]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/buffer.c
bnxt_en: fix ternary sign extension bug in bnxt_show_temp()
[mirror_ubuntu-hirsute-kernel.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151 }
152
153 /*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237 out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240 out:
241 return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293 still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296 }
297
298 struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314 }
315
316 /*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378 still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413 {
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474 /*
475 * The buffer's backing address_space's private_lock must be held
476 */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486 return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506 repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559 void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561 {
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 put_bh(bh);
567 }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593 * dirty.
594 *
595 * If warn is true, then emit a warning if the page is not uptodate and has
596 * not been truncated.
597 *
598 * The caller must hold lock_page_memcg().
599 */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601 int warn)
602 {
603 unsigned long flags;
604
605 xa_lock_irqsave(&mapping->i_pages, flags);
606 if (page->mapping) { /* Race with truncate? */
607 WARN_ON_ONCE(warn && !PageUptodate(page));
608 account_page_dirtied(page, mapping);
609 __xa_set_mark(&mapping->i_pages, page_index(page),
610 PAGECACHE_TAG_DIRTY);
611 }
612 xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616 /*
617 * Add a page to the dirty page list.
618 *
619 * It is a sad fact of life that this function is called from several places
620 * deeply under spinlocking. It may not sleep.
621 *
622 * If the page has buffers, the uptodate buffers are set dirty, to preserve
623 * dirty-state coherency between the page and the buffers. It the page does
624 * not have buffers then when they are later attached they will all be set
625 * dirty.
626 *
627 * The buffers are dirtied before the page is dirtied. There's a small race
628 * window in which a writepage caller may see the page cleanness but not the
629 * buffer dirtiness. That's fine. If this code were to set the page dirty
630 * before the buffers, a concurrent writepage caller could clear the page dirty
631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632 * page on the dirty page list.
633 *
634 * We use private_lock to lock against try_to_free_buffers while using the
635 * page's buffer list. Also use this to protect against clean buffers being
636 * added to the page after it was set dirty.
637 *
638 * FIXME: may need to call ->reservepage here as well. That's rather up to the
639 * address_space though.
640 */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643 int newly_dirty;
644 struct address_space *mapping = page_mapping(page);
645
646 if (unlikely(!mapping))
647 return !TestSetPageDirty(page);
648
649 spin_lock(&mapping->private_lock);
650 if (page_has_buffers(page)) {
651 struct buffer_head *head = page_buffers(page);
652 struct buffer_head *bh = head;
653
654 do {
655 set_buffer_dirty(bh);
656 bh = bh->b_this_page;
657 } while (bh != head);
658 }
659 /*
660 * Lock out page's memcg migration to keep PageDirty
661 * synchronized with per-memcg dirty page counters.
662 */
663 lock_page_memcg(page);
664 newly_dirty = !TestSetPageDirty(page);
665 spin_unlock(&mapping->private_lock);
666
667 if (newly_dirty)
668 __set_page_dirty(page, mapping, 1);
669
670 unlock_page_memcg(page);
671
672 if (newly_dirty)
673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675 return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
705
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
729 */
730 write_dirty_buffer(bh, REQ_SYNC);
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
760 }
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775 }
776
777 /*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->private_data;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->private_data;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828 }
829
830 /*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 bool retry)
841 {
842 struct buffer_head *bh, *head;
843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 long offset;
845 struct mem_cgroup *memcg, *old_memcg;
846
847 if (retry)
848 gfp |= __GFP_NOFAIL;
849
850 memcg = get_mem_cgroup_from_page(page);
851 old_memcg = set_active_memcg(memcg);
852
853 head = NULL;
854 offset = PAGE_SIZE;
855 while ((offset -= size) >= 0) {
856 bh = alloc_buffer_head(gfp);
857 if (!bh)
858 goto no_grow;
859
860 bh->b_this_page = head;
861 bh->b_blocknr = -1;
862 head = bh;
863
864 bh->b_size = size;
865
866 /* Link the buffer to its page */
867 set_bh_page(bh, page, offset);
868 }
869 out:
870 set_active_memcg(old_memcg);
871 mem_cgroup_put(memcg);
872 return head;
873 /*
874 * In case anything failed, we just free everything we got.
875 */
876 no_grow:
877 if (head) {
878 do {
879 bh = head;
880 head = head->b_this_page;
881 free_buffer_head(bh);
882 } while (head);
883 }
884
885 goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892 struct buffer_head *bh, *tail;
893
894 bh = head;
895 do {
896 tail = bh;
897 bh = bh->b_this_page;
898 } while (bh);
899 tail->b_this_page = head;
900 attach_page_private(page, head);
901 }
902
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905 sector_t retval = ~((sector_t)0);
906 loff_t sz = i_size_read(bdev->bd_inode);
907
908 if (sz) {
909 unsigned int sizebits = blksize_bits(size);
910 retval = (sz >> sizebits);
911 }
912 return retval;
913 }
914
915 /*
916 * Initialise the state of a blockdev page's buffers.
917 */
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920 sector_t block, int size)
921 {
922 struct buffer_head *head = page_buffers(page);
923 struct buffer_head *bh = head;
924 int uptodate = PageUptodate(page);
925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927 do {
928 if (!buffer_mapped(bh)) {
929 bh->b_end_io = NULL;
930 bh->b_private = NULL;
931 bh->b_bdev = bdev;
932 bh->b_blocknr = block;
933 if (uptodate)
934 set_buffer_uptodate(bh);
935 if (block < end_block)
936 set_buffer_mapped(bh);
937 }
938 block++;
939 bh = bh->b_this_page;
940 } while (bh != head);
941
942 /*
943 * Caller needs to validate requested block against end of device.
944 */
945 return end_block;
946 }
947
948 /*
949 * Create the page-cache page that contains the requested block.
950 *
951 * This is used purely for blockdev mappings.
952 */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955 pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957 struct inode *inode = bdev->bd_inode;
958 struct page *page;
959 struct buffer_head *bh;
960 sector_t end_block;
961 int ret = 0;
962 gfp_t gfp_mask;
963
964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966 /*
967 * XXX: __getblk_slow() can not really deal with failure and
968 * will endlessly loop on improvised global reclaim. Prefer
969 * looping in the allocator rather than here, at least that
970 * code knows what it's doing.
971 */
972 gfp_mask |= __GFP_NOFAIL;
973
974 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976 BUG_ON(!PageLocked(page));
977
978 if (page_has_buffers(page)) {
979 bh = page_buffers(page);
980 if (bh->b_size == size) {
981 end_block = init_page_buffers(page, bdev,
982 (sector_t)index << sizebits,
983 size);
984 goto done;
985 }
986 if (!try_to_free_buffers(page))
987 goto failed;
988 }
989
990 /*
991 * Allocate some buffers for this page
992 */
993 bh = alloc_page_buffers(page, size, true);
994
995 /*
996 * Link the page to the buffers and initialise them. Take the
997 * lock to be atomic wrt __find_get_block(), which does not
998 * run under the page lock.
999 */
1000 spin_lock(&inode->i_mapping->private_lock);
1001 link_dev_buffers(page, bh);
1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 size);
1004 spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006 ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008 unlock_page(page);
1009 put_page(page);
1010 return ret;
1011 }
1012
1013 /*
1014 * Create buffers for the specified block device block's page. If
1015 * that page was dirty, the buffers are set dirty also.
1016 */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020 pgoff_t index;
1021 int sizebits;
1022
1023 sizebits = -1;
1024 do {
1025 sizebits++;
1026 } while ((size << sizebits) < PAGE_SIZE);
1027
1028 index = block >> sizebits;
1029
1030 /*
1031 * Check for a block which wants to lie outside our maximum possible
1032 * pagecache index. (this comparison is done using sector_t types).
1033 */
1034 if (unlikely(index != block >> sizebits)) {
1035 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036 "device %pg\n",
1037 __func__, (unsigned long long)block,
1038 bdev);
1039 return -EIO;
1040 }
1041
1042 /* Create a page with the proper size buffers.. */
1043 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044 }
1045
1046 static struct buffer_head *
1047 __getblk_slow(struct block_device *bdev, sector_t block,
1048 unsigned size, gfp_t gfp)
1049 {
1050 /* Size must be multiple of hard sectorsize */
1051 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052 (size < 512 || size > PAGE_SIZE))) {
1053 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054 size);
1055 printk(KERN_ERR "logical block size: %d\n",
1056 bdev_logical_block_size(bdev));
1057
1058 dump_stack();
1059 return NULL;
1060 }
1061
1062 for (;;) {
1063 struct buffer_head *bh;
1064 int ret;
1065
1066 bh = __find_get_block(bdev, block, size);
1067 if (bh)
1068 return bh;
1069
1070 ret = grow_buffers(bdev, block, size, gfp);
1071 if (ret < 0)
1072 return NULL;
1073 }
1074 }
1075
1076 /*
1077 * The relationship between dirty buffers and dirty pages:
1078 *
1079 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080 * the page is tagged dirty in the page cache.
1081 *
1082 * At all times, the dirtiness of the buffers represents the dirtiness of
1083 * subsections of the page. If the page has buffers, the page dirty bit is
1084 * merely a hint about the true dirty state.
1085 *
1086 * When a page is set dirty in its entirety, all its buffers are marked dirty
1087 * (if the page has buffers).
1088 *
1089 * When a buffer is marked dirty, its page is dirtied, but the page's other
1090 * buffers are not.
1091 *
1092 * Also. When blockdev buffers are explicitly read with bread(), they
1093 * individually become uptodate. But their backing page remains not
1094 * uptodate - even if all of its buffers are uptodate. A subsequent
1095 * block_read_full_page() against that page will discover all the uptodate
1096 * buffers, will set the page uptodate and will perform no I/O.
1097 */
1098
1099 /**
1100 * mark_buffer_dirty - mark a buffer_head as needing writeout
1101 * @bh: the buffer_head to mark dirty
1102 *
1103 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104 * its backing page dirty, then tag the page as dirty in the page cache
1105 * and then attach the address_space's inode to its superblock's dirty
1106 * inode list.
1107 *
1108 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1109 * i_pages lock and mapping->host->i_lock.
1110 */
1111 void mark_buffer_dirty(struct buffer_head *bh)
1112 {
1113 WARN_ON_ONCE(!buffer_uptodate(bh));
1114
1115 trace_block_dirty_buffer(bh);
1116
1117 /*
1118 * Very *carefully* optimize the it-is-already-dirty case.
1119 *
1120 * Don't let the final "is it dirty" escape to before we
1121 * perhaps modified the buffer.
1122 */
1123 if (buffer_dirty(bh)) {
1124 smp_mb();
1125 if (buffer_dirty(bh))
1126 return;
1127 }
1128
1129 if (!test_set_buffer_dirty(bh)) {
1130 struct page *page = bh->b_page;
1131 struct address_space *mapping = NULL;
1132
1133 lock_page_memcg(page);
1134 if (!TestSetPageDirty(page)) {
1135 mapping = page_mapping(page);
1136 if (mapping)
1137 __set_page_dirty(page, mapping, 0);
1138 }
1139 unlock_page_memcg(page);
1140 if (mapping)
1141 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142 }
1143 }
1144 EXPORT_SYMBOL(mark_buffer_dirty);
1145
1146 void mark_buffer_write_io_error(struct buffer_head *bh)
1147 {
1148 struct super_block *sb;
1149
1150 set_buffer_write_io_error(bh);
1151 /* FIXME: do we need to set this in both places? */
1152 if (bh->b_page && bh->b_page->mapping)
1153 mapping_set_error(bh->b_page->mapping, -EIO);
1154 if (bh->b_assoc_map)
1155 mapping_set_error(bh->b_assoc_map, -EIO);
1156 rcu_read_lock();
1157 sb = READ_ONCE(bh->b_bdev->bd_super);
1158 if (sb)
1159 errseq_set(&sb->s_wb_err, -EIO);
1160 rcu_read_unlock();
1161 }
1162 EXPORT_SYMBOL(mark_buffer_write_io_error);
1163
1164 /*
1165 * Decrement a buffer_head's reference count. If all buffers against a page
1166 * have zero reference count, are clean and unlocked, and if the page is clean
1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169 * a page but it ends up not being freed, and buffers may later be reattached).
1170 */
1171 void __brelse(struct buffer_head * buf)
1172 {
1173 if (atomic_read(&buf->b_count)) {
1174 put_bh(buf);
1175 return;
1176 }
1177 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178 }
1179 EXPORT_SYMBOL(__brelse);
1180
1181 /*
1182 * bforget() is like brelse(), except it discards any
1183 * potentially dirty data.
1184 */
1185 void __bforget(struct buffer_head *bh)
1186 {
1187 clear_buffer_dirty(bh);
1188 if (bh->b_assoc_map) {
1189 struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191 spin_lock(&buffer_mapping->private_lock);
1192 list_del_init(&bh->b_assoc_buffers);
1193 bh->b_assoc_map = NULL;
1194 spin_unlock(&buffer_mapping->private_lock);
1195 }
1196 __brelse(bh);
1197 }
1198 EXPORT_SYMBOL(__bforget);
1199
1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201 {
1202 lock_buffer(bh);
1203 if (buffer_uptodate(bh)) {
1204 unlock_buffer(bh);
1205 return bh;
1206 } else {
1207 get_bh(bh);
1208 bh->b_end_io = end_buffer_read_sync;
1209 submit_bh(REQ_OP_READ, 0, bh);
1210 wait_on_buffer(bh);
1211 if (buffer_uptodate(bh))
1212 return bh;
1213 }
1214 brelse(bh);
1215 return NULL;
1216 }
1217
1218 /*
1219 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1220 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1221 * refcount elevated by one when they're in an LRU. A buffer can only appear
1222 * once in a particular CPU's LRU. A single buffer can be present in multiple
1223 * CPU's LRUs at the same time.
1224 *
1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226 * sb_find_get_block().
1227 *
1228 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1229 * a local interrupt disable for that.
1230 */
1231
1232 #define BH_LRU_SIZE 16
1233
1234 struct bh_lru {
1235 struct buffer_head *bhs[BH_LRU_SIZE];
1236 };
1237
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock() local_irq_disable()
1242 #define bh_lru_unlock() local_irq_enable()
1243 #else
1244 #define bh_lru_lock() preempt_disable()
1245 #define bh_lru_unlock() preempt_enable()
1246 #endif
1247
1248 static inline void check_irqs_on(void)
1249 {
1250 #ifdef irqs_disabled
1251 BUG_ON(irqs_disabled());
1252 #endif
1253 }
1254
1255 /*
1256 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1257 * inserted at the front, and the buffer_head at the back if any is evicted.
1258 * Or, if already in the LRU it is moved to the front.
1259 */
1260 static void bh_lru_install(struct buffer_head *bh)
1261 {
1262 struct buffer_head *evictee = bh;
1263 struct bh_lru *b;
1264 int i;
1265
1266 check_irqs_on();
1267 bh_lru_lock();
1268
1269 b = this_cpu_ptr(&bh_lrus);
1270 for (i = 0; i < BH_LRU_SIZE; i++) {
1271 swap(evictee, b->bhs[i]);
1272 if (evictee == bh) {
1273 bh_lru_unlock();
1274 return;
1275 }
1276 }
1277
1278 get_bh(bh);
1279 bh_lru_unlock();
1280 brelse(evictee);
1281 }
1282
1283 /*
1284 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1285 */
1286 static struct buffer_head *
1287 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1288 {
1289 struct buffer_head *ret = NULL;
1290 unsigned int i;
1291
1292 check_irqs_on();
1293 bh_lru_lock();
1294 for (i = 0; i < BH_LRU_SIZE; i++) {
1295 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1296
1297 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1298 bh->b_size == size) {
1299 if (i) {
1300 while (i) {
1301 __this_cpu_write(bh_lrus.bhs[i],
1302 __this_cpu_read(bh_lrus.bhs[i - 1]));
1303 i--;
1304 }
1305 __this_cpu_write(bh_lrus.bhs[0], bh);
1306 }
1307 get_bh(bh);
1308 ret = bh;
1309 break;
1310 }
1311 }
1312 bh_lru_unlock();
1313 return ret;
1314 }
1315
1316 /*
1317 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1318 * it in the LRU and mark it as accessed. If it is not present then return
1319 * NULL
1320 */
1321 struct buffer_head *
1322 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1325
1326 if (bh == NULL) {
1327 /* __find_get_block_slow will mark the page accessed */
1328 bh = __find_get_block_slow(bdev, block);
1329 if (bh)
1330 bh_lru_install(bh);
1331 } else
1332 touch_buffer(bh);
1333
1334 return bh;
1335 }
1336 EXPORT_SYMBOL(__find_get_block);
1337
1338 /*
1339 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1340 * which corresponds to the passed block_device, block and size. The
1341 * returned buffer has its reference count incremented.
1342 *
1343 * __getblk_gfp() will lock up the machine if grow_dev_page's
1344 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1345 */
1346 struct buffer_head *
1347 __getblk_gfp(struct block_device *bdev, sector_t block,
1348 unsigned size, gfp_t gfp)
1349 {
1350 struct buffer_head *bh = __find_get_block(bdev, block, size);
1351
1352 might_sleep();
1353 if (bh == NULL)
1354 bh = __getblk_slow(bdev, block, size, gfp);
1355 return bh;
1356 }
1357 EXPORT_SYMBOL(__getblk_gfp);
1358
1359 /*
1360 * Do async read-ahead on a buffer..
1361 */
1362 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1363 {
1364 struct buffer_head *bh = __getblk(bdev, block, size);
1365 if (likely(bh)) {
1366 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1367 brelse(bh);
1368 }
1369 }
1370 EXPORT_SYMBOL(__breadahead);
1371
1372 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1373 gfp_t gfp)
1374 {
1375 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1376 if (likely(bh)) {
1377 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1378 brelse(bh);
1379 }
1380 }
1381 EXPORT_SYMBOL(__breadahead_gfp);
1382
1383 /**
1384 * __bread_gfp() - reads a specified block and returns the bh
1385 * @bdev: the block_device to read from
1386 * @block: number of block
1387 * @size: size (in bytes) to read
1388 * @gfp: page allocation flag
1389 *
1390 * Reads a specified block, and returns buffer head that contains it.
1391 * The page cache can be allocated from non-movable area
1392 * not to prevent page migration if you set gfp to zero.
1393 * It returns NULL if the block was unreadable.
1394 */
1395 struct buffer_head *
1396 __bread_gfp(struct block_device *bdev, sector_t block,
1397 unsigned size, gfp_t gfp)
1398 {
1399 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1400
1401 if (likely(bh) && !buffer_uptodate(bh))
1402 bh = __bread_slow(bh);
1403 return bh;
1404 }
1405 EXPORT_SYMBOL(__bread_gfp);
1406
1407 /*
1408 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1409 * This doesn't race because it runs in each cpu either in irq
1410 * or with preempt disabled.
1411 */
1412 static void invalidate_bh_lru(void *arg)
1413 {
1414 struct bh_lru *b = &get_cpu_var(bh_lrus);
1415 int i;
1416
1417 for (i = 0; i < BH_LRU_SIZE; i++) {
1418 brelse(b->bhs[i]);
1419 b->bhs[i] = NULL;
1420 }
1421 put_cpu_var(bh_lrus);
1422 }
1423
1424 static bool has_bh_in_lru(int cpu, void *dummy)
1425 {
1426 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1427 int i;
1428
1429 for (i = 0; i < BH_LRU_SIZE; i++) {
1430 if (b->bhs[i])
1431 return true;
1432 }
1433
1434 return false;
1435 }
1436
1437 void invalidate_bh_lrus(void)
1438 {
1439 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1440 }
1441 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1442
1443 void set_bh_page(struct buffer_head *bh,
1444 struct page *page, unsigned long offset)
1445 {
1446 bh->b_page = page;
1447 BUG_ON(offset >= PAGE_SIZE);
1448 if (PageHighMem(page))
1449 /*
1450 * This catches illegal uses and preserves the offset:
1451 */
1452 bh->b_data = (char *)(0 + offset);
1453 else
1454 bh->b_data = page_address(page) + offset;
1455 }
1456 EXPORT_SYMBOL(set_bh_page);
1457
1458 /*
1459 * Called when truncating a buffer on a page completely.
1460 */
1461
1462 /* Bits that are cleared during an invalidate */
1463 #define BUFFER_FLAGS_DISCARD \
1464 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1465 1 << BH_Delay | 1 << BH_Unwritten)
1466
1467 static void discard_buffer(struct buffer_head * bh)
1468 {
1469 unsigned long b_state, b_state_old;
1470
1471 lock_buffer(bh);
1472 clear_buffer_dirty(bh);
1473 bh->b_bdev = NULL;
1474 b_state = bh->b_state;
1475 for (;;) {
1476 b_state_old = cmpxchg(&bh->b_state, b_state,
1477 (b_state & ~BUFFER_FLAGS_DISCARD));
1478 if (b_state_old == b_state)
1479 break;
1480 b_state = b_state_old;
1481 }
1482 unlock_buffer(bh);
1483 }
1484
1485 /**
1486 * block_invalidatepage - invalidate part or all of a buffer-backed page
1487 *
1488 * @page: the page which is affected
1489 * @offset: start of the range to invalidate
1490 * @length: length of the range to invalidate
1491 *
1492 * block_invalidatepage() is called when all or part of the page has become
1493 * invalidated by a truncate operation.
1494 *
1495 * block_invalidatepage() does not have to release all buffers, but it must
1496 * ensure that no dirty buffer is left outside @offset and that no I/O
1497 * is underway against any of the blocks which are outside the truncation
1498 * point. Because the caller is about to free (and possibly reuse) those
1499 * blocks on-disk.
1500 */
1501 void block_invalidatepage(struct page *page, unsigned int offset,
1502 unsigned int length)
1503 {
1504 struct buffer_head *head, *bh, *next;
1505 unsigned int curr_off = 0;
1506 unsigned int stop = length + offset;
1507
1508 BUG_ON(!PageLocked(page));
1509 if (!page_has_buffers(page))
1510 goto out;
1511
1512 /*
1513 * Check for overflow
1514 */
1515 BUG_ON(stop > PAGE_SIZE || stop < length);
1516
1517 head = page_buffers(page);
1518 bh = head;
1519 do {
1520 unsigned int next_off = curr_off + bh->b_size;
1521 next = bh->b_this_page;
1522
1523 /*
1524 * Are we still fully in range ?
1525 */
1526 if (next_off > stop)
1527 goto out;
1528
1529 /*
1530 * is this block fully invalidated?
1531 */
1532 if (offset <= curr_off)
1533 discard_buffer(bh);
1534 curr_off = next_off;
1535 bh = next;
1536 } while (bh != head);
1537
1538 /*
1539 * We release buffers only if the entire page is being invalidated.
1540 * The get_block cached value has been unconditionally invalidated,
1541 * so real IO is not possible anymore.
1542 */
1543 if (length == PAGE_SIZE)
1544 try_to_release_page(page, 0);
1545 out:
1546 return;
1547 }
1548 EXPORT_SYMBOL(block_invalidatepage);
1549
1550
1551 /*
1552 * We attach and possibly dirty the buffers atomically wrt
1553 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1554 * is already excluded via the page lock.
1555 */
1556 void create_empty_buffers(struct page *page,
1557 unsigned long blocksize, unsigned long b_state)
1558 {
1559 struct buffer_head *bh, *head, *tail;
1560
1561 head = alloc_page_buffers(page, blocksize, true);
1562 bh = head;
1563 do {
1564 bh->b_state |= b_state;
1565 tail = bh;
1566 bh = bh->b_this_page;
1567 } while (bh);
1568 tail->b_this_page = head;
1569
1570 spin_lock(&page->mapping->private_lock);
1571 if (PageUptodate(page) || PageDirty(page)) {
1572 bh = head;
1573 do {
1574 if (PageDirty(page))
1575 set_buffer_dirty(bh);
1576 if (PageUptodate(page))
1577 set_buffer_uptodate(bh);
1578 bh = bh->b_this_page;
1579 } while (bh != head);
1580 }
1581 attach_page_private(page, head);
1582 spin_unlock(&page->mapping->private_lock);
1583 }
1584 EXPORT_SYMBOL(create_empty_buffers);
1585
1586 /**
1587 * clean_bdev_aliases: clean a range of buffers in block device
1588 * @bdev: Block device to clean buffers in
1589 * @block: Start of a range of blocks to clean
1590 * @len: Number of blocks to clean
1591 *
1592 * We are taking a range of blocks for data and we don't want writeback of any
1593 * buffer-cache aliases starting from return from this function and until the
1594 * moment when something will explicitly mark the buffer dirty (hopefully that
1595 * will not happen until we will free that block ;-) We don't even need to mark
1596 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1597 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1598 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1599 * would confuse anyone who might pick it with bread() afterwards...
1600 *
1601 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1602 * writeout I/O going on against recently-freed buffers. We don't wait on that
1603 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1604 * need to. That happens here.
1605 */
1606 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1607 {
1608 struct inode *bd_inode = bdev->bd_inode;
1609 struct address_space *bd_mapping = bd_inode->i_mapping;
1610 struct pagevec pvec;
1611 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1612 pgoff_t end;
1613 int i, count;
1614 struct buffer_head *bh;
1615 struct buffer_head *head;
1616
1617 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1618 pagevec_init(&pvec);
1619 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1620 count = pagevec_count(&pvec);
1621 for (i = 0; i < count; i++) {
1622 struct page *page = pvec.pages[i];
1623
1624 if (!page_has_buffers(page))
1625 continue;
1626 /*
1627 * We use page lock instead of bd_mapping->private_lock
1628 * to pin buffers here since we can afford to sleep and
1629 * it scales better than a global spinlock lock.
1630 */
1631 lock_page(page);
1632 /* Recheck when the page is locked which pins bhs */
1633 if (!page_has_buffers(page))
1634 goto unlock_page;
1635 head = page_buffers(page);
1636 bh = head;
1637 do {
1638 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1639 goto next;
1640 if (bh->b_blocknr >= block + len)
1641 break;
1642 clear_buffer_dirty(bh);
1643 wait_on_buffer(bh);
1644 clear_buffer_req(bh);
1645 next:
1646 bh = bh->b_this_page;
1647 } while (bh != head);
1648 unlock_page:
1649 unlock_page(page);
1650 }
1651 pagevec_release(&pvec);
1652 cond_resched();
1653 /* End of range already reached? */
1654 if (index > end || !index)
1655 break;
1656 }
1657 }
1658 EXPORT_SYMBOL(clean_bdev_aliases);
1659
1660 /*
1661 * Size is a power-of-two in the range 512..PAGE_SIZE,
1662 * and the case we care about most is PAGE_SIZE.
1663 *
1664 * So this *could* possibly be written with those
1665 * constraints in mind (relevant mostly if some
1666 * architecture has a slow bit-scan instruction)
1667 */
1668 static inline int block_size_bits(unsigned int blocksize)
1669 {
1670 return ilog2(blocksize);
1671 }
1672
1673 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1674 {
1675 BUG_ON(!PageLocked(page));
1676
1677 if (!page_has_buffers(page))
1678 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1679 b_state);
1680 return page_buffers(page);
1681 }
1682
1683 /*
1684 * NOTE! All mapped/uptodate combinations are valid:
1685 *
1686 * Mapped Uptodate Meaning
1687 *
1688 * No No "unknown" - must do get_block()
1689 * No Yes "hole" - zero-filled
1690 * Yes No "allocated" - allocated on disk, not read in
1691 * Yes Yes "valid" - allocated and up-to-date in memory.
1692 *
1693 * "Dirty" is valid only with the last case (mapped+uptodate).
1694 */
1695
1696 /*
1697 * While block_write_full_page is writing back the dirty buffers under
1698 * the page lock, whoever dirtied the buffers may decide to clean them
1699 * again at any time. We handle that by only looking at the buffer
1700 * state inside lock_buffer().
1701 *
1702 * If block_write_full_page() is called for regular writeback
1703 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1704 * locked buffer. This only can happen if someone has written the buffer
1705 * directly, with submit_bh(). At the address_space level PageWriteback
1706 * prevents this contention from occurring.
1707 *
1708 * If block_write_full_page() is called with wbc->sync_mode ==
1709 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1710 * causes the writes to be flagged as synchronous writes.
1711 */
1712 int __block_write_full_page(struct inode *inode, struct page *page,
1713 get_block_t *get_block, struct writeback_control *wbc,
1714 bh_end_io_t *handler)
1715 {
1716 int err;
1717 sector_t block;
1718 sector_t last_block;
1719 struct buffer_head *bh, *head;
1720 unsigned int blocksize, bbits;
1721 int nr_underway = 0;
1722 int write_flags = wbc_to_write_flags(wbc);
1723
1724 head = create_page_buffers(page, inode,
1725 (1 << BH_Dirty)|(1 << BH_Uptodate));
1726
1727 /*
1728 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1729 * here, and the (potentially unmapped) buffers may become dirty at
1730 * any time. If a buffer becomes dirty here after we've inspected it
1731 * then we just miss that fact, and the page stays dirty.
1732 *
1733 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1734 * handle that here by just cleaning them.
1735 */
1736
1737 bh = head;
1738 blocksize = bh->b_size;
1739 bbits = block_size_bits(blocksize);
1740
1741 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1742 last_block = (i_size_read(inode) - 1) >> bbits;
1743
1744 /*
1745 * Get all the dirty buffers mapped to disk addresses and
1746 * handle any aliases from the underlying blockdev's mapping.
1747 */
1748 do {
1749 if (block > last_block) {
1750 /*
1751 * mapped buffers outside i_size will occur, because
1752 * this page can be outside i_size when there is a
1753 * truncate in progress.
1754 */
1755 /*
1756 * The buffer was zeroed by block_write_full_page()
1757 */
1758 clear_buffer_dirty(bh);
1759 set_buffer_uptodate(bh);
1760 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1761 buffer_dirty(bh)) {
1762 WARN_ON(bh->b_size != blocksize);
1763 err = get_block(inode, block, bh, 1);
1764 if (err)
1765 goto recover;
1766 clear_buffer_delay(bh);
1767 if (buffer_new(bh)) {
1768 /* blockdev mappings never come here */
1769 clear_buffer_new(bh);
1770 clean_bdev_bh_alias(bh);
1771 }
1772 }
1773 bh = bh->b_this_page;
1774 block++;
1775 } while (bh != head);
1776
1777 do {
1778 if (!buffer_mapped(bh))
1779 continue;
1780 /*
1781 * If it's a fully non-blocking write attempt and we cannot
1782 * lock the buffer then redirty the page. Note that this can
1783 * potentially cause a busy-wait loop from writeback threads
1784 * and kswapd activity, but those code paths have their own
1785 * higher-level throttling.
1786 */
1787 if (wbc->sync_mode != WB_SYNC_NONE) {
1788 lock_buffer(bh);
1789 } else if (!trylock_buffer(bh)) {
1790 redirty_page_for_writepage(wbc, page);
1791 continue;
1792 }
1793 if (test_clear_buffer_dirty(bh)) {
1794 mark_buffer_async_write_endio(bh, handler);
1795 } else {
1796 unlock_buffer(bh);
1797 }
1798 } while ((bh = bh->b_this_page) != head);
1799
1800 /*
1801 * The page and its buffers are protected by PageWriteback(), so we can
1802 * drop the bh refcounts early.
1803 */
1804 BUG_ON(PageWriteback(page));
1805 set_page_writeback(page);
1806
1807 do {
1808 struct buffer_head *next = bh->b_this_page;
1809 if (buffer_async_write(bh)) {
1810 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1811 inode->i_write_hint, wbc);
1812 nr_underway++;
1813 }
1814 bh = next;
1815 } while (bh != head);
1816 unlock_page(page);
1817
1818 err = 0;
1819 done:
1820 if (nr_underway == 0) {
1821 /*
1822 * The page was marked dirty, but the buffers were
1823 * clean. Someone wrote them back by hand with
1824 * ll_rw_block/submit_bh. A rare case.
1825 */
1826 end_page_writeback(page);
1827
1828 /*
1829 * The page and buffer_heads can be released at any time from
1830 * here on.
1831 */
1832 }
1833 return err;
1834
1835 recover:
1836 /*
1837 * ENOSPC, or some other error. We may already have added some
1838 * blocks to the file, so we need to write these out to avoid
1839 * exposing stale data.
1840 * The page is currently locked and not marked for writeback
1841 */
1842 bh = head;
1843 /* Recovery: lock and submit the mapped buffers */
1844 do {
1845 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1846 !buffer_delay(bh)) {
1847 lock_buffer(bh);
1848 mark_buffer_async_write_endio(bh, handler);
1849 } else {
1850 /*
1851 * The buffer may have been set dirty during
1852 * attachment to a dirty page.
1853 */
1854 clear_buffer_dirty(bh);
1855 }
1856 } while ((bh = bh->b_this_page) != head);
1857 SetPageError(page);
1858 BUG_ON(PageWriteback(page));
1859 mapping_set_error(page->mapping, err);
1860 set_page_writeback(page);
1861 do {
1862 struct buffer_head *next = bh->b_this_page;
1863 if (buffer_async_write(bh)) {
1864 clear_buffer_dirty(bh);
1865 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1866 inode->i_write_hint, wbc);
1867 nr_underway++;
1868 }
1869 bh = next;
1870 } while (bh != head);
1871 unlock_page(page);
1872 goto done;
1873 }
1874 EXPORT_SYMBOL(__block_write_full_page);
1875
1876 /*
1877 * If a page has any new buffers, zero them out here, and mark them uptodate
1878 * and dirty so they'll be written out (in order to prevent uninitialised
1879 * block data from leaking). And clear the new bit.
1880 */
1881 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1882 {
1883 unsigned int block_start, block_end;
1884 struct buffer_head *head, *bh;
1885
1886 BUG_ON(!PageLocked(page));
1887 if (!page_has_buffers(page))
1888 return;
1889
1890 bh = head = page_buffers(page);
1891 block_start = 0;
1892 do {
1893 block_end = block_start + bh->b_size;
1894
1895 if (buffer_new(bh)) {
1896 if (block_end > from && block_start < to) {
1897 if (!PageUptodate(page)) {
1898 unsigned start, size;
1899
1900 start = max(from, block_start);
1901 size = min(to, block_end) - start;
1902
1903 zero_user(page, start, size);
1904 set_buffer_uptodate(bh);
1905 }
1906
1907 clear_buffer_new(bh);
1908 mark_buffer_dirty(bh);
1909 }
1910 }
1911
1912 block_start = block_end;
1913 bh = bh->b_this_page;
1914 } while (bh != head);
1915 }
1916 EXPORT_SYMBOL(page_zero_new_buffers);
1917
1918 static void
1919 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1920 struct iomap *iomap)
1921 {
1922 loff_t offset = block << inode->i_blkbits;
1923
1924 bh->b_bdev = iomap->bdev;
1925
1926 /*
1927 * Block points to offset in file we need to map, iomap contains
1928 * the offset at which the map starts. If the map ends before the
1929 * current block, then do not map the buffer and let the caller
1930 * handle it.
1931 */
1932 BUG_ON(offset >= iomap->offset + iomap->length);
1933
1934 switch (iomap->type) {
1935 case IOMAP_HOLE:
1936 /*
1937 * If the buffer is not up to date or beyond the current EOF,
1938 * we need to mark it as new to ensure sub-block zeroing is
1939 * executed if necessary.
1940 */
1941 if (!buffer_uptodate(bh) ||
1942 (offset >= i_size_read(inode)))
1943 set_buffer_new(bh);
1944 break;
1945 case IOMAP_DELALLOC:
1946 if (!buffer_uptodate(bh) ||
1947 (offset >= i_size_read(inode)))
1948 set_buffer_new(bh);
1949 set_buffer_uptodate(bh);
1950 set_buffer_mapped(bh);
1951 set_buffer_delay(bh);
1952 break;
1953 case IOMAP_UNWRITTEN:
1954 /*
1955 * For unwritten regions, we always need to ensure that regions
1956 * in the block we are not writing to are zeroed. Mark the
1957 * buffer as new to ensure this.
1958 */
1959 set_buffer_new(bh);
1960 set_buffer_unwritten(bh);
1961 fallthrough;
1962 case IOMAP_MAPPED:
1963 if ((iomap->flags & IOMAP_F_NEW) ||
1964 offset >= i_size_read(inode))
1965 set_buffer_new(bh);
1966 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1967 inode->i_blkbits;
1968 set_buffer_mapped(bh);
1969 break;
1970 }
1971 }
1972
1973 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1974 get_block_t *get_block, struct iomap *iomap)
1975 {
1976 unsigned from = pos & (PAGE_SIZE - 1);
1977 unsigned to = from + len;
1978 struct inode *inode = page->mapping->host;
1979 unsigned block_start, block_end;
1980 sector_t block;
1981 int err = 0;
1982 unsigned blocksize, bbits;
1983 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1984
1985 BUG_ON(!PageLocked(page));
1986 BUG_ON(from > PAGE_SIZE);
1987 BUG_ON(to > PAGE_SIZE);
1988 BUG_ON(from > to);
1989
1990 head = create_page_buffers(page, inode, 0);
1991 blocksize = head->b_size;
1992 bbits = block_size_bits(blocksize);
1993
1994 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1995
1996 for(bh = head, block_start = 0; bh != head || !block_start;
1997 block++, block_start=block_end, bh = bh->b_this_page) {
1998 block_end = block_start + blocksize;
1999 if (block_end <= from || block_start >= to) {
2000 if (PageUptodate(page)) {
2001 if (!buffer_uptodate(bh))
2002 set_buffer_uptodate(bh);
2003 }
2004 continue;
2005 }
2006 if (buffer_new(bh))
2007 clear_buffer_new(bh);
2008 if (!buffer_mapped(bh)) {
2009 WARN_ON(bh->b_size != blocksize);
2010 if (get_block) {
2011 err = get_block(inode, block, bh, 1);
2012 if (err)
2013 break;
2014 } else {
2015 iomap_to_bh(inode, block, bh, iomap);
2016 }
2017
2018 if (buffer_new(bh)) {
2019 clean_bdev_bh_alias(bh);
2020 if (PageUptodate(page)) {
2021 clear_buffer_new(bh);
2022 set_buffer_uptodate(bh);
2023 mark_buffer_dirty(bh);
2024 continue;
2025 }
2026 if (block_end > to || block_start < from)
2027 zero_user_segments(page,
2028 to, block_end,
2029 block_start, from);
2030 continue;
2031 }
2032 }
2033 if (PageUptodate(page)) {
2034 if (!buffer_uptodate(bh))
2035 set_buffer_uptodate(bh);
2036 continue;
2037 }
2038 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2039 !buffer_unwritten(bh) &&
2040 (block_start < from || block_end > to)) {
2041 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2042 *wait_bh++=bh;
2043 }
2044 }
2045 /*
2046 * If we issued read requests - let them complete.
2047 */
2048 while(wait_bh > wait) {
2049 wait_on_buffer(*--wait_bh);
2050 if (!buffer_uptodate(*wait_bh))
2051 err = -EIO;
2052 }
2053 if (unlikely(err))
2054 page_zero_new_buffers(page, from, to);
2055 return err;
2056 }
2057
2058 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2059 get_block_t *get_block)
2060 {
2061 return __block_write_begin_int(page, pos, len, get_block, NULL);
2062 }
2063 EXPORT_SYMBOL(__block_write_begin);
2064
2065 static int __block_commit_write(struct inode *inode, struct page *page,
2066 unsigned from, unsigned to)
2067 {
2068 unsigned block_start, block_end;
2069 int partial = 0;
2070 unsigned blocksize;
2071 struct buffer_head *bh, *head;
2072
2073 bh = head = page_buffers(page);
2074 blocksize = bh->b_size;
2075
2076 block_start = 0;
2077 do {
2078 block_end = block_start + blocksize;
2079 if (block_end <= from || block_start >= to) {
2080 if (!buffer_uptodate(bh))
2081 partial = 1;
2082 } else {
2083 set_buffer_uptodate(bh);
2084 mark_buffer_dirty(bh);
2085 }
2086 clear_buffer_new(bh);
2087
2088 block_start = block_end;
2089 bh = bh->b_this_page;
2090 } while (bh != head);
2091
2092 /*
2093 * If this is a partial write which happened to make all buffers
2094 * uptodate then we can optimize away a bogus readpage() for
2095 * the next read(). Here we 'discover' whether the page went
2096 * uptodate as a result of this (potentially partial) write.
2097 */
2098 if (!partial)
2099 SetPageUptodate(page);
2100 return 0;
2101 }
2102
2103 /*
2104 * block_write_begin takes care of the basic task of block allocation and
2105 * bringing partial write blocks uptodate first.
2106 *
2107 * The filesystem needs to handle block truncation upon failure.
2108 */
2109 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2110 unsigned flags, struct page **pagep, get_block_t *get_block)
2111 {
2112 pgoff_t index = pos >> PAGE_SHIFT;
2113 struct page *page;
2114 int status;
2115
2116 page = grab_cache_page_write_begin(mapping, index, flags);
2117 if (!page)
2118 return -ENOMEM;
2119
2120 status = __block_write_begin(page, pos, len, get_block);
2121 if (unlikely(status)) {
2122 unlock_page(page);
2123 put_page(page);
2124 page = NULL;
2125 }
2126
2127 *pagep = page;
2128 return status;
2129 }
2130 EXPORT_SYMBOL(block_write_begin);
2131
2132 int block_write_end(struct file *file, struct address_space *mapping,
2133 loff_t pos, unsigned len, unsigned copied,
2134 struct page *page, void *fsdata)
2135 {
2136 struct inode *inode = mapping->host;
2137 unsigned start;
2138
2139 start = pos & (PAGE_SIZE - 1);
2140
2141 if (unlikely(copied < len)) {
2142 /*
2143 * The buffers that were written will now be uptodate, so we
2144 * don't have to worry about a readpage reading them and
2145 * overwriting a partial write. However if we have encountered
2146 * a short write and only partially written into a buffer, it
2147 * will not be marked uptodate, so a readpage might come in and
2148 * destroy our partial write.
2149 *
2150 * Do the simplest thing, and just treat any short write to a
2151 * non uptodate page as a zero-length write, and force the
2152 * caller to redo the whole thing.
2153 */
2154 if (!PageUptodate(page))
2155 copied = 0;
2156
2157 page_zero_new_buffers(page, start+copied, start+len);
2158 }
2159 flush_dcache_page(page);
2160
2161 /* This could be a short (even 0-length) commit */
2162 __block_commit_write(inode, page, start, start+copied);
2163
2164 return copied;
2165 }
2166 EXPORT_SYMBOL(block_write_end);
2167
2168 int generic_write_end(struct file *file, struct address_space *mapping,
2169 loff_t pos, unsigned len, unsigned copied,
2170 struct page *page, void *fsdata)
2171 {
2172 struct inode *inode = mapping->host;
2173 loff_t old_size = inode->i_size;
2174 bool i_size_changed = false;
2175
2176 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2177
2178 /*
2179 * No need to use i_size_read() here, the i_size cannot change under us
2180 * because we hold i_rwsem.
2181 *
2182 * But it's important to update i_size while still holding page lock:
2183 * page writeout could otherwise come in and zero beyond i_size.
2184 */
2185 if (pos + copied > inode->i_size) {
2186 i_size_write(inode, pos + copied);
2187 i_size_changed = true;
2188 }
2189
2190 unlock_page(page);
2191 put_page(page);
2192
2193 if (old_size < pos)
2194 pagecache_isize_extended(inode, old_size, pos);
2195 /*
2196 * Don't mark the inode dirty under page lock. First, it unnecessarily
2197 * makes the holding time of page lock longer. Second, it forces lock
2198 * ordering of page lock and transaction start for journaling
2199 * filesystems.
2200 */
2201 if (i_size_changed)
2202 mark_inode_dirty(inode);
2203 return copied;
2204 }
2205 EXPORT_SYMBOL(generic_write_end);
2206
2207 /*
2208 * block_is_partially_uptodate checks whether buffers within a page are
2209 * uptodate or not.
2210 *
2211 * Returns true if all buffers which correspond to a file portion
2212 * we want to read are uptodate.
2213 */
2214 int block_is_partially_uptodate(struct page *page, unsigned long from,
2215 unsigned long count)
2216 {
2217 unsigned block_start, block_end, blocksize;
2218 unsigned to;
2219 struct buffer_head *bh, *head;
2220 int ret = 1;
2221
2222 if (!page_has_buffers(page))
2223 return 0;
2224
2225 head = page_buffers(page);
2226 blocksize = head->b_size;
2227 to = min_t(unsigned, PAGE_SIZE - from, count);
2228 to = from + to;
2229 if (from < blocksize && to > PAGE_SIZE - blocksize)
2230 return 0;
2231
2232 bh = head;
2233 block_start = 0;
2234 do {
2235 block_end = block_start + blocksize;
2236 if (block_end > from && block_start < to) {
2237 if (!buffer_uptodate(bh)) {
2238 ret = 0;
2239 break;
2240 }
2241 if (block_end >= to)
2242 break;
2243 }
2244 block_start = block_end;
2245 bh = bh->b_this_page;
2246 } while (bh != head);
2247
2248 return ret;
2249 }
2250 EXPORT_SYMBOL(block_is_partially_uptodate);
2251
2252 /*
2253 * Generic "read page" function for block devices that have the normal
2254 * get_block functionality. This is most of the block device filesystems.
2255 * Reads the page asynchronously --- the unlock_buffer() and
2256 * set/clear_buffer_uptodate() functions propagate buffer state into the
2257 * page struct once IO has completed.
2258 */
2259 int block_read_full_page(struct page *page, get_block_t *get_block)
2260 {
2261 struct inode *inode = page->mapping->host;
2262 sector_t iblock, lblock;
2263 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2264 unsigned int blocksize, bbits;
2265 int nr, i;
2266 int fully_mapped = 1;
2267
2268 head = create_page_buffers(page, inode, 0);
2269 blocksize = head->b_size;
2270 bbits = block_size_bits(blocksize);
2271
2272 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2273 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2274 bh = head;
2275 nr = 0;
2276 i = 0;
2277
2278 do {
2279 if (buffer_uptodate(bh))
2280 continue;
2281
2282 if (!buffer_mapped(bh)) {
2283 int err = 0;
2284
2285 fully_mapped = 0;
2286 if (iblock < lblock) {
2287 WARN_ON(bh->b_size != blocksize);
2288 err = get_block(inode, iblock, bh, 0);
2289 if (err)
2290 SetPageError(page);
2291 }
2292 if (!buffer_mapped(bh)) {
2293 zero_user(page, i * blocksize, blocksize);
2294 if (!err)
2295 set_buffer_uptodate(bh);
2296 continue;
2297 }
2298 /*
2299 * get_block() might have updated the buffer
2300 * synchronously
2301 */
2302 if (buffer_uptodate(bh))
2303 continue;
2304 }
2305 arr[nr++] = bh;
2306 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2307
2308 if (fully_mapped)
2309 SetPageMappedToDisk(page);
2310
2311 if (!nr) {
2312 /*
2313 * All buffers are uptodate - we can set the page uptodate
2314 * as well. But not if get_block() returned an error.
2315 */
2316 if (!PageError(page))
2317 SetPageUptodate(page);
2318 unlock_page(page);
2319 return 0;
2320 }
2321
2322 /* Stage two: lock the buffers */
2323 for (i = 0; i < nr; i++) {
2324 bh = arr[i];
2325 lock_buffer(bh);
2326 mark_buffer_async_read(bh);
2327 }
2328
2329 /*
2330 * Stage 3: start the IO. Check for uptodateness
2331 * inside the buffer lock in case another process reading
2332 * the underlying blockdev brought it uptodate (the sct fix).
2333 */
2334 for (i = 0; i < nr; i++) {
2335 bh = arr[i];
2336 if (buffer_uptodate(bh))
2337 end_buffer_async_read(bh, 1);
2338 else
2339 submit_bh(REQ_OP_READ, 0, bh);
2340 }
2341 return 0;
2342 }
2343 EXPORT_SYMBOL(block_read_full_page);
2344
2345 /* utility function for filesystems that need to do work on expanding
2346 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2347 * deal with the hole.
2348 */
2349 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2350 {
2351 struct address_space *mapping = inode->i_mapping;
2352 struct page *page;
2353 void *fsdata;
2354 int err;
2355
2356 err = inode_newsize_ok(inode, size);
2357 if (err)
2358 goto out;
2359
2360 err = pagecache_write_begin(NULL, mapping, size, 0,
2361 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2362 if (err)
2363 goto out;
2364
2365 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2366 BUG_ON(err > 0);
2367
2368 out:
2369 return err;
2370 }
2371 EXPORT_SYMBOL(generic_cont_expand_simple);
2372
2373 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2374 loff_t pos, loff_t *bytes)
2375 {
2376 struct inode *inode = mapping->host;
2377 unsigned int blocksize = i_blocksize(inode);
2378 struct page *page;
2379 void *fsdata;
2380 pgoff_t index, curidx;
2381 loff_t curpos;
2382 unsigned zerofrom, offset, len;
2383 int err = 0;
2384
2385 index = pos >> PAGE_SHIFT;
2386 offset = pos & ~PAGE_MASK;
2387
2388 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2389 zerofrom = curpos & ~PAGE_MASK;
2390 if (zerofrom & (blocksize-1)) {
2391 *bytes |= (blocksize-1);
2392 (*bytes)++;
2393 }
2394 len = PAGE_SIZE - zerofrom;
2395
2396 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2397 &page, &fsdata);
2398 if (err)
2399 goto out;
2400 zero_user(page, zerofrom, len);
2401 err = pagecache_write_end(file, mapping, curpos, len, len,
2402 page, fsdata);
2403 if (err < 0)
2404 goto out;
2405 BUG_ON(err != len);
2406 err = 0;
2407
2408 balance_dirty_pages_ratelimited(mapping);
2409
2410 if (fatal_signal_pending(current)) {
2411 err = -EINTR;
2412 goto out;
2413 }
2414 }
2415
2416 /* page covers the boundary, find the boundary offset */
2417 if (index == curidx) {
2418 zerofrom = curpos & ~PAGE_MASK;
2419 /* if we will expand the thing last block will be filled */
2420 if (offset <= zerofrom) {
2421 goto out;
2422 }
2423 if (zerofrom & (blocksize-1)) {
2424 *bytes |= (blocksize-1);
2425 (*bytes)++;
2426 }
2427 len = offset - zerofrom;
2428
2429 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2430 &page, &fsdata);
2431 if (err)
2432 goto out;
2433 zero_user(page, zerofrom, len);
2434 err = pagecache_write_end(file, mapping, curpos, len, len,
2435 page, fsdata);
2436 if (err < 0)
2437 goto out;
2438 BUG_ON(err != len);
2439 err = 0;
2440 }
2441 out:
2442 return err;
2443 }
2444
2445 /*
2446 * For moronic filesystems that do not allow holes in file.
2447 * We may have to extend the file.
2448 */
2449 int cont_write_begin(struct file *file, struct address_space *mapping,
2450 loff_t pos, unsigned len, unsigned flags,
2451 struct page **pagep, void **fsdata,
2452 get_block_t *get_block, loff_t *bytes)
2453 {
2454 struct inode *inode = mapping->host;
2455 unsigned int blocksize = i_blocksize(inode);
2456 unsigned int zerofrom;
2457 int err;
2458
2459 err = cont_expand_zero(file, mapping, pos, bytes);
2460 if (err)
2461 return err;
2462
2463 zerofrom = *bytes & ~PAGE_MASK;
2464 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2465 *bytes |= (blocksize-1);
2466 (*bytes)++;
2467 }
2468
2469 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2470 }
2471 EXPORT_SYMBOL(cont_write_begin);
2472
2473 int block_commit_write(struct page *page, unsigned from, unsigned to)
2474 {
2475 struct inode *inode = page->mapping->host;
2476 __block_commit_write(inode,page,from,to);
2477 return 0;
2478 }
2479 EXPORT_SYMBOL(block_commit_write);
2480
2481 /*
2482 * block_page_mkwrite() is not allowed to change the file size as it gets
2483 * called from a page fault handler when a page is first dirtied. Hence we must
2484 * be careful to check for EOF conditions here. We set the page up correctly
2485 * for a written page which means we get ENOSPC checking when writing into
2486 * holes and correct delalloc and unwritten extent mapping on filesystems that
2487 * support these features.
2488 *
2489 * We are not allowed to take the i_mutex here so we have to play games to
2490 * protect against truncate races as the page could now be beyond EOF. Because
2491 * truncate writes the inode size before removing pages, once we have the
2492 * page lock we can determine safely if the page is beyond EOF. If it is not
2493 * beyond EOF, then the page is guaranteed safe against truncation until we
2494 * unlock the page.
2495 *
2496 * Direct callers of this function should protect against filesystem freezing
2497 * using sb_start_pagefault() - sb_end_pagefault() functions.
2498 */
2499 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2500 get_block_t get_block)
2501 {
2502 struct page *page = vmf->page;
2503 struct inode *inode = file_inode(vma->vm_file);
2504 unsigned long end;
2505 loff_t size;
2506 int ret;
2507
2508 lock_page(page);
2509 size = i_size_read(inode);
2510 if ((page->mapping != inode->i_mapping) ||
2511 (page_offset(page) > size)) {
2512 /* We overload EFAULT to mean page got truncated */
2513 ret = -EFAULT;
2514 goto out_unlock;
2515 }
2516
2517 /* page is wholly or partially inside EOF */
2518 if (((page->index + 1) << PAGE_SHIFT) > size)
2519 end = size & ~PAGE_MASK;
2520 else
2521 end = PAGE_SIZE;
2522
2523 ret = __block_write_begin(page, 0, end, get_block);
2524 if (!ret)
2525 ret = block_commit_write(page, 0, end);
2526
2527 if (unlikely(ret < 0))
2528 goto out_unlock;
2529 set_page_dirty(page);
2530 wait_for_stable_page(page);
2531 return 0;
2532 out_unlock:
2533 unlock_page(page);
2534 return ret;
2535 }
2536 EXPORT_SYMBOL(block_page_mkwrite);
2537
2538 /*
2539 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2540 * immediately, while under the page lock. So it needs a special end_io
2541 * handler which does not touch the bh after unlocking it.
2542 */
2543 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2544 {
2545 __end_buffer_read_notouch(bh, uptodate);
2546 }
2547
2548 /*
2549 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2550 * the page (converting it to circular linked list and taking care of page
2551 * dirty races).
2552 */
2553 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2554 {
2555 struct buffer_head *bh;
2556
2557 BUG_ON(!PageLocked(page));
2558
2559 spin_lock(&page->mapping->private_lock);
2560 bh = head;
2561 do {
2562 if (PageDirty(page))
2563 set_buffer_dirty(bh);
2564 if (!bh->b_this_page)
2565 bh->b_this_page = head;
2566 bh = bh->b_this_page;
2567 } while (bh != head);
2568 attach_page_private(page, head);
2569 spin_unlock(&page->mapping->private_lock);
2570 }
2571
2572 /*
2573 * On entry, the page is fully not uptodate.
2574 * On exit the page is fully uptodate in the areas outside (from,to)
2575 * The filesystem needs to handle block truncation upon failure.
2576 */
2577 int nobh_write_begin(struct address_space *mapping,
2578 loff_t pos, unsigned len, unsigned flags,
2579 struct page **pagep, void **fsdata,
2580 get_block_t *get_block)
2581 {
2582 struct inode *inode = mapping->host;
2583 const unsigned blkbits = inode->i_blkbits;
2584 const unsigned blocksize = 1 << blkbits;
2585 struct buffer_head *head, *bh;
2586 struct page *page;
2587 pgoff_t index;
2588 unsigned from, to;
2589 unsigned block_in_page;
2590 unsigned block_start, block_end;
2591 sector_t block_in_file;
2592 int nr_reads = 0;
2593 int ret = 0;
2594 int is_mapped_to_disk = 1;
2595
2596 index = pos >> PAGE_SHIFT;
2597 from = pos & (PAGE_SIZE - 1);
2598 to = from + len;
2599
2600 page = grab_cache_page_write_begin(mapping, index, flags);
2601 if (!page)
2602 return -ENOMEM;
2603 *pagep = page;
2604 *fsdata = NULL;
2605
2606 if (page_has_buffers(page)) {
2607 ret = __block_write_begin(page, pos, len, get_block);
2608 if (unlikely(ret))
2609 goto out_release;
2610 return ret;
2611 }
2612
2613 if (PageMappedToDisk(page))
2614 return 0;
2615
2616 /*
2617 * Allocate buffers so that we can keep track of state, and potentially
2618 * attach them to the page if an error occurs. In the common case of
2619 * no error, they will just be freed again without ever being attached
2620 * to the page (which is all OK, because we're under the page lock).
2621 *
2622 * Be careful: the buffer linked list is a NULL terminated one, rather
2623 * than the circular one we're used to.
2624 */
2625 head = alloc_page_buffers(page, blocksize, false);
2626 if (!head) {
2627 ret = -ENOMEM;
2628 goto out_release;
2629 }
2630
2631 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2632
2633 /*
2634 * We loop across all blocks in the page, whether or not they are
2635 * part of the affected region. This is so we can discover if the
2636 * page is fully mapped-to-disk.
2637 */
2638 for (block_start = 0, block_in_page = 0, bh = head;
2639 block_start < PAGE_SIZE;
2640 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2641 int create;
2642
2643 block_end = block_start + blocksize;
2644 bh->b_state = 0;
2645 create = 1;
2646 if (block_start >= to)
2647 create = 0;
2648 ret = get_block(inode, block_in_file + block_in_page,
2649 bh, create);
2650 if (ret)
2651 goto failed;
2652 if (!buffer_mapped(bh))
2653 is_mapped_to_disk = 0;
2654 if (buffer_new(bh))
2655 clean_bdev_bh_alias(bh);
2656 if (PageUptodate(page)) {
2657 set_buffer_uptodate(bh);
2658 continue;
2659 }
2660 if (buffer_new(bh) || !buffer_mapped(bh)) {
2661 zero_user_segments(page, block_start, from,
2662 to, block_end);
2663 continue;
2664 }
2665 if (buffer_uptodate(bh))
2666 continue; /* reiserfs does this */
2667 if (block_start < from || block_end > to) {
2668 lock_buffer(bh);
2669 bh->b_end_io = end_buffer_read_nobh;
2670 submit_bh(REQ_OP_READ, 0, bh);
2671 nr_reads++;
2672 }
2673 }
2674
2675 if (nr_reads) {
2676 /*
2677 * The page is locked, so these buffers are protected from
2678 * any VM or truncate activity. Hence we don't need to care
2679 * for the buffer_head refcounts.
2680 */
2681 for (bh = head; bh; bh = bh->b_this_page) {
2682 wait_on_buffer(bh);
2683 if (!buffer_uptodate(bh))
2684 ret = -EIO;
2685 }
2686 if (ret)
2687 goto failed;
2688 }
2689
2690 if (is_mapped_to_disk)
2691 SetPageMappedToDisk(page);
2692
2693 *fsdata = head; /* to be released by nobh_write_end */
2694
2695 return 0;
2696
2697 failed:
2698 BUG_ON(!ret);
2699 /*
2700 * Error recovery is a bit difficult. We need to zero out blocks that
2701 * were newly allocated, and dirty them to ensure they get written out.
2702 * Buffers need to be attached to the page at this point, otherwise
2703 * the handling of potential IO errors during writeout would be hard
2704 * (could try doing synchronous writeout, but what if that fails too?)
2705 */
2706 attach_nobh_buffers(page, head);
2707 page_zero_new_buffers(page, from, to);
2708
2709 out_release:
2710 unlock_page(page);
2711 put_page(page);
2712 *pagep = NULL;
2713
2714 return ret;
2715 }
2716 EXPORT_SYMBOL(nobh_write_begin);
2717
2718 int nobh_write_end(struct file *file, struct address_space *mapping,
2719 loff_t pos, unsigned len, unsigned copied,
2720 struct page *page, void *fsdata)
2721 {
2722 struct inode *inode = page->mapping->host;
2723 struct buffer_head *head = fsdata;
2724 struct buffer_head *bh;
2725 BUG_ON(fsdata != NULL && page_has_buffers(page));
2726
2727 if (unlikely(copied < len) && head)
2728 attach_nobh_buffers(page, head);
2729 if (page_has_buffers(page))
2730 return generic_write_end(file, mapping, pos, len,
2731 copied, page, fsdata);
2732
2733 SetPageUptodate(page);
2734 set_page_dirty(page);
2735 if (pos+copied > inode->i_size) {
2736 i_size_write(inode, pos+copied);
2737 mark_inode_dirty(inode);
2738 }
2739
2740 unlock_page(page);
2741 put_page(page);
2742
2743 while (head) {
2744 bh = head;
2745 head = head->b_this_page;
2746 free_buffer_head(bh);
2747 }
2748
2749 return copied;
2750 }
2751 EXPORT_SYMBOL(nobh_write_end);
2752
2753 /*
2754 * nobh_writepage() - based on block_full_write_page() except
2755 * that it tries to operate without attaching bufferheads to
2756 * the page.
2757 */
2758 int nobh_writepage(struct page *page, get_block_t *get_block,
2759 struct writeback_control *wbc)
2760 {
2761 struct inode * const inode = page->mapping->host;
2762 loff_t i_size = i_size_read(inode);
2763 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2764 unsigned offset;
2765 int ret;
2766
2767 /* Is the page fully inside i_size? */
2768 if (page->index < end_index)
2769 goto out;
2770
2771 /* Is the page fully outside i_size? (truncate in progress) */
2772 offset = i_size & (PAGE_SIZE-1);
2773 if (page->index >= end_index+1 || !offset) {
2774 unlock_page(page);
2775 return 0; /* don't care */
2776 }
2777
2778 /*
2779 * The page straddles i_size. It must be zeroed out on each and every
2780 * writepage invocation because it may be mmapped. "A file is mapped
2781 * in multiples of the page size. For a file that is not a multiple of
2782 * the page size, the remaining memory is zeroed when mapped, and
2783 * writes to that region are not written out to the file."
2784 */
2785 zero_user_segment(page, offset, PAGE_SIZE);
2786 out:
2787 ret = mpage_writepage(page, get_block, wbc);
2788 if (ret == -EAGAIN)
2789 ret = __block_write_full_page(inode, page, get_block, wbc,
2790 end_buffer_async_write);
2791 return ret;
2792 }
2793 EXPORT_SYMBOL(nobh_writepage);
2794
2795 int nobh_truncate_page(struct address_space *mapping,
2796 loff_t from, get_block_t *get_block)
2797 {
2798 pgoff_t index = from >> PAGE_SHIFT;
2799 unsigned offset = from & (PAGE_SIZE-1);
2800 unsigned blocksize;
2801 sector_t iblock;
2802 unsigned length, pos;
2803 struct inode *inode = mapping->host;
2804 struct page *page;
2805 struct buffer_head map_bh;
2806 int err;
2807
2808 blocksize = i_blocksize(inode);
2809 length = offset & (blocksize - 1);
2810
2811 /* Block boundary? Nothing to do */
2812 if (!length)
2813 return 0;
2814
2815 length = blocksize - length;
2816 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2817
2818 page = grab_cache_page(mapping, index);
2819 err = -ENOMEM;
2820 if (!page)
2821 goto out;
2822
2823 if (page_has_buffers(page)) {
2824 has_buffers:
2825 unlock_page(page);
2826 put_page(page);
2827 return block_truncate_page(mapping, from, get_block);
2828 }
2829
2830 /* Find the buffer that contains "offset" */
2831 pos = blocksize;
2832 while (offset >= pos) {
2833 iblock++;
2834 pos += blocksize;
2835 }
2836
2837 map_bh.b_size = blocksize;
2838 map_bh.b_state = 0;
2839 err = get_block(inode, iblock, &map_bh, 0);
2840 if (err)
2841 goto unlock;
2842 /* unmapped? It's a hole - nothing to do */
2843 if (!buffer_mapped(&map_bh))
2844 goto unlock;
2845
2846 /* Ok, it's mapped. Make sure it's up-to-date */
2847 if (!PageUptodate(page)) {
2848 err = mapping->a_ops->readpage(NULL, page);
2849 if (err) {
2850 put_page(page);
2851 goto out;
2852 }
2853 lock_page(page);
2854 if (!PageUptodate(page)) {
2855 err = -EIO;
2856 goto unlock;
2857 }
2858 if (page_has_buffers(page))
2859 goto has_buffers;
2860 }
2861 zero_user(page, offset, length);
2862 set_page_dirty(page);
2863 err = 0;
2864
2865 unlock:
2866 unlock_page(page);
2867 put_page(page);
2868 out:
2869 return err;
2870 }
2871 EXPORT_SYMBOL(nobh_truncate_page);
2872
2873 int block_truncate_page(struct address_space *mapping,
2874 loff_t from, get_block_t *get_block)
2875 {
2876 pgoff_t index = from >> PAGE_SHIFT;
2877 unsigned offset = from & (PAGE_SIZE-1);
2878 unsigned blocksize;
2879 sector_t iblock;
2880 unsigned length, pos;
2881 struct inode *inode = mapping->host;
2882 struct page *page;
2883 struct buffer_head *bh;
2884 int err;
2885
2886 blocksize = i_blocksize(inode);
2887 length = offset & (blocksize - 1);
2888
2889 /* Block boundary? Nothing to do */
2890 if (!length)
2891 return 0;
2892
2893 length = blocksize - length;
2894 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2895
2896 page = grab_cache_page(mapping, index);
2897 err = -ENOMEM;
2898 if (!page)
2899 goto out;
2900
2901 if (!page_has_buffers(page))
2902 create_empty_buffers(page, blocksize, 0);
2903
2904 /* Find the buffer that contains "offset" */
2905 bh = page_buffers(page);
2906 pos = blocksize;
2907 while (offset >= pos) {
2908 bh = bh->b_this_page;
2909 iblock++;
2910 pos += blocksize;
2911 }
2912
2913 err = 0;
2914 if (!buffer_mapped(bh)) {
2915 WARN_ON(bh->b_size != blocksize);
2916 err = get_block(inode, iblock, bh, 0);
2917 if (err)
2918 goto unlock;
2919 /* unmapped? It's a hole - nothing to do */
2920 if (!buffer_mapped(bh))
2921 goto unlock;
2922 }
2923
2924 /* Ok, it's mapped. Make sure it's up-to-date */
2925 if (PageUptodate(page))
2926 set_buffer_uptodate(bh);
2927
2928 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2929 err = -EIO;
2930 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2931 wait_on_buffer(bh);
2932 /* Uhhuh. Read error. Complain and punt. */
2933 if (!buffer_uptodate(bh))
2934 goto unlock;
2935 }
2936
2937 zero_user(page, offset, length);
2938 mark_buffer_dirty(bh);
2939 err = 0;
2940
2941 unlock:
2942 unlock_page(page);
2943 put_page(page);
2944 out:
2945 return err;
2946 }
2947 EXPORT_SYMBOL(block_truncate_page);
2948
2949 /*
2950 * The generic ->writepage function for buffer-backed address_spaces
2951 */
2952 int block_write_full_page(struct page *page, get_block_t *get_block,
2953 struct writeback_control *wbc)
2954 {
2955 struct inode * const inode = page->mapping->host;
2956 loff_t i_size = i_size_read(inode);
2957 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2958 unsigned offset;
2959
2960 /* Is the page fully inside i_size? */
2961 if (page->index < end_index)
2962 return __block_write_full_page(inode, page, get_block, wbc,
2963 end_buffer_async_write);
2964
2965 /* Is the page fully outside i_size? (truncate in progress) */
2966 offset = i_size & (PAGE_SIZE-1);
2967 if (page->index >= end_index+1 || !offset) {
2968 unlock_page(page);
2969 return 0; /* don't care */
2970 }
2971
2972 /*
2973 * The page straddles i_size. It must be zeroed out on each and every
2974 * writepage invocation because it may be mmapped. "A file is mapped
2975 * in multiples of the page size. For a file that is not a multiple of
2976 * the page size, the remaining memory is zeroed when mapped, and
2977 * writes to that region are not written out to the file."
2978 */
2979 zero_user_segment(page, offset, PAGE_SIZE);
2980 return __block_write_full_page(inode, page, get_block, wbc,
2981 end_buffer_async_write);
2982 }
2983 EXPORT_SYMBOL(block_write_full_page);
2984
2985 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2986 get_block_t *get_block)
2987 {
2988 struct inode *inode = mapping->host;
2989 struct buffer_head tmp = {
2990 .b_size = i_blocksize(inode),
2991 };
2992
2993 get_block(inode, block, &tmp, 0);
2994 return tmp.b_blocknr;
2995 }
2996 EXPORT_SYMBOL(generic_block_bmap);
2997
2998 static void end_bio_bh_io_sync(struct bio *bio)
2999 {
3000 struct buffer_head *bh = bio->bi_private;
3001
3002 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3003 set_bit(BH_Quiet, &bh->b_state);
3004
3005 bh->b_end_io(bh, !bio->bi_status);
3006 bio_put(bio);
3007 }
3008
3009 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3010 enum rw_hint write_hint, struct writeback_control *wbc)
3011 {
3012 struct bio *bio;
3013
3014 BUG_ON(!buffer_locked(bh));
3015 BUG_ON(!buffer_mapped(bh));
3016 BUG_ON(!bh->b_end_io);
3017 BUG_ON(buffer_delay(bh));
3018 BUG_ON(buffer_unwritten(bh));
3019
3020 /*
3021 * Only clear out a write error when rewriting
3022 */
3023 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3024 clear_buffer_write_io_error(bh);
3025
3026 bio = bio_alloc(GFP_NOIO, 1);
3027
3028 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3029
3030 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3031 bio_set_dev(bio, bh->b_bdev);
3032 bio->bi_write_hint = write_hint;
3033
3034 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3035 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3036
3037 bio->bi_end_io = end_bio_bh_io_sync;
3038 bio->bi_private = bh;
3039
3040 if (buffer_meta(bh))
3041 op_flags |= REQ_META;
3042 if (buffer_prio(bh))
3043 op_flags |= REQ_PRIO;
3044 bio_set_op_attrs(bio, op, op_flags);
3045
3046 /* Take care of bh's that straddle the end of the device */
3047 guard_bio_eod(bio);
3048
3049 if (wbc) {
3050 wbc_init_bio(wbc, bio);
3051 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3052 }
3053
3054 submit_bio(bio);
3055 return 0;
3056 }
3057
3058 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3059 {
3060 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3061 }
3062 EXPORT_SYMBOL(submit_bh);
3063
3064 /**
3065 * ll_rw_block: low-level access to block devices (DEPRECATED)
3066 * @op: whether to %READ or %WRITE
3067 * @op_flags: req_flag_bits
3068 * @nr: number of &struct buffer_heads in the array
3069 * @bhs: array of pointers to &struct buffer_head
3070 *
3071 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3072 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3073 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3074 * %REQ_RAHEAD.
3075 *
3076 * This function drops any buffer that it cannot get a lock on (with the
3077 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3078 * request, and any buffer that appears to be up-to-date when doing read
3079 * request. Further it marks as clean buffers that are processed for
3080 * writing (the buffer cache won't assume that they are actually clean
3081 * until the buffer gets unlocked).
3082 *
3083 * ll_rw_block sets b_end_io to simple completion handler that marks
3084 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3085 * any waiters.
3086 *
3087 * All of the buffers must be for the same device, and must also be a
3088 * multiple of the current approved size for the device.
3089 */
3090 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3091 {
3092 int i;
3093
3094 for (i = 0; i < nr; i++) {
3095 struct buffer_head *bh = bhs[i];
3096
3097 if (!trylock_buffer(bh))
3098 continue;
3099 if (op == WRITE) {
3100 if (test_clear_buffer_dirty(bh)) {
3101 bh->b_end_io = end_buffer_write_sync;
3102 get_bh(bh);
3103 submit_bh(op, op_flags, bh);
3104 continue;
3105 }
3106 } else {
3107 if (!buffer_uptodate(bh)) {
3108 bh->b_end_io = end_buffer_read_sync;
3109 get_bh(bh);
3110 submit_bh(op, op_flags, bh);
3111 continue;
3112 }
3113 }
3114 unlock_buffer(bh);
3115 }
3116 }
3117 EXPORT_SYMBOL(ll_rw_block);
3118
3119 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3120 {
3121 lock_buffer(bh);
3122 if (!test_clear_buffer_dirty(bh)) {
3123 unlock_buffer(bh);
3124 return;
3125 }
3126 bh->b_end_io = end_buffer_write_sync;
3127 get_bh(bh);
3128 submit_bh(REQ_OP_WRITE, op_flags, bh);
3129 }
3130 EXPORT_SYMBOL(write_dirty_buffer);
3131
3132 /*
3133 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3134 * and then start new I/O and then wait upon it. The caller must have a ref on
3135 * the buffer_head.
3136 */
3137 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3138 {
3139 int ret = 0;
3140
3141 WARN_ON(atomic_read(&bh->b_count) < 1);
3142 lock_buffer(bh);
3143 if (test_clear_buffer_dirty(bh)) {
3144 /*
3145 * The bh should be mapped, but it might not be if the
3146 * device was hot-removed. Not much we can do but fail the I/O.
3147 */
3148 if (!buffer_mapped(bh)) {
3149 unlock_buffer(bh);
3150 return -EIO;
3151 }
3152
3153 get_bh(bh);
3154 bh->b_end_io = end_buffer_write_sync;
3155 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3156 wait_on_buffer(bh);
3157 if (!ret && !buffer_uptodate(bh))
3158 ret = -EIO;
3159 } else {
3160 unlock_buffer(bh);
3161 }
3162 return ret;
3163 }
3164 EXPORT_SYMBOL(__sync_dirty_buffer);
3165
3166 int sync_dirty_buffer(struct buffer_head *bh)
3167 {
3168 return __sync_dirty_buffer(bh, REQ_SYNC);
3169 }
3170 EXPORT_SYMBOL(sync_dirty_buffer);
3171
3172 /*
3173 * try_to_free_buffers() checks if all the buffers on this particular page
3174 * are unused, and releases them if so.
3175 *
3176 * Exclusion against try_to_free_buffers may be obtained by either
3177 * locking the page or by holding its mapping's private_lock.
3178 *
3179 * If the page is dirty but all the buffers are clean then we need to
3180 * be sure to mark the page clean as well. This is because the page
3181 * may be against a block device, and a later reattachment of buffers
3182 * to a dirty page will set *all* buffers dirty. Which would corrupt
3183 * filesystem data on the same device.
3184 *
3185 * The same applies to regular filesystem pages: if all the buffers are
3186 * clean then we set the page clean and proceed. To do that, we require
3187 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3188 * private_lock.
3189 *
3190 * try_to_free_buffers() is non-blocking.
3191 */
3192 static inline int buffer_busy(struct buffer_head *bh)
3193 {
3194 return atomic_read(&bh->b_count) |
3195 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3196 }
3197
3198 static int
3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3200 {
3201 struct buffer_head *head = page_buffers(page);
3202 struct buffer_head *bh;
3203
3204 bh = head;
3205 do {
3206 if (buffer_busy(bh))
3207 goto failed;
3208 bh = bh->b_this_page;
3209 } while (bh != head);
3210
3211 do {
3212 struct buffer_head *next = bh->b_this_page;
3213
3214 if (bh->b_assoc_map)
3215 __remove_assoc_queue(bh);
3216 bh = next;
3217 } while (bh != head);
3218 *buffers_to_free = head;
3219 detach_page_private(page);
3220 return 1;
3221 failed:
3222 return 0;
3223 }
3224
3225 int try_to_free_buffers(struct page *page)
3226 {
3227 struct address_space * const mapping = page->mapping;
3228 struct buffer_head *buffers_to_free = NULL;
3229 int ret = 0;
3230
3231 BUG_ON(!PageLocked(page));
3232 if (PageWriteback(page))
3233 return 0;
3234
3235 if (mapping == NULL) { /* can this still happen? */
3236 ret = drop_buffers(page, &buffers_to_free);
3237 goto out;
3238 }
3239
3240 spin_lock(&mapping->private_lock);
3241 ret = drop_buffers(page, &buffers_to_free);
3242
3243 /*
3244 * If the filesystem writes its buffers by hand (eg ext3)
3245 * then we can have clean buffers against a dirty page. We
3246 * clean the page here; otherwise the VM will never notice
3247 * that the filesystem did any IO at all.
3248 *
3249 * Also, during truncate, discard_buffer will have marked all
3250 * the page's buffers clean. We discover that here and clean
3251 * the page also.
3252 *
3253 * private_lock must be held over this entire operation in order
3254 * to synchronise against __set_page_dirty_buffers and prevent the
3255 * dirty bit from being lost.
3256 */
3257 if (ret)
3258 cancel_dirty_page(page);
3259 spin_unlock(&mapping->private_lock);
3260 out:
3261 if (buffers_to_free) {
3262 struct buffer_head *bh = buffers_to_free;
3263
3264 do {
3265 struct buffer_head *next = bh->b_this_page;
3266 free_buffer_head(bh);
3267 bh = next;
3268 } while (bh != buffers_to_free);
3269 }
3270 return ret;
3271 }
3272 EXPORT_SYMBOL(try_to_free_buffers);
3273
3274 /*
3275 * There are no bdflush tunables left. But distributions are
3276 * still running obsolete flush daemons, so we terminate them here.
3277 *
3278 * Use of bdflush() is deprecated and will be removed in a future kernel.
3279 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3280 */
3281 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3282 {
3283 static int msg_count;
3284
3285 if (!capable(CAP_SYS_ADMIN))
3286 return -EPERM;
3287
3288 if (msg_count < 5) {
3289 msg_count++;
3290 printk(KERN_INFO
3291 "warning: process `%s' used the obsolete bdflush"
3292 " system call\n", current->comm);
3293 printk(KERN_INFO "Fix your initscripts?\n");
3294 }
3295
3296 if (func == 1)
3297 do_exit(0);
3298 return 0;
3299 }
3300
3301 /*
3302 * Buffer-head allocation
3303 */
3304 static struct kmem_cache *bh_cachep __read_mostly;
3305
3306 /*
3307 * Once the number of bh's in the machine exceeds this level, we start
3308 * stripping them in writeback.
3309 */
3310 static unsigned long max_buffer_heads;
3311
3312 int buffer_heads_over_limit;
3313
3314 struct bh_accounting {
3315 int nr; /* Number of live bh's */
3316 int ratelimit; /* Limit cacheline bouncing */
3317 };
3318
3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3320
3321 static void recalc_bh_state(void)
3322 {
3323 int i;
3324 int tot = 0;
3325
3326 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327 return;
3328 __this_cpu_write(bh_accounting.ratelimit, 0);
3329 for_each_online_cpu(i)
3330 tot += per_cpu(bh_accounting, i).nr;
3331 buffer_heads_over_limit = (tot > max_buffer_heads);
3332 }
3333
3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3335 {
3336 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337 if (ret) {
3338 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339 spin_lock_init(&ret->b_uptodate_lock);
3340 preempt_disable();
3341 __this_cpu_inc(bh_accounting.nr);
3342 recalc_bh_state();
3343 preempt_enable();
3344 }
3345 return ret;
3346 }
3347 EXPORT_SYMBOL(alloc_buffer_head);
3348
3349 void free_buffer_head(struct buffer_head *bh)
3350 {
3351 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352 kmem_cache_free(bh_cachep, bh);
3353 preempt_disable();
3354 __this_cpu_dec(bh_accounting.nr);
3355 recalc_bh_state();
3356 preempt_enable();
3357 }
3358 EXPORT_SYMBOL(free_buffer_head);
3359
3360 static int buffer_exit_cpu_dead(unsigned int cpu)
3361 {
3362 int i;
3363 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364
3365 for (i = 0; i < BH_LRU_SIZE; i++) {
3366 brelse(b->bhs[i]);
3367 b->bhs[i] = NULL;
3368 }
3369 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3370 per_cpu(bh_accounting, cpu).nr = 0;
3371 return 0;
3372 }
3373
3374 /**
3375 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376 * @bh: struct buffer_head
3377 *
3378 * Return true if the buffer is up-to-date and false,
3379 * with the buffer locked, if not.
3380 */
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3382 {
3383 if (!buffer_uptodate(bh)) {
3384 lock_buffer(bh);
3385 if (!buffer_uptodate(bh))
3386 return 0;
3387 unlock_buffer(bh);
3388 }
3389 return 1;
3390 }
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3392
3393 /**
3394 * bh_submit_read - Submit a locked buffer for reading
3395 * @bh: struct buffer_head
3396 *
3397 * Returns zero on success and -EIO on error.
3398 */
3399 int bh_submit_read(struct buffer_head *bh)
3400 {
3401 BUG_ON(!buffer_locked(bh));
3402
3403 if (buffer_uptodate(bh)) {
3404 unlock_buffer(bh);
3405 return 0;
3406 }
3407
3408 get_bh(bh);
3409 bh->b_end_io = end_buffer_read_sync;
3410 submit_bh(REQ_OP_READ, 0, bh);
3411 wait_on_buffer(bh);
3412 if (buffer_uptodate(bh))
3413 return 0;
3414 return -EIO;
3415 }
3416 EXPORT_SYMBOL(bh_submit_read);
3417
3418 void __init buffer_init(void)
3419 {
3420 unsigned long nrpages;
3421 int ret;
3422
3423 bh_cachep = kmem_cache_create("buffer_head",
3424 sizeof(struct buffer_head), 0,
3425 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3426 SLAB_MEM_SPREAD),
3427 NULL);
3428
3429 /*
3430 * Limit the bh occupancy to 10% of ZONE_NORMAL
3431 */
3432 nrpages = (nr_free_buffer_pages() * 10) / 100;
3433 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3434 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3435 NULL, buffer_exit_cpu_dead);
3436 WARN_ON(ret < 0);
3437 }