]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/buffer.c
19d8eb7fdc81a1ed4be1fd4bd248d1037598fb1a
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53 bh->b_end_io = handler;
54 bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sleep_on_buffer(void *word)
59 {
60 io_schedule();
61 return 0;
62 }
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67 TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70
71 void unlock_buffer(struct buffer_head *bh)
72 {
73 clear_bit_unlock(BH_Lock, &bh->b_state);
74 smp_mb__after_clear_bit();
75 wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78
79 /*
80 * Block until a buffer comes unlocked. This doesn't stop it
81 * from becoming locked again - you have to lock it yourself
82 * if you want to preserve its state.
83 */
84 void __wait_on_buffer(struct buffer_head * bh)
85 {
86 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 }
88 EXPORT_SYMBOL(__wait_on_buffer);
89
90 static void
91 __clear_page_buffers(struct page *page)
92 {
93 ClearPagePrivate(page);
94 set_page_private(page, 0);
95 page_cache_release(page);
96 }
97
98
99 static int quiet_error(struct buffer_head *bh)
100 {
101 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
102 return 0;
103 return 1;
104 }
105
106
107 static void buffer_io_error(struct buffer_head *bh)
108 {
109 char b[BDEVNAME_SIZE];
110 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111 bdevname(bh->b_bdev, b),
112 (unsigned long long)bh->b_blocknr);
113 }
114
115 /*
116 * End-of-IO handler helper function which does not touch the bh after
117 * unlocking it.
118 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119 * a race there is benign: unlock_buffer() only use the bh's address for
120 * hashing after unlocking the buffer, so it doesn't actually touch the bh
121 * itself.
122 */
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 {
125 if (uptodate) {
126 set_buffer_uptodate(bh);
127 } else {
128 /* This happens, due to failed READA attempts. */
129 clear_buffer_uptodate(bh);
130 }
131 unlock_buffer(bh);
132 }
133
134 /*
135 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
136 * unlock the buffer. This is what ll_rw_block uses too.
137 */
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 {
140 __end_buffer_read_notouch(bh, uptodate);
141 put_bh(bh);
142 }
143 EXPORT_SYMBOL(end_buffer_read_sync);
144
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 {
147 char b[BDEVNAME_SIZE];
148
149 if (uptodate) {
150 set_buffer_uptodate(bh);
151 } else {
152 if (!quiet_error(bh)) {
153 buffer_io_error(bh);
154 printk(KERN_WARNING "lost page write due to "
155 "I/O error on %s\n",
156 bdevname(bh->b_bdev, b));
157 }
158 set_buffer_write_io_error(bh);
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162 put_bh(bh);
163 }
164 EXPORT_SYMBOL(end_buffer_write_sync);
165
166 /*
167 * Various filesystems appear to want __find_get_block to be non-blocking.
168 * But it's the page lock which protects the buffers. To get around this,
169 * we get exclusion from try_to_free_buffers with the blockdev mapping's
170 * private_lock.
171 *
172 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173 * may be quite high. This code could TryLock the page, and if that
174 * succeeds, there is no need to take private_lock. (But if
175 * private_lock is contended then so is mapping->tree_lock).
176 */
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 {
180 struct inode *bd_inode = bdev->bd_inode;
181 struct address_space *bd_mapping = bd_inode->i_mapping;
182 struct buffer_head *ret = NULL;
183 pgoff_t index;
184 struct buffer_head *bh;
185 struct buffer_head *head;
186 struct page *page;
187 int all_mapped = 1;
188
189 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190 page = find_get_page(bd_mapping, index);
191 if (!page)
192 goto out;
193
194 spin_lock(&bd_mapping->private_lock);
195 if (!page_has_buffers(page))
196 goto out_unlock;
197 head = page_buffers(page);
198 bh = head;
199 do {
200 if (!buffer_mapped(bh))
201 all_mapped = 0;
202 else if (bh->b_blocknr == block) {
203 ret = bh;
204 get_bh(bh);
205 goto out_unlock;
206 }
207 bh = bh->b_this_page;
208 } while (bh != head);
209
210 /* we might be here because some of the buffers on this page are
211 * not mapped. This is due to various races between
212 * file io on the block device and getblk. It gets dealt with
213 * elsewhere, don't buffer_error if we had some unmapped buffers
214 */
215 if (all_mapped) {
216 char b[BDEVNAME_SIZE];
217
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
224 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225 1 << bd_inode->i_blkbits);
226 }
227 out_unlock:
228 spin_unlock(&bd_mapping->private_lock);
229 page_cache_release(page);
230 out:
231 return ret;
232 }
233
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235 of fs corruption is going on. Trashing dirty data always imply losing
236 information that was supposed to be just stored on the physical layer
237 by the user.
238
239 Thus invalidate_buffers in general usage is not allwowed to trash
240 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241 be preserved. These buffers are simply skipped.
242
243 We also skip buffers which are still in use. For example this can
244 happen if a userspace program is reading the block device.
245
246 NOTE: In the case where the user removed a removable-media-disk even if
247 there's still dirty data not synced on disk (due a bug in the device driver
248 or due an error of the user), by not destroying the dirty buffers we could
249 generate corruption also on the next media inserted, thus a parameter is
250 necessary to handle this case in the most safe way possible (trying
251 to not corrupt also the new disk inserted with the data belonging to
252 the old now corrupted disk). Also for the ramdisk the natural thing
253 to do in order to release the ramdisk memory is to destroy dirty buffers.
254
255 These are two special cases. Normal usage imply the device driver
256 to issue a sync on the device (without waiting I/O completion) and
257 then an invalidate_buffers call that doesn't trash dirty buffers.
258
259 For handling cache coherency with the blkdev pagecache the 'update' case
260 is been introduced. It is needed to re-read from disk any pinned
261 buffer. NOTE: re-reading from disk is destructive so we can do it only
262 when we assume nobody is changing the buffercache under our I/O and when
263 we think the disk contains more recent information than the buffercache.
264 The update == 1 pass marks the buffers we need to update, the update == 2
265 pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
267 {
268 struct address_space *mapping = bdev->bd_inode->i_mapping;
269
270 if (mapping->nrpages == 0)
271 return;
272
273 invalidate_bh_lrus();
274 lru_add_drain_all(); /* make sure all lru add caches are flushed */
275 invalidate_mapping_pages(mapping, 0, -1);
276 /* 99% of the time, we don't need to flush the cleancache on the bdev.
277 * But, for the strange corners, lets be cautious
278 */
279 cleancache_flush_inode(mapping);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285 */
286 static void free_more_memory(void)
287 {
288 struct zone *zone;
289 int nid;
290
291 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
292 yield();
293
294 for_each_online_node(nid) {
295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 gfp_zone(GFP_NOFS), NULL,
297 &zone);
298 if (zone)
299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 GFP_NOFS, NULL);
301 }
302 }
303
304 /*
305 * I/O completion handler for block_read_full_page() - pages
306 * which come unlocked at the end of I/O.
307 */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310 unsigned long flags;
311 struct buffer_head *first;
312 struct buffer_head *tmp;
313 struct page *page;
314 int page_uptodate = 1;
315
316 BUG_ON(!buffer_async_read(bh));
317
318 page = bh->b_page;
319 if (uptodate) {
320 set_buffer_uptodate(bh);
321 } else {
322 clear_buffer_uptodate(bh);
323 if (!quiet_error(bh))
324 buffer_io_error(bh);
325 SetPageError(page);
326 }
327
328 /*
329 * Be _very_ careful from here on. Bad things can happen if
330 * two buffer heads end IO at almost the same time and both
331 * decide that the page is now completely done.
332 */
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 clear_buffer_async_read(bh);
337 unlock_buffer(bh);
338 tmp = bh;
339 do {
340 if (!buffer_uptodate(tmp))
341 page_uptodate = 0;
342 if (buffer_async_read(tmp)) {
343 BUG_ON(!buffer_locked(tmp));
344 goto still_busy;
345 }
346 tmp = tmp->b_this_page;
347 } while (tmp != bh);
348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 local_irq_restore(flags);
350
351 /*
352 * If none of the buffers had errors and they are all
353 * uptodate then we can set the page uptodate.
354 */
355 if (page_uptodate && !PageError(page))
356 SetPageUptodate(page);
357 unlock_page(page);
358 return;
359
360 still_busy:
361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 local_irq_restore(flags);
363 return;
364 }
365
366 /*
367 * Completion handler for block_write_full_page() - pages which are unlocked
368 * during I/O, and which have PageWriteback cleared upon I/O completion.
369 */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372 char b[BDEVNAME_SIZE];
373 unsigned long flags;
374 struct buffer_head *first;
375 struct buffer_head *tmp;
376 struct page *page;
377
378 BUG_ON(!buffer_async_write(bh));
379
380 page = bh->b_page;
381 if (uptodate) {
382 set_buffer_uptodate(bh);
383 } else {
384 if (!quiet_error(bh)) {
385 buffer_io_error(bh);
386 printk(KERN_WARNING "lost page write due to "
387 "I/O error on %s\n",
388 bdevname(bh->b_bdev, b));
389 }
390 set_bit(AS_EIO, &page->mapping->flags);
391 set_buffer_write_io_error(bh);
392 clear_buffer_uptodate(bh);
393 SetPageError(page);
394 }
395
396 first = page_buffers(page);
397 local_irq_save(flags);
398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
407 }
408 tmp = tmp->b_this_page;
409 }
410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 local_irq_restore(flags);
412 end_page_writeback(page);
413 return;
414
415 still_busy:
416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 local_irq_restore(flags);
418 return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423 * If a page's buffers are under async readin (end_buffer_async_read
424 * completion) then there is a possibility that another thread of
425 * control could lock one of the buffers after it has completed
426 * but while some of the other buffers have not completed. This
427 * locked buffer would confuse end_buffer_async_read() into not unlocking
428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
429 * that this buffer is not under async I/O.
430 *
431 * The page comes unlocked when it has no locked buffer_async buffers
432 * left.
433 *
434 * PageLocked prevents anyone starting new async I/O reads any of
435 * the buffers.
436 *
437 * PageWriteback is used to prevent simultaneous writeout of the same
438 * page.
439 *
440 * PageLocked prevents anyone from starting writeback of a page which is
441 * under read I/O (PageWriteback is only ever set against a locked page).
442 */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445 bh->b_end_io = end_buffer_async_read;
446 set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 bh_end_io_t *handler)
451 {
452 bh->b_end_io = handler;
453 set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458 mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464 * fs/buffer.c contains helper functions for buffer-backed address space's
465 * fsync functions. A common requirement for buffer-based filesystems is
466 * that certain data from the backing blockdev needs to be written out for
467 * a successful fsync(). For example, ext2 indirect blocks need to be
468 * written back and waited upon before fsync() returns.
469 *
470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472 * management of a list of dependent buffers at ->i_mapping->private_list.
473 *
474 * Locking is a little subtle: try_to_free_buffers() will remove buffers
475 * from their controlling inode's queue when they are being freed. But
476 * try_to_free_buffers() will be operating against the *blockdev* mapping
477 * at the time, not against the S_ISREG file which depends on those buffers.
478 * So the locking for private_list is via the private_lock in the address_space
479 * which backs the buffers. Which is different from the address_space
480 * against which the buffers are listed. So for a particular address_space,
481 * mapping->private_lock does *not* protect mapping->private_list! In fact,
482 * mapping->private_list will always be protected by the backing blockdev's
483 * ->private_lock.
484 *
485 * Which introduces a requirement: all buffers on an address_space's
486 * ->private_list must be from the same address_space: the blockdev's.
487 *
488 * address_spaces which do not place buffers at ->private_list via these
489 * utility functions are free to use private_lock and private_list for
490 * whatever they want. The only requirement is that list_empty(private_list)
491 * be true at clear_inode() time.
492 *
493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
494 * filesystems should do that. invalidate_inode_buffers() should just go
495 * BUG_ON(!list_empty).
496 *
497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
498 * take an address_space, not an inode. And it should be called
499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500 * queued up.
501 *
502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503 * list if it is already on a list. Because if the buffer is on a list,
504 * it *must* already be on the right one. If not, the filesystem is being
505 * silly. This will save a ton of locking. But first we have to ensure
506 * that buffers are taken *off* the old inode's list when they are freed
507 * (presumably in truncate). That requires careful auditing of all
508 * filesystems (do it inside bforget()). It could also be done by bringing
509 * b_inode back.
510 */
511
512 /*
513 * The buffer's backing address_space's private_lock must be held
514 */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517 list_del_init(&bh->b_assoc_buffers);
518 WARN_ON(!bh->b_assoc_map);
519 if (buffer_write_io_error(bh))
520 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526 return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530 * osync is designed to support O_SYNC io. It waits synchronously for
531 * all already-submitted IO to complete, but does not queue any new
532 * writes to the disk.
533 *
534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535 * you dirty the buffers, and then use osync_inode_buffers to wait for
536 * completion. Any other dirty buffers which are not yet queued for
537 * write will not be flushed to disk by the osync.
538 */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541 struct buffer_head *bh;
542 struct list_head *p;
543 int err = 0;
544
545 spin_lock(lock);
546 repeat:
547 list_for_each_prev(p, list) {
548 bh = BH_ENTRY(p);
549 if (buffer_locked(bh)) {
550 get_bh(bh);
551 spin_unlock(lock);
552 wait_on_buffer(bh);
553 if (!buffer_uptodate(bh))
554 err = -EIO;
555 brelse(bh);
556 spin_lock(lock);
557 goto repeat;
558 }
559 }
560 spin_unlock(lock);
561 return err;
562 }
563
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566 char b[BDEVNAME_SIZE];
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
570 }
571
572 static void do_thaw_all(struct work_struct *work)
573 {
574 iterate_supers(do_thaw_one, NULL);
575 kfree(work);
576 printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578
579 /**
580 * emergency_thaw_all -- forcibly thaw every frozen filesystem
581 *
582 * Used for emergency unfreeze of all filesystems via SysRq
583 */
584 void emergency_thaw_all(void)
585 {
586 struct work_struct *work;
587
588 work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 if (work) {
590 INIT_WORK(work, do_thaw_all);
591 schedule_work(work);
592 }
593 }
594
595 /**
596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597 * @mapping: the mapping which wants those buffers written
598 *
599 * Starts I/O against the buffers at mapping->private_list, and waits upon
600 * that I/O.
601 *
602 * Basically, this is a convenience function for fsync().
603 * @mapping is a file or directory which needs those buffers to be written for
604 * a successful fsync().
605 */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608 struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 return 0;
612
613 return fsync_buffers_list(&buffer_mapping->private_lock,
614 &mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617
618 /*
619 * Called when we've recently written block `bblock', and it is known that
620 * `bblock' was for a buffer_boundary() buffer. This means that the block at
621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
622 * dirty, schedule it for IO. So that indirects merge nicely with their data.
623 */
624 void write_boundary_block(struct block_device *bdev,
625 sector_t bblock, unsigned blocksize)
626 {
627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 if (bh) {
629 if (buffer_dirty(bh))
630 ll_rw_block(WRITE, 1, &bh);
631 put_bh(bh);
632 }
633 }
634
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637 struct address_space *mapping = inode->i_mapping;
638 struct address_space *buffer_mapping = bh->b_page->mapping;
639
640 mark_buffer_dirty(bh);
641 if (!mapping->assoc_mapping) {
642 mapping->assoc_mapping = buffer_mapping;
643 } else {
644 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 }
646 if (!bh->b_assoc_map) {
647 spin_lock(&buffer_mapping->private_lock);
648 list_move_tail(&bh->b_assoc_buffers,
649 &mapping->private_list);
650 bh->b_assoc_map = mapping;
651 spin_unlock(&buffer_mapping->private_lock);
652 }
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656 /*
657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658 * dirty.
659 *
660 * If warn is true, then emit a warning if the page is not uptodate and has
661 * not been truncated.
662 */
663 static void __set_page_dirty(struct page *page,
664 struct address_space *mapping, int warn)
665 {
666 spin_lock_irq(&mapping->tree_lock);
667 if (page->mapping) { /* Race with truncate? */
668 WARN_ON_ONCE(warn && !PageUptodate(page));
669 account_page_dirtied(page, mapping);
670 radix_tree_tag_set(&mapping->page_tree,
671 page_index(page), PAGECACHE_TAG_DIRTY);
672 }
673 spin_unlock_irq(&mapping->tree_lock);
674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676
677 /*
678 * Add a page to the dirty page list.
679 *
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
682 *
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
686 * dirty.
687 *
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
694 *
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
698 *
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
701 */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 int newly_dirty;
705 struct address_space *mapping = page_mapping(page);
706
707 if (unlikely(!mapping))
708 return !TestSetPageDirty(page);
709
710 spin_lock(&mapping->private_lock);
711 if (page_has_buffers(page)) {
712 struct buffer_head *head = page_buffers(page);
713 struct buffer_head *bh = head;
714
715 do {
716 set_buffer_dirty(bh);
717 bh = bh->b_this_page;
718 } while (bh != head);
719 }
720 newly_dirty = !TestSetPageDirty(page);
721 spin_unlock(&mapping->private_lock);
722
723 if (newly_dirty)
724 __set_page_dirty(page, mapping, 1);
725 return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728
729 /*
730 * Write out and wait upon a list of buffers.
731 *
732 * We have conflicting pressures: we want to make sure that all
733 * initially dirty buffers get waited on, but that any subsequently
734 * dirtied buffers don't. After all, we don't want fsync to last
735 * forever if somebody is actively writing to the file.
736 *
737 * Do this in two main stages: first we copy dirty buffers to a
738 * temporary inode list, queueing the writes as we go. Then we clean
739 * up, waiting for those writes to complete.
740 *
741 * During this second stage, any subsequent updates to the file may end
742 * up refiling the buffer on the original inode's dirty list again, so
743 * there is a chance we will end up with a buffer queued for write but
744 * not yet completed on that list. So, as a final cleanup we go through
745 * the osync code to catch these locked, dirty buffers without requeuing
746 * any newly dirty buffers for write.
747 */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750 struct buffer_head *bh;
751 struct list_head tmp;
752 struct address_space *mapping;
753 int err = 0, err2;
754 struct blk_plug plug;
755
756 INIT_LIST_HEAD(&tmp);
757 blk_start_plug(&plug);
758
759 spin_lock(lock);
760 while (!list_empty(list)) {
761 bh = BH_ENTRY(list->next);
762 mapping = bh->b_assoc_map;
763 __remove_assoc_queue(bh);
764 /* Avoid race with mark_buffer_dirty_inode() which does
765 * a lockless check and we rely on seeing the dirty bit */
766 smp_mb();
767 if (buffer_dirty(bh) || buffer_locked(bh)) {
768 list_add(&bh->b_assoc_buffers, &tmp);
769 bh->b_assoc_map = mapping;
770 if (buffer_dirty(bh)) {
771 get_bh(bh);
772 spin_unlock(lock);
773 /*
774 * Ensure any pending I/O completes so that
775 * write_dirty_buffer() actually writes the
776 * current contents - it is a noop if I/O is
777 * still in flight on potentially older
778 * contents.
779 */
780 write_dirty_buffer(bh, WRITE_SYNC);
781
782 /*
783 * Kick off IO for the previous mapping. Note
784 * that we will not run the very last mapping,
785 * wait_on_buffer() will do that for us
786 * through sync_buffer().
787 */
788 brelse(bh);
789 spin_lock(lock);
790 }
791 }
792 }
793
794 spin_unlock(lock);
795 blk_finish_plug(&plug);
796 spin_lock(lock);
797
798 while (!list_empty(&tmp)) {
799 bh = BH_ENTRY(tmp.prev);
800 get_bh(bh);
801 mapping = bh->b_assoc_map;
802 __remove_assoc_queue(bh);
803 /* Avoid race with mark_buffer_dirty_inode() which does
804 * a lockless check and we rely on seeing the dirty bit */
805 smp_mb();
806 if (buffer_dirty(bh)) {
807 list_add(&bh->b_assoc_buffers,
808 &mapping->private_list);
809 bh->b_assoc_map = mapping;
810 }
811 spin_unlock(lock);
812 wait_on_buffer(bh);
813 if (!buffer_uptodate(bh))
814 err = -EIO;
815 brelse(bh);
816 spin_lock(lock);
817 }
818
819 spin_unlock(lock);
820 err2 = osync_buffers_list(lock, list);
821 if (err)
822 return err;
823 else
824 return err2;
825 }
826
827 /*
828 * Invalidate any and all dirty buffers on a given inode. We are
829 * probably unmounting the fs, but that doesn't mean we have already
830 * done a sync(). Just drop the buffers from the inode list.
831 *
832 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
833 * assumes that all the buffers are against the blockdev. Not true
834 * for reiserfs.
835 */
836 void invalidate_inode_buffers(struct inode *inode)
837 {
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
841 struct address_space *buffer_mapping = mapping->assoc_mapping;
842
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list))
845 __remove_assoc_queue(BH_ENTRY(list->next));
846 spin_unlock(&buffer_mapping->private_lock);
847 }
848 }
849 EXPORT_SYMBOL(invalidate_inode_buffers);
850
851 /*
852 * Remove any clean buffers from the inode's buffer list. This is called
853 * when we're trying to free the inode itself. Those buffers can pin it.
854 *
855 * Returns true if all buffers were removed.
856 */
857 int remove_inode_buffers(struct inode *inode)
858 {
859 int ret = 1;
860
861 if (inode_has_buffers(inode)) {
862 struct address_space *mapping = &inode->i_data;
863 struct list_head *list = &mapping->private_list;
864 struct address_space *buffer_mapping = mapping->assoc_mapping;
865
866 spin_lock(&buffer_mapping->private_lock);
867 while (!list_empty(list)) {
868 struct buffer_head *bh = BH_ENTRY(list->next);
869 if (buffer_dirty(bh)) {
870 ret = 0;
871 break;
872 }
873 __remove_assoc_queue(bh);
874 }
875 spin_unlock(&buffer_mapping->private_lock);
876 }
877 return ret;
878 }
879
880 /*
881 * Create the appropriate buffers when given a page for data area and
882 * the size of each buffer.. Use the bh->b_this_page linked list to
883 * follow the buffers created. Return NULL if unable to create more
884 * buffers.
885 *
886 * The retry flag is used to differentiate async IO (paging, swapping)
887 * which may not fail from ordinary buffer allocations.
888 */
889 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
890 int retry)
891 {
892 struct buffer_head *bh, *head;
893 long offset;
894
895 try_again:
896 head = NULL;
897 offset = PAGE_SIZE;
898 while ((offset -= size) >= 0) {
899 bh = alloc_buffer_head(GFP_NOFS);
900 if (!bh)
901 goto no_grow;
902
903 bh->b_bdev = NULL;
904 bh->b_this_page = head;
905 bh->b_blocknr = -1;
906 head = bh;
907
908 bh->b_state = 0;
909 atomic_set(&bh->b_count, 0);
910 bh->b_size = size;
911
912 /* Link the buffer to its page */
913 set_bh_page(bh, page, offset);
914
915 init_buffer(bh, NULL, NULL);
916 }
917 return head;
918 /*
919 * In case anything failed, we just free everything we got.
920 */
921 no_grow:
922 if (head) {
923 do {
924 bh = head;
925 head = head->b_this_page;
926 free_buffer_head(bh);
927 } while (head);
928 }
929
930 /*
931 * Return failure for non-async IO requests. Async IO requests
932 * are not allowed to fail, so we have to wait until buffer heads
933 * become available. But we don't want tasks sleeping with
934 * partially complete buffers, so all were released above.
935 */
936 if (!retry)
937 return NULL;
938
939 /* We're _really_ low on memory. Now we just
940 * wait for old buffer heads to become free due to
941 * finishing IO. Since this is an async request and
942 * the reserve list is empty, we're sure there are
943 * async buffer heads in use.
944 */
945 free_more_memory();
946 goto try_again;
947 }
948 EXPORT_SYMBOL_GPL(alloc_page_buffers);
949
950 static inline void
951 link_dev_buffers(struct page *page, struct buffer_head *head)
952 {
953 struct buffer_head *bh, *tail;
954
955 bh = head;
956 do {
957 tail = bh;
958 bh = bh->b_this_page;
959 } while (bh);
960 tail->b_this_page = head;
961 attach_page_buffers(page, head);
962 }
963
964 /*
965 * Initialise the state of a blockdev page's buffers.
966 */
967 static void
968 init_page_buffers(struct page *page, struct block_device *bdev,
969 sector_t block, int size)
970 {
971 struct buffer_head *head = page_buffers(page);
972 struct buffer_head *bh = head;
973 int uptodate = PageUptodate(page);
974
975 do {
976 if (!buffer_mapped(bh)) {
977 init_buffer(bh, NULL, NULL);
978 bh->b_bdev = bdev;
979 bh->b_blocknr = block;
980 if (uptodate)
981 set_buffer_uptodate(bh);
982 set_buffer_mapped(bh);
983 }
984 block++;
985 bh = bh->b_this_page;
986 } while (bh != head);
987 }
988
989 /*
990 * Create the page-cache page that contains the requested block.
991 *
992 * This is user purely for blockdev mappings.
993 */
994 static struct page *
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 pgoff_t index, int size)
997 {
998 struct inode *inode = bdev->bd_inode;
999 struct page *page;
1000 struct buffer_head *bh;
1001
1002 page = find_or_create_page(inode->i_mapping, index,
1003 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1004 if (!page)
1005 return NULL;
1006
1007 BUG_ON(!PageLocked(page));
1008
1009 if (page_has_buffers(page)) {
1010 bh = page_buffers(page);
1011 if (bh->b_size == size) {
1012 init_page_buffers(page, bdev, block, size);
1013 return page;
1014 }
1015 if (!try_to_free_buffers(page))
1016 goto failed;
1017 }
1018
1019 /*
1020 * Allocate some buffers for this page
1021 */
1022 bh = alloc_page_buffers(page, size, 0);
1023 if (!bh)
1024 goto failed;
1025
1026 /*
1027 * Link the page to the buffers and initialise them. Take the
1028 * lock to be atomic wrt __find_get_block(), which does not
1029 * run under the page lock.
1030 */
1031 spin_lock(&inode->i_mapping->private_lock);
1032 link_dev_buffers(page, bh);
1033 init_page_buffers(page, bdev, block, size);
1034 spin_unlock(&inode->i_mapping->private_lock);
1035 return page;
1036
1037 failed:
1038 BUG();
1039 unlock_page(page);
1040 page_cache_release(page);
1041 return NULL;
1042 }
1043
1044 /*
1045 * Create buffers for the specified block device block's page. If
1046 * that page was dirty, the buffers are set dirty also.
1047 */
1048 static int
1049 grow_buffers(struct block_device *bdev, sector_t block, int size)
1050 {
1051 struct page *page;
1052 pgoff_t index;
1053 int sizebits;
1054
1055 sizebits = -1;
1056 do {
1057 sizebits++;
1058 } while ((size << sizebits) < PAGE_SIZE);
1059
1060 index = block >> sizebits;
1061
1062 /*
1063 * Check for a block which wants to lie outside our maximum possible
1064 * pagecache index. (this comparison is done using sector_t types).
1065 */
1066 if (unlikely(index != block >> sizebits)) {
1067 char b[BDEVNAME_SIZE];
1068
1069 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 "device %s\n",
1071 __func__, (unsigned long long)block,
1072 bdevname(bdev, b));
1073 return -EIO;
1074 }
1075 block = index << sizebits;
1076 /* Create a page with the proper size buffers.. */
1077 page = grow_dev_page(bdev, block, index, size);
1078 if (!page)
1079 return 0;
1080 unlock_page(page);
1081 page_cache_release(page);
1082 return 1;
1083 }
1084
1085 static struct buffer_head *
1086 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1087 {
1088 /* Size must be multiple of hard sectorsize */
1089 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1090 (size < 512 || size > PAGE_SIZE))) {
1091 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1092 size);
1093 printk(KERN_ERR "logical block size: %d\n",
1094 bdev_logical_block_size(bdev));
1095
1096 dump_stack();
1097 return NULL;
1098 }
1099
1100 for (;;) {
1101 struct buffer_head * bh;
1102 int ret;
1103
1104 bh = __find_get_block(bdev, block, size);
1105 if (bh)
1106 return bh;
1107
1108 ret = grow_buffers(bdev, block, size);
1109 if (ret < 0)
1110 return NULL;
1111 if (ret == 0)
1112 free_more_memory();
1113 }
1114 }
1115
1116 /*
1117 * The relationship between dirty buffers and dirty pages:
1118 *
1119 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1120 * the page is tagged dirty in its radix tree.
1121 *
1122 * At all times, the dirtiness of the buffers represents the dirtiness of
1123 * subsections of the page. If the page has buffers, the page dirty bit is
1124 * merely a hint about the true dirty state.
1125 *
1126 * When a page is set dirty in its entirety, all its buffers are marked dirty
1127 * (if the page has buffers).
1128 *
1129 * When a buffer is marked dirty, its page is dirtied, but the page's other
1130 * buffers are not.
1131 *
1132 * Also. When blockdev buffers are explicitly read with bread(), they
1133 * individually become uptodate. But their backing page remains not
1134 * uptodate - even if all of its buffers are uptodate. A subsequent
1135 * block_read_full_page() against that page will discover all the uptodate
1136 * buffers, will set the page uptodate and will perform no I/O.
1137 */
1138
1139 /**
1140 * mark_buffer_dirty - mark a buffer_head as needing writeout
1141 * @bh: the buffer_head to mark dirty
1142 *
1143 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1144 * backing page dirty, then tag the page as dirty in its address_space's radix
1145 * tree and then attach the address_space's inode to its superblock's dirty
1146 * inode list.
1147 *
1148 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1149 * mapping->tree_lock and mapping->host->i_lock.
1150 */
1151 void mark_buffer_dirty(struct buffer_head *bh)
1152 {
1153 WARN_ON_ONCE(!buffer_uptodate(bh));
1154
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
1169 if (!TestSetPageDirty(page)) {
1170 struct address_space *mapping = page_mapping(page);
1171 if (mapping)
1172 __set_page_dirty(page, mapping, 0);
1173 }
1174 }
1175 }
1176 EXPORT_SYMBOL(mark_buffer_dirty);
1177
1178 /*
1179 * Decrement a buffer_head's reference count. If all buffers against a page
1180 * have zero reference count, are clean and unlocked, and if the page is clean
1181 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1182 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1183 * a page but it ends up not being freed, and buffers may later be reattached).
1184 */
1185 void __brelse(struct buffer_head * buf)
1186 {
1187 if (atomic_read(&buf->b_count)) {
1188 put_bh(buf);
1189 return;
1190 }
1191 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1192 }
1193 EXPORT_SYMBOL(__brelse);
1194
1195 /*
1196 * bforget() is like brelse(), except it discards any
1197 * potentially dirty data.
1198 */
1199 void __bforget(struct buffer_head *bh)
1200 {
1201 clear_buffer_dirty(bh);
1202 if (bh->b_assoc_map) {
1203 struct address_space *buffer_mapping = bh->b_page->mapping;
1204
1205 spin_lock(&buffer_mapping->private_lock);
1206 list_del_init(&bh->b_assoc_buffers);
1207 bh->b_assoc_map = NULL;
1208 spin_unlock(&buffer_mapping->private_lock);
1209 }
1210 __brelse(bh);
1211 }
1212 EXPORT_SYMBOL(__bforget);
1213
1214 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1215 {
1216 lock_buffer(bh);
1217 if (buffer_uptodate(bh)) {
1218 unlock_buffer(bh);
1219 return bh;
1220 } else {
1221 get_bh(bh);
1222 bh->b_end_io = end_buffer_read_sync;
1223 submit_bh(READ, bh);
1224 wait_on_buffer(bh);
1225 if (buffer_uptodate(bh))
1226 return bh;
1227 }
1228 brelse(bh);
1229 return NULL;
1230 }
1231
1232 /*
1233 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1234 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1235 * refcount elevated by one when they're in an LRU. A buffer can only appear
1236 * once in a particular CPU's LRU. A single buffer can be present in multiple
1237 * CPU's LRUs at the same time.
1238 *
1239 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1240 * sb_find_get_block().
1241 *
1242 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1243 * a local interrupt disable for that.
1244 */
1245
1246 #define BH_LRU_SIZE 8
1247
1248 struct bh_lru {
1249 struct buffer_head *bhs[BH_LRU_SIZE];
1250 };
1251
1252 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1253
1254 #ifdef CONFIG_SMP
1255 #define bh_lru_lock() local_irq_disable()
1256 #define bh_lru_unlock() local_irq_enable()
1257 #else
1258 #define bh_lru_lock() preempt_disable()
1259 #define bh_lru_unlock() preempt_enable()
1260 #endif
1261
1262 static inline void check_irqs_on(void)
1263 {
1264 #ifdef irqs_disabled
1265 BUG_ON(irqs_disabled());
1266 #endif
1267 }
1268
1269 /*
1270 * The LRU management algorithm is dopey-but-simple. Sorry.
1271 */
1272 static void bh_lru_install(struct buffer_head *bh)
1273 {
1274 struct buffer_head *evictee = NULL;
1275
1276 check_irqs_on();
1277 bh_lru_lock();
1278 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1279 struct buffer_head *bhs[BH_LRU_SIZE];
1280 int in;
1281 int out = 0;
1282
1283 get_bh(bh);
1284 bhs[out++] = bh;
1285 for (in = 0; in < BH_LRU_SIZE; in++) {
1286 struct buffer_head *bh2 =
1287 __this_cpu_read(bh_lrus.bhs[in]);
1288
1289 if (bh2 == bh) {
1290 __brelse(bh2);
1291 } else {
1292 if (out >= BH_LRU_SIZE) {
1293 BUG_ON(evictee != NULL);
1294 evictee = bh2;
1295 } else {
1296 bhs[out++] = bh2;
1297 }
1298 }
1299 }
1300 while (out < BH_LRU_SIZE)
1301 bhs[out++] = NULL;
1302 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1303 }
1304 bh_lru_unlock();
1305
1306 if (evictee)
1307 __brelse(evictee);
1308 }
1309
1310 /*
1311 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1312 */
1313 static struct buffer_head *
1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1315 {
1316 struct buffer_head *ret = NULL;
1317 unsigned int i;
1318
1319 check_irqs_on();
1320 bh_lru_lock();
1321 for (i = 0; i < BH_LRU_SIZE; i++) {
1322 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1323
1324 if (bh && bh->b_bdev == bdev &&
1325 bh->b_blocknr == block && bh->b_size == size) {
1326 if (i) {
1327 while (i) {
1328 __this_cpu_write(bh_lrus.bhs[i],
1329 __this_cpu_read(bh_lrus.bhs[i - 1]));
1330 i--;
1331 }
1332 __this_cpu_write(bh_lrus.bhs[0], bh);
1333 }
1334 get_bh(bh);
1335 ret = bh;
1336 break;
1337 }
1338 }
1339 bh_lru_unlock();
1340 return ret;
1341 }
1342
1343 /*
1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1345 * it in the LRU and mark it as accessed. If it is not present then return
1346 * NULL
1347 */
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350 {
1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352
1353 if (bh == NULL) {
1354 bh = __find_get_block_slow(bdev, block);
1355 if (bh)
1356 bh_lru_install(bh);
1357 }
1358 if (bh)
1359 touch_buffer(bh);
1360 return bh;
1361 }
1362 EXPORT_SYMBOL(__find_get_block);
1363
1364 /*
1365 * __getblk will locate (and, if necessary, create) the buffer_head
1366 * which corresponds to the passed block_device, block and size. The
1367 * returned buffer has its reference count incremented.
1368 *
1369 * __getblk() cannot fail - it just keeps trying. If you pass it an
1370 * illegal block number, __getblk() will happily return a buffer_head
1371 * which represents the non-existent block. Very weird.
1372 *
1373 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374 * attempt is failing. FIXME, perhaps?
1375 */
1376 struct buffer_head *
1377 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1378 {
1379 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380
1381 might_sleep();
1382 if (bh == NULL)
1383 bh = __getblk_slow(bdev, block, size);
1384 return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk);
1387
1388 /*
1389 * Do async read-ahead on a buffer..
1390 */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393 struct buffer_head *bh = __getblk(bdev, block, size);
1394 if (likely(bh)) {
1395 ll_rw_block(READA, 1, &bh);
1396 brelse(bh);
1397 }
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400
1401 /**
1402 * __bread() - reads a specified block and returns the bh
1403 * @bdev: the block_device to read from
1404 * @block: number of block
1405 * @size: size (in bytes) to read
1406 *
1407 * Reads a specified block, and returns buffer head that contains it.
1408 * It returns NULL if the block was unreadable.
1409 */
1410 struct buffer_head *
1411 __bread(struct block_device *bdev, sector_t block, unsigned size)
1412 {
1413 struct buffer_head *bh = __getblk(bdev, block, size);
1414
1415 if (likely(bh) && !buffer_uptodate(bh))
1416 bh = __bread_slow(bh);
1417 return bh;
1418 }
1419 EXPORT_SYMBOL(__bread);
1420
1421 /*
1422 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423 * This doesn't race because it runs in each cpu either in irq
1424 * or with preempt disabled.
1425 */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428 struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 int i;
1430
1431 for (i = 0; i < BH_LRU_SIZE; i++) {
1432 brelse(b->bhs[i]);
1433 b->bhs[i] = NULL;
1434 }
1435 put_cpu_var(bh_lrus);
1436 }
1437
1438 void invalidate_bh_lrus(void)
1439 {
1440 on_each_cpu(invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443
1444 void set_bh_page(struct buffer_head *bh,
1445 struct page *page, unsigned long offset)
1446 {
1447 bh->b_page = page;
1448 BUG_ON(offset >= PAGE_SIZE);
1449 if (PageHighMem(page))
1450 /*
1451 * This catches illegal uses and preserves the offset:
1452 */
1453 bh->b_data = (char *)(0 + offset);
1454 else
1455 bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458
1459 /*
1460 * Called when truncating a buffer on a page completely.
1461 */
1462 static void discard_buffer(struct buffer_head * bh)
1463 {
1464 lock_buffer(bh);
1465 clear_buffer_dirty(bh);
1466 bh->b_bdev = NULL;
1467 clear_buffer_mapped(bh);
1468 clear_buffer_req(bh);
1469 clear_buffer_new(bh);
1470 clear_buffer_delay(bh);
1471 clear_buffer_unwritten(bh);
1472 unlock_buffer(bh);
1473 }
1474
1475 /**
1476 * block_invalidatepage - invalidate part or all of a buffer-backed page
1477 *
1478 * @page: the page which is affected
1479 * @offset: the index of the truncation point
1480 *
1481 * block_invalidatepage() is called when all or part of the page has become
1482 * invalidated by a truncate operation.
1483 *
1484 * block_invalidatepage() does not have to release all buffers, but it must
1485 * ensure that no dirty buffer is left outside @offset and that no I/O
1486 * is underway against any of the blocks which are outside the truncation
1487 * point. Because the caller is about to free (and possibly reuse) those
1488 * blocks on-disk.
1489 */
1490 void block_invalidatepage(struct page *page, unsigned long offset)
1491 {
1492 struct buffer_head *head, *bh, *next;
1493 unsigned int curr_off = 0;
1494
1495 BUG_ON(!PageLocked(page));
1496 if (!page_has_buffers(page))
1497 goto out;
1498
1499 head = page_buffers(page);
1500 bh = head;
1501 do {
1502 unsigned int next_off = curr_off + bh->b_size;
1503 next = bh->b_this_page;
1504
1505 /*
1506 * is this block fully invalidated?
1507 */
1508 if (offset <= curr_off)
1509 discard_buffer(bh);
1510 curr_off = next_off;
1511 bh = next;
1512 } while (bh != head);
1513
1514 /*
1515 * We release buffers only if the entire page is being invalidated.
1516 * The get_block cached value has been unconditionally invalidated,
1517 * so real IO is not possible anymore.
1518 */
1519 if (offset == 0)
1520 try_to_release_page(page, 0);
1521 out:
1522 return;
1523 }
1524 EXPORT_SYMBOL(block_invalidatepage);
1525
1526 /*
1527 * We attach and possibly dirty the buffers atomically wrt
1528 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1529 * is already excluded via the page lock.
1530 */
1531 void create_empty_buffers(struct page *page,
1532 unsigned long blocksize, unsigned long b_state)
1533 {
1534 struct buffer_head *bh, *head, *tail;
1535
1536 head = alloc_page_buffers(page, blocksize, 1);
1537 bh = head;
1538 do {
1539 bh->b_state |= b_state;
1540 tail = bh;
1541 bh = bh->b_this_page;
1542 } while (bh);
1543 tail->b_this_page = head;
1544
1545 spin_lock(&page->mapping->private_lock);
1546 if (PageUptodate(page) || PageDirty(page)) {
1547 bh = head;
1548 do {
1549 if (PageDirty(page))
1550 set_buffer_dirty(bh);
1551 if (PageUptodate(page))
1552 set_buffer_uptodate(bh);
1553 bh = bh->b_this_page;
1554 } while (bh != head);
1555 }
1556 attach_page_buffers(page, head);
1557 spin_unlock(&page->mapping->private_lock);
1558 }
1559 EXPORT_SYMBOL(create_empty_buffers);
1560
1561 /*
1562 * We are taking a block for data and we don't want any output from any
1563 * buffer-cache aliases starting from return from that function and
1564 * until the moment when something will explicitly mark the buffer
1565 * dirty (hopefully that will not happen until we will free that block ;-)
1566 * We don't even need to mark it not-uptodate - nobody can expect
1567 * anything from a newly allocated buffer anyway. We used to used
1568 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569 * don't want to mark the alias unmapped, for example - it would confuse
1570 * anyone who might pick it with bread() afterwards...
1571 *
1572 * Also.. Note that bforget() doesn't lock the buffer. So there can
1573 * be writeout I/O going on against recently-freed buffers. We don't
1574 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575 * only if we really need to. That happens here.
1576 */
1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578 {
1579 struct buffer_head *old_bh;
1580
1581 might_sleep();
1582
1583 old_bh = __find_get_block_slow(bdev, block);
1584 if (old_bh) {
1585 clear_buffer_dirty(old_bh);
1586 wait_on_buffer(old_bh);
1587 clear_buffer_req(old_bh);
1588 __brelse(old_bh);
1589 }
1590 }
1591 EXPORT_SYMBOL(unmap_underlying_metadata);
1592
1593 /*
1594 * NOTE! All mapped/uptodate combinations are valid:
1595 *
1596 * Mapped Uptodate Meaning
1597 *
1598 * No No "unknown" - must do get_block()
1599 * No Yes "hole" - zero-filled
1600 * Yes No "allocated" - allocated on disk, not read in
1601 * Yes Yes "valid" - allocated and up-to-date in memory.
1602 *
1603 * "Dirty" is valid only with the last case (mapped+uptodate).
1604 */
1605
1606 /*
1607 * While block_write_full_page is writing back the dirty buffers under
1608 * the page lock, whoever dirtied the buffers may decide to clean them
1609 * again at any time. We handle that by only looking at the buffer
1610 * state inside lock_buffer().
1611 *
1612 * If block_write_full_page() is called for regular writeback
1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614 * locked buffer. This only can happen if someone has written the buffer
1615 * directly, with submit_bh(). At the address_space level PageWriteback
1616 * prevents this contention from occurring.
1617 *
1618 * If block_write_full_page() is called with wbc->sync_mode ==
1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1620 * causes the writes to be flagged as synchronous writes.
1621 */
1622 static int __block_write_full_page(struct inode *inode, struct page *page,
1623 get_block_t *get_block, struct writeback_control *wbc,
1624 bh_end_io_t *handler)
1625 {
1626 int err;
1627 sector_t block;
1628 sector_t last_block;
1629 struct buffer_head *bh, *head;
1630 const unsigned blocksize = 1 << inode->i_blkbits;
1631 int nr_underway = 0;
1632 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1633 WRITE_SYNC : WRITE);
1634
1635 BUG_ON(!PageLocked(page));
1636
1637 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1638
1639 if (!page_has_buffers(page)) {
1640 create_empty_buffers(page, blocksize,
1641 (1 << BH_Dirty)|(1 << BH_Uptodate));
1642 }
1643
1644 /*
1645 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1646 * here, and the (potentially unmapped) buffers may become dirty at
1647 * any time. If a buffer becomes dirty here after we've inspected it
1648 * then we just miss that fact, and the page stays dirty.
1649 *
1650 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1651 * handle that here by just cleaning them.
1652 */
1653
1654 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1655 head = page_buffers(page);
1656 bh = head;
1657
1658 /*
1659 * Get all the dirty buffers mapped to disk addresses and
1660 * handle any aliases from the underlying blockdev's mapping.
1661 */
1662 do {
1663 if (block > last_block) {
1664 /*
1665 * mapped buffers outside i_size will occur, because
1666 * this page can be outside i_size when there is a
1667 * truncate in progress.
1668 */
1669 /*
1670 * The buffer was zeroed by block_write_full_page()
1671 */
1672 clear_buffer_dirty(bh);
1673 set_buffer_uptodate(bh);
1674 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1675 buffer_dirty(bh)) {
1676 WARN_ON(bh->b_size != blocksize);
1677 err = get_block(inode, block, bh, 1);
1678 if (err)
1679 goto recover;
1680 clear_buffer_delay(bh);
1681 if (buffer_new(bh)) {
1682 /* blockdev mappings never come here */
1683 clear_buffer_new(bh);
1684 unmap_underlying_metadata(bh->b_bdev,
1685 bh->b_blocknr);
1686 }
1687 }
1688 bh = bh->b_this_page;
1689 block++;
1690 } while (bh != head);
1691
1692 do {
1693 if (!buffer_mapped(bh))
1694 continue;
1695 /*
1696 * If it's a fully non-blocking write attempt and we cannot
1697 * lock the buffer then redirty the page. Note that this can
1698 * potentially cause a busy-wait loop from writeback threads
1699 * and kswapd activity, but those code paths have their own
1700 * higher-level throttling.
1701 */
1702 if (wbc->sync_mode != WB_SYNC_NONE) {
1703 lock_buffer(bh);
1704 } else if (!trylock_buffer(bh)) {
1705 redirty_page_for_writepage(wbc, page);
1706 continue;
1707 }
1708 if (test_clear_buffer_dirty(bh)) {
1709 mark_buffer_async_write_endio(bh, handler);
1710 } else {
1711 unlock_buffer(bh);
1712 }
1713 } while ((bh = bh->b_this_page) != head);
1714
1715 /*
1716 * The page and its buffers are protected by PageWriteback(), so we can
1717 * drop the bh refcounts early.
1718 */
1719 BUG_ON(PageWriteback(page));
1720 set_page_writeback(page);
1721
1722 do {
1723 struct buffer_head *next = bh->b_this_page;
1724 if (buffer_async_write(bh)) {
1725 submit_bh(write_op, bh);
1726 nr_underway++;
1727 }
1728 bh = next;
1729 } while (bh != head);
1730 unlock_page(page);
1731
1732 err = 0;
1733 done:
1734 if (nr_underway == 0) {
1735 /*
1736 * The page was marked dirty, but the buffers were
1737 * clean. Someone wrote them back by hand with
1738 * ll_rw_block/submit_bh. A rare case.
1739 */
1740 end_page_writeback(page);
1741
1742 /*
1743 * The page and buffer_heads can be released at any time from
1744 * here on.
1745 */
1746 }
1747 return err;
1748
1749 recover:
1750 /*
1751 * ENOSPC, or some other error. We may already have added some
1752 * blocks to the file, so we need to write these out to avoid
1753 * exposing stale data.
1754 * The page is currently locked and not marked for writeback
1755 */
1756 bh = head;
1757 /* Recovery: lock and submit the mapped buffers */
1758 do {
1759 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1760 !buffer_delay(bh)) {
1761 lock_buffer(bh);
1762 mark_buffer_async_write_endio(bh, handler);
1763 } else {
1764 /*
1765 * The buffer may have been set dirty during
1766 * attachment to a dirty page.
1767 */
1768 clear_buffer_dirty(bh);
1769 }
1770 } while ((bh = bh->b_this_page) != head);
1771 SetPageError(page);
1772 BUG_ON(PageWriteback(page));
1773 mapping_set_error(page->mapping, err);
1774 set_page_writeback(page);
1775 do {
1776 struct buffer_head *next = bh->b_this_page;
1777 if (buffer_async_write(bh)) {
1778 clear_buffer_dirty(bh);
1779 submit_bh(write_op, bh);
1780 nr_underway++;
1781 }
1782 bh = next;
1783 } while (bh != head);
1784 unlock_page(page);
1785 goto done;
1786 }
1787
1788 /*
1789 * If a page has any new buffers, zero them out here, and mark them uptodate
1790 * and dirty so they'll be written out (in order to prevent uninitialised
1791 * block data from leaking). And clear the new bit.
1792 */
1793 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1794 {
1795 unsigned int block_start, block_end;
1796 struct buffer_head *head, *bh;
1797
1798 BUG_ON(!PageLocked(page));
1799 if (!page_has_buffers(page))
1800 return;
1801
1802 bh = head = page_buffers(page);
1803 block_start = 0;
1804 do {
1805 block_end = block_start + bh->b_size;
1806
1807 if (buffer_new(bh)) {
1808 if (block_end > from && block_start < to) {
1809 if (!PageUptodate(page)) {
1810 unsigned start, size;
1811
1812 start = max(from, block_start);
1813 size = min(to, block_end) - start;
1814
1815 zero_user(page, start, size);
1816 set_buffer_uptodate(bh);
1817 }
1818
1819 clear_buffer_new(bh);
1820 mark_buffer_dirty(bh);
1821 }
1822 }
1823
1824 block_start = block_end;
1825 bh = bh->b_this_page;
1826 } while (bh != head);
1827 }
1828 EXPORT_SYMBOL(page_zero_new_buffers);
1829
1830 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1831 get_block_t *get_block)
1832 {
1833 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1834 unsigned to = from + len;
1835 struct inode *inode = page->mapping->host;
1836 unsigned block_start, block_end;
1837 sector_t block;
1838 int err = 0;
1839 unsigned blocksize, bbits;
1840 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1841
1842 BUG_ON(!PageLocked(page));
1843 BUG_ON(from > PAGE_CACHE_SIZE);
1844 BUG_ON(to > PAGE_CACHE_SIZE);
1845 BUG_ON(from > to);
1846
1847 blocksize = 1 << inode->i_blkbits;
1848 if (!page_has_buffers(page))
1849 create_empty_buffers(page, blocksize, 0);
1850 head = page_buffers(page);
1851
1852 bbits = inode->i_blkbits;
1853 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1854
1855 for(bh = head, block_start = 0; bh != head || !block_start;
1856 block++, block_start=block_end, bh = bh->b_this_page) {
1857 block_end = block_start + blocksize;
1858 if (block_end <= from || block_start >= to) {
1859 if (PageUptodate(page)) {
1860 if (!buffer_uptodate(bh))
1861 set_buffer_uptodate(bh);
1862 }
1863 continue;
1864 }
1865 if (buffer_new(bh))
1866 clear_buffer_new(bh);
1867 if (!buffer_mapped(bh)) {
1868 WARN_ON(bh->b_size != blocksize);
1869 err = get_block(inode, block, bh, 1);
1870 if (err)
1871 break;
1872 if (buffer_new(bh)) {
1873 unmap_underlying_metadata(bh->b_bdev,
1874 bh->b_blocknr);
1875 if (PageUptodate(page)) {
1876 clear_buffer_new(bh);
1877 set_buffer_uptodate(bh);
1878 mark_buffer_dirty(bh);
1879 continue;
1880 }
1881 if (block_end > to || block_start < from)
1882 zero_user_segments(page,
1883 to, block_end,
1884 block_start, from);
1885 continue;
1886 }
1887 }
1888 if (PageUptodate(page)) {
1889 if (!buffer_uptodate(bh))
1890 set_buffer_uptodate(bh);
1891 continue;
1892 }
1893 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1894 !buffer_unwritten(bh) &&
1895 (block_start < from || block_end > to)) {
1896 ll_rw_block(READ, 1, &bh);
1897 *wait_bh++=bh;
1898 }
1899 }
1900 /*
1901 * If we issued read requests - let them complete.
1902 */
1903 while(wait_bh > wait) {
1904 wait_on_buffer(*--wait_bh);
1905 if (!buffer_uptodate(*wait_bh))
1906 err = -EIO;
1907 }
1908 if (unlikely(err))
1909 page_zero_new_buffers(page, from, to);
1910 return err;
1911 }
1912 EXPORT_SYMBOL(__block_write_begin);
1913
1914 static int __block_commit_write(struct inode *inode, struct page *page,
1915 unsigned from, unsigned to)
1916 {
1917 unsigned block_start, block_end;
1918 int partial = 0;
1919 unsigned blocksize;
1920 struct buffer_head *bh, *head;
1921
1922 blocksize = 1 << inode->i_blkbits;
1923
1924 for(bh = head = page_buffers(page), block_start = 0;
1925 bh != head || !block_start;
1926 block_start=block_end, bh = bh->b_this_page) {
1927 block_end = block_start + blocksize;
1928 if (block_end <= from || block_start >= to) {
1929 if (!buffer_uptodate(bh))
1930 partial = 1;
1931 } else {
1932 set_buffer_uptodate(bh);
1933 mark_buffer_dirty(bh);
1934 }
1935 clear_buffer_new(bh);
1936 }
1937
1938 /*
1939 * If this is a partial write which happened to make all buffers
1940 * uptodate then we can optimize away a bogus readpage() for
1941 * the next read(). Here we 'discover' whether the page went
1942 * uptodate as a result of this (potentially partial) write.
1943 */
1944 if (!partial)
1945 SetPageUptodate(page);
1946 return 0;
1947 }
1948
1949 /*
1950 * block_write_begin takes care of the basic task of block allocation and
1951 * bringing partial write blocks uptodate first.
1952 *
1953 * The filesystem needs to handle block truncation upon failure.
1954 */
1955 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1956 unsigned flags, struct page **pagep, get_block_t *get_block)
1957 {
1958 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1959 struct page *page;
1960 int status;
1961
1962 page = grab_cache_page_write_begin(mapping, index, flags);
1963 if (!page)
1964 return -ENOMEM;
1965
1966 status = __block_write_begin(page, pos, len, get_block);
1967 if (unlikely(status)) {
1968 unlock_page(page);
1969 page_cache_release(page);
1970 page = NULL;
1971 }
1972
1973 *pagep = page;
1974 return status;
1975 }
1976 EXPORT_SYMBOL(block_write_begin);
1977
1978 int block_write_end(struct file *file, struct address_space *mapping,
1979 loff_t pos, unsigned len, unsigned copied,
1980 struct page *page, void *fsdata)
1981 {
1982 struct inode *inode = mapping->host;
1983 unsigned start;
1984
1985 start = pos & (PAGE_CACHE_SIZE - 1);
1986
1987 if (unlikely(copied < len)) {
1988 /*
1989 * The buffers that were written will now be uptodate, so we
1990 * don't have to worry about a readpage reading them and
1991 * overwriting a partial write. However if we have encountered
1992 * a short write and only partially written into a buffer, it
1993 * will not be marked uptodate, so a readpage might come in and
1994 * destroy our partial write.
1995 *
1996 * Do the simplest thing, and just treat any short write to a
1997 * non uptodate page as a zero-length write, and force the
1998 * caller to redo the whole thing.
1999 */
2000 if (!PageUptodate(page))
2001 copied = 0;
2002
2003 page_zero_new_buffers(page, start+copied, start+len);
2004 }
2005 flush_dcache_page(page);
2006
2007 /* This could be a short (even 0-length) commit */
2008 __block_commit_write(inode, page, start, start+copied);
2009
2010 return copied;
2011 }
2012 EXPORT_SYMBOL(block_write_end);
2013
2014 int generic_write_end(struct file *file, struct address_space *mapping,
2015 loff_t pos, unsigned len, unsigned copied,
2016 struct page *page, void *fsdata)
2017 {
2018 struct inode *inode = mapping->host;
2019 int i_size_changed = 0;
2020
2021 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2022
2023 /*
2024 * No need to use i_size_read() here, the i_size
2025 * cannot change under us because we hold i_mutex.
2026 *
2027 * But it's important to update i_size while still holding page lock:
2028 * page writeout could otherwise come in and zero beyond i_size.
2029 */
2030 if (pos+copied > inode->i_size) {
2031 i_size_write(inode, pos+copied);
2032 i_size_changed = 1;
2033 }
2034
2035 unlock_page(page);
2036 page_cache_release(page);
2037
2038 /*
2039 * Don't mark the inode dirty under page lock. First, it unnecessarily
2040 * makes the holding time of page lock longer. Second, it forces lock
2041 * ordering of page lock and transaction start for journaling
2042 * filesystems.
2043 */
2044 if (i_size_changed)
2045 mark_inode_dirty(inode);
2046
2047 return copied;
2048 }
2049 EXPORT_SYMBOL(generic_write_end);
2050
2051 /*
2052 * block_is_partially_uptodate checks whether buffers within a page are
2053 * uptodate or not.
2054 *
2055 * Returns true if all buffers which correspond to a file portion
2056 * we want to read are uptodate.
2057 */
2058 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2059 unsigned long from)
2060 {
2061 struct inode *inode = page->mapping->host;
2062 unsigned block_start, block_end, blocksize;
2063 unsigned to;
2064 struct buffer_head *bh, *head;
2065 int ret = 1;
2066
2067 if (!page_has_buffers(page))
2068 return 0;
2069
2070 blocksize = 1 << inode->i_blkbits;
2071 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2072 to = from + to;
2073 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2074 return 0;
2075
2076 head = page_buffers(page);
2077 bh = head;
2078 block_start = 0;
2079 do {
2080 block_end = block_start + blocksize;
2081 if (block_end > from && block_start < to) {
2082 if (!buffer_uptodate(bh)) {
2083 ret = 0;
2084 break;
2085 }
2086 if (block_end >= to)
2087 break;
2088 }
2089 block_start = block_end;
2090 bh = bh->b_this_page;
2091 } while (bh != head);
2092
2093 return ret;
2094 }
2095 EXPORT_SYMBOL(block_is_partially_uptodate);
2096
2097 /*
2098 * Generic "read page" function for block devices that have the normal
2099 * get_block functionality. This is most of the block device filesystems.
2100 * Reads the page asynchronously --- the unlock_buffer() and
2101 * set/clear_buffer_uptodate() functions propagate buffer state into the
2102 * page struct once IO has completed.
2103 */
2104 int block_read_full_page(struct page *page, get_block_t *get_block)
2105 {
2106 struct inode *inode = page->mapping->host;
2107 sector_t iblock, lblock;
2108 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2109 unsigned int blocksize;
2110 int nr, i;
2111 int fully_mapped = 1;
2112
2113 BUG_ON(!PageLocked(page));
2114 blocksize = 1 << inode->i_blkbits;
2115 if (!page_has_buffers(page))
2116 create_empty_buffers(page, blocksize, 0);
2117 head = page_buffers(page);
2118
2119 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2120 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2121 bh = head;
2122 nr = 0;
2123 i = 0;
2124
2125 do {
2126 if (buffer_uptodate(bh))
2127 continue;
2128
2129 if (!buffer_mapped(bh)) {
2130 int err = 0;
2131
2132 fully_mapped = 0;
2133 if (iblock < lblock) {
2134 WARN_ON(bh->b_size != blocksize);
2135 err = get_block(inode, iblock, bh, 0);
2136 if (err)
2137 SetPageError(page);
2138 }
2139 if (!buffer_mapped(bh)) {
2140 zero_user(page, i * blocksize, blocksize);
2141 if (!err)
2142 set_buffer_uptodate(bh);
2143 continue;
2144 }
2145 /*
2146 * get_block() might have updated the buffer
2147 * synchronously
2148 */
2149 if (buffer_uptodate(bh))
2150 continue;
2151 }
2152 arr[nr++] = bh;
2153 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2154
2155 if (fully_mapped)
2156 SetPageMappedToDisk(page);
2157
2158 if (!nr) {
2159 /*
2160 * All buffers are uptodate - we can set the page uptodate
2161 * as well. But not if get_block() returned an error.
2162 */
2163 if (!PageError(page))
2164 SetPageUptodate(page);
2165 unlock_page(page);
2166 return 0;
2167 }
2168
2169 /* Stage two: lock the buffers */
2170 for (i = 0; i < nr; i++) {
2171 bh = arr[i];
2172 lock_buffer(bh);
2173 mark_buffer_async_read(bh);
2174 }
2175
2176 /*
2177 * Stage 3: start the IO. Check for uptodateness
2178 * inside the buffer lock in case another process reading
2179 * the underlying blockdev brought it uptodate (the sct fix).
2180 */
2181 for (i = 0; i < nr; i++) {
2182 bh = arr[i];
2183 if (buffer_uptodate(bh))
2184 end_buffer_async_read(bh, 1);
2185 else
2186 submit_bh(READ, bh);
2187 }
2188 return 0;
2189 }
2190 EXPORT_SYMBOL(block_read_full_page);
2191
2192 /* utility function for filesystems that need to do work on expanding
2193 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2194 * deal with the hole.
2195 */
2196 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2197 {
2198 struct address_space *mapping = inode->i_mapping;
2199 struct page *page;
2200 void *fsdata;
2201 int err;
2202
2203 err = inode_newsize_ok(inode, size);
2204 if (err)
2205 goto out;
2206
2207 err = pagecache_write_begin(NULL, mapping, size, 0,
2208 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2209 &page, &fsdata);
2210 if (err)
2211 goto out;
2212
2213 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2214 BUG_ON(err > 0);
2215
2216 out:
2217 return err;
2218 }
2219 EXPORT_SYMBOL(generic_cont_expand_simple);
2220
2221 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2222 loff_t pos, loff_t *bytes)
2223 {
2224 struct inode *inode = mapping->host;
2225 unsigned blocksize = 1 << inode->i_blkbits;
2226 struct page *page;
2227 void *fsdata;
2228 pgoff_t index, curidx;
2229 loff_t curpos;
2230 unsigned zerofrom, offset, len;
2231 int err = 0;
2232
2233 index = pos >> PAGE_CACHE_SHIFT;
2234 offset = pos & ~PAGE_CACHE_MASK;
2235
2236 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2237 zerofrom = curpos & ~PAGE_CACHE_MASK;
2238 if (zerofrom & (blocksize-1)) {
2239 *bytes |= (blocksize-1);
2240 (*bytes)++;
2241 }
2242 len = PAGE_CACHE_SIZE - zerofrom;
2243
2244 err = pagecache_write_begin(file, mapping, curpos, len,
2245 AOP_FLAG_UNINTERRUPTIBLE,
2246 &page, &fsdata);
2247 if (err)
2248 goto out;
2249 zero_user(page, zerofrom, len);
2250 err = pagecache_write_end(file, mapping, curpos, len, len,
2251 page, fsdata);
2252 if (err < 0)
2253 goto out;
2254 BUG_ON(err != len);
2255 err = 0;
2256
2257 balance_dirty_pages_ratelimited(mapping);
2258 }
2259
2260 /* page covers the boundary, find the boundary offset */
2261 if (index == curidx) {
2262 zerofrom = curpos & ~PAGE_CACHE_MASK;
2263 /* if we will expand the thing last block will be filled */
2264 if (offset <= zerofrom) {
2265 goto out;
2266 }
2267 if (zerofrom & (blocksize-1)) {
2268 *bytes |= (blocksize-1);
2269 (*bytes)++;
2270 }
2271 len = offset - zerofrom;
2272
2273 err = pagecache_write_begin(file, mapping, curpos, len,
2274 AOP_FLAG_UNINTERRUPTIBLE,
2275 &page, &fsdata);
2276 if (err)
2277 goto out;
2278 zero_user(page, zerofrom, len);
2279 err = pagecache_write_end(file, mapping, curpos, len, len,
2280 page, fsdata);
2281 if (err < 0)
2282 goto out;
2283 BUG_ON(err != len);
2284 err = 0;
2285 }
2286 out:
2287 return err;
2288 }
2289
2290 /*
2291 * For moronic filesystems that do not allow holes in file.
2292 * We may have to extend the file.
2293 */
2294 int cont_write_begin(struct file *file, struct address_space *mapping,
2295 loff_t pos, unsigned len, unsigned flags,
2296 struct page **pagep, void **fsdata,
2297 get_block_t *get_block, loff_t *bytes)
2298 {
2299 struct inode *inode = mapping->host;
2300 unsigned blocksize = 1 << inode->i_blkbits;
2301 unsigned zerofrom;
2302 int err;
2303
2304 err = cont_expand_zero(file, mapping, pos, bytes);
2305 if (err)
2306 return err;
2307
2308 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2309 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2310 *bytes |= (blocksize-1);
2311 (*bytes)++;
2312 }
2313
2314 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2315 }
2316 EXPORT_SYMBOL(cont_write_begin);
2317
2318 int block_commit_write(struct page *page, unsigned from, unsigned to)
2319 {
2320 struct inode *inode = page->mapping->host;
2321 __block_commit_write(inode,page,from,to);
2322 return 0;
2323 }
2324 EXPORT_SYMBOL(block_commit_write);
2325
2326 /*
2327 * block_page_mkwrite() is not allowed to change the file size as it gets
2328 * called from a page fault handler when a page is first dirtied. Hence we must
2329 * be careful to check for EOF conditions here. We set the page up correctly
2330 * for a written page which means we get ENOSPC checking when writing into
2331 * holes and correct delalloc and unwritten extent mapping on filesystems that
2332 * support these features.
2333 *
2334 * We are not allowed to take the i_mutex here so we have to play games to
2335 * protect against truncate races as the page could now be beyond EOF. Because
2336 * truncate writes the inode size before removing pages, once we have the
2337 * page lock we can determine safely if the page is beyond EOF. If it is not
2338 * beyond EOF, then the page is guaranteed safe against truncation until we
2339 * unlock the page.
2340 *
2341 * Direct callers of this function should call vfs_check_frozen() so that page
2342 * fault does not busyloop until the fs is thawed.
2343 */
2344 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2345 get_block_t get_block)
2346 {
2347 struct page *page = vmf->page;
2348 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2349 unsigned long end;
2350 loff_t size;
2351 int ret;
2352
2353 lock_page(page);
2354 size = i_size_read(inode);
2355 if ((page->mapping != inode->i_mapping) ||
2356 (page_offset(page) > size)) {
2357 /* We overload EFAULT to mean page got truncated */
2358 ret = -EFAULT;
2359 goto out_unlock;
2360 }
2361
2362 /* page is wholly or partially inside EOF */
2363 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2364 end = size & ~PAGE_CACHE_MASK;
2365 else
2366 end = PAGE_CACHE_SIZE;
2367
2368 ret = __block_write_begin(page, 0, end, get_block);
2369 if (!ret)
2370 ret = block_commit_write(page, 0, end);
2371
2372 if (unlikely(ret < 0))
2373 goto out_unlock;
2374 /*
2375 * Freezing in progress? We check after the page is marked dirty and
2376 * with page lock held so if the test here fails, we are sure freezing
2377 * code will wait during syncing until the page fault is done - at that
2378 * point page will be dirty and unlocked so freezing code will write it
2379 * and writeprotect it again.
2380 */
2381 set_page_dirty(page);
2382 if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2383 ret = -EAGAIN;
2384 goto out_unlock;
2385 }
2386 wait_on_page_writeback(page);
2387 return 0;
2388 out_unlock:
2389 unlock_page(page);
2390 return ret;
2391 }
2392 EXPORT_SYMBOL(__block_page_mkwrite);
2393
2394 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2395 get_block_t get_block)
2396 {
2397 int ret;
2398 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2399
2400 /*
2401 * This check is racy but catches the common case. The check in
2402 * __block_page_mkwrite() is reliable.
2403 */
2404 vfs_check_frozen(sb, SB_FREEZE_WRITE);
2405 ret = __block_page_mkwrite(vma, vmf, get_block);
2406 return block_page_mkwrite_return(ret);
2407 }
2408 EXPORT_SYMBOL(block_page_mkwrite);
2409
2410 /*
2411 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2412 * immediately, while under the page lock. So it needs a special end_io
2413 * handler which does not touch the bh after unlocking it.
2414 */
2415 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2416 {
2417 __end_buffer_read_notouch(bh, uptodate);
2418 }
2419
2420 /*
2421 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2422 * the page (converting it to circular linked list and taking care of page
2423 * dirty races).
2424 */
2425 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2426 {
2427 struct buffer_head *bh;
2428
2429 BUG_ON(!PageLocked(page));
2430
2431 spin_lock(&page->mapping->private_lock);
2432 bh = head;
2433 do {
2434 if (PageDirty(page))
2435 set_buffer_dirty(bh);
2436 if (!bh->b_this_page)
2437 bh->b_this_page = head;
2438 bh = bh->b_this_page;
2439 } while (bh != head);
2440 attach_page_buffers(page, head);
2441 spin_unlock(&page->mapping->private_lock);
2442 }
2443
2444 /*
2445 * On entry, the page is fully not uptodate.
2446 * On exit the page is fully uptodate in the areas outside (from,to)
2447 * The filesystem needs to handle block truncation upon failure.
2448 */
2449 int nobh_write_begin(struct address_space *mapping,
2450 loff_t pos, unsigned len, unsigned flags,
2451 struct page **pagep, void **fsdata,
2452 get_block_t *get_block)
2453 {
2454 struct inode *inode = mapping->host;
2455 const unsigned blkbits = inode->i_blkbits;
2456 const unsigned blocksize = 1 << blkbits;
2457 struct buffer_head *head, *bh;
2458 struct page *page;
2459 pgoff_t index;
2460 unsigned from, to;
2461 unsigned block_in_page;
2462 unsigned block_start, block_end;
2463 sector_t block_in_file;
2464 int nr_reads = 0;
2465 int ret = 0;
2466 int is_mapped_to_disk = 1;
2467
2468 index = pos >> PAGE_CACHE_SHIFT;
2469 from = pos & (PAGE_CACHE_SIZE - 1);
2470 to = from + len;
2471
2472 page = grab_cache_page_write_begin(mapping, index, flags);
2473 if (!page)
2474 return -ENOMEM;
2475 *pagep = page;
2476 *fsdata = NULL;
2477
2478 if (page_has_buffers(page)) {
2479 ret = __block_write_begin(page, pos, len, get_block);
2480 if (unlikely(ret))
2481 goto out_release;
2482 return ret;
2483 }
2484
2485 if (PageMappedToDisk(page))
2486 return 0;
2487
2488 /*
2489 * Allocate buffers so that we can keep track of state, and potentially
2490 * attach them to the page if an error occurs. In the common case of
2491 * no error, they will just be freed again without ever being attached
2492 * to the page (which is all OK, because we're under the page lock).
2493 *
2494 * Be careful: the buffer linked list is a NULL terminated one, rather
2495 * than the circular one we're used to.
2496 */
2497 head = alloc_page_buffers(page, blocksize, 0);
2498 if (!head) {
2499 ret = -ENOMEM;
2500 goto out_release;
2501 }
2502
2503 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2504
2505 /*
2506 * We loop across all blocks in the page, whether or not they are
2507 * part of the affected region. This is so we can discover if the
2508 * page is fully mapped-to-disk.
2509 */
2510 for (block_start = 0, block_in_page = 0, bh = head;
2511 block_start < PAGE_CACHE_SIZE;
2512 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2513 int create;
2514
2515 block_end = block_start + blocksize;
2516 bh->b_state = 0;
2517 create = 1;
2518 if (block_start >= to)
2519 create = 0;
2520 ret = get_block(inode, block_in_file + block_in_page,
2521 bh, create);
2522 if (ret)
2523 goto failed;
2524 if (!buffer_mapped(bh))
2525 is_mapped_to_disk = 0;
2526 if (buffer_new(bh))
2527 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2528 if (PageUptodate(page)) {
2529 set_buffer_uptodate(bh);
2530 continue;
2531 }
2532 if (buffer_new(bh) || !buffer_mapped(bh)) {
2533 zero_user_segments(page, block_start, from,
2534 to, block_end);
2535 continue;
2536 }
2537 if (buffer_uptodate(bh))
2538 continue; /* reiserfs does this */
2539 if (block_start < from || block_end > to) {
2540 lock_buffer(bh);
2541 bh->b_end_io = end_buffer_read_nobh;
2542 submit_bh(READ, bh);
2543 nr_reads++;
2544 }
2545 }
2546
2547 if (nr_reads) {
2548 /*
2549 * The page is locked, so these buffers are protected from
2550 * any VM or truncate activity. Hence we don't need to care
2551 * for the buffer_head refcounts.
2552 */
2553 for (bh = head; bh; bh = bh->b_this_page) {
2554 wait_on_buffer(bh);
2555 if (!buffer_uptodate(bh))
2556 ret = -EIO;
2557 }
2558 if (ret)
2559 goto failed;
2560 }
2561
2562 if (is_mapped_to_disk)
2563 SetPageMappedToDisk(page);
2564
2565 *fsdata = head; /* to be released by nobh_write_end */
2566
2567 return 0;
2568
2569 failed:
2570 BUG_ON(!ret);
2571 /*
2572 * Error recovery is a bit difficult. We need to zero out blocks that
2573 * were newly allocated, and dirty them to ensure they get written out.
2574 * Buffers need to be attached to the page at this point, otherwise
2575 * the handling of potential IO errors during writeout would be hard
2576 * (could try doing synchronous writeout, but what if that fails too?)
2577 */
2578 attach_nobh_buffers(page, head);
2579 page_zero_new_buffers(page, from, to);
2580
2581 out_release:
2582 unlock_page(page);
2583 page_cache_release(page);
2584 *pagep = NULL;
2585
2586 return ret;
2587 }
2588 EXPORT_SYMBOL(nobh_write_begin);
2589
2590 int nobh_write_end(struct file *file, struct address_space *mapping,
2591 loff_t pos, unsigned len, unsigned copied,
2592 struct page *page, void *fsdata)
2593 {
2594 struct inode *inode = page->mapping->host;
2595 struct buffer_head *head = fsdata;
2596 struct buffer_head *bh;
2597 BUG_ON(fsdata != NULL && page_has_buffers(page));
2598
2599 if (unlikely(copied < len) && head)
2600 attach_nobh_buffers(page, head);
2601 if (page_has_buffers(page))
2602 return generic_write_end(file, mapping, pos, len,
2603 copied, page, fsdata);
2604
2605 SetPageUptodate(page);
2606 set_page_dirty(page);
2607 if (pos+copied > inode->i_size) {
2608 i_size_write(inode, pos+copied);
2609 mark_inode_dirty(inode);
2610 }
2611
2612 unlock_page(page);
2613 page_cache_release(page);
2614
2615 while (head) {
2616 bh = head;
2617 head = head->b_this_page;
2618 free_buffer_head(bh);
2619 }
2620
2621 return copied;
2622 }
2623 EXPORT_SYMBOL(nobh_write_end);
2624
2625 /*
2626 * nobh_writepage() - based on block_full_write_page() except
2627 * that it tries to operate without attaching bufferheads to
2628 * the page.
2629 */
2630 int nobh_writepage(struct page *page, get_block_t *get_block,
2631 struct writeback_control *wbc)
2632 {
2633 struct inode * const inode = page->mapping->host;
2634 loff_t i_size = i_size_read(inode);
2635 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2636 unsigned offset;
2637 int ret;
2638
2639 /* Is the page fully inside i_size? */
2640 if (page->index < end_index)
2641 goto out;
2642
2643 /* Is the page fully outside i_size? (truncate in progress) */
2644 offset = i_size & (PAGE_CACHE_SIZE-1);
2645 if (page->index >= end_index+1 || !offset) {
2646 /*
2647 * The page may have dirty, unmapped buffers. For example,
2648 * they may have been added in ext3_writepage(). Make them
2649 * freeable here, so the page does not leak.
2650 */
2651 #if 0
2652 /* Not really sure about this - do we need this ? */
2653 if (page->mapping->a_ops->invalidatepage)
2654 page->mapping->a_ops->invalidatepage(page, offset);
2655 #endif
2656 unlock_page(page);
2657 return 0; /* don't care */
2658 }
2659
2660 /*
2661 * The page straddles i_size. It must be zeroed out on each and every
2662 * writepage invocation because it may be mmapped. "A file is mapped
2663 * in multiples of the page size. For a file that is not a multiple of
2664 * the page size, the remaining memory is zeroed when mapped, and
2665 * writes to that region are not written out to the file."
2666 */
2667 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2668 out:
2669 ret = mpage_writepage(page, get_block, wbc);
2670 if (ret == -EAGAIN)
2671 ret = __block_write_full_page(inode, page, get_block, wbc,
2672 end_buffer_async_write);
2673 return ret;
2674 }
2675 EXPORT_SYMBOL(nobh_writepage);
2676
2677 int nobh_truncate_page(struct address_space *mapping,
2678 loff_t from, get_block_t *get_block)
2679 {
2680 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2681 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2682 unsigned blocksize;
2683 sector_t iblock;
2684 unsigned length, pos;
2685 struct inode *inode = mapping->host;
2686 struct page *page;
2687 struct buffer_head map_bh;
2688 int err;
2689
2690 blocksize = 1 << inode->i_blkbits;
2691 length = offset & (blocksize - 1);
2692
2693 /* Block boundary? Nothing to do */
2694 if (!length)
2695 return 0;
2696
2697 length = blocksize - length;
2698 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2699
2700 page = grab_cache_page(mapping, index);
2701 err = -ENOMEM;
2702 if (!page)
2703 goto out;
2704
2705 if (page_has_buffers(page)) {
2706 has_buffers:
2707 unlock_page(page);
2708 page_cache_release(page);
2709 return block_truncate_page(mapping, from, get_block);
2710 }
2711
2712 /* Find the buffer that contains "offset" */
2713 pos = blocksize;
2714 while (offset >= pos) {
2715 iblock++;
2716 pos += blocksize;
2717 }
2718
2719 map_bh.b_size = blocksize;
2720 map_bh.b_state = 0;
2721 err = get_block(inode, iblock, &map_bh, 0);
2722 if (err)
2723 goto unlock;
2724 /* unmapped? It's a hole - nothing to do */
2725 if (!buffer_mapped(&map_bh))
2726 goto unlock;
2727
2728 /* Ok, it's mapped. Make sure it's up-to-date */
2729 if (!PageUptodate(page)) {
2730 err = mapping->a_ops->readpage(NULL, page);
2731 if (err) {
2732 page_cache_release(page);
2733 goto out;
2734 }
2735 lock_page(page);
2736 if (!PageUptodate(page)) {
2737 err = -EIO;
2738 goto unlock;
2739 }
2740 if (page_has_buffers(page))
2741 goto has_buffers;
2742 }
2743 zero_user(page, offset, length);
2744 set_page_dirty(page);
2745 err = 0;
2746
2747 unlock:
2748 unlock_page(page);
2749 page_cache_release(page);
2750 out:
2751 return err;
2752 }
2753 EXPORT_SYMBOL(nobh_truncate_page);
2754
2755 int block_truncate_page(struct address_space *mapping,
2756 loff_t from, get_block_t *get_block)
2757 {
2758 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2759 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2760 unsigned blocksize;
2761 sector_t iblock;
2762 unsigned length, pos;
2763 struct inode *inode = mapping->host;
2764 struct page *page;
2765 struct buffer_head *bh;
2766 int err;
2767
2768 blocksize = 1 << inode->i_blkbits;
2769 length = offset & (blocksize - 1);
2770
2771 /* Block boundary? Nothing to do */
2772 if (!length)
2773 return 0;
2774
2775 length = blocksize - length;
2776 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2777
2778 page = grab_cache_page(mapping, index);
2779 err = -ENOMEM;
2780 if (!page)
2781 goto out;
2782
2783 if (!page_has_buffers(page))
2784 create_empty_buffers(page, blocksize, 0);
2785
2786 /* Find the buffer that contains "offset" */
2787 bh = page_buffers(page);
2788 pos = blocksize;
2789 while (offset >= pos) {
2790 bh = bh->b_this_page;
2791 iblock++;
2792 pos += blocksize;
2793 }
2794
2795 err = 0;
2796 if (!buffer_mapped(bh)) {
2797 WARN_ON(bh->b_size != blocksize);
2798 err = get_block(inode, iblock, bh, 0);
2799 if (err)
2800 goto unlock;
2801 /* unmapped? It's a hole - nothing to do */
2802 if (!buffer_mapped(bh))
2803 goto unlock;
2804 }
2805
2806 /* Ok, it's mapped. Make sure it's up-to-date */
2807 if (PageUptodate(page))
2808 set_buffer_uptodate(bh);
2809
2810 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2811 err = -EIO;
2812 ll_rw_block(READ, 1, &bh);
2813 wait_on_buffer(bh);
2814 /* Uhhuh. Read error. Complain and punt. */
2815 if (!buffer_uptodate(bh))
2816 goto unlock;
2817 }
2818
2819 zero_user(page, offset, length);
2820 mark_buffer_dirty(bh);
2821 err = 0;
2822
2823 unlock:
2824 unlock_page(page);
2825 page_cache_release(page);
2826 out:
2827 return err;
2828 }
2829 EXPORT_SYMBOL(block_truncate_page);
2830
2831 /*
2832 * The generic ->writepage function for buffer-backed address_spaces
2833 * this form passes in the end_io handler used to finish the IO.
2834 */
2835 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2836 struct writeback_control *wbc, bh_end_io_t *handler)
2837 {
2838 struct inode * const inode = page->mapping->host;
2839 loff_t i_size = i_size_read(inode);
2840 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2841 unsigned offset;
2842
2843 /* Is the page fully inside i_size? */
2844 if (page->index < end_index)
2845 return __block_write_full_page(inode, page, get_block, wbc,
2846 handler);
2847
2848 /* Is the page fully outside i_size? (truncate in progress) */
2849 offset = i_size & (PAGE_CACHE_SIZE-1);
2850 if (page->index >= end_index+1 || !offset) {
2851 /*
2852 * The page may have dirty, unmapped buffers. For example,
2853 * they may have been added in ext3_writepage(). Make them
2854 * freeable here, so the page does not leak.
2855 */
2856 do_invalidatepage(page, 0);
2857 unlock_page(page);
2858 return 0; /* don't care */
2859 }
2860
2861 /*
2862 * The page straddles i_size. It must be zeroed out on each and every
2863 * writepage invocation because it may be mmapped. "A file is mapped
2864 * in multiples of the page size. For a file that is not a multiple of
2865 * the page size, the remaining memory is zeroed when mapped, and
2866 * writes to that region are not written out to the file."
2867 */
2868 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2869 return __block_write_full_page(inode, page, get_block, wbc, handler);
2870 }
2871 EXPORT_SYMBOL(block_write_full_page_endio);
2872
2873 /*
2874 * The generic ->writepage function for buffer-backed address_spaces
2875 */
2876 int block_write_full_page(struct page *page, get_block_t *get_block,
2877 struct writeback_control *wbc)
2878 {
2879 return block_write_full_page_endio(page, get_block, wbc,
2880 end_buffer_async_write);
2881 }
2882 EXPORT_SYMBOL(block_write_full_page);
2883
2884 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2885 get_block_t *get_block)
2886 {
2887 struct buffer_head tmp;
2888 struct inode *inode = mapping->host;
2889 tmp.b_state = 0;
2890 tmp.b_blocknr = 0;
2891 tmp.b_size = 1 << inode->i_blkbits;
2892 get_block(inode, block, &tmp, 0);
2893 return tmp.b_blocknr;
2894 }
2895 EXPORT_SYMBOL(generic_block_bmap);
2896
2897 static void end_bio_bh_io_sync(struct bio *bio, int err)
2898 {
2899 struct buffer_head *bh = bio->bi_private;
2900
2901 if (err == -EOPNOTSUPP) {
2902 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2903 }
2904
2905 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2906 set_bit(BH_Quiet, &bh->b_state);
2907
2908 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2909 bio_put(bio);
2910 }
2911
2912 int submit_bh(int rw, struct buffer_head * bh)
2913 {
2914 struct bio *bio;
2915 int ret = 0;
2916
2917 BUG_ON(!buffer_locked(bh));
2918 BUG_ON(!buffer_mapped(bh));
2919 BUG_ON(!bh->b_end_io);
2920 BUG_ON(buffer_delay(bh));
2921 BUG_ON(buffer_unwritten(bh));
2922
2923 /*
2924 * Only clear out a write error when rewriting
2925 */
2926 if (test_set_buffer_req(bh) && (rw & WRITE))
2927 clear_buffer_write_io_error(bh);
2928
2929 /*
2930 * from here on down, it's all bio -- do the initial mapping,
2931 * submit_bio -> generic_make_request may further map this bio around
2932 */
2933 bio = bio_alloc(GFP_NOIO, 1);
2934
2935 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2936 bio->bi_bdev = bh->b_bdev;
2937 bio->bi_io_vec[0].bv_page = bh->b_page;
2938 bio->bi_io_vec[0].bv_len = bh->b_size;
2939 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2940
2941 bio->bi_vcnt = 1;
2942 bio->bi_idx = 0;
2943 bio->bi_size = bh->b_size;
2944
2945 bio->bi_end_io = end_bio_bh_io_sync;
2946 bio->bi_private = bh;
2947
2948 bio_get(bio);
2949 submit_bio(rw, bio);
2950
2951 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2952 ret = -EOPNOTSUPP;
2953
2954 bio_put(bio);
2955 return ret;
2956 }
2957 EXPORT_SYMBOL(submit_bh);
2958
2959 /**
2960 * ll_rw_block: low-level access to block devices (DEPRECATED)
2961 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2962 * @nr: number of &struct buffer_heads in the array
2963 * @bhs: array of pointers to &struct buffer_head
2964 *
2965 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2966 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2967 * %READA option is described in the documentation for generic_make_request()
2968 * which ll_rw_block() calls.
2969 *
2970 * This function drops any buffer that it cannot get a lock on (with the
2971 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2972 * request, and any buffer that appears to be up-to-date when doing read
2973 * request. Further it marks as clean buffers that are processed for
2974 * writing (the buffer cache won't assume that they are actually clean
2975 * until the buffer gets unlocked).
2976 *
2977 * ll_rw_block sets b_end_io to simple completion handler that marks
2978 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2979 * any waiters.
2980 *
2981 * All of the buffers must be for the same device, and must also be a
2982 * multiple of the current approved size for the device.
2983 */
2984 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2985 {
2986 int i;
2987
2988 for (i = 0; i < nr; i++) {
2989 struct buffer_head *bh = bhs[i];
2990
2991 if (!trylock_buffer(bh))
2992 continue;
2993 if (rw == WRITE) {
2994 if (test_clear_buffer_dirty(bh)) {
2995 bh->b_end_io = end_buffer_write_sync;
2996 get_bh(bh);
2997 submit_bh(WRITE, bh);
2998 continue;
2999 }
3000 } else {
3001 if (!buffer_uptodate(bh)) {
3002 bh->b_end_io = end_buffer_read_sync;
3003 get_bh(bh);
3004 submit_bh(rw, bh);
3005 continue;
3006 }
3007 }
3008 unlock_buffer(bh);
3009 }
3010 }
3011 EXPORT_SYMBOL(ll_rw_block);
3012
3013 void write_dirty_buffer(struct buffer_head *bh, int rw)
3014 {
3015 lock_buffer(bh);
3016 if (!test_clear_buffer_dirty(bh)) {
3017 unlock_buffer(bh);
3018 return;
3019 }
3020 bh->b_end_io = end_buffer_write_sync;
3021 get_bh(bh);
3022 submit_bh(rw, bh);
3023 }
3024 EXPORT_SYMBOL(write_dirty_buffer);
3025
3026 /*
3027 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3028 * and then start new I/O and then wait upon it. The caller must have a ref on
3029 * the buffer_head.
3030 */
3031 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3032 {
3033 int ret = 0;
3034
3035 WARN_ON(atomic_read(&bh->b_count) < 1);
3036 lock_buffer(bh);
3037 if (test_clear_buffer_dirty(bh)) {
3038 get_bh(bh);
3039 bh->b_end_io = end_buffer_write_sync;
3040 ret = submit_bh(rw, bh);
3041 wait_on_buffer(bh);
3042 if (!ret && !buffer_uptodate(bh))
3043 ret = -EIO;
3044 } else {
3045 unlock_buffer(bh);
3046 }
3047 return ret;
3048 }
3049 EXPORT_SYMBOL(__sync_dirty_buffer);
3050
3051 int sync_dirty_buffer(struct buffer_head *bh)
3052 {
3053 return __sync_dirty_buffer(bh, WRITE_SYNC);
3054 }
3055 EXPORT_SYMBOL(sync_dirty_buffer);
3056
3057 /*
3058 * try_to_free_buffers() checks if all the buffers on this particular page
3059 * are unused, and releases them if so.
3060 *
3061 * Exclusion against try_to_free_buffers may be obtained by either
3062 * locking the page or by holding its mapping's private_lock.
3063 *
3064 * If the page is dirty but all the buffers are clean then we need to
3065 * be sure to mark the page clean as well. This is because the page
3066 * may be against a block device, and a later reattachment of buffers
3067 * to a dirty page will set *all* buffers dirty. Which would corrupt
3068 * filesystem data on the same device.
3069 *
3070 * The same applies to regular filesystem pages: if all the buffers are
3071 * clean then we set the page clean and proceed. To do that, we require
3072 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3073 * private_lock.
3074 *
3075 * try_to_free_buffers() is non-blocking.
3076 */
3077 static inline int buffer_busy(struct buffer_head *bh)
3078 {
3079 return atomic_read(&bh->b_count) |
3080 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3081 }
3082
3083 static int
3084 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3085 {
3086 struct buffer_head *head = page_buffers(page);
3087 struct buffer_head *bh;
3088
3089 bh = head;
3090 do {
3091 if (buffer_write_io_error(bh) && page->mapping)
3092 set_bit(AS_EIO, &page->mapping->flags);
3093 if (buffer_busy(bh))
3094 goto failed;
3095 bh = bh->b_this_page;
3096 } while (bh != head);
3097
3098 do {
3099 struct buffer_head *next = bh->b_this_page;
3100
3101 if (bh->b_assoc_map)
3102 __remove_assoc_queue(bh);
3103 bh = next;
3104 } while (bh != head);
3105 *buffers_to_free = head;
3106 __clear_page_buffers(page);
3107 return 1;
3108 failed:
3109 return 0;
3110 }
3111
3112 int try_to_free_buffers(struct page *page)
3113 {
3114 struct address_space * const mapping = page->mapping;
3115 struct buffer_head *buffers_to_free = NULL;
3116 int ret = 0;
3117
3118 BUG_ON(!PageLocked(page));
3119 if (PageWriteback(page))
3120 return 0;
3121
3122 if (mapping == NULL) { /* can this still happen? */
3123 ret = drop_buffers(page, &buffers_to_free);
3124 goto out;
3125 }
3126
3127 spin_lock(&mapping->private_lock);
3128 ret = drop_buffers(page, &buffers_to_free);
3129
3130 /*
3131 * If the filesystem writes its buffers by hand (eg ext3)
3132 * then we can have clean buffers against a dirty page. We
3133 * clean the page here; otherwise the VM will never notice
3134 * that the filesystem did any IO at all.
3135 *
3136 * Also, during truncate, discard_buffer will have marked all
3137 * the page's buffers clean. We discover that here and clean
3138 * the page also.
3139 *
3140 * private_lock must be held over this entire operation in order
3141 * to synchronise against __set_page_dirty_buffers and prevent the
3142 * dirty bit from being lost.
3143 */
3144 if (ret)
3145 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3146 spin_unlock(&mapping->private_lock);
3147 out:
3148 if (buffers_to_free) {
3149 struct buffer_head *bh = buffers_to_free;
3150
3151 do {
3152 struct buffer_head *next = bh->b_this_page;
3153 free_buffer_head(bh);
3154 bh = next;
3155 } while (bh != buffers_to_free);
3156 }
3157 return ret;
3158 }
3159 EXPORT_SYMBOL(try_to_free_buffers);
3160
3161 /*
3162 * There are no bdflush tunables left. But distributions are
3163 * still running obsolete flush daemons, so we terminate them here.
3164 *
3165 * Use of bdflush() is deprecated and will be removed in a future kernel.
3166 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3167 */
3168 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3169 {
3170 static int msg_count;
3171
3172 if (!capable(CAP_SYS_ADMIN))
3173 return -EPERM;
3174
3175 if (msg_count < 5) {
3176 msg_count++;
3177 printk(KERN_INFO
3178 "warning: process `%s' used the obsolete bdflush"
3179 " system call\n", current->comm);
3180 printk(KERN_INFO "Fix your initscripts?\n");
3181 }
3182
3183 if (func == 1)
3184 do_exit(0);
3185 return 0;
3186 }
3187
3188 /*
3189 * Buffer-head allocation
3190 */
3191 static struct kmem_cache *bh_cachep;
3192
3193 /*
3194 * Once the number of bh's in the machine exceeds this level, we start
3195 * stripping them in writeback.
3196 */
3197 static int max_buffer_heads;
3198
3199 int buffer_heads_over_limit;
3200
3201 struct bh_accounting {
3202 int nr; /* Number of live bh's */
3203 int ratelimit; /* Limit cacheline bouncing */
3204 };
3205
3206 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3207
3208 static void recalc_bh_state(void)
3209 {
3210 int i;
3211 int tot = 0;
3212
3213 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3214 return;
3215 __this_cpu_write(bh_accounting.ratelimit, 0);
3216 for_each_online_cpu(i)
3217 tot += per_cpu(bh_accounting, i).nr;
3218 buffer_heads_over_limit = (tot > max_buffer_heads);
3219 }
3220
3221 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3222 {
3223 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3224 if (ret) {
3225 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3226 preempt_disable();
3227 __this_cpu_inc(bh_accounting.nr);
3228 recalc_bh_state();
3229 preempt_enable();
3230 }
3231 return ret;
3232 }
3233 EXPORT_SYMBOL(alloc_buffer_head);
3234
3235 void free_buffer_head(struct buffer_head *bh)
3236 {
3237 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3238 kmem_cache_free(bh_cachep, bh);
3239 preempt_disable();
3240 __this_cpu_dec(bh_accounting.nr);
3241 recalc_bh_state();
3242 preempt_enable();
3243 }
3244 EXPORT_SYMBOL(free_buffer_head);
3245
3246 static void buffer_exit_cpu(int cpu)
3247 {
3248 int i;
3249 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3250
3251 for (i = 0; i < BH_LRU_SIZE; i++) {
3252 brelse(b->bhs[i]);
3253 b->bhs[i] = NULL;
3254 }
3255 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3256 per_cpu(bh_accounting, cpu).nr = 0;
3257 }
3258
3259 static int buffer_cpu_notify(struct notifier_block *self,
3260 unsigned long action, void *hcpu)
3261 {
3262 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3263 buffer_exit_cpu((unsigned long)hcpu);
3264 return NOTIFY_OK;
3265 }
3266
3267 /**
3268 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3269 * @bh: struct buffer_head
3270 *
3271 * Return true if the buffer is up-to-date and false,
3272 * with the buffer locked, if not.
3273 */
3274 int bh_uptodate_or_lock(struct buffer_head *bh)
3275 {
3276 if (!buffer_uptodate(bh)) {
3277 lock_buffer(bh);
3278 if (!buffer_uptodate(bh))
3279 return 0;
3280 unlock_buffer(bh);
3281 }
3282 return 1;
3283 }
3284 EXPORT_SYMBOL(bh_uptodate_or_lock);
3285
3286 /**
3287 * bh_submit_read - Submit a locked buffer for reading
3288 * @bh: struct buffer_head
3289 *
3290 * Returns zero on success and -EIO on error.
3291 */
3292 int bh_submit_read(struct buffer_head *bh)
3293 {
3294 BUG_ON(!buffer_locked(bh));
3295
3296 if (buffer_uptodate(bh)) {
3297 unlock_buffer(bh);
3298 return 0;
3299 }
3300
3301 get_bh(bh);
3302 bh->b_end_io = end_buffer_read_sync;
3303 submit_bh(READ, bh);
3304 wait_on_buffer(bh);
3305 if (buffer_uptodate(bh))
3306 return 0;
3307 return -EIO;
3308 }
3309 EXPORT_SYMBOL(bh_submit_read);
3310
3311 void __init buffer_init(void)
3312 {
3313 int nrpages;
3314
3315 bh_cachep = kmem_cache_create("buffer_head",
3316 sizeof(struct buffer_head), 0,
3317 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3318 SLAB_MEM_SPREAD),
3319 NULL);
3320
3321 /*
3322 * Limit the bh occupancy to 10% of ZONE_NORMAL
3323 */
3324 nrpages = (nr_free_buffer_pages() * 10) / 100;
3325 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3326 hotcpu_notifier(buffer_cpu_notify, 0);
3327 }