]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/buffer.c
rxrpc: Fix undefined packet handling
[mirror_ubuntu-hirsute-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58 trace_block_touch_buffer(bh);
59 mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68
69 void unlock_buffer(struct buffer_head *bh)
70 {
71 clear_bit_unlock(BH_Lock, &bh->b_state);
72 smp_mb__after_atomic();
73 wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76
77 /*
78 * Returns if the page has dirty or writeback buffers. If all the buffers
79 * are unlocked and clean then the PageDirty information is stale. If
80 * any of the pages are locked, it is assumed they are locked for IO.
81 */
82 void buffer_check_dirty_writeback(struct page *page,
83 bool *dirty, bool *writeback)
84 {
85 struct buffer_head *head, *bh;
86 *dirty = false;
87 *writeback = false;
88
89 BUG_ON(!PageLocked(page));
90
91 if (!page_has_buffers(page))
92 return;
93
94 if (PageWriteback(page))
95 *writeback = true;
96
97 head = page_buffers(page);
98 bh = head;
99 do {
100 if (buffer_locked(bh))
101 *writeback = true;
102
103 if (buffer_dirty(bh))
104 *dirty = true;
105
106 bh = bh->b_this_page;
107 } while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110
111 /*
112 * Block until a buffer comes unlocked. This doesn't stop it
113 * from becoming locked again - you have to lock it yourself
114 * if you want to preserve its state.
115 */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125 ClearPagePrivate(page);
126 set_page_private(page, 0);
127 put_page(page);
128 }
129
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132 if (!test_bit(BH_Quiet, &bh->b_state))
133 printk_ratelimited(KERN_ERR
134 "Buffer I/O error on dev %pg, logical block %llu%s\n",
135 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137
138 /*
139 * End-of-IO handler helper function which does not touch the bh after
140 * unlocking it.
141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142 * a race there is benign: unlock_buffer() only use the bh's address for
143 * hashing after unlocking the buffer, so it doesn't actually touch the bh
144 * itself.
145 */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
151 /* This happens, due to failed read-ahead attempts. */
152 clear_buffer_uptodate(bh);
153 }
154 unlock_buffer(bh);
155 }
156
157 /*
158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
159 * unlock the buffer. This is what ll_rw_block uses too.
160 */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163 __end_buffer_read_notouch(bh, uptodate);
164 put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170 if (uptodate) {
171 set_buffer_uptodate(bh);
172 } else {
173 buffer_io_error(bh, ", lost sync page write");
174 mark_buffer_write_io_error(bh);
175 clear_buffer_uptodate(bh);
176 }
177 unlock_buffer(bh);
178 put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181
182 /*
183 * Various filesystems appear to want __find_get_block to be non-blocking.
184 * But it's the page lock which protects the buffers. To get around this,
185 * we get exclusion from try_to_free_buffers with the blockdev mapping's
186 * private_lock.
187 *
188 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
189 * may be quite high. This code could TryLock the page, and if that
190 * succeeds, there is no need to take private_lock. (But if
191 * private_lock is contended then so is mapping->tree_lock).
192 */
193 static struct buffer_head *
194 __find_get_block_slow(struct block_device *bdev, sector_t block)
195 {
196 struct inode *bd_inode = bdev->bd_inode;
197 struct address_space *bd_mapping = bd_inode->i_mapping;
198 struct buffer_head *ret = NULL;
199 pgoff_t index;
200 struct buffer_head *bh;
201 struct buffer_head *head;
202 struct page *page;
203 int all_mapped = 1;
204
205 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
206 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
207 if (!page)
208 goto out;
209
210 spin_lock(&bd_mapping->private_lock);
211 if (!page_has_buffers(page))
212 goto out_unlock;
213 head = page_buffers(page);
214 bh = head;
215 do {
216 if (!buffer_mapped(bh))
217 all_mapped = 0;
218 else if (bh->b_blocknr == block) {
219 ret = bh;
220 get_bh(bh);
221 goto out_unlock;
222 }
223 bh = bh->b_this_page;
224 } while (bh != head);
225
226 /* we might be here because some of the buffers on this page are
227 * not mapped. This is due to various races between
228 * file io on the block device and getblk. It gets dealt with
229 * elsewhere, don't buffer_error if we had some unmapped buffers
230 */
231 if (all_mapped) {
232 printk("__find_get_block_slow() failed. "
233 "block=%llu, b_blocknr=%llu\n",
234 (unsigned long long)block,
235 (unsigned long long)bh->b_blocknr);
236 printk("b_state=0x%08lx, b_size=%zu\n",
237 bh->b_state, bh->b_size);
238 printk("device %pg blocksize: %d\n", bdev,
239 1 << bd_inode->i_blkbits);
240 }
241 out_unlock:
242 spin_unlock(&bd_mapping->private_lock);
243 put_page(page);
244 out:
245 return ret;
246 }
247
248 /*
249 * I/O completion handler for block_read_full_page() - pages
250 * which come unlocked at the end of I/O.
251 */
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 unsigned long flags;
255 struct buffer_head *first;
256 struct buffer_head *tmp;
257 struct page *page;
258 int page_uptodate = 1;
259
260 BUG_ON(!buffer_async_read(bh));
261
262 page = bh->b_page;
263 if (uptodate) {
264 set_buffer_uptodate(bh);
265 } else {
266 clear_buffer_uptodate(bh);
267 buffer_io_error(bh, ", async page read");
268 SetPageError(page);
269 }
270
271 /*
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
275 */
276 first = page_buffers(page);
277 local_irq_save(flags);
278 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279 clear_buffer_async_read(bh);
280 unlock_buffer(bh);
281 tmp = bh;
282 do {
283 if (!buffer_uptodate(tmp))
284 page_uptodate = 0;
285 if (buffer_async_read(tmp)) {
286 BUG_ON(!buffer_locked(tmp));
287 goto still_busy;
288 }
289 tmp = tmp->b_this_page;
290 } while (tmp != bh);
291 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292 local_irq_restore(flags);
293
294 /*
295 * If none of the buffers had errors and they are all
296 * uptodate then we can set the page uptodate.
297 */
298 if (page_uptodate && !PageError(page))
299 SetPageUptodate(page);
300 unlock_page(page);
301 return;
302
303 still_busy:
304 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305 local_irq_restore(flags);
306 return;
307 }
308
309 /*
310 * Completion handler for block_write_full_page() - pages which are unlocked
311 * during I/O, and which have PageWriteback cleared upon I/O completion.
312 */
313 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
314 {
315 unsigned long flags;
316 struct buffer_head *first;
317 struct buffer_head *tmp;
318 struct page *page;
319
320 BUG_ON(!buffer_async_write(bh));
321
322 page = bh->b_page;
323 if (uptodate) {
324 set_buffer_uptodate(bh);
325 } else {
326 buffer_io_error(bh, ", lost async page write");
327 mark_buffer_write_io_error(bh);
328 clear_buffer_uptodate(bh);
329 SetPageError(page);
330 }
331
332 first = page_buffers(page);
333 local_irq_save(flags);
334 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335
336 clear_buffer_async_write(bh);
337 unlock_buffer(bh);
338 tmp = bh->b_this_page;
339 while (tmp != bh) {
340 if (buffer_async_write(tmp)) {
341 BUG_ON(!buffer_locked(tmp));
342 goto still_busy;
343 }
344 tmp = tmp->b_this_page;
345 }
346 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
347 local_irq_restore(flags);
348 end_page_writeback(page);
349 return;
350
351 still_busy:
352 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 local_irq_restore(flags);
354 return;
355 }
356 EXPORT_SYMBOL(end_buffer_async_write);
357
358 /*
359 * If a page's buffers are under async readin (end_buffer_async_read
360 * completion) then there is a possibility that another thread of
361 * control could lock one of the buffers after it has completed
362 * but while some of the other buffers have not completed. This
363 * locked buffer would confuse end_buffer_async_read() into not unlocking
364 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
365 * that this buffer is not under async I/O.
366 *
367 * The page comes unlocked when it has no locked buffer_async buffers
368 * left.
369 *
370 * PageLocked prevents anyone starting new async I/O reads any of
371 * the buffers.
372 *
373 * PageWriteback is used to prevent simultaneous writeout of the same
374 * page.
375 *
376 * PageLocked prevents anyone from starting writeback of a page which is
377 * under read I/O (PageWriteback is only ever set against a locked page).
378 */
379 static void mark_buffer_async_read(struct buffer_head *bh)
380 {
381 bh->b_end_io = end_buffer_async_read;
382 set_buffer_async_read(bh);
383 }
384
385 static void mark_buffer_async_write_endio(struct buffer_head *bh,
386 bh_end_io_t *handler)
387 {
388 bh->b_end_io = handler;
389 set_buffer_async_write(bh);
390 }
391
392 void mark_buffer_async_write(struct buffer_head *bh)
393 {
394 mark_buffer_async_write_endio(bh, end_buffer_async_write);
395 }
396 EXPORT_SYMBOL(mark_buffer_async_write);
397
398
399 /*
400 * fs/buffer.c contains helper functions for buffer-backed address space's
401 * fsync functions. A common requirement for buffer-based filesystems is
402 * that certain data from the backing blockdev needs to be written out for
403 * a successful fsync(). For example, ext2 indirect blocks need to be
404 * written back and waited upon before fsync() returns.
405 *
406 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408 * management of a list of dependent buffers at ->i_mapping->private_list.
409 *
410 * Locking is a little subtle: try_to_free_buffers() will remove buffers
411 * from their controlling inode's queue when they are being freed. But
412 * try_to_free_buffers() will be operating against the *blockdev* mapping
413 * at the time, not against the S_ISREG file which depends on those buffers.
414 * So the locking for private_list is via the private_lock in the address_space
415 * which backs the buffers. Which is different from the address_space
416 * against which the buffers are listed. So for a particular address_space,
417 * mapping->private_lock does *not* protect mapping->private_list! In fact,
418 * mapping->private_list will always be protected by the backing blockdev's
419 * ->private_lock.
420 *
421 * Which introduces a requirement: all buffers on an address_space's
422 * ->private_list must be from the same address_space: the blockdev's.
423 *
424 * address_spaces which do not place buffers at ->private_list via these
425 * utility functions are free to use private_lock and private_list for
426 * whatever they want. The only requirement is that list_empty(private_list)
427 * be true at clear_inode() time.
428 *
429 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
430 * filesystems should do that. invalidate_inode_buffers() should just go
431 * BUG_ON(!list_empty).
432 *
433 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
434 * take an address_space, not an inode. And it should be called
435 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
436 * queued up.
437 *
438 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439 * list if it is already on a list. Because if the buffer is on a list,
440 * it *must* already be on the right one. If not, the filesystem is being
441 * silly. This will save a ton of locking. But first we have to ensure
442 * that buffers are taken *off* the old inode's list when they are freed
443 * (presumably in truncate). That requires careful auditing of all
444 * filesystems (do it inside bforget()). It could also be done by bringing
445 * b_inode back.
446 */
447
448 /*
449 * The buffer's backing address_space's private_lock must be held
450 */
451 static void __remove_assoc_queue(struct buffer_head *bh)
452 {
453 list_del_init(&bh->b_assoc_buffers);
454 WARN_ON(!bh->b_assoc_map);
455 bh->b_assoc_map = NULL;
456 }
457
458 int inode_has_buffers(struct inode *inode)
459 {
460 return !list_empty(&inode->i_data.private_list);
461 }
462
463 /*
464 * osync is designed to support O_SYNC io. It waits synchronously for
465 * all already-submitted IO to complete, but does not queue any new
466 * writes to the disk.
467 *
468 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469 * you dirty the buffers, and then use osync_inode_buffers to wait for
470 * completion. Any other dirty buffers which are not yet queued for
471 * write will not be flushed to disk by the osync.
472 */
473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
474 {
475 struct buffer_head *bh;
476 struct list_head *p;
477 int err = 0;
478
479 spin_lock(lock);
480 repeat:
481 list_for_each_prev(p, list) {
482 bh = BH_ENTRY(p);
483 if (buffer_locked(bh)) {
484 get_bh(bh);
485 spin_unlock(lock);
486 wait_on_buffer(bh);
487 if (!buffer_uptodate(bh))
488 err = -EIO;
489 brelse(bh);
490 spin_lock(lock);
491 goto repeat;
492 }
493 }
494 spin_unlock(lock);
495 return err;
496 }
497
498 static void do_thaw_one(struct super_block *sb, void *unused)
499 {
500 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
501 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
502 }
503
504 static void do_thaw_all(struct work_struct *work)
505 {
506 iterate_supers(do_thaw_one, NULL);
507 kfree(work);
508 printk(KERN_WARNING "Emergency Thaw complete\n");
509 }
510
511 /**
512 * emergency_thaw_all -- forcibly thaw every frozen filesystem
513 *
514 * Used for emergency unfreeze of all filesystems via SysRq
515 */
516 void emergency_thaw_all(void)
517 {
518 struct work_struct *work;
519
520 work = kmalloc(sizeof(*work), GFP_ATOMIC);
521 if (work) {
522 INIT_WORK(work, do_thaw_all);
523 schedule_work(work);
524 }
525 }
526
527 /**
528 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
529 * @mapping: the mapping which wants those buffers written
530 *
531 * Starts I/O against the buffers at mapping->private_list, and waits upon
532 * that I/O.
533 *
534 * Basically, this is a convenience function for fsync().
535 * @mapping is a file or directory which needs those buffers to be written for
536 * a successful fsync().
537 */
538 int sync_mapping_buffers(struct address_space *mapping)
539 {
540 struct address_space *buffer_mapping = mapping->private_data;
541
542 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
543 return 0;
544
545 return fsync_buffers_list(&buffer_mapping->private_lock,
546 &mapping->private_list);
547 }
548 EXPORT_SYMBOL(sync_mapping_buffers);
549
550 /*
551 * Called when we've recently written block `bblock', and it is known that
552 * `bblock' was for a buffer_boundary() buffer. This means that the block at
553 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
554 * dirty, schedule it for IO. So that indirects merge nicely with their data.
555 */
556 void write_boundary_block(struct block_device *bdev,
557 sector_t bblock, unsigned blocksize)
558 {
559 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
560 if (bh) {
561 if (buffer_dirty(bh))
562 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
563 put_bh(bh);
564 }
565 }
566
567 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
568 {
569 struct address_space *mapping = inode->i_mapping;
570 struct address_space *buffer_mapping = bh->b_page->mapping;
571
572 mark_buffer_dirty(bh);
573 if (!mapping->private_data) {
574 mapping->private_data = buffer_mapping;
575 } else {
576 BUG_ON(mapping->private_data != buffer_mapping);
577 }
578 if (!bh->b_assoc_map) {
579 spin_lock(&buffer_mapping->private_lock);
580 list_move_tail(&bh->b_assoc_buffers,
581 &mapping->private_list);
582 bh->b_assoc_map = mapping;
583 spin_unlock(&buffer_mapping->private_lock);
584 }
585 }
586 EXPORT_SYMBOL(mark_buffer_dirty_inode);
587
588 /*
589 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
590 * dirty.
591 *
592 * If warn is true, then emit a warning if the page is not uptodate and has
593 * not been truncated.
594 *
595 * The caller must hold lock_page_memcg().
596 */
597 static void __set_page_dirty(struct page *page, struct address_space *mapping,
598 int warn)
599 {
600 unsigned long flags;
601
602 spin_lock_irqsave(&mapping->tree_lock, flags);
603 if (page->mapping) { /* Race with truncate? */
604 WARN_ON_ONCE(warn && !PageUptodate(page));
605 account_page_dirtied(page, mapping);
606 radix_tree_tag_set(&mapping->page_tree,
607 page_index(page), PAGECACHE_TAG_DIRTY);
608 }
609 spin_unlock_irqrestore(&mapping->tree_lock, flags);
610 }
611
612 /*
613 * Add a page to the dirty page list.
614 *
615 * It is a sad fact of life that this function is called from several places
616 * deeply under spinlocking. It may not sleep.
617 *
618 * If the page has buffers, the uptodate buffers are set dirty, to preserve
619 * dirty-state coherency between the page and the buffers. It the page does
620 * not have buffers then when they are later attached they will all be set
621 * dirty.
622 *
623 * The buffers are dirtied before the page is dirtied. There's a small race
624 * window in which a writepage caller may see the page cleanness but not the
625 * buffer dirtiness. That's fine. If this code were to set the page dirty
626 * before the buffers, a concurrent writepage caller could clear the page dirty
627 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
628 * page on the dirty page list.
629 *
630 * We use private_lock to lock against try_to_free_buffers while using the
631 * page's buffer list. Also use this to protect against clean buffers being
632 * added to the page after it was set dirty.
633 *
634 * FIXME: may need to call ->reservepage here as well. That's rather up to the
635 * address_space though.
636 */
637 int __set_page_dirty_buffers(struct page *page)
638 {
639 int newly_dirty;
640 struct address_space *mapping = page_mapping(page);
641
642 if (unlikely(!mapping))
643 return !TestSetPageDirty(page);
644
645 spin_lock(&mapping->private_lock);
646 if (page_has_buffers(page)) {
647 struct buffer_head *head = page_buffers(page);
648 struct buffer_head *bh = head;
649
650 do {
651 set_buffer_dirty(bh);
652 bh = bh->b_this_page;
653 } while (bh != head);
654 }
655 /*
656 * Lock out page->mem_cgroup migration to keep PageDirty
657 * synchronized with per-memcg dirty page counters.
658 */
659 lock_page_memcg(page);
660 newly_dirty = !TestSetPageDirty(page);
661 spin_unlock(&mapping->private_lock);
662
663 if (newly_dirty)
664 __set_page_dirty(page, mapping, 1);
665
666 unlock_page_memcg(page);
667
668 if (newly_dirty)
669 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
670
671 return newly_dirty;
672 }
673 EXPORT_SYMBOL(__set_page_dirty_buffers);
674
675 /*
676 * Write out and wait upon a list of buffers.
677 *
678 * We have conflicting pressures: we want to make sure that all
679 * initially dirty buffers get waited on, but that any subsequently
680 * dirtied buffers don't. After all, we don't want fsync to last
681 * forever if somebody is actively writing to the file.
682 *
683 * Do this in two main stages: first we copy dirty buffers to a
684 * temporary inode list, queueing the writes as we go. Then we clean
685 * up, waiting for those writes to complete.
686 *
687 * During this second stage, any subsequent updates to the file may end
688 * up refiling the buffer on the original inode's dirty list again, so
689 * there is a chance we will end up with a buffer queued for write but
690 * not yet completed on that list. So, as a final cleanup we go through
691 * the osync code to catch these locked, dirty buffers without requeuing
692 * any newly dirty buffers for write.
693 */
694 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
695 {
696 struct buffer_head *bh;
697 struct list_head tmp;
698 struct address_space *mapping;
699 int err = 0, err2;
700 struct blk_plug plug;
701
702 INIT_LIST_HEAD(&tmp);
703 blk_start_plug(&plug);
704
705 spin_lock(lock);
706 while (!list_empty(list)) {
707 bh = BH_ENTRY(list->next);
708 mapping = bh->b_assoc_map;
709 __remove_assoc_queue(bh);
710 /* Avoid race with mark_buffer_dirty_inode() which does
711 * a lockless check and we rely on seeing the dirty bit */
712 smp_mb();
713 if (buffer_dirty(bh) || buffer_locked(bh)) {
714 list_add(&bh->b_assoc_buffers, &tmp);
715 bh->b_assoc_map = mapping;
716 if (buffer_dirty(bh)) {
717 get_bh(bh);
718 spin_unlock(lock);
719 /*
720 * Ensure any pending I/O completes so that
721 * write_dirty_buffer() actually writes the
722 * current contents - it is a noop if I/O is
723 * still in flight on potentially older
724 * contents.
725 */
726 write_dirty_buffer(bh, REQ_SYNC);
727
728 /*
729 * Kick off IO for the previous mapping. Note
730 * that we will not run the very last mapping,
731 * wait_on_buffer() will do that for us
732 * through sync_buffer().
733 */
734 brelse(bh);
735 spin_lock(lock);
736 }
737 }
738 }
739
740 spin_unlock(lock);
741 blk_finish_plug(&plug);
742 spin_lock(lock);
743
744 while (!list_empty(&tmp)) {
745 bh = BH_ENTRY(tmp.prev);
746 get_bh(bh);
747 mapping = bh->b_assoc_map;
748 __remove_assoc_queue(bh);
749 /* Avoid race with mark_buffer_dirty_inode() which does
750 * a lockless check and we rely on seeing the dirty bit */
751 smp_mb();
752 if (buffer_dirty(bh)) {
753 list_add(&bh->b_assoc_buffers,
754 &mapping->private_list);
755 bh->b_assoc_map = mapping;
756 }
757 spin_unlock(lock);
758 wait_on_buffer(bh);
759 if (!buffer_uptodate(bh))
760 err = -EIO;
761 brelse(bh);
762 spin_lock(lock);
763 }
764
765 spin_unlock(lock);
766 err2 = osync_buffers_list(lock, list);
767 if (err)
768 return err;
769 else
770 return err2;
771 }
772
773 /*
774 * Invalidate any and all dirty buffers on a given inode. We are
775 * probably unmounting the fs, but that doesn't mean we have already
776 * done a sync(). Just drop the buffers from the inode list.
777 *
778 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
779 * assumes that all the buffers are against the blockdev. Not true
780 * for reiserfs.
781 */
782 void invalidate_inode_buffers(struct inode *inode)
783 {
784 if (inode_has_buffers(inode)) {
785 struct address_space *mapping = &inode->i_data;
786 struct list_head *list = &mapping->private_list;
787 struct address_space *buffer_mapping = mapping->private_data;
788
789 spin_lock(&buffer_mapping->private_lock);
790 while (!list_empty(list))
791 __remove_assoc_queue(BH_ENTRY(list->next));
792 spin_unlock(&buffer_mapping->private_lock);
793 }
794 }
795 EXPORT_SYMBOL(invalidate_inode_buffers);
796
797 /*
798 * Remove any clean buffers from the inode's buffer list. This is called
799 * when we're trying to free the inode itself. Those buffers can pin it.
800 *
801 * Returns true if all buffers were removed.
802 */
803 int remove_inode_buffers(struct inode *inode)
804 {
805 int ret = 1;
806
807 if (inode_has_buffers(inode)) {
808 struct address_space *mapping = &inode->i_data;
809 struct list_head *list = &mapping->private_list;
810 struct address_space *buffer_mapping = mapping->private_data;
811
812 spin_lock(&buffer_mapping->private_lock);
813 while (!list_empty(list)) {
814 struct buffer_head *bh = BH_ENTRY(list->next);
815 if (buffer_dirty(bh)) {
816 ret = 0;
817 break;
818 }
819 __remove_assoc_queue(bh);
820 }
821 spin_unlock(&buffer_mapping->private_lock);
822 }
823 return ret;
824 }
825
826 /*
827 * Create the appropriate buffers when given a page for data area and
828 * the size of each buffer.. Use the bh->b_this_page linked list to
829 * follow the buffers created. Return NULL if unable to create more
830 * buffers.
831 *
832 * The retry flag is used to differentiate async IO (paging, swapping)
833 * which may not fail from ordinary buffer allocations.
834 */
835 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
836 bool retry)
837 {
838 struct buffer_head *bh, *head;
839 gfp_t gfp = GFP_NOFS;
840 long offset;
841
842 if (retry)
843 gfp |= __GFP_NOFAIL;
844
845 head = NULL;
846 offset = PAGE_SIZE;
847 while ((offset -= size) >= 0) {
848 bh = alloc_buffer_head(gfp);
849 if (!bh)
850 goto no_grow;
851
852 bh->b_this_page = head;
853 bh->b_blocknr = -1;
854 head = bh;
855
856 bh->b_size = size;
857
858 /* Link the buffer to its page */
859 set_bh_page(bh, page, offset);
860 }
861 return head;
862 /*
863 * In case anything failed, we just free everything we got.
864 */
865 no_grow:
866 if (head) {
867 do {
868 bh = head;
869 head = head->b_this_page;
870 free_buffer_head(bh);
871 } while (head);
872 }
873
874 return NULL;
875 }
876 EXPORT_SYMBOL_GPL(alloc_page_buffers);
877
878 static inline void
879 link_dev_buffers(struct page *page, struct buffer_head *head)
880 {
881 struct buffer_head *bh, *tail;
882
883 bh = head;
884 do {
885 tail = bh;
886 bh = bh->b_this_page;
887 } while (bh);
888 tail->b_this_page = head;
889 attach_page_buffers(page, head);
890 }
891
892 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
893 {
894 sector_t retval = ~((sector_t)0);
895 loff_t sz = i_size_read(bdev->bd_inode);
896
897 if (sz) {
898 unsigned int sizebits = blksize_bits(size);
899 retval = (sz >> sizebits);
900 }
901 return retval;
902 }
903
904 /*
905 * Initialise the state of a blockdev page's buffers.
906 */
907 static sector_t
908 init_page_buffers(struct page *page, struct block_device *bdev,
909 sector_t block, int size)
910 {
911 struct buffer_head *head = page_buffers(page);
912 struct buffer_head *bh = head;
913 int uptodate = PageUptodate(page);
914 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
915
916 do {
917 if (!buffer_mapped(bh)) {
918 bh->b_end_io = NULL;
919 bh->b_private = NULL;
920 bh->b_bdev = bdev;
921 bh->b_blocknr = block;
922 if (uptodate)
923 set_buffer_uptodate(bh);
924 if (block < end_block)
925 set_buffer_mapped(bh);
926 }
927 block++;
928 bh = bh->b_this_page;
929 } while (bh != head);
930
931 /*
932 * Caller needs to validate requested block against end of device.
933 */
934 return end_block;
935 }
936
937 /*
938 * Create the page-cache page that contains the requested block.
939 *
940 * This is used purely for blockdev mappings.
941 */
942 static int
943 grow_dev_page(struct block_device *bdev, sector_t block,
944 pgoff_t index, int size, int sizebits, gfp_t gfp)
945 {
946 struct inode *inode = bdev->bd_inode;
947 struct page *page;
948 struct buffer_head *bh;
949 sector_t end_block;
950 int ret = 0; /* Will call free_more_memory() */
951 gfp_t gfp_mask;
952
953 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
954
955 /*
956 * XXX: __getblk_slow() can not really deal with failure and
957 * will endlessly loop on improvised global reclaim. Prefer
958 * looping in the allocator rather than here, at least that
959 * code knows what it's doing.
960 */
961 gfp_mask |= __GFP_NOFAIL;
962
963 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
964
965 BUG_ON(!PageLocked(page));
966
967 if (page_has_buffers(page)) {
968 bh = page_buffers(page);
969 if (bh->b_size == size) {
970 end_block = init_page_buffers(page, bdev,
971 (sector_t)index << sizebits,
972 size);
973 goto done;
974 }
975 if (!try_to_free_buffers(page))
976 goto failed;
977 }
978
979 /*
980 * Allocate some buffers for this page
981 */
982 bh = alloc_page_buffers(page, size, true);
983
984 /*
985 * Link the page to the buffers and initialise them. Take the
986 * lock to be atomic wrt __find_get_block(), which does not
987 * run under the page lock.
988 */
989 spin_lock(&inode->i_mapping->private_lock);
990 link_dev_buffers(page, bh);
991 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
992 size);
993 spin_unlock(&inode->i_mapping->private_lock);
994 done:
995 ret = (block < end_block) ? 1 : -ENXIO;
996 failed:
997 unlock_page(page);
998 put_page(page);
999 return ret;
1000 }
1001
1002 /*
1003 * Create buffers for the specified block device block's page. If
1004 * that page was dirty, the buffers are set dirty also.
1005 */
1006 static int
1007 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1008 {
1009 pgoff_t index;
1010 int sizebits;
1011
1012 sizebits = -1;
1013 do {
1014 sizebits++;
1015 } while ((size << sizebits) < PAGE_SIZE);
1016
1017 index = block >> sizebits;
1018
1019 /*
1020 * Check for a block which wants to lie outside our maximum possible
1021 * pagecache index. (this comparison is done using sector_t types).
1022 */
1023 if (unlikely(index != block >> sizebits)) {
1024 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1025 "device %pg\n",
1026 __func__, (unsigned long long)block,
1027 bdev);
1028 return -EIO;
1029 }
1030
1031 /* Create a page with the proper size buffers.. */
1032 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1033 }
1034
1035 static struct buffer_head *
1036 __getblk_slow(struct block_device *bdev, sector_t block,
1037 unsigned size, gfp_t gfp)
1038 {
1039 /* Size must be multiple of hard sectorsize */
1040 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1041 (size < 512 || size > PAGE_SIZE))) {
1042 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1043 size);
1044 printk(KERN_ERR "logical block size: %d\n",
1045 bdev_logical_block_size(bdev));
1046
1047 dump_stack();
1048 return NULL;
1049 }
1050
1051 for (;;) {
1052 struct buffer_head *bh;
1053 int ret;
1054
1055 bh = __find_get_block(bdev, block, size);
1056 if (bh)
1057 return bh;
1058
1059 ret = grow_buffers(bdev, block, size, gfp);
1060 if (ret < 0)
1061 return NULL;
1062 }
1063 }
1064
1065 /*
1066 * The relationship between dirty buffers and dirty pages:
1067 *
1068 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1069 * the page is tagged dirty in its radix tree.
1070 *
1071 * At all times, the dirtiness of the buffers represents the dirtiness of
1072 * subsections of the page. If the page has buffers, the page dirty bit is
1073 * merely a hint about the true dirty state.
1074 *
1075 * When a page is set dirty in its entirety, all its buffers are marked dirty
1076 * (if the page has buffers).
1077 *
1078 * When a buffer is marked dirty, its page is dirtied, but the page's other
1079 * buffers are not.
1080 *
1081 * Also. When blockdev buffers are explicitly read with bread(), they
1082 * individually become uptodate. But their backing page remains not
1083 * uptodate - even if all of its buffers are uptodate. A subsequent
1084 * block_read_full_page() against that page will discover all the uptodate
1085 * buffers, will set the page uptodate and will perform no I/O.
1086 */
1087
1088 /**
1089 * mark_buffer_dirty - mark a buffer_head as needing writeout
1090 * @bh: the buffer_head to mark dirty
1091 *
1092 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1093 * backing page dirty, then tag the page as dirty in its address_space's radix
1094 * tree and then attach the address_space's inode to its superblock's dirty
1095 * inode list.
1096 *
1097 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1098 * mapping->tree_lock and mapping->host->i_lock.
1099 */
1100 void mark_buffer_dirty(struct buffer_head *bh)
1101 {
1102 WARN_ON_ONCE(!buffer_uptodate(bh));
1103
1104 trace_block_dirty_buffer(bh);
1105
1106 /*
1107 * Very *carefully* optimize the it-is-already-dirty case.
1108 *
1109 * Don't let the final "is it dirty" escape to before we
1110 * perhaps modified the buffer.
1111 */
1112 if (buffer_dirty(bh)) {
1113 smp_mb();
1114 if (buffer_dirty(bh))
1115 return;
1116 }
1117
1118 if (!test_set_buffer_dirty(bh)) {
1119 struct page *page = bh->b_page;
1120 struct address_space *mapping = NULL;
1121
1122 lock_page_memcg(page);
1123 if (!TestSetPageDirty(page)) {
1124 mapping = page_mapping(page);
1125 if (mapping)
1126 __set_page_dirty(page, mapping, 0);
1127 }
1128 unlock_page_memcg(page);
1129 if (mapping)
1130 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1131 }
1132 }
1133 EXPORT_SYMBOL(mark_buffer_dirty);
1134
1135 void mark_buffer_write_io_error(struct buffer_head *bh)
1136 {
1137 set_buffer_write_io_error(bh);
1138 /* FIXME: do we need to set this in both places? */
1139 if (bh->b_page && bh->b_page->mapping)
1140 mapping_set_error(bh->b_page->mapping, -EIO);
1141 if (bh->b_assoc_map)
1142 mapping_set_error(bh->b_assoc_map, -EIO);
1143 }
1144 EXPORT_SYMBOL(mark_buffer_write_io_error);
1145
1146 /*
1147 * Decrement a buffer_head's reference count. If all buffers against a page
1148 * have zero reference count, are clean and unlocked, and if the page is clean
1149 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1150 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1151 * a page but it ends up not being freed, and buffers may later be reattached).
1152 */
1153 void __brelse(struct buffer_head * buf)
1154 {
1155 if (atomic_read(&buf->b_count)) {
1156 put_bh(buf);
1157 return;
1158 }
1159 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1160 }
1161 EXPORT_SYMBOL(__brelse);
1162
1163 /*
1164 * bforget() is like brelse(), except it discards any
1165 * potentially dirty data.
1166 */
1167 void __bforget(struct buffer_head *bh)
1168 {
1169 clear_buffer_dirty(bh);
1170 if (bh->b_assoc_map) {
1171 struct address_space *buffer_mapping = bh->b_page->mapping;
1172
1173 spin_lock(&buffer_mapping->private_lock);
1174 list_del_init(&bh->b_assoc_buffers);
1175 bh->b_assoc_map = NULL;
1176 spin_unlock(&buffer_mapping->private_lock);
1177 }
1178 __brelse(bh);
1179 }
1180 EXPORT_SYMBOL(__bforget);
1181
1182 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1183 {
1184 lock_buffer(bh);
1185 if (buffer_uptodate(bh)) {
1186 unlock_buffer(bh);
1187 return bh;
1188 } else {
1189 get_bh(bh);
1190 bh->b_end_io = end_buffer_read_sync;
1191 submit_bh(REQ_OP_READ, 0, bh);
1192 wait_on_buffer(bh);
1193 if (buffer_uptodate(bh))
1194 return bh;
1195 }
1196 brelse(bh);
1197 return NULL;
1198 }
1199
1200 /*
1201 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1202 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1203 * refcount elevated by one when they're in an LRU. A buffer can only appear
1204 * once in a particular CPU's LRU. A single buffer can be present in multiple
1205 * CPU's LRUs at the same time.
1206 *
1207 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1208 * sb_find_get_block().
1209 *
1210 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1211 * a local interrupt disable for that.
1212 */
1213
1214 #define BH_LRU_SIZE 16
1215
1216 struct bh_lru {
1217 struct buffer_head *bhs[BH_LRU_SIZE];
1218 };
1219
1220 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1221
1222 #ifdef CONFIG_SMP
1223 #define bh_lru_lock() local_irq_disable()
1224 #define bh_lru_unlock() local_irq_enable()
1225 #else
1226 #define bh_lru_lock() preempt_disable()
1227 #define bh_lru_unlock() preempt_enable()
1228 #endif
1229
1230 static inline void check_irqs_on(void)
1231 {
1232 #ifdef irqs_disabled
1233 BUG_ON(irqs_disabled());
1234 #endif
1235 }
1236
1237 /*
1238 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1239 * inserted at the front, and the buffer_head at the back if any is evicted.
1240 * Or, if already in the LRU it is moved to the front.
1241 */
1242 static void bh_lru_install(struct buffer_head *bh)
1243 {
1244 struct buffer_head *evictee = bh;
1245 struct bh_lru *b;
1246 int i;
1247
1248 check_irqs_on();
1249 bh_lru_lock();
1250
1251 b = this_cpu_ptr(&bh_lrus);
1252 for (i = 0; i < BH_LRU_SIZE; i++) {
1253 swap(evictee, b->bhs[i]);
1254 if (evictee == bh) {
1255 bh_lru_unlock();
1256 return;
1257 }
1258 }
1259
1260 get_bh(bh);
1261 bh_lru_unlock();
1262 brelse(evictee);
1263 }
1264
1265 /*
1266 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1267 */
1268 static struct buffer_head *
1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271 struct buffer_head *ret = NULL;
1272 unsigned int i;
1273
1274 check_irqs_on();
1275 bh_lru_lock();
1276 for (i = 0; i < BH_LRU_SIZE; i++) {
1277 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278
1279 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1280 bh->b_size == size) {
1281 if (i) {
1282 while (i) {
1283 __this_cpu_write(bh_lrus.bhs[i],
1284 __this_cpu_read(bh_lrus.bhs[i - 1]));
1285 i--;
1286 }
1287 __this_cpu_write(bh_lrus.bhs[0], bh);
1288 }
1289 get_bh(bh);
1290 ret = bh;
1291 break;
1292 }
1293 }
1294 bh_lru_unlock();
1295 return ret;
1296 }
1297
1298 /*
1299 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1300 * it in the LRU and mark it as accessed. If it is not present then return
1301 * NULL
1302 */
1303 struct buffer_head *
1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307
1308 if (bh == NULL) {
1309 /* __find_get_block_slow will mark the page accessed */
1310 bh = __find_get_block_slow(bdev, block);
1311 if (bh)
1312 bh_lru_install(bh);
1313 } else
1314 touch_buffer(bh);
1315
1316 return bh;
1317 }
1318 EXPORT_SYMBOL(__find_get_block);
1319
1320 /*
1321 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1322 * which corresponds to the passed block_device, block and size. The
1323 * returned buffer has its reference count incremented.
1324 *
1325 * __getblk_gfp() will lock up the machine if grow_dev_page's
1326 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1327 */
1328 struct buffer_head *
1329 __getblk_gfp(struct block_device *bdev, sector_t block,
1330 unsigned size, gfp_t gfp)
1331 {
1332 struct buffer_head *bh = __find_get_block(bdev, block, size);
1333
1334 might_sleep();
1335 if (bh == NULL)
1336 bh = __getblk_slow(bdev, block, size, gfp);
1337 return bh;
1338 }
1339 EXPORT_SYMBOL(__getblk_gfp);
1340
1341 /*
1342 * Do async read-ahead on a buffer..
1343 */
1344 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 struct buffer_head *bh = __getblk(bdev, block, size);
1347 if (likely(bh)) {
1348 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1349 brelse(bh);
1350 }
1351 }
1352 EXPORT_SYMBOL(__breadahead);
1353
1354 /**
1355 * __bread_gfp() - reads a specified block and returns the bh
1356 * @bdev: the block_device to read from
1357 * @block: number of block
1358 * @size: size (in bytes) to read
1359 * @gfp: page allocation flag
1360 *
1361 * Reads a specified block, and returns buffer head that contains it.
1362 * The page cache can be allocated from non-movable area
1363 * not to prevent page migration if you set gfp to zero.
1364 * It returns NULL if the block was unreadable.
1365 */
1366 struct buffer_head *
1367 __bread_gfp(struct block_device *bdev, sector_t block,
1368 unsigned size, gfp_t gfp)
1369 {
1370 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1371
1372 if (likely(bh) && !buffer_uptodate(bh))
1373 bh = __bread_slow(bh);
1374 return bh;
1375 }
1376 EXPORT_SYMBOL(__bread_gfp);
1377
1378 /*
1379 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1380 * This doesn't race because it runs in each cpu either in irq
1381 * or with preempt disabled.
1382 */
1383 static void invalidate_bh_lru(void *arg)
1384 {
1385 struct bh_lru *b = &get_cpu_var(bh_lrus);
1386 int i;
1387
1388 for (i = 0; i < BH_LRU_SIZE; i++) {
1389 brelse(b->bhs[i]);
1390 b->bhs[i] = NULL;
1391 }
1392 put_cpu_var(bh_lrus);
1393 }
1394
1395 static bool has_bh_in_lru(int cpu, void *dummy)
1396 {
1397 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1398 int i;
1399
1400 for (i = 0; i < BH_LRU_SIZE; i++) {
1401 if (b->bhs[i])
1402 return 1;
1403 }
1404
1405 return 0;
1406 }
1407
1408 void invalidate_bh_lrus(void)
1409 {
1410 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1411 }
1412 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1413
1414 void set_bh_page(struct buffer_head *bh,
1415 struct page *page, unsigned long offset)
1416 {
1417 bh->b_page = page;
1418 BUG_ON(offset >= PAGE_SIZE);
1419 if (PageHighMem(page))
1420 /*
1421 * This catches illegal uses and preserves the offset:
1422 */
1423 bh->b_data = (char *)(0 + offset);
1424 else
1425 bh->b_data = page_address(page) + offset;
1426 }
1427 EXPORT_SYMBOL(set_bh_page);
1428
1429 /*
1430 * Called when truncating a buffer on a page completely.
1431 */
1432
1433 /* Bits that are cleared during an invalidate */
1434 #define BUFFER_FLAGS_DISCARD \
1435 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1436 1 << BH_Delay | 1 << BH_Unwritten)
1437
1438 static void discard_buffer(struct buffer_head * bh)
1439 {
1440 unsigned long b_state, b_state_old;
1441
1442 lock_buffer(bh);
1443 clear_buffer_dirty(bh);
1444 bh->b_bdev = NULL;
1445 b_state = bh->b_state;
1446 for (;;) {
1447 b_state_old = cmpxchg(&bh->b_state, b_state,
1448 (b_state & ~BUFFER_FLAGS_DISCARD));
1449 if (b_state_old == b_state)
1450 break;
1451 b_state = b_state_old;
1452 }
1453 unlock_buffer(bh);
1454 }
1455
1456 /**
1457 * block_invalidatepage - invalidate part or all of a buffer-backed page
1458 *
1459 * @page: the page which is affected
1460 * @offset: start of the range to invalidate
1461 * @length: length of the range to invalidate
1462 *
1463 * block_invalidatepage() is called when all or part of the page has become
1464 * invalidated by a truncate operation.
1465 *
1466 * block_invalidatepage() does not have to release all buffers, but it must
1467 * ensure that no dirty buffer is left outside @offset and that no I/O
1468 * is underway against any of the blocks which are outside the truncation
1469 * point. Because the caller is about to free (and possibly reuse) those
1470 * blocks on-disk.
1471 */
1472 void block_invalidatepage(struct page *page, unsigned int offset,
1473 unsigned int length)
1474 {
1475 struct buffer_head *head, *bh, *next;
1476 unsigned int curr_off = 0;
1477 unsigned int stop = length + offset;
1478
1479 BUG_ON(!PageLocked(page));
1480 if (!page_has_buffers(page))
1481 goto out;
1482
1483 /*
1484 * Check for overflow
1485 */
1486 BUG_ON(stop > PAGE_SIZE || stop < length);
1487
1488 head = page_buffers(page);
1489 bh = head;
1490 do {
1491 unsigned int next_off = curr_off + bh->b_size;
1492 next = bh->b_this_page;
1493
1494 /*
1495 * Are we still fully in range ?
1496 */
1497 if (next_off > stop)
1498 goto out;
1499
1500 /*
1501 * is this block fully invalidated?
1502 */
1503 if (offset <= curr_off)
1504 discard_buffer(bh);
1505 curr_off = next_off;
1506 bh = next;
1507 } while (bh != head);
1508
1509 /*
1510 * We release buffers only if the entire page is being invalidated.
1511 * The get_block cached value has been unconditionally invalidated,
1512 * so real IO is not possible anymore.
1513 */
1514 if (offset == 0)
1515 try_to_release_page(page, 0);
1516 out:
1517 return;
1518 }
1519 EXPORT_SYMBOL(block_invalidatepage);
1520
1521
1522 /*
1523 * We attach and possibly dirty the buffers atomically wrt
1524 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1525 * is already excluded via the page lock.
1526 */
1527 void create_empty_buffers(struct page *page,
1528 unsigned long blocksize, unsigned long b_state)
1529 {
1530 struct buffer_head *bh, *head, *tail;
1531
1532 head = alloc_page_buffers(page, blocksize, true);
1533 bh = head;
1534 do {
1535 bh->b_state |= b_state;
1536 tail = bh;
1537 bh = bh->b_this_page;
1538 } while (bh);
1539 tail->b_this_page = head;
1540
1541 spin_lock(&page->mapping->private_lock);
1542 if (PageUptodate(page) || PageDirty(page)) {
1543 bh = head;
1544 do {
1545 if (PageDirty(page))
1546 set_buffer_dirty(bh);
1547 if (PageUptodate(page))
1548 set_buffer_uptodate(bh);
1549 bh = bh->b_this_page;
1550 } while (bh != head);
1551 }
1552 attach_page_buffers(page, head);
1553 spin_unlock(&page->mapping->private_lock);
1554 }
1555 EXPORT_SYMBOL(create_empty_buffers);
1556
1557 /**
1558 * clean_bdev_aliases: clean a range of buffers in block device
1559 * @bdev: Block device to clean buffers in
1560 * @block: Start of a range of blocks to clean
1561 * @len: Number of blocks to clean
1562 *
1563 * We are taking a range of blocks for data and we don't want writeback of any
1564 * buffer-cache aliases starting from return from this function and until the
1565 * moment when something will explicitly mark the buffer dirty (hopefully that
1566 * will not happen until we will free that block ;-) We don't even need to mark
1567 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1568 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1569 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1570 * would confuse anyone who might pick it with bread() afterwards...
1571 *
1572 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1573 * writeout I/O going on against recently-freed buffers. We don't wait on that
1574 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1575 * need to. That happens here.
1576 */
1577 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1578 {
1579 struct inode *bd_inode = bdev->bd_inode;
1580 struct address_space *bd_mapping = bd_inode->i_mapping;
1581 struct pagevec pvec;
1582 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1583 pgoff_t end;
1584 int i, count;
1585 struct buffer_head *bh;
1586 struct buffer_head *head;
1587
1588 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1589 pagevec_init(&pvec);
1590 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1591 count = pagevec_count(&pvec);
1592 for (i = 0; i < count; i++) {
1593 struct page *page = pvec.pages[i];
1594
1595 if (!page_has_buffers(page))
1596 continue;
1597 /*
1598 * We use page lock instead of bd_mapping->private_lock
1599 * to pin buffers here since we can afford to sleep and
1600 * it scales better than a global spinlock lock.
1601 */
1602 lock_page(page);
1603 /* Recheck when the page is locked which pins bhs */
1604 if (!page_has_buffers(page))
1605 goto unlock_page;
1606 head = page_buffers(page);
1607 bh = head;
1608 do {
1609 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1610 goto next;
1611 if (bh->b_blocknr >= block + len)
1612 break;
1613 clear_buffer_dirty(bh);
1614 wait_on_buffer(bh);
1615 clear_buffer_req(bh);
1616 next:
1617 bh = bh->b_this_page;
1618 } while (bh != head);
1619 unlock_page:
1620 unlock_page(page);
1621 }
1622 pagevec_release(&pvec);
1623 cond_resched();
1624 /* End of range already reached? */
1625 if (index > end || !index)
1626 break;
1627 }
1628 }
1629 EXPORT_SYMBOL(clean_bdev_aliases);
1630
1631 /*
1632 * Size is a power-of-two in the range 512..PAGE_SIZE,
1633 * and the case we care about most is PAGE_SIZE.
1634 *
1635 * So this *could* possibly be written with those
1636 * constraints in mind (relevant mostly if some
1637 * architecture has a slow bit-scan instruction)
1638 */
1639 static inline int block_size_bits(unsigned int blocksize)
1640 {
1641 return ilog2(blocksize);
1642 }
1643
1644 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1645 {
1646 BUG_ON(!PageLocked(page));
1647
1648 if (!page_has_buffers(page))
1649 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1650 b_state);
1651 return page_buffers(page);
1652 }
1653
1654 /*
1655 * NOTE! All mapped/uptodate combinations are valid:
1656 *
1657 * Mapped Uptodate Meaning
1658 *
1659 * No No "unknown" - must do get_block()
1660 * No Yes "hole" - zero-filled
1661 * Yes No "allocated" - allocated on disk, not read in
1662 * Yes Yes "valid" - allocated and up-to-date in memory.
1663 *
1664 * "Dirty" is valid only with the last case (mapped+uptodate).
1665 */
1666
1667 /*
1668 * While block_write_full_page is writing back the dirty buffers under
1669 * the page lock, whoever dirtied the buffers may decide to clean them
1670 * again at any time. We handle that by only looking at the buffer
1671 * state inside lock_buffer().
1672 *
1673 * If block_write_full_page() is called for regular writeback
1674 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1675 * locked buffer. This only can happen if someone has written the buffer
1676 * directly, with submit_bh(). At the address_space level PageWriteback
1677 * prevents this contention from occurring.
1678 *
1679 * If block_write_full_page() is called with wbc->sync_mode ==
1680 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1681 * causes the writes to be flagged as synchronous writes.
1682 */
1683 int __block_write_full_page(struct inode *inode, struct page *page,
1684 get_block_t *get_block, struct writeback_control *wbc,
1685 bh_end_io_t *handler)
1686 {
1687 int err;
1688 sector_t block;
1689 sector_t last_block;
1690 struct buffer_head *bh, *head;
1691 unsigned int blocksize, bbits;
1692 int nr_underway = 0;
1693 int write_flags = wbc_to_write_flags(wbc);
1694
1695 head = create_page_buffers(page, inode,
1696 (1 << BH_Dirty)|(1 << BH_Uptodate));
1697
1698 /*
1699 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1700 * here, and the (potentially unmapped) buffers may become dirty at
1701 * any time. If a buffer becomes dirty here after we've inspected it
1702 * then we just miss that fact, and the page stays dirty.
1703 *
1704 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1705 * handle that here by just cleaning them.
1706 */
1707
1708 bh = head;
1709 blocksize = bh->b_size;
1710 bbits = block_size_bits(blocksize);
1711
1712 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1713 last_block = (i_size_read(inode) - 1) >> bbits;
1714
1715 /*
1716 * Get all the dirty buffers mapped to disk addresses and
1717 * handle any aliases from the underlying blockdev's mapping.
1718 */
1719 do {
1720 if (block > last_block) {
1721 /*
1722 * mapped buffers outside i_size will occur, because
1723 * this page can be outside i_size when there is a
1724 * truncate in progress.
1725 */
1726 /*
1727 * The buffer was zeroed by block_write_full_page()
1728 */
1729 clear_buffer_dirty(bh);
1730 set_buffer_uptodate(bh);
1731 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1732 buffer_dirty(bh)) {
1733 WARN_ON(bh->b_size != blocksize);
1734 err = get_block(inode, block, bh, 1);
1735 if (err)
1736 goto recover;
1737 clear_buffer_delay(bh);
1738 if (buffer_new(bh)) {
1739 /* blockdev mappings never come here */
1740 clear_buffer_new(bh);
1741 clean_bdev_bh_alias(bh);
1742 }
1743 }
1744 bh = bh->b_this_page;
1745 block++;
1746 } while (bh != head);
1747
1748 do {
1749 if (!buffer_mapped(bh))
1750 continue;
1751 /*
1752 * If it's a fully non-blocking write attempt and we cannot
1753 * lock the buffer then redirty the page. Note that this can
1754 * potentially cause a busy-wait loop from writeback threads
1755 * and kswapd activity, but those code paths have their own
1756 * higher-level throttling.
1757 */
1758 if (wbc->sync_mode != WB_SYNC_NONE) {
1759 lock_buffer(bh);
1760 } else if (!trylock_buffer(bh)) {
1761 redirty_page_for_writepage(wbc, page);
1762 continue;
1763 }
1764 if (test_clear_buffer_dirty(bh)) {
1765 mark_buffer_async_write_endio(bh, handler);
1766 } else {
1767 unlock_buffer(bh);
1768 }
1769 } while ((bh = bh->b_this_page) != head);
1770
1771 /*
1772 * The page and its buffers are protected by PageWriteback(), so we can
1773 * drop the bh refcounts early.
1774 */
1775 BUG_ON(PageWriteback(page));
1776 set_page_writeback(page);
1777
1778 do {
1779 struct buffer_head *next = bh->b_this_page;
1780 if (buffer_async_write(bh)) {
1781 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1782 inode->i_write_hint, wbc);
1783 nr_underway++;
1784 }
1785 bh = next;
1786 } while (bh != head);
1787 unlock_page(page);
1788
1789 err = 0;
1790 done:
1791 if (nr_underway == 0) {
1792 /*
1793 * The page was marked dirty, but the buffers were
1794 * clean. Someone wrote them back by hand with
1795 * ll_rw_block/submit_bh. A rare case.
1796 */
1797 end_page_writeback(page);
1798
1799 /*
1800 * The page and buffer_heads can be released at any time from
1801 * here on.
1802 */
1803 }
1804 return err;
1805
1806 recover:
1807 /*
1808 * ENOSPC, or some other error. We may already have added some
1809 * blocks to the file, so we need to write these out to avoid
1810 * exposing stale data.
1811 * The page is currently locked and not marked for writeback
1812 */
1813 bh = head;
1814 /* Recovery: lock and submit the mapped buffers */
1815 do {
1816 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1817 !buffer_delay(bh)) {
1818 lock_buffer(bh);
1819 mark_buffer_async_write_endio(bh, handler);
1820 } else {
1821 /*
1822 * The buffer may have been set dirty during
1823 * attachment to a dirty page.
1824 */
1825 clear_buffer_dirty(bh);
1826 }
1827 } while ((bh = bh->b_this_page) != head);
1828 SetPageError(page);
1829 BUG_ON(PageWriteback(page));
1830 mapping_set_error(page->mapping, err);
1831 set_page_writeback(page);
1832 do {
1833 struct buffer_head *next = bh->b_this_page;
1834 if (buffer_async_write(bh)) {
1835 clear_buffer_dirty(bh);
1836 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1837 inode->i_write_hint, wbc);
1838 nr_underway++;
1839 }
1840 bh = next;
1841 } while (bh != head);
1842 unlock_page(page);
1843 goto done;
1844 }
1845 EXPORT_SYMBOL(__block_write_full_page);
1846
1847 /*
1848 * If a page has any new buffers, zero them out here, and mark them uptodate
1849 * and dirty so they'll be written out (in order to prevent uninitialised
1850 * block data from leaking). And clear the new bit.
1851 */
1852 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1853 {
1854 unsigned int block_start, block_end;
1855 struct buffer_head *head, *bh;
1856
1857 BUG_ON(!PageLocked(page));
1858 if (!page_has_buffers(page))
1859 return;
1860
1861 bh = head = page_buffers(page);
1862 block_start = 0;
1863 do {
1864 block_end = block_start + bh->b_size;
1865
1866 if (buffer_new(bh)) {
1867 if (block_end > from && block_start < to) {
1868 if (!PageUptodate(page)) {
1869 unsigned start, size;
1870
1871 start = max(from, block_start);
1872 size = min(to, block_end) - start;
1873
1874 zero_user(page, start, size);
1875 set_buffer_uptodate(bh);
1876 }
1877
1878 clear_buffer_new(bh);
1879 mark_buffer_dirty(bh);
1880 }
1881 }
1882
1883 block_start = block_end;
1884 bh = bh->b_this_page;
1885 } while (bh != head);
1886 }
1887 EXPORT_SYMBOL(page_zero_new_buffers);
1888
1889 static void
1890 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1891 struct iomap *iomap)
1892 {
1893 loff_t offset = block << inode->i_blkbits;
1894
1895 bh->b_bdev = iomap->bdev;
1896
1897 /*
1898 * Block points to offset in file we need to map, iomap contains
1899 * the offset at which the map starts. If the map ends before the
1900 * current block, then do not map the buffer and let the caller
1901 * handle it.
1902 */
1903 BUG_ON(offset >= iomap->offset + iomap->length);
1904
1905 switch (iomap->type) {
1906 case IOMAP_HOLE:
1907 /*
1908 * If the buffer is not up to date or beyond the current EOF,
1909 * we need to mark it as new to ensure sub-block zeroing is
1910 * executed if necessary.
1911 */
1912 if (!buffer_uptodate(bh) ||
1913 (offset >= i_size_read(inode)))
1914 set_buffer_new(bh);
1915 break;
1916 case IOMAP_DELALLOC:
1917 if (!buffer_uptodate(bh) ||
1918 (offset >= i_size_read(inode)))
1919 set_buffer_new(bh);
1920 set_buffer_uptodate(bh);
1921 set_buffer_mapped(bh);
1922 set_buffer_delay(bh);
1923 break;
1924 case IOMAP_UNWRITTEN:
1925 /*
1926 * For unwritten regions, we always need to ensure that
1927 * sub-block writes cause the regions in the block we are not
1928 * writing to are zeroed. Set the buffer as new to ensure this.
1929 */
1930 set_buffer_new(bh);
1931 set_buffer_unwritten(bh);
1932 /* FALLTHRU */
1933 case IOMAP_MAPPED:
1934 if (offset >= i_size_read(inode))
1935 set_buffer_new(bh);
1936 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1937 inode->i_blkbits;
1938 set_buffer_mapped(bh);
1939 break;
1940 }
1941 }
1942
1943 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1944 get_block_t *get_block, struct iomap *iomap)
1945 {
1946 unsigned from = pos & (PAGE_SIZE - 1);
1947 unsigned to = from + len;
1948 struct inode *inode = page->mapping->host;
1949 unsigned block_start, block_end;
1950 sector_t block;
1951 int err = 0;
1952 unsigned blocksize, bbits;
1953 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1954
1955 BUG_ON(!PageLocked(page));
1956 BUG_ON(from > PAGE_SIZE);
1957 BUG_ON(to > PAGE_SIZE);
1958 BUG_ON(from > to);
1959
1960 head = create_page_buffers(page, inode, 0);
1961 blocksize = head->b_size;
1962 bbits = block_size_bits(blocksize);
1963
1964 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1965
1966 for(bh = head, block_start = 0; bh != head || !block_start;
1967 block++, block_start=block_end, bh = bh->b_this_page) {
1968 block_end = block_start + blocksize;
1969 if (block_end <= from || block_start >= to) {
1970 if (PageUptodate(page)) {
1971 if (!buffer_uptodate(bh))
1972 set_buffer_uptodate(bh);
1973 }
1974 continue;
1975 }
1976 if (buffer_new(bh))
1977 clear_buffer_new(bh);
1978 if (!buffer_mapped(bh)) {
1979 WARN_ON(bh->b_size != blocksize);
1980 if (get_block) {
1981 err = get_block(inode, block, bh, 1);
1982 if (err)
1983 break;
1984 } else {
1985 iomap_to_bh(inode, block, bh, iomap);
1986 }
1987
1988 if (buffer_new(bh)) {
1989 clean_bdev_bh_alias(bh);
1990 if (PageUptodate(page)) {
1991 clear_buffer_new(bh);
1992 set_buffer_uptodate(bh);
1993 mark_buffer_dirty(bh);
1994 continue;
1995 }
1996 if (block_end > to || block_start < from)
1997 zero_user_segments(page,
1998 to, block_end,
1999 block_start, from);
2000 continue;
2001 }
2002 }
2003 if (PageUptodate(page)) {
2004 if (!buffer_uptodate(bh))
2005 set_buffer_uptodate(bh);
2006 continue;
2007 }
2008 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2009 !buffer_unwritten(bh) &&
2010 (block_start < from || block_end > to)) {
2011 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2012 *wait_bh++=bh;
2013 }
2014 }
2015 /*
2016 * If we issued read requests - let them complete.
2017 */
2018 while(wait_bh > wait) {
2019 wait_on_buffer(*--wait_bh);
2020 if (!buffer_uptodate(*wait_bh))
2021 err = -EIO;
2022 }
2023 if (unlikely(err))
2024 page_zero_new_buffers(page, from, to);
2025 return err;
2026 }
2027
2028 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2029 get_block_t *get_block)
2030 {
2031 return __block_write_begin_int(page, pos, len, get_block, NULL);
2032 }
2033 EXPORT_SYMBOL(__block_write_begin);
2034
2035 static int __block_commit_write(struct inode *inode, struct page *page,
2036 unsigned from, unsigned to)
2037 {
2038 unsigned block_start, block_end;
2039 int partial = 0;
2040 unsigned blocksize;
2041 struct buffer_head *bh, *head;
2042
2043 bh = head = page_buffers(page);
2044 blocksize = bh->b_size;
2045
2046 block_start = 0;
2047 do {
2048 block_end = block_start + blocksize;
2049 if (block_end <= from || block_start >= to) {
2050 if (!buffer_uptodate(bh))
2051 partial = 1;
2052 } else {
2053 set_buffer_uptodate(bh);
2054 mark_buffer_dirty(bh);
2055 }
2056 clear_buffer_new(bh);
2057
2058 block_start = block_end;
2059 bh = bh->b_this_page;
2060 } while (bh != head);
2061
2062 /*
2063 * If this is a partial write which happened to make all buffers
2064 * uptodate then we can optimize away a bogus readpage() for
2065 * the next read(). Here we 'discover' whether the page went
2066 * uptodate as a result of this (potentially partial) write.
2067 */
2068 if (!partial)
2069 SetPageUptodate(page);
2070 return 0;
2071 }
2072
2073 /*
2074 * block_write_begin takes care of the basic task of block allocation and
2075 * bringing partial write blocks uptodate first.
2076 *
2077 * The filesystem needs to handle block truncation upon failure.
2078 */
2079 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2080 unsigned flags, struct page **pagep, get_block_t *get_block)
2081 {
2082 pgoff_t index = pos >> PAGE_SHIFT;
2083 struct page *page;
2084 int status;
2085
2086 page = grab_cache_page_write_begin(mapping, index, flags);
2087 if (!page)
2088 return -ENOMEM;
2089
2090 status = __block_write_begin(page, pos, len, get_block);
2091 if (unlikely(status)) {
2092 unlock_page(page);
2093 put_page(page);
2094 page = NULL;
2095 }
2096
2097 *pagep = page;
2098 return status;
2099 }
2100 EXPORT_SYMBOL(block_write_begin);
2101
2102 int block_write_end(struct file *file, struct address_space *mapping,
2103 loff_t pos, unsigned len, unsigned copied,
2104 struct page *page, void *fsdata)
2105 {
2106 struct inode *inode = mapping->host;
2107 unsigned start;
2108
2109 start = pos & (PAGE_SIZE - 1);
2110
2111 if (unlikely(copied < len)) {
2112 /*
2113 * The buffers that were written will now be uptodate, so we
2114 * don't have to worry about a readpage reading them and
2115 * overwriting a partial write. However if we have encountered
2116 * a short write and only partially written into a buffer, it
2117 * will not be marked uptodate, so a readpage might come in and
2118 * destroy our partial write.
2119 *
2120 * Do the simplest thing, and just treat any short write to a
2121 * non uptodate page as a zero-length write, and force the
2122 * caller to redo the whole thing.
2123 */
2124 if (!PageUptodate(page))
2125 copied = 0;
2126
2127 page_zero_new_buffers(page, start+copied, start+len);
2128 }
2129 flush_dcache_page(page);
2130
2131 /* This could be a short (even 0-length) commit */
2132 __block_commit_write(inode, page, start, start+copied);
2133
2134 return copied;
2135 }
2136 EXPORT_SYMBOL(block_write_end);
2137
2138 int generic_write_end(struct file *file, struct address_space *mapping,
2139 loff_t pos, unsigned len, unsigned copied,
2140 struct page *page, void *fsdata)
2141 {
2142 struct inode *inode = mapping->host;
2143 loff_t old_size = inode->i_size;
2144 int i_size_changed = 0;
2145
2146 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2147
2148 /*
2149 * No need to use i_size_read() here, the i_size
2150 * cannot change under us because we hold i_mutex.
2151 *
2152 * But it's important to update i_size while still holding page lock:
2153 * page writeout could otherwise come in and zero beyond i_size.
2154 */
2155 if (pos+copied > inode->i_size) {
2156 i_size_write(inode, pos+copied);
2157 i_size_changed = 1;
2158 }
2159
2160 unlock_page(page);
2161 put_page(page);
2162
2163 if (old_size < pos)
2164 pagecache_isize_extended(inode, old_size, pos);
2165 /*
2166 * Don't mark the inode dirty under page lock. First, it unnecessarily
2167 * makes the holding time of page lock longer. Second, it forces lock
2168 * ordering of page lock and transaction start for journaling
2169 * filesystems.
2170 */
2171 if (i_size_changed)
2172 mark_inode_dirty(inode);
2173
2174 return copied;
2175 }
2176 EXPORT_SYMBOL(generic_write_end);
2177
2178 /*
2179 * block_is_partially_uptodate checks whether buffers within a page are
2180 * uptodate or not.
2181 *
2182 * Returns true if all buffers which correspond to a file portion
2183 * we want to read are uptodate.
2184 */
2185 int block_is_partially_uptodate(struct page *page, unsigned long from,
2186 unsigned long count)
2187 {
2188 unsigned block_start, block_end, blocksize;
2189 unsigned to;
2190 struct buffer_head *bh, *head;
2191 int ret = 1;
2192
2193 if (!page_has_buffers(page))
2194 return 0;
2195
2196 head = page_buffers(page);
2197 blocksize = head->b_size;
2198 to = min_t(unsigned, PAGE_SIZE - from, count);
2199 to = from + to;
2200 if (from < blocksize && to > PAGE_SIZE - blocksize)
2201 return 0;
2202
2203 bh = head;
2204 block_start = 0;
2205 do {
2206 block_end = block_start + blocksize;
2207 if (block_end > from && block_start < to) {
2208 if (!buffer_uptodate(bh)) {
2209 ret = 0;
2210 break;
2211 }
2212 if (block_end >= to)
2213 break;
2214 }
2215 block_start = block_end;
2216 bh = bh->b_this_page;
2217 } while (bh != head);
2218
2219 return ret;
2220 }
2221 EXPORT_SYMBOL(block_is_partially_uptodate);
2222
2223 /*
2224 * Generic "read page" function for block devices that have the normal
2225 * get_block functionality. This is most of the block device filesystems.
2226 * Reads the page asynchronously --- the unlock_buffer() and
2227 * set/clear_buffer_uptodate() functions propagate buffer state into the
2228 * page struct once IO has completed.
2229 */
2230 int block_read_full_page(struct page *page, get_block_t *get_block)
2231 {
2232 struct inode *inode = page->mapping->host;
2233 sector_t iblock, lblock;
2234 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2235 unsigned int blocksize, bbits;
2236 int nr, i;
2237 int fully_mapped = 1;
2238
2239 head = create_page_buffers(page, inode, 0);
2240 blocksize = head->b_size;
2241 bbits = block_size_bits(blocksize);
2242
2243 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2244 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2245 bh = head;
2246 nr = 0;
2247 i = 0;
2248
2249 do {
2250 if (buffer_uptodate(bh))
2251 continue;
2252
2253 if (!buffer_mapped(bh)) {
2254 int err = 0;
2255
2256 fully_mapped = 0;
2257 if (iblock < lblock) {
2258 WARN_ON(bh->b_size != blocksize);
2259 err = get_block(inode, iblock, bh, 0);
2260 if (err)
2261 SetPageError(page);
2262 }
2263 if (!buffer_mapped(bh)) {
2264 zero_user(page, i * blocksize, blocksize);
2265 if (!err)
2266 set_buffer_uptodate(bh);
2267 continue;
2268 }
2269 /*
2270 * get_block() might have updated the buffer
2271 * synchronously
2272 */
2273 if (buffer_uptodate(bh))
2274 continue;
2275 }
2276 arr[nr++] = bh;
2277 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2278
2279 if (fully_mapped)
2280 SetPageMappedToDisk(page);
2281
2282 if (!nr) {
2283 /*
2284 * All buffers are uptodate - we can set the page uptodate
2285 * as well. But not if get_block() returned an error.
2286 */
2287 if (!PageError(page))
2288 SetPageUptodate(page);
2289 unlock_page(page);
2290 return 0;
2291 }
2292
2293 /* Stage two: lock the buffers */
2294 for (i = 0; i < nr; i++) {
2295 bh = arr[i];
2296 lock_buffer(bh);
2297 mark_buffer_async_read(bh);
2298 }
2299
2300 /*
2301 * Stage 3: start the IO. Check for uptodateness
2302 * inside the buffer lock in case another process reading
2303 * the underlying blockdev brought it uptodate (the sct fix).
2304 */
2305 for (i = 0; i < nr; i++) {
2306 bh = arr[i];
2307 if (buffer_uptodate(bh))
2308 end_buffer_async_read(bh, 1);
2309 else
2310 submit_bh(REQ_OP_READ, 0, bh);
2311 }
2312 return 0;
2313 }
2314 EXPORT_SYMBOL(block_read_full_page);
2315
2316 /* utility function for filesystems that need to do work on expanding
2317 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2318 * deal with the hole.
2319 */
2320 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2321 {
2322 struct address_space *mapping = inode->i_mapping;
2323 struct page *page;
2324 void *fsdata;
2325 int err;
2326
2327 err = inode_newsize_ok(inode, size);
2328 if (err)
2329 goto out;
2330
2331 err = pagecache_write_begin(NULL, mapping, size, 0,
2332 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2333 if (err)
2334 goto out;
2335
2336 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2337 BUG_ON(err > 0);
2338
2339 out:
2340 return err;
2341 }
2342 EXPORT_SYMBOL(generic_cont_expand_simple);
2343
2344 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2345 loff_t pos, loff_t *bytes)
2346 {
2347 struct inode *inode = mapping->host;
2348 unsigned int blocksize = i_blocksize(inode);
2349 struct page *page;
2350 void *fsdata;
2351 pgoff_t index, curidx;
2352 loff_t curpos;
2353 unsigned zerofrom, offset, len;
2354 int err = 0;
2355
2356 index = pos >> PAGE_SHIFT;
2357 offset = pos & ~PAGE_MASK;
2358
2359 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2360 zerofrom = curpos & ~PAGE_MASK;
2361 if (zerofrom & (blocksize-1)) {
2362 *bytes |= (blocksize-1);
2363 (*bytes)++;
2364 }
2365 len = PAGE_SIZE - zerofrom;
2366
2367 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2368 &page, &fsdata);
2369 if (err)
2370 goto out;
2371 zero_user(page, zerofrom, len);
2372 err = pagecache_write_end(file, mapping, curpos, len, len,
2373 page, fsdata);
2374 if (err < 0)
2375 goto out;
2376 BUG_ON(err != len);
2377 err = 0;
2378
2379 balance_dirty_pages_ratelimited(mapping);
2380
2381 if (unlikely(fatal_signal_pending(current))) {
2382 err = -EINTR;
2383 goto out;
2384 }
2385 }
2386
2387 /* page covers the boundary, find the boundary offset */
2388 if (index == curidx) {
2389 zerofrom = curpos & ~PAGE_MASK;
2390 /* if we will expand the thing last block will be filled */
2391 if (offset <= zerofrom) {
2392 goto out;
2393 }
2394 if (zerofrom & (blocksize-1)) {
2395 *bytes |= (blocksize-1);
2396 (*bytes)++;
2397 }
2398 len = offset - zerofrom;
2399
2400 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2401 &page, &fsdata);
2402 if (err)
2403 goto out;
2404 zero_user(page, zerofrom, len);
2405 err = pagecache_write_end(file, mapping, curpos, len, len,
2406 page, fsdata);
2407 if (err < 0)
2408 goto out;
2409 BUG_ON(err != len);
2410 err = 0;
2411 }
2412 out:
2413 return err;
2414 }
2415
2416 /*
2417 * For moronic filesystems that do not allow holes in file.
2418 * We may have to extend the file.
2419 */
2420 int cont_write_begin(struct file *file, struct address_space *mapping,
2421 loff_t pos, unsigned len, unsigned flags,
2422 struct page **pagep, void **fsdata,
2423 get_block_t *get_block, loff_t *bytes)
2424 {
2425 struct inode *inode = mapping->host;
2426 unsigned int blocksize = i_blocksize(inode);
2427 unsigned int zerofrom;
2428 int err;
2429
2430 err = cont_expand_zero(file, mapping, pos, bytes);
2431 if (err)
2432 return err;
2433
2434 zerofrom = *bytes & ~PAGE_MASK;
2435 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2436 *bytes |= (blocksize-1);
2437 (*bytes)++;
2438 }
2439
2440 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2441 }
2442 EXPORT_SYMBOL(cont_write_begin);
2443
2444 int block_commit_write(struct page *page, unsigned from, unsigned to)
2445 {
2446 struct inode *inode = page->mapping->host;
2447 __block_commit_write(inode,page,from,to);
2448 return 0;
2449 }
2450 EXPORT_SYMBOL(block_commit_write);
2451
2452 /*
2453 * block_page_mkwrite() is not allowed to change the file size as it gets
2454 * called from a page fault handler when a page is first dirtied. Hence we must
2455 * be careful to check for EOF conditions here. We set the page up correctly
2456 * for a written page which means we get ENOSPC checking when writing into
2457 * holes and correct delalloc and unwritten extent mapping on filesystems that
2458 * support these features.
2459 *
2460 * We are not allowed to take the i_mutex here so we have to play games to
2461 * protect against truncate races as the page could now be beyond EOF. Because
2462 * truncate writes the inode size before removing pages, once we have the
2463 * page lock we can determine safely if the page is beyond EOF. If it is not
2464 * beyond EOF, then the page is guaranteed safe against truncation until we
2465 * unlock the page.
2466 *
2467 * Direct callers of this function should protect against filesystem freezing
2468 * using sb_start_pagefault() - sb_end_pagefault() functions.
2469 */
2470 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2471 get_block_t get_block)
2472 {
2473 struct page *page = vmf->page;
2474 struct inode *inode = file_inode(vma->vm_file);
2475 unsigned long end;
2476 loff_t size;
2477 int ret;
2478
2479 lock_page(page);
2480 size = i_size_read(inode);
2481 if ((page->mapping != inode->i_mapping) ||
2482 (page_offset(page) > size)) {
2483 /* We overload EFAULT to mean page got truncated */
2484 ret = -EFAULT;
2485 goto out_unlock;
2486 }
2487
2488 /* page is wholly or partially inside EOF */
2489 if (((page->index + 1) << PAGE_SHIFT) > size)
2490 end = size & ~PAGE_MASK;
2491 else
2492 end = PAGE_SIZE;
2493
2494 ret = __block_write_begin(page, 0, end, get_block);
2495 if (!ret)
2496 ret = block_commit_write(page, 0, end);
2497
2498 if (unlikely(ret < 0))
2499 goto out_unlock;
2500 set_page_dirty(page);
2501 wait_for_stable_page(page);
2502 return 0;
2503 out_unlock:
2504 unlock_page(page);
2505 return ret;
2506 }
2507 EXPORT_SYMBOL(block_page_mkwrite);
2508
2509 /*
2510 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2511 * immediately, while under the page lock. So it needs a special end_io
2512 * handler which does not touch the bh after unlocking it.
2513 */
2514 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2515 {
2516 __end_buffer_read_notouch(bh, uptodate);
2517 }
2518
2519 /*
2520 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2521 * the page (converting it to circular linked list and taking care of page
2522 * dirty races).
2523 */
2524 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2525 {
2526 struct buffer_head *bh;
2527
2528 BUG_ON(!PageLocked(page));
2529
2530 spin_lock(&page->mapping->private_lock);
2531 bh = head;
2532 do {
2533 if (PageDirty(page))
2534 set_buffer_dirty(bh);
2535 if (!bh->b_this_page)
2536 bh->b_this_page = head;
2537 bh = bh->b_this_page;
2538 } while (bh != head);
2539 attach_page_buffers(page, head);
2540 spin_unlock(&page->mapping->private_lock);
2541 }
2542
2543 /*
2544 * On entry, the page is fully not uptodate.
2545 * On exit the page is fully uptodate in the areas outside (from,to)
2546 * The filesystem needs to handle block truncation upon failure.
2547 */
2548 int nobh_write_begin(struct address_space *mapping,
2549 loff_t pos, unsigned len, unsigned flags,
2550 struct page **pagep, void **fsdata,
2551 get_block_t *get_block)
2552 {
2553 struct inode *inode = mapping->host;
2554 const unsigned blkbits = inode->i_blkbits;
2555 const unsigned blocksize = 1 << blkbits;
2556 struct buffer_head *head, *bh;
2557 struct page *page;
2558 pgoff_t index;
2559 unsigned from, to;
2560 unsigned block_in_page;
2561 unsigned block_start, block_end;
2562 sector_t block_in_file;
2563 int nr_reads = 0;
2564 int ret = 0;
2565 int is_mapped_to_disk = 1;
2566
2567 index = pos >> PAGE_SHIFT;
2568 from = pos & (PAGE_SIZE - 1);
2569 to = from + len;
2570
2571 page = grab_cache_page_write_begin(mapping, index, flags);
2572 if (!page)
2573 return -ENOMEM;
2574 *pagep = page;
2575 *fsdata = NULL;
2576
2577 if (page_has_buffers(page)) {
2578 ret = __block_write_begin(page, pos, len, get_block);
2579 if (unlikely(ret))
2580 goto out_release;
2581 return ret;
2582 }
2583
2584 if (PageMappedToDisk(page))
2585 return 0;
2586
2587 /*
2588 * Allocate buffers so that we can keep track of state, and potentially
2589 * attach them to the page if an error occurs. In the common case of
2590 * no error, they will just be freed again without ever being attached
2591 * to the page (which is all OK, because we're under the page lock).
2592 *
2593 * Be careful: the buffer linked list is a NULL terminated one, rather
2594 * than the circular one we're used to.
2595 */
2596 head = alloc_page_buffers(page, blocksize, false);
2597 if (!head) {
2598 ret = -ENOMEM;
2599 goto out_release;
2600 }
2601
2602 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2603
2604 /*
2605 * We loop across all blocks in the page, whether or not they are
2606 * part of the affected region. This is so we can discover if the
2607 * page is fully mapped-to-disk.
2608 */
2609 for (block_start = 0, block_in_page = 0, bh = head;
2610 block_start < PAGE_SIZE;
2611 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2612 int create;
2613
2614 block_end = block_start + blocksize;
2615 bh->b_state = 0;
2616 create = 1;
2617 if (block_start >= to)
2618 create = 0;
2619 ret = get_block(inode, block_in_file + block_in_page,
2620 bh, create);
2621 if (ret)
2622 goto failed;
2623 if (!buffer_mapped(bh))
2624 is_mapped_to_disk = 0;
2625 if (buffer_new(bh))
2626 clean_bdev_bh_alias(bh);
2627 if (PageUptodate(page)) {
2628 set_buffer_uptodate(bh);
2629 continue;
2630 }
2631 if (buffer_new(bh) || !buffer_mapped(bh)) {
2632 zero_user_segments(page, block_start, from,
2633 to, block_end);
2634 continue;
2635 }
2636 if (buffer_uptodate(bh))
2637 continue; /* reiserfs does this */
2638 if (block_start < from || block_end > to) {
2639 lock_buffer(bh);
2640 bh->b_end_io = end_buffer_read_nobh;
2641 submit_bh(REQ_OP_READ, 0, bh);
2642 nr_reads++;
2643 }
2644 }
2645
2646 if (nr_reads) {
2647 /*
2648 * The page is locked, so these buffers are protected from
2649 * any VM or truncate activity. Hence we don't need to care
2650 * for the buffer_head refcounts.
2651 */
2652 for (bh = head; bh; bh = bh->b_this_page) {
2653 wait_on_buffer(bh);
2654 if (!buffer_uptodate(bh))
2655 ret = -EIO;
2656 }
2657 if (ret)
2658 goto failed;
2659 }
2660
2661 if (is_mapped_to_disk)
2662 SetPageMappedToDisk(page);
2663
2664 *fsdata = head; /* to be released by nobh_write_end */
2665
2666 return 0;
2667
2668 failed:
2669 BUG_ON(!ret);
2670 /*
2671 * Error recovery is a bit difficult. We need to zero out blocks that
2672 * were newly allocated, and dirty them to ensure they get written out.
2673 * Buffers need to be attached to the page at this point, otherwise
2674 * the handling of potential IO errors during writeout would be hard
2675 * (could try doing synchronous writeout, but what if that fails too?)
2676 */
2677 attach_nobh_buffers(page, head);
2678 page_zero_new_buffers(page, from, to);
2679
2680 out_release:
2681 unlock_page(page);
2682 put_page(page);
2683 *pagep = NULL;
2684
2685 return ret;
2686 }
2687 EXPORT_SYMBOL(nobh_write_begin);
2688
2689 int nobh_write_end(struct file *file, struct address_space *mapping,
2690 loff_t pos, unsigned len, unsigned copied,
2691 struct page *page, void *fsdata)
2692 {
2693 struct inode *inode = page->mapping->host;
2694 struct buffer_head *head = fsdata;
2695 struct buffer_head *bh;
2696 BUG_ON(fsdata != NULL && page_has_buffers(page));
2697
2698 if (unlikely(copied < len) && head)
2699 attach_nobh_buffers(page, head);
2700 if (page_has_buffers(page))
2701 return generic_write_end(file, mapping, pos, len,
2702 copied, page, fsdata);
2703
2704 SetPageUptodate(page);
2705 set_page_dirty(page);
2706 if (pos+copied > inode->i_size) {
2707 i_size_write(inode, pos+copied);
2708 mark_inode_dirty(inode);
2709 }
2710
2711 unlock_page(page);
2712 put_page(page);
2713
2714 while (head) {
2715 bh = head;
2716 head = head->b_this_page;
2717 free_buffer_head(bh);
2718 }
2719
2720 return copied;
2721 }
2722 EXPORT_SYMBOL(nobh_write_end);
2723
2724 /*
2725 * nobh_writepage() - based on block_full_write_page() except
2726 * that it tries to operate without attaching bufferheads to
2727 * the page.
2728 */
2729 int nobh_writepage(struct page *page, get_block_t *get_block,
2730 struct writeback_control *wbc)
2731 {
2732 struct inode * const inode = page->mapping->host;
2733 loff_t i_size = i_size_read(inode);
2734 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2735 unsigned offset;
2736 int ret;
2737
2738 /* Is the page fully inside i_size? */
2739 if (page->index < end_index)
2740 goto out;
2741
2742 /* Is the page fully outside i_size? (truncate in progress) */
2743 offset = i_size & (PAGE_SIZE-1);
2744 if (page->index >= end_index+1 || !offset) {
2745 /*
2746 * The page may have dirty, unmapped buffers. For example,
2747 * they may have been added in ext3_writepage(). Make them
2748 * freeable here, so the page does not leak.
2749 */
2750 #if 0
2751 /* Not really sure about this - do we need this ? */
2752 if (page->mapping->a_ops->invalidatepage)
2753 page->mapping->a_ops->invalidatepage(page, offset);
2754 #endif
2755 unlock_page(page);
2756 return 0; /* don't care */
2757 }
2758
2759 /*
2760 * The page straddles i_size. It must be zeroed out on each and every
2761 * writepage invocation because it may be mmapped. "A file is mapped
2762 * in multiples of the page size. For a file that is not a multiple of
2763 * the page size, the remaining memory is zeroed when mapped, and
2764 * writes to that region are not written out to the file."
2765 */
2766 zero_user_segment(page, offset, PAGE_SIZE);
2767 out:
2768 ret = mpage_writepage(page, get_block, wbc);
2769 if (ret == -EAGAIN)
2770 ret = __block_write_full_page(inode, page, get_block, wbc,
2771 end_buffer_async_write);
2772 return ret;
2773 }
2774 EXPORT_SYMBOL(nobh_writepage);
2775
2776 int nobh_truncate_page(struct address_space *mapping,
2777 loff_t from, get_block_t *get_block)
2778 {
2779 pgoff_t index = from >> PAGE_SHIFT;
2780 unsigned offset = from & (PAGE_SIZE-1);
2781 unsigned blocksize;
2782 sector_t iblock;
2783 unsigned length, pos;
2784 struct inode *inode = mapping->host;
2785 struct page *page;
2786 struct buffer_head map_bh;
2787 int err;
2788
2789 blocksize = i_blocksize(inode);
2790 length = offset & (blocksize - 1);
2791
2792 /* Block boundary? Nothing to do */
2793 if (!length)
2794 return 0;
2795
2796 length = blocksize - length;
2797 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2798
2799 page = grab_cache_page(mapping, index);
2800 err = -ENOMEM;
2801 if (!page)
2802 goto out;
2803
2804 if (page_has_buffers(page)) {
2805 has_buffers:
2806 unlock_page(page);
2807 put_page(page);
2808 return block_truncate_page(mapping, from, get_block);
2809 }
2810
2811 /* Find the buffer that contains "offset" */
2812 pos = blocksize;
2813 while (offset >= pos) {
2814 iblock++;
2815 pos += blocksize;
2816 }
2817
2818 map_bh.b_size = blocksize;
2819 map_bh.b_state = 0;
2820 err = get_block(inode, iblock, &map_bh, 0);
2821 if (err)
2822 goto unlock;
2823 /* unmapped? It's a hole - nothing to do */
2824 if (!buffer_mapped(&map_bh))
2825 goto unlock;
2826
2827 /* Ok, it's mapped. Make sure it's up-to-date */
2828 if (!PageUptodate(page)) {
2829 err = mapping->a_ops->readpage(NULL, page);
2830 if (err) {
2831 put_page(page);
2832 goto out;
2833 }
2834 lock_page(page);
2835 if (!PageUptodate(page)) {
2836 err = -EIO;
2837 goto unlock;
2838 }
2839 if (page_has_buffers(page))
2840 goto has_buffers;
2841 }
2842 zero_user(page, offset, length);
2843 set_page_dirty(page);
2844 err = 0;
2845
2846 unlock:
2847 unlock_page(page);
2848 put_page(page);
2849 out:
2850 return err;
2851 }
2852 EXPORT_SYMBOL(nobh_truncate_page);
2853
2854 int block_truncate_page(struct address_space *mapping,
2855 loff_t from, get_block_t *get_block)
2856 {
2857 pgoff_t index = from >> PAGE_SHIFT;
2858 unsigned offset = from & (PAGE_SIZE-1);
2859 unsigned blocksize;
2860 sector_t iblock;
2861 unsigned length, pos;
2862 struct inode *inode = mapping->host;
2863 struct page *page;
2864 struct buffer_head *bh;
2865 int err;
2866
2867 blocksize = i_blocksize(inode);
2868 length = offset & (blocksize - 1);
2869
2870 /* Block boundary? Nothing to do */
2871 if (!length)
2872 return 0;
2873
2874 length = blocksize - length;
2875 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2876
2877 page = grab_cache_page(mapping, index);
2878 err = -ENOMEM;
2879 if (!page)
2880 goto out;
2881
2882 if (!page_has_buffers(page))
2883 create_empty_buffers(page, blocksize, 0);
2884
2885 /* Find the buffer that contains "offset" */
2886 bh = page_buffers(page);
2887 pos = blocksize;
2888 while (offset >= pos) {
2889 bh = bh->b_this_page;
2890 iblock++;
2891 pos += blocksize;
2892 }
2893
2894 err = 0;
2895 if (!buffer_mapped(bh)) {
2896 WARN_ON(bh->b_size != blocksize);
2897 err = get_block(inode, iblock, bh, 0);
2898 if (err)
2899 goto unlock;
2900 /* unmapped? It's a hole - nothing to do */
2901 if (!buffer_mapped(bh))
2902 goto unlock;
2903 }
2904
2905 /* Ok, it's mapped. Make sure it's up-to-date */
2906 if (PageUptodate(page))
2907 set_buffer_uptodate(bh);
2908
2909 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2910 err = -EIO;
2911 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2912 wait_on_buffer(bh);
2913 /* Uhhuh. Read error. Complain and punt. */
2914 if (!buffer_uptodate(bh))
2915 goto unlock;
2916 }
2917
2918 zero_user(page, offset, length);
2919 mark_buffer_dirty(bh);
2920 err = 0;
2921
2922 unlock:
2923 unlock_page(page);
2924 put_page(page);
2925 out:
2926 return err;
2927 }
2928 EXPORT_SYMBOL(block_truncate_page);
2929
2930 /*
2931 * The generic ->writepage function for buffer-backed address_spaces
2932 */
2933 int block_write_full_page(struct page *page, get_block_t *get_block,
2934 struct writeback_control *wbc)
2935 {
2936 struct inode * const inode = page->mapping->host;
2937 loff_t i_size = i_size_read(inode);
2938 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2939 unsigned offset;
2940
2941 /* Is the page fully inside i_size? */
2942 if (page->index < end_index)
2943 return __block_write_full_page(inode, page, get_block, wbc,
2944 end_buffer_async_write);
2945
2946 /* Is the page fully outside i_size? (truncate in progress) */
2947 offset = i_size & (PAGE_SIZE-1);
2948 if (page->index >= end_index+1 || !offset) {
2949 /*
2950 * The page may have dirty, unmapped buffers. For example,
2951 * they may have been added in ext3_writepage(). Make them
2952 * freeable here, so the page does not leak.
2953 */
2954 do_invalidatepage(page, 0, PAGE_SIZE);
2955 unlock_page(page);
2956 return 0; /* don't care */
2957 }
2958
2959 /*
2960 * The page straddles i_size. It must be zeroed out on each and every
2961 * writepage invocation because it may be mmapped. "A file is mapped
2962 * in multiples of the page size. For a file that is not a multiple of
2963 * the page size, the remaining memory is zeroed when mapped, and
2964 * writes to that region are not written out to the file."
2965 */
2966 zero_user_segment(page, offset, PAGE_SIZE);
2967 return __block_write_full_page(inode, page, get_block, wbc,
2968 end_buffer_async_write);
2969 }
2970 EXPORT_SYMBOL(block_write_full_page);
2971
2972 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2973 get_block_t *get_block)
2974 {
2975 struct inode *inode = mapping->host;
2976 struct buffer_head tmp = {
2977 .b_size = i_blocksize(inode),
2978 };
2979
2980 get_block(inode, block, &tmp, 0);
2981 return tmp.b_blocknr;
2982 }
2983 EXPORT_SYMBOL(generic_block_bmap);
2984
2985 static void end_bio_bh_io_sync(struct bio *bio)
2986 {
2987 struct buffer_head *bh = bio->bi_private;
2988
2989 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2990 set_bit(BH_Quiet, &bh->b_state);
2991
2992 bh->b_end_io(bh, !bio->bi_status);
2993 bio_put(bio);
2994 }
2995
2996 /*
2997 * This allows us to do IO even on the odd last sectors
2998 * of a device, even if the block size is some multiple
2999 * of the physical sector size.
3000 *
3001 * We'll just truncate the bio to the size of the device,
3002 * and clear the end of the buffer head manually.
3003 *
3004 * Truly out-of-range accesses will turn into actual IO
3005 * errors, this only handles the "we need to be able to
3006 * do IO at the final sector" case.
3007 */
3008 void guard_bio_eod(int op, struct bio *bio)
3009 {
3010 sector_t maxsector;
3011 struct bio_vec *bvec = bio_last_bvec_all(bio);
3012 unsigned truncated_bytes;
3013 struct hd_struct *part;
3014
3015 rcu_read_lock();
3016 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3017 if (part)
3018 maxsector = part_nr_sects_read(part);
3019 else
3020 maxsector = get_capacity(bio->bi_disk);
3021 rcu_read_unlock();
3022
3023 if (!maxsector)
3024 return;
3025
3026 /*
3027 * If the *whole* IO is past the end of the device,
3028 * let it through, and the IO layer will turn it into
3029 * an EIO.
3030 */
3031 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3032 return;
3033
3034 maxsector -= bio->bi_iter.bi_sector;
3035 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3036 return;
3037
3038 /* Uhhuh. We've got a bio that straddles the device size! */
3039 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3040
3041 /* Truncate the bio.. */
3042 bio->bi_iter.bi_size -= truncated_bytes;
3043 bvec->bv_len -= truncated_bytes;
3044
3045 /* ..and clear the end of the buffer for reads */
3046 if (op == REQ_OP_READ) {
3047 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3048 truncated_bytes);
3049 }
3050 }
3051
3052 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3053 enum rw_hint write_hint, struct writeback_control *wbc)
3054 {
3055 struct bio *bio;
3056
3057 BUG_ON(!buffer_locked(bh));
3058 BUG_ON(!buffer_mapped(bh));
3059 BUG_ON(!bh->b_end_io);
3060 BUG_ON(buffer_delay(bh));
3061 BUG_ON(buffer_unwritten(bh));
3062
3063 /*
3064 * Only clear out a write error when rewriting
3065 */
3066 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3067 clear_buffer_write_io_error(bh);
3068
3069 /*
3070 * from here on down, it's all bio -- do the initial mapping,
3071 * submit_bio -> generic_make_request may further map this bio around
3072 */
3073 bio = bio_alloc(GFP_NOIO, 1);
3074
3075 if (wbc) {
3076 wbc_init_bio(wbc, bio);
3077 wbc_account_io(wbc, bh->b_page, bh->b_size);
3078 }
3079
3080 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3081 bio_set_dev(bio, bh->b_bdev);
3082 bio->bi_write_hint = write_hint;
3083
3084 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3085 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3086
3087 bio->bi_end_io = end_bio_bh_io_sync;
3088 bio->bi_private = bh;
3089
3090 /* Take care of bh's that straddle the end of the device */
3091 guard_bio_eod(op, bio);
3092
3093 if (buffer_meta(bh))
3094 op_flags |= REQ_META;
3095 if (buffer_prio(bh))
3096 op_flags |= REQ_PRIO;
3097 bio_set_op_attrs(bio, op, op_flags);
3098
3099 submit_bio(bio);
3100 return 0;
3101 }
3102
3103 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3104 {
3105 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3106 }
3107 EXPORT_SYMBOL(submit_bh);
3108
3109 /**
3110 * ll_rw_block: low-level access to block devices (DEPRECATED)
3111 * @op: whether to %READ or %WRITE
3112 * @op_flags: req_flag_bits
3113 * @nr: number of &struct buffer_heads in the array
3114 * @bhs: array of pointers to &struct buffer_head
3115 *
3116 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3117 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3118 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3119 * %REQ_RAHEAD.
3120 *
3121 * This function drops any buffer that it cannot get a lock on (with the
3122 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3123 * request, and any buffer that appears to be up-to-date when doing read
3124 * request. Further it marks as clean buffers that are processed for
3125 * writing (the buffer cache won't assume that they are actually clean
3126 * until the buffer gets unlocked).
3127 *
3128 * ll_rw_block sets b_end_io to simple completion handler that marks
3129 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3130 * any waiters.
3131 *
3132 * All of the buffers must be for the same device, and must also be a
3133 * multiple of the current approved size for the device.
3134 */
3135 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3136 {
3137 int i;
3138
3139 for (i = 0; i < nr; i++) {
3140 struct buffer_head *bh = bhs[i];
3141
3142 if (!trylock_buffer(bh))
3143 continue;
3144 if (op == WRITE) {
3145 if (test_clear_buffer_dirty(bh)) {
3146 bh->b_end_io = end_buffer_write_sync;
3147 get_bh(bh);
3148 submit_bh(op, op_flags, bh);
3149 continue;
3150 }
3151 } else {
3152 if (!buffer_uptodate(bh)) {
3153 bh->b_end_io = end_buffer_read_sync;
3154 get_bh(bh);
3155 submit_bh(op, op_flags, bh);
3156 continue;
3157 }
3158 }
3159 unlock_buffer(bh);
3160 }
3161 }
3162 EXPORT_SYMBOL(ll_rw_block);
3163
3164 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3165 {
3166 lock_buffer(bh);
3167 if (!test_clear_buffer_dirty(bh)) {
3168 unlock_buffer(bh);
3169 return;
3170 }
3171 bh->b_end_io = end_buffer_write_sync;
3172 get_bh(bh);
3173 submit_bh(REQ_OP_WRITE, op_flags, bh);
3174 }
3175 EXPORT_SYMBOL(write_dirty_buffer);
3176
3177 /*
3178 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3179 * and then start new I/O and then wait upon it. The caller must have a ref on
3180 * the buffer_head.
3181 */
3182 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3183 {
3184 int ret = 0;
3185
3186 WARN_ON(atomic_read(&bh->b_count) < 1);
3187 lock_buffer(bh);
3188 if (test_clear_buffer_dirty(bh)) {
3189 get_bh(bh);
3190 bh->b_end_io = end_buffer_write_sync;
3191 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3192 wait_on_buffer(bh);
3193 if (!ret && !buffer_uptodate(bh))
3194 ret = -EIO;
3195 } else {
3196 unlock_buffer(bh);
3197 }
3198 return ret;
3199 }
3200 EXPORT_SYMBOL(__sync_dirty_buffer);
3201
3202 int sync_dirty_buffer(struct buffer_head *bh)
3203 {
3204 return __sync_dirty_buffer(bh, REQ_SYNC);
3205 }
3206 EXPORT_SYMBOL(sync_dirty_buffer);
3207
3208 /*
3209 * try_to_free_buffers() checks if all the buffers on this particular page
3210 * are unused, and releases them if so.
3211 *
3212 * Exclusion against try_to_free_buffers may be obtained by either
3213 * locking the page or by holding its mapping's private_lock.
3214 *
3215 * If the page is dirty but all the buffers are clean then we need to
3216 * be sure to mark the page clean as well. This is because the page
3217 * may be against a block device, and a later reattachment of buffers
3218 * to a dirty page will set *all* buffers dirty. Which would corrupt
3219 * filesystem data on the same device.
3220 *
3221 * The same applies to regular filesystem pages: if all the buffers are
3222 * clean then we set the page clean and proceed. To do that, we require
3223 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3224 * private_lock.
3225 *
3226 * try_to_free_buffers() is non-blocking.
3227 */
3228 static inline int buffer_busy(struct buffer_head *bh)
3229 {
3230 return atomic_read(&bh->b_count) |
3231 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3232 }
3233
3234 static int
3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3236 {
3237 struct buffer_head *head = page_buffers(page);
3238 struct buffer_head *bh;
3239
3240 bh = head;
3241 do {
3242 if (buffer_busy(bh))
3243 goto failed;
3244 bh = bh->b_this_page;
3245 } while (bh != head);
3246
3247 do {
3248 struct buffer_head *next = bh->b_this_page;
3249
3250 if (bh->b_assoc_map)
3251 __remove_assoc_queue(bh);
3252 bh = next;
3253 } while (bh != head);
3254 *buffers_to_free = head;
3255 __clear_page_buffers(page);
3256 return 1;
3257 failed:
3258 return 0;
3259 }
3260
3261 int try_to_free_buffers(struct page *page)
3262 {
3263 struct address_space * const mapping = page->mapping;
3264 struct buffer_head *buffers_to_free = NULL;
3265 int ret = 0;
3266
3267 BUG_ON(!PageLocked(page));
3268 if (PageWriteback(page))
3269 return 0;
3270
3271 if (mapping == NULL) { /* can this still happen? */
3272 ret = drop_buffers(page, &buffers_to_free);
3273 goto out;
3274 }
3275
3276 spin_lock(&mapping->private_lock);
3277 ret = drop_buffers(page, &buffers_to_free);
3278
3279 /*
3280 * If the filesystem writes its buffers by hand (eg ext3)
3281 * then we can have clean buffers against a dirty page. We
3282 * clean the page here; otherwise the VM will never notice
3283 * that the filesystem did any IO at all.
3284 *
3285 * Also, during truncate, discard_buffer will have marked all
3286 * the page's buffers clean. We discover that here and clean
3287 * the page also.
3288 *
3289 * private_lock must be held over this entire operation in order
3290 * to synchronise against __set_page_dirty_buffers and prevent the
3291 * dirty bit from being lost.
3292 */
3293 if (ret)
3294 cancel_dirty_page(page);
3295 spin_unlock(&mapping->private_lock);
3296 out:
3297 if (buffers_to_free) {
3298 struct buffer_head *bh = buffers_to_free;
3299
3300 do {
3301 struct buffer_head *next = bh->b_this_page;
3302 free_buffer_head(bh);
3303 bh = next;
3304 } while (bh != buffers_to_free);
3305 }
3306 return ret;
3307 }
3308 EXPORT_SYMBOL(try_to_free_buffers);
3309
3310 /*
3311 * There are no bdflush tunables left. But distributions are
3312 * still running obsolete flush daemons, so we terminate them here.
3313 *
3314 * Use of bdflush() is deprecated and will be removed in a future kernel.
3315 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3316 */
3317 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3318 {
3319 static int msg_count;
3320
3321 if (!capable(CAP_SYS_ADMIN))
3322 return -EPERM;
3323
3324 if (msg_count < 5) {
3325 msg_count++;
3326 printk(KERN_INFO
3327 "warning: process `%s' used the obsolete bdflush"
3328 " system call\n", current->comm);
3329 printk(KERN_INFO "Fix your initscripts?\n");
3330 }
3331
3332 if (func == 1)
3333 do_exit(0);
3334 return 0;
3335 }
3336
3337 /*
3338 * Buffer-head allocation
3339 */
3340 static struct kmem_cache *bh_cachep __read_mostly;
3341
3342 /*
3343 * Once the number of bh's in the machine exceeds this level, we start
3344 * stripping them in writeback.
3345 */
3346 static unsigned long max_buffer_heads;
3347
3348 int buffer_heads_over_limit;
3349
3350 struct bh_accounting {
3351 int nr; /* Number of live bh's */
3352 int ratelimit; /* Limit cacheline bouncing */
3353 };
3354
3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3356
3357 static void recalc_bh_state(void)
3358 {
3359 int i;
3360 int tot = 0;
3361
3362 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3363 return;
3364 __this_cpu_write(bh_accounting.ratelimit, 0);
3365 for_each_online_cpu(i)
3366 tot += per_cpu(bh_accounting, i).nr;
3367 buffer_heads_over_limit = (tot > max_buffer_heads);
3368 }
3369
3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3371 {
3372 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3373 if (ret) {
3374 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3375 preempt_disable();
3376 __this_cpu_inc(bh_accounting.nr);
3377 recalc_bh_state();
3378 preempt_enable();
3379 }
3380 return ret;
3381 }
3382 EXPORT_SYMBOL(alloc_buffer_head);
3383
3384 void free_buffer_head(struct buffer_head *bh)
3385 {
3386 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3387 kmem_cache_free(bh_cachep, bh);
3388 preempt_disable();
3389 __this_cpu_dec(bh_accounting.nr);
3390 recalc_bh_state();
3391 preempt_enable();
3392 }
3393 EXPORT_SYMBOL(free_buffer_head);
3394
3395 static int buffer_exit_cpu_dead(unsigned int cpu)
3396 {
3397 int i;
3398 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3399
3400 for (i = 0; i < BH_LRU_SIZE; i++) {
3401 brelse(b->bhs[i]);
3402 b->bhs[i] = NULL;
3403 }
3404 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3405 per_cpu(bh_accounting, cpu).nr = 0;
3406 return 0;
3407 }
3408
3409 /**
3410 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411 * @bh: struct buffer_head
3412 *
3413 * Return true if the buffer is up-to-date and false,
3414 * with the buffer locked, if not.
3415 */
3416 int bh_uptodate_or_lock(struct buffer_head *bh)
3417 {
3418 if (!buffer_uptodate(bh)) {
3419 lock_buffer(bh);
3420 if (!buffer_uptodate(bh))
3421 return 0;
3422 unlock_buffer(bh);
3423 }
3424 return 1;
3425 }
3426 EXPORT_SYMBOL(bh_uptodate_or_lock);
3427
3428 /**
3429 * bh_submit_read - Submit a locked buffer for reading
3430 * @bh: struct buffer_head
3431 *
3432 * Returns zero on success and -EIO on error.
3433 */
3434 int bh_submit_read(struct buffer_head *bh)
3435 {
3436 BUG_ON(!buffer_locked(bh));
3437
3438 if (buffer_uptodate(bh)) {
3439 unlock_buffer(bh);
3440 return 0;
3441 }
3442
3443 get_bh(bh);
3444 bh->b_end_io = end_buffer_read_sync;
3445 submit_bh(REQ_OP_READ, 0, bh);
3446 wait_on_buffer(bh);
3447 if (buffer_uptodate(bh))
3448 return 0;
3449 return -EIO;
3450 }
3451 EXPORT_SYMBOL(bh_submit_read);
3452
3453 /*
3454 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3455 *
3456 * Returns the offset within the file on success, and -ENOENT otherwise.
3457 */
3458 static loff_t
3459 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3460 {
3461 loff_t offset = page_offset(page);
3462 struct buffer_head *bh, *head;
3463 bool seek_data = whence == SEEK_DATA;
3464
3465 if (lastoff < offset)
3466 lastoff = offset;
3467
3468 bh = head = page_buffers(page);
3469 do {
3470 offset += bh->b_size;
3471 if (lastoff >= offset)
3472 continue;
3473
3474 /*
3475 * Unwritten extents that have data in the page cache covering
3476 * them can be identified by the BH_Unwritten state flag.
3477 * Pages with multiple buffers might have a mix of holes, data
3478 * and unwritten extents - any buffer with valid data in it
3479 * should have BH_Uptodate flag set on it.
3480 */
3481
3482 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3483 return lastoff;
3484
3485 lastoff = offset;
3486 } while ((bh = bh->b_this_page) != head);
3487 return -ENOENT;
3488 }
3489
3490 /*
3491 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3492 *
3493 * Within unwritten extents, the page cache determines which parts are holes
3494 * and which are data: unwritten and uptodate buffer heads count as data;
3495 * everything else counts as a hole.
3496 *
3497 * Returns the resulting offset on successs, and -ENOENT otherwise.
3498 */
3499 loff_t
3500 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3501 int whence)
3502 {
3503 pgoff_t index = offset >> PAGE_SHIFT;
3504 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3505 loff_t lastoff = offset;
3506 struct pagevec pvec;
3507
3508 if (length <= 0)
3509 return -ENOENT;
3510
3511 pagevec_init(&pvec);
3512
3513 do {
3514 unsigned nr_pages, i;
3515
3516 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3517 end - 1);
3518 if (nr_pages == 0)
3519 break;
3520
3521 for (i = 0; i < nr_pages; i++) {
3522 struct page *page = pvec.pages[i];
3523
3524 /*
3525 * At this point, the page may be truncated or
3526 * invalidated (changing page->mapping to NULL), or
3527 * even swizzled back from swapper_space to tmpfs file
3528 * mapping. However, page->index will not change
3529 * because we have a reference on the page.
3530 *
3531 * If current page offset is beyond where we've ended,
3532 * we've found a hole.
3533 */
3534 if (whence == SEEK_HOLE &&
3535 lastoff < page_offset(page))
3536 goto check_range;
3537
3538 lock_page(page);
3539 if (likely(page->mapping == inode->i_mapping) &&
3540 page_has_buffers(page)) {
3541 lastoff = page_seek_hole_data(page, lastoff, whence);
3542 if (lastoff >= 0) {
3543 unlock_page(page);
3544 goto check_range;
3545 }
3546 }
3547 unlock_page(page);
3548 lastoff = page_offset(page) + PAGE_SIZE;
3549 }
3550 pagevec_release(&pvec);
3551 } while (index < end);
3552
3553 /* When no page at lastoff and we are not done, we found a hole. */
3554 if (whence != SEEK_HOLE)
3555 goto not_found;
3556
3557 check_range:
3558 if (lastoff < offset + length)
3559 goto out;
3560 not_found:
3561 lastoff = -ENOENT;
3562 out:
3563 pagevec_release(&pvec);
3564 return lastoff;
3565 }
3566
3567 void __init buffer_init(void)
3568 {
3569 unsigned long nrpages;
3570 int ret;
3571
3572 bh_cachep = kmem_cache_create("buffer_head",
3573 sizeof(struct buffer_head), 0,
3574 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3575 SLAB_MEM_SPREAD),
3576 NULL);
3577
3578 /*
3579 * Limit the bh occupancy to 10% of ZONE_NORMAL
3580 */
3581 nrpages = (nr_free_buffer_pages() * 10) / 100;
3582 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3583 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3584 NULL, buffer_exit_cpu_dead);
3585 WARN_ON(ret < 0);
3586 }