FIXME: what about destroy_dirty_buffers?
344 * We really want to use invalidate_inode_pages2() for
345 * that, but not until that's cleaned up.
346 */
347 invalidate_inode_pages(mapping);
348 }
349
350 /*
351 * Kick pdflush then try to free up some ZONE_NORMAL memory.
352 */
353 static void free_more_memory(void)
354 {
355 struct zone **zones;
356 pg_data_t *pgdat;
357
358 wakeup_pdflush(1024);
359 yield();
360
361 for_each_online_pgdat(pgdat) {
362 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
363 if (*zones)
364 try_to_free_pages(zones, GFP_NOFS);
365 }
366 }
367
368 /*
369 * I/O completion handler for block_read_full_page() - pages
370 * which come unlocked at the end of I/O.
371 */
372 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
373 {
374 unsigned long flags;
375 struct buffer_head *first;
376 struct buffer_head *tmp;
377 struct page *page;
378 int page_uptodate = 1;
379
380 BUG_ON(!buffer_async_read(bh));
381
382 page = bh->b_page;
383 if (uptodate) {
384 set_buffer_uptodate(bh);
385 } else {
386 clear_buffer_uptodate(bh);
387 if (printk_ratelimit())
388 buffer_io_error(bh);
389 SetPageError(page);
390 }
391
392 /*
393 * Be _very_ careful from here on. Bad things can happen if
394 * two buffer heads end IO at almost the same time and both
395 * decide that the page is now completely done.
396 */
397 first = page_buffers(page);
398 local_irq_save(flags);
399 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400 clear_buffer_async_read(bh);
401 unlock_buffer(bh);
402 tmp = bh;
403 do {
404 if (!buffer_uptodate(tmp))
405 page_uptodate = 0;
406 if (buffer_async_read(tmp)) {
407 BUG_ON(!buffer_locked(tmp));
408 goto still_busy;
409 }
410 tmp = tmp->b_this_page;
411 } while (tmp != bh);
412 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413 local_irq_restore(flags);
414
415 /*
416 * If none of the buffers had errors and they are all
417 * uptodate then we can set the page uptodate.
418 */
419 if (page_uptodate && !PageError(page))
420 SetPageUptodate(page);
421 unlock_page(page);
422 return;
423
424 still_busy:
425 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426 local_irq_restore(flags);
427 return;
428 }
429
430 /*
431 * Completion handler for block_write_full_page() - pages which are unlocked
432 * during I/O, and which have PageWriteback cleared upon I/O completion.
433 */
434 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
435 {
436 char b[BDEVNAME_SIZE];
437 unsigned long flags;
438 struct buffer_head *first;
439 struct buffer_head *tmp;
440 struct page *page;
441
442 BUG_ON(!buffer_async_write(bh));
443
444 page = bh->b_page;
445 if (uptodate) {
446 set_buffer_uptodate(bh);
447 } else {
448 if (printk_ratelimit()) {
449 buffer_io_error(bh);
450 printk(KERN_WARNING "lost page write due to "
451 "I/O error on %s\n",
452 bdevname(bh->b_bdev, b));
453 }
454 set_bit(AS_EIO, &page->mapping->flags);
455 clear_buffer_uptodate(bh);
456 SetPageError(page);
457 }
458
459 first = page_buffers(page);
460 local_irq_save(flags);
461 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
462
463 clear_buffer_async_write(bh);
464 unlock_buffer(bh);
465 tmp = bh->b_this_page;
466 while (tmp != bh) {
467 if (buffer_async_write(tmp)) {
468 BUG_ON(!buffer_locked(tmp));
469 goto still_busy;
470 }
471 tmp = tmp->b_this_page;
472 }
473 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
474 local_irq_restore(flags);
475 end_page_writeback(page);
476 return;
477
478 still_busy:
479 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
480 local_irq_restore(flags);
481 return;
482 }
483
484 /*
485 * If a page's buffers are under async readin (end_buffer_async_read
486 * completion) then there is a possibility that another thread of
487 * control could lock one of the buffers after it has completed
488 * but while some of the other buffers have not completed. This
489 * locked buffer would confuse end_buffer_async_read() into not unlocking
490 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
491 * that this buffer is not under async I/O.
492 *
493 * The page comes unlocked when it has no locked buffer_async buffers
494 * left.
495 *
496 * PageLocked prevents anyone starting new async I/O reads any of
497 * the buffers.
498 *
499 * PageWriteback is used to prevent simultaneous writeout of the same
500 * page.
501 *
502 * PageLocked prevents anyone from starting writeback of a page which is
503 * under read I/O (PageWriteback is only ever set against a locked page).
504 */
505 static void mark_buffer_async_read(struct buffer_head *bh)
506 {
507 bh->b_end_io = end_buffer_async_read;
508 set_buffer_async_read(bh);
509 }
510
511 void mark_buffer_async_write(struct buffer_head *bh)
512 {
513 bh->b_end_io = end_buffer_async_write;
514 set_buffer_async_write(bh);
515 }
516 EXPORT_SYMBOL(mark_buffer_async_write);
517
518
519 /*
520 * fs/buffer.c contains helper functions for buffer-backed address space's
521 * fsync functions. A common requirement for buffer-based filesystems is
522 * that certain data from the backing blockdev needs to be written out for
523 * a successful fsync(). For example, ext2 indirect blocks need to be
524 * written back and waited upon before fsync() returns.
525 *
526 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
527 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
528 * management of a list of dependent buffers at ->i_mapping->private_list.
529 *
530 * Locking is a little subtle: try_to_free_buffers() will remove buffers
531 * from their controlling inode's queue when they are being freed. But
532 * try_to_free_buffers() will be operating against the *blockdev* mapping
533 * at the time, not against the S_ISREG file which depends on those buffers.
534 * So the locking for private_list is via the private_lock in the address_space
535 * which backs the buffers. Which is different from the address_space
536 * against which the buffers are listed. So for a particular address_space,
537 * mapping->private_lock does *not* protect mapping->private_list! In fact,
538 * mapping->private_list will always be protected by the backing blockdev's
539 * ->private_lock.
540 *
541 * Which introduces a requirement: all buffers on an address_space's
542 * ->private_list must be from the same address_space: the blockdev's.
543 *
544 * address_spaces which do not place buffers at ->private_list via these
545 * utility functions are free to use private_lock and private_list for
546 * whatever they want. The only requirement is that list_empty(private_list)
547 * be true at clear_inode() time.
548 *
549 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
550 * filesystems should do that. invalidate_inode_buffers() should just go
551 * BUG_ON(!list_empty).
552 *
553 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
554 * take an address_space, not an inode. And it should be called
555 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
556 * queued up.
557 *
558 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
559 * list if it is already on a list. Because if the buffer is on a list,
560 * it *must* already be on the right one. If not, the filesystem is being
561 * silly. This will save a ton of locking. But first we have to ensure
562 * that buffers are taken *off* the old inode's list when they are freed
563 * (presumably in truncate). That requires careful auditing of all
564 * filesystems (do it inside bforget()). It could also be done by bringing
565 * b_inode back.
566 */
567
568 /*
569 * The buffer's backing address_space's private_lock must be held
570 */
571 static inline void __remove_assoc_queue(struct buffer_head *bh)
572 {
573 list_del_init(&bh->b_assoc_buffers);
574 }
575
576 int inode_has_buffers(struct inode *inode)
577 {
578 return !list_empty(&inode->i_data.private_list);
579 }
580
581 /*
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
585 *
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
590 */
591 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
592 {
593 struct buffer_head *bh;
594 struct list_head *p;
595 int err = 0;
596
597 spin_lock(lock);
598 repeat:
599 list_for_each_prev(p, list) {
600 bh = BH_ENTRY(p);
601 if (buffer_locked(bh)) {
602 get_bh(bh);
603 spin_unlock(lock);
604 wait_on_buffer(bh);
605 if (!buffer_uptodate(bh))
606 err = -EIO;
607 brelse(bh);
608 spin_lock(lock);
609 goto repeat;
610 }
611 }
612 spin_unlock(lock);
613 return err;
614 }
615
616 /**
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
618 * buffers
619 * @mapping: the mapping which wants those buffers written
620 *
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
622 * that I/O.
623 *
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
627 */
628 int sync_mapping_buffers(struct address_space *mapping)
629 {
630 struct address_space *buffer_mapping = mapping->assoc_mapping;
631
632 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
633 return 0;
634
635 return fsync_buffers_list(&buffer_mapping->private_lock,
636 &mapping->private_list);
637 }
638 EXPORT_SYMBOL(sync_mapping_buffers);
639
640 /*
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
645 */
646 void write_boundary_block(struct block_device *bdev,
647 sector_t bblock, unsigned blocksize)
648 {
649 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
650 if (bh) {
651 if (buffer_dirty(bh))
652 ll_rw_block(WRITE, 1, &bh);
653 put_bh(bh);
654 }
655 }
656
657 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
658 {
659 struct address_space *mapping = inode->i_mapping;
660 struct address_space *buffer_mapping = bh->b_page->mapping;
661
662 mark_buffer_dirty(bh);
663 if (!mapping->assoc_mapping) {
664 mapping->assoc_mapping = buffer_mapping;
665 } else {
666 BUG_ON(mapping->assoc_mapping != buffer_mapping);
667 }
668 if (list_empty(&bh->b_assoc_buffers)) {
669 spin_lock(&buffer_mapping->private_lock);
670 list_move_tail(&bh->b_assoc_buffers,
671 &mapping->private_list);
672 spin_unlock(&buffer_mapping->private_lock);
673 }
674 }
675 EXPORT_SYMBOL(mark_buffer_dirty_inode);
676
677 /*
678 * Add a page to the dirty page list.
679 *
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
682 *
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
686 * dirty.
687 *
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
694 *
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
698 *
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
701 */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 struct address_space * const mapping = page->mapping;
705
706 spin_lock(&mapping->private_lock);
707 if (page_has_buffers(page)) {
708 struct buffer_head *head = page_buffers(page);
709 struct buffer_head *bh = head;
710
711 do {
712 set_buffer_dirty(bh);
713 bh = bh->b_this_page;
714 } while (bh != head);
715 }
716 spin_unlock(&mapping->private_lock);
717
718 if (!TestSetPageDirty(page)) {
719 write_lock_irq(&mapping->tree_lock);
720 if (page->mapping) { /* Race with truncate? */
721 if (mapping_cap_account_dirty(mapping))
722 __inc_zone_page_state(page, NR_FILE_DIRTY);
723 radix_tree_tag_set(&mapping->page_tree,
724 page_index(page),
725 PAGECACHE_TAG_DIRTY);
726 }
727 write_unlock_irq(&mapping->tree_lock);
728 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
729 return 1;
730 }
731 return 0;
732 }
733 EXPORT_SYMBOL(__set_page_dirty_buffers);
734
735 /*
736 * Write out and wait upon a list of buffers.
737 *
738 * We have conflicting pressures: we want to make sure that all
739 * initially dirty buffers get waited on, but that any subsequently
740 * dirtied buffers don't. After all, we don't want fsync to last
741 * forever if somebody is actively writing to the file.
742 *
743 * Do this in two main stages: first we copy dirty buffers to a
744 * temporary inode list, queueing the writes as we go. Then we clean
745 * up, waiting for those writes to complete.
746 *
747 * During this second stage, any subsequent updates to the file may end
748 * up refiling the buffer on the original inode's dirty list again, so
749 * there is a chance we will end up with a buffer queued for write but
750 * not yet completed on that list. So, as a final cleanup we go through
751 * the osync code to catch these locked, dirty buffers without requeuing
752 * any newly dirty buffers for write.
753 */
754 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
755 {
756 struct buffer_head *bh;
757 struct list_head tmp;
758 int err = 0, err2;
759
760 INIT_LIST_HEAD(&tmp);
761
762 spin_lock(lock);
763 while (!list_empty(list)) {
764 bh = BH_ENTRY(list->next);
765 list_del_init(&bh->b_assoc_buffers);
766 if (buffer_dirty(bh) || buffer_locked(bh)) {
767 list_add(&bh->b_assoc_buffers, &tmp);
768 if (buffer_dirty(bh)) {
769 get_bh(bh);
770 spin_unlock(lock);
771 /*
772 * Ensure any pending I/O completes so that
773 * ll_rw_block() actually writes the current
774 * contents - it is a noop if I/O is still in
775 * flight on potentially older contents.
776 */
777 ll_rw_block(SWRITE, 1, &bh);
778 brelse(bh);
779 spin_lock(lock);
780 }
781 }
782 }
783
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
786 __remove_assoc_queue(bh);
787 get_bh(bh);
788 spin_unlock(lock);
789 wait_on_buffer(bh);
790 if (!buffer_uptodate(bh))
791 err = -EIO;
792 brelse(bh);
793 spin_lock(lock);
794 }
795
796 spin_unlock(lock);
797 err2 = osync_buffers_list(lock, list);
798 if (err)
799 return err;
800 else
801 return err2;
802 }
803
804 /*
805 * Invalidate any and all dirty buffers on a given inode. We are
806 * probably unmounting the fs, but that doesn't mean we have already
807 * done a sync(). Just drop the buffers from the inode list.
808 *
809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
810 * assumes that all the buffers are against the blockdev. Not true
811 * for reiserfs.
812 */
813 void invalidate_inode_buffers(struct inode *inode)
814 {
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
818 struct address_space *buffer_mapping = mapping->assoc_mapping;
819
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list))
822 __remove_assoc_queue(BH_ENTRY(list->next));
823 spin_unlock(&buffer_mapping->private_lock);
824 }
825 }
826
827 /*
828 * Remove any clean buffers from the inode's buffer list. This is called
829 * when we're trying to free the inode itself. Those buffers can pin it.
830 *
831 * Returns true if all buffers were removed.
832 */
833 int remove_inode_buffers(struct inode *inode)
834 {
835 int ret = 1;
836
837 if (inode_has_buffers(inode)) {
838 struct address_space *mapping = &inode->i_data;
839 struct list_head *list = &mapping->private_list;
840 struct address_space *buffer_mapping = mapping->assoc_mapping;
841
842 spin_lock(&buffer_mapping->private_lock);
843 while (!list_empty(list)) {
844 struct buffer_head *bh = BH_ENTRY(list->next);
845 if (buffer_dirty(bh)) {
846 ret = 0;
847 break;
848 }
849 __remove_assoc_queue(bh);
850 }
851 spin_unlock(&buffer_mapping->private_lock);
852 }
853 return ret;
854 }
855
856 /*
857 * Create the appropriate buffers when given a page for data area and
858 * the size of each buffer.. Use the bh->b_this_page linked list to
859 * follow the buffers created. Return NULL if unable to create more
860 * buffers.
861 *
862 * The retry flag is used to differentiate async IO (paging, swapping)
863 * which may not fail from ordinary buffer allocations.
864 */
865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866 int retry)
867 {
868 struct buffer_head *bh, *head;
869 long offset;
870
871 try_again:
872 head = NULL;
873 offset = PAGE_SIZE;
874 while ((offset -= size) >= 0) {
875 bh = alloc_buffer_head(GFP_NOFS);
876 if (!bh)
877 goto no_grow;
878
879 bh->b_bdev = NULL;
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
884 bh->b_state = 0;
885 atomic_set(&bh->b_count, 0);
886 bh->b_private = NULL;
887 bh->b_size = size;
888
889 /* Link the buffer to its page */
890 set_bh_page(bh, page, offset);
891
892 init_buffer(bh, NULL, NULL);
893 }
894 return head;
895 /*
896 * In case anything failed, we just free everything we got.
897 */
898 no_grow:
899 if (head) {
900 do {
901 bh = head;
902 head = head->b_this_page;
903 free_buffer_head(bh);
904 } while (head);
905 }
906
907 /*
908 * Return failure for non-async IO requests. Async IO requests
909 * are not allowed to fail, so we have to wait until buffer heads
910 * become available. But we don't want tasks sleeping with
911 * partially complete buffers, so all were released above.
912 */
913 if (!retry)
914 return NULL;
915
916 /* We're _really_ low on memory. Now we just
917 * wait for old buffer heads to become free due to
918 * finishing IO. Since this is an async request and
919 * the reserve list is empty, we're sure there are
920 * async buffer heads in use.
921 */
922 free_more_memory();
923 goto try_again;
924 }
925 EXPORT_SYMBOL_GPL(alloc_page_buffers);
926
927 static inline void
928 link_dev_buffers(struct page *page, struct buffer_head *head)
929 {
930 struct buffer_head *bh, *tail;
931
932 bh = head;
933 do {
934 tail = bh;
935 bh = bh->b_this_page;
936 } while (bh);
937 tail->b_this_page = head;
938 attach_page_buffers(page, head);
939 }
940
941 /*
942 * Initialise the state of a blockdev page's buffers.
943 */
944 static void
945 init_page_buffers(struct page *page, struct block_device *bdev,
946 sector_t block, int size)
947 {
948 struct buffer_head *head = page_buffers(page);
949 struct buffer_head *bh = head;
950 int uptodate = PageUptodate(page);
951
952 do {
953 if (!buffer_mapped(bh)) {
954 init_buffer(bh, NULL, NULL);
955 bh->b_bdev = bdev;
956 bh->b_blocknr = block;
957 if (uptodate)
958 set_buffer_uptodate(bh);
959 set_buffer_mapped(bh);
960 }
961 block++;
962 bh = bh->b_this_page;
963 } while (bh != head);
964 }
965
966 /*
967 * Create the page-cache page that contains the requested block.
968 *
969 * This is user purely for blockdev mappings.
970 */
971 static struct page *
972 grow_dev_page(struct block_device *bdev, sector_t block,
973 pgoff_t index, int size)
974 {
975 struct inode *inode = bdev->bd_inode;
976 struct page *page;
977 struct buffer_head *bh;
978
979 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
980 if (!page)
981 return NULL;
982
983 BUG_ON(!PageLocked(page));
984
985 if (page_has_buffers(page)) {
986 bh = page_buffers(page);
987 if (bh->b_size == size) {
988 init_page_buffers(page, bdev, block, size);
989 return page;
990 }
991 if (!try_to_free_buffers(page))
992 goto failed;
993 }
994
995 /*
996 * Allocate some buffers for this page
997 */
998 bh = alloc_page_buffers(page, size, 0);
999 if (!bh)
1000 goto failed;
1001
1002 /*
1003 * Link the page to the buffers and initialise them. Take the
1004 * lock to be atomic wrt __find_get_block(), which does not
1005 * run under the page lock.
1006 */
1007 spin_lock(&inode->i_mapping->private_lock);
1008 link_dev_buffers(page, bh);
1009 init_page_buffers(page, bdev, block, size);
1010 spin_unlock(&inode->i_mapping->private_lock);
1011 return page;
1012
1013 failed:
1014 BUG();
1015 unlock_page(page);
1016 page_cache_release(page);
1017 return NULL;
1018 }
1019
1020 /*
1021 * Create buffers for the specified block device block's page. If
1022 * that page was dirty, the buffers are set dirty also.
1023 *
1024 * Except that's a bug. Attaching dirty buffers to a dirty
1025 * blockdev's page can result in filesystem corruption, because
1026 * some of those buffers may be aliases of filesystem data.
1027 * grow_dev_page() will go BUG() if this happens.
1028 */
1029 static int
1030 grow_buffers(struct block_device *bdev, sector_t block, int size)
1031 {
1032 struct page *page;
1033 pgoff_t index;
1034 int sizebits;
1035
1036 sizebits = -1;
1037 do {
1038 sizebits++;
1039 } while ((size << sizebits) < PAGE_SIZE);
1040
1041 index = block >> sizebits;
1042 block = index << sizebits;
1043
1044 /* Create a page with the proper size buffers.. */
1045 page = grow_dev_page(bdev, block, index, size);
1046 if (!page)
1047 return 0;
1048 unlock_page(page);
1049 page_cache_release(page);
1050 return 1;
1051 }
1052
1053 static struct buffer_head *
1054 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1055 {
1056 /* Size must be multiple of hard sectorsize */
1057 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1058 (size < 512 || size > PAGE_SIZE))) {
1059 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1060 size);
1061 printk(KERN_ERR "hardsect size: %d\n",
1062 bdev_hardsect_size(bdev));
1063
1064 dump_stack();
1065 return NULL;
1066 }
1067
1068 for (;;) {
1069 struct buffer_head * bh;
1070
1071 bh = __find_get_block(bdev, block, size);
1072 if (bh)
1073 return bh;
1074
1075 if (!grow_buffers(bdev, block, size))
1076 free_more_memory();
1077 }
1078 }
1079
1080 /*
1081 * The relationship between dirty buffers and dirty pages:
1082 *
1083 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1084 * the page is tagged dirty in its radix tree.
1085 *
1086 * At all times, the dirtiness of the buffers represents the dirtiness of
1087 * subsections of the page. If the page has buffers, the page dirty bit is
1088 * merely a hint about the true dirty state.
1089 *
1090 * When a page is set dirty in its entirety, all its buffers are marked dirty
1091 * (if the page has buffers).
1092 *
1093 * When a buffer is marked dirty, its page is dirtied, but the page's other
1094 * buffers are not.
1095 *
1096 * Also. When blockdev buffers are explicitly read with bread(), they
1097 * individually become uptodate. But their backing page remains not
1098 * uptodate - even if all of its buffers are uptodate. A subsequent
1099 * block_read_full_page() against that page will discover all the uptodate
1100 * buffers, will set the page uptodate and will perform no I/O.
1101 */
1102
1103 /**
1104 * mark_buffer_dirty - mark a buffer_head as needing writeout
1105 * @bh: the buffer_head to mark dirty
1106 *
1107 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1108 * backing page dirty, then tag the page as dirty in its address_space's radix
1109 * tree and then attach the address_space's inode to its superblock's dirty
1110 * inode list.
1111 *
1112 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1113 * mapping->tree_lock and the global inode_lock.
1114 */
1115 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1116 {
1117 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1118 __set_page_dirty_nobuffers(bh->b_page);
1119 }
1120
1121 /*
1122 * Decrement a buffer_head's reference count. If all buffers against a page
1123 * have zero reference count, are clean and unlocked, and if the page is clean
1124 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1125 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1126 * a page but it ends up not being freed, and buffers may later be reattached).
1127 */
1128 void __brelse(struct buffer_head * buf)
1129 {
1130 if (atomic_read(&buf->b_count)) {
1131 put_bh(buf);
1132 return;
1133 }
1134 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1135 WARN_ON(1);
1136 }
1137
1138 /*
1139 * bforget() is like brelse(), except it discards any
1140 * potentially dirty data.
1141 */
1142 void __bforget(struct buffer_head *bh)
1143 {
1144 clear_buffer_dirty(bh);
1145 if (!list_empty(&bh->b_assoc_buffers)) {
1146 struct address_space *buffer_mapping = bh->b_page->mapping;
1147
1148 spin_lock(&buffer_mapping->private_lock);
1149 list_del_init(&bh->b_assoc_buffers);
1150 spin_unlock(&buffer_mapping->private_lock);
1151 }
1152 __brelse(bh);
1153 }
1154
1155 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1156 {
1157 lock_buffer(bh);
1158 if (buffer_uptodate(bh)) {
1159 unlock_buffer(bh);
1160 return bh;
1161 } else {
1162 get_bh(bh);
1163 bh->b_end_io = end_buffer_read_sync;
1164 submit_bh(READ, bh);
1165 wait_on_buffer(bh);
1166 if (buffer_uptodate(bh))
1167 return bh;
1168 }
1169 brelse(bh);
1170 return NULL;
1171 }
1172
1173 /*
1174 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1175 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1176 * refcount elevated by one when they're in an LRU. A buffer can only appear
1177 * once in a particular CPU's LRU. A single buffer can be present in multiple
1178 * CPU's LRUs at the same time.
1179 *
1180 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1181 * sb_find_get_block().
1182 *
1183 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1184 * a local interrupt disable for that.
1185 */
1186
1187 #define BH_LRU_SIZE 8
1188
1189 struct bh_lru {
1190 struct buffer_head *bhs[BH_LRU_SIZE];
1191 };
1192
1193 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1194
1195 #ifdef CONFIG_SMP
1196 #define bh_lru_lock() local_irq_disable()
1197 #define bh_lru_unlock() local_irq_enable()
1198 #else
1199 #define bh_lru_lock() preempt_disable()
1200 #define bh_lru_unlock() preempt_enable()
1201 #endif
1202
1203 static inline void check_irqs_on(void)
1204 {
1205 #ifdef irqs_disabled
1206 BUG_ON(irqs_disabled());
1207 #endif
1208 }
1209
1210 /*
1211 * The LRU management algorithm is dopey-but-simple. Sorry.
1212 */
1213 static void bh_lru_install(struct buffer_head *bh)
1214 {
1215 struct buffer_head *evictee = NULL;
1216 struct bh_lru *lru;
1217
1218 check_irqs_on();
1219 bh_lru_lock();
1220 lru = &__get_cpu_var(bh_lrus);
1221 if (lru->bhs[0] != bh) {
1222 struct buffer_head *bhs[BH_LRU_SIZE];
1223 int in;
1224 int out = 0;
1225
1226 get_bh(bh);
1227 bhs[out++] = bh;
1228 for (in = 0; in < BH_LRU_SIZE; in++) {
1229 struct buffer_head *bh2 = lru->bhs[in];
1230
1231 if (bh2 == bh) {
1232 __brelse(bh2);
1233 } else {
1234 if (out >= BH_LRU_SIZE) {
1235 BUG_ON(evictee != NULL);
1236 evictee = bh2;
1237 } else {
1238 bhs[out++] = bh2;
1239 }
1240 }
1241 }
1242 while (out < BH_LRU_SIZE)
1243 bhs[out++] = NULL;
1244 memcpy(lru->bhs, bhs, sizeof(bhs));
1245 }
1246 bh_lru_unlock();
1247
1248 if (evictee)
1249 __brelse(evictee);
1250 }
1251
1252 /*
1253 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1254 */
1255 static struct buffer_head *
1256 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1257 {
1258 struct buffer_head *ret = NULL;
1259 struct bh_lru *lru;
1260 int i;
1261
1262 check_irqs_on();
1263 bh_lru_lock();
1264 lru = &__get_cpu_var(bh_lrus);
1265 for (i = 0; i < BH_LRU_SIZE; i++) {
1266 struct buffer_head *bh = lru->bhs[i];
1267
1268 if (bh && bh->b_bdev == bdev &&
1269 bh->b_blocknr == block && bh->b_size == size) {
1270 if (i) {
1271 while (i) {
1272 lru->bhs[i] = lru->bhs[i - 1];
1273 i--;
1274 }
1275 lru->bhs[0] = bh;
1276 }
1277 get_bh(bh);
1278 ret = bh;
1279 break;
1280 }
1281 }
1282 bh_lru_unlock();
1283 return ret;
1284 }
1285
1286 /*
1287 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1288 * it in the LRU and mark it as accessed. If it is not present then return
1289 * NULL
1290 */
1291 struct buffer_head *
1292 __find_get_block(struct block_device *bdev, sector_t block, int size)
1293 {
1294 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1295
1296 if (bh == NULL) {
1297 bh = __find_get_block_slow(bdev, block);
1298 if (bh)
1299 bh_lru_install(bh);
1300 }
1301 if (bh)
1302 touch_buffer(bh);
1303 return bh;
1304 }
1305 EXPORT_SYMBOL(__find_get_block);
1306
1307 /*
1308 * __getblk will locate (and, if necessary, create) the buffer_head
1309 * which corresponds to the passed block_device, block and size. The
1310 * returned buffer has its reference count incremented.
1311 *
1312 * __getblk() cannot fail - it just keeps trying. If you pass it an
1313 * illegal block number, __getblk() will happily return a buffer_head
1314 * which represents the non-existent block. Very weird.
1315 *
1316 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1317 * attempt is failing. FIXME, perhaps?
1318 */
1319 struct buffer_head *
1320 __getblk(struct block_device *bdev, sector_t block, int size)
1321 {
1322 struct buffer_head *bh = __find_get_block(bdev, block, size);
1323
1324 might_sleep();
1325 if (bh == NULL)
1326 bh = __getblk_slow(bdev, block, size);
1327 return bh;
1328 }
1329 EXPORT_SYMBOL(__getblk);
1330
1331 /*
1332 * Do async read-ahead on a buffer..
1333 */
1334 void __breadahead(struct block_device *bdev, sector_t block, int size)
1335 {
1336 struct buffer_head *bh = __getblk(bdev, block, size);
1337 if (likely(bh)) {
1338 ll_rw_block(READA, 1, &bh);
1339 brelse(bh);
1340 }
1341 }
1342 EXPORT_SYMBOL(__breadahead);
1343
1344 /**
1345 * __bread() - reads a specified block and returns the bh
1346 * @bdev: the block_device to read from
1347 * @block: number of block
1348 * @size: size (in bytes) to read
1349 *
1350 * Reads a specified block, and returns buffer head that contains it.
1351 * It returns NULL if the block was unreadable.
1352 */
1353 struct buffer_head *
1354 __bread(struct block_device *bdev, sector_t block, int size)
1355 {
1356 struct buffer_head *bh = __getblk(bdev, block, size);
1357
1358 if (likely(bh) && !buffer_uptodate(bh))
1359 bh = __bread_slow(bh);
1360 return bh;
1361 }
1362 EXPORT_SYMBOL(__bread);
1363
1364 /*
1365 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1366 * This doesn't race because it runs in each cpu either in irq
1367 * or with preempt disabled.
1368 */
1369 static void invalidate_bh_lru(void *arg)
1370 {
1371 struct bh_lru *b = &get_cpu_var(bh_lrus);
1372 int i;
1373
1374 for (i = 0; i < BH_LRU_SIZE; i++) {
1375 brelse(b->bhs[i]);
1376 b->bhs[i] = NULL;
1377 }
1378 put_cpu_var(bh_lrus);
1379 }
1380
1381 static void invalidate_bh_lrus(void)
1382 {
1383 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1384 }
1385
1386 void set_bh_page(struct buffer_head *bh,
1387 struct page *page, unsigned long offset)
1388 {
1389 bh->b_page = page;
1390 BUG_ON(offset >= PAGE_SIZE);
1391 if (PageHighMem(page))
1392 /*
1393 * This catches illegal uses and preserves the offset:
1394 */
1395 bh->b_data = (char *)(0 + offset);
1396 else
1397 bh->b_data = page_address(page) + offset;
1398 }
1399 EXPORT_SYMBOL(set_bh_page);
1400
1401 /*
1402 * Called when truncating a buffer on a page completely.
1403 */
1404 static void discard_buffer(struct buffer_head * bh)
1405 {
1406 lock_buffer(bh);
1407 clear_buffer_dirty(bh);
1408 bh->b_bdev = NULL;
1409 clear_buffer_mapped(bh);
1410 clear_buffer_req(bh);
1411 clear_buffer_new(bh);
1412 clear_buffer_delay(bh);
1413 unlock_buffer(bh);
1414 }
1415
1416 /**
1417 * block_invalidatepage - invalidate part of all of a buffer-backed page
1418 *
1419 * @page: the page which is affected
1420 * @offset: the index of the truncation point
1421 *
1422 * block_invalidatepage() is called when all or part of the page has become
1423 * invalidatedby a truncate operation.
1424 *
1425 * block_invalidatepage() does not have to release all buffers, but it must
1426 * ensure that no dirty buffer is left outside @offset and that no I/O
1427 * is underway against any of the blocks which are outside the truncation
1428 * point. Because the caller is about to free (and possibly reuse) those
1429 * blocks on-disk.
1430 */
1431 void block_invalidatepage(struct page *page, unsigned long offset)
1432 {
1433 struct buffer_head *head, *bh, *next;
1434 unsigned int curr_off = 0;
1435
1436 BUG_ON(!PageLocked(page));
1437 if (!page_has_buffers(page))
1438 goto out;
1439
1440 head = page_buffers(page);
1441 bh = head;
1442 do {
1443 unsigned int next_off = curr_off + bh->b_size;
1444 next = bh->b_this_page;
1445
1446 /*
1447 * is this block fully invalidated?
1448 */
1449 if (offset <= curr_off)
1450 discard_buffer(bh);
1451 curr_off = next_off;
1452 bh = next;
1453 } while (bh != head);
1454
1455 /*
1456 * We release buffers only if the entire page is being invalidated.
1457 * The get_block cached value has been unconditionally invalidated,
1458 * so real IO is not possible anymore.
1459 */
1460 if (offset == 0)
1461 try_to_release_page(page, 0);
1462 out:
1463 return;
1464 }
1465 EXPORT_SYMBOL(block_invalidatepage);
1466
1467 /*
1468 * We attach and possibly dirty the buffers atomically wrt
1469 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1470 * is already excluded via the page lock.
1471 */
1472 void create_empty_buffers(struct page *page,
1473 unsigned long blocksize, unsigned long b_state)
1474 {
1475 struct buffer_head *bh, *head, *tail;
1476
1477 head = alloc_page_buffers(page, blocksize, 1);
1478 bh = head;
1479 do {
1480 bh->b_state |= b_state;
1481 tail = bh;
1482 bh = bh->b_this_page;
1483 } while (bh);
1484 tail->b_this_page = head;
1485
1486 spin_lock(&page->mapping->private_lock);
1487 if (PageUptodate(page) || PageDirty(page)) {
1488 bh = head;
1489 do {
1490 if (PageDirty(page))
1491 set_buffer_dirty(bh);
1492 if (PageUptodate(page))
1493 set_buffer_uptodate(bh);
1494 bh = bh->b_this_page;
1495 } while (bh != head);
1496 }
1497 attach_page_buffers(page, head);
1498 spin_unlock(&page->mapping->private_lock);
1499 }
1500 EXPORT_SYMBOL(create_empty_buffers);
1501
1502 /*
1503 * We are taking a block for data and we don't want any output from any
1504 * buffer-cache aliases starting from return from that function and
1505 * until the moment when something will explicitly mark the buffer
1506 * dirty (hopefully that will not happen until we will free that block ;-)
1507 * We don't even need to mark it not-uptodate - nobody can expect
1508 * anything from a newly allocated buffer anyway. We used to used
1509 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1510 * don't want to mark the alias unmapped, for example - it would confuse
1511 * anyone who might pick it with bread() afterwards...
1512 *
1513 * Also.. Note that bforget() doesn't lock the buffer. So there can
1514 * be writeout I/O going on against recently-freed buffers. We don't
1515 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1516 * only if we really need to. That happens here.
1517 */
1518 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1519 {
1520 struct buffer_head *old_bh;
1521
1522 might_sleep();
1523
1524 old_bh = __find_get_block_slow(bdev, block);
1525 if (old_bh) {
1526 clear_buffer_dirty(old_bh);
1527 wait_on_buffer(old_bh);
1528 clear_buffer_req(old_bh);
1529 __brelse(old_bh);
1530 }
1531 }
1532 EXPORT_SYMBOL(unmap_underlying_metadata);
1533
1534 /*
1535 * NOTE! All mapped/uptodate combinations are valid:
1536 *
1537 * Mapped Uptodate Meaning
1538 *
1539 * No No "unknown" - must do get_block()
1540 * No Yes "hole" - zero-filled
1541 * Yes No "allocated" - allocated on disk, not read in
1542 * Yes Yes "valid" - allocated and up-to-date in memory.
1543 *
1544 * "Dirty" is valid only with the last case (mapped+uptodate).
1545 */
1546
1547 /*
1548 * While block_write_full_page is writing back the dirty buffers under
1549 * the page lock, whoever dirtied the buffers may decide to clean them
1550 * again at any time. We handle that by only looking at the buffer
1551 * state inside lock_buffer().
1552 *
1553 * If block_write_full_page() is called for regular writeback
1554 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1555 * locked buffer. This only can happen if someone has written the buffer
1556 * directly, with submit_bh(). At the address_space level PageWriteback
1557 * prevents this contention from occurring.
1558 */
1559 static int __block_write_full_page(struct inode *inode, struct page *page,
1560 get_block_t *get_block, struct writeback_control *wbc)
1561 {
1562 int err;
1563 sector_t block;
1564 sector_t last_block;
1565 struct buffer_head *bh, *head;
1566 const unsigned blocksize = 1 << inode->i_blkbits;
1567 int nr_underway = 0;
1568
1569 BUG_ON(!PageLocked(page));
1570
1571 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1572
1573 if (!page_has_buffers(page)) {
1574 create_empty_buffers(page, blocksize,
1575 (1 << BH_Dirty)|(1 << BH_Uptodate));
1576 }
1577
1578 /*
1579 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1580 * here, and the (potentially unmapped) buffers may become dirty at
1581 * any time. If a buffer becomes dirty here after we've inspected it
1582 * then we just miss that fact, and the page stays dirty.
1583 *
1584 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1585 * handle that here by just cleaning them.
1586 */
1587
1588 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1589 head = page_buffers(page);
1590 bh = head;
1591
1592 /*
1593 * Get all the dirty buffers mapped to disk addresses and
1594 * handle any aliases from the underlying blockdev's mapping.
1595 */
1596 do {
1597 if (block > last_block) {
1598 /*
1599 * mapped buffers outside i_size will occur, because
1600 * this page can be outside i_size when there is a
1601 * truncate in progress.
1602 */
1603 /*
1604 * The buffer was zeroed by block_write_full_page()
1605 */
1606 clear_buffer_dirty(bh);
1607 set_buffer_uptodate(bh);
1608 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1609 WARN_ON(bh->b_size != blocksize);
1610 err = get_block(inode, block, bh, 1);
1611 if (err)
1612 goto recover;
1613 if (buffer_new(bh)) {
1614 /* blockdev mappings never come here */
1615 clear_buffer_new(bh);
1616 unmap_underlying_metadata(bh->b_bdev,
1617 bh->b_blocknr);
1618 }
1619 }
1620 bh = bh->b_this_page;
1621 block++;
1622 } while (bh != head);
1623
1624 do {
1625 if (!buffer_mapped(bh))
1626 continue;
1627 /*
1628 * If it's a fully non-blocking write attempt and we cannot
1629 * lock the buffer then redirty the page. Note that this can
1630 * potentially cause a busy-wait loop from pdflush and kswapd
1631 * activity, but those code paths have their own higher-level
1632 * throttling.
1633 */
1634 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1635 lock_buffer(bh);
1636 } else if (test_set_buffer_locked(bh)) {
1637 redirty_page_for_writepage(wbc, page);
1638 continue;
1639 }
1640 if (test_clear_buffer_dirty(bh)) {
1641 mark_buffer_async_write(bh);
1642 } else {
1643 unlock_buffer(bh);
1644 }
1645 } while ((bh = bh->b_this_page) != head);
1646
1647 /*
1648 * The page and its buffers are protected by PageWriteback(), so we can
1649 * drop the bh refcounts early.
1650 */
1651 BUG_ON(PageWriteback(page));
1652 set_page_writeback(page);
1653
1654 do {
1655 struct buffer_head *next = bh->b_this_page;
1656 if (buffer_async_write(bh)) {
1657 submit_bh(WRITE, bh);
1658 nr_underway++;
1659 }
1660 bh = next;
1661 } while (bh != head);
1662 unlock_page(page);
1663
1664 err = 0;
1665 done:
1666 if (nr_underway == 0) {
1667 /*
1668 * The page was marked dirty, but the buffers were
1669 * clean. Someone wrote them back by hand with
1670 * ll_rw_block/submit_bh. A rare case.
1671 */
1672 int uptodate = 1;
1673 do {
1674 if (!buffer_uptodate(bh)) {
1675 uptodate = 0;
1676 break;
1677 }
1678 bh = bh->b_this_page;
1679 } while (bh != head);
1680 if (uptodate)
1681 SetPageUptodate(page);
1682 end_page_writeback(page);
1683 /*
1684 * The page and buffer_heads can be released at any time from
1685 * here on.
1686 */
1687 wbc->pages_skipped++; /* We didn't write this page */
1688 }
1689 return err;
1690
1691 recover:
1692 /*
1693 * ENOSPC, or some other error. We may already have added some
1694 * blocks to the file, so we need to write these out to avoid
1695 * exposing stale data.
1696 * The page is currently locked and not marked for writeback
1697 */
1698 bh = head;
1699 /* Recovery: lock and submit the mapped buffers */
1700 do {
1701 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1702 lock_buffer(bh);
1703 mark_buffer_async_write(bh);
1704 } else {
1705 /*
1706 * The buffer may have been set dirty during
1707 * attachment to a dirty page.
1708 */
1709 clear_buffer_dirty(bh);
1710 }
1711 } while ((bh = bh->b_this_page) != head);
1712 SetPageError(page);
1713 BUG_ON(PageWriteback(page));
1714 set_page_writeback(page);
1715 unlock_page(page);
1716 do {
1717 struct buffer_head *next = bh->b_this_page;
1718 if (buffer_async_write(bh)) {
1719 clear_buffer_dirty(bh);
1720 submit_bh(WRITE, bh);
1721 nr_underway++;
1722 }
1723 bh = next;
1724 } while (bh != head);
1725 goto done;
1726 }
1727
1728 static int __block_prepare_write(struct inode *inode, struct page *page,
1729 unsigned from, unsigned to, get_block_t *get_block)
1730 {
1731 unsigned block_start, block_end;
1732 sector_t block;
1733 int err = 0;
1734 unsigned blocksize, bbits;
1735 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1736
1737 BUG_ON(!PageLocked(page));
1738 BUG_ON(from > PAGE_CACHE_SIZE);
1739 BUG_ON(to > PAGE_CACHE_SIZE);
1740 BUG_ON(from > to);
1741
1742 blocksize = 1 << inode->i_blkbits;
1743 if (!page_has_buffers(page))
1744 create_empty_buffers(page, blocksize, 0);
1745 head = page_buffers(page);
1746
1747 bbits = inode->i_blkbits;
1748 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1749
1750 for(bh = head, block_start = 0; bh != head || !block_start;
1751 block++, block_start=block_end, bh = bh->b_this_page) {
1752 block_end = block_start + blocksize;
1753 if (block_end <= from || block_start >= to) {
1754 if (PageUptodate(page)) {
1755 if (!buffer_uptodate(bh))
1756 set_buffer_uptodate(bh);
1757 }
1758 continue;
1759 }
1760 if (buffer_new(bh))
1761 clear_buffer_new(bh);
1762 if (!buffer_mapped(bh)) {
1763 WARN_ON(bh->b_size != blocksize);
1764 err = get_block(inode, block, bh, 1);
1765 if (err)
1766 break;
1767 if (buffer_new(bh)) {
1768 unmap_underlying_metadata(bh->b_bdev,
1769 bh->b_blocknr);
1770 if (PageUptodate(page)) {
1771 set_buffer_uptodate(bh);
1772 continue;
1773 }
1774 if (block_end > to || block_start < from) {
1775 void *kaddr;
1776
1777 kaddr = kmap_atomic(page, KM_USER0);
1778 if (block_end > to)
1779 memset(kaddr+to, 0,
1780 block_end-to);
1781 if (block_start < from)
1782 memset(kaddr+block_start,
1783 0, from-block_start);
1784 flush_dcache_page(page);
1785 kunmap_atomic(kaddr, KM_USER0);
1786 }
1787 continue;
1788 }
1789 }
1790 if (PageUptodate(page)) {
1791 if (!buffer_uptodate(bh))
1792 set_buffer_uptodate(bh);
1793 continue;
1794 }
1795 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1796 (block_start < from || block_end > to)) {
1797 ll_rw_block(READ, 1, &bh);
1798 *wait_bh++=bh;
1799 }
1800 }
1801 /*
1802 * If we issued read requests - let them complete.
1803 */
1804 while(wait_bh > wait) {
1805 wait_on_buffer(*--wait_bh);
1806 if (!buffer_uptodate(*wait_bh))
1807 err = -EIO;
1808 }
1809 if (!err) {
1810 bh = head;
1811 do {
1812 if (buffer_new(bh))
1813 clear_buffer_new(bh);
1814 } while ((bh = bh->b_this_page) != head);
1815 return 0;
1816 }
1817 /* Error case: */
1818 /*
1819 * Zero out any newly allocated blocks to avoid exposing stale
1820 * data. If BH_New is set, we know that the block was newly
1821 * allocated in the above loop.
1822 */
1823 bh = head;
1824 block_start = 0;
1825 do {
1826 block_end = block_start+blocksize;
1827 if (block_end <= from)
1828 goto next_bh;
1829 if (block_start >= to)
1830 break;
1831 if (buffer_new(bh)) {
1832 void *kaddr;
1833
1834 clear_buffer_new(bh);
1835 kaddr = kmap_atomic(page, KM_USER0);
1836 memset(kaddr+block_start, 0, bh->b_size);
1837 kunmap_atomic(kaddr, KM_USER0);
1838 set_buffer_uptodate(bh);
1839 mark_buffer_dirty(bh);
1840 }
1841 next_bh:
1842 block_start = block_end;
1843 bh = bh->b_this_page;
1844 } while (bh != head);
1845 return err;
1846 }
1847
1848 static int __block_commit_write(struct inode *inode, struct page *page,
1849 unsigned from, unsigned to)
1850 {
1851 unsigned block_start, block_end;
1852 int partial = 0;
1853 unsigned blocksize;
1854 struct buffer_head *bh, *head;
1855
1856 blocksize = 1 << inode->i_blkbits;
1857
1858 for(bh = head = page_buffers(page), block_start = 0;
1859 bh != head || !block_start;
1860 block_start=block_end, bh = bh->b_this_page) {
1861 block_end = block_start + blocksize;
1862 if (block_end <= from || block_start >= to) {
1863 if (!buffer_uptodate(bh))
1864 partial = 1;
1865 } else {
1866 set_buffer_uptodate(bh);
1867 mark_buffer_dirty(bh);
1868 }
1869 }
1870
1871 /*
1872 * If this is a partial write which happened to make all buffers
1873 * uptodate then we can optimize away a bogus readpage() for
1874 * the next read(). Here we 'discover' whether the page went
1875 * uptodate as a result of this (potentially partial) write.
1876 */
1877 if (!partial)
1878 SetPageUptodate(page);
1879 return 0;
1880 }
1881
1882 /*
1883 * Generic "read page" function for block devices that have the normal
1884 * get_block functionality. This is most of the block device filesystems.
1885 * Reads the page asynchronously --- the unlock_buffer() and
1886 * set/clear_buffer_uptodate() functions propagate buffer state into the
1887 * page struct once IO has completed.
1888 */
1889 int block_read_full_page(struct page *page, get_block_t *get_block)
1890 {
1891 struct inode *inode = page->mapping->host;
1892 sector_t iblock, lblock;
1893 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1894 unsigned int blocksize;
1895 int nr, i;
1896 int fully_mapped = 1;
1897
1898 BUG_ON(!PageLocked(page));
1899 blocksize = 1 << inode->i_blkbits;
1900 if (!page_has_buffers(page))
1901 create_empty_buffers(page, blocksize, 0);
1902 head = page_buffers(page);
1903
1904 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1905 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1906 bh = head;
1907 nr = 0;
1908 i = 0;
1909
1910 do {
1911 if (buffer_uptodate(bh))
1912 continue;
1913
1914 if (!buffer_mapped(bh)) {
1915 int err = 0;
1916
1917 fully_mapped = 0;
1918 if (iblock < lblock) {
1919 WARN_ON(bh->b_size != blocksize);
1920 err = get_block(inode, iblock, bh, 0);
1921 if (err)
1922 SetPageError(page);
1923 }
1924 if (!buffer_mapped(bh)) {
1925 void *kaddr = kmap_atomic(page, KM_USER0);
1926 memset(kaddr + i * blocksize, 0, blocksize);
1927 flush_dcache_page(page);
1928 kunmap_atomic(kaddr, KM_USER0);
1929 if (!err)
1930 set_buffer_uptodate(bh);
1931 continue;
1932 }
1933 /*
1934 * get_block() might have updated the buffer
1935 * synchronously
1936 */
1937 if (buffer_uptodate(bh))
1938 continue;
1939 }
1940 arr[nr++] = bh;
1941 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1942
1943 if (fully_mapped)
1944 SetPageMappedToDisk(page);
1945
1946 if (!nr) {
1947 /*
1948 * All buffers are uptodate - we can set the page uptodate
1949 * as well. But not if get_block() returned an error.
1950 */
1951 if (!PageError(page))
1952 SetPageUptodate(page);
1953 unlock_page(page);
1954 return 0;
1955 }
1956
1957 /* Stage two: lock the buffers */
1958 for (i = 0; i < nr; i++) {
1959 bh = arr[i];
1960 lock_buffer(bh);
1961 mark_buffer_async_read(bh);
1962 }
1963
1964 /*
1965 * Stage 3: start the IO. Check for uptodateness
1966 * inside the buffer lock in case another process reading
1967 * the underlying blockdev brought it uptodate (the sct fix).
1968 */
1969 for (i = 0; i < nr; i++) {
1970 bh = arr[i];
1971 if (buffer_uptodate(bh))
1972 end_buffer_async_read(bh, 1);
1973 else
1974 submit_bh(READ, bh);
1975 }
1976 return 0;
1977 }
1978
1979 /* utility function for filesystems that need to do work on expanding
1980 * truncates. Uses prepare/commit_write to allow the filesystem to
1981 * deal with the hole.
1982 */
1983 static int __generic_cont_expand(struct inode *inode, loff_t size,
1984 pgoff_t index, unsigned int offset)
1985 {
1986 struct address_space *mapping = inode->i_mapping;
1987 struct page *page;
1988 unsigned long limit;
1989 int err;
1990
1991 err = -EFBIG;
1992 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1993 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
1994 send_sig(SIGXFSZ, current, 0);
1995 goto out;
1996 }
1997 if (size > inode->i_sb->s_maxbytes)
1998 goto out;
1999
2000 err = -ENOMEM;
2001 page = grab_cache_page(mapping, index);
2002 if (!page)
2003 goto out;
2004 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2005 if (err) {
2006 /*
2007 * ->prepare_write() may have instantiated a few blocks
2008 * outside i_size. Trim these off again.
2009 */
2010 unlock_page(page);
2011 page_cache_release(page);
2012 vmtruncate(inode, inode->i_size);
2013 goto out;
2014 }
2015
2016 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2017
2018 unlock_page(page);
2019 page_cache_release(page);
2020 if (err > 0)
2021 err = 0;
2022 out:
2023 return err;
2024 }
2025
2026 int generic_cont_expand(struct inode *inode, loff_t size)
2027 {
2028 pgoff_t index;
2029 unsigned int offset;
2030
2031 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2032
2033 /* ugh. in prepare/commit_write, if from==to==start of block, we
2034 ** skip the prepare. make sure we never send an offset for the start
2035 ** of a block
2036 */
2037 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2038 /* caller must handle this extra byte. */
2039 offset++;
2040 }
2041 index = size >> PAGE_CACHE_SHIFT;
2042
2043 return __generic_cont_expand(inode, size, index, offset);
2044 }
2045
2046 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2047 {
2048 loff_t pos = size - 1;
2049 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2050 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2051
2052 /* prepare/commit_write can handle even if from==to==start of block. */
2053 return __generic_cont_expand(inode, size, index, offset);
2054 }
2055
2056 /*
2057 * For moronic filesystems that do not allow holes in file.
2058 * We may have to extend the file.
2059 */
2060
2061 int cont_prepare_write(struct page *page, unsigned offset,
2062 unsigned to, get_block_t *get_block, loff_t *bytes)
2063 {
2064 struct address_space *mapping = page->mapping;
2065 struct inode *inode = mapping->host;
2066 struct page *new_page;
2067 pgoff_t pgpos;
2068 long status;
2069 unsigned zerofrom;
2070 unsigned blocksize = 1 << inode->i_blkbits;
2071 void *kaddr;
2072
2073 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2074 status = -ENOMEM;
2075 new_page = grab_cache_page(mapping, pgpos);
2076 if (!new_page)
2077 goto out;
2078 /* we might sleep */
2079 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2080 unlock_page(new_page);
2081 page_cache_release(new_page);
2082 continue;
2083 }
2084 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2085 if (zerofrom & (blocksize-1)) {
2086 *bytes |= (blocksize-1);
2087 (*bytes)++;
2088 }
2089 status = __block_prepare_write(inode, new_page, zerofrom,
2090 PAGE_CACHE_SIZE, get_block);
2091 if (status)
2092 goto out_unmap;
2093 kaddr = kmap_atomic(new_page, KM_USER0);
2094 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2095 flush_dcache_page(new_page);
2096 kunmap_atomic(kaddr, KM_USER0);
2097 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2098 unlock_page(new_page);
2099 page_cache_release(new_page);
2100 }
2101
2102 if (page->index < pgpos) {
2103 /* completely inside the area */
2104 zerofrom = offset;
2105 } else {
2106 /* page covers the boundary, find the boundary offset */
2107 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2108
2109 /* if we will expand the thing last block will be filled */
2110 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2111 *bytes |= (blocksize-1);
2112 (*bytes)++;
2113 }
2114
2115 /* starting below the boundary? Nothing to zero out */
2116 if (offset <= zerofrom)
2117 zerofrom = offset;
2118 }
2119 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2120 if (status)
2121 goto out1;
2122 if (zerofrom < offset) {
2123 kaddr = kmap_atomic(page, KM_USER0);
2124 memset(kaddr+zerofrom, 0, offset-zerofrom);
2125 flush_dcache_page(page);
2126 kunmap_atomic(kaddr, KM_USER0);
2127 __block_commit_write(inode, page, zerofrom, offset);
2128 }
2129 return 0;
2130 out1:
2131 ClearPageUptodate(page);
2132 return status;
2133
2134 out_unmap:
2135 ClearPageUptodate(new_page);
2136 unlock_page(new_page);
2137 page_cache_release(new_page);
2138 out:
2139 return status;
2140 }
2141
2142 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2143 get_block_t *get_block)
2144 {
2145 struct inode *inode = page->mapping->host;
2146 int err = __block_prepare_write(inode, page, from, to, get_block);
2147 if (err)
2148 ClearPageUptodate(page);
2149 return err;
2150 }
2151
2152 int block_commit_write(struct page *page, unsigned from, unsigned to)
2153 {
2154 struct inode *inode = page->mapping->host;
2155 __block_commit_write(inode,page,from,to);
2156 return 0;
2157 }
2158
2159 int generic_commit_write(struct file *file, struct page *page,
2160 unsigned from, unsigned to)
2161 {
2162 struct inode *inode = page->mapping->host;
2163 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2164 __block_commit_write(inode,page,from,to);
2165 /*
2166 * No need to use i_size_read() here, the i_size
2167 * cannot change under us because we hold i_mutex.
2168 */
2169 if (pos > inode->i_size) {
2170 i_size_write(inode, pos);
2171 mark_inode_dirty(inode);
2172 }
2173 return 0;
2174 }
2175
2176
2177 /*
2178 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2179 * immediately, while under the page lock. So it needs a special end_io
2180 * handler which does not touch the bh after unlocking it.
2181 *
2182 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2183 * a race there is benign: unlock_buffer() only use the bh's address for
2184 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2185 * itself.
2186 */
2187 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2188 {
2189 if (uptodate) {
2190 set_buffer_uptodate(bh);
2191 } else {
2192 /* This happens, due to failed READA attempts. */
2193 clear_buffer_uptodate(bh);
2194 }
2195 unlock_buffer(bh);
2196 }
2197
2198 /*
2199 * On entry, the page is fully not uptodate.
2200 * On exit the page is fully uptodate in the areas outside (from,to)
2201 */
2202 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2203 get_block_t *get_block)
2204 {
2205 struct inode *inode = page->mapping->host;
2206 const unsigned blkbits = inode->i_blkbits;
2207 const unsigned blocksize = 1 << blkbits;
2208 struct buffer_head map_bh;
2209 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2210 unsigned block_in_page;
2211 unsigned block_start;
2212 sector_t block_in_file;
2213 char *kaddr;
2214 int nr_reads = 0;
2215 int i;
2216 int ret = 0;
2217 int is_mapped_to_disk = 1;
2218 int dirtied_it = 0;
2219
2220 if (PageMappedToDisk(page))
2221 return 0;
2222
2223 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2224 map_bh.b_page = page;
2225
2226 /*
2227 * We loop across all blocks in the page, whether or not they are
2228 * part of the affected region. This is so we can discover if the
2229 * page is fully mapped-to-disk.
2230 */
2231 for (block_start = 0, block_in_page = 0;
2232 block_start < PAGE_CACHE_SIZE;
2233 block_in_page++, block_start += blocksize) {
2234 unsigned block_end = block_start + blocksize;
2235 int create;
2236
2237 map_bh.b_state = 0;
2238 create = 1;
2239 if (block_start >= to)
2240 create = 0;
2241 map_bh.b_size = blocksize;
2242 ret = get_block(inode, block_in_file + block_in_page,
2243 &map_bh, create);
2244 if (ret)
2245 goto failed;
2246 if (!buffer_mapped(&map_bh))
2247 is_mapped_to_disk = 0;
2248 if (buffer_new(&map_bh))
2249 unmap_underlying_metadata(map_bh.b_bdev,
2250 map_bh.b_blocknr);
2251 if (PageUptodate(page))
2252 continue;
2253 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2254 kaddr = kmap_atomic(page, KM_USER0);
2255 if (block_start < from) {
2256 memset(kaddr+block_start, 0, from-block_start);
2257 dirtied_it = 1;
2258 }
2259 if (block_end > to) {
2260 memset(kaddr + to, 0, block_end - to);
2261 dirtied_it = 1;
2262 }
2263 flush_dcache_page(page);
2264 kunmap_atomic(kaddr, KM_USER0);
2265 continue;
2266 }
2267 if (buffer_uptodate(&map_bh))
2268 continue; /* reiserfs does this */
2269 if (block_start < from || block_end > to) {
2270 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2271
2272 if (!bh) {
2273 ret = -ENOMEM;
2274 goto failed;
2275 }
2276 bh->b_state = map_bh.b_state;
2277 atomic_set(&bh->b_count, 0);
2278 bh->b_this_page = NULL;
2279 bh->b_page = page;
2280 bh->b_blocknr = map_bh.b_blocknr;
2281 bh->b_size = blocksize;
2282 bh->b_data = (char *)(long)block_start;
2283 bh->b_bdev = map_bh.b_bdev;
2284 bh->b_private = NULL;
2285 read_bh[nr_reads++] = bh;
2286 }
2287 }
2288
2289 if (nr_reads) {
2290 struct buffer_head *bh;
2291
2292 /*
2293 * The page is locked, so these buffers are protected from
2294 * any VM or truncate activity. Hence we don't need to care
2295 * for the buffer_head refcounts.
2296 */
2297 for (i = 0; i < nr_reads; i++) {
2298 bh = read_bh[i];
2299 lock_buffer(bh);
2300 bh->b_end_io = end_buffer_read_nobh;
2301 submit_bh(READ, bh);
2302 }
2303 for (i = 0; i < nr_reads; i++) {
2304 bh = read_bh[i];
2305 wait_on_buffer(bh);
2306 if (!buffer_uptodate(bh))
2307 ret = -EIO;
2308 free_buffer_head(bh);
2309 read_bh[i] = NULL;
2310 }
2311 if (ret)
2312 goto failed;
2313 }
2314
2315 if (is_mapped_to_disk)
2316 SetPageMappedToDisk(page);
2317 SetPageUptodate(page);
2318
2319 /*
2320 * Setting the page dirty here isn't necessary for the prepare_write
2321 * function - commit_write will do that. But if/when this function is
2322 * used within the pagefault handler to ensure that all mmapped pages
2323 * have backing space in the filesystem, we will need to dirty the page
2324 * if its contents were altered.
2325 */
2326 if (dirtied_it)
2327 set_page_dirty(page);
2328
2329 return 0;
2330
2331 failed:
2332 for (i = 0; i < nr_reads; i++) {
2333 if (read_bh[i])
2334 free_buffer_head(read_bh[i]);
2335 }
2336
2337 /*
2338 * Error recovery is pretty slack. Clear the page and mark it dirty
2339 * so we'll later zero out any blocks which _were_ allocated.
2340 */
2341 kaddr = kmap_atomic(page, KM_USER0);
2342 memset(kaddr, 0, PAGE_CACHE_SIZE);
2343 kunmap_atomic(kaddr, KM_USER0);
2344 SetPageUptodate(page);
2345 set_page_dirty(page);
2346 return ret;
2347 }
2348 EXPORT_SYMBOL(nobh_prepare_write);
2349
2350 int nobh_commit_write(struct file *file, struct page *page,
2351 unsigned from, unsigned to)
2352 {
2353 struct inode *inode = page->mapping->host;
2354 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2355
2356 set_page_dirty(page);
2357 if (pos > inode->i_size) {
2358 i_size_write(inode, pos);
2359 mark_inode_dirty(inode);
2360 }
2361 return 0;
2362 }
2363 EXPORT_SYMBOL(nobh_commit_write);
2364
2365 /*
2366 * nobh_writepage() - based on block_full_write_page() except
2367 * that it tries to operate without attaching bufferheads to
2368 * the page.
2369 */
2370 int nobh_writepage(struct page *page, get_block_t *get_block,
2371 struct writeback_control *wbc)
2372 {
2373 struct inode * const inode = page->mapping->host;
2374 loff_t i_size = i_size_read(inode);
2375 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2376 unsigned offset;
2377 void *kaddr;
2378 int ret;
2379
2380 /* Is the page fully inside i_size? */
2381 if (page->index < end_index)
2382 goto out;
2383
2384 /* Is the page fully outside i_size? (truncate in progress) */
2385 offset = i_size & (PAGE_CACHE_SIZE-1);
2386 if (page->index >= end_index+1 || !offset) {
2387 /*
2388 * The page may have dirty, unmapped buffers. For example,
2389 * they may have been added in ext3_writepage(). Make them
2390 * freeable here, so the page does not leak.
2391 */
2392 #if 0
2393 /* Not really sure about this - do we need this ? */
2394 if (page->mapping->a_ops->invalidatepage)
2395 page->mapping->a_ops->invalidatepage(page, offset);
2396 #endif
2397 unlock_page(page);
2398 return 0; /* don't care */
2399 }
2400
2401 /*
2402 * The page straddles i_size. It must be zeroed out on each and every
2403 * writepage invocation because it may be mmapped. "A file is mapped
2404 * in multiples of the page size. For a file that is not a multiple of
2405 * the page size, the remaining memory is zeroed when mapped, and
2406 * writes to that region are not written out to the file."
2407 */
2408 kaddr = kmap_atomic(page, KM_USER0);
2409 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2410 flush_dcache_page(page);
2411 kunmap_atomic(kaddr, KM_USER0);
2412 out:
2413 ret = mpage_writepage(page, get_block, wbc);
2414 if (ret == -EAGAIN)
2415 ret = __block_write_full_page(inode, page, get_block, wbc);
2416 return ret;
2417 }
2418 EXPORT_SYMBOL(nobh_writepage);
2419
2420 /*
2421 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2422 */
2423 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2424 {
2425 struct inode *inode = mapping->host;
2426 unsigned blocksize = 1 << inode->i_blkbits;
2427 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2428 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2429 unsigned to;
2430 struct page *page;
2431 const struct address_space_operations *a_ops = mapping->a_ops;
2432 char *kaddr;
2433 int ret = 0;
2434
2435 if ((offset & (blocksize - 1)) == 0)
2436 goto out;
2437
2438 ret = -ENOMEM;
2439 page = grab_cache_page(mapping, index);
2440 if (!page)
2441 goto out;
2442
2443 to = (offset + blocksize) & ~(blocksize - 1);
2444 ret = a_ops->prepare_write(NULL, page, offset, to);
2445 if (ret == 0) {
2446 kaddr = kmap_atomic(page, KM_USER0);
2447 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2448 flush_dcache_page(page);
2449 kunmap_atomic(kaddr, KM_USER0);
2450 set_page_dirty(page);
2451 }
2452 unlock_page(page);
2453 page_cache_release(page);
2454 out:
2455 return ret;
2456 }
2457 EXPORT_SYMBOL(nobh_truncate_page);
2458
2459 int block_truncate_page(struct address_space *mapping,
2460 loff_t from, get_block_t *get_block)
2461 {
2462 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2463 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2464 unsigned blocksize;
2465 sector_t iblock;
2466 unsigned length, pos;
2467 struct inode *inode = mapping->host;
2468 struct page *page;
2469 struct buffer_head *bh;
2470 void *kaddr;
2471 int err;
2472
2473 blocksize = 1 << inode->i_blkbits;
2474 length = offset & (blocksize - 1);
2475
2476 /* Block boundary? Nothing to do */
2477 if (!length)
2478 return 0;
2479
2480 length = blocksize - length;
2481 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2482
2483 page = grab_cache_page(mapping, index);
2484 err = -ENOMEM;
2485 if (!page)
2486 goto out;
2487
2488 if (!page_has_buffers(page))
2489 create_empty_buffers(page, blocksize, 0);
2490
2491 /* Find the buffer that contains "offset" */
2492 bh = page_buffers(page);
2493 pos = blocksize;
2494 while (offset >= pos) {
2495 bh = bh->b_this_page;
2496 iblock++;
2497 pos += blocksize;
2498 }
2499
2500 err = 0;
2501 if (!buffer_mapped(bh)) {
2502 WARN_ON(bh->b_size != blocksize);
2503 err = get_block(inode, iblock, bh, 0);
2504 if (err)
2505 goto unlock;
2506 /* unmapped? It's a hole - nothing to do */
2507 if (!buffer_mapped(bh))
2508 goto unlock;
2509 }
2510
2511 /* Ok, it's mapped. Make sure it's up-to-date */
2512 if (PageUptodate(page))
2513 set_buffer_uptodate(bh);
2514
2515 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2516 err = -EIO;
2517 ll_rw_block(READ, 1, &bh);
2518 wait_on_buffer(bh);
2519 /* Uhhuh. Read error. Complain and punt. */
2520 if (!buffer_uptodate(bh))
2521 goto unlock;
2522 }
2523
2524 kaddr = kmap_atomic(page, KM_USER0);
2525 memset(kaddr + offset, 0, length);
2526 flush_dcache_page(page);
2527 kunmap_atomic(kaddr, KM_USER0);
2528
2529 mark_buffer_dirty(bh);
2530 err = 0;
2531
2532 unlock:
2533 unlock_page(page);
2534 page_cache_release(page);
2535 out:
2536 return err;
2537 }
2538
2539 /*
2540 * The generic ->writepage function for buffer-backed address_spaces
2541 */
2542 int block_write_full_page(struct page *page, get_block_t *get_block,
2543 struct writeback_control *wbc)
2544 {
2545 struct inode * const inode = page->mapping->host;
2546 loff_t i_size = i_size_read(inode);
2547 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2548 unsigned offset;
2549 void *kaddr;
2550
2551 /* Is the page fully inside i_size? */
2552 if (page->index < end_index)
2553 return __block_write_full_page(inode, page, get_block, wbc);
2554
2555 /* Is the page fully outside i_size? (truncate in progress) */
2556 offset = i_size & (PAGE_CACHE_SIZE-1);
2557 if (page->index >= end_index+1 || !offset) {
2558 /*
2559 * The page may have dirty, unmapped buffers. For example,
2560 * they may have been added in ext3_writepage(). Make them
2561 * freeable here, so the page does not leak.
2562 */
2563 do_invalidatepage(page, 0);
2564 unlock_page(page);
2565 return 0; /* don't care */
2566 }
2567
2568 /*
2569 * The page straddles i_size. It must be zeroed out on each and every
2570 * writepage invokation because it may be mmapped. "A file is mapped
2571 * in multiples of the page size. For a file that is not a multiple of
2572 * the page size, the remaining memory is zeroed when mapped, and
2573 * writes to that region are not written out to the file."
2574 */
2575 kaddr = kmap_atomic(page, KM_USER0);
2576 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2577 flush_dcache_page(page);
2578 kunmap_atomic(kaddr, KM_USER0);
2579 return __block_write_full_page(inode, page, get_block, wbc);
2580 }
2581
2582 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2583 get_block_t *get_block)
2584 {
2585 struct buffer_head tmp;
2586 struct inode *inode = mapping->host;
2587 tmp.b_state = 0;
2588 tmp.b_blocknr = 0;
2589 tmp.b_size = 1 << inode->i_blkbits;
2590 get_block(inode, block, &tmp, 0);
2591 return tmp.b_blocknr;
2592 }
2593
2594 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2595 {
2596 struct buffer_head *bh = bio->bi_private;
2597
2598 if (bio->bi_size)
2599 return 1;
2600
2601 if (err == -EOPNOTSUPP) {
2602 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2603 set_bit(BH_Eopnotsupp, &bh->b_state);
2604 }
2605
2606 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2607 bio_put(bio);
2608 return 0;
2609 }
2610
2611 int submit_bh(int rw, struct buffer_head * bh)
2612 {
2613 struct bio *bio;
2614 int ret = 0;
2615
2616 BUG_ON(!buffer_locked(bh));
2617 BUG_ON(!buffer_mapped(bh));
2618 BUG_ON(!bh->b_end_io);
2619
2620 if (buffer_ordered(bh) && (rw == WRITE))
2621 rw = WRITE_BARRIER;
2622
2623 /*
2624 * Only clear out a write error when rewriting, should this
2625 * include WRITE_SYNC as well?
2626 */
2627 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2628 clear_buffer_write_io_error(bh);
2629
2630 /*
2631 * from here on down, it's all bio -- do the initial mapping,
2632 * submit_bio -> generic_make_request may further map this bio around
2633 */
2634 bio = bio_alloc(GFP_NOIO, 1);
2635
2636 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2637 bio->bi_bdev = bh->b_bdev;
2638 bio->bi_io_vec[0].bv_page = bh->b_page;
2639 bio->bi_io_vec[0].bv_len = bh->b_size;
2640 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2641
2642 bio->bi_vcnt = 1;
2643 bio->bi_idx = 0;
2644 bio->bi_size = bh->b_size;
2645
2646 bio->bi_end_io = end_bio_bh_io_sync;
2647 bio->bi_private = bh;
2648
2649 bio_get(bio);
2650 submit_bio(rw, bio);
2651
2652 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2653 ret = -EOPNOTSUPP;
2654
2655 bio_put(bio);
2656 return ret;
2657 }
2658
2659 /**
2660 * ll_rw_block: low-level access to block devices (DEPRECATED)
2661 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2662 * @nr: number of &struct buffer_heads in the array
2663 * @bhs: array of pointers to &struct buffer_head
2664 *
2665 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2666 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2667 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2668 * are sent to disk. The fourth %READA option is described in the documentation
2669 * for generic_make_request() which ll_rw_block() calls.
2670 *
2671 * This function drops any buffer that it cannot get a lock on (with the
2672 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2673 * clean when doing a write request, and any buffer that appears to be
2674 * up-to-date when doing read request. Further it marks as clean buffers that
2675 * are processed for writing (the buffer cache won't assume that they are
2676 * actually clean until the buffer gets unlocked).
2677 *
2678 * ll_rw_block sets b_end_io to simple completion handler that marks
2679 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2680 * any waiters.
2681 *
2682 * All of the buffers must be for the same device, and must also be a
2683 * multiple of the current approved size for the device.
2684 */
2685 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2686 {
2687 int i;
2688
2689 for (i = 0; i < nr; i++) {
2690 struct buffer_head *bh = bhs[i];
2691
2692 if (rw == SWRITE)
2693 lock_buffer(bh);
2694 else if (test_set_buffer_locked(bh))
2695 continue;
2696
2697 if (rw == WRITE || rw == SWRITE) {
2698 if (test_clear_buffer_dirty(bh)) {
2699 bh->b_end_io = end_buffer_write_sync;
2700 get_bh(bh);
2701 submit_bh(WRITE, bh);
2702 continue;
2703 }
2704 } else {
2705 if (!buffer_uptodate(bh)) {
2706 bh->b_end_io = end_buffer_read_sync;
2707 get_bh(bh);
2708 submit_bh(rw, bh);
2709 continue;
2710 }
2711 }
2712 unlock_buffer(bh);
2713 }
2714 }
2715
2716 /*
2717 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2718 * and then start new I/O and then wait upon it. The caller must have a ref on
2719 * the buffer_head.
2720 */
2721 int sync_dirty_buffer(struct buffer_head *bh)
2722 {
2723 int ret = 0;
2724
2725 WARN_ON(atomic_read(&bh->b_count) < 1);
2726 lock_buffer(bh);
2727 if (test_clear_buffer_dirty(bh)) {
2728 get_bh(bh);
2729 bh->b_end_io = end_buffer_write_sync;
2730 ret = submit_bh(WRITE, bh);
2731 wait_on_buffer(bh);
2732 if (buffer_eopnotsupp(bh)) {
2733 clear_buffer_eopnotsupp(bh);
2734 ret = -EOPNOTSUPP;
2735 }
2736 if (!ret && !buffer_uptodate(bh))
2737 ret = -EIO;
2738 } else {
2739 unlock_buffer(bh);
2740 }
2741 return ret;
2742 }
2743
2744 /*
2745 * try_to_free_buffers() checks if all the buffers on this particular page
2746 * are unused, and releases them if so.
2747 *
2748 * Exclusion against try_to_free_buffers may be obtained by either
2749 * locking the page or by holding its mapping's private_lock.
2750 *
2751 * If the page is dirty but all the buffers are clean then we need to
2752 * be sure to mark the page clean as well. This is because the page
2753 * may be against a block device, and a later reattachment of buffers
2754 * to a dirty page will set *all* buffers dirty. Which would corrupt
2755 * filesystem data on the same device.
2756 *
2757 * The same applies to regular filesystem pages: if all the buffers are
2758 * clean then we set the page clean and proceed. To do that, we require
2759 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2760 * private_lock.
2761 *
2762 * try_to_free_buffers() is non-blocking.
2763 */
2764 static inline int buffer_busy(struct buffer_head *bh)
2765 {
2766 return atomic_read(&bh->b_count) |
2767 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2768 }
2769
2770 static int
2771 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2772 {
2773 struct buffer_head *head = page_buffers(page);
2774 struct buffer_head *bh;
2775
2776 bh = head;
2777 do {
2778 if (buffer_write_io_error(bh) && page->mapping)
2779 set_bit(AS_EIO, &page->mapping->flags);
2780 if (buffer_busy(bh))
2781 goto failed;
2782 bh = bh->b_this_page;
2783 } while (bh != head);
2784
2785 do {
2786 struct buffer_head *next = bh->b_this_page;
2787
2788 if (!list_empty(&bh->b_assoc_buffers))
2789 __remove_assoc_queue(bh);
2790 bh = next;
2791 } while (bh != head);
2792 *buffers_to_free = head;
2793 __clear_page_buffers(page);
2794 return 1;
2795 failed:
2796 return 0;
2797 }
2798
2799 int try_to_free_buffers(struct page *page)
2800 {
2801 struct address_space * const mapping = page->mapping;
2802 struct buffer_head *buffers_to_free = NULL;
2803 int ret = 0;
2804
2805 BUG_ON(!PageLocked(page));
2806 if (PageWriteback(page))
2807 return 0;
2808
2809 if (mapping == NULL) { /* can this still happen? */
2810 ret = drop_buffers(page, &buffers_to_free);
2811 goto out;
2812 }
2813
2814 spin_lock(&mapping->private_lock);
2815 ret = drop_buffers(page, &buffers_to_free);
2816 spin_unlock(&mapping->private_lock);
2817 if (ret) {
2818 /*
2819 * If the filesystem writes its buffers by hand (eg ext3)
2820 * then we can have clean buffers against a dirty page. We
2821 * clean the page here; otherwise later reattachment of buffers
2822 * could encounter a non-uptodate page, which is unresolvable.
2823 * This only applies in the rare case where try_to_free_buffers
2824 * succeeds but the page is not freed.
2825 */
2826 clear_page_dirty(page);
2827 }
2828 out:
2829 if (buffers_to_free) {
2830 struct buffer_head *bh = buffers_to_free;
2831
2832 do {
2833 struct buffer_head *next = bh->b_this_page;
2834 free_buffer_head(bh);
2835 bh = next;
2836 } while (bh != buffers_to_free);
2837 }
2838 return ret;
2839 }
2840 EXPORT_SYMBOL(try_to_free_buffers);
2841
2842 void block_sync_page(struct page *page)
2843 {
2844 struct address_space *mapping;
2845
2846 smp_mb();
2847 mapping = page_mapping(page);
2848 if (mapping)
2849 blk_run_backing_dev(mapping->backing_dev_info, page);
2850 }
2851
2852 /*
2853 * There are no bdflush tunables left. But distributions are
2854 * still running obsolete flush daemons, so we terminate them here.
2855 *
2856 * Use of bdflush() is deprecated and will be removed in a future kernel.
2857 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2858 */
2859 asmlinkage long sys_bdflush(int func, long data)
2860 {
2861 static int msg_count;
2862
2863 if (!capable(CAP_SYS_ADMIN))
2864 return -EPERM;
2865
2866 if (msg_count < 5) {
2867 msg_count++;
2868 printk(KERN_INFO
2869 "warning: process `%s' used the obsolete bdflush"
2870 " system call\n", current->comm);
2871 printk(KERN_INFO "Fix your initscripts?\n");
2872 }
2873
2874 if (func == 1)
2875 do_exit(0);
2876 return 0;
2877 }
2878
2879 /*
2880 * Buffer-head allocation
2881 */
2882 static kmem_cache_t *bh_cachep;
2883
2884 /*
2885 * Once the number of bh's in the machine exceeds this level, we start
2886 * stripping them in writeback.
2887 */
2888 static int max_buffer_heads;
2889
2890 int buffer_heads_over_limit;
2891
2892 struct bh_accounting {
2893 int nr; /* Number of live bh's */
2894 int ratelimit; /* Limit cacheline bouncing */
2895 };
2896
2897 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2898
2899 static void recalc_bh_state(void)
2900 {
2901 int i;
2902 int tot = 0;
2903
2904 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2905 return;
2906 __get_cpu_var(bh_accounting).ratelimit = 0;
2907 for_each_online_cpu(i)
2908 tot += per_cpu(bh_accounting, i).nr;
2909 buffer_heads_over_limit = (tot > max_buffer_heads);
2910 }
2911
2912 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2913 {
2914 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2915 if (ret) {
2916 get_cpu_var(bh_accounting).nr++;
2917 recalc_bh_state();
2918 put_cpu_var(bh_accounting);
2919 }
2920 return ret;
2921 }
2922 EXPORT_SYMBOL(alloc_buffer_head);
2923
2924 void free_buffer_head(struct buffer_head *bh)
2925 {
2926 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2927 kmem_cache_free(bh_cachep, bh);
2928 get_cpu_var(bh_accounting).nr--;
2929 recalc_bh_state();
2930 put_cpu_var(bh_accounting);
2931 }
2932 EXPORT_SYMBOL(free_buffer_head);
2933
2934 static void
2935 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
2936 {
2937 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2938 SLAB_CTOR_CONSTRUCTOR) {
2939 struct buffer_head * bh = (struct buffer_head *)data;
2940
2941 memset(bh, 0, sizeof(*bh));
2942 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2943 }
2944 }
2945
2946 #ifdef CONFIG_HOTPLUG_CPU
2947 static void buffer_exit_cpu(int cpu)
2948 {
2949 int i;
2950 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2951
2952 for (i = 0; i < BH_LRU_SIZE; i++) {
2953 brelse(b->bhs[i]);
2954 b->bhs[i] = NULL;
2955 }
2956 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2957 per_cpu(bh_accounting, cpu).nr = 0;
2958 put_cpu_var(bh_accounting);
2959 }
2960
2961 static int buffer_cpu_notify(struct notifier_block *self,
2962 unsigned long action, void *hcpu)
2963 {
2964 if (action == CPU_DEAD)
2965 buffer_exit_cpu((unsigned long)hcpu);
2966 return NOTIFY_OK;
2967 }
2968 #endif /* CONFIG_HOTPLUG_CPU */
2969
2970 void __init buffer_init(void)
2971 {
2972 int nrpages;
2973
2974 bh_cachep = kmem_cache_create("buffer_head",
2975 sizeof(struct buffer_head), 0,
2976 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2977 SLAB_MEM_SPREAD),
2978 init_buffer_head,
2979 NULL);
2980
2981 /*
2982 * Limit the bh occupancy to 10% of ZONE_NORMAL
2983 */
2984 nrpages = (nr_free_buffer_pages() * 10) / 100;
2985 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
2986 hotcpu_notifier(buffer_cpu_notify, 0);
2987 }
2988
2989 EXPORT_SYMBOL(__bforget);
2990 EXPORT_SYMBOL(__brelse);
2991 EXPORT_SYMBOL(__wait_on_buffer);
2992 EXPORT_SYMBOL(block_commit_write);
2993 EXPORT_SYMBOL(block_prepare_write);
2994 EXPORT_SYMBOL(block_read_full_page);
2995 EXPORT_SYMBOL(block_sync_page);
2996 EXPORT_SYMBOL(block_truncate_page);
2997 EXPORT_SYMBOL(block_write_full_page);
2998 EXPORT_SYMBOL(cont_prepare_write);
2999 EXPORT_SYMBOL(end_buffer_read_sync);
3000 EXPORT_SYMBOL(end_buffer_write_sync);
3001 EXPORT_SYMBOL(file_fsync);
3002 EXPORT_SYMBOL(fsync_bdev);
3003 EXPORT_SYMBOL(generic_block_bmap);
3004 EXPORT_SYMBOL(generic_commit_write);
3005 EXPORT_SYMBOL(generic_cont_expand);
3006 EXPORT_SYMBOL(generic_cont_expand_simple);
3007 EXPORT_SYMBOL(init_buffer);
3008 EXPORT_SYMBOL(invalidate_bdev);
3009 EXPORT_SYMBOL(ll_rw_block);
3010 EXPORT_SYMBOL(mark_buffer_dirty);
3011 EXPORT_SYMBOL(submit_bh);
3012 EXPORT_SYMBOL(sync_dirty_buffer);
3013 EXPORT_SYMBOL(unlock_buffer);