]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/buffer.c
[PATCH] fat: support a truncate() for expanding size (generic_cont_expand)
[mirror_ubuntu-zesty-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53 bh->b_end_io = handler;
54 bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
115 */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118 if (uptodate) {
119 set_buffer_uptodate(bh);
120 } else {
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
123 }
124 unlock_buffer(bh);
125 put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130 char b[BDEVNAME_SIZE];
131
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 buffer_io_error(bh);
137 printk(KERN_WARNING "lost page write due to "
138 "I/O error on %s\n",
139 bdevname(bh->b_bdev, b));
140 }
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
143 }
144 unlock_buffer(bh);
145 put_bh(bh);
146 }
147
148 /*
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
151 */
152 int sync_blockdev(struct block_device *bdev)
153 {
154 int ret = 0;
155
156 if (bdev) {
157 int err;
158
159 ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
160 err = filemap_fdatawait(bdev->bd_inode->i_mapping);
161 if (!ret)
162 ret = err;
163 }
164 return ret;
165 }
166 EXPORT_SYMBOL(sync_blockdev);
167
168 /*
169 * Write out and wait upon all dirty data associated with this
170 * superblock. Filesystem data as well as the underlying block
171 * device. Takes the superblock lock.
172 */
173 int fsync_super(struct super_block *sb)
174 {
175 sync_inodes_sb(sb, 0);
176 DQUOT_SYNC(sb);
177 lock_super(sb);
178 if (sb->s_dirt && sb->s_op->write_super)
179 sb->s_op->write_super(sb);
180 unlock_super(sb);
181 if (sb->s_op->sync_fs)
182 sb->s_op->sync_fs(sb, 1);
183 sync_blockdev(sb->s_bdev);
184 sync_inodes_sb(sb, 1);
185
186 return sync_blockdev(sb->s_bdev);
187 }
188
189 /*
190 * Write out and wait upon all dirty data associated with this
191 * device. Filesystem data as well as the underlying block
192 * device. Takes the superblock lock.
193 */
194 int fsync_bdev(struct block_device *bdev)
195 {
196 struct super_block *sb = get_super(bdev);
197 if (sb) {
198 int res = fsync_super(sb);
199 drop_super(sb);
200 return res;
201 }
202 return sync_blockdev(bdev);
203 }
204
205 /**
206 * freeze_bdev -- lock a filesystem and force it into a consistent state
207 * @bdev: blockdevice to lock
208 *
209 * This takes the block device bd_mount_sem to make sure no new mounts
210 * happen on bdev until thaw_bdev() is called.
211 * If a superblock is found on this device, we take the s_umount semaphore
212 * on it to make sure nobody unmounts until the snapshot creation is done.
213 */
214 struct super_block *freeze_bdev(struct block_device *bdev)
215 {
216 struct super_block *sb;
217
218 down(&bdev->bd_mount_sem);
219 sb = get_super(bdev);
220 if (sb && !(sb->s_flags & MS_RDONLY)) {
221 sb->s_frozen = SB_FREEZE_WRITE;
222 smp_wmb();
223
224 sync_inodes_sb(sb, 0);
225 DQUOT_SYNC(sb);
226
227 lock_super(sb);
228 if (sb->s_dirt && sb->s_op->write_super)
229 sb->s_op->write_super(sb);
230 unlock_super(sb);
231
232 if (sb->s_op->sync_fs)
233 sb->s_op->sync_fs(sb, 1);
234
235 sync_blockdev(sb->s_bdev);
236 sync_inodes_sb(sb, 1);
237
238 sb->s_frozen = SB_FREEZE_TRANS;
239 smp_wmb();
240
241 sync_blockdev(sb->s_bdev);
242
243 if (sb->s_op->write_super_lockfs)
244 sb->s_op->write_super_lockfs(sb);
245 }
246
247 sync_blockdev(bdev);
248 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
249 }
250 EXPORT_SYMBOL(freeze_bdev);
251
252 /**
253 * thaw_bdev -- unlock filesystem
254 * @bdev: blockdevice to unlock
255 * @sb: associated superblock
256 *
257 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
258 */
259 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
260 {
261 if (sb) {
262 BUG_ON(sb->s_bdev != bdev);
263
264 if (sb->s_op->unlockfs)
265 sb->s_op->unlockfs(sb);
266 sb->s_frozen = SB_UNFROZEN;
267 smp_wmb();
268 wake_up(&sb->s_wait_unfrozen);
269 drop_super(sb);
270 }
271
272 up(&bdev->bd_mount_sem);
273 }
274 EXPORT_SYMBOL(thaw_bdev);
275
276 /*
277 * sync everything. Start out by waking pdflush, because that writes back
278 * all queues in parallel.
279 */
280 static void do_sync(unsigned long wait)
281 {
282 wakeup_pdflush(0);
283 sync_inodes(0); /* All mappings, inodes and their blockdevs */
284 DQUOT_SYNC(NULL);
285 sync_supers(); /* Write the superblocks */
286 sync_filesystems(0); /* Start syncing the filesystems */
287 sync_filesystems(wait); /* Waitingly sync the filesystems */
288 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
289 if (!wait)
290 printk("Emergency Sync complete\n");
291 if (unlikely(laptop_mode))
292 laptop_sync_completion();
293 }
294
295 asmlinkage long sys_sync(void)
296 {
297 do_sync(1);
298 return 0;
299 }
300
301 void emergency_sync(void)
302 {
303 pdflush_operation(do_sync, 0);
304 }
305
306 /*
307 * Generic function to fsync a file.
308 *
309 * filp may be NULL if called via the msync of a vma.
310 */
311
312 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
313 {
314 struct inode * inode = dentry->d_inode;
315 struct super_block * sb;
316 int ret, err;
317
318 /* sync the inode to buffers */
319 ret = write_inode_now(inode, 0);
320
321 /* sync the superblock to buffers */
322 sb = inode->i_sb;
323 lock_super(sb);
324 if (sb->s_op->write_super)
325 sb->s_op->write_super(sb);
326 unlock_super(sb);
327
328 /* .. finally sync the buffers to disk */
329 err = sync_blockdev(sb->s_bdev);
330 if (!ret)
331 ret = err;
332 return ret;
333 }
334
335 static long do_fsync(unsigned int fd, int datasync)
336 {
337 struct file * file;
338 struct address_space *mapping;
339 int ret, err;
340
341 ret = -EBADF;
342 file = fget(fd);
343 if (!file)
344 goto out;
345
346 ret = -EINVAL;
347 if (!file->f_op || !file->f_op->fsync) {
348 /* Why? We can still call filemap_fdatawrite */
349 goto out_putf;
350 }
351
352 mapping = file->f_mapping;
353
354 current->flags |= PF_SYNCWRITE;
355 ret = filemap_fdatawrite(mapping);
356
357 /*
358 * We need to protect against concurrent writers,
359 * which could cause livelocks in fsync_buffers_list
360 */
361 down(&mapping->host->i_sem);
362 err = file->f_op->fsync(file, file->f_dentry, datasync);
363 if (!ret)
364 ret = err;
365 up(&mapping->host->i_sem);
366 err = filemap_fdatawait(mapping);
367 if (!ret)
368 ret = err;
369 current->flags &= ~PF_SYNCWRITE;
370
371 out_putf:
372 fput(file);
373 out:
374 return ret;
375 }
376
377 asmlinkage long sys_fsync(unsigned int fd)
378 {
379 return do_fsync(fd, 0);
380 }
381
382 asmlinkage long sys_fdatasync(unsigned int fd)
383 {
384 return do_fsync(fd, 1);
385 }
386
387 /*
388 * Various filesystems appear to want __find_get_block to be non-blocking.
389 * But it's the page lock which protects the buffers. To get around this,
390 * we get exclusion from try_to_free_buffers with the blockdev mapping's
391 * private_lock.
392 *
393 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
394 * may be quite high. This code could TryLock the page, and if that
395 * succeeds, there is no need to take private_lock. (But if
396 * private_lock is contended then so is mapping->tree_lock).
397 */
398 static struct buffer_head *
399 __find_get_block_slow(struct block_device *bdev, sector_t block)
400 {
401 struct inode *bd_inode = bdev->bd_inode;
402 struct address_space *bd_mapping = bd_inode->i_mapping;
403 struct buffer_head *ret = NULL;
404 pgoff_t index;
405 struct buffer_head *bh;
406 struct buffer_head *head;
407 struct page *page;
408 int all_mapped = 1;
409
410 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
411 page = find_get_page(bd_mapping, index);
412 if (!page)
413 goto out;
414
415 spin_lock(&bd_mapping->private_lock);
416 if (!page_has_buffers(page))
417 goto out_unlock;
418 head = page_buffers(page);
419 bh = head;
420 do {
421 if (bh->b_blocknr == block) {
422 ret = bh;
423 get_bh(bh);
424 goto out_unlock;
425 }
426 if (!buffer_mapped(bh))
427 all_mapped = 0;
428 bh = bh->b_this_page;
429 } while (bh != head);
430
431 /* we might be here because some of the buffers on this page are
432 * not mapped. This is due to various races between
433 * file io on the block device and getblk. It gets dealt with
434 * elsewhere, don't buffer_error if we had some unmapped buffers
435 */
436 if (all_mapped) {
437 printk("__find_get_block_slow() failed. "
438 "block=%llu, b_blocknr=%llu\n",
439 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
440 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
441 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
442 }
443 out_unlock:
444 spin_unlock(&bd_mapping->private_lock);
445 page_cache_release(page);
446 out:
447 return ret;
448 }
449
450 /* If invalidate_buffers() will trash dirty buffers, it means some kind
451 of fs corruption is going on. Trashing dirty data always imply losing
452 information that was supposed to be just stored on the physical layer
453 by the user.
454
455 Thus invalidate_buffers in general usage is not allwowed to trash
456 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
457 be preserved. These buffers are simply skipped.
458
459 We also skip buffers which are still in use. For example this can
460 happen if a userspace program is reading the block device.
461
462 NOTE: In the case where the user removed a removable-media-disk even if
463 there's still dirty data not synced on disk (due a bug in the device driver
464 or due an error of the user), by not destroying the dirty buffers we could
465 generate corruption also on the next media inserted, thus a parameter is
466 necessary to handle this case in the most safe way possible (trying
467 to not corrupt also the new disk inserted with the data belonging to
468 the old now corrupted disk). Also for the ramdisk the natural thing
469 to do in order to release the ramdisk memory is to destroy dirty buffers.
470
471 These are two special cases. Normal usage imply the device driver
472 to issue a sync on the device (without waiting I/O completion) and
473 then an invalidate_buffers call that doesn't trash dirty buffers.
474
475 For handling cache coherency with the blkdev pagecache the 'update' case
476 is been introduced. It is needed to re-read from disk any pinned
477 buffer. NOTE: re-reading from disk is destructive so we can do it only
478 when we assume nobody is changing the buffercache under our I/O and when
479 we think the disk contains more recent information than the buffercache.
480 The update == 1 pass marks the buffers we need to update, the update == 2
481 pass does the actual I/O. */
482 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
483 {
484 invalidate_bh_lrus();
485 /*
486 * FIXME: what about destroy_dirty_buffers?
487 * We really want to use invalidate_inode_pages2() for
488 * that, but not until that's cleaned up.
489 */
490 invalidate_inode_pages(bdev->bd_inode->i_mapping);
491 }
492
493 /*
494 * Kick pdflush then try to free up some ZONE_NORMAL memory.
495 */
496 static void free_more_memory(void)
497 {
498 struct zone **zones;
499 pg_data_t *pgdat;
500
501 wakeup_pdflush(1024);
502 yield();
503
504 for_each_pgdat(pgdat) {
505 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
506 if (*zones)
507 try_to_free_pages(zones, GFP_NOFS);
508 }
509 }
510
511 /*
512 * I/O completion handler for block_read_full_page() - pages
513 * which come unlocked at the end of I/O.
514 */
515 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
516 {
517 unsigned long flags;
518 struct buffer_head *first;
519 struct buffer_head *tmp;
520 struct page *page;
521 int page_uptodate = 1;
522
523 BUG_ON(!buffer_async_read(bh));
524
525 page = bh->b_page;
526 if (uptodate) {
527 set_buffer_uptodate(bh);
528 } else {
529 clear_buffer_uptodate(bh);
530 if (printk_ratelimit())
531 buffer_io_error(bh);
532 SetPageError(page);
533 }
534
535 /*
536 * Be _very_ careful from here on. Bad things can happen if
537 * two buffer heads end IO at almost the same time and both
538 * decide that the page is now completely done.
539 */
540 first = page_buffers(page);
541 local_irq_save(flags);
542 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
543 clear_buffer_async_read(bh);
544 unlock_buffer(bh);
545 tmp = bh;
546 do {
547 if (!buffer_uptodate(tmp))
548 page_uptodate = 0;
549 if (buffer_async_read(tmp)) {
550 BUG_ON(!buffer_locked(tmp));
551 goto still_busy;
552 }
553 tmp = tmp->b_this_page;
554 } while (tmp != bh);
555 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
556 local_irq_restore(flags);
557
558 /*
559 * If none of the buffers had errors and they are all
560 * uptodate then we can set the page uptodate.
561 */
562 if (page_uptodate && !PageError(page))
563 SetPageUptodate(page);
564 unlock_page(page);
565 return;
566
567 still_busy:
568 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
569 local_irq_restore(flags);
570 return;
571 }
572
573 /*
574 * Completion handler for block_write_full_page() - pages which are unlocked
575 * during I/O, and which have PageWriteback cleared upon I/O completion.
576 */
577 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
578 {
579 char b[BDEVNAME_SIZE];
580 unsigned long flags;
581 struct buffer_head *first;
582 struct buffer_head *tmp;
583 struct page *page;
584
585 BUG_ON(!buffer_async_write(bh));
586
587 page = bh->b_page;
588 if (uptodate) {
589 set_buffer_uptodate(bh);
590 } else {
591 if (printk_ratelimit()) {
592 buffer_io_error(bh);
593 printk(KERN_WARNING "lost page write due to "
594 "I/O error on %s\n",
595 bdevname(bh->b_bdev, b));
596 }
597 set_bit(AS_EIO, &page->mapping->flags);
598 clear_buffer_uptodate(bh);
599 SetPageError(page);
600 }
601
602 first = page_buffers(page);
603 local_irq_save(flags);
604 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
605
606 clear_buffer_async_write(bh);
607 unlock_buffer(bh);
608 tmp = bh->b_this_page;
609 while (tmp != bh) {
610 if (buffer_async_write(tmp)) {
611 BUG_ON(!buffer_locked(tmp));
612 goto still_busy;
613 }
614 tmp = tmp->b_this_page;
615 }
616 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
617 local_irq_restore(flags);
618 end_page_writeback(page);
619 return;
620
621 still_busy:
622 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
623 local_irq_restore(flags);
624 return;
625 }
626
627 /*
628 * If a page's buffers are under async readin (end_buffer_async_read
629 * completion) then there is a possibility that another thread of
630 * control could lock one of the buffers after it has completed
631 * but while some of the other buffers have not completed. This
632 * locked buffer would confuse end_buffer_async_read() into not unlocking
633 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
634 * that this buffer is not under async I/O.
635 *
636 * The page comes unlocked when it has no locked buffer_async buffers
637 * left.
638 *
639 * PageLocked prevents anyone starting new async I/O reads any of
640 * the buffers.
641 *
642 * PageWriteback is used to prevent simultaneous writeout of the same
643 * page.
644 *
645 * PageLocked prevents anyone from starting writeback of a page which is
646 * under read I/O (PageWriteback is only ever set against a locked page).
647 */
648 static void mark_buffer_async_read(struct buffer_head *bh)
649 {
650 bh->b_end_io = end_buffer_async_read;
651 set_buffer_async_read(bh);
652 }
653
654 void mark_buffer_async_write(struct buffer_head *bh)
655 {
656 bh->b_end_io = end_buffer_async_write;
657 set_buffer_async_write(bh);
658 }
659 EXPORT_SYMBOL(mark_buffer_async_write);
660
661
662 /*
663 * fs/buffer.c contains helper functions for buffer-backed address space's
664 * fsync functions. A common requirement for buffer-based filesystems is
665 * that certain data from the backing blockdev needs to be written out for
666 * a successful fsync(). For example, ext2 indirect blocks need to be
667 * written back and waited upon before fsync() returns.
668 *
669 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
670 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
671 * management of a list of dependent buffers at ->i_mapping->private_list.
672 *
673 * Locking is a little subtle: try_to_free_buffers() will remove buffers
674 * from their controlling inode's queue when they are being freed. But
675 * try_to_free_buffers() will be operating against the *blockdev* mapping
676 * at the time, not against the S_ISREG file which depends on those buffers.
677 * So the locking for private_list is via the private_lock in the address_space
678 * which backs the buffers. Which is different from the address_space
679 * against which the buffers are listed. So for a particular address_space,
680 * mapping->private_lock does *not* protect mapping->private_list! In fact,
681 * mapping->private_list will always be protected by the backing blockdev's
682 * ->private_lock.
683 *
684 * Which introduces a requirement: all buffers on an address_space's
685 * ->private_list must be from the same address_space: the blockdev's.
686 *
687 * address_spaces which do not place buffers at ->private_list via these
688 * utility functions are free to use private_lock and private_list for
689 * whatever they want. The only requirement is that list_empty(private_list)
690 * be true at clear_inode() time.
691 *
692 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
693 * filesystems should do that. invalidate_inode_buffers() should just go
694 * BUG_ON(!list_empty).
695 *
696 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
697 * take an address_space, not an inode. And it should be called
698 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
699 * queued up.
700 *
701 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
702 * list if it is already on a list. Because if the buffer is on a list,
703 * it *must* already be on the right one. If not, the filesystem is being
704 * silly. This will save a ton of locking. But first we have to ensure
705 * that buffers are taken *off* the old inode's list when they are freed
706 * (presumably in truncate). That requires careful auditing of all
707 * filesystems (do it inside bforget()). It could also be done by bringing
708 * b_inode back.
709 */
710
711 /*
712 * The buffer's backing address_space's private_lock must be held
713 */
714 static inline void __remove_assoc_queue(struct buffer_head *bh)
715 {
716 list_del_init(&bh->b_assoc_buffers);
717 }
718
719 int inode_has_buffers(struct inode *inode)
720 {
721 return !list_empty(&inode->i_data.private_list);
722 }
723
724 /*
725 * osync is designed to support O_SYNC io. It waits synchronously for
726 * all already-submitted IO to complete, but does not queue any new
727 * writes to the disk.
728 *
729 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
730 * you dirty the buffers, and then use osync_inode_buffers to wait for
731 * completion. Any other dirty buffers which are not yet queued for
732 * write will not be flushed to disk by the osync.
733 */
734 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736 struct buffer_head *bh;
737 struct list_head *p;
738 int err = 0;
739
740 spin_lock(lock);
741 repeat:
742 list_for_each_prev(p, list) {
743 bh = BH_ENTRY(p);
744 if (buffer_locked(bh)) {
745 get_bh(bh);
746 spin_unlock(lock);
747 wait_on_buffer(bh);
748 if (!buffer_uptodate(bh))
749 err = -EIO;
750 brelse(bh);
751 spin_lock(lock);
752 goto repeat;
753 }
754 }
755 spin_unlock(lock);
756 return err;
757 }
758
759 /**
760 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
761 * buffers
762 * @mapping: the mapping which wants those buffers written
763 *
764 * Starts I/O against the buffers at mapping->private_list, and waits upon
765 * that I/O.
766 *
767 * Basically, this is a convenience function for fsync().
768 * @mapping is a file or directory which needs those buffers to be written for
769 * a successful fsync().
770 */
771 int sync_mapping_buffers(struct address_space *mapping)
772 {
773 struct address_space *buffer_mapping = mapping->assoc_mapping;
774
775 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
776 return 0;
777
778 return fsync_buffers_list(&buffer_mapping->private_lock,
779 &mapping->private_list);
780 }
781 EXPORT_SYMBOL(sync_mapping_buffers);
782
783 /*
784 * Called when we've recently written block `bblock', and it is known that
785 * `bblock' was for a buffer_boundary() buffer. This means that the block at
786 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
787 * dirty, schedule it for IO. So that indirects merge nicely with their data.
788 */
789 void write_boundary_block(struct block_device *bdev,
790 sector_t bblock, unsigned blocksize)
791 {
792 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
793 if (bh) {
794 if (buffer_dirty(bh))
795 ll_rw_block(WRITE, 1, &bh);
796 put_bh(bh);
797 }
798 }
799
800 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
801 {
802 struct address_space *mapping = inode->i_mapping;
803 struct address_space *buffer_mapping = bh->b_page->mapping;
804
805 mark_buffer_dirty(bh);
806 if (!mapping->assoc_mapping) {
807 mapping->assoc_mapping = buffer_mapping;
808 } else {
809 if (mapping->assoc_mapping != buffer_mapping)
810 BUG();
811 }
812 if (list_empty(&bh->b_assoc_buffers)) {
813 spin_lock(&buffer_mapping->private_lock);
814 list_move_tail(&bh->b_assoc_buffers,
815 &mapping->private_list);
816 spin_unlock(&buffer_mapping->private_lock);
817 }
818 }
819 EXPORT_SYMBOL(mark_buffer_dirty_inode);
820
821 /*
822 * Add a page to the dirty page list.
823 *
824 * It is a sad fact of life that this function is called from several places
825 * deeply under spinlocking. It may not sleep.
826 *
827 * If the page has buffers, the uptodate buffers are set dirty, to preserve
828 * dirty-state coherency between the page and the buffers. It the page does
829 * not have buffers then when they are later attached they will all be set
830 * dirty.
831 *
832 * The buffers are dirtied before the page is dirtied. There's a small race
833 * window in which a writepage caller may see the page cleanness but not the
834 * buffer dirtiness. That's fine. If this code were to set the page dirty
835 * before the buffers, a concurrent writepage caller could clear the page dirty
836 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
837 * page on the dirty page list.
838 *
839 * We use private_lock to lock against try_to_free_buffers while using the
840 * page's buffer list. Also use this to protect against clean buffers being
841 * added to the page after it was set dirty.
842 *
843 * FIXME: may need to call ->reservepage here as well. That's rather up to the
844 * address_space though.
845 */
846 int __set_page_dirty_buffers(struct page *page)
847 {
848 struct address_space * const mapping = page->mapping;
849
850 spin_lock(&mapping->private_lock);
851 if (page_has_buffers(page)) {
852 struct buffer_head *head = page_buffers(page);
853 struct buffer_head *bh = head;
854
855 do {
856 set_buffer_dirty(bh);
857 bh = bh->b_this_page;
858 } while (bh != head);
859 }
860 spin_unlock(&mapping->private_lock);
861
862 if (!TestSetPageDirty(page)) {
863 write_lock_irq(&mapping->tree_lock);
864 if (page->mapping) { /* Race with truncate? */
865 if (mapping_cap_account_dirty(mapping))
866 inc_page_state(nr_dirty);
867 radix_tree_tag_set(&mapping->page_tree,
868 page_index(page),
869 PAGECACHE_TAG_DIRTY);
870 }
871 write_unlock_irq(&mapping->tree_lock);
872 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
873 }
874
875 return 0;
876 }
877 EXPORT_SYMBOL(__set_page_dirty_buffers);
878
879 /*
880 * Write out and wait upon a list of buffers.
881 *
882 * We have conflicting pressures: we want to make sure that all
883 * initially dirty buffers get waited on, but that any subsequently
884 * dirtied buffers don't. After all, we don't want fsync to last
885 * forever if somebody is actively writing to the file.
886 *
887 * Do this in two main stages: first we copy dirty buffers to a
888 * temporary inode list, queueing the writes as we go. Then we clean
889 * up, waiting for those writes to complete.
890 *
891 * During this second stage, any subsequent updates to the file may end
892 * up refiling the buffer on the original inode's dirty list again, so
893 * there is a chance we will end up with a buffer queued for write but
894 * not yet completed on that list. So, as a final cleanup we go through
895 * the osync code to catch these locked, dirty buffers without requeuing
896 * any newly dirty buffers for write.
897 */
898 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
899 {
900 struct buffer_head *bh;
901 struct list_head tmp;
902 int err = 0, err2;
903
904 INIT_LIST_HEAD(&tmp);
905
906 spin_lock(lock);
907 while (!list_empty(list)) {
908 bh = BH_ENTRY(list->next);
909 list_del_init(&bh->b_assoc_buffers);
910 if (buffer_dirty(bh) || buffer_locked(bh)) {
911 list_add(&bh->b_assoc_buffers, &tmp);
912 if (buffer_dirty(bh)) {
913 get_bh(bh);
914 spin_unlock(lock);
915 /*
916 * Ensure any pending I/O completes so that
917 * ll_rw_block() actually writes the current
918 * contents - it is a noop if I/O is still in
919 * flight on potentially older contents.
920 */
921 ll_rw_block(SWRITE, 1, &bh);
922 brelse(bh);
923 spin_lock(lock);
924 }
925 }
926 }
927
928 while (!list_empty(&tmp)) {
929 bh = BH_ENTRY(tmp.prev);
930 __remove_assoc_queue(bh);
931 get_bh(bh);
932 spin_unlock(lock);
933 wait_on_buffer(bh);
934 if (!buffer_uptodate(bh))
935 err = -EIO;
936 brelse(bh);
937 spin_lock(lock);
938 }
939
940 spin_unlock(lock);
941 err2 = osync_buffers_list(lock, list);
942 if (err)
943 return err;
944 else
945 return err2;
946 }
947
948 /*
949 * Invalidate any and all dirty buffers on a given inode. We are
950 * probably unmounting the fs, but that doesn't mean we have already
951 * done a sync(). Just drop the buffers from the inode list.
952 *
953 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
954 * assumes that all the buffers are against the blockdev. Not true
955 * for reiserfs.
956 */
957 void invalidate_inode_buffers(struct inode *inode)
958 {
959 if (inode_has_buffers(inode)) {
960 struct address_space *mapping = &inode->i_data;
961 struct list_head *list = &mapping->private_list;
962 struct address_space *buffer_mapping = mapping->assoc_mapping;
963
964 spin_lock(&buffer_mapping->private_lock);
965 while (!list_empty(list))
966 __remove_assoc_queue(BH_ENTRY(list->next));
967 spin_unlock(&buffer_mapping->private_lock);
968 }
969 }
970
971 /*
972 * Remove any clean buffers from the inode's buffer list. This is called
973 * when we're trying to free the inode itself. Those buffers can pin it.
974 *
975 * Returns true if all buffers were removed.
976 */
977 int remove_inode_buffers(struct inode *inode)
978 {
979 int ret = 1;
980
981 if (inode_has_buffers(inode)) {
982 struct address_space *mapping = &inode->i_data;
983 struct list_head *list = &mapping->private_list;
984 struct address_space *buffer_mapping = mapping->assoc_mapping;
985
986 spin_lock(&buffer_mapping->private_lock);
987 while (!list_empty(list)) {
988 struct buffer_head *bh = BH_ENTRY(list->next);
989 if (buffer_dirty(bh)) {
990 ret = 0;
991 break;
992 }
993 __remove_assoc_queue(bh);
994 }
995 spin_unlock(&buffer_mapping->private_lock);
996 }
997 return ret;
998 }
999
1000 /*
1001 * Create the appropriate buffers when given a page for data area and
1002 * the size of each buffer.. Use the bh->b_this_page linked list to
1003 * follow the buffers created. Return NULL if unable to create more
1004 * buffers.
1005 *
1006 * The retry flag is used to differentiate async IO (paging, swapping)
1007 * which may not fail from ordinary buffer allocations.
1008 */
1009 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1010 int retry)
1011 {
1012 struct buffer_head *bh, *head;
1013 long offset;
1014
1015 try_again:
1016 head = NULL;
1017 offset = PAGE_SIZE;
1018 while ((offset -= size) >= 0) {
1019 bh = alloc_buffer_head(GFP_NOFS);
1020 if (!bh)
1021 goto no_grow;
1022
1023 bh->b_bdev = NULL;
1024 bh->b_this_page = head;
1025 bh->b_blocknr = -1;
1026 head = bh;
1027
1028 bh->b_state = 0;
1029 atomic_set(&bh->b_count, 0);
1030 bh->b_size = size;
1031
1032 /* Link the buffer to its page */
1033 set_bh_page(bh, page, offset);
1034
1035 bh->b_end_io = NULL;
1036 }
1037 return head;
1038 /*
1039 * In case anything failed, we just free everything we got.
1040 */
1041 no_grow:
1042 if (head) {
1043 do {
1044 bh = head;
1045 head = head->b_this_page;
1046 free_buffer_head(bh);
1047 } while (head);
1048 }
1049
1050 /*
1051 * Return failure for non-async IO requests. Async IO requests
1052 * are not allowed to fail, so we have to wait until buffer heads
1053 * become available. But we don't want tasks sleeping with
1054 * partially complete buffers, so all were released above.
1055 */
1056 if (!retry)
1057 return NULL;
1058
1059 /* We're _really_ low on memory. Now we just
1060 * wait for old buffer heads to become free due to
1061 * finishing IO. Since this is an async request and
1062 * the reserve list is empty, we're sure there are
1063 * async buffer heads in use.
1064 */
1065 free_more_memory();
1066 goto try_again;
1067 }
1068 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1069
1070 static inline void
1071 link_dev_buffers(struct page *page, struct buffer_head *head)
1072 {
1073 struct buffer_head *bh, *tail;
1074
1075 bh = head;
1076 do {
1077 tail = bh;
1078 bh = bh->b_this_page;
1079 } while (bh);
1080 tail->b_this_page = head;
1081 attach_page_buffers(page, head);
1082 }
1083
1084 /*
1085 * Initialise the state of a blockdev page's buffers.
1086 */
1087 static void
1088 init_page_buffers(struct page *page, struct block_device *bdev,
1089 sector_t block, int size)
1090 {
1091 struct buffer_head *head = page_buffers(page);
1092 struct buffer_head *bh = head;
1093 int uptodate = PageUptodate(page);
1094
1095 do {
1096 if (!buffer_mapped(bh)) {
1097 init_buffer(bh, NULL, NULL);
1098 bh->b_bdev = bdev;
1099 bh->b_blocknr = block;
1100 if (uptodate)
1101 set_buffer_uptodate(bh);
1102 set_buffer_mapped(bh);
1103 }
1104 block++;
1105 bh = bh->b_this_page;
1106 } while (bh != head);
1107 }
1108
1109 /*
1110 * Create the page-cache page that contains the requested block.
1111 *
1112 * This is user purely for blockdev mappings.
1113 */
1114 static struct page *
1115 grow_dev_page(struct block_device *bdev, sector_t block,
1116 pgoff_t index, int size)
1117 {
1118 struct inode *inode = bdev->bd_inode;
1119 struct page *page;
1120 struct buffer_head *bh;
1121
1122 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1123 if (!page)
1124 return NULL;
1125
1126 if (!PageLocked(page))
1127 BUG();
1128
1129 if (page_has_buffers(page)) {
1130 bh = page_buffers(page);
1131 if (bh->b_size == size) {
1132 init_page_buffers(page, bdev, block, size);
1133 return page;
1134 }
1135 if (!try_to_free_buffers(page))
1136 goto failed;
1137 }
1138
1139 /*
1140 * Allocate some buffers for this page
1141 */
1142 bh = alloc_page_buffers(page, size, 0);
1143 if (!bh)
1144 goto failed;
1145
1146 /*
1147 * Link the page to the buffers and initialise them. Take the
1148 * lock to be atomic wrt __find_get_block(), which does not
1149 * run under the page lock.
1150 */
1151 spin_lock(&inode->i_mapping->private_lock);
1152 link_dev_buffers(page, bh);
1153 init_page_buffers(page, bdev, block, size);
1154 spin_unlock(&inode->i_mapping->private_lock);
1155 return page;
1156
1157 failed:
1158 BUG();
1159 unlock_page(page);
1160 page_cache_release(page);
1161 return NULL;
1162 }
1163
1164 /*
1165 * Create buffers for the specified block device block's page. If
1166 * that page was dirty, the buffers are set dirty also.
1167 *
1168 * Except that's a bug. Attaching dirty buffers to a dirty
1169 * blockdev's page can result in filesystem corruption, because
1170 * some of those buffers may be aliases of filesystem data.
1171 * grow_dev_page() will go BUG() if this happens.
1172 */
1173 static inline int
1174 grow_buffers(struct block_device *bdev, sector_t block, int size)
1175 {
1176 struct page *page;
1177 pgoff_t index;
1178 int sizebits;
1179
1180 sizebits = -1;
1181 do {
1182 sizebits++;
1183 } while ((size << sizebits) < PAGE_SIZE);
1184
1185 index = block >> sizebits;
1186 block = index << sizebits;
1187
1188 /* Create a page with the proper size buffers.. */
1189 page = grow_dev_page(bdev, block, index, size);
1190 if (!page)
1191 return 0;
1192 unlock_page(page);
1193 page_cache_release(page);
1194 return 1;
1195 }
1196
1197 static struct buffer_head *
1198 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1199 {
1200 /* Size must be multiple of hard sectorsize */
1201 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1202 (size < 512 || size > PAGE_SIZE))) {
1203 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1204 size);
1205 printk(KERN_ERR "hardsect size: %d\n",
1206 bdev_hardsect_size(bdev));
1207
1208 dump_stack();
1209 return NULL;
1210 }
1211
1212 for (;;) {
1213 struct buffer_head * bh;
1214
1215 bh = __find_get_block(bdev, block, size);
1216 if (bh)
1217 return bh;
1218
1219 if (!grow_buffers(bdev, block, size))
1220 free_more_memory();
1221 }
1222 }
1223
1224 /*
1225 * The relationship between dirty buffers and dirty pages:
1226 *
1227 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1228 * the page is tagged dirty in its radix tree.
1229 *
1230 * At all times, the dirtiness of the buffers represents the dirtiness of
1231 * subsections of the page. If the page has buffers, the page dirty bit is
1232 * merely a hint about the true dirty state.
1233 *
1234 * When a page is set dirty in its entirety, all its buffers are marked dirty
1235 * (if the page has buffers).
1236 *
1237 * When a buffer is marked dirty, its page is dirtied, but the page's other
1238 * buffers are not.
1239 *
1240 * Also. When blockdev buffers are explicitly read with bread(), they
1241 * individually become uptodate. But their backing page remains not
1242 * uptodate - even if all of its buffers are uptodate. A subsequent
1243 * block_read_full_page() against that page will discover all the uptodate
1244 * buffers, will set the page uptodate and will perform no I/O.
1245 */
1246
1247 /**
1248 * mark_buffer_dirty - mark a buffer_head as needing writeout
1249 * @bh: the buffer_head to mark dirty
1250 *
1251 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1252 * backing page dirty, then tag the page as dirty in its address_space's radix
1253 * tree and then attach the address_space's inode to its superblock's dirty
1254 * inode list.
1255 *
1256 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1257 * mapping->tree_lock and the global inode_lock.
1258 */
1259 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1260 {
1261 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1262 __set_page_dirty_nobuffers(bh->b_page);
1263 }
1264
1265 /*
1266 * Decrement a buffer_head's reference count. If all buffers against a page
1267 * have zero reference count, are clean and unlocked, and if the page is clean
1268 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1269 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1270 * a page but it ends up not being freed, and buffers may later be reattached).
1271 */
1272 void __brelse(struct buffer_head * buf)
1273 {
1274 if (atomic_read(&buf->b_count)) {
1275 put_bh(buf);
1276 return;
1277 }
1278 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1279 WARN_ON(1);
1280 }
1281
1282 /*
1283 * bforget() is like brelse(), except it discards any
1284 * potentially dirty data.
1285 */
1286 void __bforget(struct buffer_head *bh)
1287 {
1288 clear_buffer_dirty(bh);
1289 if (!list_empty(&bh->b_assoc_buffers)) {
1290 struct address_space *buffer_mapping = bh->b_page->mapping;
1291
1292 spin_lock(&buffer_mapping->private_lock);
1293 list_del_init(&bh->b_assoc_buffers);
1294 spin_unlock(&buffer_mapping->private_lock);
1295 }
1296 __brelse(bh);
1297 }
1298
1299 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1300 {
1301 lock_buffer(bh);
1302 if (buffer_uptodate(bh)) {
1303 unlock_buffer(bh);
1304 return bh;
1305 } else {
1306 get_bh(bh);
1307 bh->b_end_io = end_buffer_read_sync;
1308 submit_bh(READ, bh);
1309 wait_on_buffer(bh);
1310 if (buffer_uptodate(bh))
1311 return bh;
1312 }
1313 brelse(bh);
1314 return NULL;
1315 }
1316
1317 /*
1318 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1319 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1320 * refcount elevated by one when they're in an LRU. A buffer can only appear
1321 * once in a particular CPU's LRU. A single buffer can be present in multiple
1322 * CPU's LRUs at the same time.
1323 *
1324 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1325 * sb_find_get_block().
1326 *
1327 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1328 * a local interrupt disable for that.
1329 */
1330
1331 #define BH_LRU_SIZE 8
1332
1333 struct bh_lru {
1334 struct buffer_head *bhs[BH_LRU_SIZE];
1335 };
1336
1337 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1338
1339 #ifdef CONFIG_SMP
1340 #define bh_lru_lock() local_irq_disable()
1341 #define bh_lru_unlock() local_irq_enable()
1342 #else
1343 #define bh_lru_lock() preempt_disable()
1344 #define bh_lru_unlock() preempt_enable()
1345 #endif
1346
1347 static inline void check_irqs_on(void)
1348 {
1349 #ifdef irqs_disabled
1350 BUG_ON(irqs_disabled());
1351 #endif
1352 }
1353
1354 /*
1355 * The LRU management algorithm is dopey-but-simple. Sorry.
1356 */
1357 static void bh_lru_install(struct buffer_head *bh)
1358 {
1359 struct buffer_head *evictee = NULL;
1360 struct bh_lru *lru;
1361
1362 check_irqs_on();
1363 bh_lru_lock();
1364 lru = &__get_cpu_var(bh_lrus);
1365 if (lru->bhs[0] != bh) {
1366 struct buffer_head *bhs[BH_LRU_SIZE];
1367 int in;
1368 int out = 0;
1369
1370 get_bh(bh);
1371 bhs[out++] = bh;
1372 for (in = 0; in < BH_LRU_SIZE; in++) {
1373 struct buffer_head *bh2 = lru->bhs[in];
1374
1375 if (bh2 == bh) {
1376 __brelse(bh2);
1377 } else {
1378 if (out >= BH_LRU_SIZE) {
1379 BUG_ON(evictee != NULL);
1380 evictee = bh2;
1381 } else {
1382 bhs[out++] = bh2;
1383 }
1384 }
1385 }
1386 while (out < BH_LRU_SIZE)
1387 bhs[out++] = NULL;
1388 memcpy(lru->bhs, bhs, sizeof(bhs));
1389 }
1390 bh_lru_unlock();
1391
1392 if (evictee)
1393 __brelse(evictee);
1394 }
1395
1396 /*
1397 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1398 */
1399 static inline struct buffer_head *
1400 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1401 {
1402 struct buffer_head *ret = NULL;
1403 struct bh_lru *lru;
1404 int i;
1405
1406 check_irqs_on();
1407 bh_lru_lock();
1408 lru = &__get_cpu_var(bh_lrus);
1409 for (i = 0; i < BH_LRU_SIZE; i++) {
1410 struct buffer_head *bh = lru->bhs[i];
1411
1412 if (bh && bh->b_bdev == bdev &&
1413 bh->b_blocknr == block && bh->b_size == size) {
1414 if (i) {
1415 while (i) {
1416 lru->bhs[i] = lru->bhs[i - 1];
1417 i--;
1418 }
1419 lru->bhs[0] = bh;
1420 }
1421 get_bh(bh);
1422 ret = bh;
1423 break;
1424 }
1425 }
1426 bh_lru_unlock();
1427 return ret;
1428 }
1429
1430 /*
1431 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1432 * it in the LRU and mark it as accessed. If it is not present then return
1433 * NULL
1434 */
1435 struct buffer_head *
1436 __find_get_block(struct block_device *bdev, sector_t block, int size)
1437 {
1438 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1439
1440 if (bh == NULL) {
1441 bh = __find_get_block_slow(bdev, block);
1442 if (bh)
1443 bh_lru_install(bh);
1444 }
1445 if (bh)
1446 touch_buffer(bh);
1447 return bh;
1448 }
1449 EXPORT_SYMBOL(__find_get_block);
1450
1451 /*
1452 * __getblk will locate (and, if necessary, create) the buffer_head
1453 * which corresponds to the passed block_device, block and size. The
1454 * returned buffer has its reference count incremented.
1455 *
1456 * __getblk() cannot fail - it just keeps trying. If you pass it an
1457 * illegal block number, __getblk() will happily return a buffer_head
1458 * which represents the non-existent block. Very weird.
1459 *
1460 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1461 * attempt is failing. FIXME, perhaps?
1462 */
1463 struct buffer_head *
1464 __getblk(struct block_device *bdev, sector_t block, int size)
1465 {
1466 struct buffer_head *bh = __find_get_block(bdev, block, size);
1467
1468 might_sleep();
1469 if (bh == NULL)
1470 bh = __getblk_slow(bdev, block, size);
1471 return bh;
1472 }
1473 EXPORT_SYMBOL(__getblk);
1474
1475 /*
1476 * Do async read-ahead on a buffer..
1477 */
1478 void __breadahead(struct block_device *bdev, sector_t block, int size)
1479 {
1480 struct buffer_head *bh = __getblk(bdev, block, size);
1481 if (likely(bh)) {
1482 ll_rw_block(READA, 1, &bh);
1483 brelse(bh);
1484 }
1485 }
1486 EXPORT_SYMBOL(__breadahead);
1487
1488 /**
1489 * __bread() - reads a specified block and returns the bh
1490 * @bdev: the block_device to read from
1491 * @block: number of block
1492 * @size: size (in bytes) to read
1493 *
1494 * Reads a specified block, and returns buffer head that contains it.
1495 * It returns NULL if the block was unreadable.
1496 */
1497 struct buffer_head *
1498 __bread(struct block_device *bdev, sector_t block, int size)
1499 {
1500 struct buffer_head *bh = __getblk(bdev, block, size);
1501
1502 if (likely(bh) && !buffer_uptodate(bh))
1503 bh = __bread_slow(bh);
1504 return bh;
1505 }
1506 EXPORT_SYMBOL(__bread);
1507
1508 /*
1509 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1510 * This doesn't race because it runs in each cpu either in irq
1511 * or with preempt disabled.
1512 */
1513 static void invalidate_bh_lru(void *arg)
1514 {
1515 struct bh_lru *b = &get_cpu_var(bh_lrus);
1516 int i;
1517
1518 for (i = 0; i < BH_LRU_SIZE; i++) {
1519 brelse(b->bhs[i]);
1520 b->bhs[i] = NULL;
1521 }
1522 put_cpu_var(bh_lrus);
1523 }
1524
1525 static void invalidate_bh_lrus(void)
1526 {
1527 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1528 }
1529
1530 void set_bh_page(struct buffer_head *bh,
1531 struct page *page, unsigned long offset)
1532 {
1533 bh->b_page = page;
1534 if (offset >= PAGE_SIZE)
1535 BUG();
1536 if (PageHighMem(page))
1537 /*
1538 * This catches illegal uses and preserves the offset:
1539 */
1540 bh->b_data = (char *)(0 + offset);
1541 else
1542 bh->b_data = page_address(page) + offset;
1543 }
1544 EXPORT_SYMBOL(set_bh_page);
1545
1546 /*
1547 * Called when truncating a buffer on a page completely.
1548 */
1549 static inline void discard_buffer(struct buffer_head * bh)
1550 {
1551 lock_buffer(bh);
1552 clear_buffer_dirty(bh);
1553 bh->b_bdev = NULL;
1554 clear_buffer_mapped(bh);
1555 clear_buffer_req(bh);
1556 clear_buffer_new(bh);
1557 clear_buffer_delay(bh);
1558 unlock_buffer(bh);
1559 }
1560
1561 /**
1562 * try_to_release_page() - release old fs-specific metadata on a page
1563 *
1564 * @page: the page which the kernel is trying to free
1565 * @gfp_mask: memory allocation flags (and I/O mode)
1566 *
1567 * The address_space is to try to release any data against the page
1568 * (presumably at page->private). If the release was successful, return `1'.
1569 * Otherwise return zero.
1570 *
1571 * The @gfp_mask argument specifies whether I/O may be performed to release
1572 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1573 *
1574 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1575 */
1576 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1577 {
1578 struct address_space * const mapping = page->mapping;
1579
1580 BUG_ON(!PageLocked(page));
1581 if (PageWriteback(page))
1582 return 0;
1583
1584 if (mapping && mapping->a_ops->releasepage)
1585 return mapping->a_ops->releasepage(page, gfp_mask);
1586 return try_to_free_buffers(page);
1587 }
1588 EXPORT_SYMBOL(try_to_release_page);
1589
1590 /**
1591 * block_invalidatepage - invalidate part of all of a buffer-backed page
1592 *
1593 * @page: the page which is affected
1594 * @offset: the index of the truncation point
1595 *
1596 * block_invalidatepage() is called when all or part of the page has become
1597 * invalidatedby a truncate operation.
1598 *
1599 * block_invalidatepage() does not have to release all buffers, but it must
1600 * ensure that no dirty buffer is left outside @offset and that no I/O
1601 * is underway against any of the blocks which are outside the truncation
1602 * point. Because the caller is about to free (and possibly reuse) those
1603 * blocks on-disk.
1604 */
1605 int block_invalidatepage(struct page *page, unsigned long offset)
1606 {
1607 struct buffer_head *head, *bh, *next;
1608 unsigned int curr_off = 0;
1609 int ret = 1;
1610
1611 BUG_ON(!PageLocked(page));
1612 if (!page_has_buffers(page))
1613 goto out;
1614
1615 head = page_buffers(page);
1616 bh = head;
1617 do {
1618 unsigned int next_off = curr_off + bh->b_size;
1619 next = bh->b_this_page;
1620
1621 /*
1622 * is this block fully invalidated?
1623 */
1624 if (offset <= curr_off)
1625 discard_buffer(bh);
1626 curr_off = next_off;
1627 bh = next;
1628 } while (bh != head);
1629
1630 /*
1631 * We release buffers only if the entire page is being invalidated.
1632 * The get_block cached value has been unconditionally invalidated,
1633 * so real IO is not possible anymore.
1634 */
1635 if (offset == 0)
1636 ret = try_to_release_page(page, 0);
1637 out:
1638 return ret;
1639 }
1640 EXPORT_SYMBOL(block_invalidatepage);
1641
1642 int do_invalidatepage(struct page *page, unsigned long offset)
1643 {
1644 int (*invalidatepage)(struct page *, unsigned long);
1645 invalidatepage = page->mapping->a_ops->invalidatepage;
1646 if (invalidatepage == NULL)
1647 invalidatepage = block_invalidatepage;
1648 return (*invalidatepage)(page, offset);
1649 }
1650
1651 /*
1652 * We attach and possibly dirty the buffers atomically wrt
1653 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1654 * is already excluded via the page lock.
1655 */
1656 void create_empty_buffers(struct page *page,
1657 unsigned long blocksize, unsigned long b_state)
1658 {
1659 struct buffer_head *bh, *head, *tail;
1660
1661 head = alloc_page_buffers(page, blocksize, 1);
1662 bh = head;
1663 do {
1664 bh->b_state |= b_state;
1665 tail = bh;
1666 bh = bh->b_this_page;
1667 } while (bh);
1668 tail->b_this_page = head;
1669
1670 spin_lock(&page->mapping->private_lock);
1671 if (PageUptodate(page) || PageDirty(page)) {
1672 bh = head;
1673 do {
1674 if (PageDirty(page))
1675 set_buffer_dirty(bh);
1676 if (PageUptodate(page))
1677 set_buffer_uptodate(bh);
1678 bh = bh->b_this_page;
1679 } while (bh != head);
1680 }
1681 attach_page_buffers(page, head);
1682 spin_unlock(&page->mapping->private_lock);
1683 }
1684 EXPORT_SYMBOL(create_empty_buffers);
1685
1686 /*
1687 * We are taking a block for data and we don't want any output from any
1688 * buffer-cache aliases starting from return from that function and
1689 * until the moment when something will explicitly mark the buffer
1690 * dirty (hopefully that will not happen until we will free that block ;-)
1691 * We don't even need to mark it not-uptodate - nobody can expect
1692 * anything from a newly allocated buffer anyway. We used to used
1693 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1694 * don't want to mark the alias unmapped, for example - it would confuse
1695 * anyone who might pick it with bread() afterwards...
1696 *
1697 * Also.. Note that bforget() doesn't lock the buffer. So there can
1698 * be writeout I/O going on against recently-freed buffers. We don't
1699 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1700 * only if we really need to. That happens here.
1701 */
1702 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1703 {
1704 struct buffer_head *old_bh;
1705
1706 might_sleep();
1707
1708 old_bh = __find_get_block_slow(bdev, block);
1709 if (old_bh) {
1710 clear_buffer_dirty(old_bh);
1711 wait_on_buffer(old_bh);
1712 clear_buffer_req(old_bh);
1713 __brelse(old_bh);
1714 }
1715 }
1716 EXPORT_SYMBOL(unmap_underlying_metadata);
1717
1718 /*
1719 * NOTE! All mapped/uptodate combinations are valid:
1720 *
1721 * Mapped Uptodate Meaning
1722 *
1723 * No No "unknown" - must do get_block()
1724 * No Yes "hole" - zero-filled
1725 * Yes No "allocated" - allocated on disk, not read in
1726 * Yes Yes "valid" - allocated and up-to-date in memory.
1727 *
1728 * "Dirty" is valid only with the last case (mapped+uptodate).
1729 */
1730
1731 /*
1732 * While block_write_full_page is writing back the dirty buffers under
1733 * the page lock, whoever dirtied the buffers may decide to clean them
1734 * again at any time. We handle that by only looking at the buffer
1735 * state inside lock_buffer().
1736 *
1737 * If block_write_full_page() is called for regular writeback
1738 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1739 * locked buffer. This only can happen if someone has written the buffer
1740 * directly, with submit_bh(). At the address_space level PageWriteback
1741 * prevents this contention from occurring.
1742 */
1743 static int __block_write_full_page(struct inode *inode, struct page *page,
1744 get_block_t *get_block, struct writeback_control *wbc)
1745 {
1746 int err;
1747 sector_t block;
1748 sector_t last_block;
1749 struct buffer_head *bh, *head;
1750 int nr_underway = 0;
1751
1752 BUG_ON(!PageLocked(page));
1753
1754 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1755
1756 if (!page_has_buffers(page)) {
1757 create_empty_buffers(page, 1 << inode->i_blkbits,
1758 (1 << BH_Dirty)|(1 << BH_Uptodate));
1759 }
1760
1761 /*
1762 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1763 * here, and the (potentially unmapped) buffers may become dirty at
1764 * any time. If a buffer becomes dirty here after we've inspected it
1765 * then we just miss that fact, and the page stays dirty.
1766 *
1767 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1768 * handle that here by just cleaning them.
1769 */
1770
1771 block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1772 head = page_buffers(page);
1773 bh = head;
1774
1775 /*
1776 * Get all the dirty buffers mapped to disk addresses and
1777 * handle any aliases from the underlying blockdev's mapping.
1778 */
1779 do {
1780 if (block > last_block) {
1781 /*
1782 * mapped buffers outside i_size will occur, because
1783 * this page can be outside i_size when there is a
1784 * truncate in progress.
1785 */
1786 /*
1787 * The buffer was zeroed by block_write_full_page()
1788 */
1789 clear_buffer_dirty(bh);
1790 set_buffer_uptodate(bh);
1791 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1792 err = get_block(inode, block, bh, 1);
1793 if (err)
1794 goto recover;
1795 if (buffer_new(bh)) {
1796 /* blockdev mappings never come here */
1797 clear_buffer_new(bh);
1798 unmap_underlying_metadata(bh->b_bdev,
1799 bh->b_blocknr);
1800 }
1801 }
1802 bh = bh->b_this_page;
1803 block++;
1804 } while (bh != head);
1805
1806 do {
1807 if (!buffer_mapped(bh))
1808 continue;
1809 /*
1810 * If it's a fully non-blocking write attempt and we cannot
1811 * lock the buffer then redirty the page. Note that this can
1812 * potentially cause a busy-wait loop from pdflush and kswapd
1813 * activity, but those code paths have their own higher-level
1814 * throttling.
1815 */
1816 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1817 lock_buffer(bh);
1818 } else if (test_set_buffer_locked(bh)) {
1819 redirty_page_for_writepage(wbc, page);
1820 continue;
1821 }
1822 if (test_clear_buffer_dirty(bh)) {
1823 mark_buffer_async_write(bh);
1824 } else {
1825 unlock_buffer(bh);
1826 }
1827 } while ((bh = bh->b_this_page) != head);
1828
1829 /*
1830 * The page and its buffers are protected by PageWriteback(), so we can
1831 * drop the bh refcounts early.
1832 */
1833 BUG_ON(PageWriteback(page));
1834 set_page_writeback(page);
1835
1836 do {
1837 struct buffer_head *next = bh->b_this_page;
1838 if (buffer_async_write(bh)) {
1839 submit_bh(WRITE, bh);
1840 nr_underway++;
1841 }
1842 bh = next;
1843 } while (bh != head);
1844 unlock_page(page);
1845
1846 err = 0;
1847 done:
1848 if (nr_underway == 0) {
1849 /*
1850 * The page was marked dirty, but the buffers were
1851 * clean. Someone wrote them back by hand with
1852 * ll_rw_block/submit_bh. A rare case.
1853 */
1854 int uptodate = 1;
1855 do {
1856 if (!buffer_uptodate(bh)) {
1857 uptodate = 0;
1858 break;
1859 }
1860 bh = bh->b_this_page;
1861 } while (bh != head);
1862 if (uptodate)
1863 SetPageUptodate(page);
1864 end_page_writeback(page);
1865 /*
1866 * The page and buffer_heads can be released at any time from
1867 * here on.
1868 */
1869 wbc->pages_skipped++; /* We didn't write this page */
1870 }
1871 return err;
1872
1873 recover:
1874 /*
1875 * ENOSPC, or some other error. We may already have added some
1876 * blocks to the file, so we need to write these out to avoid
1877 * exposing stale data.
1878 * The page is currently locked and not marked for writeback
1879 */
1880 bh = head;
1881 /* Recovery: lock and submit the mapped buffers */
1882 do {
1883 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1884 lock_buffer(bh);
1885 mark_buffer_async_write(bh);
1886 } else {
1887 /*
1888 * The buffer may have been set dirty during
1889 * attachment to a dirty page.
1890 */
1891 clear_buffer_dirty(bh);
1892 }
1893 } while ((bh = bh->b_this_page) != head);
1894 SetPageError(page);
1895 BUG_ON(PageWriteback(page));
1896 set_page_writeback(page);
1897 unlock_page(page);
1898 do {
1899 struct buffer_head *next = bh->b_this_page;
1900 if (buffer_async_write(bh)) {
1901 clear_buffer_dirty(bh);
1902 submit_bh(WRITE, bh);
1903 nr_underway++;
1904 }
1905 bh = next;
1906 } while (bh != head);
1907 goto done;
1908 }
1909
1910 static int __block_prepare_write(struct inode *inode, struct page *page,
1911 unsigned from, unsigned to, get_block_t *get_block)
1912 {
1913 unsigned block_start, block_end;
1914 sector_t block;
1915 int err = 0;
1916 unsigned blocksize, bbits;
1917 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1918
1919 BUG_ON(!PageLocked(page));
1920 BUG_ON(from > PAGE_CACHE_SIZE);
1921 BUG_ON(to > PAGE_CACHE_SIZE);
1922 BUG_ON(from > to);
1923
1924 blocksize = 1 << inode->i_blkbits;
1925 if (!page_has_buffers(page))
1926 create_empty_buffers(page, blocksize, 0);
1927 head = page_buffers(page);
1928
1929 bbits = inode->i_blkbits;
1930 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1931
1932 for(bh = head, block_start = 0; bh != head || !block_start;
1933 block++, block_start=block_end, bh = bh->b_this_page) {
1934 block_end = block_start + blocksize;
1935 if (block_end <= from || block_start >= to) {
1936 if (PageUptodate(page)) {
1937 if (!buffer_uptodate(bh))
1938 set_buffer_uptodate(bh);
1939 }
1940 continue;
1941 }
1942 if (buffer_new(bh))
1943 clear_buffer_new(bh);
1944 if (!buffer_mapped(bh)) {
1945 err = get_block(inode, block, bh, 1);
1946 if (err)
1947 break;
1948 if (buffer_new(bh)) {
1949 unmap_underlying_metadata(bh->b_bdev,
1950 bh->b_blocknr);
1951 if (PageUptodate(page)) {
1952 set_buffer_uptodate(bh);
1953 continue;
1954 }
1955 if (block_end > to || block_start < from) {
1956 void *kaddr;
1957
1958 kaddr = kmap_atomic(page, KM_USER0);
1959 if (block_end > to)
1960 memset(kaddr+to, 0,
1961 block_end-to);
1962 if (block_start < from)
1963 memset(kaddr+block_start,
1964 0, from-block_start);
1965 flush_dcache_page(page);
1966 kunmap_atomic(kaddr, KM_USER0);
1967 }
1968 continue;
1969 }
1970 }
1971 if (PageUptodate(page)) {
1972 if (!buffer_uptodate(bh))
1973 set_buffer_uptodate(bh);
1974 continue;
1975 }
1976 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1977 (block_start < from || block_end > to)) {
1978 ll_rw_block(READ, 1, &bh);
1979 *wait_bh++=bh;
1980 }
1981 }
1982 /*
1983 * If we issued read requests - let them complete.
1984 */
1985 while(wait_bh > wait) {
1986 wait_on_buffer(*--wait_bh);
1987 if (!buffer_uptodate(*wait_bh))
1988 err = -EIO;
1989 }
1990 if (!err) {
1991 bh = head;
1992 do {
1993 if (buffer_new(bh))
1994 clear_buffer_new(bh);
1995 } while ((bh = bh->b_this_page) != head);
1996 return 0;
1997 }
1998 /* Error case: */
1999 /*
2000 * Zero out any newly allocated blocks to avoid exposing stale
2001 * data. If BH_New is set, we know that the block was newly
2002 * allocated in the above loop.
2003 */
2004 bh = head;
2005 block_start = 0;
2006 do {
2007 block_end = block_start+blocksize;
2008 if (block_end <= from)
2009 goto next_bh;
2010 if (block_start >= to)
2011 break;
2012 if (buffer_new(bh)) {
2013 void *kaddr;
2014
2015 clear_buffer_new(bh);
2016 kaddr = kmap_atomic(page, KM_USER0);
2017 memset(kaddr+block_start, 0, bh->b_size);
2018 kunmap_atomic(kaddr, KM_USER0);
2019 set_buffer_uptodate(bh);
2020 mark_buffer_dirty(bh);
2021 }
2022 next_bh:
2023 block_start = block_end;
2024 bh = bh->b_this_page;
2025 } while (bh != head);
2026 return err;
2027 }
2028
2029 static int __block_commit_write(struct inode *inode, struct page *page,
2030 unsigned from, unsigned to)
2031 {
2032 unsigned block_start, block_end;
2033 int partial = 0;
2034 unsigned blocksize;
2035 struct buffer_head *bh, *head;
2036
2037 blocksize = 1 << inode->i_blkbits;
2038
2039 for(bh = head = page_buffers(page), block_start = 0;
2040 bh != head || !block_start;
2041 block_start=block_end, bh = bh->b_this_page) {
2042 block_end = block_start + blocksize;
2043 if (block_end <= from || block_start >= to) {
2044 if (!buffer_uptodate(bh))
2045 partial = 1;
2046 } else {
2047 set_buffer_uptodate(bh);
2048 mark_buffer_dirty(bh);
2049 }
2050 }
2051
2052 /*
2053 * If this is a partial write which happened to make all buffers
2054 * uptodate then we can optimize away a bogus readpage() for
2055 * the next read(). Here we 'discover' whether the page went
2056 * uptodate as a result of this (potentially partial) write.
2057 */
2058 if (!partial)
2059 SetPageUptodate(page);
2060 return 0;
2061 }
2062
2063 /*
2064 * Generic "read page" function for block devices that have the normal
2065 * get_block functionality. This is most of the block device filesystems.
2066 * Reads the page asynchronously --- the unlock_buffer() and
2067 * set/clear_buffer_uptodate() functions propagate buffer state into the
2068 * page struct once IO has completed.
2069 */
2070 int block_read_full_page(struct page *page, get_block_t *get_block)
2071 {
2072 struct inode *inode = page->mapping->host;
2073 sector_t iblock, lblock;
2074 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2075 unsigned int blocksize;
2076 int nr, i;
2077 int fully_mapped = 1;
2078
2079 BUG_ON(!PageLocked(page));
2080 blocksize = 1 << inode->i_blkbits;
2081 if (!page_has_buffers(page))
2082 create_empty_buffers(page, blocksize, 0);
2083 head = page_buffers(page);
2084
2085 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2086 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2087 bh = head;
2088 nr = 0;
2089 i = 0;
2090
2091 do {
2092 if (buffer_uptodate(bh))
2093 continue;
2094
2095 if (!buffer_mapped(bh)) {
2096 int err = 0;
2097
2098 fully_mapped = 0;
2099 if (iblock < lblock) {
2100 err = get_block(inode, iblock, bh, 0);
2101 if (err)
2102 SetPageError(page);
2103 }
2104 if (!buffer_mapped(bh)) {
2105 void *kaddr = kmap_atomic(page, KM_USER0);
2106 memset(kaddr + i * blocksize, 0, blocksize);
2107 flush_dcache_page(page);
2108 kunmap_atomic(kaddr, KM_USER0);
2109 if (!err)
2110 set_buffer_uptodate(bh);
2111 continue;
2112 }
2113 /*
2114 * get_block() might have updated the buffer
2115 * synchronously
2116 */
2117 if (buffer_uptodate(bh))
2118 continue;
2119 }
2120 arr[nr++] = bh;
2121 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2122
2123 if (fully_mapped)
2124 SetPageMappedToDisk(page);
2125
2126 if (!nr) {
2127 /*
2128 * All buffers are uptodate - we can set the page uptodate
2129 * as well. But not if get_block() returned an error.
2130 */
2131 if (!PageError(page))
2132 SetPageUptodate(page);
2133 unlock_page(page);
2134 return 0;
2135 }
2136
2137 /* Stage two: lock the buffers */
2138 for (i = 0; i < nr; i++) {
2139 bh = arr[i];
2140 lock_buffer(bh);
2141 mark_buffer_async_read(bh);
2142 }
2143
2144 /*
2145 * Stage 3: start the IO. Check for uptodateness
2146 * inside the buffer lock in case another process reading
2147 * the underlying blockdev brought it uptodate (the sct fix).
2148 */
2149 for (i = 0; i < nr; i++) {
2150 bh = arr[i];
2151 if (buffer_uptodate(bh))
2152 end_buffer_async_read(bh, 1);
2153 else
2154 submit_bh(READ, bh);
2155 }
2156 return 0;
2157 }
2158
2159 /* utility function for filesystems that need to do work on expanding
2160 * truncates. Uses prepare/commit_write to allow the filesystem to
2161 * deal with the hole.
2162 */
2163 static int __generic_cont_expand(struct inode *inode, loff_t size,
2164 pgoff_t index, unsigned int offset)
2165 {
2166 struct address_space *mapping = inode->i_mapping;
2167 struct page *page;
2168 unsigned long limit;
2169 int err;
2170
2171 err = -EFBIG;
2172 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2173 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2174 send_sig(SIGXFSZ, current, 0);
2175 goto out;
2176 }
2177 if (size > inode->i_sb->s_maxbytes)
2178 goto out;
2179
2180 err = -ENOMEM;
2181 page = grab_cache_page(mapping, index);
2182 if (!page)
2183 goto out;
2184 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2185 if (err) {
2186 /*
2187 * ->prepare_write() may have instantiated a few blocks
2188 * outside i_size. Trim these off again.
2189 */
2190 unlock_page(page);
2191 page_cache_release(page);
2192 vmtruncate(inode, inode->i_size);
2193 goto out;
2194 }
2195
2196 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2197
2198 unlock_page(page);
2199 page_cache_release(page);
2200 if (err > 0)
2201 err = 0;
2202 out:
2203 return err;
2204 }
2205
2206 int generic_cont_expand(struct inode *inode, loff_t size)
2207 {
2208 pgoff_t index;
2209 unsigned int offset;
2210
2211 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2212
2213 /* ugh. in prepare/commit_write, if from==to==start of block, we
2214 ** skip the prepare. make sure we never send an offset for the start
2215 ** of a block
2216 */
2217 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2218 /* caller must handle this extra byte. */
2219 offset++;
2220 }
2221 index = size >> PAGE_CACHE_SHIFT;
2222
2223 return __generic_cont_expand(inode, size, index, offset);
2224 }
2225
2226 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2227 {
2228 loff_t pos = size - 1;
2229 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2230 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2231
2232 /* prepare/commit_write can handle even if from==to==start of block. */
2233 return __generic_cont_expand(inode, size, index, offset);
2234 }
2235
2236 /*
2237 * For moronic filesystems that do not allow holes in file.
2238 * We may have to extend the file.
2239 */
2240
2241 int cont_prepare_write(struct page *page, unsigned offset,
2242 unsigned to, get_block_t *get_block, loff_t *bytes)
2243 {
2244 struct address_space *mapping = page->mapping;
2245 struct inode *inode = mapping->host;
2246 struct page *new_page;
2247 pgoff_t pgpos;
2248 long status;
2249 unsigned zerofrom;
2250 unsigned blocksize = 1 << inode->i_blkbits;
2251 void *kaddr;
2252
2253 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2254 status = -ENOMEM;
2255 new_page = grab_cache_page(mapping, pgpos);
2256 if (!new_page)
2257 goto out;
2258 /* we might sleep */
2259 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2260 unlock_page(new_page);
2261 page_cache_release(new_page);
2262 continue;
2263 }
2264 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2265 if (zerofrom & (blocksize-1)) {
2266 *bytes |= (blocksize-1);
2267 (*bytes)++;
2268 }
2269 status = __block_prepare_write(inode, new_page, zerofrom,
2270 PAGE_CACHE_SIZE, get_block);
2271 if (status)
2272 goto out_unmap;
2273 kaddr = kmap_atomic(new_page, KM_USER0);
2274 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2275 flush_dcache_page(new_page);
2276 kunmap_atomic(kaddr, KM_USER0);
2277 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2278 unlock_page(new_page);
2279 page_cache_release(new_page);
2280 }
2281
2282 if (page->index < pgpos) {
2283 /* completely inside the area */
2284 zerofrom = offset;
2285 } else {
2286 /* page covers the boundary, find the boundary offset */
2287 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2288
2289 /* if we will expand the thing last block will be filled */
2290 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2291 *bytes |= (blocksize-1);
2292 (*bytes)++;
2293 }
2294
2295 /* starting below the boundary? Nothing to zero out */
2296 if (offset <= zerofrom)
2297 zerofrom = offset;
2298 }
2299 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2300 if (status)
2301 goto out1;
2302 if (zerofrom < offset) {
2303 kaddr = kmap_atomic(page, KM_USER0);
2304 memset(kaddr+zerofrom, 0, offset-zerofrom);
2305 flush_dcache_page(page);
2306 kunmap_atomic(kaddr, KM_USER0);
2307 __block_commit_write(inode, page, zerofrom, offset);
2308 }
2309 return 0;
2310 out1:
2311 ClearPageUptodate(page);
2312 return status;
2313
2314 out_unmap:
2315 ClearPageUptodate(new_page);
2316 unlock_page(new_page);
2317 page_cache_release(new_page);
2318 out:
2319 return status;
2320 }
2321
2322 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2323 get_block_t *get_block)
2324 {
2325 struct inode *inode = page->mapping->host;
2326 int err = __block_prepare_write(inode, page, from, to, get_block);
2327 if (err)
2328 ClearPageUptodate(page);
2329 return err;
2330 }
2331
2332 int block_commit_write(struct page *page, unsigned from, unsigned to)
2333 {
2334 struct inode *inode = page->mapping->host;
2335 __block_commit_write(inode,page,from,to);
2336 return 0;
2337 }
2338
2339 int generic_commit_write(struct file *file, struct page *page,
2340 unsigned from, unsigned to)
2341 {
2342 struct inode *inode = page->mapping->host;
2343 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2344 __block_commit_write(inode,page,from,to);
2345 /*
2346 * No need to use i_size_read() here, the i_size
2347 * cannot change under us because we hold i_sem.
2348 */
2349 if (pos > inode->i_size) {
2350 i_size_write(inode, pos);
2351 mark_inode_dirty(inode);
2352 }
2353 return 0;
2354 }
2355
2356
2357 /*
2358 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2359 * immediately, while under the page lock. So it needs a special end_io
2360 * handler which does not touch the bh after unlocking it.
2361 *
2362 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2363 * a race there is benign: unlock_buffer() only use the bh's address for
2364 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2365 * itself.
2366 */
2367 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2368 {
2369 if (uptodate) {
2370 set_buffer_uptodate(bh);
2371 } else {
2372 /* This happens, due to failed READA attempts. */
2373 clear_buffer_uptodate(bh);
2374 }
2375 unlock_buffer(bh);
2376 }
2377
2378 /*
2379 * On entry, the page is fully not uptodate.
2380 * On exit the page is fully uptodate in the areas outside (from,to)
2381 */
2382 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2383 get_block_t *get_block)
2384 {
2385 struct inode *inode = page->mapping->host;
2386 const unsigned blkbits = inode->i_blkbits;
2387 const unsigned blocksize = 1 << blkbits;
2388 struct buffer_head map_bh;
2389 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2390 unsigned block_in_page;
2391 unsigned block_start;
2392 sector_t block_in_file;
2393 char *kaddr;
2394 int nr_reads = 0;
2395 int i;
2396 int ret = 0;
2397 int is_mapped_to_disk = 1;
2398 int dirtied_it = 0;
2399
2400 if (PageMappedToDisk(page))
2401 return 0;
2402
2403 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2404 map_bh.b_page = page;
2405
2406 /*
2407 * We loop across all blocks in the page, whether or not they are
2408 * part of the affected region. This is so we can discover if the
2409 * page is fully mapped-to-disk.
2410 */
2411 for (block_start = 0, block_in_page = 0;
2412 block_start < PAGE_CACHE_SIZE;
2413 block_in_page++, block_start += blocksize) {
2414 unsigned block_end = block_start + blocksize;
2415 int create;
2416
2417 map_bh.b_state = 0;
2418 create = 1;
2419 if (block_start >= to)
2420 create = 0;
2421 ret = get_block(inode, block_in_file + block_in_page,
2422 &map_bh, create);
2423 if (ret)
2424 goto failed;
2425 if (!buffer_mapped(&map_bh))
2426 is_mapped_to_disk = 0;
2427 if (buffer_new(&map_bh))
2428 unmap_underlying_metadata(map_bh.b_bdev,
2429 map_bh.b_blocknr);
2430 if (PageUptodate(page))
2431 continue;
2432 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2433 kaddr = kmap_atomic(page, KM_USER0);
2434 if (block_start < from) {
2435 memset(kaddr+block_start, 0, from-block_start);
2436 dirtied_it = 1;
2437 }
2438 if (block_end > to) {
2439 memset(kaddr + to, 0, block_end - to);
2440 dirtied_it = 1;
2441 }
2442 flush_dcache_page(page);
2443 kunmap_atomic(kaddr, KM_USER0);
2444 continue;
2445 }
2446 if (buffer_uptodate(&map_bh))
2447 continue; /* reiserfs does this */
2448 if (block_start < from || block_end > to) {
2449 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2450
2451 if (!bh) {
2452 ret = -ENOMEM;
2453 goto failed;
2454 }
2455 bh->b_state = map_bh.b_state;
2456 atomic_set(&bh->b_count, 0);
2457 bh->b_this_page = NULL;
2458 bh->b_page = page;
2459 bh->b_blocknr = map_bh.b_blocknr;
2460 bh->b_size = blocksize;
2461 bh->b_data = (char *)(long)block_start;
2462 bh->b_bdev = map_bh.b_bdev;
2463 bh->b_private = NULL;
2464 read_bh[nr_reads++] = bh;
2465 }
2466 }
2467
2468 if (nr_reads) {
2469 struct buffer_head *bh;
2470
2471 /*
2472 * The page is locked, so these buffers are protected from
2473 * any VM or truncate activity. Hence we don't need to care
2474 * for the buffer_head refcounts.
2475 */
2476 for (i = 0; i < nr_reads; i++) {
2477 bh = read_bh[i];
2478 lock_buffer(bh);
2479 bh->b_end_io = end_buffer_read_nobh;
2480 submit_bh(READ, bh);
2481 }
2482 for (i = 0; i < nr_reads; i++) {
2483 bh = read_bh[i];
2484 wait_on_buffer(bh);
2485 if (!buffer_uptodate(bh))
2486 ret = -EIO;
2487 free_buffer_head(bh);
2488 read_bh[i] = NULL;
2489 }
2490 if (ret)
2491 goto failed;
2492 }
2493
2494 if (is_mapped_to_disk)
2495 SetPageMappedToDisk(page);
2496 SetPageUptodate(page);
2497
2498 /*
2499 * Setting the page dirty here isn't necessary for the prepare_write
2500 * function - commit_write will do that. But if/when this function is
2501 * used within the pagefault handler to ensure that all mmapped pages
2502 * have backing space in the filesystem, we will need to dirty the page
2503 * if its contents were altered.
2504 */
2505 if (dirtied_it)
2506 set_page_dirty(page);
2507
2508 return 0;
2509
2510 failed:
2511 for (i = 0; i < nr_reads; i++) {
2512 if (read_bh[i])
2513 free_buffer_head(read_bh[i]);
2514 }
2515
2516 /*
2517 * Error recovery is pretty slack. Clear the page and mark it dirty
2518 * so we'll later zero out any blocks which _were_ allocated.
2519 */
2520 kaddr = kmap_atomic(page, KM_USER0);
2521 memset(kaddr, 0, PAGE_CACHE_SIZE);
2522 kunmap_atomic(kaddr, KM_USER0);
2523 SetPageUptodate(page);
2524 set_page_dirty(page);
2525 return ret;
2526 }
2527 EXPORT_SYMBOL(nobh_prepare_write);
2528
2529 int nobh_commit_write(struct file *file, struct page *page,
2530 unsigned from, unsigned to)
2531 {
2532 struct inode *inode = page->mapping->host;
2533 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2534
2535 set_page_dirty(page);
2536 if (pos > inode->i_size) {
2537 i_size_write(inode, pos);
2538 mark_inode_dirty(inode);
2539 }
2540 return 0;
2541 }
2542 EXPORT_SYMBOL(nobh_commit_write);
2543
2544 /*
2545 * nobh_writepage() - based on block_full_write_page() except
2546 * that it tries to operate without attaching bufferheads to
2547 * the page.
2548 */
2549 int nobh_writepage(struct page *page, get_block_t *get_block,
2550 struct writeback_control *wbc)
2551 {
2552 struct inode * const inode = page->mapping->host;
2553 loff_t i_size = i_size_read(inode);
2554 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2555 unsigned offset;
2556 void *kaddr;
2557 int ret;
2558
2559 /* Is the page fully inside i_size? */
2560 if (page->index < end_index)
2561 goto out;
2562
2563 /* Is the page fully outside i_size? (truncate in progress) */
2564 offset = i_size & (PAGE_CACHE_SIZE-1);
2565 if (page->index >= end_index+1 || !offset) {
2566 /*
2567 * The page may have dirty, unmapped buffers. For example,
2568 * they may have been added in ext3_writepage(). Make them
2569 * freeable here, so the page does not leak.
2570 */
2571 #if 0
2572 /* Not really sure about this - do we need this ? */
2573 if (page->mapping->a_ops->invalidatepage)
2574 page->mapping->a_ops->invalidatepage(page, offset);
2575 #endif
2576 unlock_page(page);
2577 return 0; /* don't care */
2578 }
2579
2580 /*
2581 * The page straddles i_size. It must be zeroed out on each and every
2582 * writepage invocation because it may be mmapped. "A file is mapped
2583 * in multiples of the page size. For a file that is not a multiple of
2584 * the page size, the remaining memory is zeroed when mapped, and
2585 * writes to that region are not written out to the file."
2586 */
2587 kaddr = kmap_atomic(page, KM_USER0);
2588 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2589 flush_dcache_page(page);
2590 kunmap_atomic(kaddr, KM_USER0);
2591 out:
2592 ret = mpage_writepage(page, get_block, wbc);
2593 if (ret == -EAGAIN)
2594 ret = __block_write_full_page(inode, page, get_block, wbc);
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(nobh_writepage);
2598
2599 /*
2600 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2601 */
2602 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2603 {
2604 struct inode *inode = mapping->host;
2605 unsigned blocksize = 1 << inode->i_blkbits;
2606 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2607 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2608 unsigned to;
2609 struct page *page;
2610 struct address_space_operations *a_ops = mapping->a_ops;
2611 char *kaddr;
2612 int ret = 0;
2613
2614 if ((offset & (blocksize - 1)) == 0)
2615 goto out;
2616
2617 ret = -ENOMEM;
2618 page = grab_cache_page(mapping, index);
2619 if (!page)
2620 goto out;
2621
2622 to = (offset + blocksize) & ~(blocksize - 1);
2623 ret = a_ops->prepare_write(NULL, page, offset, to);
2624 if (ret == 0) {
2625 kaddr = kmap_atomic(page, KM_USER0);
2626 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2627 flush_dcache_page(page);
2628 kunmap_atomic(kaddr, KM_USER0);
2629 set_page_dirty(page);
2630 }
2631 unlock_page(page);
2632 page_cache_release(page);
2633 out:
2634 return ret;
2635 }
2636 EXPORT_SYMBOL(nobh_truncate_page);
2637
2638 int block_truncate_page(struct address_space *mapping,
2639 loff_t from, get_block_t *get_block)
2640 {
2641 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2642 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2643 unsigned blocksize;
2644 pgoff_t iblock;
2645 unsigned length, pos;
2646 struct inode *inode = mapping->host;
2647 struct page *page;
2648 struct buffer_head *bh;
2649 void *kaddr;
2650 int err;
2651
2652 blocksize = 1 << inode->i_blkbits;
2653 length = offset & (blocksize - 1);
2654
2655 /* Block boundary? Nothing to do */
2656 if (!length)
2657 return 0;
2658
2659 length = blocksize - length;
2660 iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2661
2662 page = grab_cache_page(mapping, index);
2663 err = -ENOMEM;
2664 if (!page)
2665 goto out;
2666
2667 if (!page_has_buffers(page))
2668 create_empty_buffers(page, blocksize, 0);
2669
2670 /* Find the buffer that contains "offset" */
2671 bh = page_buffers(page);
2672 pos = blocksize;
2673 while (offset >= pos) {
2674 bh = bh->b_this_page;
2675 iblock++;
2676 pos += blocksize;
2677 }
2678
2679 err = 0;
2680 if (!buffer_mapped(bh)) {
2681 err = get_block(inode, iblock, bh, 0);
2682 if (err)
2683 goto unlock;
2684 /* unmapped? It's a hole - nothing to do */
2685 if (!buffer_mapped(bh))
2686 goto unlock;
2687 }
2688
2689 /* Ok, it's mapped. Make sure it's up-to-date */
2690 if (PageUptodate(page))
2691 set_buffer_uptodate(bh);
2692
2693 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2694 err = -EIO;
2695 ll_rw_block(READ, 1, &bh);
2696 wait_on_buffer(bh);
2697 /* Uhhuh. Read error. Complain and punt. */
2698 if (!buffer_uptodate(bh))
2699 goto unlock;
2700 }
2701
2702 kaddr = kmap_atomic(page, KM_USER0);
2703 memset(kaddr + offset, 0, length);
2704 flush_dcache_page(page);
2705 kunmap_atomic(kaddr, KM_USER0);
2706
2707 mark_buffer_dirty(bh);
2708 err = 0;
2709
2710 unlock:
2711 unlock_page(page);
2712 page_cache_release(page);
2713 out:
2714 return err;
2715 }
2716
2717 /*
2718 * The generic ->writepage function for buffer-backed address_spaces
2719 */
2720 int block_write_full_page(struct page *page, get_block_t *get_block,
2721 struct writeback_control *wbc)
2722 {
2723 struct inode * const inode = page->mapping->host;
2724 loff_t i_size = i_size_read(inode);
2725 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2726 unsigned offset;
2727 void *kaddr;
2728
2729 /* Is the page fully inside i_size? */
2730 if (page->index < end_index)
2731 return __block_write_full_page(inode, page, get_block, wbc);
2732
2733 /* Is the page fully outside i_size? (truncate in progress) */
2734 offset = i_size & (PAGE_CACHE_SIZE-1);
2735 if (page->index >= end_index+1 || !offset) {
2736 /*
2737 * The page may have dirty, unmapped buffers. For example,
2738 * they may have been added in ext3_writepage(). Make them
2739 * freeable here, so the page does not leak.
2740 */
2741 do_invalidatepage(page, 0);
2742 unlock_page(page);
2743 return 0; /* don't care */
2744 }
2745
2746 /*
2747 * The page straddles i_size. It must be zeroed out on each and every
2748 * writepage invokation because it may be mmapped. "A file is mapped
2749 * in multiples of the page size. For a file that is not a multiple of
2750 * the page size, the remaining memory is zeroed when mapped, and
2751 * writes to that region are not written out to the file."
2752 */
2753 kaddr = kmap_atomic(page, KM_USER0);
2754 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2755 flush_dcache_page(page);
2756 kunmap_atomic(kaddr, KM_USER0);
2757 return __block_write_full_page(inode, page, get_block, wbc);
2758 }
2759
2760 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2761 get_block_t *get_block)
2762 {
2763 struct buffer_head tmp;
2764 struct inode *inode = mapping->host;
2765 tmp.b_state = 0;
2766 tmp.b_blocknr = 0;
2767 get_block(inode, block, &tmp, 0);
2768 return tmp.b_blocknr;
2769 }
2770
2771 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2772 {
2773 struct buffer_head *bh = bio->bi_private;
2774
2775 if (bio->bi_size)
2776 return 1;
2777
2778 if (err == -EOPNOTSUPP) {
2779 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2780 set_bit(BH_Eopnotsupp, &bh->b_state);
2781 }
2782
2783 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2784 bio_put(bio);
2785 return 0;
2786 }
2787
2788 int submit_bh(int rw, struct buffer_head * bh)
2789 {
2790 struct bio *bio;
2791 int ret = 0;
2792
2793 BUG_ON(!buffer_locked(bh));
2794 BUG_ON(!buffer_mapped(bh));
2795 BUG_ON(!bh->b_end_io);
2796
2797 if (buffer_ordered(bh) && (rw == WRITE))
2798 rw = WRITE_BARRIER;
2799
2800 /*
2801 * Only clear out a write error when rewriting, should this
2802 * include WRITE_SYNC as well?
2803 */
2804 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2805 clear_buffer_write_io_error(bh);
2806
2807 /*
2808 * from here on down, it's all bio -- do the initial mapping,
2809 * submit_bio -> generic_make_request may further map this bio around
2810 */
2811 bio = bio_alloc(GFP_NOIO, 1);
2812
2813 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2814 bio->bi_bdev = bh->b_bdev;
2815 bio->bi_io_vec[0].bv_page = bh->b_page;
2816 bio->bi_io_vec[0].bv_len = bh->b_size;
2817 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2818
2819 bio->bi_vcnt = 1;
2820 bio->bi_idx = 0;
2821 bio->bi_size = bh->b_size;
2822
2823 bio->bi_end_io = end_bio_bh_io_sync;
2824 bio->bi_private = bh;
2825
2826 bio_get(bio);
2827 submit_bio(rw, bio);
2828
2829 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2830 ret = -EOPNOTSUPP;
2831
2832 bio_put(bio);
2833 return ret;
2834 }
2835
2836 /**
2837 * ll_rw_block: low-level access to block devices (DEPRECATED)
2838 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2839 * @nr: number of &struct buffer_heads in the array
2840 * @bhs: array of pointers to &struct buffer_head
2841 *
2842 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2843 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2844 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2845 * are sent to disk. The fourth %READA option is described in the documentation
2846 * for generic_make_request() which ll_rw_block() calls.
2847 *
2848 * This function drops any buffer that it cannot get a lock on (with the
2849 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2850 * clean when doing a write request, and any buffer that appears to be
2851 * up-to-date when doing read request. Further it marks as clean buffers that
2852 * are processed for writing (the buffer cache won't assume that they are
2853 * actually clean until the buffer gets unlocked).
2854 *
2855 * ll_rw_block sets b_end_io to simple completion handler that marks
2856 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2857 * any waiters.
2858 *
2859 * All of the buffers must be for the same device, and must also be a
2860 * multiple of the current approved size for the device.
2861 */
2862 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2863 {
2864 int i;
2865
2866 for (i = 0; i < nr; i++) {
2867 struct buffer_head *bh = bhs[i];
2868
2869 if (rw == SWRITE)
2870 lock_buffer(bh);
2871 else if (test_set_buffer_locked(bh))
2872 continue;
2873
2874 get_bh(bh);
2875 if (rw == WRITE || rw == SWRITE) {
2876 if (test_clear_buffer_dirty(bh)) {
2877 bh->b_end_io = end_buffer_write_sync;
2878 submit_bh(WRITE, bh);
2879 continue;
2880 }
2881 } else {
2882 if (!buffer_uptodate(bh)) {
2883 bh->b_end_io = end_buffer_read_sync;
2884 submit_bh(rw, bh);
2885 continue;
2886 }
2887 }
2888 unlock_buffer(bh);
2889 put_bh(bh);
2890 }
2891 }
2892
2893 /*
2894 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2895 * and then start new I/O and then wait upon it. The caller must have a ref on
2896 * the buffer_head.
2897 */
2898 int sync_dirty_buffer(struct buffer_head *bh)
2899 {
2900 int ret = 0;
2901
2902 WARN_ON(atomic_read(&bh->b_count) < 1);
2903 lock_buffer(bh);
2904 if (test_clear_buffer_dirty(bh)) {
2905 get_bh(bh);
2906 bh->b_end_io = end_buffer_write_sync;
2907 ret = submit_bh(WRITE, bh);
2908 wait_on_buffer(bh);
2909 if (buffer_eopnotsupp(bh)) {
2910 clear_buffer_eopnotsupp(bh);
2911 ret = -EOPNOTSUPP;
2912 }
2913 if (!ret && !buffer_uptodate(bh))
2914 ret = -EIO;
2915 } else {
2916 unlock_buffer(bh);
2917 }
2918 return ret;
2919 }
2920
2921 /*
2922 * try_to_free_buffers() checks if all the buffers on this particular page
2923 * are unused, and releases them if so.
2924 *
2925 * Exclusion against try_to_free_buffers may be obtained by either
2926 * locking the page or by holding its mapping's private_lock.
2927 *
2928 * If the page is dirty but all the buffers are clean then we need to
2929 * be sure to mark the page clean as well. This is because the page
2930 * may be against a block device, and a later reattachment of buffers
2931 * to a dirty page will set *all* buffers dirty. Which would corrupt
2932 * filesystem data on the same device.
2933 *
2934 * The same applies to regular filesystem pages: if all the buffers are
2935 * clean then we set the page clean and proceed. To do that, we require
2936 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2937 * private_lock.
2938 *
2939 * try_to_free_buffers() is non-blocking.
2940 */
2941 static inline int buffer_busy(struct buffer_head *bh)
2942 {
2943 return atomic_read(&bh->b_count) |
2944 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2945 }
2946
2947 static int
2948 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2949 {
2950 struct buffer_head *head = page_buffers(page);
2951 struct buffer_head *bh;
2952
2953 bh = head;
2954 do {
2955 if (buffer_write_io_error(bh) && page->mapping)
2956 set_bit(AS_EIO, &page->mapping->flags);
2957 if (buffer_busy(bh))
2958 goto failed;
2959 bh = bh->b_this_page;
2960 } while (bh != head);
2961
2962 do {
2963 struct buffer_head *next = bh->b_this_page;
2964
2965 if (!list_empty(&bh->b_assoc_buffers))
2966 __remove_assoc_queue(bh);
2967 bh = next;
2968 } while (bh != head);
2969 *buffers_to_free = head;
2970 __clear_page_buffers(page);
2971 return 1;
2972 failed:
2973 return 0;
2974 }
2975
2976 int try_to_free_buffers(struct page *page)
2977 {
2978 struct address_space * const mapping = page->mapping;
2979 struct buffer_head *buffers_to_free = NULL;
2980 int ret = 0;
2981
2982 BUG_ON(!PageLocked(page));
2983 if (PageWriteback(page))
2984 return 0;
2985
2986 if (mapping == NULL) { /* can this still happen? */
2987 ret = drop_buffers(page, &buffers_to_free);
2988 goto out;
2989 }
2990
2991 spin_lock(&mapping->private_lock);
2992 ret = drop_buffers(page, &buffers_to_free);
2993 if (ret) {
2994 /*
2995 * If the filesystem writes its buffers by hand (eg ext3)
2996 * then we can have clean buffers against a dirty page. We
2997 * clean the page here; otherwise later reattachment of buffers
2998 * could encounter a non-uptodate page, which is unresolvable.
2999 * This only applies in the rare case where try_to_free_buffers
3000 * succeeds but the page is not freed.
3001 */
3002 clear_page_dirty(page);
3003 }
3004 spin_unlock(&mapping->private_lock);
3005 out:
3006 if (buffers_to_free) {
3007 struct buffer_head *bh = buffers_to_free;
3008
3009 do {
3010 struct buffer_head *next = bh->b_this_page;
3011 free_buffer_head(bh);
3012 bh = next;
3013 } while (bh != buffers_to_free);
3014 }
3015 return ret;
3016 }
3017 EXPORT_SYMBOL(try_to_free_buffers);
3018
3019 int block_sync_page(struct page *page)
3020 {
3021 struct address_space *mapping;
3022
3023 smp_mb();
3024 mapping = page_mapping(page);
3025 if (mapping)
3026 blk_run_backing_dev(mapping->backing_dev_info, page);
3027 return 0;
3028 }
3029
3030 /*
3031 * There are no bdflush tunables left. But distributions are
3032 * still running obsolete flush daemons, so we terminate them here.
3033 *
3034 * Use of bdflush() is deprecated and will be removed in a future kernel.
3035 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3036 */
3037 asmlinkage long sys_bdflush(int func, long data)
3038 {
3039 static int msg_count;
3040
3041 if (!capable(CAP_SYS_ADMIN))
3042 return -EPERM;
3043
3044 if (msg_count < 5) {
3045 msg_count++;
3046 printk(KERN_INFO
3047 "warning: process `%s' used the obsolete bdflush"
3048 " system call\n", current->comm);
3049 printk(KERN_INFO "Fix your initscripts?\n");
3050 }
3051
3052 if (func == 1)
3053 do_exit(0);
3054 return 0;
3055 }
3056
3057 /*
3058 * Buffer-head allocation
3059 */
3060 static kmem_cache_t *bh_cachep;
3061
3062 /*
3063 * Once the number of bh's in the machine exceeds this level, we start
3064 * stripping them in writeback.
3065 */
3066 static int max_buffer_heads;
3067
3068 int buffer_heads_over_limit;
3069
3070 struct bh_accounting {
3071 int nr; /* Number of live bh's */
3072 int ratelimit; /* Limit cacheline bouncing */
3073 };
3074
3075 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3076
3077 static void recalc_bh_state(void)
3078 {
3079 int i;
3080 int tot = 0;
3081
3082 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3083 return;
3084 __get_cpu_var(bh_accounting).ratelimit = 0;
3085 for_each_cpu(i)
3086 tot += per_cpu(bh_accounting, i).nr;
3087 buffer_heads_over_limit = (tot > max_buffer_heads);
3088 }
3089
3090 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3091 {
3092 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3093 if (ret) {
3094 get_cpu_var(bh_accounting).nr++;
3095 recalc_bh_state();
3096 put_cpu_var(bh_accounting);
3097 }
3098 return ret;
3099 }
3100 EXPORT_SYMBOL(alloc_buffer_head);
3101
3102 void free_buffer_head(struct buffer_head *bh)
3103 {
3104 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3105 kmem_cache_free(bh_cachep, bh);
3106 get_cpu_var(bh_accounting).nr--;
3107 recalc_bh_state();
3108 put_cpu_var(bh_accounting);
3109 }
3110 EXPORT_SYMBOL(free_buffer_head);
3111
3112 static void
3113 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3114 {
3115 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3116 SLAB_CTOR_CONSTRUCTOR) {
3117 struct buffer_head * bh = (struct buffer_head *)data;
3118
3119 memset(bh, 0, sizeof(*bh));
3120 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3121 }
3122 }
3123
3124 #ifdef CONFIG_HOTPLUG_CPU
3125 static void buffer_exit_cpu(int cpu)
3126 {
3127 int i;
3128 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3129
3130 for (i = 0; i < BH_LRU_SIZE; i++) {
3131 brelse(b->bhs[i]);
3132 b->bhs[i] = NULL;
3133 }
3134 }
3135
3136 static int buffer_cpu_notify(struct notifier_block *self,
3137 unsigned long action, void *hcpu)
3138 {
3139 if (action == CPU_DEAD)
3140 buffer_exit_cpu((unsigned long)hcpu);
3141 return NOTIFY_OK;
3142 }
3143 #endif /* CONFIG_HOTPLUG_CPU */
3144
3145 void __init buffer_init(void)
3146 {
3147 int nrpages;
3148
3149 bh_cachep = kmem_cache_create("buffer_head",
3150 sizeof(struct buffer_head), 0,
3151 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3152
3153 /*
3154 * Limit the bh occupancy to 10% of ZONE_NORMAL
3155 */
3156 nrpages = (nr_free_buffer_pages() * 10) / 100;
3157 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3158 hotcpu_notifier(buffer_cpu_notify, 0);
3159 }
3160
3161 EXPORT_SYMBOL(__bforget);
3162 EXPORT_SYMBOL(__brelse);
3163 EXPORT_SYMBOL(__wait_on_buffer);
3164 EXPORT_SYMBOL(block_commit_write);
3165 EXPORT_SYMBOL(block_prepare_write);
3166 EXPORT_SYMBOL(block_read_full_page);
3167 EXPORT_SYMBOL(block_sync_page);
3168 EXPORT_SYMBOL(block_truncate_page);
3169 EXPORT_SYMBOL(block_write_full_page);
3170 EXPORT_SYMBOL(cont_prepare_write);
3171 EXPORT_SYMBOL(end_buffer_async_write);
3172 EXPORT_SYMBOL(end_buffer_read_sync);
3173 EXPORT_SYMBOL(end_buffer_write_sync);
3174 EXPORT_SYMBOL(file_fsync);
3175 EXPORT_SYMBOL(fsync_bdev);
3176 EXPORT_SYMBOL(generic_block_bmap);
3177 EXPORT_SYMBOL(generic_commit_write);
3178 EXPORT_SYMBOL(generic_cont_expand);
3179 EXPORT_SYMBOL(generic_cont_expand_simple);
3180 EXPORT_SYMBOL(init_buffer);
3181 EXPORT_SYMBOL(invalidate_bdev);
3182 EXPORT_SYMBOL(ll_rw_block);
3183 EXPORT_SYMBOL(mark_buffer_dirty);
3184 EXPORT_SYMBOL(submit_bh);
3185 EXPORT_SYMBOL(sync_dirty_buffer);
3186 EXPORT_SYMBOL(unlock_buffer);