]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/buffer.c
fs: introduce iomap infrastructure
[mirror_ubuntu-zesty-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/export.h>
34 #include <linux/backing-dev.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/bio.h>
41 #include <linux/notifier.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <trace/events/block.h>
47
48 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
49 static int submit_bh_wbc(int rw, struct buffer_head *bh,
50 unsigned long bio_flags,
51 struct writeback_control *wbc);
52
53 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
54
55 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
56 {
57 bh->b_end_io = handler;
58 bh->b_private = private;
59 }
60 EXPORT_SYMBOL(init_buffer);
61
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 trace_block_touch_buffer(bh);
65 mark_page_accessed(bh->b_page);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84 * Returns if the page has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the PageDirty information is stale. If
86 * any of the pages are locked, it is assumed they are locked for IO.
87 */
88 void buffer_check_dirty_writeback(struct page *page,
89 bool *dirty, bool *writeback)
90 {
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!PageLocked(page));
96
97 if (!page_has_buffers(page))
98 return;
99
100 if (PageWriteback(page))
101 *writeback = true;
102
103 head = page_buffers(page);
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114 }
115 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116
117 /*
118 * Block until a buffer comes unlocked. This doesn't stop it
119 * from becoming locked again - you have to lock it yourself
120 * if you want to preserve its state.
121 */
122 void __wait_on_buffer(struct buffer_head * bh)
123 {
124 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 }
126 EXPORT_SYMBOL(__wait_on_buffer);
127
128 static void
129 __clear_page_buffers(struct page *page)
130 {
131 ClearPagePrivate(page);
132 set_page_private(page, 0);
133 put_page(page);
134 }
135
136 static void buffer_io_error(struct buffer_head *bh, char *msg)
137 {
138 if (!test_bit(BH_Quiet, &bh->b_state))
139 printk_ratelimited(KERN_ERR
140 "Buffer I/O error on dev %pg, logical block %llu%s\n",
141 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
142 }
143
144 /*
145 * End-of-IO handler helper function which does not touch the bh after
146 * unlocking it.
147 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
148 * a race there is benign: unlock_buffer() only use the bh's address for
149 * hashing after unlocking the buffer, so it doesn't actually touch the bh
150 * itself.
151 */
152 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
153 {
154 if (uptodate) {
155 set_buffer_uptodate(bh);
156 } else {
157 /* This happens, due to failed READA attempts. */
158 clear_buffer_uptodate(bh);
159 }
160 unlock_buffer(bh);
161 }
162
163 /*
164 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
165 * unlock the buffer. This is what ll_rw_block uses too.
166 */
167 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
168 {
169 __end_buffer_read_notouch(bh, uptodate);
170 put_bh(bh);
171 }
172 EXPORT_SYMBOL(end_buffer_read_sync);
173
174 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
175 {
176 if (uptodate) {
177 set_buffer_uptodate(bh);
178 } else {
179 buffer_io_error(bh, ", lost sync page write");
180 set_buffer_write_io_error(bh);
181 clear_buffer_uptodate(bh);
182 }
183 unlock_buffer(bh);
184 put_bh(bh);
185 }
186 EXPORT_SYMBOL(end_buffer_write_sync);
187
188 /*
189 * Various filesystems appear to want __find_get_block to be non-blocking.
190 * But it's the page lock which protects the buffers. To get around this,
191 * we get exclusion from try_to_free_buffers with the blockdev mapping's
192 * private_lock.
193 *
194 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
195 * may be quite high. This code could TryLock the page, and if that
196 * succeeds, there is no need to take private_lock. (But if
197 * private_lock is contended then so is mapping->tree_lock).
198 */
199 static struct buffer_head *
200 __find_get_block_slow(struct block_device *bdev, sector_t block)
201 {
202 struct inode *bd_inode = bdev->bd_inode;
203 struct address_space *bd_mapping = bd_inode->i_mapping;
204 struct buffer_head *ret = NULL;
205 pgoff_t index;
206 struct buffer_head *bh;
207 struct buffer_head *head;
208 struct page *page;
209 int all_mapped = 1;
210
211 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
212 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
213 if (!page)
214 goto out;
215
216 spin_lock(&bd_mapping->private_lock);
217 if (!page_has_buffers(page))
218 goto out_unlock;
219 head = page_buffers(page);
220 bh = head;
221 do {
222 if (!buffer_mapped(bh))
223 all_mapped = 0;
224 else if (bh->b_blocknr == block) {
225 ret = bh;
226 get_bh(bh);
227 goto out_unlock;
228 }
229 bh = bh->b_this_page;
230 } while (bh != head);
231
232 /* we might be here because some of the buffers on this page are
233 * not mapped. This is due to various races between
234 * file io on the block device and getblk. It gets dealt with
235 * elsewhere, don't buffer_error if we had some unmapped buffers
236 */
237 if (all_mapped) {
238 printk("__find_get_block_slow() failed. "
239 "block=%llu, b_blocknr=%llu\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr);
242 printk("b_state=0x%08lx, b_size=%zu\n",
243 bh->b_state, bh->b_size);
244 printk("device %pg blocksize: %d\n", bdev,
245 1 << bd_inode->i_blkbits);
246 }
247 out_unlock:
248 spin_unlock(&bd_mapping->private_lock);
249 put_page(page);
250 out:
251 return ret;
252 }
253
254 /*
255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
256 */
257 static void free_more_memory(void)
258 {
259 struct zoneref *z;
260 int nid;
261
262 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
263 yield();
264
265 for_each_online_node(nid) {
266
267 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
268 gfp_zone(GFP_NOFS), NULL);
269 if (z->zone)
270 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
271 GFP_NOFS, NULL);
272 }
273 }
274
275 /*
276 * I/O completion handler for block_read_full_page() - pages
277 * which come unlocked at the end of I/O.
278 */
279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
280 {
281 unsigned long flags;
282 struct buffer_head *first;
283 struct buffer_head *tmp;
284 struct page *page;
285 int page_uptodate = 1;
286
287 BUG_ON(!buffer_async_read(bh));
288
289 page = bh->b_page;
290 if (uptodate) {
291 set_buffer_uptodate(bh);
292 } else {
293 clear_buffer_uptodate(bh);
294 buffer_io_error(bh, ", async page read");
295 SetPageError(page);
296 }
297
298 /*
299 * Be _very_ careful from here on. Bad things can happen if
300 * two buffer heads end IO at almost the same time and both
301 * decide that the page is now completely done.
302 */
303 first = page_buffers(page);
304 local_irq_save(flags);
305 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
306 clear_buffer_async_read(bh);
307 unlock_buffer(bh);
308 tmp = bh;
309 do {
310 if (!buffer_uptodate(tmp))
311 page_uptodate = 0;
312 if (buffer_async_read(tmp)) {
313 BUG_ON(!buffer_locked(tmp));
314 goto still_busy;
315 }
316 tmp = tmp->b_this_page;
317 } while (tmp != bh);
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
320
321 /*
322 * If none of the buffers had errors and they are all
323 * uptodate then we can set the page uptodate.
324 */
325 if (page_uptodate && !PageError(page))
326 SetPageUptodate(page);
327 unlock_page(page);
328 return;
329
330 still_busy:
331 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
332 local_irq_restore(flags);
333 return;
334 }
335
336 /*
337 * Completion handler for block_write_full_page() - pages which are unlocked
338 * during I/O, and which have PageWriteback cleared upon I/O completion.
339 */
340 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
341 {
342 unsigned long flags;
343 struct buffer_head *first;
344 struct buffer_head *tmp;
345 struct page *page;
346
347 BUG_ON(!buffer_async_write(bh));
348
349 page = bh->b_page;
350 if (uptodate) {
351 set_buffer_uptodate(bh);
352 } else {
353 buffer_io_error(bh, ", lost async page write");
354 set_bit(AS_EIO, &page->mapping->flags);
355 set_buffer_write_io_error(bh);
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
358 }
359
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
376 end_page_writeback(page);
377 return;
378
379 still_busy:
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
382 return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385
386 /*
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
394 *
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
397 *
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
400 *
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
403 *
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
406 */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
411 }
412
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
415 {
416 bh->b_end_io = handler;
417 set_buffer_async_write(bh);
418 }
419
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425
426
427 /*
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
433 *
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
437 *
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
448 *
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
451 *
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
456 *
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
460 *
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
465 *
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
474 */
475
476 /*
477 * The buffer's backing address_space's private_lock must be held
478 */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 list_del_init(&bh->b_assoc_buffers);
482 WARN_ON(!bh->b_assoc_map);
483 if (buffer_write_io_error(bh))
484 set_bit(AS_EIO, &bh->b_assoc_map->flags);
485 bh->b_assoc_map = NULL;
486 }
487
488 int inode_has_buffers(struct inode *inode)
489 {
490 return !list_empty(&inode->i_data.private_list);
491 }
492
493 /*
494 * osync is designed to support O_SYNC io. It waits synchronously for
495 * all already-submitted IO to complete, but does not queue any new
496 * writes to the disk.
497 *
498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499 * you dirty the buffers, and then use osync_inode_buffers to wait for
500 * completion. Any other dirty buffers which are not yet queued for
501 * write will not be flushed to disk by the osync.
502 */
503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
504 {
505 struct buffer_head *bh;
506 struct list_head *p;
507 int err = 0;
508
509 spin_lock(lock);
510 repeat:
511 list_for_each_prev(p, list) {
512 bh = BH_ENTRY(p);
513 if (buffer_locked(bh)) {
514 get_bh(bh);
515 spin_unlock(lock);
516 wait_on_buffer(bh);
517 if (!buffer_uptodate(bh))
518 err = -EIO;
519 brelse(bh);
520 spin_lock(lock);
521 goto repeat;
522 }
523 }
524 spin_unlock(lock);
525 return err;
526 }
527
528 static void do_thaw_one(struct super_block *sb, void *unused)
529 {
530 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
531 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
532 }
533
534 static void do_thaw_all(struct work_struct *work)
535 {
536 iterate_supers(do_thaw_one, NULL);
537 kfree(work);
538 printk(KERN_WARNING "Emergency Thaw complete\n");
539 }
540
541 /**
542 * emergency_thaw_all -- forcibly thaw every frozen filesystem
543 *
544 * Used for emergency unfreeze of all filesystems via SysRq
545 */
546 void emergency_thaw_all(void)
547 {
548 struct work_struct *work;
549
550 work = kmalloc(sizeof(*work), GFP_ATOMIC);
551 if (work) {
552 INIT_WORK(work, do_thaw_all);
553 schedule_work(work);
554 }
555 }
556
557 /**
558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559 * @mapping: the mapping which wants those buffers written
560 *
561 * Starts I/O against the buffers at mapping->private_list, and waits upon
562 * that I/O.
563 *
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
567 */
568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570 struct address_space *buffer_mapping = mapping->private_data;
571
572 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
573 return 0;
574
575 return fsync_buffers_list(&buffer_mapping->private_lock,
576 &mapping->private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579
580 /*
581 * Called when we've recently written block `bblock', and it is known that
582 * `bblock' was for a buffer_boundary() buffer. This means that the block at
583 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
584 * dirty, schedule it for IO. So that indirects merge nicely with their data.
585 */
586 void write_boundary_block(struct block_device *bdev,
587 sector_t bblock, unsigned blocksize)
588 {
589 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
590 if (bh) {
591 if (buffer_dirty(bh))
592 ll_rw_block(WRITE, 1, &bh);
593 put_bh(bh);
594 }
595 }
596
597 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
598 {
599 struct address_space *mapping = inode->i_mapping;
600 struct address_space *buffer_mapping = bh->b_page->mapping;
601
602 mark_buffer_dirty(bh);
603 if (!mapping->private_data) {
604 mapping->private_data = buffer_mapping;
605 } else {
606 BUG_ON(mapping->private_data != buffer_mapping);
607 }
608 if (!bh->b_assoc_map) {
609 spin_lock(&buffer_mapping->private_lock);
610 list_move_tail(&bh->b_assoc_buffers,
611 &mapping->private_list);
612 bh->b_assoc_map = mapping;
613 spin_unlock(&buffer_mapping->private_lock);
614 }
615 }
616 EXPORT_SYMBOL(mark_buffer_dirty_inode);
617
618 /*
619 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
620 * dirty.
621 *
622 * If warn is true, then emit a warning if the page is not uptodate and has
623 * not been truncated.
624 *
625 * The caller must hold lock_page_memcg().
626 */
627 static void __set_page_dirty(struct page *page, struct address_space *mapping,
628 int warn)
629 {
630 unsigned long flags;
631
632 spin_lock_irqsave(&mapping->tree_lock, flags);
633 if (page->mapping) { /* Race with truncate? */
634 WARN_ON_ONCE(warn && !PageUptodate(page));
635 account_page_dirtied(page, mapping);
636 radix_tree_tag_set(&mapping->page_tree,
637 page_index(page), PAGECACHE_TAG_DIRTY);
638 }
639 spin_unlock_irqrestore(&mapping->tree_lock, flags);
640 }
641
642 /*
643 * Add a page to the dirty page list.
644 *
645 * It is a sad fact of life that this function is called from several places
646 * deeply under spinlocking. It may not sleep.
647 *
648 * If the page has buffers, the uptodate buffers are set dirty, to preserve
649 * dirty-state coherency between the page and the buffers. It the page does
650 * not have buffers then when they are later attached they will all be set
651 * dirty.
652 *
653 * The buffers are dirtied before the page is dirtied. There's a small race
654 * window in which a writepage caller may see the page cleanness but not the
655 * buffer dirtiness. That's fine. If this code were to set the page dirty
656 * before the buffers, a concurrent writepage caller could clear the page dirty
657 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
658 * page on the dirty page list.
659 *
660 * We use private_lock to lock against try_to_free_buffers while using the
661 * page's buffer list. Also use this to protect against clean buffers being
662 * added to the page after it was set dirty.
663 *
664 * FIXME: may need to call ->reservepage here as well. That's rather up to the
665 * address_space though.
666 */
667 int __set_page_dirty_buffers(struct page *page)
668 {
669 int newly_dirty;
670 struct address_space *mapping = page_mapping(page);
671
672 if (unlikely(!mapping))
673 return !TestSetPageDirty(page);
674
675 spin_lock(&mapping->private_lock);
676 if (page_has_buffers(page)) {
677 struct buffer_head *head = page_buffers(page);
678 struct buffer_head *bh = head;
679
680 do {
681 set_buffer_dirty(bh);
682 bh = bh->b_this_page;
683 } while (bh != head);
684 }
685 /*
686 * Lock out page->mem_cgroup migration to keep PageDirty
687 * synchronized with per-memcg dirty page counters.
688 */
689 lock_page_memcg(page);
690 newly_dirty = !TestSetPageDirty(page);
691 spin_unlock(&mapping->private_lock);
692
693 if (newly_dirty)
694 __set_page_dirty(page, mapping, 1);
695
696 unlock_page_memcg(page);
697
698 if (newly_dirty)
699 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700
701 return newly_dirty;
702 }
703 EXPORT_SYMBOL(__set_page_dirty_buffers);
704
705 /*
706 * Write out and wait upon a list of buffers.
707 *
708 * We have conflicting pressures: we want to make sure that all
709 * initially dirty buffers get waited on, but that any subsequently
710 * dirtied buffers don't. After all, we don't want fsync to last
711 * forever if somebody is actively writing to the file.
712 *
713 * Do this in two main stages: first we copy dirty buffers to a
714 * temporary inode list, queueing the writes as we go. Then we clean
715 * up, waiting for those writes to complete.
716 *
717 * During this second stage, any subsequent updates to the file may end
718 * up refiling the buffer on the original inode's dirty list again, so
719 * there is a chance we will end up with a buffer queued for write but
720 * not yet completed on that list. So, as a final cleanup we go through
721 * the osync code to catch these locked, dirty buffers without requeuing
722 * any newly dirty buffers for write.
723 */
724 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
725 {
726 struct buffer_head *bh;
727 struct list_head tmp;
728 struct address_space *mapping;
729 int err = 0, err2;
730 struct blk_plug plug;
731
732 INIT_LIST_HEAD(&tmp);
733 blk_start_plug(&plug);
734
735 spin_lock(lock);
736 while (!list_empty(list)) {
737 bh = BH_ENTRY(list->next);
738 mapping = bh->b_assoc_map;
739 __remove_assoc_queue(bh);
740 /* Avoid race with mark_buffer_dirty_inode() which does
741 * a lockless check and we rely on seeing the dirty bit */
742 smp_mb();
743 if (buffer_dirty(bh) || buffer_locked(bh)) {
744 list_add(&bh->b_assoc_buffers, &tmp);
745 bh->b_assoc_map = mapping;
746 if (buffer_dirty(bh)) {
747 get_bh(bh);
748 spin_unlock(lock);
749 /*
750 * Ensure any pending I/O completes so that
751 * write_dirty_buffer() actually writes the
752 * current contents - it is a noop if I/O is
753 * still in flight on potentially older
754 * contents.
755 */
756 write_dirty_buffer(bh, WRITE_SYNC);
757
758 /*
759 * Kick off IO for the previous mapping. Note
760 * that we will not run the very last mapping,
761 * wait_on_buffer() will do that for us
762 * through sync_buffer().
763 */
764 brelse(bh);
765 spin_lock(lock);
766 }
767 }
768 }
769
770 spin_unlock(lock);
771 blk_finish_plug(&plug);
772 spin_lock(lock);
773
774 while (!list_empty(&tmp)) {
775 bh = BH_ENTRY(tmp.prev);
776 get_bh(bh);
777 mapping = bh->b_assoc_map;
778 __remove_assoc_queue(bh);
779 /* Avoid race with mark_buffer_dirty_inode() which does
780 * a lockless check and we rely on seeing the dirty bit */
781 smp_mb();
782 if (buffer_dirty(bh)) {
783 list_add(&bh->b_assoc_buffers,
784 &mapping->private_list);
785 bh->b_assoc_map = mapping;
786 }
787 spin_unlock(lock);
788 wait_on_buffer(bh);
789 if (!buffer_uptodate(bh))
790 err = -EIO;
791 brelse(bh);
792 spin_lock(lock);
793 }
794
795 spin_unlock(lock);
796 err2 = osync_buffers_list(lock, list);
797 if (err)
798 return err;
799 else
800 return err2;
801 }
802
803 /*
804 * Invalidate any and all dirty buffers on a given inode. We are
805 * probably unmounting the fs, but that doesn't mean we have already
806 * done a sync(). Just drop the buffers from the inode list.
807 *
808 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
809 * assumes that all the buffers are against the blockdev. Not true
810 * for reiserfs.
811 */
812 void invalidate_inode_buffers(struct inode *inode)
813 {
814 if (inode_has_buffers(inode)) {
815 struct address_space *mapping = &inode->i_data;
816 struct list_head *list = &mapping->private_list;
817 struct address_space *buffer_mapping = mapping->private_data;
818
819 spin_lock(&buffer_mapping->private_lock);
820 while (!list_empty(list))
821 __remove_assoc_queue(BH_ENTRY(list->next));
822 spin_unlock(&buffer_mapping->private_lock);
823 }
824 }
825 EXPORT_SYMBOL(invalidate_inode_buffers);
826
827 /*
828 * Remove any clean buffers from the inode's buffer list. This is called
829 * when we're trying to free the inode itself. Those buffers can pin it.
830 *
831 * Returns true if all buffers were removed.
832 */
833 int remove_inode_buffers(struct inode *inode)
834 {
835 int ret = 1;
836
837 if (inode_has_buffers(inode)) {
838 struct address_space *mapping = &inode->i_data;
839 struct list_head *list = &mapping->private_list;
840 struct address_space *buffer_mapping = mapping->private_data;
841
842 spin_lock(&buffer_mapping->private_lock);
843 while (!list_empty(list)) {
844 struct buffer_head *bh = BH_ENTRY(list->next);
845 if (buffer_dirty(bh)) {
846 ret = 0;
847 break;
848 }
849 __remove_assoc_queue(bh);
850 }
851 spin_unlock(&buffer_mapping->private_lock);
852 }
853 return ret;
854 }
855
856 /*
857 * Create the appropriate buffers when given a page for data area and
858 * the size of each buffer.. Use the bh->b_this_page linked list to
859 * follow the buffers created. Return NULL if unable to create more
860 * buffers.
861 *
862 * The retry flag is used to differentiate async IO (paging, swapping)
863 * which may not fail from ordinary buffer allocations.
864 */
865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866 int retry)
867 {
868 struct buffer_head *bh, *head;
869 long offset;
870
871 try_again:
872 head = NULL;
873 offset = PAGE_SIZE;
874 while ((offset -= size) >= 0) {
875 bh = alloc_buffer_head(GFP_NOFS);
876 if (!bh)
877 goto no_grow;
878
879 bh->b_this_page = head;
880 bh->b_blocknr = -1;
881 head = bh;
882
883 bh->b_size = size;
884
885 /* Link the buffer to its page */
886 set_bh_page(bh, page, offset);
887 }
888 return head;
889 /*
890 * In case anything failed, we just free everything we got.
891 */
892 no_grow:
893 if (head) {
894 do {
895 bh = head;
896 head = head->b_this_page;
897 free_buffer_head(bh);
898 } while (head);
899 }
900
901 /*
902 * Return failure for non-async IO requests. Async IO requests
903 * are not allowed to fail, so we have to wait until buffer heads
904 * become available. But we don't want tasks sleeping with
905 * partially complete buffers, so all were released above.
906 */
907 if (!retry)
908 return NULL;
909
910 /* We're _really_ low on memory. Now we just
911 * wait for old buffer heads to become free due to
912 * finishing IO. Since this is an async request and
913 * the reserve list is empty, we're sure there are
914 * async buffer heads in use.
915 */
916 free_more_memory();
917 goto try_again;
918 }
919 EXPORT_SYMBOL_GPL(alloc_page_buffers);
920
921 static inline void
922 link_dev_buffers(struct page *page, struct buffer_head *head)
923 {
924 struct buffer_head *bh, *tail;
925
926 bh = head;
927 do {
928 tail = bh;
929 bh = bh->b_this_page;
930 } while (bh);
931 tail->b_this_page = head;
932 attach_page_buffers(page, head);
933 }
934
935 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
936 {
937 sector_t retval = ~((sector_t)0);
938 loff_t sz = i_size_read(bdev->bd_inode);
939
940 if (sz) {
941 unsigned int sizebits = blksize_bits(size);
942 retval = (sz >> sizebits);
943 }
944 return retval;
945 }
946
947 /*
948 * Initialise the state of a blockdev page's buffers.
949 */
950 static sector_t
951 init_page_buffers(struct page *page, struct block_device *bdev,
952 sector_t block, int size)
953 {
954 struct buffer_head *head = page_buffers(page);
955 struct buffer_head *bh = head;
956 int uptodate = PageUptodate(page);
957 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
958
959 do {
960 if (!buffer_mapped(bh)) {
961 init_buffer(bh, NULL, NULL);
962 bh->b_bdev = bdev;
963 bh->b_blocknr = block;
964 if (uptodate)
965 set_buffer_uptodate(bh);
966 if (block < end_block)
967 set_buffer_mapped(bh);
968 }
969 block++;
970 bh = bh->b_this_page;
971 } while (bh != head);
972
973 /*
974 * Caller needs to validate requested block against end of device.
975 */
976 return end_block;
977 }
978
979 /*
980 * Create the page-cache page that contains the requested block.
981 *
982 * This is used purely for blockdev mappings.
983 */
984 static int
985 grow_dev_page(struct block_device *bdev, sector_t block,
986 pgoff_t index, int size, int sizebits, gfp_t gfp)
987 {
988 struct inode *inode = bdev->bd_inode;
989 struct page *page;
990 struct buffer_head *bh;
991 sector_t end_block;
992 int ret = 0; /* Will call free_more_memory() */
993 gfp_t gfp_mask;
994
995 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
996
997 /*
998 * XXX: __getblk_slow() can not really deal with failure and
999 * will endlessly loop on improvised global reclaim. Prefer
1000 * looping in the allocator rather than here, at least that
1001 * code knows what it's doing.
1002 */
1003 gfp_mask |= __GFP_NOFAIL;
1004
1005 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1006 if (!page)
1007 return ret;
1008
1009 BUG_ON(!PageLocked(page));
1010
1011 if (page_has_buffers(page)) {
1012 bh = page_buffers(page);
1013 if (bh->b_size == size) {
1014 end_block = init_page_buffers(page, bdev,
1015 (sector_t)index << sizebits,
1016 size);
1017 goto done;
1018 }
1019 if (!try_to_free_buffers(page))
1020 goto failed;
1021 }
1022
1023 /*
1024 * Allocate some buffers for this page
1025 */
1026 bh = alloc_page_buffers(page, size, 0);
1027 if (!bh)
1028 goto failed;
1029
1030 /*
1031 * Link the page to the buffers and initialise them. Take the
1032 * lock to be atomic wrt __find_get_block(), which does not
1033 * run under the page lock.
1034 */
1035 spin_lock(&inode->i_mapping->private_lock);
1036 link_dev_buffers(page, bh);
1037 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1038 size);
1039 spin_unlock(&inode->i_mapping->private_lock);
1040 done:
1041 ret = (block < end_block) ? 1 : -ENXIO;
1042 failed:
1043 unlock_page(page);
1044 put_page(page);
1045 return ret;
1046 }
1047
1048 /*
1049 * Create buffers for the specified block device block's page. If
1050 * that page was dirty, the buffers are set dirty also.
1051 */
1052 static int
1053 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1054 {
1055 pgoff_t index;
1056 int sizebits;
1057
1058 sizebits = -1;
1059 do {
1060 sizebits++;
1061 } while ((size << sizebits) < PAGE_SIZE);
1062
1063 index = block >> sizebits;
1064
1065 /*
1066 * Check for a block which wants to lie outside our maximum possible
1067 * pagecache index. (this comparison is done using sector_t types).
1068 */
1069 if (unlikely(index != block >> sizebits)) {
1070 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071 "device %pg\n",
1072 __func__, (unsigned long long)block,
1073 bdev);
1074 return -EIO;
1075 }
1076
1077 /* Create a page with the proper size buffers.. */
1078 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079 }
1080
1081 struct buffer_head *
1082 __getblk_slow(struct block_device *bdev, sector_t block,
1083 unsigned size, gfp_t gfp)
1084 {
1085 /* Size must be multiple of hard sectorsize */
1086 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087 (size < 512 || size > PAGE_SIZE))) {
1088 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089 size);
1090 printk(KERN_ERR "logical block size: %d\n",
1091 bdev_logical_block_size(bdev));
1092
1093 dump_stack();
1094 return NULL;
1095 }
1096
1097 for (;;) {
1098 struct buffer_head *bh;
1099 int ret;
1100
1101 bh = __find_get_block(bdev, block, size);
1102 if (bh)
1103 return bh;
1104
1105 ret = grow_buffers(bdev, block, size, gfp);
1106 if (ret < 0)
1107 return NULL;
1108 if (ret == 0)
1109 free_more_memory();
1110 }
1111 }
1112 EXPORT_SYMBOL(__getblk_slow);
1113
1114 /*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137 /**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153 trace_block_dirty_buffer(bh);
1154
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
1169 struct address_space *mapping = NULL;
1170
1171 lock_page_memcg(page);
1172 if (!TestSetPageDirty(page)) {
1173 mapping = page_mapping(page);
1174 if (mapping)
1175 __set_page_dirty(page, mapping, 0);
1176 }
1177 unlock_page_memcg(page);
1178 if (mapping)
1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180 }
1181 }
1182 EXPORT_SYMBOL(mark_buffer_dirty);
1183
1184 /*
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191 void __brelse(struct buffer_head * buf)
1192 {
1193 if (atomic_read(&buf->b_count)) {
1194 put_bh(buf);
1195 return;
1196 }
1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198 }
1199 EXPORT_SYMBOL(__brelse);
1200
1201 /*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205 void __bforget(struct buffer_head *bh)
1206 {
1207 clear_buffer_dirty(bh);
1208 if (bh->b_assoc_map) {
1209 struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211 spin_lock(&buffer_mapping->private_lock);
1212 list_del_init(&bh->b_assoc_buffers);
1213 bh->b_assoc_map = NULL;
1214 spin_unlock(&buffer_mapping->private_lock);
1215 }
1216 __brelse(bh);
1217 }
1218 EXPORT_SYMBOL(__bforget);
1219
1220 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221 {
1222 lock_buffer(bh);
1223 if (buffer_uptodate(bh)) {
1224 unlock_buffer(bh);
1225 return bh;
1226 } else {
1227 get_bh(bh);
1228 bh->b_end_io = end_buffer_read_sync;
1229 submit_bh(READ, bh);
1230 wait_on_buffer(bh);
1231 if (buffer_uptodate(bh))
1232 return bh;
1233 }
1234 brelse(bh);
1235 return NULL;
1236 }
1237
1238 /*
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1250 */
1251
1252 #define BH_LRU_SIZE 16
1253
1254 struct bh_lru {
1255 struct buffer_head *bhs[BH_LRU_SIZE];
1256 };
1257
1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260 #ifdef CONFIG_SMP
1261 #define bh_lru_lock() local_irq_disable()
1262 #define bh_lru_unlock() local_irq_enable()
1263 #else
1264 #define bh_lru_lock() preempt_disable()
1265 #define bh_lru_unlock() preempt_enable()
1266 #endif
1267
1268 static inline void check_irqs_on(void)
1269 {
1270 #ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1272 #endif
1273 }
1274
1275 /*
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 */
1278 static void bh_lru_install(struct buffer_head *bh)
1279 {
1280 struct buffer_head *evictee = NULL;
1281
1282 check_irqs_on();
1283 bh_lru_lock();
1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285 struct buffer_head *bhs[BH_LRU_SIZE];
1286 int in;
1287 int out = 0;
1288
1289 get_bh(bh);
1290 bhs[out++] = bh;
1291 for (in = 0; in < BH_LRU_SIZE; in++) {
1292 struct buffer_head *bh2 =
1293 __this_cpu_read(bh_lrus.bhs[in]);
1294
1295 if (bh2 == bh) {
1296 __brelse(bh2);
1297 } else {
1298 if (out >= BH_LRU_SIZE) {
1299 BUG_ON(evictee != NULL);
1300 evictee = bh2;
1301 } else {
1302 bhs[out++] = bh2;
1303 }
1304 }
1305 }
1306 while (out < BH_LRU_SIZE)
1307 bhs[out++] = NULL;
1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309 }
1310 bh_lru_unlock();
1311
1312 if (evictee)
1313 __brelse(evictee);
1314 }
1315
1316 /*
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 */
1319 static struct buffer_head *
1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321 {
1322 struct buffer_head *ret = NULL;
1323 unsigned int i;
1324
1325 check_irqs_on();
1326 bh_lru_lock();
1327 for (i = 0; i < BH_LRU_SIZE; i++) {
1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1332 if (i) {
1333 while (i) {
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1336 i--;
1337 }
1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1339 }
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1343 }
1344 }
1345 bh_lru_unlock();
1346 return ret;
1347 }
1348
1349 /*
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1353 */
1354 struct buffer_head *
1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356 {
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359 if (bh == NULL) {
1360 /* __find_get_block_slow will mark the page accessed */
1361 bh = __find_get_block_slow(bdev, block);
1362 if (bh)
1363 bh_lru_install(bh);
1364 } else
1365 touch_buffer(bh);
1366
1367 return bh;
1368 }
1369 EXPORT_SYMBOL(__find_get_block);
1370
1371 /*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1378 */
1379 struct buffer_head *
1380 __getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1382 {
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385 might_sleep();
1386 if (bh == NULL)
1387 bh = __getblk_slow(bdev, block, size, gfp);
1388 return bh;
1389 }
1390 EXPORT_SYMBOL(__getblk_gfp);
1391
1392 /*
1393 * Do async read-ahead on a buffer..
1394 */
1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397 struct buffer_head *bh = __getblk(bdev, block, size);
1398 if (likely(bh)) {
1399 ll_rw_block(READA, 1, &bh);
1400 brelse(bh);
1401 }
1402 }
1403 EXPORT_SYMBOL(__breadahead);
1404
1405 /**
1406 * __bread_gfp() - reads a specified block and returns the bh
1407 * @bdev: the block_device to read from
1408 * @block: number of block
1409 * @size: size (in bytes) to read
1410 * @gfp: page allocation flag
1411 *
1412 * Reads a specified block, and returns buffer head that contains it.
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1415 * It returns NULL if the block was unreadable.
1416 */
1417 struct buffer_head *
1418 __bread_gfp(struct block_device *bdev, sector_t block,
1419 unsigned size, gfp_t gfp)
1420 {
1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423 if (likely(bh) && !buffer_uptodate(bh))
1424 bh = __bread_slow(bh);
1425 return bh;
1426 }
1427 EXPORT_SYMBOL(__bread_gfp);
1428
1429 /*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434 static void invalidate_bh_lru(void *arg)
1435 {
1436 struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 int i;
1438
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 brelse(b->bhs[i]);
1441 b->bhs[i] = NULL;
1442 }
1443 put_cpu_var(bh_lrus);
1444 }
1445
1446 static bool has_bh_in_lru(int cpu, void *dummy)
1447 {
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 int i;
1450
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1452 if (b->bhs[i])
1453 return 1;
1454 }
1455
1456 return 0;
1457 }
1458
1459 void invalidate_bh_lrus(void)
1460 {
1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462 }
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465 void set_bh_page(struct buffer_head *bh,
1466 struct page *page, unsigned long offset)
1467 {
1468 bh->b_page = page;
1469 BUG_ON(offset >= PAGE_SIZE);
1470 if (PageHighMem(page))
1471 /*
1472 * This catches illegal uses and preserves the offset:
1473 */
1474 bh->b_data = (char *)(0 + offset);
1475 else
1476 bh->b_data = page_address(page) + offset;
1477 }
1478 EXPORT_SYMBOL(set_bh_page);
1479
1480 /*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484 /* Bits that are cleared during an invalidate */
1485 #define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489 static void discard_buffer(struct buffer_head * bh)
1490 {
1491 unsigned long b_state, b_state_old;
1492
1493 lock_buffer(bh);
1494 clear_buffer_dirty(bh);
1495 bh->b_bdev = NULL;
1496 b_state = bh->b_state;
1497 for (;;) {
1498 b_state_old = cmpxchg(&bh->b_state, b_state,
1499 (b_state & ~BUFFER_FLAGS_DISCARD));
1500 if (b_state_old == b_state)
1501 break;
1502 b_state = b_state_old;
1503 }
1504 unlock_buffer(bh);
1505 }
1506
1507 /**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523 void block_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length)
1525 {
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
1528 unsigned int stop = length + offset;
1529
1530 BUG_ON(!PageLocked(page));
1531 if (!page_has_buffers(page))
1532 goto out;
1533
1534 /*
1535 * Check for overflow
1536 */
1537 BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539 head = page_buffers(page);
1540 bh = head;
1541 do {
1542 unsigned int next_off = curr_off + bh->b_size;
1543 next = bh->b_this_page;
1544
1545 /*
1546 * Are we still fully in range ?
1547 */
1548 if (next_off > stop)
1549 goto out;
1550
1551 /*
1552 * is this block fully invalidated?
1553 */
1554 if (offset <= curr_off)
1555 discard_buffer(bh);
1556 curr_off = next_off;
1557 bh = next;
1558 } while (bh != head);
1559
1560 /*
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1564 */
1565 if (offset == 0)
1566 try_to_release_page(page, 0);
1567 out:
1568 return;
1569 }
1570 EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573 /*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578 void create_empty_buffers(struct page *page,
1579 unsigned long blocksize, unsigned long b_state)
1580 {
1581 struct buffer_head *bh, *head, *tail;
1582
1583 head = alloc_page_buffers(page, blocksize, 1);
1584 bh = head;
1585 do {
1586 bh->b_state |= b_state;
1587 tail = bh;
1588 bh = bh->b_this_page;
1589 } while (bh);
1590 tail->b_this_page = head;
1591
1592 spin_lock(&page->mapping->private_lock);
1593 if (PageUptodate(page) || PageDirty(page)) {
1594 bh = head;
1595 do {
1596 if (PageDirty(page))
1597 set_buffer_dirty(bh);
1598 if (PageUptodate(page))
1599 set_buffer_uptodate(bh);
1600 bh = bh->b_this_page;
1601 } while (bh != head);
1602 }
1603 attach_page_buffers(page, head);
1604 spin_unlock(&page->mapping->private_lock);
1605 }
1606 EXPORT_SYMBOL(create_empty_buffers);
1607
1608 /*
1609 * We are taking a block for data and we don't want any output from any
1610 * buffer-cache aliases starting from return from that function and
1611 * until the moment when something will explicitly mark the buffer
1612 * dirty (hopefully that will not happen until we will free that block ;-)
1613 * We don't even need to mark it not-uptodate - nobody can expect
1614 * anything from a newly allocated buffer anyway. We used to used
1615 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1616 * don't want to mark the alias unmapped, for example - it would confuse
1617 * anyone who might pick it with bread() afterwards...
1618 *
1619 * Also.. Note that bforget() doesn't lock the buffer. So there can
1620 * be writeout I/O going on against recently-freed buffers. We don't
1621 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1622 * only if we really need to. That happens here.
1623 */
1624 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1625 {
1626 struct buffer_head *old_bh;
1627
1628 might_sleep();
1629
1630 old_bh = __find_get_block_slow(bdev, block);
1631 if (old_bh) {
1632 clear_buffer_dirty(old_bh);
1633 wait_on_buffer(old_bh);
1634 clear_buffer_req(old_bh);
1635 __brelse(old_bh);
1636 }
1637 }
1638 EXPORT_SYMBOL(unmap_underlying_metadata);
1639
1640 /*
1641 * Size is a power-of-two in the range 512..PAGE_SIZE,
1642 * and the case we care about most is PAGE_SIZE.
1643 *
1644 * So this *could* possibly be written with those
1645 * constraints in mind (relevant mostly if some
1646 * architecture has a slow bit-scan instruction)
1647 */
1648 static inline int block_size_bits(unsigned int blocksize)
1649 {
1650 return ilog2(blocksize);
1651 }
1652
1653 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1654 {
1655 BUG_ON(!PageLocked(page));
1656
1657 if (!page_has_buffers(page))
1658 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1659 return page_buffers(page);
1660 }
1661
1662 /*
1663 * NOTE! All mapped/uptodate combinations are valid:
1664 *
1665 * Mapped Uptodate Meaning
1666 *
1667 * No No "unknown" - must do get_block()
1668 * No Yes "hole" - zero-filled
1669 * Yes No "allocated" - allocated on disk, not read in
1670 * Yes Yes "valid" - allocated and up-to-date in memory.
1671 *
1672 * "Dirty" is valid only with the last case (mapped+uptodate).
1673 */
1674
1675 /*
1676 * While block_write_full_page is writing back the dirty buffers under
1677 * the page lock, whoever dirtied the buffers may decide to clean them
1678 * again at any time. We handle that by only looking at the buffer
1679 * state inside lock_buffer().
1680 *
1681 * If block_write_full_page() is called for regular writeback
1682 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1683 * locked buffer. This only can happen if someone has written the buffer
1684 * directly, with submit_bh(). At the address_space level PageWriteback
1685 * prevents this contention from occurring.
1686 *
1687 * If block_write_full_page() is called with wbc->sync_mode ==
1688 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1689 * causes the writes to be flagged as synchronous writes.
1690 */
1691 static int __block_write_full_page(struct inode *inode, struct page *page,
1692 get_block_t *get_block, struct writeback_control *wbc,
1693 bh_end_io_t *handler)
1694 {
1695 int err;
1696 sector_t block;
1697 sector_t last_block;
1698 struct buffer_head *bh, *head;
1699 unsigned int blocksize, bbits;
1700 int nr_underway = 0;
1701 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1702
1703 head = create_page_buffers(page, inode,
1704 (1 << BH_Dirty)|(1 << BH_Uptodate));
1705
1706 /*
1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1708 * here, and the (potentially unmapped) buffers may become dirty at
1709 * any time. If a buffer becomes dirty here after we've inspected it
1710 * then we just miss that fact, and the page stays dirty.
1711 *
1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 * handle that here by just cleaning them.
1714 */
1715
1716 bh = head;
1717 blocksize = bh->b_size;
1718 bbits = block_size_bits(blocksize);
1719
1720 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1721 last_block = (i_size_read(inode) - 1) >> bbits;
1722
1723 /*
1724 * Get all the dirty buffers mapped to disk addresses and
1725 * handle any aliases from the underlying blockdev's mapping.
1726 */
1727 do {
1728 if (block > last_block) {
1729 /*
1730 * mapped buffers outside i_size will occur, because
1731 * this page can be outside i_size when there is a
1732 * truncate in progress.
1733 */
1734 /*
1735 * The buffer was zeroed by block_write_full_page()
1736 */
1737 clear_buffer_dirty(bh);
1738 set_buffer_uptodate(bh);
1739 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1740 buffer_dirty(bh)) {
1741 WARN_ON(bh->b_size != blocksize);
1742 err = get_block(inode, block, bh, 1);
1743 if (err)
1744 goto recover;
1745 clear_buffer_delay(bh);
1746 if (buffer_new(bh)) {
1747 /* blockdev mappings never come here */
1748 clear_buffer_new(bh);
1749 unmap_underlying_metadata(bh->b_bdev,
1750 bh->b_blocknr);
1751 }
1752 }
1753 bh = bh->b_this_page;
1754 block++;
1755 } while (bh != head);
1756
1757 do {
1758 if (!buffer_mapped(bh))
1759 continue;
1760 /*
1761 * If it's a fully non-blocking write attempt and we cannot
1762 * lock the buffer then redirty the page. Note that this can
1763 * potentially cause a busy-wait loop from writeback threads
1764 * and kswapd activity, but those code paths have their own
1765 * higher-level throttling.
1766 */
1767 if (wbc->sync_mode != WB_SYNC_NONE) {
1768 lock_buffer(bh);
1769 } else if (!trylock_buffer(bh)) {
1770 redirty_page_for_writepage(wbc, page);
1771 continue;
1772 }
1773 if (test_clear_buffer_dirty(bh)) {
1774 mark_buffer_async_write_endio(bh, handler);
1775 } else {
1776 unlock_buffer(bh);
1777 }
1778 } while ((bh = bh->b_this_page) != head);
1779
1780 /*
1781 * The page and its buffers are protected by PageWriteback(), so we can
1782 * drop the bh refcounts early.
1783 */
1784 BUG_ON(PageWriteback(page));
1785 set_page_writeback(page);
1786
1787 do {
1788 struct buffer_head *next = bh->b_this_page;
1789 if (buffer_async_write(bh)) {
1790 submit_bh_wbc(write_op, bh, 0, wbc);
1791 nr_underway++;
1792 }
1793 bh = next;
1794 } while (bh != head);
1795 unlock_page(page);
1796
1797 err = 0;
1798 done:
1799 if (nr_underway == 0) {
1800 /*
1801 * The page was marked dirty, but the buffers were
1802 * clean. Someone wrote them back by hand with
1803 * ll_rw_block/submit_bh. A rare case.
1804 */
1805 end_page_writeback(page);
1806
1807 /*
1808 * The page and buffer_heads can be released at any time from
1809 * here on.
1810 */
1811 }
1812 return err;
1813
1814 recover:
1815 /*
1816 * ENOSPC, or some other error. We may already have added some
1817 * blocks to the file, so we need to write these out to avoid
1818 * exposing stale data.
1819 * The page is currently locked and not marked for writeback
1820 */
1821 bh = head;
1822 /* Recovery: lock and submit the mapped buffers */
1823 do {
1824 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825 !buffer_delay(bh)) {
1826 lock_buffer(bh);
1827 mark_buffer_async_write_endio(bh, handler);
1828 } else {
1829 /*
1830 * The buffer may have been set dirty during
1831 * attachment to a dirty page.
1832 */
1833 clear_buffer_dirty(bh);
1834 }
1835 } while ((bh = bh->b_this_page) != head);
1836 SetPageError(page);
1837 BUG_ON(PageWriteback(page));
1838 mapping_set_error(page->mapping, err);
1839 set_page_writeback(page);
1840 do {
1841 struct buffer_head *next = bh->b_this_page;
1842 if (buffer_async_write(bh)) {
1843 clear_buffer_dirty(bh);
1844 submit_bh_wbc(write_op, bh, 0, wbc);
1845 nr_underway++;
1846 }
1847 bh = next;
1848 } while (bh != head);
1849 unlock_page(page);
1850 goto done;
1851 }
1852
1853 /*
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1857 */
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 {
1860 unsigned int block_start, block_end;
1861 struct buffer_head *head, *bh;
1862
1863 BUG_ON(!PageLocked(page));
1864 if (!page_has_buffers(page))
1865 return;
1866
1867 bh = head = page_buffers(page);
1868 block_start = 0;
1869 do {
1870 block_end = block_start + bh->b_size;
1871
1872 if (buffer_new(bh)) {
1873 if (block_end > from && block_start < to) {
1874 if (!PageUptodate(page)) {
1875 unsigned start, size;
1876
1877 start = max(from, block_start);
1878 size = min(to, block_end) - start;
1879
1880 zero_user(page, start, size);
1881 set_buffer_uptodate(bh);
1882 }
1883
1884 clear_buffer_new(bh);
1885 mark_buffer_dirty(bh);
1886 }
1887 }
1888
1889 block_start = block_end;
1890 bh = bh->b_this_page;
1891 } while (bh != head);
1892 }
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1894
1895 static void
1896 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1897 struct iomap *iomap)
1898 {
1899 loff_t offset = block << inode->i_blkbits;
1900
1901 bh->b_bdev = iomap->bdev;
1902
1903 /*
1904 * Block points to offset in file we need to map, iomap contains
1905 * the offset at which the map starts. If the map ends before the
1906 * current block, then do not map the buffer and let the caller
1907 * handle it.
1908 */
1909 BUG_ON(offset >= iomap->offset + iomap->length);
1910
1911 switch (iomap->type) {
1912 case IOMAP_HOLE:
1913 /*
1914 * If the buffer is not up to date or beyond the current EOF,
1915 * we need to mark it as new to ensure sub-block zeroing is
1916 * executed if necessary.
1917 */
1918 if (!buffer_uptodate(bh) ||
1919 (offset >= i_size_read(inode)))
1920 set_buffer_new(bh);
1921 break;
1922 case IOMAP_DELALLOC:
1923 if (!buffer_uptodate(bh) ||
1924 (offset >= i_size_read(inode)))
1925 set_buffer_new(bh);
1926 set_buffer_uptodate(bh);
1927 set_buffer_mapped(bh);
1928 set_buffer_delay(bh);
1929 break;
1930 case IOMAP_UNWRITTEN:
1931 /*
1932 * For unwritten regions, we always need to ensure that
1933 * sub-block writes cause the regions in the block we are not
1934 * writing to are zeroed. Set the buffer as new to ensure this.
1935 */
1936 set_buffer_new(bh);
1937 set_buffer_unwritten(bh);
1938 /* FALLTHRU */
1939 case IOMAP_MAPPED:
1940 if (offset >= i_size_read(inode))
1941 set_buffer_new(bh);
1942 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1943 ((offset - iomap->offset) >> inode->i_blkbits);
1944 set_buffer_mapped(bh);
1945 break;
1946 }
1947 }
1948
1949 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1950 get_block_t *get_block, struct iomap *iomap)
1951 {
1952 unsigned from = pos & (PAGE_SIZE - 1);
1953 unsigned to = from + len;
1954 struct inode *inode = page->mapping->host;
1955 unsigned block_start, block_end;
1956 sector_t block;
1957 int err = 0;
1958 unsigned blocksize, bbits;
1959 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1960
1961 BUG_ON(!PageLocked(page));
1962 BUG_ON(from > PAGE_SIZE);
1963 BUG_ON(to > PAGE_SIZE);
1964 BUG_ON(from > to);
1965
1966 head = create_page_buffers(page, inode, 0);
1967 blocksize = head->b_size;
1968 bbits = block_size_bits(blocksize);
1969
1970 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1971
1972 for(bh = head, block_start = 0; bh != head || !block_start;
1973 block++, block_start=block_end, bh = bh->b_this_page) {
1974 block_end = block_start + blocksize;
1975 if (block_end <= from || block_start >= to) {
1976 if (PageUptodate(page)) {
1977 if (!buffer_uptodate(bh))
1978 set_buffer_uptodate(bh);
1979 }
1980 continue;
1981 }
1982 if (buffer_new(bh))
1983 clear_buffer_new(bh);
1984 if (!buffer_mapped(bh)) {
1985 WARN_ON(bh->b_size != blocksize);
1986 if (get_block) {
1987 err = get_block(inode, block, bh, 1);
1988 if (err)
1989 break;
1990 } else {
1991 iomap_to_bh(inode, block, bh, iomap);
1992 }
1993
1994 if (buffer_new(bh)) {
1995 unmap_underlying_metadata(bh->b_bdev,
1996 bh->b_blocknr);
1997 if (PageUptodate(page)) {
1998 clear_buffer_new(bh);
1999 set_buffer_uptodate(bh);
2000 mark_buffer_dirty(bh);
2001 continue;
2002 }
2003 if (block_end > to || block_start < from)
2004 zero_user_segments(page,
2005 to, block_end,
2006 block_start, from);
2007 continue;
2008 }
2009 }
2010 if (PageUptodate(page)) {
2011 if (!buffer_uptodate(bh))
2012 set_buffer_uptodate(bh);
2013 continue;
2014 }
2015 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2016 !buffer_unwritten(bh) &&
2017 (block_start < from || block_end > to)) {
2018 ll_rw_block(READ, 1, &bh);
2019 *wait_bh++=bh;
2020 }
2021 }
2022 /*
2023 * If we issued read requests - let them complete.
2024 */
2025 while(wait_bh > wait) {
2026 wait_on_buffer(*--wait_bh);
2027 if (!buffer_uptodate(*wait_bh))
2028 err = -EIO;
2029 }
2030 if (unlikely(err))
2031 page_zero_new_buffers(page, from, to);
2032 return err;
2033 }
2034
2035 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2036 get_block_t *get_block)
2037 {
2038 return __block_write_begin_int(page, pos, len, get_block, NULL);
2039 }
2040 EXPORT_SYMBOL(__block_write_begin);
2041
2042 static int __block_commit_write(struct inode *inode, struct page *page,
2043 unsigned from, unsigned to)
2044 {
2045 unsigned block_start, block_end;
2046 int partial = 0;
2047 unsigned blocksize;
2048 struct buffer_head *bh, *head;
2049
2050 bh = head = page_buffers(page);
2051 blocksize = bh->b_size;
2052
2053 block_start = 0;
2054 do {
2055 block_end = block_start + blocksize;
2056 if (block_end <= from || block_start >= to) {
2057 if (!buffer_uptodate(bh))
2058 partial = 1;
2059 } else {
2060 set_buffer_uptodate(bh);
2061 mark_buffer_dirty(bh);
2062 }
2063 clear_buffer_new(bh);
2064
2065 block_start = block_end;
2066 bh = bh->b_this_page;
2067 } while (bh != head);
2068
2069 /*
2070 * If this is a partial write which happened to make all buffers
2071 * uptodate then we can optimize away a bogus readpage() for
2072 * the next read(). Here we 'discover' whether the page went
2073 * uptodate as a result of this (potentially partial) write.
2074 */
2075 if (!partial)
2076 SetPageUptodate(page);
2077 return 0;
2078 }
2079
2080 /*
2081 * block_write_begin takes care of the basic task of block allocation and
2082 * bringing partial write blocks uptodate first.
2083 *
2084 * The filesystem needs to handle block truncation upon failure.
2085 */
2086 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2087 unsigned flags, struct page **pagep, get_block_t *get_block)
2088 {
2089 pgoff_t index = pos >> PAGE_SHIFT;
2090 struct page *page;
2091 int status;
2092
2093 page = grab_cache_page_write_begin(mapping, index, flags);
2094 if (!page)
2095 return -ENOMEM;
2096
2097 status = __block_write_begin(page, pos, len, get_block);
2098 if (unlikely(status)) {
2099 unlock_page(page);
2100 put_page(page);
2101 page = NULL;
2102 }
2103
2104 *pagep = page;
2105 return status;
2106 }
2107 EXPORT_SYMBOL(block_write_begin);
2108
2109 int block_write_end(struct file *file, struct address_space *mapping,
2110 loff_t pos, unsigned len, unsigned copied,
2111 struct page *page, void *fsdata)
2112 {
2113 struct inode *inode = mapping->host;
2114 unsigned start;
2115
2116 start = pos & (PAGE_SIZE - 1);
2117
2118 if (unlikely(copied < len)) {
2119 /*
2120 * The buffers that were written will now be uptodate, so we
2121 * don't have to worry about a readpage reading them and
2122 * overwriting a partial write. However if we have encountered
2123 * a short write and only partially written into a buffer, it
2124 * will not be marked uptodate, so a readpage might come in and
2125 * destroy our partial write.
2126 *
2127 * Do the simplest thing, and just treat any short write to a
2128 * non uptodate page as a zero-length write, and force the
2129 * caller to redo the whole thing.
2130 */
2131 if (!PageUptodate(page))
2132 copied = 0;
2133
2134 page_zero_new_buffers(page, start+copied, start+len);
2135 }
2136 flush_dcache_page(page);
2137
2138 /* This could be a short (even 0-length) commit */
2139 __block_commit_write(inode, page, start, start+copied);
2140
2141 return copied;
2142 }
2143 EXPORT_SYMBOL(block_write_end);
2144
2145 int generic_write_end(struct file *file, struct address_space *mapping,
2146 loff_t pos, unsigned len, unsigned copied,
2147 struct page *page, void *fsdata)
2148 {
2149 struct inode *inode = mapping->host;
2150 loff_t old_size = inode->i_size;
2151 int i_size_changed = 0;
2152
2153 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2154
2155 /*
2156 * No need to use i_size_read() here, the i_size
2157 * cannot change under us because we hold i_mutex.
2158 *
2159 * But it's important to update i_size while still holding page lock:
2160 * page writeout could otherwise come in and zero beyond i_size.
2161 */
2162 if (pos+copied > inode->i_size) {
2163 i_size_write(inode, pos+copied);
2164 i_size_changed = 1;
2165 }
2166
2167 unlock_page(page);
2168 put_page(page);
2169
2170 if (old_size < pos)
2171 pagecache_isize_extended(inode, old_size, pos);
2172 /*
2173 * Don't mark the inode dirty under page lock. First, it unnecessarily
2174 * makes the holding time of page lock longer. Second, it forces lock
2175 * ordering of page lock and transaction start for journaling
2176 * filesystems.
2177 */
2178 if (i_size_changed)
2179 mark_inode_dirty(inode);
2180
2181 return copied;
2182 }
2183 EXPORT_SYMBOL(generic_write_end);
2184
2185 /*
2186 * block_is_partially_uptodate checks whether buffers within a page are
2187 * uptodate or not.
2188 *
2189 * Returns true if all buffers which correspond to a file portion
2190 * we want to read are uptodate.
2191 */
2192 int block_is_partially_uptodate(struct page *page, unsigned long from,
2193 unsigned long count)
2194 {
2195 unsigned block_start, block_end, blocksize;
2196 unsigned to;
2197 struct buffer_head *bh, *head;
2198 int ret = 1;
2199
2200 if (!page_has_buffers(page))
2201 return 0;
2202
2203 head = page_buffers(page);
2204 blocksize = head->b_size;
2205 to = min_t(unsigned, PAGE_SIZE - from, count);
2206 to = from + to;
2207 if (from < blocksize && to > PAGE_SIZE - blocksize)
2208 return 0;
2209
2210 bh = head;
2211 block_start = 0;
2212 do {
2213 block_end = block_start + blocksize;
2214 if (block_end > from && block_start < to) {
2215 if (!buffer_uptodate(bh)) {
2216 ret = 0;
2217 break;
2218 }
2219 if (block_end >= to)
2220 break;
2221 }
2222 block_start = block_end;
2223 bh = bh->b_this_page;
2224 } while (bh != head);
2225
2226 return ret;
2227 }
2228 EXPORT_SYMBOL(block_is_partially_uptodate);
2229
2230 /*
2231 * Generic "read page" function for block devices that have the normal
2232 * get_block functionality. This is most of the block device filesystems.
2233 * Reads the page asynchronously --- the unlock_buffer() and
2234 * set/clear_buffer_uptodate() functions propagate buffer state into the
2235 * page struct once IO has completed.
2236 */
2237 int block_read_full_page(struct page *page, get_block_t *get_block)
2238 {
2239 struct inode *inode = page->mapping->host;
2240 sector_t iblock, lblock;
2241 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2242 unsigned int blocksize, bbits;
2243 int nr, i;
2244 int fully_mapped = 1;
2245
2246 head = create_page_buffers(page, inode, 0);
2247 blocksize = head->b_size;
2248 bbits = block_size_bits(blocksize);
2249
2250 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2251 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2252 bh = head;
2253 nr = 0;
2254 i = 0;
2255
2256 do {
2257 if (buffer_uptodate(bh))
2258 continue;
2259
2260 if (!buffer_mapped(bh)) {
2261 int err = 0;
2262
2263 fully_mapped = 0;
2264 if (iblock < lblock) {
2265 WARN_ON(bh->b_size != blocksize);
2266 err = get_block(inode, iblock, bh, 0);
2267 if (err)
2268 SetPageError(page);
2269 }
2270 if (!buffer_mapped(bh)) {
2271 zero_user(page, i * blocksize, blocksize);
2272 if (!err)
2273 set_buffer_uptodate(bh);
2274 continue;
2275 }
2276 /*
2277 * get_block() might have updated the buffer
2278 * synchronously
2279 */
2280 if (buffer_uptodate(bh))
2281 continue;
2282 }
2283 arr[nr++] = bh;
2284 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2285
2286 if (fully_mapped)
2287 SetPageMappedToDisk(page);
2288
2289 if (!nr) {
2290 /*
2291 * All buffers are uptodate - we can set the page uptodate
2292 * as well. But not if get_block() returned an error.
2293 */
2294 if (!PageError(page))
2295 SetPageUptodate(page);
2296 unlock_page(page);
2297 return 0;
2298 }
2299
2300 /* Stage two: lock the buffers */
2301 for (i = 0; i < nr; i++) {
2302 bh = arr[i];
2303 lock_buffer(bh);
2304 mark_buffer_async_read(bh);
2305 }
2306
2307 /*
2308 * Stage 3: start the IO. Check for uptodateness
2309 * inside the buffer lock in case another process reading
2310 * the underlying blockdev brought it uptodate (the sct fix).
2311 */
2312 for (i = 0; i < nr; i++) {
2313 bh = arr[i];
2314 if (buffer_uptodate(bh))
2315 end_buffer_async_read(bh, 1);
2316 else
2317 submit_bh(READ, bh);
2318 }
2319 return 0;
2320 }
2321 EXPORT_SYMBOL(block_read_full_page);
2322
2323 /* utility function for filesystems that need to do work on expanding
2324 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2325 * deal with the hole.
2326 */
2327 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2328 {
2329 struct address_space *mapping = inode->i_mapping;
2330 struct page *page;
2331 void *fsdata;
2332 int err;
2333
2334 err = inode_newsize_ok(inode, size);
2335 if (err)
2336 goto out;
2337
2338 err = pagecache_write_begin(NULL, mapping, size, 0,
2339 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2340 &page, &fsdata);
2341 if (err)
2342 goto out;
2343
2344 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2345 BUG_ON(err > 0);
2346
2347 out:
2348 return err;
2349 }
2350 EXPORT_SYMBOL(generic_cont_expand_simple);
2351
2352 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2353 loff_t pos, loff_t *bytes)
2354 {
2355 struct inode *inode = mapping->host;
2356 unsigned blocksize = 1 << inode->i_blkbits;
2357 struct page *page;
2358 void *fsdata;
2359 pgoff_t index, curidx;
2360 loff_t curpos;
2361 unsigned zerofrom, offset, len;
2362 int err = 0;
2363
2364 index = pos >> PAGE_SHIFT;
2365 offset = pos & ~PAGE_MASK;
2366
2367 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2368 zerofrom = curpos & ~PAGE_MASK;
2369 if (zerofrom & (blocksize-1)) {
2370 *bytes |= (blocksize-1);
2371 (*bytes)++;
2372 }
2373 len = PAGE_SIZE - zerofrom;
2374
2375 err = pagecache_write_begin(file, mapping, curpos, len,
2376 AOP_FLAG_UNINTERRUPTIBLE,
2377 &page, &fsdata);
2378 if (err)
2379 goto out;
2380 zero_user(page, zerofrom, len);
2381 err = pagecache_write_end(file, mapping, curpos, len, len,
2382 page, fsdata);
2383 if (err < 0)
2384 goto out;
2385 BUG_ON(err != len);
2386 err = 0;
2387
2388 balance_dirty_pages_ratelimited(mapping);
2389
2390 if (unlikely(fatal_signal_pending(current))) {
2391 err = -EINTR;
2392 goto out;
2393 }
2394 }
2395
2396 /* page covers the boundary, find the boundary offset */
2397 if (index == curidx) {
2398 zerofrom = curpos & ~PAGE_MASK;
2399 /* if we will expand the thing last block will be filled */
2400 if (offset <= zerofrom) {
2401 goto out;
2402 }
2403 if (zerofrom & (blocksize-1)) {
2404 *bytes |= (blocksize-1);
2405 (*bytes)++;
2406 }
2407 len = offset - zerofrom;
2408
2409 err = pagecache_write_begin(file, mapping, curpos, len,
2410 AOP_FLAG_UNINTERRUPTIBLE,
2411 &page, &fsdata);
2412 if (err)
2413 goto out;
2414 zero_user(page, zerofrom, len);
2415 err = pagecache_write_end(file, mapping, curpos, len, len,
2416 page, fsdata);
2417 if (err < 0)
2418 goto out;
2419 BUG_ON(err != len);
2420 err = 0;
2421 }
2422 out:
2423 return err;
2424 }
2425
2426 /*
2427 * For moronic filesystems that do not allow holes in file.
2428 * We may have to extend the file.
2429 */
2430 int cont_write_begin(struct file *file, struct address_space *mapping,
2431 loff_t pos, unsigned len, unsigned flags,
2432 struct page **pagep, void **fsdata,
2433 get_block_t *get_block, loff_t *bytes)
2434 {
2435 struct inode *inode = mapping->host;
2436 unsigned blocksize = 1 << inode->i_blkbits;
2437 unsigned zerofrom;
2438 int err;
2439
2440 err = cont_expand_zero(file, mapping, pos, bytes);
2441 if (err)
2442 return err;
2443
2444 zerofrom = *bytes & ~PAGE_MASK;
2445 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2446 *bytes |= (blocksize-1);
2447 (*bytes)++;
2448 }
2449
2450 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2451 }
2452 EXPORT_SYMBOL(cont_write_begin);
2453
2454 int block_commit_write(struct page *page, unsigned from, unsigned to)
2455 {
2456 struct inode *inode = page->mapping->host;
2457 __block_commit_write(inode,page,from,to);
2458 return 0;
2459 }
2460 EXPORT_SYMBOL(block_commit_write);
2461
2462 /*
2463 * block_page_mkwrite() is not allowed to change the file size as it gets
2464 * called from a page fault handler when a page is first dirtied. Hence we must
2465 * be careful to check for EOF conditions here. We set the page up correctly
2466 * for a written page which means we get ENOSPC checking when writing into
2467 * holes and correct delalloc and unwritten extent mapping on filesystems that
2468 * support these features.
2469 *
2470 * We are not allowed to take the i_mutex here so we have to play games to
2471 * protect against truncate races as the page could now be beyond EOF. Because
2472 * truncate writes the inode size before removing pages, once we have the
2473 * page lock we can determine safely if the page is beyond EOF. If it is not
2474 * beyond EOF, then the page is guaranteed safe against truncation until we
2475 * unlock the page.
2476 *
2477 * Direct callers of this function should protect against filesystem freezing
2478 * using sb_start_pagefault() - sb_end_pagefault() functions.
2479 */
2480 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2481 get_block_t get_block)
2482 {
2483 struct page *page = vmf->page;
2484 struct inode *inode = file_inode(vma->vm_file);
2485 unsigned long end;
2486 loff_t size;
2487 int ret;
2488
2489 lock_page(page);
2490 size = i_size_read(inode);
2491 if ((page->mapping != inode->i_mapping) ||
2492 (page_offset(page) > size)) {
2493 /* We overload EFAULT to mean page got truncated */
2494 ret = -EFAULT;
2495 goto out_unlock;
2496 }
2497
2498 /* page is wholly or partially inside EOF */
2499 if (((page->index + 1) << PAGE_SHIFT) > size)
2500 end = size & ~PAGE_MASK;
2501 else
2502 end = PAGE_SIZE;
2503
2504 ret = __block_write_begin(page, 0, end, get_block);
2505 if (!ret)
2506 ret = block_commit_write(page, 0, end);
2507
2508 if (unlikely(ret < 0))
2509 goto out_unlock;
2510 set_page_dirty(page);
2511 wait_for_stable_page(page);
2512 return 0;
2513 out_unlock:
2514 unlock_page(page);
2515 return ret;
2516 }
2517 EXPORT_SYMBOL(block_page_mkwrite);
2518
2519 /*
2520 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2521 * immediately, while under the page lock. So it needs a special end_io
2522 * handler which does not touch the bh after unlocking it.
2523 */
2524 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2525 {
2526 __end_buffer_read_notouch(bh, uptodate);
2527 }
2528
2529 /*
2530 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2531 * the page (converting it to circular linked list and taking care of page
2532 * dirty races).
2533 */
2534 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2535 {
2536 struct buffer_head *bh;
2537
2538 BUG_ON(!PageLocked(page));
2539
2540 spin_lock(&page->mapping->private_lock);
2541 bh = head;
2542 do {
2543 if (PageDirty(page))
2544 set_buffer_dirty(bh);
2545 if (!bh->b_this_page)
2546 bh->b_this_page = head;
2547 bh = bh->b_this_page;
2548 } while (bh != head);
2549 attach_page_buffers(page, head);
2550 spin_unlock(&page->mapping->private_lock);
2551 }
2552
2553 /*
2554 * On entry, the page is fully not uptodate.
2555 * On exit the page is fully uptodate in the areas outside (from,to)
2556 * The filesystem needs to handle block truncation upon failure.
2557 */
2558 int nobh_write_begin(struct address_space *mapping,
2559 loff_t pos, unsigned len, unsigned flags,
2560 struct page **pagep, void **fsdata,
2561 get_block_t *get_block)
2562 {
2563 struct inode *inode = mapping->host;
2564 const unsigned blkbits = inode->i_blkbits;
2565 const unsigned blocksize = 1 << blkbits;
2566 struct buffer_head *head, *bh;
2567 struct page *page;
2568 pgoff_t index;
2569 unsigned from, to;
2570 unsigned block_in_page;
2571 unsigned block_start, block_end;
2572 sector_t block_in_file;
2573 int nr_reads = 0;
2574 int ret = 0;
2575 int is_mapped_to_disk = 1;
2576
2577 index = pos >> PAGE_SHIFT;
2578 from = pos & (PAGE_SIZE - 1);
2579 to = from + len;
2580
2581 page = grab_cache_page_write_begin(mapping, index, flags);
2582 if (!page)
2583 return -ENOMEM;
2584 *pagep = page;
2585 *fsdata = NULL;
2586
2587 if (page_has_buffers(page)) {
2588 ret = __block_write_begin(page, pos, len, get_block);
2589 if (unlikely(ret))
2590 goto out_release;
2591 return ret;
2592 }
2593
2594 if (PageMappedToDisk(page))
2595 return 0;
2596
2597 /*
2598 * Allocate buffers so that we can keep track of state, and potentially
2599 * attach them to the page if an error occurs. In the common case of
2600 * no error, they will just be freed again without ever being attached
2601 * to the page (which is all OK, because we're under the page lock).
2602 *
2603 * Be careful: the buffer linked list is a NULL terminated one, rather
2604 * than the circular one we're used to.
2605 */
2606 head = alloc_page_buffers(page, blocksize, 0);
2607 if (!head) {
2608 ret = -ENOMEM;
2609 goto out_release;
2610 }
2611
2612 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2613
2614 /*
2615 * We loop across all blocks in the page, whether or not they are
2616 * part of the affected region. This is so we can discover if the
2617 * page is fully mapped-to-disk.
2618 */
2619 for (block_start = 0, block_in_page = 0, bh = head;
2620 block_start < PAGE_SIZE;
2621 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2622 int create;
2623
2624 block_end = block_start + blocksize;
2625 bh->b_state = 0;
2626 create = 1;
2627 if (block_start >= to)
2628 create = 0;
2629 ret = get_block(inode, block_in_file + block_in_page,
2630 bh, create);
2631 if (ret)
2632 goto failed;
2633 if (!buffer_mapped(bh))
2634 is_mapped_to_disk = 0;
2635 if (buffer_new(bh))
2636 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2637 if (PageUptodate(page)) {
2638 set_buffer_uptodate(bh);
2639 continue;
2640 }
2641 if (buffer_new(bh) || !buffer_mapped(bh)) {
2642 zero_user_segments(page, block_start, from,
2643 to, block_end);
2644 continue;
2645 }
2646 if (buffer_uptodate(bh))
2647 continue; /* reiserfs does this */
2648 if (block_start < from || block_end > to) {
2649 lock_buffer(bh);
2650 bh->b_end_io = end_buffer_read_nobh;
2651 submit_bh(READ, bh);
2652 nr_reads++;
2653 }
2654 }
2655
2656 if (nr_reads) {
2657 /*
2658 * The page is locked, so these buffers are protected from
2659 * any VM or truncate activity. Hence we don't need to care
2660 * for the buffer_head refcounts.
2661 */
2662 for (bh = head; bh; bh = bh->b_this_page) {
2663 wait_on_buffer(bh);
2664 if (!buffer_uptodate(bh))
2665 ret = -EIO;
2666 }
2667 if (ret)
2668 goto failed;
2669 }
2670
2671 if (is_mapped_to_disk)
2672 SetPageMappedToDisk(page);
2673
2674 *fsdata = head; /* to be released by nobh_write_end */
2675
2676 return 0;
2677
2678 failed:
2679 BUG_ON(!ret);
2680 /*
2681 * Error recovery is a bit difficult. We need to zero out blocks that
2682 * were newly allocated, and dirty them to ensure they get written out.
2683 * Buffers need to be attached to the page at this point, otherwise
2684 * the handling of potential IO errors during writeout would be hard
2685 * (could try doing synchronous writeout, but what if that fails too?)
2686 */
2687 attach_nobh_buffers(page, head);
2688 page_zero_new_buffers(page, from, to);
2689
2690 out_release:
2691 unlock_page(page);
2692 put_page(page);
2693 *pagep = NULL;
2694
2695 return ret;
2696 }
2697 EXPORT_SYMBOL(nobh_write_begin);
2698
2699 int nobh_write_end(struct file *file, struct address_space *mapping,
2700 loff_t pos, unsigned len, unsigned copied,
2701 struct page *page, void *fsdata)
2702 {
2703 struct inode *inode = page->mapping->host;
2704 struct buffer_head *head = fsdata;
2705 struct buffer_head *bh;
2706 BUG_ON(fsdata != NULL && page_has_buffers(page));
2707
2708 if (unlikely(copied < len) && head)
2709 attach_nobh_buffers(page, head);
2710 if (page_has_buffers(page))
2711 return generic_write_end(file, mapping, pos, len,
2712 copied, page, fsdata);
2713
2714 SetPageUptodate(page);
2715 set_page_dirty(page);
2716 if (pos+copied > inode->i_size) {
2717 i_size_write(inode, pos+copied);
2718 mark_inode_dirty(inode);
2719 }
2720
2721 unlock_page(page);
2722 put_page(page);
2723
2724 while (head) {
2725 bh = head;
2726 head = head->b_this_page;
2727 free_buffer_head(bh);
2728 }
2729
2730 return copied;
2731 }
2732 EXPORT_SYMBOL(nobh_write_end);
2733
2734 /*
2735 * nobh_writepage() - based on block_full_write_page() except
2736 * that it tries to operate without attaching bufferheads to
2737 * the page.
2738 */
2739 int nobh_writepage(struct page *page, get_block_t *get_block,
2740 struct writeback_control *wbc)
2741 {
2742 struct inode * const inode = page->mapping->host;
2743 loff_t i_size = i_size_read(inode);
2744 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2745 unsigned offset;
2746 int ret;
2747
2748 /* Is the page fully inside i_size? */
2749 if (page->index < end_index)
2750 goto out;
2751
2752 /* Is the page fully outside i_size? (truncate in progress) */
2753 offset = i_size & (PAGE_SIZE-1);
2754 if (page->index >= end_index+1 || !offset) {
2755 /*
2756 * The page may have dirty, unmapped buffers. For example,
2757 * they may have been added in ext3_writepage(). Make them
2758 * freeable here, so the page does not leak.
2759 */
2760 #if 0
2761 /* Not really sure about this - do we need this ? */
2762 if (page->mapping->a_ops->invalidatepage)
2763 page->mapping->a_ops->invalidatepage(page, offset);
2764 #endif
2765 unlock_page(page);
2766 return 0; /* don't care */
2767 }
2768
2769 /*
2770 * The page straddles i_size. It must be zeroed out on each and every
2771 * writepage invocation because it may be mmapped. "A file is mapped
2772 * in multiples of the page size. For a file that is not a multiple of
2773 * the page size, the remaining memory is zeroed when mapped, and
2774 * writes to that region are not written out to the file."
2775 */
2776 zero_user_segment(page, offset, PAGE_SIZE);
2777 out:
2778 ret = mpage_writepage(page, get_block, wbc);
2779 if (ret == -EAGAIN)
2780 ret = __block_write_full_page(inode, page, get_block, wbc,
2781 end_buffer_async_write);
2782 return ret;
2783 }
2784 EXPORT_SYMBOL(nobh_writepage);
2785
2786 int nobh_truncate_page(struct address_space *mapping,
2787 loff_t from, get_block_t *get_block)
2788 {
2789 pgoff_t index = from >> PAGE_SHIFT;
2790 unsigned offset = from & (PAGE_SIZE-1);
2791 unsigned blocksize;
2792 sector_t iblock;
2793 unsigned length, pos;
2794 struct inode *inode = mapping->host;
2795 struct page *page;
2796 struct buffer_head map_bh;
2797 int err;
2798
2799 blocksize = 1 << inode->i_blkbits;
2800 length = offset & (blocksize - 1);
2801
2802 /* Block boundary? Nothing to do */
2803 if (!length)
2804 return 0;
2805
2806 length = blocksize - length;
2807 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2808
2809 page = grab_cache_page(mapping, index);
2810 err = -ENOMEM;
2811 if (!page)
2812 goto out;
2813
2814 if (page_has_buffers(page)) {
2815 has_buffers:
2816 unlock_page(page);
2817 put_page(page);
2818 return block_truncate_page(mapping, from, get_block);
2819 }
2820
2821 /* Find the buffer that contains "offset" */
2822 pos = blocksize;
2823 while (offset >= pos) {
2824 iblock++;
2825 pos += blocksize;
2826 }
2827
2828 map_bh.b_size = blocksize;
2829 map_bh.b_state = 0;
2830 err = get_block(inode, iblock, &map_bh, 0);
2831 if (err)
2832 goto unlock;
2833 /* unmapped? It's a hole - nothing to do */
2834 if (!buffer_mapped(&map_bh))
2835 goto unlock;
2836
2837 /* Ok, it's mapped. Make sure it's up-to-date */
2838 if (!PageUptodate(page)) {
2839 err = mapping->a_ops->readpage(NULL, page);
2840 if (err) {
2841 put_page(page);
2842 goto out;
2843 }
2844 lock_page(page);
2845 if (!PageUptodate(page)) {
2846 err = -EIO;
2847 goto unlock;
2848 }
2849 if (page_has_buffers(page))
2850 goto has_buffers;
2851 }
2852 zero_user(page, offset, length);
2853 set_page_dirty(page);
2854 err = 0;
2855
2856 unlock:
2857 unlock_page(page);
2858 put_page(page);
2859 out:
2860 return err;
2861 }
2862 EXPORT_SYMBOL(nobh_truncate_page);
2863
2864 int block_truncate_page(struct address_space *mapping,
2865 loff_t from, get_block_t *get_block)
2866 {
2867 pgoff_t index = from >> PAGE_SHIFT;
2868 unsigned offset = from & (PAGE_SIZE-1);
2869 unsigned blocksize;
2870 sector_t iblock;
2871 unsigned length, pos;
2872 struct inode *inode = mapping->host;
2873 struct page *page;
2874 struct buffer_head *bh;
2875 int err;
2876
2877 blocksize = 1 << inode->i_blkbits;
2878 length = offset & (blocksize - 1);
2879
2880 /* Block boundary? Nothing to do */
2881 if (!length)
2882 return 0;
2883
2884 length = blocksize - length;
2885 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2886
2887 page = grab_cache_page(mapping, index);
2888 err = -ENOMEM;
2889 if (!page)
2890 goto out;
2891
2892 if (!page_has_buffers(page))
2893 create_empty_buffers(page, blocksize, 0);
2894
2895 /* Find the buffer that contains "offset" */
2896 bh = page_buffers(page);
2897 pos = blocksize;
2898 while (offset >= pos) {
2899 bh = bh->b_this_page;
2900 iblock++;
2901 pos += blocksize;
2902 }
2903
2904 err = 0;
2905 if (!buffer_mapped(bh)) {
2906 WARN_ON(bh->b_size != blocksize);
2907 err = get_block(inode, iblock, bh, 0);
2908 if (err)
2909 goto unlock;
2910 /* unmapped? It's a hole - nothing to do */
2911 if (!buffer_mapped(bh))
2912 goto unlock;
2913 }
2914
2915 /* Ok, it's mapped. Make sure it's up-to-date */
2916 if (PageUptodate(page))
2917 set_buffer_uptodate(bh);
2918
2919 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2920 err = -EIO;
2921 ll_rw_block(READ, 1, &bh);
2922 wait_on_buffer(bh);
2923 /* Uhhuh. Read error. Complain and punt. */
2924 if (!buffer_uptodate(bh))
2925 goto unlock;
2926 }
2927
2928 zero_user(page, offset, length);
2929 mark_buffer_dirty(bh);
2930 err = 0;
2931
2932 unlock:
2933 unlock_page(page);
2934 put_page(page);
2935 out:
2936 return err;
2937 }
2938 EXPORT_SYMBOL(block_truncate_page);
2939
2940 /*
2941 * The generic ->writepage function for buffer-backed address_spaces
2942 */
2943 int block_write_full_page(struct page *page, get_block_t *get_block,
2944 struct writeback_control *wbc)
2945 {
2946 struct inode * const inode = page->mapping->host;
2947 loff_t i_size = i_size_read(inode);
2948 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2949 unsigned offset;
2950
2951 /* Is the page fully inside i_size? */
2952 if (page->index < end_index)
2953 return __block_write_full_page(inode, page, get_block, wbc,
2954 end_buffer_async_write);
2955
2956 /* Is the page fully outside i_size? (truncate in progress) */
2957 offset = i_size & (PAGE_SIZE-1);
2958 if (page->index >= end_index+1 || !offset) {
2959 /*
2960 * The page may have dirty, unmapped buffers. For example,
2961 * they may have been added in ext3_writepage(). Make them
2962 * freeable here, so the page does not leak.
2963 */
2964 do_invalidatepage(page, 0, PAGE_SIZE);
2965 unlock_page(page);
2966 return 0; /* don't care */
2967 }
2968
2969 /*
2970 * The page straddles i_size. It must be zeroed out on each and every
2971 * writepage invocation because it may be mmapped. "A file is mapped
2972 * in multiples of the page size. For a file that is not a multiple of
2973 * the page size, the remaining memory is zeroed when mapped, and
2974 * writes to that region are not written out to the file."
2975 */
2976 zero_user_segment(page, offset, PAGE_SIZE);
2977 return __block_write_full_page(inode, page, get_block, wbc,
2978 end_buffer_async_write);
2979 }
2980 EXPORT_SYMBOL(block_write_full_page);
2981
2982 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2983 get_block_t *get_block)
2984 {
2985 struct buffer_head tmp;
2986 struct inode *inode = mapping->host;
2987 tmp.b_state = 0;
2988 tmp.b_blocknr = 0;
2989 tmp.b_size = 1 << inode->i_blkbits;
2990 get_block(inode, block, &tmp, 0);
2991 return tmp.b_blocknr;
2992 }
2993 EXPORT_SYMBOL(generic_block_bmap);
2994
2995 static void end_bio_bh_io_sync(struct bio *bio)
2996 {
2997 struct buffer_head *bh = bio->bi_private;
2998
2999 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3000 set_bit(BH_Quiet, &bh->b_state);
3001
3002 bh->b_end_io(bh, !bio->bi_error);
3003 bio_put(bio);
3004 }
3005
3006 /*
3007 * This allows us to do IO even on the odd last sectors
3008 * of a device, even if the block size is some multiple
3009 * of the physical sector size.
3010 *
3011 * We'll just truncate the bio to the size of the device,
3012 * and clear the end of the buffer head manually.
3013 *
3014 * Truly out-of-range accesses will turn into actual IO
3015 * errors, this only handles the "we need to be able to
3016 * do IO at the final sector" case.
3017 */
3018 void guard_bio_eod(int rw, struct bio *bio)
3019 {
3020 sector_t maxsector;
3021 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3022 unsigned truncated_bytes;
3023
3024 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3025 if (!maxsector)
3026 return;
3027
3028 /*
3029 * If the *whole* IO is past the end of the device,
3030 * let it through, and the IO layer will turn it into
3031 * an EIO.
3032 */
3033 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3034 return;
3035
3036 maxsector -= bio->bi_iter.bi_sector;
3037 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3038 return;
3039
3040 /* Uhhuh. We've got a bio that straddles the device size! */
3041 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3042
3043 /* Truncate the bio.. */
3044 bio->bi_iter.bi_size -= truncated_bytes;
3045 bvec->bv_len -= truncated_bytes;
3046
3047 /* ..and clear the end of the buffer for reads */
3048 if ((rw & RW_MASK) == READ) {
3049 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3050 truncated_bytes);
3051 }
3052 }
3053
3054 static int submit_bh_wbc(int rw, struct buffer_head *bh,
3055 unsigned long bio_flags, struct writeback_control *wbc)
3056 {
3057 struct bio *bio;
3058
3059 BUG_ON(!buffer_locked(bh));
3060 BUG_ON(!buffer_mapped(bh));
3061 BUG_ON(!bh->b_end_io);
3062 BUG_ON(buffer_delay(bh));
3063 BUG_ON(buffer_unwritten(bh));
3064
3065 /*
3066 * Only clear out a write error when rewriting
3067 */
3068 if (test_set_buffer_req(bh) && (rw & WRITE))
3069 clear_buffer_write_io_error(bh);
3070
3071 /*
3072 * from here on down, it's all bio -- do the initial mapping,
3073 * submit_bio -> generic_make_request may further map this bio around
3074 */
3075 bio = bio_alloc(GFP_NOIO, 1);
3076
3077 if (wbc) {
3078 wbc_init_bio(wbc, bio);
3079 wbc_account_io(wbc, bh->b_page, bh->b_size);
3080 }
3081
3082 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3083 bio->bi_bdev = bh->b_bdev;
3084
3085 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3086 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3087
3088 bio->bi_end_io = end_bio_bh_io_sync;
3089 bio->bi_private = bh;
3090 bio->bi_flags |= bio_flags;
3091
3092 /* Take care of bh's that straddle the end of the device */
3093 guard_bio_eod(rw, bio);
3094
3095 if (buffer_meta(bh))
3096 rw |= REQ_META;
3097 if (buffer_prio(bh))
3098 rw |= REQ_PRIO;
3099
3100 submit_bio(rw, bio);
3101 return 0;
3102 }
3103
3104 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3105 {
3106 return submit_bh_wbc(rw, bh, bio_flags, NULL);
3107 }
3108 EXPORT_SYMBOL_GPL(_submit_bh);
3109
3110 int submit_bh(int rw, struct buffer_head *bh)
3111 {
3112 return submit_bh_wbc(rw, bh, 0, NULL);
3113 }
3114 EXPORT_SYMBOL(submit_bh);
3115
3116 /**
3117 * ll_rw_block: low-level access to block devices (DEPRECATED)
3118 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3119 * @nr: number of &struct buffer_heads in the array
3120 * @bhs: array of pointers to &struct buffer_head
3121 *
3122 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3123 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3124 * %READA option is described in the documentation for generic_make_request()
3125 * which ll_rw_block() calls.
3126 *
3127 * This function drops any buffer that it cannot get a lock on (with the
3128 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3129 * request, and any buffer that appears to be up-to-date when doing read
3130 * request. Further it marks as clean buffers that are processed for
3131 * writing (the buffer cache won't assume that they are actually clean
3132 * until the buffer gets unlocked).
3133 *
3134 * ll_rw_block sets b_end_io to simple completion handler that marks
3135 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3136 * any waiters.
3137 *
3138 * All of the buffers must be for the same device, and must also be a
3139 * multiple of the current approved size for the device.
3140 */
3141 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3142 {
3143 int i;
3144
3145 for (i = 0; i < nr; i++) {
3146 struct buffer_head *bh = bhs[i];
3147
3148 if (!trylock_buffer(bh))
3149 continue;
3150 if (rw == WRITE) {
3151 if (test_clear_buffer_dirty(bh)) {
3152 bh->b_end_io = end_buffer_write_sync;
3153 get_bh(bh);
3154 submit_bh(WRITE, bh);
3155 continue;
3156 }
3157 } else {
3158 if (!buffer_uptodate(bh)) {
3159 bh->b_end_io = end_buffer_read_sync;
3160 get_bh(bh);
3161 submit_bh(rw, bh);
3162 continue;
3163 }
3164 }
3165 unlock_buffer(bh);
3166 }
3167 }
3168 EXPORT_SYMBOL(ll_rw_block);
3169
3170 void write_dirty_buffer(struct buffer_head *bh, int rw)
3171 {
3172 lock_buffer(bh);
3173 if (!test_clear_buffer_dirty(bh)) {
3174 unlock_buffer(bh);
3175 return;
3176 }
3177 bh->b_end_io = end_buffer_write_sync;
3178 get_bh(bh);
3179 submit_bh(rw, bh);
3180 }
3181 EXPORT_SYMBOL(write_dirty_buffer);
3182
3183 /*
3184 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3185 * and then start new I/O and then wait upon it. The caller must have a ref on
3186 * the buffer_head.
3187 */
3188 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3189 {
3190 int ret = 0;
3191
3192 WARN_ON(atomic_read(&bh->b_count) < 1);
3193 lock_buffer(bh);
3194 if (test_clear_buffer_dirty(bh)) {
3195 get_bh(bh);
3196 bh->b_end_io = end_buffer_write_sync;
3197 ret = submit_bh(rw, bh);
3198 wait_on_buffer(bh);
3199 if (!ret && !buffer_uptodate(bh))
3200 ret = -EIO;
3201 } else {
3202 unlock_buffer(bh);
3203 }
3204 return ret;
3205 }
3206 EXPORT_SYMBOL(__sync_dirty_buffer);
3207
3208 int sync_dirty_buffer(struct buffer_head *bh)
3209 {
3210 return __sync_dirty_buffer(bh, WRITE_SYNC);
3211 }
3212 EXPORT_SYMBOL(sync_dirty_buffer);
3213
3214 /*
3215 * try_to_free_buffers() checks if all the buffers on this particular page
3216 * are unused, and releases them if so.
3217 *
3218 * Exclusion against try_to_free_buffers may be obtained by either
3219 * locking the page or by holding its mapping's private_lock.
3220 *
3221 * If the page is dirty but all the buffers are clean then we need to
3222 * be sure to mark the page clean as well. This is because the page
3223 * may be against a block device, and a later reattachment of buffers
3224 * to a dirty page will set *all* buffers dirty. Which would corrupt
3225 * filesystem data on the same device.
3226 *
3227 * The same applies to regular filesystem pages: if all the buffers are
3228 * clean then we set the page clean and proceed. To do that, we require
3229 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3230 * private_lock.
3231 *
3232 * try_to_free_buffers() is non-blocking.
3233 */
3234 static inline int buffer_busy(struct buffer_head *bh)
3235 {
3236 return atomic_read(&bh->b_count) |
3237 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3238 }
3239
3240 static int
3241 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3242 {
3243 struct buffer_head *head = page_buffers(page);
3244 struct buffer_head *bh;
3245
3246 bh = head;
3247 do {
3248 if (buffer_write_io_error(bh) && page->mapping)
3249 set_bit(AS_EIO, &page->mapping->flags);
3250 if (buffer_busy(bh))
3251 goto failed;
3252 bh = bh->b_this_page;
3253 } while (bh != head);
3254
3255 do {
3256 struct buffer_head *next = bh->b_this_page;
3257
3258 if (bh->b_assoc_map)
3259 __remove_assoc_queue(bh);
3260 bh = next;
3261 } while (bh != head);
3262 *buffers_to_free = head;
3263 __clear_page_buffers(page);
3264 return 1;
3265 failed:
3266 return 0;
3267 }
3268
3269 int try_to_free_buffers(struct page *page)
3270 {
3271 struct address_space * const mapping = page->mapping;
3272 struct buffer_head *buffers_to_free = NULL;
3273 int ret = 0;
3274
3275 BUG_ON(!PageLocked(page));
3276 if (PageWriteback(page))
3277 return 0;
3278
3279 if (mapping == NULL) { /* can this still happen? */
3280 ret = drop_buffers(page, &buffers_to_free);
3281 goto out;
3282 }
3283
3284 spin_lock(&mapping->private_lock);
3285 ret = drop_buffers(page, &buffers_to_free);
3286
3287 /*
3288 * If the filesystem writes its buffers by hand (eg ext3)
3289 * then we can have clean buffers against a dirty page. We
3290 * clean the page here; otherwise the VM will never notice
3291 * that the filesystem did any IO at all.
3292 *
3293 * Also, during truncate, discard_buffer will have marked all
3294 * the page's buffers clean. We discover that here and clean
3295 * the page also.
3296 *
3297 * private_lock must be held over this entire operation in order
3298 * to synchronise against __set_page_dirty_buffers and prevent the
3299 * dirty bit from being lost.
3300 */
3301 if (ret)
3302 cancel_dirty_page(page);
3303 spin_unlock(&mapping->private_lock);
3304 out:
3305 if (buffers_to_free) {
3306 struct buffer_head *bh = buffers_to_free;
3307
3308 do {
3309 struct buffer_head *next = bh->b_this_page;
3310 free_buffer_head(bh);
3311 bh = next;
3312 } while (bh != buffers_to_free);
3313 }
3314 return ret;
3315 }
3316 EXPORT_SYMBOL(try_to_free_buffers);
3317
3318 /*
3319 * There are no bdflush tunables left. But distributions are
3320 * still running obsolete flush daemons, so we terminate them here.
3321 *
3322 * Use of bdflush() is deprecated and will be removed in a future kernel.
3323 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3324 */
3325 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3326 {
3327 static int msg_count;
3328
3329 if (!capable(CAP_SYS_ADMIN))
3330 return -EPERM;
3331
3332 if (msg_count < 5) {
3333 msg_count++;
3334 printk(KERN_INFO
3335 "warning: process `%s' used the obsolete bdflush"
3336 " system call\n", current->comm);
3337 printk(KERN_INFO "Fix your initscripts?\n");
3338 }
3339
3340 if (func == 1)
3341 do_exit(0);
3342 return 0;
3343 }
3344
3345 /*
3346 * Buffer-head allocation
3347 */
3348 static struct kmem_cache *bh_cachep __read_mostly;
3349
3350 /*
3351 * Once the number of bh's in the machine exceeds this level, we start
3352 * stripping them in writeback.
3353 */
3354 static unsigned long max_buffer_heads;
3355
3356 int buffer_heads_over_limit;
3357
3358 struct bh_accounting {
3359 int nr; /* Number of live bh's */
3360 int ratelimit; /* Limit cacheline bouncing */
3361 };
3362
3363 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3364
3365 static void recalc_bh_state(void)
3366 {
3367 int i;
3368 int tot = 0;
3369
3370 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3371 return;
3372 __this_cpu_write(bh_accounting.ratelimit, 0);
3373 for_each_online_cpu(i)
3374 tot += per_cpu(bh_accounting, i).nr;
3375 buffer_heads_over_limit = (tot > max_buffer_heads);
3376 }
3377
3378 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3379 {
3380 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3381 if (ret) {
3382 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3383 preempt_disable();
3384 __this_cpu_inc(bh_accounting.nr);
3385 recalc_bh_state();
3386 preempt_enable();
3387 }
3388 return ret;
3389 }
3390 EXPORT_SYMBOL(alloc_buffer_head);
3391
3392 void free_buffer_head(struct buffer_head *bh)
3393 {
3394 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3395 kmem_cache_free(bh_cachep, bh);
3396 preempt_disable();
3397 __this_cpu_dec(bh_accounting.nr);
3398 recalc_bh_state();
3399 preempt_enable();
3400 }
3401 EXPORT_SYMBOL(free_buffer_head);
3402
3403 static void buffer_exit_cpu(int cpu)
3404 {
3405 int i;
3406 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3407
3408 for (i = 0; i < BH_LRU_SIZE; i++) {
3409 brelse(b->bhs[i]);
3410 b->bhs[i] = NULL;
3411 }
3412 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3413 per_cpu(bh_accounting, cpu).nr = 0;
3414 }
3415
3416 static int buffer_cpu_notify(struct notifier_block *self,
3417 unsigned long action, void *hcpu)
3418 {
3419 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3420 buffer_exit_cpu((unsigned long)hcpu);
3421 return NOTIFY_OK;
3422 }
3423
3424 /**
3425 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3426 * @bh: struct buffer_head
3427 *
3428 * Return true if the buffer is up-to-date and false,
3429 * with the buffer locked, if not.
3430 */
3431 int bh_uptodate_or_lock(struct buffer_head *bh)
3432 {
3433 if (!buffer_uptodate(bh)) {
3434 lock_buffer(bh);
3435 if (!buffer_uptodate(bh))
3436 return 0;
3437 unlock_buffer(bh);
3438 }
3439 return 1;
3440 }
3441 EXPORT_SYMBOL(bh_uptodate_or_lock);
3442
3443 /**
3444 * bh_submit_read - Submit a locked buffer for reading
3445 * @bh: struct buffer_head
3446 *
3447 * Returns zero on success and -EIO on error.
3448 */
3449 int bh_submit_read(struct buffer_head *bh)
3450 {
3451 BUG_ON(!buffer_locked(bh));
3452
3453 if (buffer_uptodate(bh)) {
3454 unlock_buffer(bh);
3455 return 0;
3456 }
3457
3458 get_bh(bh);
3459 bh->b_end_io = end_buffer_read_sync;
3460 submit_bh(READ, bh);
3461 wait_on_buffer(bh);
3462 if (buffer_uptodate(bh))
3463 return 0;
3464 return -EIO;
3465 }
3466 EXPORT_SYMBOL(bh_submit_read);
3467
3468 void __init buffer_init(void)
3469 {
3470 unsigned long nrpages;
3471
3472 bh_cachep = kmem_cache_create("buffer_head",
3473 sizeof(struct buffer_head), 0,
3474 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3475 SLAB_MEM_SPREAD),
3476 NULL);
3477
3478 /*
3479 * Limit the bh occupancy to 10% of ZONE_NORMAL
3480 */
3481 nrpages = (nr_free_buffer_pages() * 10) / 100;
3482 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3483 hotcpu_notifier(buffer_cpu_notify, 0);
3484 }