]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/buffer.c
perf report: Drop cycles 0 for LBR print
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 unsigned long bio_flags,
53 struct writeback_control *wbc);
54
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56
57 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
58 {
59 bh->b_end_io = handler;
60 bh->b_private = private;
61 }
62 EXPORT_SYMBOL(init_buffer);
63
64 inline void touch_buffer(struct buffer_head *bh)
65 {
66 trace_block_touch_buffer(bh);
67 mark_page_accessed(bh->b_page);
68 }
69 EXPORT_SYMBOL(touch_buffer);
70
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_atomic();
81 wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
89 */
90 void buffer_check_dirty_writeback(struct page *page,
91 bool *dirty, bool *writeback)
92 {
93 struct buffer_head *head, *bh;
94 *dirty = false;
95 *writeback = false;
96
97 BUG_ON(!PageLocked(page));
98
99 if (!page_has_buffers(page))
100 return;
101
102 if (PageWriteback(page))
103 *writeback = true;
104
105 head = page_buffers(page);
106 bh = head;
107 do {
108 if (buffer_locked(bh))
109 *writeback = true;
110
111 if (buffer_dirty(bh))
112 *dirty = true;
113
114 bh = bh->b_this_page;
115 } while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118
119 /*
120 * Block until a buffer comes unlocked. This doesn't stop it
121 * from becoming locked again - you have to lock it yourself
122 * if you want to preserve its state.
123 */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
135 put_page(page);
136 }
137
138 static void buffer_io_error(struct buffer_head *bh, char *msg)
139 {
140 if (!test_bit(BH_Quiet, &bh->b_state))
141 printk_ratelimited(KERN_ERR
142 "Buffer I/O error on dev %pg, logical block %llu%s\n",
143 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
144 }
145
146 /*
147 * End-of-IO handler helper function which does not touch the bh after
148 * unlocking it.
149 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150 * a race there is benign: unlock_buffer() only use the bh's address for
151 * hashing after unlocking the buffer, so it doesn't actually touch the bh
152 * itself.
153 */
154 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155 {
156 if (uptodate) {
157 set_buffer_uptodate(bh);
158 } else {
159 /* This happens, due to failed read-ahead attempts. */
160 clear_buffer_uptodate(bh);
161 }
162 unlock_buffer(bh);
163 }
164
165 /*
166 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
167 * unlock the buffer. This is what ll_rw_block uses too.
168 */
169 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 {
171 __end_buffer_read_notouch(bh, uptodate);
172 put_bh(bh);
173 }
174 EXPORT_SYMBOL(end_buffer_read_sync);
175
176 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177 {
178 if (uptodate) {
179 set_buffer_uptodate(bh);
180 } else {
181 buffer_io_error(bh, ", lost sync page write");
182 set_buffer_write_io_error(bh);
183 clear_buffer_uptodate(bh);
184 }
185 unlock_buffer(bh);
186 put_bh(bh);
187 }
188 EXPORT_SYMBOL(end_buffer_write_sync);
189
190 /*
191 * Various filesystems appear to want __find_get_block to be non-blocking.
192 * But it's the page lock which protects the buffers. To get around this,
193 * we get exclusion from try_to_free_buffers with the blockdev mapping's
194 * private_lock.
195 *
196 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197 * may be quite high. This code could TryLock the page, and if that
198 * succeeds, there is no need to take private_lock. (But if
199 * private_lock is contended then so is mapping->tree_lock).
200 */
201 static struct buffer_head *
202 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 {
204 struct inode *bd_inode = bdev->bd_inode;
205 struct address_space *bd_mapping = bd_inode->i_mapping;
206 struct buffer_head *ret = NULL;
207 pgoff_t index;
208 struct buffer_head *bh;
209 struct buffer_head *head;
210 struct page *page;
211 int all_mapped = 1;
212
213 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
214 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215 if (!page)
216 goto out;
217
218 spin_lock(&bd_mapping->private_lock);
219 if (!page_has_buffers(page))
220 goto out_unlock;
221 head = page_buffers(page);
222 bh = head;
223 do {
224 if (!buffer_mapped(bh))
225 all_mapped = 0;
226 else if (bh->b_blocknr == block) {
227 ret = bh;
228 get_bh(bh);
229 goto out_unlock;
230 }
231 bh = bh->b_this_page;
232 } while (bh != head);
233
234 /* we might be here because some of the buffers on this page are
235 * not mapped. This is due to various races between
236 * file io on the block device and getblk. It gets dealt with
237 * elsewhere, don't buffer_error if we had some unmapped buffers
238 */
239 if (all_mapped) {
240 printk("__find_get_block_slow() failed. "
241 "block=%llu, b_blocknr=%llu\n",
242 (unsigned long long)block,
243 (unsigned long long)bh->b_blocknr);
244 printk("b_state=0x%08lx, b_size=%zu\n",
245 bh->b_state, bh->b_size);
246 printk("device %pg blocksize: %d\n", bdev,
247 1 << bd_inode->i_blkbits);
248 }
249 out_unlock:
250 spin_unlock(&bd_mapping->private_lock);
251 put_page(page);
252 out:
253 return ret;
254 }
255
256 /*
257 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258 */
259 static void free_more_memory(void)
260 {
261 struct zoneref *z;
262 int nid;
263
264 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
265 yield();
266
267 for_each_online_node(nid) {
268
269 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
270 gfp_zone(GFP_NOFS), NULL);
271 if (z->zone)
272 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
273 GFP_NOFS, NULL);
274 }
275 }
276
277 /*
278 * I/O completion handler for block_read_full_page() - pages
279 * which come unlocked at the end of I/O.
280 */
281 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
282 {
283 unsigned long flags;
284 struct buffer_head *first;
285 struct buffer_head *tmp;
286 struct page *page;
287 int page_uptodate = 1;
288
289 BUG_ON(!buffer_async_read(bh));
290
291 page = bh->b_page;
292 if (uptodate) {
293 set_buffer_uptodate(bh);
294 } else {
295 clear_buffer_uptodate(bh);
296 buffer_io_error(bh, ", async page read");
297 SetPageError(page);
298 }
299
300 /*
301 * Be _very_ careful from here on. Bad things can happen if
302 * two buffer heads end IO at almost the same time and both
303 * decide that the page is now completely done.
304 */
305 first = page_buffers(page);
306 local_irq_save(flags);
307 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
308 clear_buffer_async_read(bh);
309 unlock_buffer(bh);
310 tmp = bh;
311 do {
312 if (!buffer_uptodate(tmp))
313 page_uptodate = 0;
314 if (buffer_async_read(tmp)) {
315 BUG_ON(!buffer_locked(tmp));
316 goto still_busy;
317 }
318 tmp = tmp->b_this_page;
319 } while (tmp != bh);
320 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
321 local_irq_restore(flags);
322
323 /*
324 * If none of the buffers had errors and they are all
325 * uptodate then we can set the page uptodate.
326 */
327 if (page_uptodate && !PageError(page))
328 SetPageUptodate(page);
329 unlock_page(page);
330 return;
331
332 still_busy:
333 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
334 local_irq_restore(flags);
335 return;
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mapping_set_error(page->mapping, -EIO);
357 set_buffer_write_io_error(bh);
358 clear_buffer_uptodate(bh);
359 SetPageError(page);
360 }
361
362 first = page_buffers(page);
363 local_irq_save(flags);
364 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
365
366 clear_buffer_async_write(bh);
367 unlock_buffer(bh);
368 tmp = bh->b_this_page;
369 while (tmp != bh) {
370 if (buffer_async_write(tmp)) {
371 BUG_ON(!buffer_locked(tmp));
372 goto still_busy;
373 }
374 tmp = tmp->b_this_page;
375 }
376 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
377 local_irq_restore(flags);
378 end_page_writeback(page);
379 return;
380
381 still_busy:
382 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
383 local_irq_restore(flags);
384 return;
385 }
386 EXPORT_SYMBOL(end_buffer_async_write);
387
388 /*
389 * If a page's buffers are under async readin (end_buffer_async_read
390 * completion) then there is a possibility that another thread of
391 * control could lock one of the buffers after it has completed
392 * but while some of the other buffers have not completed. This
393 * locked buffer would confuse end_buffer_async_read() into not unlocking
394 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
395 * that this buffer is not under async I/O.
396 *
397 * The page comes unlocked when it has no locked buffer_async buffers
398 * left.
399 *
400 * PageLocked prevents anyone starting new async I/O reads any of
401 * the buffers.
402 *
403 * PageWriteback is used to prevent simultaneous writeout of the same
404 * page.
405 *
406 * PageLocked prevents anyone from starting writeback of a page which is
407 * under read I/O (PageWriteback is only ever set against a locked page).
408 */
409 static void mark_buffer_async_read(struct buffer_head *bh)
410 {
411 bh->b_end_io = end_buffer_async_read;
412 set_buffer_async_read(bh);
413 }
414
415 static void mark_buffer_async_write_endio(struct buffer_head *bh,
416 bh_end_io_t *handler)
417 {
418 bh->b_end_io = handler;
419 set_buffer_async_write(bh);
420 }
421
422 void mark_buffer_async_write(struct buffer_head *bh)
423 {
424 mark_buffer_async_write_endio(bh, end_buffer_async_write);
425 }
426 EXPORT_SYMBOL(mark_buffer_async_write);
427
428
429 /*
430 * fs/buffer.c contains helper functions for buffer-backed address space's
431 * fsync functions. A common requirement for buffer-based filesystems is
432 * that certain data from the backing blockdev needs to be written out for
433 * a successful fsync(). For example, ext2 indirect blocks need to be
434 * written back and waited upon before fsync() returns.
435 *
436 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
437 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
438 * management of a list of dependent buffers at ->i_mapping->private_list.
439 *
440 * Locking is a little subtle: try_to_free_buffers() will remove buffers
441 * from their controlling inode's queue when they are being freed. But
442 * try_to_free_buffers() will be operating against the *blockdev* mapping
443 * at the time, not against the S_ISREG file which depends on those buffers.
444 * So the locking for private_list is via the private_lock in the address_space
445 * which backs the buffers. Which is different from the address_space
446 * against which the buffers are listed. So for a particular address_space,
447 * mapping->private_lock does *not* protect mapping->private_list! In fact,
448 * mapping->private_list will always be protected by the backing blockdev's
449 * ->private_lock.
450 *
451 * Which introduces a requirement: all buffers on an address_space's
452 * ->private_list must be from the same address_space: the blockdev's.
453 *
454 * address_spaces which do not place buffers at ->private_list via these
455 * utility functions are free to use private_lock and private_list for
456 * whatever they want. The only requirement is that list_empty(private_list)
457 * be true at clear_inode() time.
458 *
459 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
460 * filesystems should do that. invalidate_inode_buffers() should just go
461 * BUG_ON(!list_empty).
462 *
463 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
464 * take an address_space, not an inode. And it should be called
465 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
466 * queued up.
467 *
468 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
469 * list if it is already on a list. Because if the buffer is on a list,
470 * it *must* already be on the right one. If not, the filesystem is being
471 * silly. This will save a ton of locking. But first we have to ensure
472 * that buffers are taken *off* the old inode's list when they are freed
473 * (presumably in truncate). That requires careful auditing of all
474 * filesystems (do it inside bforget()). It could also be done by bringing
475 * b_inode back.
476 */
477
478 /*
479 * The buffer's backing address_space's private_lock must be held
480 */
481 static void __remove_assoc_queue(struct buffer_head *bh)
482 {
483 list_del_init(&bh->b_assoc_buffers);
484 WARN_ON(!bh->b_assoc_map);
485 if (buffer_write_io_error(bh))
486 set_bit(AS_EIO, &bh->b_assoc_map->flags);
487 bh->b_assoc_map = NULL;
488 }
489
490 int inode_has_buffers(struct inode *inode)
491 {
492 return !list_empty(&inode->i_data.private_list);
493 }
494
495 /*
496 * osync is designed to support O_SYNC io. It waits synchronously for
497 * all already-submitted IO to complete, but does not queue any new
498 * writes to the disk.
499 *
500 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
501 * you dirty the buffers, and then use osync_inode_buffers to wait for
502 * completion. Any other dirty buffers which are not yet queued for
503 * write will not be flushed to disk by the osync.
504 */
505 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
506 {
507 struct buffer_head *bh;
508 struct list_head *p;
509 int err = 0;
510
511 spin_lock(lock);
512 repeat:
513 list_for_each_prev(p, list) {
514 bh = BH_ENTRY(p);
515 if (buffer_locked(bh)) {
516 get_bh(bh);
517 spin_unlock(lock);
518 wait_on_buffer(bh);
519 if (!buffer_uptodate(bh))
520 err = -EIO;
521 brelse(bh);
522 spin_lock(lock);
523 goto repeat;
524 }
525 }
526 spin_unlock(lock);
527 return err;
528 }
529
530 static void do_thaw_one(struct super_block *sb, void *unused)
531 {
532 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
533 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
534 }
535
536 static void do_thaw_all(struct work_struct *work)
537 {
538 iterate_supers(do_thaw_one, NULL);
539 kfree(work);
540 printk(KERN_WARNING "Emergency Thaw complete\n");
541 }
542
543 /**
544 * emergency_thaw_all -- forcibly thaw every frozen filesystem
545 *
546 * Used for emergency unfreeze of all filesystems via SysRq
547 */
548 void emergency_thaw_all(void)
549 {
550 struct work_struct *work;
551
552 work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 if (work) {
554 INIT_WORK(work, do_thaw_all);
555 schedule_work(work);
556 }
557 }
558
559 /**
560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561 * @mapping: the mapping which wants those buffers written
562 *
563 * Starts I/O against the buffers at mapping->private_list, and waits upon
564 * that I/O.
565 *
566 * Basically, this is a convenience function for fsync().
567 * @mapping is a file or directory which needs those buffers to be written for
568 * a successful fsync().
569 */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 struct address_space *buffer_mapping = mapping->private_data;
573
574 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
575 return 0;
576
577 return fsync_buffers_list(&buffer_mapping->private_lock,
578 &mapping->private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581
582 /*
583 * Called when we've recently written block `bblock', and it is known that
584 * `bblock' was for a buffer_boundary() buffer. This means that the block at
585 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
586 * dirty, schedule it for IO. So that indirects merge nicely with their data.
587 */
588 void write_boundary_block(struct block_device *bdev,
589 sector_t bblock, unsigned blocksize)
590 {
591 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
592 if (bh) {
593 if (buffer_dirty(bh))
594 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
595 put_bh(bh);
596 }
597 }
598
599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
600 {
601 struct address_space *mapping = inode->i_mapping;
602 struct address_space *buffer_mapping = bh->b_page->mapping;
603
604 mark_buffer_dirty(bh);
605 if (!mapping->private_data) {
606 mapping->private_data = buffer_mapping;
607 } else {
608 BUG_ON(mapping->private_data != buffer_mapping);
609 }
610 if (!bh->b_assoc_map) {
611 spin_lock(&buffer_mapping->private_lock);
612 list_move_tail(&bh->b_assoc_buffers,
613 &mapping->private_list);
614 bh->b_assoc_map = mapping;
615 spin_unlock(&buffer_mapping->private_lock);
616 }
617 }
618 EXPORT_SYMBOL(mark_buffer_dirty_inode);
619
620 /*
621 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622 * dirty.
623 *
624 * If warn is true, then emit a warning if the page is not uptodate and has
625 * not been truncated.
626 *
627 * The caller must hold lock_page_memcg().
628 */
629 static void __set_page_dirty(struct page *page, struct address_space *mapping,
630 int warn)
631 {
632 unsigned long flags;
633
634 spin_lock_irqsave(&mapping->tree_lock, flags);
635 if (page->mapping) { /* Race with truncate? */
636 WARN_ON_ONCE(warn && !PageUptodate(page));
637 account_page_dirtied(page, mapping);
638 radix_tree_tag_set(&mapping->page_tree,
639 page_index(page), PAGECACHE_TAG_DIRTY);
640 }
641 spin_unlock_irqrestore(&mapping->tree_lock, flags);
642 }
643
644 /*
645 * Add a page to the dirty page list.
646 *
647 * It is a sad fact of life that this function is called from several places
648 * deeply under spinlocking. It may not sleep.
649 *
650 * If the page has buffers, the uptodate buffers are set dirty, to preserve
651 * dirty-state coherency between the page and the buffers. It the page does
652 * not have buffers then when they are later attached they will all be set
653 * dirty.
654 *
655 * The buffers are dirtied before the page is dirtied. There's a small race
656 * window in which a writepage caller may see the page cleanness but not the
657 * buffer dirtiness. That's fine. If this code were to set the page dirty
658 * before the buffers, a concurrent writepage caller could clear the page dirty
659 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
660 * page on the dirty page list.
661 *
662 * We use private_lock to lock against try_to_free_buffers while using the
663 * page's buffer list. Also use this to protect against clean buffers being
664 * added to the page after it was set dirty.
665 *
666 * FIXME: may need to call ->reservepage here as well. That's rather up to the
667 * address_space though.
668 */
669 int __set_page_dirty_buffers(struct page *page)
670 {
671 int newly_dirty;
672 struct address_space *mapping = page_mapping(page);
673
674 if (unlikely(!mapping))
675 return !TestSetPageDirty(page);
676
677 spin_lock(&mapping->private_lock);
678 if (page_has_buffers(page)) {
679 struct buffer_head *head = page_buffers(page);
680 struct buffer_head *bh = head;
681
682 do {
683 set_buffer_dirty(bh);
684 bh = bh->b_this_page;
685 } while (bh != head);
686 }
687 /*
688 * Lock out page->mem_cgroup migration to keep PageDirty
689 * synchronized with per-memcg dirty page counters.
690 */
691 lock_page_memcg(page);
692 newly_dirty = !TestSetPageDirty(page);
693 spin_unlock(&mapping->private_lock);
694
695 if (newly_dirty)
696 __set_page_dirty(page, mapping, 1);
697
698 unlock_page_memcg(page);
699
700 if (newly_dirty)
701 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
702
703 return newly_dirty;
704 }
705 EXPORT_SYMBOL(__set_page_dirty_buffers);
706
707 /*
708 * Write out and wait upon a list of buffers.
709 *
710 * We have conflicting pressures: we want to make sure that all
711 * initially dirty buffers get waited on, but that any subsequently
712 * dirtied buffers don't. After all, we don't want fsync to last
713 * forever if somebody is actively writing to the file.
714 *
715 * Do this in two main stages: first we copy dirty buffers to a
716 * temporary inode list, queueing the writes as we go. Then we clean
717 * up, waiting for those writes to complete.
718 *
719 * During this second stage, any subsequent updates to the file may end
720 * up refiling the buffer on the original inode's dirty list again, so
721 * there is a chance we will end up with a buffer queued for write but
722 * not yet completed on that list. So, as a final cleanup we go through
723 * the osync code to catch these locked, dirty buffers without requeuing
724 * any newly dirty buffers for write.
725 */
726 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
727 {
728 struct buffer_head *bh;
729 struct list_head tmp;
730 struct address_space *mapping;
731 int err = 0, err2;
732 struct blk_plug plug;
733
734 INIT_LIST_HEAD(&tmp);
735 blk_start_plug(&plug);
736
737 spin_lock(lock);
738 while (!list_empty(list)) {
739 bh = BH_ENTRY(list->next);
740 mapping = bh->b_assoc_map;
741 __remove_assoc_queue(bh);
742 /* Avoid race with mark_buffer_dirty_inode() which does
743 * a lockless check and we rely on seeing the dirty bit */
744 smp_mb();
745 if (buffer_dirty(bh) || buffer_locked(bh)) {
746 list_add(&bh->b_assoc_buffers, &tmp);
747 bh->b_assoc_map = mapping;
748 if (buffer_dirty(bh)) {
749 get_bh(bh);
750 spin_unlock(lock);
751 /*
752 * Ensure any pending I/O completes so that
753 * write_dirty_buffer() actually writes the
754 * current contents - it is a noop if I/O is
755 * still in flight on potentially older
756 * contents.
757 */
758 write_dirty_buffer(bh, REQ_SYNC);
759
760 /*
761 * Kick off IO for the previous mapping. Note
762 * that we will not run the very last mapping,
763 * wait_on_buffer() will do that for us
764 * through sync_buffer().
765 */
766 brelse(bh);
767 spin_lock(lock);
768 }
769 }
770 }
771
772 spin_unlock(lock);
773 blk_finish_plug(&plug);
774 spin_lock(lock);
775
776 while (!list_empty(&tmp)) {
777 bh = BH_ENTRY(tmp.prev);
778 get_bh(bh);
779 mapping = bh->b_assoc_map;
780 __remove_assoc_queue(bh);
781 /* Avoid race with mark_buffer_dirty_inode() which does
782 * a lockless check and we rely on seeing the dirty bit */
783 smp_mb();
784 if (buffer_dirty(bh)) {
785 list_add(&bh->b_assoc_buffers,
786 &mapping->private_list);
787 bh->b_assoc_map = mapping;
788 }
789 spin_unlock(lock);
790 wait_on_buffer(bh);
791 if (!buffer_uptodate(bh))
792 err = -EIO;
793 brelse(bh);
794 spin_lock(lock);
795 }
796
797 spin_unlock(lock);
798 err2 = osync_buffers_list(lock, list);
799 if (err)
800 return err;
801 else
802 return err2;
803 }
804
805 /*
806 * Invalidate any and all dirty buffers on a given inode. We are
807 * probably unmounting the fs, but that doesn't mean we have already
808 * done a sync(). Just drop the buffers from the inode list.
809 *
810 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
811 * assumes that all the buffers are against the blockdev. Not true
812 * for reiserfs.
813 */
814 void invalidate_inode_buffers(struct inode *inode)
815 {
816 if (inode_has_buffers(inode)) {
817 struct address_space *mapping = &inode->i_data;
818 struct list_head *list = &mapping->private_list;
819 struct address_space *buffer_mapping = mapping->private_data;
820
821 spin_lock(&buffer_mapping->private_lock);
822 while (!list_empty(list))
823 __remove_assoc_queue(BH_ENTRY(list->next));
824 spin_unlock(&buffer_mapping->private_lock);
825 }
826 }
827 EXPORT_SYMBOL(invalidate_inode_buffers);
828
829 /*
830 * Remove any clean buffers from the inode's buffer list. This is called
831 * when we're trying to free the inode itself. Those buffers can pin it.
832 *
833 * Returns true if all buffers were removed.
834 */
835 int remove_inode_buffers(struct inode *inode)
836 {
837 int ret = 1;
838
839 if (inode_has_buffers(inode)) {
840 struct address_space *mapping = &inode->i_data;
841 struct list_head *list = &mapping->private_list;
842 struct address_space *buffer_mapping = mapping->private_data;
843
844 spin_lock(&buffer_mapping->private_lock);
845 while (!list_empty(list)) {
846 struct buffer_head *bh = BH_ENTRY(list->next);
847 if (buffer_dirty(bh)) {
848 ret = 0;
849 break;
850 }
851 __remove_assoc_queue(bh);
852 }
853 spin_unlock(&buffer_mapping->private_lock);
854 }
855 return ret;
856 }
857
858 /*
859 * Create the appropriate buffers when given a page for data area and
860 * the size of each buffer.. Use the bh->b_this_page linked list to
861 * follow the buffers created. Return NULL if unable to create more
862 * buffers.
863 *
864 * The retry flag is used to differentiate async IO (paging, swapping)
865 * which may not fail from ordinary buffer allocations.
866 */
867 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
868 int retry)
869 {
870 struct buffer_head *bh, *head;
871 long offset;
872
873 try_again:
874 head = NULL;
875 offset = PAGE_SIZE;
876 while ((offset -= size) >= 0) {
877 bh = alloc_buffer_head(GFP_NOFS);
878 if (!bh)
879 goto no_grow;
880
881 bh->b_this_page = head;
882 bh->b_blocknr = -1;
883 head = bh;
884
885 bh->b_size = size;
886
887 /* Link the buffer to its page */
888 set_bh_page(bh, page, offset);
889 }
890 return head;
891 /*
892 * In case anything failed, we just free everything we got.
893 */
894 no_grow:
895 if (head) {
896 do {
897 bh = head;
898 head = head->b_this_page;
899 free_buffer_head(bh);
900 } while (head);
901 }
902
903 /*
904 * Return failure for non-async IO requests. Async IO requests
905 * are not allowed to fail, so we have to wait until buffer heads
906 * become available. But we don't want tasks sleeping with
907 * partially complete buffers, so all were released above.
908 */
909 if (!retry)
910 return NULL;
911
912 /* We're _really_ low on memory. Now we just
913 * wait for old buffer heads to become free due to
914 * finishing IO. Since this is an async request and
915 * the reserve list is empty, we're sure there are
916 * async buffer heads in use.
917 */
918 free_more_memory();
919 goto try_again;
920 }
921 EXPORT_SYMBOL_GPL(alloc_page_buffers);
922
923 static inline void
924 link_dev_buffers(struct page *page, struct buffer_head *head)
925 {
926 struct buffer_head *bh, *tail;
927
928 bh = head;
929 do {
930 tail = bh;
931 bh = bh->b_this_page;
932 } while (bh);
933 tail->b_this_page = head;
934 attach_page_buffers(page, head);
935 }
936
937 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
938 {
939 sector_t retval = ~((sector_t)0);
940 loff_t sz = i_size_read(bdev->bd_inode);
941
942 if (sz) {
943 unsigned int sizebits = blksize_bits(size);
944 retval = (sz >> sizebits);
945 }
946 return retval;
947 }
948
949 /*
950 * Initialise the state of a blockdev page's buffers.
951 */
952 static sector_t
953 init_page_buffers(struct page *page, struct block_device *bdev,
954 sector_t block, int size)
955 {
956 struct buffer_head *head = page_buffers(page);
957 struct buffer_head *bh = head;
958 int uptodate = PageUptodate(page);
959 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
960
961 do {
962 if (!buffer_mapped(bh)) {
963 init_buffer(bh, NULL, NULL);
964 bh->b_bdev = bdev;
965 bh->b_blocknr = block;
966 if (uptodate)
967 set_buffer_uptodate(bh);
968 if (block < end_block)
969 set_buffer_mapped(bh);
970 }
971 block++;
972 bh = bh->b_this_page;
973 } while (bh != head);
974
975 /*
976 * Caller needs to validate requested block against end of device.
977 */
978 return end_block;
979 }
980
981 /*
982 * Create the page-cache page that contains the requested block.
983 *
984 * This is used purely for blockdev mappings.
985 */
986 static int
987 grow_dev_page(struct block_device *bdev, sector_t block,
988 pgoff_t index, int size, int sizebits, gfp_t gfp)
989 {
990 struct inode *inode = bdev->bd_inode;
991 struct page *page;
992 struct buffer_head *bh;
993 sector_t end_block;
994 int ret = 0; /* Will call free_more_memory() */
995 gfp_t gfp_mask;
996
997 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
998
999 /*
1000 * XXX: __getblk_slow() can not really deal with failure and
1001 * will endlessly loop on improvised global reclaim. Prefer
1002 * looping in the allocator rather than here, at least that
1003 * code knows what it's doing.
1004 */
1005 gfp_mask |= __GFP_NOFAIL;
1006
1007 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1008 if (!page)
1009 return ret;
1010
1011 BUG_ON(!PageLocked(page));
1012
1013 if (page_has_buffers(page)) {
1014 bh = page_buffers(page);
1015 if (bh->b_size == size) {
1016 end_block = init_page_buffers(page, bdev,
1017 (sector_t)index << sizebits,
1018 size);
1019 goto done;
1020 }
1021 if (!try_to_free_buffers(page))
1022 goto failed;
1023 }
1024
1025 /*
1026 * Allocate some buffers for this page
1027 */
1028 bh = alloc_page_buffers(page, size, 0);
1029 if (!bh)
1030 goto failed;
1031
1032 /*
1033 * Link the page to the buffers and initialise them. Take the
1034 * lock to be atomic wrt __find_get_block(), which does not
1035 * run under the page lock.
1036 */
1037 spin_lock(&inode->i_mapping->private_lock);
1038 link_dev_buffers(page, bh);
1039 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1040 size);
1041 spin_unlock(&inode->i_mapping->private_lock);
1042 done:
1043 ret = (block < end_block) ? 1 : -ENXIO;
1044 failed:
1045 unlock_page(page);
1046 put_page(page);
1047 return ret;
1048 }
1049
1050 /*
1051 * Create buffers for the specified block device block's page. If
1052 * that page was dirty, the buffers are set dirty also.
1053 */
1054 static int
1055 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1056 {
1057 pgoff_t index;
1058 int sizebits;
1059
1060 sizebits = -1;
1061 do {
1062 sizebits++;
1063 } while ((size << sizebits) < PAGE_SIZE);
1064
1065 index = block >> sizebits;
1066
1067 /*
1068 * Check for a block which wants to lie outside our maximum possible
1069 * pagecache index. (this comparison is done using sector_t types).
1070 */
1071 if (unlikely(index != block >> sizebits)) {
1072 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1073 "device %pg\n",
1074 __func__, (unsigned long long)block,
1075 bdev);
1076 return -EIO;
1077 }
1078
1079 /* Create a page with the proper size buffers.. */
1080 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1081 }
1082
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block,
1085 unsigned size, gfp_t gfp)
1086 {
1087 /* Size must be multiple of hard sectorsize */
1088 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1089 (size < 512 || size > PAGE_SIZE))) {
1090 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1091 size);
1092 printk(KERN_ERR "logical block size: %d\n",
1093 bdev_logical_block_size(bdev));
1094
1095 dump_stack();
1096 return NULL;
1097 }
1098
1099 for (;;) {
1100 struct buffer_head *bh;
1101 int ret;
1102
1103 bh = __find_get_block(bdev, block, size);
1104 if (bh)
1105 return bh;
1106
1107 ret = grow_buffers(bdev, block, size, gfp);
1108 if (ret < 0)
1109 return NULL;
1110 if (ret == 0)
1111 free_more_memory();
1112 }
1113 }
1114
1115 /*
1116 * The relationship between dirty buffers and dirty pages:
1117 *
1118 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119 * the page is tagged dirty in its radix tree.
1120 *
1121 * At all times, the dirtiness of the buffers represents the dirtiness of
1122 * subsections of the page. If the page has buffers, the page dirty bit is
1123 * merely a hint about the true dirty state.
1124 *
1125 * When a page is set dirty in its entirety, all its buffers are marked dirty
1126 * (if the page has buffers).
1127 *
1128 * When a buffer is marked dirty, its page is dirtied, but the page's other
1129 * buffers are not.
1130 *
1131 * Also. When blockdev buffers are explicitly read with bread(), they
1132 * individually become uptodate. But their backing page remains not
1133 * uptodate - even if all of its buffers are uptodate. A subsequent
1134 * block_read_full_page() against that page will discover all the uptodate
1135 * buffers, will set the page uptodate and will perform no I/O.
1136 */
1137
1138 /**
1139 * mark_buffer_dirty - mark a buffer_head as needing writeout
1140 * @bh: the buffer_head to mark dirty
1141 *
1142 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143 * backing page dirty, then tag the page as dirty in its address_space's radix
1144 * tree and then attach the address_space's inode to its superblock's dirty
1145 * inode list.
1146 *
1147 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1148 * mapping->tree_lock and mapping->host->i_lock.
1149 */
1150 void mark_buffer_dirty(struct buffer_head *bh)
1151 {
1152 WARN_ON_ONCE(!buffer_uptodate(bh));
1153
1154 trace_block_dirty_buffer(bh);
1155
1156 /*
1157 * Very *carefully* optimize the it-is-already-dirty case.
1158 *
1159 * Don't let the final "is it dirty" escape to before we
1160 * perhaps modified the buffer.
1161 */
1162 if (buffer_dirty(bh)) {
1163 smp_mb();
1164 if (buffer_dirty(bh))
1165 return;
1166 }
1167
1168 if (!test_set_buffer_dirty(bh)) {
1169 struct page *page = bh->b_page;
1170 struct address_space *mapping = NULL;
1171
1172 lock_page_memcg(page);
1173 if (!TestSetPageDirty(page)) {
1174 mapping = page_mapping(page);
1175 if (mapping)
1176 __set_page_dirty(page, mapping, 0);
1177 }
1178 unlock_page_memcg(page);
1179 if (mapping)
1180 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1181 }
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184
1185 /*
1186 * Decrement a buffer_head's reference count. If all buffers against a page
1187 * have zero reference count, are clean and unlocked, and if the page is clean
1188 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190 * a page but it ends up not being freed, and buffers may later be reattached).
1191 */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194 if (atomic_read(&buf->b_count)) {
1195 put_bh(buf);
1196 return;
1197 }
1198 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201
1202 /*
1203 * bforget() is like brelse(), except it discards any
1204 * potentially dirty data.
1205 */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208 clear_buffer_dirty(bh);
1209 if (bh->b_assoc_map) {
1210 struct address_space *buffer_mapping = bh->b_page->mapping;
1211
1212 spin_lock(&buffer_mapping->private_lock);
1213 list_del_init(&bh->b_assoc_buffers);
1214 bh->b_assoc_map = NULL;
1215 spin_unlock(&buffer_mapping->private_lock);
1216 }
1217 __brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223 lock_buffer(bh);
1224 if (buffer_uptodate(bh)) {
1225 unlock_buffer(bh);
1226 return bh;
1227 } else {
1228 get_bh(bh);
1229 bh->b_end_io = end_buffer_read_sync;
1230 submit_bh(REQ_OP_READ, 0, bh);
1231 wait_on_buffer(bh);
1232 if (buffer_uptodate(bh))
1233 return bh;
1234 }
1235 brelse(bh);
1236 return NULL;
1237 }
1238
1239 /*
1240 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1241 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1242 * refcount elevated by one when they're in an LRU. A buffer can only appear
1243 * once in a particular CPU's LRU. A single buffer can be present in multiple
1244 * CPU's LRUs at the same time.
1245 *
1246 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247 * sb_find_get_block().
1248 *
1249 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1250 * a local interrupt disable for that.
1251 */
1252
1253 #define BH_LRU_SIZE 16
1254
1255 struct bh_lru {
1256 struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock() local_irq_disable()
1263 #define bh_lru_unlock() local_irq_enable()
1264 #else
1265 #define bh_lru_lock() preempt_disable()
1266 #define bh_lru_unlock() preempt_enable()
1267 #endif
1268
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272 BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275
1276 /*
1277 * The LRU management algorithm is dopey-but-simple. Sorry.
1278 */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281 struct buffer_head *evictee = NULL;
1282
1283 check_irqs_on();
1284 bh_lru_lock();
1285 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1286 struct buffer_head *bhs[BH_LRU_SIZE];
1287 int in;
1288 int out = 0;
1289
1290 get_bh(bh);
1291 bhs[out++] = bh;
1292 for (in = 0; in < BH_LRU_SIZE; in++) {
1293 struct buffer_head *bh2 =
1294 __this_cpu_read(bh_lrus.bhs[in]);
1295
1296 if (bh2 == bh) {
1297 __brelse(bh2);
1298 } else {
1299 if (out >= BH_LRU_SIZE) {
1300 BUG_ON(evictee != NULL);
1301 evictee = bh2;
1302 } else {
1303 bhs[out++] = bh2;
1304 }
1305 }
1306 }
1307 while (out < BH_LRU_SIZE)
1308 bhs[out++] = NULL;
1309 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310 }
1311 bh_lru_unlock();
1312
1313 if (evictee)
1314 __brelse(evictee);
1315 }
1316
1317 /*
1318 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1319 */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323 struct buffer_head *ret = NULL;
1324 unsigned int i;
1325
1326 check_irqs_on();
1327 bh_lru_lock();
1328 for (i = 0; i < BH_LRU_SIZE; i++) {
1329 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330
1331 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1332 bh->b_size == size) {
1333 if (i) {
1334 while (i) {
1335 __this_cpu_write(bh_lrus.bhs[i],
1336 __this_cpu_read(bh_lrus.bhs[i - 1]));
1337 i--;
1338 }
1339 __this_cpu_write(bh_lrus.bhs[0], bh);
1340 }
1341 get_bh(bh);
1342 ret = bh;
1343 break;
1344 }
1345 }
1346 bh_lru_unlock();
1347 return ret;
1348 }
1349
1350 /*
1351 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1352 * it in the LRU and mark it as accessed. If it is not present then return
1353 * NULL
1354 */
1355 struct buffer_head *
1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359
1360 if (bh == NULL) {
1361 /* __find_get_block_slow will mark the page accessed */
1362 bh = __find_get_block_slow(bdev, block);
1363 if (bh)
1364 bh_lru_install(bh);
1365 } else
1366 touch_buffer(bh);
1367
1368 return bh;
1369 }
1370 EXPORT_SYMBOL(__find_get_block);
1371
1372 /*
1373 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1374 * which corresponds to the passed block_device, block and size. The
1375 * returned buffer has its reference count incremented.
1376 *
1377 * __getblk_gfp() will lock up the machine if grow_dev_page's
1378 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1379 */
1380 struct buffer_head *
1381 __getblk_gfp(struct block_device *bdev, sector_t block,
1382 unsigned size, gfp_t gfp)
1383 {
1384 struct buffer_head *bh = __find_get_block(bdev, block, size);
1385
1386 might_sleep();
1387 if (bh == NULL)
1388 bh = __getblk_slow(bdev, block, size, gfp);
1389 return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk_gfp);
1392
1393 /*
1394 * Do async read-ahead on a buffer..
1395 */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398 struct buffer_head *bh = __getblk(bdev, block, size);
1399 if (likely(bh)) {
1400 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1401 brelse(bh);
1402 }
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405
1406 /**
1407 * __bread_gfp() - reads a specified block and returns the bh
1408 * @bdev: the block_device to read from
1409 * @block: number of block
1410 * @size: size (in bytes) to read
1411 * @gfp: page allocation flag
1412 *
1413 * Reads a specified block, and returns buffer head that contains it.
1414 * The page cache can be allocated from non-movable area
1415 * not to prevent page migration if you set gfp to zero.
1416 * It returns NULL if the block was unreadable.
1417 */
1418 struct buffer_head *
1419 __bread_gfp(struct block_device *bdev, sector_t block,
1420 unsigned size, gfp_t gfp)
1421 {
1422 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1423
1424 if (likely(bh) && !buffer_uptodate(bh))
1425 bh = __bread_slow(bh);
1426 return bh;
1427 }
1428 EXPORT_SYMBOL(__bread_gfp);
1429
1430 /*
1431 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432 * This doesn't race because it runs in each cpu either in irq
1433 * or with preempt disabled.
1434 */
1435 static void invalidate_bh_lru(void *arg)
1436 {
1437 struct bh_lru *b = &get_cpu_var(bh_lrus);
1438 int i;
1439
1440 for (i = 0; i < BH_LRU_SIZE; i++) {
1441 brelse(b->bhs[i]);
1442 b->bhs[i] = NULL;
1443 }
1444 put_cpu_var(bh_lrus);
1445 }
1446
1447 static bool has_bh_in_lru(int cpu, void *dummy)
1448 {
1449 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450 int i;
1451
1452 for (i = 0; i < BH_LRU_SIZE; i++) {
1453 if (b->bhs[i])
1454 return 1;
1455 }
1456
1457 return 0;
1458 }
1459
1460 void invalidate_bh_lrus(void)
1461 {
1462 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1463 }
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465
1466 void set_bh_page(struct buffer_head *bh,
1467 struct page *page, unsigned long offset)
1468 {
1469 bh->b_page = page;
1470 BUG_ON(offset >= PAGE_SIZE);
1471 if (PageHighMem(page))
1472 /*
1473 * This catches illegal uses and preserves the offset:
1474 */
1475 bh->b_data = (char *)(0 + offset);
1476 else
1477 bh->b_data = page_address(page) + offset;
1478 }
1479 EXPORT_SYMBOL(set_bh_page);
1480
1481 /*
1482 * Called when truncating a buffer on a page completely.
1483 */
1484
1485 /* Bits that are cleared during an invalidate */
1486 #define BUFFER_FLAGS_DISCARD \
1487 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1488 1 << BH_Delay | 1 << BH_Unwritten)
1489
1490 static void discard_buffer(struct buffer_head * bh)
1491 {
1492 unsigned long b_state, b_state_old;
1493
1494 lock_buffer(bh);
1495 clear_buffer_dirty(bh);
1496 bh->b_bdev = NULL;
1497 b_state = bh->b_state;
1498 for (;;) {
1499 b_state_old = cmpxchg(&bh->b_state, b_state,
1500 (b_state & ~BUFFER_FLAGS_DISCARD));
1501 if (b_state_old == b_state)
1502 break;
1503 b_state = b_state_old;
1504 }
1505 unlock_buffer(bh);
1506 }
1507
1508 /**
1509 * block_invalidatepage - invalidate part or all of a buffer-backed page
1510 *
1511 * @page: the page which is affected
1512 * @offset: start of the range to invalidate
1513 * @length: length of the range to invalidate
1514 *
1515 * block_invalidatepage() is called when all or part of the page has become
1516 * invalidated by a truncate operation.
1517 *
1518 * block_invalidatepage() does not have to release all buffers, but it must
1519 * ensure that no dirty buffer is left outside @offset and that no I/O
1520 * is underway against any of the blocks which are outside the truncation
1521 * point. Because the caller is about to free (and possibly reuse) those
1522 * blocks on-disk.
1523 */
1524 void block_invalidatepage(struct page *page, unsigned int offset,
1525 unsigned int length)
1526 {
1527 struct buffer_head *head, *bh, *next;
1528 unsigned int curr_off = 0;
1529 unsigned int stop = length + offset;
1530
1531 BUG_ON(!PageLocked(page));
1532 if (!page_has_buffers(page))
1533 goto out;
1534
1535 /*
1536 * Check for overflow
1537 */
1538 BUG_ON(stop > PAGE_SIZE || stop < length);
1539
1540 head = page_buffers(page);
1541 bh = head;
1542 do {
1543 unsigned int next_off = curr_off + bh->b_size;
1544 next = bh->b_this_page;
1545
1546 /*
1547 * Are we still fully in range ?
1548 */
1549 if (next_off > stop)
1550 goto out;
1551
1552 /*
1553 * is this block fully invalidated?
1554 */
1555 if (offset <= curr_off)
1556 discard_buffer(bh);
1557 curr_off = next_off;
1558 bh = next;
1559 } while (bh != head);
1560
1561 /*
1562 * We release buffers only if the entire page is being invalidated.
1563 * The get_block cached value has been unconditionally invalidated,
1564 * so real IO is not possible anymore.
1565 */
1566 if (offset == 0)
1567 try_to_release_page(page, 0);
1568 out:
1569 return;
1570 }
1571 EXPORT_SYMBOL(block_invalidatepage);
1572
1573
1574 /*
1575 * We attach and possibly dirty the buffers atomically wrt
1576 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1577 * is already excluded via the page lock.
1578 */
1579 void create_empty_buffers(struct page *page,
1580 unsigned long blocksize, unsigned long b_state)
1581 {
1582 struct buffer_head *bh, *head, *tail;
1583
1584 head = alloc_page_buffers(page, blocksize, 1);
1585 bh = head;
1586 do {
1587 bh->b_state |= b_state;
1588 tail = bh;
1589 bh = bh->b_this_page;
1590 } while (bh);
1591 tail->b_this_page = head;
1592
1593 spin_lock(&page->mapping->private_lock);
1594 if (PageUptodate(page) || PageDirty(page)) {
1595 bh = head;
1596 do {
1597 if (PageDirty(page))
1598 set_buffer_dirty(bh);
1599 if (PageUptodate(page))
1600 set_buffer_uptodate(bh);
1601 bh = bh->b_this_page;
1602 } while (bh != head);
1603 }
1604 attach_page_buffers(page, head);
1605 spin_unlock(&page->mapping->private_lock);
1606 }
1607 EXPORT_SYMBOL(create_empty_buffers);
1608
1609 /**
1610 * clean_bdev_aliases: clean a range of buffers in block device
1611 * @bdev: Block device to clean buffers in
1612 * @block: Start of a range of blocks to clean
1613 * @len: Number of blocks to clean
1614 *
1615 * We are taking a range of blocks for data and we don't want writeback of any
1616 * buffer-cache aliases starting from return from this function and until the
1617 * moment when something will explicitly mark the buffer dirty (hopefully that
1618 * will not happen until we will free that block ;-) We don't even need to mark
1619 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1620 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1621 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1622 * would confuse anyone who might pick it with bread() afterwards...
1623 *
1624 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1625 * writeout I/O going on against recently-freed buffers. We don't wait on that
1626 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1627 * need to. That happens here.
1628 */
1629 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1630 {
1631 struct inode *bd_inode = bdev->bd_inode;
1632 struct address_space *bd_mapping = bd_inode->i_mapping;
1633 struct pagevec pvec;
1634 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635 pgoff_t end;
1636 int i;
1637 struct buffer_head *bh;
1638 struct buffer_head *head;
1639
1640 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1641 pagevec_init(&pvec, 0);
1642 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1643 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1644 for (i = 0; i < pagevec_count(&pvec); i++) {
1645 struct page *page = pvec.pages[i];
1646
1647 index = page->index;
1648 if (index > end)
1649 break;
1650 if (!page_has_buffers(page))
1651 continue;
1652 /*
1653 * We use page lock instead of bd_mapping->private_lock
1654 * to pin buffers here since we can afford to sleep and
1655 * it scales better than a global spinlock lock.
1656 */
1657 lock_page(page);
1658 /* Recheck when the page is locked which pins bhs */
1659 if (!page_has_buffers(page))
1660 goto unlock_page;
1661 head = page_buffers(page);
1662 bh = head;
1663 do {
1664 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1665 goto next;
1666 if (bh->b_blocknr >= block + len)
1667 break;
1668 clear_buffer_dirty(bh);
1669 wait_on_buffer(bh);
1670 clear_buffer_req(bh);
1671 next:
1672 bh = bh->b_this_page;
1673 } while (bh != head);
1674 unlock_page:
1675 unlock_page(page);
1676 }
1677 pagevec_release(&pvec);
1678 cond_resched();
1679 index++;
1680 }
1681 }
1682 EXPORT_SYMBOL(clean_bdev_aliases);
1683
1684 /*
1685 * Size is a power-of-two in the range 512..PAGE_SIZE,
1686 * and the case we care about most is PAGE_SIZE.
1687 *
1688 * So this *could* possibly be written with those
1689 * constraints in mind (relevant mostly if some
1690 * architecture has a slow bit-scan instruction)
1691 */
1692 static inline int block_size_bits(unsigned int blocksize)
1693 {
1694 return ilog2(blocksize);
1695 }
1696
1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1698 {
1699 BUG_ON(!PageLocked(page));
1700
1701 if (!page_has_buffers(page))
1702 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1703 return page_buffers(page);
1704 }
1705
1706 /*
1707 * NOTE! All mapped/uptodate combinations are valid:
1708 *
1709 * Mapped Uptodate Meaning
1710 *
1711 * No No "unknown" - must do get_block()
1712 * No Yes "hole" - zero-filled
1713 * Yes No "allocated" - allocated on disk, not read in
1714 * Yes Yes "valid" - allocated and up-to-date in memory.
1715 *
1716 * "Dirty" is valid only with the last case (mapped+uptodate).
1717 */
1718
1719 /*
1720 * While block_write_full_page is writing back the dirty buffers under
1721 * the page lock, whoever dirtied the buffers may decide to clean them
1722 * again at any time. We handle that by only looking at the buffer
1723 * state inside lock_buffer().
1724 *
1725 * If block_write_full_page() is called for regular writeback
1726 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727 * locked buffer. This only can happen if someone has written the buffer
1728 * directly, with submit_bh(). At the address_space level PageWriteback
1729 * prevents this contention from occurring.
1730 *
1731 * If block_write_full_page() is called with wbc->sync_mode ==
1732 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1733 * causes the writes to be flagged as synchronous writes.
1734 */
1735 int __block_write_full_page(struct inode *inode, struct page *page,
1736 get_block_t *get_block, struct writeback_control *wbc,
1737 bh_end_io_t *handler)
1738 {
1739 int err;
1740 sector_t block;
1741 sector_t last_block;
1742 struct buffer_head *bh, *head;
1743 unsigned int blocksize, bbits;
1744 int nr_underway = 0;
1745 int write_flags = wbc_to_write_flags(wbc);
1746
1747 head = create_page_buffers(page, inode,
1748 (1 << BH_Dirty)|(1 << BH_Uptodate));
1749
1750 /*
1751 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1752 * here, and the (potentially unmapped) buffers may become dirty at
1753 * any time. If a buffer becomes dirty here after we've inspected it
1754 * then we just miss that fact, and the page stays dirty.
1755 *
1756 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757 * handle that here by just cleaning them.
1758 */
1759
1760 bh = head;
1761 blocksize = bh->b_size;
1762 bbits = block_size_bits(blocksize);
1763
1764 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1765 last_block = (i_size_read(inode) - 1) >> bbits;
1766
1767 /*
1768 * Get all the dirty buffers mapped to disk addresses and
1769 * handle any aliases from the underlying blockdev's mapping.
1770 */
1771 do {
1772 if (block > last_block) {
1773 /*
1774 * mapped buffers outside i_size will occur, because
1775 * this page can be outside i_size when there is a
1776 * truncate in progress.
1777 */
1778 /*
1779 * The buffer was zeroed by block_write_full_page()
1780 */
1781 clear_buffer_dirty(bh);
1782 set_buffer_uptodate(bh);
1783 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1784 buffer_dirty(bh)) {
1785 WARN_ON(bh->b_size != blocksize);
1786 err = get_block(inode, block, bh, 1);
1787 if (err)
1788 goto recover;
1789 clear_buffer_delay(bh);
1790 if (buffer_new(bh)) {
1791 /* blockdev mappings never come here */
1792 clear_buffer_new(bh);
1793 clean_bdev_bh_alias(bh);
1794 }
1795 }
1796 bh = bh->b_this_page;
1797 block++;
1798 } while (bh != head);
1799
1800 do {
1801 if (!buffer_mapped(bh))
1802 continue;
1803 /*
1804 * If it's a fully non-blocking write attempt and we cannot
1805 * lock the buffer then redirty the page. Note that this can
1806 * potentially cause a busy-wait loop from writeback threads
1807 * and kswapd activity, but those code paths have their own
1808 * higher-level throttling.
1809 */
1810 if (wbc->sync_mode != WB_SYNC_NONE) {
1811 lock_buffer(bh);
1812 } else if (!trylock_buffer(bh)) {
1813 redirty_page_for_writepage(wbc, page);
1814 continue;
1815 }
1816 if (test_clear_buffer_dirty(bh)) {
1817 mark_buffer_async_write_endio(bh, handler);
1818 } else {
1819 unlock_buffer(bh);
1820 }
1821 } while ((bh = bh->b_this_page) != head);
1822
1823 /*
1824 * The page and its buffers are protected by PageWriteback(), so we can
1825 * drop the bh refcounts early.
1826 */
1827 BUG_ON(PageWriteback(page));
1828 set_page_writeback(page);
1829
1830 do {
1831 struct buffer_head *next = bh->b_this_page;
1832 if (buffer_async_write(bh)) {
1833 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1834 nr_underway++;
1835 }
1836 bh = next;
1837 } while (bh != head);
1838 unlock_page(page);
1839
1840 err = 0;
1841 done:
1842 if (nr_underway == 0) {
1843 /*
1844 * The page was marked dirty, but the buffers were
1845 * clean. Someone wrote them back by hand with
1846 * ll_rw_block/submit_bh. A rare case.
1847 */
1848 end_page_writeback(page);
1849
1850 /*
1851 * The page and buffer_heads can be released at any time from
1852 * here on.
1853 */
1854 }
1855 return err;
1856
1857 recover:
1858 /*
1859 * ENOSPC, or some other error. We may already have added some
1860 * blocks to the file, so we need to write these out to avoid
1861 * exposing stale data.
1862 * The page is currently locked and not marked for writeback
1863 */
1864 bh = head;
1865 /* Recovery: lock and submit the mapped buffers */
1866 do {
1867 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1868 !buffer_delay(bh)) {
1869 lock_buffer(bh);
1870 mark_buffer_async_write_endio(bh, handler);
1871 } else {
1872 /*
1873 * The buffer may have been set dirty during
1874 * attachment to a dirty page.
1875 */
1876 clear_buffer_dirty(bh);
1877 }
1878 } while ((bh = bh->b_this_page) != head);
1879 SetPageError(page);
1880 BUG_ON(PageWriteback(page));
1881 mapping_set_error(page->mapping, err);
1882 set_page_writeback(page);
1883 do {
1884 struct buffer_head *next = bh->b_this_page;
1885 if (buffer_async_write(bh)) {
1886 clear_buffer_dirty(bh);
1887 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1888 nr_underway++;
1889 }
1890 bh = next;
1891 } while (bh != head);
1892 unlock_page(page);
1893 goto done;
1894 }
1895 EXPORT_SYMBOL(__block_write_full_page);
1896
1897 /*
1898 * If a page has any new buffers, zero them out here, and mark them uptodate
1899 * and dirty so they'll be written out (in order to prevent uninitialised
1900 * block data from leaking). And clear the new bit.
1901 */
1902 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1903 {
1904 unsigned int block_start, block_end;
1905 struct buffer_head *head, *bh;
1906
1907 BUG_ON(!PageLocked(page));
1908 if (!page_has_buffers(page))
1909 return;
1910
1911 bh = head = page_buffers(page);
1912 block_start = 0;
1913 do {
1914 block_end = block_start + bh->b_size;
1915
1916 if (buffer_new(bh)) {
1917 if (block_end > from && block_start < to) {
1918 if (!PageUptodate(page)) {
1919 unsigned start, size;
1920
1921 start = max(from, block_start);
1922 size = min(to, block_end) - start;
1923
1924 zero_user(page, start, size);
1925 set_buffer_uptodate(bh);
1926 }
1927
1928 clear_buffer_new(bh);
1929 mark_buffer_dirty(bh);
1930 }
1931 }
1932
1933 block_start = block_end;
1934 bh = bh->b_this_page;
1935 } while (bh != head);
1936 }
1937 EXPORT_SYMBOL(page_zero_new_buffers);
1938
1939 static void
1940 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1941 struct iomap *iomap)
1942 {
1943 loff_t offset = block << inode->i_blkbits;
1944
1945 bh->b_bdev = iomap->bdev;
1946
1947 /*
1948 * Block points to offset in file we need to map, iomap contains
1949 * the offset at which the map starts. If the map ends before the
1950 * current block, then do not map the buffer and let the caller
1951 * handle it.
1952 */
1953 BUG_ON(offset >= iomap->offset + iomap->length);
1954
1955 switch (iomap->type) {
1956 case IOMAP_HOLE:
1957 /*
1958 * If the buffer is not up to date or beyond the current EOF,
1959 * we need to mark it as new to ensure sub-block zeroing is
1960 * executed if necessary.
1961 */
1962 if (!buffer_uptodate(bh) ||
1963 (offset >= i_size_read(inode)))
1964 set_buffer_new(bh);
1965 break;
1966 case IOMAP_DELALLOC:
1967 if (!buffer_uptodate(bh) ||
1968 (offset >= i_size_read(inode)))
1969 set_buffer_new(bh);
1970 set_buffer_uptodate(bh);
1971 set_buffer_mapped(bh);
1972 set_buffer_delay(bh);
1973 break;
1974 case IOMAP_UNWRITTEN:
1975 /*
1976 * For unwritten regions, we always need to ensure that
1977 * sub-block writes cause the regions in the block we are not
1978 * writing to are zeroed. Set the buffer as new to ensure this.
1979 */
1980 set_buffer_new(bh);
1981 set_buffer_unwritten(bh);
1982 /* FALLTHRU */
1983 case IOMAP_MAPPED:
1984 if (offset >= i_size_read(inode))
1985 set_buffer_new(bh);
1986 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1987 ((offset - iomap->offset) >> inode->i_blkbits);
1988 set_buffer_mapped(bh);
1989 break;
1990 }
1991 }
1992
1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1994 get_block_t *get_block, struct iomap *iomap)
1995 {
1996 unsigned from = pos & (PAGE_SIZE - 1);
1997 unsigned to = from + len;
1998 struct inode *inode = page->mapping->host;
1999 unsigned block_start, block_end;
2000 sector_t block;
2001 int err = 0;
2002 unsigned blocksize, bbits;
2003 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2004
2005 BUG_ON(!PageLocked(page));
2006 BUG_ON(from > PAGE_SIZE);
2007 BUG_ON(to > PAGE_SIZE);
2008 BUG_ON(from > to);
2009
2010 head = create_page_buffers(page, inode, 0);
2011 blocksize = head->b_size;
2012 bbits = block_size_bits(blocksize);
2013
2014 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2015
2016 for(bh = head, block_start = 0; bh != head || !block_start;
2017 block++, block_start=block_end, bh = bh->b_this_page) {
2018 block_end = block_start + blocksize;
2019 if (block_end <= from || block_start >= to) {
2020 if (PageUptodate(page)) {
2021 if (!buffer_uptodate(bh))
2022 set_buffer_uptodate(bh);
2023 }
2024 continue;
2025 }
2026 if (buffer_new(bh))
2027 clear_buffer_new(bh);
2028 if (!buffer_mapped(bh)) {
2029 WARN_ON(bh->b_size != blocksize);
2030 if (get_block) {
2031 err = get_block(inode, block, bh, 1);
2032 if (err)
2033 break;
2034 } else {
2035 iomap_to_bh(inode, block, bh, iomap);
2036 }
2037
2038 if (buffer_new(bh)) {
2039 clean_bdev_bh_alias(bh);
2040 if (PageUptodate(page)) {
2041 clear_buffer_new(bh);
2042 set_buffer_uptodate(bh);
2043 mark_buffer_dirty(bh);
2044 continue;
2045 }
2046 if (block_end > to || block_start < from)
2047 zero_user_segments(page,
2048 to, block_end,
2049 block_start, from);
2050 continue;
2051 }
2052 }
2053 if (PageUptodate(page)) {
2054 if (!buffer_uptodate(bh))
2055 set_buffer_uptodate(bh);
2056 continue;
2057 }
2058 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2059 !buffer_unwritten(bh) &&
2060 (block_start < from || block_end > to)) {
2061 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2062 *wait_bh++=bh;
2063 }
2064 }
2065 /*
2066 * If we issued read requests - let them complete.
2067 */
2068 while(wait_bh > wait) {
2069 wait_on_buffer(*--wait_bh);
2070 if (!buffer_uptodate(*wait_bh))
2071 err = -EIO;
2072 }
2073 if (unlikely(err))
2074 page_zero_new_buffers(page, from, to);
2075 return err;
2076 }
2077
2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2079 get_block_t *get_block)
2080 {
2081 return __block_write_begin_int(page, pos, len, get_block, NULL);
2082 }
2083 EXPORT_SYMBOL(__block_write_begin);
2084
2085 static int __block_commit_write(struct inode *inode, struct page *page,
2086 unsigned from, unsigned to)
2087 {
2088 unsigned block_start, block_end;
2089 int partial = 0;
2090 unsigned blocksize;
2091 struct buffer_head *bh, *head;
2092
2093 bh = head = page_buffers(page);
2094 blocksize = bh->b_size;
2095
2096 block_start = 0;
2097 do {
2098 block_end = block_start + blocksize;
2099 if (block_end <= from || block_start >= to) {
2100 if (!buffer_uptodate(bh))
2101 partial = 1;
2102 } else {
2103 set_buffer_uptodate(bh);
2104 mark_buffer_dirty(bh);
2105 }
2106 clear_buffer_new(bh);
2107
2108 block_start = block_end;
2109 bh = bh->b_this_page;
2110 } while (bh != head);
2111
2112 /*
2113 * If this is a partial write which happened to make all buffers
2114 * uptodate then we can optimize away a bogus readpage() for
2115 * the next read(). Here we 'discover' whether the page went
2116 * uptodate as a result of this (potentially partial) write.
2117 */
2118 if (!partial)
2119 SetPageUptodate(page);
2120 return 0;
2121 }
2122
2123 /*
2124 * block_write_begin takes care of the basic task of block allocation and
2125 * bringing partial write blocks uptodate first.
2126 *
2127 * The filesystem needs to handle block truncation upon failure.
2128 */
2129 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2130 unsigned flags, struct page **pagep, get_block_t *get_block)
2131 {
2132 pgoff_t index = pos >> PAGE_SHIFT;
2133 struct page *page;
2134 int status;
2135
2136 page = grab_cache_page_write_begin(mapping, index, flags);
2137 if (!page)
2138 return -ENOMEM;
2139
2140 status = __block_write_begin(page, pos, len, get_block);
2141 if (unlikely(status)) {
2142 unlock_page(page);
2143 put_page(page);
2144 page = NULL;
2145 }
2146
2147 *pagep = page;
2148 return status;
2149 }
2150 EXPORT_SYMBOL(block_write_begin);
2151
2152 int block_write_end(struct file *file, struct address_space *mapping,
2153 loff_t pos, unsigned len, unsigned copied,
2154 struct page *page, void *fsdata)
2155 {
2156 struct inode *inode = mapping->host;
2157 unsigned start;
2158
2159 start = pos & (PAGE_SIZE - 1);
2160
2161 if (unlikely(copied < len)) {
2162 /*
2163 * The buffers that were written will now be uptodate, so we
2164 * don't have to worry about a readpage reading them and
2165 * overwriting a partial write. However if we have encountered
2166 * a short write and only partially written into a buffer, it
2167 * will not be marked uptodate, so a readpage might come in and
2168 * destroy our partial write.
2169 *
2170 * Do the simplest thing, and just treat any short write to a
2171 * non uptodate page as a zero-length write, and force the
2172 * caller to redo the whole thing.
2173 */
2174 if (!PageUptodate(page))
2175 copied = 0;
2176
2177 page_zero_new_buffers(page, start+copied, start+len);
2178 }
2179 flush_dcache_page(page);
2180
2181 /* This could be a short (even 0-length) commit */
2182 __block_commit_write(inode, page, start, start+copied);
2183
2184 return copied;
2185 }
2186 EXPORT_SYMBOL(block_write_end);
2187
2188 int generic_write_end(struct file *file, struct address_space *mapping,
2189 loff_t pos, unsigned len, unsigned copied,
2190 struct page *page, void *fsdata)
2191 {
2192 struct inode *inode = mapping->host;
2193 loff_t old_size = inode->i_size;
2194 int i_size_changed = 0;
2195
2196 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2197
2198 /*
2199 * No need to use i_size_read() here, the i_size
2200 * cannot change under us because we hold i_mutex.
2201 *
2202 * But it's important to update i_size while still holding page lock:
2203 * page writeout could otherwise come in and zero beyond i_size.
2204 */
2205 if (pos+copied > inode->i_size) {
2206 i_size_write(inode, pos+copied);
2207 i_size_changed = 1;
2208 }
2209
2210 unlock_page(page);
2211 put_page(page);
2212
2213 if (old_size < pos)
2214 pagecache_isize_extended(inode, old_size, pos);
2215 /*
2216 * Don't mark the inode dirty under page lock. First, it unnecessarily
2217 * makes the holding time of page lock longer. Second, it forces lock
2218 * ordering of page lock and transaction start for journaling
2219 * filesystems.
2220 */
2221 if (i_size_changed)
2222 mark_inode_dirty(inode);
2223
2224 return copied;
2225 }
2226 EXPORT_SYMBOL(generic_write_end);
2227
2228 /*
2229 * block_is_partially_uptodate checks whether buffers within a page are
2230 * uptodate or not.
2231 *
2232 * Returns true if all buffers which correspond to a file portion
2233 * we want to read are uptodate.
2234 */
2235 int block_is_partially_uptodate(struct page *page, unsigned long from,
2236 unsigned long count)
2237 {
2238 unsigned block_start, block_end, blocksize;
2239 unsigned to;
2240 struct buffer_head *bh, *head;
2241 int ret = 1;
2242
2243 if (!page_has_buffers(page))
2244 return 0;
2245
2246 head = page_buffers(page);
2247 blocksize = head->b_size;
2248 to = min_t(unsigned, PAGE_SIZE - from, count);
2249 to = from + to;
2250 if (from < blocksize && to > PAGE_SIZE - blocksize)
2251 return 0;
2252
2253 bh = head;
2254 block_start = 0;
2255 do {
2256 block_end = block_start + blocksize;
2257 if (block_end > from && block_start < to) {
2258 if (!buffer_uptodate(bh)) {
2259 ret = 0;
2260 break;
2261 }
2262 if (block_end >= to)
2263 break;
2264 }
2265 block_start = block_end;
2266 bh = bh->b_this_page;
2267 } while (bh != head);
2268
2269 return ret;
2270 }
2271 EXPORT_SYMBOL(block_is_partially_uptodate);
2272
2273 /*
2274 * Generic "read page" function for block devices that have the normal
2275 * get_block functionality. This is most of the block device filesystems.
2276 * Reads the page asynchronously --- the unlock_buffer() and
2277 * set/clear_buffer_uptodate() functions propagate buffer state into the
2278 * page struct once IO has completed.
2279 */
2280 int block_read_full_page(struct page *page, get_block_t *get_block)
2281 {
2282 struct inode *inode = page->mapping->host;
2283 sector_t iblock, lblock;
2284 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2285 unsigned int blocksize, bbits;
2286 int nr, i;
2287 int fully_mapped = 1;
2288
2289 head = create_page_buffers(page, inode, 0);
2290 blocksize = head->b_size;
2291 bbits = block_size_bits(blocksize);
2292
2293 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2294 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2295 bh = head;
2296 nr = 0;
2297 i = 0;
2298
2299 do {
2300 if (buffer_uptodate(bh))
2301 continue;
2302
2303 if (!buffer_mapped(bh)) {
2304 int err = 0;
2305
2306 fully_mapped = 0;
2307 if (iblock < lblock) {
2308 WARN_ON(bh->b_size != blocksize);
2309 err = get_block(inode, iblock, bh, 0);
2310 if (err)
2311 SetPageError(page);
2312 }
2313 if (!buffer_mapped(bh)) {
2314 zero_user(page, i * blocksize, blocksize);
2315 if (!err)
2316 set_buffer_uptodate(bh);
2317 continue;
2318 }
2319 /*
2320 * get_block() might have updated the buffer
2321 * synchronously
2322 */
2323 if (buffer_uptodate(bh))
2324 continue;
2325 }
2326 arr[nr++] = bh;
2327 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2328
2329 if (fully_mapped)
2330 SetPageMappedToDisk(page);
2331
2332 if (!nr) {
2333 /*
2334 * All buffers are uptodate - we can set the page uptodate
2335 * as well. But not if get_block() returned an error.
2336 */
2337 if (!PageError(page))
2338 SetPageUptodate(page);
2339 unlock_page(page);
2340 return 0;
2341 }
2342
2343 /* Stage two: lock the buffers */
2344 for (i = 0; i < nr; i++) {
2345 bh = arr[i];
2346 lock_buffer(bh);
2347 mark_buffer_async_read(bh);
2348 }
2349
2350 /*
2351 * Stage 3: start the IO. Check for uptodateness
2352 * inside the buffer lock in case another process reading
2353 * the underlying blockdev brought it uptodate (the sct fix).
2354 */
2355 for (i = 0; i < nr; i++) {
2356 bh = arr[i];
2357 if (buffer_uptodate(bh))
2358 end_buffer_async_read(bh, 1);
2359 else
2360 submit_bh(REQ_OP_READ, 0, bh);
2361 }
2362 return 0;
2363 }
2364 EXPORT_SYMBOL(block_read_full_page);
2365
2366 /* utility function for filesystems that need to do work on expanding
2367 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2368 * deal with the hole.
2369 */
2370 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2371 {
2372 struct address_space *mapping = inode->i_mapping;
2373 struct page *page;
2374 void *fsdata;
2375 int err;
2376
2377 err = inode_newsize_ok(inode, size);
2378 if (err)
2379 goto out;
2380
2381 err = pagecache_write_begin(NULL, mapping, size, 0,
2382 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2383 &page, &fsdata);
2384 if (err)
2385 goto out;
2386
2387 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2388 BUG_ON(err > 0);
2389
2390 out:
2391 return err;
2392 }
2393 EXPORT_SYMBOL(generic_cont_expand_simple);
2394
2395 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2396 loff_t pos, loff_t *bytes)
2397 {
2398 struct inode *inode = mapping->host;
2399 unsigned int blocksize = i_blocksize(inode);
2400 struct page *page;
2401 void *fsdata;
2402 pgoff_t index, curidx;
2403 loff_t curpos;
2404 unsigned zerofrom, offset, len;
2405 int err = 0;
2406
2407 index = pos >> PAGE_SHIFT;
2408 offset = pos & ~PAGE_MASK;
2409
2410 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2411 zerofrom = curpos & ~PAGE_MASK;
2412 if (zerofrom & (blocksize-1)) {
2413 *bytes |= (blocksize-1);
2414 (*bytes)++;
2415 }
2416 len = PAGE_SIZE - zerofrom;
2417
2418 err = pagecache_write_begin(file, mapping, curpos, len,
2419 AOP_FLAG_UNINTERRUPTIBLE,
2420 &page, &fsdata);
2421 if (err)
2422 goto out;
2423 zero_user(page, zerofrom, len);
2424 err = pagecache_write_end(file, mapping, curpos, len, len,
2425 page, fsdata);
2426 if (err < 0)
2427 goto out;
2428 BUG_ON(err != len);
2429 err = 0;
2430
2431 balance_dirty_pages_ratelimited(mapping);
2432
2433 if (unlikely(fatal_signal_pending(current))) {
2434 err = -EINTR;
2435 goto out;
2436 }
2437 }
2438
2439 /* page covers the boundary, find the boundary offset */
2440 if (index == curidx) {
2441 zerofrom = curpos & ~PAGE_MASK;
2442 /* if we will expand the thing last block will be filled */
2443 if (offset <= zerofrom) {
2444 goto out;
2445 }
2446 if (zerofrom & (blocksize-1)) {
2447 *bytes |= (blocksize-1);
2448 (*bytes)++;
2449 }
2450 len = offset - zerofrom;
2451
2452 err = pagecache_write_begin(file, mapping, curpos, len,
2453 AOP_FLAG_UNINTERRUPTIBLE,
2454 &page, &fsdata);
2455 if (err)
2456 goto out;
2457 zero_user(page, zerofrom, len);
2458 err = pagecache_write_end(file, mapping, curpos, len, len,
2459 page, fsdata);
2460 if (err < 0)
2461 goto out;
2462 BUG_ON(err != len);
2463 err = 0;
2464 }
2465 out:
2466 return err;
2467 }
2468
2469 /*
2470 * For moronic filesystems that do not allow holes in file.
2471 * We may have to extend the file.
2472 */
2473 int cont_write_begin(struct file *file, struct address_space *mapping,
2474 loff_t pos, unsigned len, unsigned flags,
2475 struct page **pagep, void **fsdata,
2476 get_block_t *get_block, loff_t *bytes)
2477 {
2478 struct inode *inode = mapping->host;
2479 unsigned int blocksize = i_blocksize(inode);
2480 unsigned int zerofrom;
2481 int err;
2482
2483 err = cont_expand_zero(file, mapping, pos, bytes);
2484 if (err)
2485 return err;
2486
2487 zerofrom = *bytes & ~PAGE_MASK;
2488 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2489 *bytes |= (blocksize-1);
2490 (*bytes)++;
2491 }
2492
2493 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2494 }
2495 EXPORT_SYMBOL(cont_write_begin);
2496
2497 int block_commit_write(struct page *page, unsigned from, unsigned to)
2498 {
2499 struct inode *inode = page->mapping->host;
2500 __block_commit_write(inode,page,from,to);
2501 return 0;
2502 }
2503 EXPORT_SYMBOL(block_commit_write);
2504
2505 /*
2506 * block_page_mkwrite() is not allowed to change the file size as it gets
2507 * called from a page fault handler when a page is first dirtied. Hence we must
2508 * be careful to check for EOF conditions here. We set the page up correctly
2509 * for a written page which means we get ENOSPC checking when writing into
2510 * holes and correct delalloc and unwritten extent mapping on filesystems that
2511 * support these features.
2512 *
2513 * We are not allowed to take the i_mutex here so we have to play games to
2514 * protect against truncate races as the page could now be beyond EOF. Because
2515 * truncate writes the inode size before removing pages, once we have the
2516 * page lock we can determine safely if the page is beyond EOF. If it is not
2517 * beyond EOF, then the page is guaranteed safe against truncation until we
2518 * unlock the page.
2519 *
2520 * Direct callers of this function should protect against filesystem freezing
2521 * using sb_start_pagefault() - sb_end_pagefault() functions.
2522 */
2523 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2524 get_block_t get_block)
2525 {
2526 struct page *page = vmf->page;
2527 struct inode *inode = file_inode(vma->vm_file);
2528 unsigned long end;
2529 loff_t size;
2530 int ret;
2531
2532 lock_page(page);
2533 size = i_size_read(inode);
2534 if ((page->mapping != inode->i_mapping) ||
2535 (page_offset(page) > size)) {
2536 /* We overload EFAULT to mean page got truncated */
2537 ret = -EFAULT;
2538 goto out_unlock;
2539 }
2540
2541 /* page is wholly or partially inside EOF */
2542 if (((page->index + 1) << PAGE_SHIFT) > size)
2543 end = size & ~PAGE_MASK;
2544 else
2545 end = PAGE_SIZE;
2546
2547 ret = __block_write_begin(page, 0, end, get_block);
2548 if (!ret)
2549 ret = block_commit_write(page, 0, end);
2550
2551 if (unlikely(ret < 0))
2552 goto out_unlock;
2553 set_page_dirty(page);
2554 wait_for_stable_page(page);
2555 return 0;
2556 out_unlock:
2557 unlock_page(page);
2558 return ret;
2559 }
2560 EXPORT_SYMBOL(block_page_mkwrite);
2561
2562 /*
2563 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2564 * immediately, while under the page lock. So it needs a special end_io
2565 * handler which does not touch the bh after unlocking it.
2566 */
2567 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2568 {
2569 __end_buffer_read_notouch(bh, uptodate);
2570 }
2571
2572 /*
2573 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2574 * the page (converting it to circular linked list and taking care of page
2575 * dirty races).
2576 */
2577 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2578 {
2579 struct buffer_head *bh;
2580
2581 BUG_ON(!PageLocked(page));
2582
2583 spin_lock(&page->mapping->private_lock);
2584 bh = head;
2585 do {
2586 if (PageDirty(page))
2587 set_buffer_dirty(bh);
2588 if (!bh->b_this_page)
2589 bh->b_this_page = head;
2590 bh = bh->b_this_page;
2591 } while (bh != head);
2592 attach_page_buffers(page, head);
2593 spin_unlock(&page->mapping->private_lock);
2594 }
2595
2596 /*
2597 * On entry, the page is fully not uptodate.
2598 * On exit the page is fully uptodate in the areas outside (from,to)
2599 * The filesystem needs to handle block truncation upon failure.
2600 */
2601 int nobh_write_begin(struct address_space *mapping,
2602 loff_t pos, unsigned len, unsigned flags,
2603 struct page **pagep, void **fsdata,
2604 get_block_t *get_block)
2605 {
2606 struct inode *inode = mapping->host;
2607 const unsigned blkbits = inode->i_blkbits;
2608 const unsigned blocksize = 1 << blkbits;
2609 struct buffer_head *head, *bh;
2610 struct page *page;
2611 pgoff_t index;
2612 unsigned from, to;
2613 unsigned block_in_page;
2614 unsigned block_start, block_end;
2615 sector_t block_in_file;
2616 int nr_reads = 0;
2617 int ret = 0;
2618 int is_mapped_to_disk = 1;
2619
2620 index = pos >> PAGE_SHIFT;
2621 from = pos & (PAGE_SIZE - 1);
2622 to = from + len;
2623
2624 page = grab_cache_page_write_begin(mapping, index, flags);
2625 if (!page)
2626 return -ENOMEM;
2627 *pagep = page;
2628 *fsdata = NULL;
2629
2630 if (page_has_buffers(page)) {
2631 ret = __block_write_begin(page, pos, len, get_block);
2632 if (unlikely(ret))
2633 goto out_release;
2634 return ret;
2635 }
2636
2637 if (PageMappedToDisk(page))
2638 return 0;
2639
2640 /*
2641 * Allocate buffers so that we can keep track of state, and potentially
2642 * attach them to the page if an error occurs. In the common case of
2643 * no error, they will just be freed again without ever being attached
2644 * to the page (which is all OK, because we're under the page lock).
2645 *
2646 * Be careful: the buffer linked list is a NULL terminated one, rather
2647 * than the circular one we're used to.
2648 */
2649 head = alloc_page_buffers(page, blocksize, 0);
2650 if (!head) {
2651 ret = -ENOMEM;
2652 goto out_release;
2653 }
2654
2655 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2656
2657 /*
2658 * We loop across all blocks in the page, whether or not they are
2659 * part of the affected region. This is so we can discover if the
2660 * page is fully mapped-to-disk.
2661 */
2662 for (block_start = 0, block_in_page = 0, bh = head;
2663 block_start < PAGE_SIZE;
2664 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2665 int create;
2666
2667 block_end = block_start + blocksize;
2668 bh->b_state = 0;
2669 create = 1;
2670 if (block_start >= to)
2671 create = 0;
2672 ret = get_block(inode, block_in_file + block_in_page,
2673 bh, create);
2674 if (ret)
2675 goto failed;
2676 if (!buffer_mapped(bh))
2677 is_mapped_to_disk = 0;
2678 if (buffer_new(bh))
2679 clean_bdev_bh_alias(bh);
2680 if (PageUptodate(page)) {
2681 set_buffer_uptodate(bh);
2682 continue;
2683 }
2684 if (buffer_new(bh) || !buffer_mapped(bh)) {
2685 zero_user_segments(page, block_start, from,
2686 to, block_end);
2687 continue;
2688 }
2689 if (buffer_uptodate(bh))
2690 continue; /* reiserfs does this */
2691 if (block_start < from || block_end > to) {
2692 lock_buffer(bh);
2693 bh->b_end_io = end_buffer_read_nobh;
2694 submit_bh(REQ_OP_READ, 0, bh);
2695 nr_reads++;
2696 }
2697 }
2698
2699 if (nr_reads) {
2700 /*
2701 * The page is locked, so these buffers are protected from
2702 * any VM or truncate activity. Hence we don't need to care
2703 * for the buffer_head refcounts.
2704 */
2705 for (bh = head; bh; bh = bh->b_this_page) {
2706 wait_on_buffer(bh);
2707 if (!buffer_uptodate(bh))
2708 ret = -EIO;
2709 }
2710 if (ret)
2711 goto failed;
2712 }
2713
2714 if (is_mapped_to_disk)
2715 SetPageMappedToDisk(page);
2716
2717 *fsdata = head; /* to be released by nobh_write_end */
2718
2719 return 0;
2720
2721 failed:
2722 BUG_ON(!ret);
2723 /*
2724 * Error recovery is a bit difficult. We need to zero out blocks that
2725 * were newly allocated, and dirty them to ensure they get written out.
2726 * Buffers need to be attached to the page at this point, otherwise
2727 * the handling of potential IO errors during writeout would be hard
2728 * (could try doing synchronous writeout, but what if that fails too?)
2729 */
2730 attach_nobh_buffers(page, head);
2731 page_zero_new_buffers(page, from, to);
2732
2733 out_release:
2734 unlock_page(page);
2735 put_page(page);
2736 *pagep = NULL;
2737
2738 return ret;
2739 }
2740 EXPORT_SYMBOL(nobh_write_begin);
2741
2742 int nobh_write_end(struct file *file, struct address_space *mapping,
2743 loff_t pos, unsigned len, unsigned copied,
2744 struct page *page, void *fsdata)
2745 {
2746 struct inode *inode = page->mapping->host;
2747 struct buffer_head *head = fsdata;
2748 struct buffer_head *bh;
2749 BUG_ON(fsdata != NULL && page_has_buffers(page));
2750
2751 if (unlikely(copied < len) && head)
2752 attach_nobh_buffers(page, head);
2753 if (page_has_buffers(page))
2754 return generic_write_end(file, mapping, pos, len,
2755 copied, page, fsdata);
2756
2757 SetPageUptodate(page);
2758 set_page_dirty(page);
2759 if (pos+copied > inode->i_size) {
2760 i_size_write(inode, pos+copied);
2761 mark_inode_dirty(inode);
2762 }
2763
2764 unlock_page(page);
2765 put_page(page);
2766
2767 while (head) {
2768 bh = head;
2769 head = head->b_this_page;
2770 free_buffer_head(bh);
2771 }
2772
2773 return copied;
2774 }
2775 EXPORT_SYMBOL(nobh_write_end);
2776
2777 /*
2778 * nobh_writepage() - based on block_full_write_page() except
2779 * that it tries to operate without attaching bufferheads to
2780 * the page.
2781 */
2782 int nobh_writepage(struct page *page, get_block_t *get_block,
2783 struct writeback_control *wbc)
2784 {
2785 struct inode * const inode = page->mapping->host;
2786 loff_t i_size = i_size_read(inode);
2787 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2788 unsigned offset;
2789 int ret;
2790
2791 /* Is the page fully inside i_size? */
2792 if (page->index < end_index)
2793 goto out;
2794
2795 /* Is the page fully outside i_size? (truncate in progress) */
2796 offset = i_size & (PAGE_SIZE-1);
2797 if (page->index >= end_index+1 || !offset) {
2798 /*
2799 * The page may have dirty, unmapped buffers. For example,
2800 * they may have been added in ext3_writepage(). Make them
2801 * freeable here, so the page does not leak.
2802 */
2803 #if 0
2804 /* Not really sure about this - do we need this ? */
2805 if (page->mapping->a_ops->invalidatepage)
2806 page->mapping->a_ops->invalidatepage(page, offset);
2807 #endif
2808 unlock_page(page);
2809 return 0; /* don't care */
2810 }
2811
2812 /*
2813 * The page straddles i_size. It must be zeroed out on each and every
2814 * writepage invocation because it may be mmapped. "A file is mapped
2815 * in multiples of the page size. For a file that is not a multiple of
2816 * the page size, the remaining memory is zeroed when mapped, and
2817 * writes to that region are not written out to the file."
2818 */
2819 zero_user_segment(page, offset, PAGE_SIZE);
2820 out:
2821 ret = mpage_writepage(page, get_block, wbc);
2822 if (ret == -EAGAIN)
2823 ret = __block_write_full_page(inode, page, get_block, wbc,
2824 end_buffer_async_write);
2825 return ret;
2826 }
2827 EXPORT_SYMBOL(nobh_writepage);
2828
2829 int nobh_truncate_page(struct address_space *mapping,
2830 loff_t from, get_block_t *get_block)
2831 {
2832 pgoff_t index = from >> PAGE_SHIFT;
2833 unsigned offset = from & (PAGE_SIZE-1);
2834 unsigned blocksize;
2835 sector_t iblock;
2836 unsigned length, pos;
2837 struct inode *inode = mapping->host;
2838 struct page *page;
2839 struct buffer_head map_bh;
2840 int err;
2841
2842 blocksize = i_blocksize(inode);
2843 length = offset & (blocksize - 1);
2844
2845 /* Block boundary? Nothing to do */
2846 if (!length)
2847 return 0;
2848
2849 length = blocksize - length;
2850 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2851
2852 page = grab_cache_page(mapping, index);
2853 err = -ENOMEM;
2854 if (!page)
2855 goto out;
2856
2857 if (page_has_buffers(page)) {
2858 has_buffers:
2859 unlock_page(page);
2860 put_page(page);
2861 return block_truncate_page(mapping, from, get_block);
2862 }
2863
2864 /* Find the buffer that contains "offset" */
2865 pos = blocksize;
2866 while (offset >= pos) {
2867 iblock++;
2868 pos += blocksize;
2869 }
2870
2871 map_bh.b_size = blocksize;
2872 map_bh.b_state = 0;
2873 err = get_block(inode, iblock, &map_bh, 0);
2874 if (err)
2875 goto unlock;
2876 /* unmapped? It's a hole - nothing to do */
2877 if (!buffer_mapped(&map_bh))
2878 goto unlock;
2879
2880 /* Ok, it's mapped. Make sure it's up-to-date */
2881 if (!PageUptodate(page)) {
2882 err = mapping->a_ops->readpage(NULL, page);
2883 if (err) {
2884 put_page(page);
2885 goto out;
2886 }
2887 lock_page(page);
2888 if (!PageUptodate(page)) {
2889 err = -EIO;
2890 goto unlock;
2891 }
2892 if (page_has_buffers(page))
2893 goto has_buffers;
2894 }
2895 zero_user(page, offset, length);
2896 set_page_dirty(page);
2897 err = 0;
2898
2899 unlock:
2900 unlock_page(page);
2901 put_page(page);
2902 out:
2903 return err;
2904 }
2905 EXPORT_SYMBOL(nobh_truncate_page);
2906
2907 int block_truncate_page(struct address_space *mapping,
2908 loff_t from, get_block_t *get_block)
2909 {
2910 pgoff_t index = from >> PAGE_SHIFT;
2911 unsigned offset = from & (PAGE_SIZE-1);
2912 unsigned blocksize;
2913 sector_t iblock;
2914 unsigned length, pos;
2915 struct inode *inode = mapping->host;
2916 struct page *page;
2917 struct buffer_head *bh;
2918 int err;
2919
2920 blocksize = i_blocksize(inode);
2921 length = offset & (blocksize - 1);
2922
2923 /* Block boundary? Nothing to do */
2924 if (!length)
2925 return 0;
2926
2927 length = blocksize - length;
2928 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2929
2930 page = grab_cache_page(mapping, index);
2931 err = -ENOMEM;
2932 if (!page)
2933 goto out;
2934
2935 if (!page_has_buffers(page))
2936 create_empty_buffers(page, blocksize, 0);
2937
2938 /* Find the buffer that contains "offset" */
2939 bh = page_buffers(page);
2940 pos = blocksize;
2941 while (offset >= pos) {
2942 bh = bh->b_this_page;
2943 iblock++;
2944 pos += blocksize;
2945 }
2946
2947 err = 0;
2948 if (!buffer_mapped(bh)) {
2949 WARN_ON(bh->b_size != blocksize);
2950 err = get_block(inode, iblock, bh, 0);
2951 if (err)
2952 goto unlock;
2953 /* unmapped? It's a hole - nothing to do */
2954 if (!buffer_mapped(bh))
2955 goto unlock;
2956 }
2957
2958 /* Ok, it's mapped. Make sure it's up-to-date */
2959 if (PageUptodate(page))
2960 set_buffer_uptodate(bh);
2961
2962 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2963 err = -EIO;
2964 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2965 wait_on_buffer(bh);
2966 /* Uhhuh. Read error. Complain and punt. */
2967 if (!buffer_uptodate(bh))
2968 goto unlock;
2969 }
2970
2971 zero_user(page, offset, length);
2972 mark_buffer_dirty(bh);
2973 err = 0;
2974
2975 unlock:
2976 unlock_page(page);
2977 put_page(page);
2978 out:
2979 return err;
2980 }
2981 EXPORT_SYMBOL(block_truncate_page);
2982
2983 /*
2984 * The generic ->writepage function for buffer-backed address_spaces
2985 */
2986 int block_write_full_page(struct page *page, get_block_t *get_block,
2987 struct writeback_control *wbc)
2988 {
2989 struct inode * const inode = page->mapping->host;
2990 loff_t i_size = i_size_read(inode);
2991 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2992 unsigned offset;
2993
2994 /* Is the page fully inside i_size? */
2995 if (page->index < end_index)
2996 return __block_write_full_page(inode, page, get_block, wbc,
2997 end_buffer_async_write);
2998
2999 /* Is the page fully outside i_size? (truncate in progress) */
3000 offset = i_size & (PAGE_SIZE-1);
3001 if (page->index >= end_index+1 || !offset) {
3002 /*
3003 * The page may have dirty, unmapped buffers. For example,
3004 * they may have been added in ext3_writepage(). Make them
3005 * freeable here, so the page does not leak.
3006 */
3007 do_invalidatepage(page, 0, PAGE_SIZE);
3008 unlock_page(page);
3009 return 0; /* don't care */
3010 }
3011
3012 /*
3013 * The page straddles i_size. It must be zeroed out on each and every
3014 * writepage invocation because it may be mmapped. "A file is mapped
3015 * in multiples of the page size. For a file that is not a multiple of
3016 * the page size, the remaining memory is zeroed when mapped, and
3017 * writes to that region are not written out to the file."
3018 */
3019 zero_user_segment(page, offset, PAGE_SIZE);
3020 return __block_write_full_page(inode, page, get_block, wbc,
3021 end_buffer_async_write);
3022 }
3023 EXPORT_SYMBOL(block_write_full_page);
3024
3025 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3026 get_block_t *get_block)
3027 {
3028 struct buffer_head tmp;
3029 struct inode *inode = mapping->host;
3030 tmp.b_state = 0;
3031 tmp.b_blocknr = 0;
3032 tmp.b_size = i_blocksize(inode);
3033 get_block(inode, block, &tmp, 0);
3034 return tmp.b_blocknr;
3035 }
3036 EXPORT_SYMBOL(generic_block_bmap);
3037
3038 static void end_bio_bh_io_sync(struct bio *bio)
3039 {
3040 struct buffer_head *bh = bio->bi_private;
3041
3042 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3043 set_bit(BH_Quiet, &bh->b_state);
3044
3045 bh->b_end_io(bh, !bio->bi_error);
3046 bio_put(bio);
3047 }
3048
3049 /*
3050 * This allows us to do IO even on the odd last sectors
3051 * of a device, even if the block size is some multiple
3052 * of the physical sector size.
3053 *
3054 * We'll just truncate the bio to the size of the device,
3055 * and clear the end of the buffer head manually.
3056 *
3057 * Truly out-of-range accesses will turn into actual IO
3058 * errors, this only handles the "we need to be able to
3059 * do IO at the final sector" case.
3060 */
3061 void guard_bio_eod(int op, struct bio *bio)
3062 {
3063 sector_t maxsector;
3064 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3065 unsigned truncated_bytes;
3066
3067 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3068 if (!maxsector)
3069 return;
3070
3071 /*
3072 * If the *whole* IO is past the end of the device,
3073 * let it through, and the IO layer will turn it into
3074 * an EIO.
3075 */
3076 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3077 return;
3078
3079 maxsector -= bio->bi_iter.bi_sector;
3080 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3081 return;
3082
3083 /* Uhhuh. We've got a bio that straddles the device size! */
3084 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3085
3086 /* Truncate the bio.. */
3087 bio->bi_iter.bi_size -= truncated_bytes;
3088 bvec->bv_len -= truncated_bytes;
3089
3090 /* ..and clear the end of the buffer for reads */
3091 if (op == REQ_OP_READ) {
3092 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3093 truncated_bytes);
3094 }
3095 }
3096
3097 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3098 unsigned long bio_flags, struct writeback_control *wbc)
3099 {
3100 struct bio *bio;
3101
3102 BUG_ON(!buffer_locked(bh));
3103 BUG_ON(!buffer_mapped(bh));
3104 BUG_ON(!bh->b_end_io);
3105 BUG_ON(buffer_delay(bh));
3106 BUG_ON(buffer_unwritten(bh));
3107
3108 /*
3109 * Only clear out a write error when rewriting
3110 */
3111 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3112 clear_buffer_write_io_error(bh);
3113
3114 /*
3115 * from here on down, it's all bio -- do the initial mapping,
3116 * submit_bio -> generic_make_request may further map this bio around
3117 */
3118 bio = bio_alloc(GFP_NOIO, 1);
3119
3120 if (wbc) {
3121 wbc_init_bio(wbc, bio);
3122 wbc_account_io(wbc, bh->b_page, bh->b_size);
3123 }
3124
3125 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3126 bio->bi_bdev = bh->b_bdev;
3127
3128 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3129 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3130
3131 bio->bi_end_io = end_bio_bh_io_sync;
3132 bio->bi_private = bh;
3133 bio->bi_flags |= bio_flags;
3134
3135 /* Take care of bh's that straddle the end of the device */
3136 guard_bio_eod(op, bio);
3137
3138 if (buffer_meta(bh))
3139 op_flags |= REQ_META;
3140 if (buffer_prio(bh))
3141 op_flags |= REQ_PRIO;
3142 bio_set_op_attrs(bio, op, op_flags);
3143
3144 submit_bio(bio);
3145 return 0;
3146 }
3147
3148 int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3149 unsigned long bio_flags)
3150 {
3151 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3152 }
3153 EXPORT_SYMBOL_GPL(_submit_bh);
3154
3155 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3156 {
3157 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3158 }
3159 EXPORT_SYMBOL(submit_bh);
3160
3161 /**
3162 * ll_rw_block: low-level access to block devices (DEPRECATED)
3163 * @op: whether to %READ or %WRITE
3164 * @op_flags: req_flag_bits
3165 * @nr: number of &struct buffer_heads in the array
3166 * @bhs: array of pointers to &struct buffer_head
3167 *
3168 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3169 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3170 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3171 * %REQ_RAHEAD.
3172 *
3173 * This function drops any buffer that it cannot get a lock on (with the
3174 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3175 * request, and any buffer that appears to be up-to-date when doing read
3176 * request. Further it marks as clean buffers that are processed for
3177 * writing (the buffer cache won't assume that they are actually clean
3178 * until the buffer gets unlocked).
3179 *
3180 * ll_rw_block sets b_end_io to simple completion handler that marks
3181 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3182 * any waiters.
3183 *
3184 * All of the buffers must be for the same device, and must also be a
3185 * multiple of the current approved size for the device.
3186 */
3187 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3188 {
3189 int i;
3190
3191 for (i = 0; i < nr; i++) {
3192 struct buffer_head *bh = bhs[i];
3193
3194 if (!trylock_buffer(bh))
3195 continue;
3196 if (op == WRITE) {
3197 if (test_clear_buffer_dirty(bh)) {
3198 bh->b_end_io = end_buffer_write_sync;
3199 get_bh(bh);
3200 submit_bh(op, op_flags, bh);
3201 continue;
3202 }
3203 } else {
3204 if (!buffer_uptodate(bh)) {
3205 bh->b_end_io = end_buffer_read_sync;
3206 get_bh(bh);
3207 submit_bh(op, op_flags, bh);
3208 continue;
3209 }
3210 }
3211 unlock_buffer(bh);
3212 }
3213 }
3214 EXPORT_SYMBOL(ll_rw_block);
3215
3216 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3217 {
3218 lock_buffer(bh);
3219 if (!test_clear_buffer_dirty(bh)) {
3220 unlock_buffer(bh);
3221 return;
3222 }
3223 bh->b_end_io = end_buffer_write_sync;
3224 get_bh(bh);
3225 submit_bh(REQ_OP_WRITE, op_flags, bh);
3226 }
3227 EXPORT_SYMBOL(write_dirty_buffer);
3228
3229 /*
3230 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3231 * and then start new I/O and then wait upon it. The caller must have a ref on
3232 * the buffer_head.
3233 */
3234 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3235 {
3236 int ret = 0;
3237
3238 WARN_ON(atomic_read(&bh->b_count) < 1);
3239 lock_buffer(bh);
3240 if (test_clear_buffer_dirty(bh)) {
3241 get_bh(bh);
3242 bh->b_end_io = end_buffer_write_sync;
3243 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3244 wait_on_buffer(bh);
3245 if (!ret && !buffer_uptodate(bh))
3246 ret = -EIO;
3247 } else {
3248 unlock_buffer(bh);
3249 }
3250 return ret;
3251 }
3252 EXPORT_SYMBOL(__sync_dirty_buffer);
3253
3254 int sync_dirty_buffer(struct buffer_head *bh)
3255 {
3256 return __sync_dirty_buffer(bh, REQ_SYNC);
3257 }
3258 EXPORT_SYMBOL(sync_dirty_buffer);
3259
3260 /*
3261 * try_to_free_buffers() checks if all the buffers on this particular page
3262 * are unused, and releases them if so.
3263 *
3264 * Exclusion against try_to_free_buffers may be obtained by either
3265 * locking the page or by holding its mapping's private_lock.
3266 *
3267 * If the page is dirty but all the buffers are clean then we need to
3268 * be sure to mark the page clean as well. This is because the page
3269 * may be against a block device, and a later reattachment of buffers
3270 * to a dirty page will set *all* buffers dirty. Which would corrupt
3271 * filesystem data on the same device.
3272 *
3273 * The same applies to regular filesystem pages: if all the buffers are
3274 * clean then we set the page clean and proceed. To do that, we require
3275 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3276 * private_lock.
3277 *
3278 * try_to_free_buffers() is non-blocking.
3279 */
3280 static inline int buffer_busy(struct buffer_head *bh)
3281 {
3282 return atomic_read(&bh->b_count) |
3283 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3284 }
3285
3286 static int
3287 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3288 {
3289 struct buffer_head *head = page_buffers(page);
3290 struct buffer_head *bh;
3291
3292 bh = head;
3293 do {
3294 if (buffer_write_io_error(bh) && page->mapping)
3295 mapping_set_error(page->mapping, -EIO);
3296 if (buffer_busy(bh))
3297 goto failed;
3298 bh = bh->b_this_page;
3299 } while (bh != head);
3300
3301 do {
3302 struct buffer_head *next = bh->b_this_page;
3303
3304 if (bh->b_assoc_map)
3305 __remove_assoc_queue(bh);
3306 bh = next;
3307 } while (bh != head);
3308 *buffers_to_free = head;
3309 __clear_page_buffers(page);
3310 return 1;
3311 failed:
3312 return 0;
3313 }
3314
3315 int try_to_free_buffers(struct page *page)
3316 {
3317 struct address_space * const mapping = page->mapping;
3318 struct buffer_head *buffers_to_free = NULL;
3319 int ret = 0;
3320
3321 BUG_ON(!PageLocked(page));
3322 if (PageWriteback(page))
3323 return 0;
3324
3325 if (mapping == NULL) { /* can this still happen? */
3326 ret = drop_buffers(page, &buffers_to_free);
3327 goto out;
3328 }
3329
3330 spin_lock(&mapping->private_lock);
3331 ret = drop_buffers(page, &buffers_to_free);
3332
3333 /*
3334 * If the filesystem writes its buffers by hand (eg ext3)
3335 * then we can have clean buffers against a dirty page. We
3336 * clean the page here; otherwise the VM will never notice
3337 * that the filesystem did any IO at all.
3338 *
3339 * Also, during truncate, discard_buffer will have marked all
3340 * the page's buffers clean. We discover that here and clean
3341 * the page also.
3342 *
3343 * private_lock must be held over this entire operation in order
3344 * to synchronise against __set_page_dirty_buffers and prevent the
3345 * dirty bit from being lost.
3346 */
3347 if (ret)
3348 cancel_dirty_page(page);
3349 spin_unlock(&mapping->private_lock);
3350 out:
3351 if (buffers_to_free) {
3352 struct buffer_head *bh = buffers_to_free;
3353
3354 do {
3355 struct buffer_head *next = bh->b_this_page;
3356 free_buffer_head(bh);
3357 bh = next;
3358 } while (bh != buffers_to_free);
3359 }
3360 return ret;
3361 }
3362 EXPORT_SYMBOL(try_to_free_buffers);
3363
3364 /*
3365 * There are no bdflush tunables left. But distributions are
3366 * still running obsolete flush daemons, so we terminate them here.
3367 *
3368 * Use of bdflush() is deprecated and will be removed in a future kernel.
3369 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3370 */
3371 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3372 {
3373 static int msg_count;
3374
3375 if (!capable(CAP_SYS_ADMIN))
3376 return -EPERM;
3377
3378 if (msg_count < 5) {
3379 msg_count++;
3380 printk(KERN_INFO
3381 "warning: process `%s' used the obsolete bdflush"
3382 " system call\n", current->comm);
3383 printk(KERN_INFO "Fix your initscripts?\n");
3384 }
3385
3386 if (func == 1)
3387 do_exit(0);
3388 return 0;
3389 }
3390
3391 /*
3392 * Buffer-head allocation
3393 */
3394 static struct kmem_cache *bh_cachep __read_mostly;
3395
3396 /*
3397 * Once the number of bh's in the machine exceeds this level, we start
3398 * stripping them in writeback.
3399 */
3400 static unsigned long max_buffer_heads;
3401
3402 int buffer_heads_over_limit;
3403
3404 struct bh_accounting {
3405 int nr; /* Number of live bh's */
3406 int ratelimit; /* Limit cacheline bouncing */
3407 };
3408
3409 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3410
3411 static void recalc_bh_state(void)
3412 {
3413 int i;
3414 int tot = 0;
3415
3416 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3417 return;
3418 __this_cpu_write(bh_accounting.ratelimit, 0);
3419 for_each_online_cpu(i)
3420 tot += per_cpu(bh_accounting, i).nr;
3421 buffer_heads_over_limit = (tot > max_buffer_heads);
3422 }
3423
3424 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3425 {
3426 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3427 if (ret) {
3428 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3429 preempt_disable();
3430 __this_cpu_inc(bh_accounting.nr);
3431 recalc_bh_state();
3432 preempt_enable();
3433 }
3434 return ret;
3435 }
3436 EXPORT_SYMBOL(alloc_buffer_head);
3437
3438 void free_buffer_head(struct buffer_head *bh)
3439 {
3440 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3441 kmem_cache_free(bh_cachep, bh);
3442 preempt_disable();
3443 __this_cpu_dec(bh_accounting.nr);
3444 recalc_bh_state();
3445 preempt_enable();
3446 }
3447 EXPORT_SYMBOL(free_buffer_head);
3448
3449 static int buffer_exit_cpu_dead(unsigned int cpu)
3450 {
3451 int i;
3452 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3453
3454 for (i = 0; i < BH_LRU_SIZE; i++) {
3455 brelse(b->bhs[i]);
3456 b->bhs[i] = NULL;
3457 }
3458 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3459 per_cpu(bh_accounting, cpu).nr = 0;
3460 return 0;
3461 }
3462
3463 /**
3464 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3465 * @bh: struct buffer_head
3466 *
3467 * Return true if the buffer is up-to-date and false,
3468 * with the buffer locked, if not.
3469 */
3470 int bh_uptodate_or_lock(struct buffer_head *bh)
3471 {
3472 if (!buffer_uptodate(bh)) {
3473 lock_buffer(bh);
3474 if (!buffer_uptodate(bh))
3475 return 0;
3476 unlock_buffer(bh);
3477 }
3478 return 1;
3479 }
3480 EXPORT_SYMBOL(bh_uptodate_or_lock);
3481
3482 /**
3483 * bh_submit_read - Submit a locked buffer for reading
3484 * @bh: struct buffer_head
3485 *
3486 * Returns zero on success and -EIO on error.
3487 */
3488 int bh_submit_read(struct buffer_head *bh)
3489 {
3490 BUG_ON(!buffer_locked(bh));
3491
3492 if (buffer_uptodate(bh)) {
3493 unlock_buffer(bh);
3494 return 0;
3495 }
3496
3497 get_bh(bh);
3498 bh->b_end_io = end_buffer_read_sync;
3499 submit_bh(REQ_OP_READ, 0, bh);
3500 wait_on_buffer(bh);
3501 if (buffer_uptodate(bh))
3502 return 0;
3503 return -EIO;
3504 }
3505 EXPORT_SYMBOL(bh_submit_read);
3506
3507 void __init buffer_init(void)
3508 {
3509 unsigned long nrpages;
3510 int ret;
3511
3512 bh_cachep = kmem_cache_create("buffer_head",
3513 sizeof(struct buffer_head), 0,
3514 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3515 SLAB_MEM_SPREAD),
3516 NULL);
3517
3518 /*
3519 * Limit the bh occupancy to 10% of ZONE_NORMAL
3520 */
3521 nrpages = (nr_free_buffer_pages() * 10) / 100;
3522 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3523 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3524 NULL, buffer_exit_cpu_dead);
3525 WARN_ON(ret < 0);
3526 }