]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/buffer.c
Merge tag 'sound-5.7-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-jammy-kernel.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129 ClearPagePrivate(page);
130 set_page_private(page, 0);
131 put_page(page);
132 }
133
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136 if (!test_bit(BH_Quiet, &bh->b_state))
137 printk_ratelimited(KERN_ERR
138 "Buffer I/O error on dev %pg, logical block %llu%s\n",
139 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141
142 /*
143 * End-of-IO handler helper function which does not touch the bh after
144 * unlocking it.
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
148 * itself.
149 */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 /* This happens, due to failed read-ahead attempts. */
156 clear_buffer_uptodate(bh);
157 }
158 unlock_buffer(bh);
159 }
160
161 /*
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
164 */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167 __end_buffer_read_notouch(bh, uptodate);
168 put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174 if (uptodate) {
175 set_buffer_uptodate(bh);
176 } else {
177 buffer_io_error(bh, ", lost sync page write");
178 mark_buffer_write_io_error(bh);
179 clear_buffer_uptodate(bh);
180 }
181 unlock_buffer(bh);
182 put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185
186 /*
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
190 * private_lock.
191 *
192 * Hack idea: for the blockdev mapping, private_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock.
195 */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199 struct inode *bd_inode = bdev->bd_inode;
200 struct address_space *bd_mapping = bd_inode->i_mapping;
201 struct buffer_head *ret = NULL;
202 pgoff_t index;
203 struct buffer_head *bh;
204 struct buffer_head *head;
205 struct page *page;
206 int all_mapped = 1;
207 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208
209 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 if (!page)
212 goto out;
213
214 spin_lock(&bd_mapping->private_lock);
215 if (!page_has_buffers(page))
216 goto out_unlock;
217 head = page_buffers(page);
218 bh = head;
219 do {
220 if (!buffer_mapped(bh))
221 all_mapped = 0;
222 else if (bh->b_blocknr == block) {
223 ret = bh;
224 get_bh(bh);
225 goto out_unlock;
226 }
227 bh = bh->b_this_page;
228 } while (bh != head);
229
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
234 */
235 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236 if (all_mapped && __ratelimit(&last_warned)) {
237 printk("__find_get_block_slow() failed. block=%llu, "
238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 "device %pg blocksize: %d\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr,
242 bh->b_state, bh->b_size, bdev,
243 1 << bd_inode->i_blkbits);
244 }
245 out_unlock:
246 spin_unlock(&bd_mapping->private_lock);
247 put_page(page);
248 out:
249 return ret;
250 }
251
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 unsigned long flags;
255 struct buffer_head *first;
256 struct buffer_head *tmp;
257 struct page *page;
258 int page_uptodate = 1;
259
260 BUG_ON(!buffer_async_read(bh));
261
262 page = bh->b_page;
263 if (uptodate) {
264 set_buffer_uptodate(bh);
265 } else {
266 clear_buffer_uptodate(bh);
267 buffer_io_error(bh, ", async page read");
268 SetPageError(page);
269 }
270
271 /*
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
275 */
276 first = page_buffers(page);
277 spin_lock_irqsave(&first->b_uptodate_lock, flags);
278 clear_buffer_async_read(bh);
279 unlock_buffer(bh);
280 tmp = bh;
281 do {
282 if (!buffer_uptodate(tmp))
283 page_uptodate = 0;
284 if (buffer_async_read(tmp)) {
285 BUG_ON(!buffer_locked(tmp));
286 goto still_busy;
287 }
288 tmp = tmp->b_this_page;
289 } while (tmp != bh);
290 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
291
292 /*
293 * If none of the buffers had errors and they are all
294 * uptodate then we can set the page uptodate.
295 */
296 if (page_uptodate && !PageError(page))
297 SetPageUptodate(page);
298 unlock_page(page);
299 return;
300
301 still_busy:
302 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
303 return;
304 }
305
306 struct decrypt_bh_ctx {
307 struct work_struct work;
308 struct buffer_head *bh;
309 };
310
311 static void decrypt_bh(struct work_struct *work)
312 {
313 struct decrypt_bh_ctx *ctx =
314 container_of(work, struct decrypt_bh_ctx, work);
315 struct buffer_head *bh = ctx->bh;
316 int err;
317
318 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
319 bh_offset(bh));
320 end_buffer_async_read(bh, err == 0);
321 kfree(ctx);
322 }
323
324 /*
325 * I/O completion handler for block_read_full_page() - pages
326 * which come unlocked at the end of I/O.
327 */
328 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
329 {
330 /* Decrypt if needed */
331 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
332 IS_ENCRYPTED(bh->b_page->mapping->host) &&
333 S_ISREG(bh->b_page->mapping->host->i_mode)) {
334 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
335
336 if (ctx) {
337 INIT_WORK(&ctx->work, decrypt_bh);
338 ctx->bh = bh;
339 fscrypt_enqueue_decrypt_work(&ctx->work);
340 return;
341 }
342 uptodate = 0;
343 }
344 end_buffer_async_read(bh, uptodate);
345 }
346
347 /*
348 * Completion handler for block_write_full_page() - pages which are unlocked
349 * during I/O, and which have PageWriteback cleared upon I/O completion.
350 */
351 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
352 {
353 unsigned long flags;
354 struct buffer_head *first;
355 struct buffer_head *tmp;
356 struct page *page;
357
358 BUG_ON(!buffer_async_write(bh));
359
360 page = bh->b_page;
361 if (uptodate) {
362 set_buffer_uptodate(bh);
363 } else {
364 buffer_io_error(bh, ", lost async page write");
365 mark_buffer_write_io_error(bh);
366 clear_buffer_uptodate(bh);
367 SetPageError(page);
368 }
369
370 first = page_buffers(page);
371 spin_lock_irqsave(&first->b_uptodate_lock, flags);
372
373 clear_buffer_async_write(bh);
374 unlock_buffer(bh);
375 tmp = bh->b_this_page;
376 while (tmp != bh) {
377 if (buffer_async_write(tmp)) {
378 BUG_ON(!buffer_locked(tmp));
379 goto still_busy;
380 }
381 tmp = tmp->b_this_page;
382 }
383 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
384 end_page_writeback(page);
385 return;
386
387 still_busy:
388 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
389 return;
390 }
391 EXPORT_SYMBOL(end_buffer_async_write);
392
393 /*
394 * If a page's buffers are under async readin (end_buffer_async_read
395 * completion) then there is a possibility that another thread of
396 * control could lock one of the buffers after it has completed
397 * but while some of the other buffers have not completed. This
398 * locked buffer would confuse end_buffer_async_read() into not unlocking
399 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
400 * that this buffer is not under async I/O.
401 *
402 * The page comes unlocked when it has no locked buffer_async buffers
403 * left.
404 *
405 * PageLocked prevents anyone starting new async I/O reads any of
406 * the buffers.
407 *
408 * PageWriteback is used to prevent simultaneous writeout of the same
409 * page.
410 *
411 * PageLocked prevents anyone from starting writeback of a page which is
412 * under read I/O (PageWriteback is only ever set against a locked page).
413 */
414 static void mark_buffer_async_read(struct buffer_head *bh)
415 {
416 bh->b_end_io = end_buffer_async_read_io;
417 set_buffer_async_read(bh);
418 }
419
420 static void mark_buffer_async_write_endio(struct buffer_head *bh,
421 bh_end_io_t *handler)
422 {
423 bh->b_end_io = handler;
424 set_buffer_async_write(bh);
425 }
426
427 void mark_buffer_async_write(struct buffer_head *bh)
428 {
429 mark_buffer_async_write_endio(bh, end_buffer_async_write);
430 }
431 EXPORT_SYMBOL(mark_buffer_async_write);
432
433
434 /*
435 * fs/buffer.c contains helper functions for buffer-backed address space's
436 * fsync functions. A common requirement for buffer-based filesystems is
437 * that certain data from the backing blockdev needs to be written out for
438 * a successful fsync(). For example, ext2 indirect blocks need to be
439 * written back and waited upon before fsync() returns.
440 *
441 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443 * management of a list of dependent buffers at ->i_mapping->private_list.
444 *
445 * Locking is a little subtle: try_to_free_buffers() will remove buffers
446 * from their controlling inode's queue when they are being freed. But
447 * try_to_free_buffers() will be operating against the *blockdev* mapping
448 * at the time, not against the S_ISREG file which depends on those buffers.
449 * So the locking for private_list is via the private_lock in the address_space
450 * which backs the buffers. Which is different from the address_space
451 * against which the buffers are listed. So for a particular address_space,
452 * mapping->private_lock does *not* protect mapping->private_list! In fact,
453 * mapping->private_list will always be protected by the backing blockdev's
454 * ->private_lock.
455 *
456 * Which introduces a requirement: all buffers on an address_space's
457 * ->private_list must be from the same address_space: the blockdev's.
458 *
459 * address_spaces which do not place buffers at ->private_list via these
460 * utility functions are free to use private_lock and private_list for
461 * whatever they want. The only requirement is that list_empty(private_list)
462 * be true at clear_inode() time.
463 *
464 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
465 * filesystems should do that. invalidate_inode_buffers() should just go
466 * BUG_ON(!list_empty).
467 *
468 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
469 * take an address_space, not an inode. And it should be called
470 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
471 * queued up.
472 *
473 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474 * list if it is already on a list. Because if the buffer is on a list,
475 * it *must* already be on the right one. If not, the filesystem is being
476 * silly. This will save a ton of locking. But first we have to ensure
477 * that buffers are taken *off* the old inode's list when they are freed
478 * (presumably in truncate). That requires careful auditing of all
479 * filesystems (do it inside bforget()). It could also be done by bringing
480 * b_inode back.
481 */
482
483 /*
484 * The buffer's backing address_space's private_lock must be held
485 */
486 static void __remove_assoc_queue(struct buffer_head *bh)
487 {
488 list_del_init(&bh->b_assoc_buffers);
489 WARN_ON(!bh->b_assoc_map);
490 bh->b_assoc_map = NULL;
491 }
492
493 int inode_has_buffers(struct inode *inode)
494 {
495 return !list_empty(&inode->i_data.private_list);
496 }
497
498 /*
499 * osync is designed to support O_SYNC io. It waits synchronously for
500 * all already-submitted IO to complete, but does not queue any new
501 * writes to the disk.
502 *
503 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504 * you dirty the buffers, and then use osync_inode_buffers to wait for
505 * completion. Any other dirty buffers which are not yet queued for
506 * write will not be flushed to disk by the osync.
507 */
508 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
509 {
510 struct buffer_head *bh;
511 struct list_head *p;
512 int err = 0;
513
514 spin_lock(lock);
515 repeat:
516 list_for_each_prev(p, list) {
517 bh = BH_ENTRY(p);
518 if (buffer_locked(bh)) {
519 get_bh(bh);
520 spin_unlock(lock);
521 wait_on_buffer(bh);
522 if (!buffer_uptodate(bh))
523 err = -EIO;
524 brelse(bh);
525 spin_lock(lock);
526 goto repeat;
527 }
528 }
529 spin_unlock(lock);
530 return err;
531 }
532
533 void emergency_thaw_bdev(struct super_block *sb)
534 {
535 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
537 }
538
539 /**
540 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
541 * @mapping: the mapping which wants those buffers written
542 *
543 * Starts I/O against the buffers at mapping->private_list, and waits upon
544 * that I/O.
545 *
546 * Basically, this is a convenience function for fsync().
547 * @mapping is a file or directory which needs those buffers to be written for
548 * a successful fsync().
549 */
550 int sync_mapping_buffers(struct address_space *mapping)
551 {
552 struct address_space *buffer_mapping = mapping->private_data;
553
554 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
555 return 0;
556
557 return fsync_buffers_list(&buffer_mapping->private_lock,
558 &mapping->private_list);
559 }
560 EXPORT_SYMBOL(sync_mapping_buffers);
561
562 /*
563 * Called when we've recently written block `bblock', and it is known that
564 * `bblock' was for a buffer_boundary() buffer. This means that the block at
565 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
566 * dirty, schedule it for IO. So that indirects merge nicely with their data.
567 */
568 void write_boundary_block(struct block_device *bdev,
569 sector_t bblock, unsigned blocksize)
570 {
571 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
572 if (bh) {
573 if (buffer_dirty(bh))
574 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
575 put_bh(bh);
576 }
577 }
578
579 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
580 {
581 struct address_space *mapping = inode->i_mapping;
582 struct address_space *buffer_mapping = bh->b_page->mapping;
583
584 mark_buffer_dirty(bh);
585 if (!mapping->private_data) {
586 mapping->private_data = buffer_mapping;
587 } else {
588 BUG_ON(mapping->private_data != buffer_mapping);
589 }
590 if (!bh->b_assoc_map) {
591 spin_lock(&buffer_mapping->private_lock);
592 list_move_tail(&bh->b_assoc_buffers,
593 &mapping->private_list);
594 bh->b_assoc_map = mapping;
595 spin_unlock(&buffer_mapping->private_lock);
596 }
597 }
598 EXPORT_SYMBOL(mark_buffer_dirty_inode);
599
600 /*
601 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
602 * dirty.
603 *
604 * If warn is true, then emit a warning if the page is not uptodate and has
605 * not been truncated.
606 *
607 * The caller must hold lock_page_memcg().
608 */
609 void __set_page_dirty(struct page *page, struct address_space *mapping,
610 int warn)
611 {
612 unsigned long flags;
613
614 xa_lock_irqsave(&mapping->i_pages, flags);
615 if (page->mapping) { /* Race with truncate? */
616 WARN_ON_ONCE(warn && !PageUptodate(page));
617 account_page_dirtied(page, mapping);
618 __xa_set_mark(&mapping->i_pages, page_index(page),
619 PAGECACHE_TAG_DIRTY);
620 }
621 xa_unlock_irqrestore(&mapping->i_pages, flags);
622 }
623 EXPORT_SYMBOL_GPL(__set_page_dirty);
624
625 /*
626 * Add a page to the dirty page list.
627 *
628 * It is a sad fact of life that this function is called from several places
629 * deeply under spinlocking. It may not sleep.
630 *
631 * If the page has buffers, the uptodate buffers are set dirty, to preserve
632 * dirty-state coherency between the page and the buffers. It the page does
633 * not have buffers then when they are later attached they will all be set
634 * dirty.
635 *
636 * The buffers are dirtied before the page is dirtied. There's a small race
637 * window in which a writepage caller may see the page cleanness but not the
638 * buffer dirtiness. That's fine. If this code were to set the page dirty
639 * before the buffers, a concurrent writepage caller could clear the page dirty
640 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641 * page on the dirty page list.
642 *
643 * We use private_lock to lock against try_to_free_buffers while using the
644 * page's buffer list. Also use this to protect against clean buffers being
645 * added to the page after it was set dirty.
646 *
647 * FIXME: may need to call ->reservepage here as well. That's rather up to the
648 * address_space though.
649 */
650 int __set_page_dirty_buffers(struct page *page)
651 {
652 int newly_dirty;
653 struct address_space *mapping = page_mapping(page);
654
655 if (unlikely(!mapping))
656 return !TestSetPageDirty(page);
657
658 spin_lock(&mapping->private_lock);
659 if (page_has_buffers(page)) {
660 struct buffer_head *head = page_buffers(page);
661 struct buffer_head *bh = head;
662
663 do {
664 set_buffer_dirty(bh);
665 bh = bh->b_this_page;
666 } while (bh != head);
667 }
668 /*
669 * Lock out page->mem_cgroup migration to keep PageDirty
670 * synchronized with per-memcg dirty page counters.
671 */
672 lock_page_memcg(page);
673 newly_dirty = !TestSetPageDirty(page);
674 spin_unlock(&mapping->private_lock);
675
676 if (newly_dirty)
677 __set_page_dirty(page, mapping, 1);
678
679 unlock_page_memcg(page);
680
681 if (newly_dirty)
682 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
683
684 return newly_dirty;
685 }
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688 /*
689 * Write out and wait upon a list of buffers.
690 *
691 * We have conflicting pressures: we want to make sure that all
692 * initially dirty buffers get waited on, but that any subsequently
693 * dirtied buffers don't. After all, we don't want fsync to last
694 * forever if somebody is actively writing to the file.
695 *
696 * Do this in two main stages: first we copy dirty buffers to a
697 * temporary inode list, queueing the writes as we go. Then we clean
698 * up, waiting for those writes to complete.
699 *
700 * During this second stage, any subsequent updates to the file may end
701 * up refiling the buffer on the original inode's dirty list again, so
702 * there is a chance we will end up with a buffer queued for write but
703 * not yet completed on that list. So, as a final cleanup we go through
704 * the osync code to catch these locked, dirty buffers without requeuing
705 * any newly dirty buffers for write.
706 */
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708 {
709 struct buffer_head *bh;
710 struct list_head tmp;
711 struct address_space *mapping;
712 int err = 0, err2;
713 struct blk_plug plug;
714
715 INIT_LIST_HEAD(&tmp);
716 blk_start_plug(&plug);
717
718 spin_lock(lock);
719 while (!list_empty(list)) {
720 bh = BH_ENTRY(list->next);
721 mapping = bh->b_assoc_map;
722 __remove_assoc_queue(bh);
723 /* Avoid race with mark_buffer_dirty_inode() which does
724 * a lockless check and we rely on seeing the dirty bit */
725 smp_mb();
726 if (buffer_dirty(bh) || buffer_locked(bh)) {
727 list_add(&bh->b_assoc_buffers, &tmp);
728 bh->b_assoc_map = mapping;
729 if (buffer_dirty(bh)) {
730 get_bh(bh);
731 spin_unlock(lock);
732 /*
733 * Ensure any pending I/O completes so that
734 * write_dirty_buffer() actually writes the
735 * current contents - it is a noop if I/O is
736 * still in flight on potentially older
737 * contents.
738 */
739 write_dirty_buffer(bh, REQ_SYNC);
740
741 /*
742 * Kick off IO for the previous mapping. Note
743 * that we will not run the very last mapping,
744 * wait_on_buffer() will do that for us
745 * through sync_buffer().
746 */
747 brelse(bh);
748 spin_lock(lock);
749 }
750 }
751 }
752
753 spin_unlock(lock);
754 blk_finish_plug(&plug);
755 spin_lock(lock);
756
757 while (!list_empty(&tmp)) {
758 bh = BH_ENTRY(tmp.prev);
759 get_bh(bh);
760 mapping = bh->b_assoc_map;
761 __remove_assoc_queue(bh);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
765 if (buffer_dirty(bh)) {
766 list_add(&bh->b_assoc_buffers,
767 &mapping->private_list);
768 bh->b_assoc_map = mapping;
769 }
770 spin_unlock(lock);
771 wait_on_buffer(bh);
772 if (!buffer_uptodate(bh))
773 err = -EIO;
774 brelse(bh);
775 spin_lock(lock);
776 }
777
778 spin_unlock(lock);
779 err2 = osync_buffers_list(lock, list);
780 if (err)
781 return err;
782 else
783 return err2;
784 }
785
786 /*
787 * Invalidate any and all dirty buffers on a given inode. We are
788 * probably unmounting the fs, but that doesn't mean we have already
789 * done a sync(). Just drop the buffers from the inode list.
790 *
791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
792 * assumes that all the buffers are against the blockdev. Not true
793 * for reiserfs.
794 */
795 void invalidate_inode_buffers(struct inode *inode)
796 {
797 if (inode_has_buffers(inode)) {
798 struct address_space *mapping = &inode->i_data;
799 struct list_head *list = &mapping->private_list;
800 struct address_space *buffer_mapping = mapping->private_data;
801
802 spin_lock(&buffer_mapping->private_lock);
803 while (!list_empty(list))
804 __remove_assoc_queue(BH_ENTRY(list->next));
805 spin_unlock(&buffer_mapping->private_lock);
806 }
807 }
808 EXPORT_SYMBOL(invalidate_inode_buffers);
809
810 /*
811 * Remove any clean buffers from the inode's buffer list. This is called
812 * when we're trying to free the inode itself. Those buffers can pin it.
813 *
814 * Returns true if all buffers were removed.
815 */
816 int remove_inode_buffers(struct inode *inode)
817 {
818 int ret = 1;
819
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
823 struct address_space *buffer_mapping = mapping->private_data;
824
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list)) {
827 struct buffer_head *bh = BH_ENTRY(list->next);
828 if (buffer_dirty(bh)) {
829 ret = 0;
830 break;
831 }
832 __remove_assoc_queue(bh);
833 }
834 spin_unlock(&buffer_mapping->private_lock);
835 }
836 return ret;
837 }
838
839 /*
840 * Create the appropriate buffers when given a page for data area and
841 * the size of each buffer.. Use the bh->b_this_page linked list to
842 * follow the buffers created. Return NULL if unable to create more
843 * buffers.
844 *
845 * The retry flag is used to differentiate async IO (paging, swapping)
846 * which may not fail from ordinary buffer allocations.
847 */
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849 bool retry)
850 {
851 struct buffer_head *bh, *head;
852 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
853 long offset;
854 struct mem_cgroup *memcg;
855
856 if (retry)
857 gfp |= __GFP_NOFAIL;
858
859 memcg = get_mem_cgroup_from_page(page);
860 memalloc_use_memcg(memcg);
861
862 head = NULL;
863 offset = PAGE_SIZE;
864 while ((offset -= size) >= 0) {
865 bh = alloc_buffer_head(gfp);
866 if (!bh)
867 goto no_grow;
868
869 bh->b_this_page = head;
870 bh->b_blocknr = -1;
871 head = bh;
872
873 bh->b_size = size;
874
875 /* Link the buffer to its page */
876 set_bh_page(bh, page, offset);
877 }
878 out:
879 memalloc_unuse_memcg();
880 mem_cgroup_put(memcg);
881 return head;
882 /*
883 * In case anything failed, we just free everything we got.
884 */
885 no_grow:
886 if (head) {
887 do {
888 bh = head;
889 head = head->b_this_page;
890 free_buffer_head(bh);
891 } while (head);
892 }
893
894 goto out;
895 }
896 EXPORT_SYMBOL_GPL(alloc_page_buffers);
897
898 static inline void
899 link_dev_buffers(struct page *page, struct buffer_head *head)
900 {
901 struct buffer_head *bh, *tail;
902
903 bh = head;
904 do {
905 tail = bh;
906 bh = bh->b_this_page;
907 } while (bh);
908 tail->b_this_page = head;
909 attach_page_buffers(page, head);
910 }
911
912 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
913 {
914 sector_t retval = ~((sector_t)0);
915 loff_t sz = i_size_read(bdev->bd_inode);
916
917 if (sz) {
918 unsigned int sizebits = blksize_bits(size);
919 retval = (sz >> sizebits);
920 }
921 return retval;
922 }
923
924 /*
925 * Initialise the state of a blockdev page's buffers.
926 */
927 static sector_t
928 init_page_buffers(struct page *page, struct block_device *bdev,
929 sector_t block, int size)
930 {
931 struct buffer_head *head = page_buffers(page);
932 struct buffer_head *bh = head;
933 int uptodate = PageUptodate(page);
934 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
935
936 do {
937 if (!buffer_mapped(bh)) {
938 bh->b_end_io = NULL;
939 bh->b_private = NULL;
940 bh->b_bdev = bdev;
941 bh->b_blocknr = block;
942 if (uptodate)
943 set_buffer_uptodate(bh);
944 if (block < end_block)
945 set_buffer_mapped(bh);
946 }
947 block++;
948 bh = bh->b_this_page;
949 } while (bh != head);
950
951 /*
952 * Caller needs to validate requested block against end of device.
953 */
954 return end_block;
955 }
956
957 /*
958 * Create the page-cache page that contains the requested block.
959 *
960 * This is used purely for blockdev mappings.
961 */
962 static int
963 grow_dev_page(struct block_device *bdev, sector_t block,
964 pgoff_t index, int size, int sizebits, gfp_t gfp)
965 {
966 struct inode *inode = bdev->bd_inode;
967 struct page *page;
968 struct buffer_head *bh;
969 sector_t end_block;
970 int ret = 0;
971 gfp_t gfp_mask;
972
973 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
974
975 /*
976 * XXX: __getblk_slow() can not really deal with failure and
977 * will endlessly loop on improvised global reclaim. Prefer
978 * looping in the allocator rather than here, at least that
979 * code knows what it's doing.
980 */
981 gfp_mask |= __GFP_NOFAIL;
982
983 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
984
985 BUG_ON(!PageLocked(page));
986
987 if (page_has_buffers(page)) {
988 bh = page_buffers(page);
989 if (bh->b_size == size) {
990 end_block = init_page_buffers(page, bdev,
991 (sector_t)index << sizebits,
992 size);
993 goto done;
994 }
995 if (!try_to_free_buffers(page))
996 goto failed;
997 }
998
999 /*
1000 * Allocate some buffers for this page
1001 */
1002 bh = alloc_page_buffers(page, size, true);
1003
1004 /*
1005 * Link the page to the buffers and initialise them. Take the
1006 * lock to be atomic wrt __find_get_block(), which does not
1007 * run under the page lock.
1008 */
1009 spin_lock(&inode->i_mapping->private_lock);
1010 link_dev_buffers(page, bh);
1011 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1012 size);
1013 spin_unlock(&inode->i_mapping->private_lock);
1014 done:
1015 ret = (block < end_block) ? 1 : -ENXIO;
1016 failed:
1017 unlock_page(page);
1018 put_page(page);
1019 return ret;
1020 }
1021
1022 /*
1023 * Create buffers for the specified block device block's page. If
1024 * that page was dirty, the buffers are set dirty also.
1025 */
1026 static int
1027 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1028 {
1029 pgoff_t index;
1030 int sizebits;
1031
1032 sizebits = -1;
1033 do {
1034 sizebits++;
1035 } while ((size << sizebits) < PAGE_SIZE);
1036
1037 index = block >> sizebits;
1038
1039 /*
1040 * Check for a block which wants to lie outside our maximum possible
1041 * pagecache index. (this comparison is done using sector_t types).
1042 */
1043 if (unlikely(index != block >> sizebits)) {
1044 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1045 "device %pg\n",
1046 __func__, (unsigned long long)block,
1047 bdev);
1048 return -EIO;
1049 }
1050
1051 /* Create a page with the proper size buffers.. */
1052 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1053 }
1054
1055 static struct buffer_head *
1056 __getblk_slow(struct block_device *bdev, sector_t block,
1057 unsigned size, gfp_t gfp)
1058 {
1059 /* Size must be multiple of hard sectorsize */
1060 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061 (size < 512 || size > PAGE_SIZE))) {
1062 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063 size);
1064 printk(KERN_ERR "logical block size: %d\n",
1065 bdev_logical_block_size(bdev));
1066
1067 dump_stack();
1068 return NULL;
1069 }
1070
1071 for (;;) {
1072 struct buffer_head *bh;
1073 int ret;
1074
1075 bh = __find_get_block(bdev, block, size);
1076 if (bh)
1077 return bh;
1078
1079 ret = grow_buffers(bdev, block, size, gfp);
1080 if (ret < 0)
1081 return NULL;
1082 }
1083 }
1084
1085 /*
1086 * The relationship between dirty buffers and dirty pages:
1087 *
1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089 * the page is tagged dirty in the page cache.
1090 *
1091 * At all times, the dirtiness of the buffers represents the dirtiness of
1092 * subsections of the page. If the page has buffers, the page dirty bit is
1093 * merely a hint about the true dirty state.
1094 *
1095 * When a page is set dirty in its entirety, all its buffers are marked dirty
1096 * (if the page has buffers).
1097 *
1098 * When a buffer is marked dirty, its page is dirtied, but the page's other
1099 * buffers are not.
1100 *
1101 * Also. When blockdev buffers are explicitly read with bread(), they
1102 * individually become uptodate. But their backing page remains not
1103 * uptodate - even if all of its buffers are uptodate. A subsequent
1104 * block_read_full_page() against that page will discover all the uptodate
1105 * buffers, will set the page uptodate and will perform no I/O.
1106 */
1107
1108 /**
1109 * mark_buffer_dirty - mark a buffer_head as needing writeout
1110 * @bh: the buffer_head to mark dirty
1111 *
1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113 * its backing page dirty, then tag the page as dirty in the page cache
1114 * and then attach the address_space's inode to its superblock's dirty
1115 * inode list.
1116 *
1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1118 * i_pages lock and mapping->host->i_lock.
1119 */
1120 void mark_buffer_dirty(struct buffer_head *bh)
1121 {
1122 WARN_ON_ONCE(!buffer_uptodate(bh));
1123
1124 trace_block_dirty_buffer(bh);
1125
1126 /*
1127 * Very *carefully* optimize the it-is-already-dirty case.
1128 *
1129 * Don't let the final "is it dirty" escape to before we
1130 * perhaps modified the buffer.
1131 */
1132 if (buffer_dirty(bh)) {
1133 smp_mb();
1134 if (buffer_dirty(bh))
1135 return;
1136 }
1137
1138 if (!test_set_buffer_dirty(bh)) {
1139 struct page *page = bh->b_page;
1140 struct address_space *mapping = NULL;
1141
1142 lock_page_memcg(page);
1143 if (!TestSetPageDirty(page)) {
1144 mapping = page_mapping(page);
1145 if (mapping)
1146 __set_page_dirty(page, mapping, 0);
1147 }
1148 unlock_page_memcg(page);
1149 if (mapping)
1150 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1151 }
1152 }
1153 EXPORT_SYMBOL(mark_buffer_dirty);
1154
1155 void mark_buffer_write_io_error(struct buffer_head *bh)
1156 {
1157 set_buffer_write_io_error(bh);
1158 /* FIXME: do we need to set this in both places? */
1159 if (bh->b_page && bh->b_page->mapping)
1160 mapping_set_error(bh->b_page->mapping, -EIO);
1161 if (bh->b_assoc_map)
1162 mapping_set_error(bh->b_assoc_map, -EIO);
1163 }
1164 EXPORT_SYMBOL(mark_buffer_write_io_error);
1165
1166 /*
1167 * Decrement a buffer_head's reference count. If all buffers against a page
1168 * have zero reference count, are clean and unlocked, and if the page is clean
1169 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1170 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1171 * a page but it ends up not being freed, and buffers may later be reattached).
1172 */
1173 void __brelse(struct buffer_head * buf)
1174 {
1175 if (atomic_read(&buf->b_count)) {
1176 put_bh(buf);
1177 return;
1178 }
1179 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1180 }
1181 EXPORT_SYMBOL(__brelse);
1182
1183 /*
1184 * bforget() is like brelse(), except it discards any
1185 * potentially dirty data.
1186 */
1187 void __bforget(struct buffer_head *bh)
1188 {
1189 clear_buffer_dirty(bh);
1190 if (bh->b_assoc_map) {
1191 struct address_space *buffer_mapping = bh->b_page->mapping;
1192
1193 spin_lock(&buffer_mapping->private_lock);
1194 list_del_init(&bh->b_assoc_buffers);
1195 bh->b_assoc_map = NULL;
1196 spin_unlock(&buffer_mapping->private_lock);
1197 }
1198 __brelse(bh);
1199 }
1200 EXPORT_SYMBOL(__bforget);
1201
1202 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1203 {
1204 lock_buffer(bh);
1205 if (buffer_uptodate(bh)) {
1206 unlock_buffer(bh);
1207 return bh;
1208 } else {
1209 get_bh(bh);
1210 bh->b_end_io = end_buffer_read_sync;
1211 submit_bh(REQ_OP_READ, 0, bh);
1212 wait_on_buffer(bh);
1213 if (buffer_uptodate(bh))
1214 return bh;
1215 }
1216 brelse(bh);
1217 return NULL;
1218 }
1219
1220 /*
1221 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1222 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1223 * refcount elevated by one when they're in an LRU. A buffer can only appear
1224 * once in a particular CPU's LRU. A single buffer can be present in multiple
1225 * CPU's LRUs at the same time.
1226 *
1227 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1228 * sb_find_get_block().
1229 *
1230 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1231 * a local interrupt disable for that.
1232 */
1233
1234 #define BH_LRU_SIZE 16
1235
1236 struct bh_lru {
1237 struct buffer_head *bhs[BH_LRU_SIZE];
1238 };
1239
1240 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1241
1242 #ifdef CONFIG_SMP
1243 #define bh_lru_lock() local_irq_disable()
1244 #define bh_lru_unlock() local_irq_enable()
1245 #else
1246 #define bh_lru_lock() preempt_disable()
1247 #define bh_lru_unlock() preempt_enable()
1248 #endif
1249
1250 static inline void check_irqs_on(void)
1251 {
1252 #ifdef irqs_disabled
1253 BUG_ON(irqs_disabled());
1254 #endif
1255 }
1256
1257 /*
1258 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1259 * inserted at the front, and the buffer_head at the back if any is evicted.
1260 * Or, if already in the LRU it is moved to the front.
1261 */
1262 static void bh_lru_install(struct buffer_head *bh)
1263 {
1264 struct buffer_head *evictee = bh;
1265 struct bh_lru *b;
1266 int i;
1267
1268 check_irqs_on();
1269 bh_lru_lock();
1270
1271 b = this_cpu_ptr(&bh_lrus);
1272 for (i = 0; i < BH_LRU_SIZE; i++) {
1273 swap(evictee, b->bhs[i]);
1274 if (evictee == bh) {
1275 bh_lru_unlock();
1276 return;
1277 }
1278 }
1279
1280 get_bh(bh);
1281 bh_lru_unlock();
1282 brelse(evictee);
1283 }
1284
1285 /*
1286 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1287 */
1288 static struct buffer_head *
1289 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1290 {
1291 struct buffer_head *ret = NULL;
1292 unsigned int i;
1293
1294 check_irqs_on();
1295 bh_lru_lock();
1296 for (i = 0; i < BH_LRU_SIZE; i++) {
1297 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1298
1299 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1300 bh->b_size == size) {
1301 if (i) {
1302 while (i) {
1303 __this_cpu_write(bh_lrus.bhs[i],
1304 __this_cpu_read(bh_lrus.bhs[i - 1]));
1305 i--;
1306 }
1307 __this_cpu_write(bh_lrus.bhs[0], bh);
1308 }
1309 get_bh(bh);
1310 ret = bh;
1311 break;
1312 }
1313 }
1314 bh_lru_unlock();
1315 return ret;
1316 }
1317
1318 /*
1319 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1320 * it in the LRU and mark it as accessed. If it is not present then return
1321 * NULL
1322 */
1323 struct buffer_head *
1324 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1325 {
1326 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1327
1328 if (bh == NULL) {
1329 /* __find_get_block_slow will mark the page accessed */
1330 bh = __find_get_block_slow(bdev, block);
1331 if (bh)
1332 bh_lru_install(bh);
1333 } else
1334 touch_buffer(bh);
1335
1336 return bh;
1337 }
1338 EXPORT_SYMBOL(__find_get_block);
1339
1340 /*
1341 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1342 * which corresponds to the passed block_device, block and size. The
1343 * returned buffer has its reference count incremented.
1344 *
1345 * __getblk_gfp() will lock up the machine if grow_dev_page's
1346 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1347 */
1348 struct buffer_head *
1349 __getblk_gfp(struct block_device *bdev, sector_t block,
1350 unsigned size, gfp_t gfp)
1351 {
1352 struct buffer_head *bh = __find_get_block(bdev, block, size);
1353
1354 might_sleep();
1355 if (bh == NULL)
1356 bh = __getblk_slow(bdev, block, size, gfp);
1357 return bh;
1358 }
1359 EXPORT_SYMBOL(__getblk_gfp);
1360
1361 /*
1362 * Do async read-ahead on a buffer..
1363 */
1364 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1365 {
1366 struct buffer_head *bh = __getblk(bdev, block, size);
1367 if (likely(bh)) {
1368 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1369 brelse(bh);
1370 }
1371 }
1372 EXPORT_SYMBOL(__breadahead);
1373
1374 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1375 gfp_t gfp)
1376 {
1377 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1378 if (likely(bh)) {
1379 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1380 brelse(bh);
1381 }
1382 }
1383 EXPORT_SYMBOL(__breadahead_gfp);
1384
1385 /**
1386 * __bread_gfp() - reads a specified block and returns the bh
1387 * @bdev: the block_device to read from
1388 * @block: number of block
1389 * @size: size (in bytes) to read
1390 * @gfp: page allocation flag
1391 *
1392 * Reads a specified block, and returns buffer head that contains it.
1393 * The page cache can be allocated from non-movable area
1394 * not to prevent page migration if you set gfp to zero.
1395 * It returns NULL if the block was unreadable.
1396 */
1397 struct buffer_head *
1398 __bread_gfp(struct block_device *bdev, sector_t block,
1399 unsigned size, gfp_t gfp)
1400 {
1401 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1402
1403 if (likely(bh) && !buffer_uptodate(bh))
1404 bh = __bread_slow(bh);
1405 return bh;
1406 }
1407 EXPORT_SYMBOL(__bread_gfp);
1408
1409 /*
1410 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1411 * This doesn't race because it runs in each cpu either in irq
1412 * or with preempt disabled.
1413 */
1414 static void invalidate_bh_lru(void *arg)
1415 {
1416 struct bh_lru *b = &get_cpu_var(bh_lrus);
1417 int i;
1418
1419 for (i = 0; i < BH_LRU_SIZE; i++) {
1420 brelse(b->bhs[i]);
1421 b->bhs[i] = NULL;
1422 }
1423 put_cpu_var(bh_lrus);
1424 }
1425
1426 static bool has_bh_in_lru(int cpu, void *dummy)
1427 {
1428 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1429 int i;
1430
1431 for (i = 0; i < BH_LRU_SIZE; i++) {
1432 if (b->bhs[i])
1433 return true;
1434 }
1435
1436 return false;
1437 }
1438
1439 void invalidate_bh_lrus(void)
1440 {
1441 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1442 }
1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1444
1445 void set_bh_page(struct buffer_head *bh,
1446 struct page *page, unsigned long offset)
1447 {
1448 bh->b_page = page;
1449 BUG_ON(offset >= PAGE_SIZE);
1450 if (PageHighMem(page))
1451 /*
1452 * This catches illegal uses and preserves the offset:
1453 */
1454 bh->b_data = (char *)(0 + offset);
1455 else
1456 bh->b_data = page_address(page) + offset;
1457 }
1458 EXPORT_SYMBOL(set_bh_page);
1459
1460 /*
1461 * Called when truncating a buffer on a page completely.
1462 */
1463
1464 /* Bits that are cleared during an invalidate */
1465 #define BUFFER_FLAGS_DISCARD \
1466 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1467 1 << BH_Delay | 1 << BH_Unwritten)
1468
1469 static void discard_buffer(struct buffer_head * bh)
1470 {
1471 unsigned long b_state, b_state_old;
1472
1473 lock_buffer(bh);
1474 clear_buffer_dirty(bh);
1475 bh->b_bdev = NULL;
1476 b_state = bh->b_state;
1477 for (;;) {
1478 b_state_old = cmpxchg(&bh->b_state, b_state,
1479 (b_state & ~BUFFER_FLAGS_DISCARD));
1480 if (b_state_old == b_state)
1481 break;
1482 b_state = b_state_old;
1483 }
1484 unlock_buffer(bh);
1485 }
1486
1487 /**
1488 * block_invalidatepage - invalidate part or all of a buffer-backed page
1489 *
1490 * @page: the page which is affected
1491 * @offset: start of the range to invalidate
1492 * @length: length of the range to invalidate
1493 *
1494 * block_invalidatepage() is called when all or part of the page has become
1495 * invalidated by a truncate operation.
1496 *
1497 * block_invalidatepage() does not have to release all buffers, but it must
1498 * ensure that no dirty buffer is left outside @offset and that no I/O
1499 * is underway against any of the blocks which are outside the truncation
1500 * point. Because the caller is about to free (and possibly reuse) those
1501 * blocks on-disk.
1502 */
1503 void block_invalidatepage(struct page *page, unsigned int offset,
1504 unsigned int length)
1505 {
1506 struct buffer_head *head, *bh, *next;
1507 unsigned int curr_off = 0;
1508 unsigned int stop = length + offset;
1509
1510 BUG_ON(!PageLocked(page));
1511 if (!page_has_buffers(page))
1512 goto out;
1513
1514 /*
1515 * Check for overflow
1516 */
1517 BUG_ON(stop > PAGE_SIZE || stop < length);
1518
1519 head = page_buffers(page);
1520 bh = head;
1521 do {
1522 unsigned int next_off = curr_off + bh->b_size;
1523 next = bh->b_this_page;
1524
1525 /*
1526 * Are we still fully in range ?
1527 */
1528 if (next_off > stop)
1529 goto out;
1530
1531 /*
1532 * is this block fully invalidated?
1533 */
1534 if (offset <= curr_off)
1535 discard_buffer(bh);
1536 curr_off = next_off;
1537 bh = next;
1538 } while (bh != head);
1539
1540 /*
1541 * We release buffers only if the entire page is being invalidated.
1542 * The get_block cached value has been unconditionally invalidated,
1543 * so real IO is not possible anymore.
1544 */
1545 if (length == PAGE_SIZE)
1546 try_to_release_page(page, 0);
1547 out:
1548 return;
1549 }
1550 EXPORT_SYMBOL(block_invalidatepage);
1551
1552
1553 /*
1554 * We attach and possibly dirty the buffers atomically wrt
1555 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1556 * is already excluded via the page lock.
1557 */
1558 void create_empty_buffers(struct page *page,
1559 unsigned long blocksize, unsigned long b_state)
1560 {
1561 struct buffer_head *bh, *head, *tail;
1562
1563 head = alloc_page_buffers(page, blocksize, true);
1564 bh = head;
1565 do {
1566 bh->b_state |= b_state;
1567 tail = bh;
1568 bh = bh->b_this_page;
1569 } while (bh);
1570 tail->b_this_page = head;
1571
1572 spin_lock(&page->mapping->private_lock);
1573 if (PageUptodate(page) || PageDirty(page)) {
1574 bh = head;
1575 do {
1576 if (PageDirty(page))
1577 set_buffer_dirty(bh);
1578 if (PageUptodate(page))
1579 set_buffer_uptodate(bh);
1580 bh = bh->b_this_page;
1581 } while (bh != head);
1582 }
1583 attach_page_buffers(page, head);
1584 spin_unlock(&page->mapping->private_lock);
1585 }
1586 EXPORT_SYMBOL(create_empty_buffers);
1587
1588 /**
1589 * clean_bdev_aliases: clean a range of buffers in block device
1590 * @bdev: Block device to clean buffers in
1591 * @block: Start of a range of blocks to clean
1592 * @len: Number of blocks to clean
1593 *
1594 * We are taking a range of blocks for data and we don't want writeback of any
1595 * buffer-cache aliases starting from return from this function and until the
1596 * moment when something will explicitly mark the buffer dirty (hopefully that
1597 * will not happen until we will free that block ;-) We don't even need to mark
1598 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1599 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1600 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1601 * would confuse anyone who might pick it with bread() afterwards...
1602 *
1603 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1604 * writeout I/O going on against recently-freed buffers. We don't wait on that
1605 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1606 * need to. That happens here.
1607 */
1608 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1609 {
1610 struct inode *bd_inode = bdev->bd_inode;
1611 struct address_space *bd_mapping = bd_inode->i_mapping;
1612 struct pagevec pvec;
1613 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1614 pgoff_t end;
1615 int i, count;
1616 struct buffer_head *bh;
1617 struct buffer_head *head;
1618
1619 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1620 pagevec_init(&pvec);
1621 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1622 count = pagevec_count(&pvec);
1623 for (i = 0; i < count; i++) {
1624 struct page *page = pvec.pages[i];
1625
1626 if (!page_has_buffers(page))
1627 continue;
1628 /*
1629 * We use page lock instead of bd_mapping->private_lock
1630 * to pin buffers here since we can afford to sleep and
1631 * it scales better than a global spinlock lock.
1632 */
1633 lock_page(page);
1634 /* Recheck when the page is locked which pins bhs */
1635 if (!page_has_buffers(page))
1636 goto unlock_page;
1637 head = page_buffers(page);
1638 bh = head;
1639 do {
1640 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1641 goto next;
1642 if (bh->b_blocknr >= block + len)
1643 break;
1644 clear_buffer_dirty(bh);
1645 wait_on_buffer(bh);
1646 clear_buffer_req(bh);
1647 next:
1648 bh = bh->b_this_page;
1649 } while (bh != head);
1650 unlock_page:
1651 unlock_page(page);
1652 }
1653 pagevec_release(&pvec);
1654 cond_resched();
1655 /* End of range already reached? */
1656 if (index > end || !index)
1657 break;
1658 }
1659 }
1660 EXPORT_SYMBOL(clean_bdev_aliases);
1661
1662 /*
1663 * Size is a power-of-two in the range 512..PAGE_SIZE,
1664 * and the case we care about most is PAGE_SIZE.
1665 *
1666 * So this *could* possibly be written with those
1667 * constraints in mind (relevant mostly if some
1668 * architecture has a slow bit-scan instruction)
1669 */
1670 static inline int block_size_bits(unsigned int blocksize)
1671 {
1672 return ilog2(blocksize);
1673 }
1674
1675 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1676 {
1677 BUG_ON(!PageLocked(page));
1678
1679 if (!page_has_buffers(page))
1680 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1681 b_state);
1682 return page_buffers(page);
1683 }
1684
1685 /*
1686 * NOTE! All mapped/uptodate combinations are valid:
1687 *
1688 * Mapped Uptodate Meaning
1689 *
1690 * No No "unknown" - must do get_block()
1691 * No Yes "hole" - zero-filled
1692 * Yes No "allocated" - allocated on disk, not read in
1693 * Yes Yes "valid" - allocated and up-to-date in memory.
1694 *
1695 * "Dirty" is valid only with the last case (mapped+uptodate).
1696 */
1697
1698 /*
1699 * While block_write_full_page is writing back the dirty buffers under
1700 * the page lock, whoever dirtied the buffers may decide to clean them
1701 * again at any time. We handle that by only looking at the buffer
1702 * state inside lock_buffer().
1703 *
1704 * If block_write_full_page() is called for regular writeback
1705 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1706 * locked buffer. This only can happen if someone has written the buffer
1707 * directly, with submit_bh(). At the address_space level PageWriteback
1708 * prevents this contention from occurring.
1709 *
1710 * If block_write_full_page() is called with wbc->sync_mode ==
1711 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1712 * causes the writes to be flagged as synchronous writes.
1713 */
1714 int __block_write_full_page(struct inode *inode, struct page *page,
1715 get_block_t *get_block, struct writeback_control *wbc,
1716 bh_end_io_t *handler)
1717 {
1718 int err;
1719 sector_t block;
1720 sector_t last_block;
1721 struct buffer_head *bh, *head;
1722 unsigned int blocksize, bbits;
1723 int nr_underway = 0;
1724 int write_flags = wbc_to_write_flags(wbc);
1725
1726 head = create_page_buffers(page, inode,
1727 (1 << BH_Dirty)|(1 << BH_Uptodate));
1728
1729 /*
1730 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1731 * here, and the (potentially unmapped) buffers may become dirty at
1732 * any time. If a buffer becomes dirty here after we've inspected it
1733 * then we just miss that fact, and the page stays dirty.
1734 *
1735 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1736 * handle that here by just cleaning them.
1737 */
1738
1739 bh = head;
1740 blocksize = bh->b_size;
1741 bbits = block_size_bits(blocksize);
1742
1743 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1744 last_block = (i_size_read(inode) - 1) >> bbits;
1745
1746 /*
1747 * Get all the dirty buffers mapped to disk addresses and
1748 * handle any aliases from the underlying blockdev's mapping.
1749 */
1750 do {
1751 if (block > last_block) {
1752 /*
1753 * mapped buffers outside i_size will occur, because
1754 * this page can be outside i_size when there is a
1755 * truncate in progress.
1756 */
1757 /*
1758 * The buffer was zeroed by block_write_full_page()
1759 */
1760 clear_buffer_dirty(bh);
1761 set_buffer_uptodate(bh);
1762 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1763 buffer_dirty(bh)) {
1764 WARN_ON(bh->b_size != blocksize);
1765 err = get_block(inode, block, bh, 1);
1766 if (err)
1767 goto recover;
1768 clear_buffer_delay(bh);
1769 if (buffer_new(bh)) {
1770 /* blockdev mappings never come here */
1771 clear_buffer_new(bh);
1772 clean_bdev_bh_alias(bh);
1773 }
1774 }
1775 bh = bh->b_this_page;
1776 block++;
1777 } while (bh != head);
1778
1779 do {
1780 if (!buffer_mapped(bh))
1781 continue;
1782 /*
1783 * If it's a fully non-blocking write attempt and we cannot
1784 * lock the buffer then redirty the page. Note that this can
1785 * potentially cause a busy-wait loop from writeback threads
1786 * and kswapd activity, but those code paths have their own
1787 * higher-level throttling.
1788 */
1789 if (wbc->sync_mode != WB_SYNC_NONE) {
1790 lock_buffer(bh);
1791 } else if (!trylock_buffer(bh)) {
1792 redirty_page_for_writepage(wbc, page);
1793 continue;
1794 }
1795 if (test_clear_buffer_dirty(bh)) {
1796 mark_buffer_async_write_endio(bh, handler);
1797 } else {
1798 unlock_buffer(bh);
1799 }
1800 } while ((bh = bh->b_this_page) != head);
1801
1802 /*
1803 * The page and its buffers are protected by PageWriteback(), so we can
1804 * drop the bh refcounts early.
1805 */
1806 BUG_ON(PageWriteback(page));
1807 set_page_writeback(page);
1808
1809 do {
1810 struct buffer_head *next = bh->b_this_page;
1811 if (buffer_async_write(bh)) {
1812 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1813 inode->i_write_hint, wbc);
1814 nr_underway++;
1815 }
1816 bh = next;
1817 } while (bh != head);
1818 unlock_page(page);
1819
1820 err = 0;
1821 done:
1822 if (nr_underway == 0) {
1823 /*
1824 * The page was marked dirty, but the buffers were
1825 * clean. Someone wrote them back by hand with
1826 * ll_rw_block/submit_bh. A rare case.
1827 */
1828 end_page_writeback(page);
1829
1830 /*
1831 * The page and buffer_heads can be released at any time from
1832 * here on.
1833 */
1834 }
1835 return err;
1836
1837 recover:
1838 /*
1839 * ENOSPC, or some other error. We may already have added some
1840 * blocks to the file, so we need to write these out to avoid
1841 * exposing stale data.
1842 * The page is currently locked and not marked for writeback
1843 */
1844 bh = head;
1845 /* Recovery: lock and submit the mapped buffers */
1846 do {
1847 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1848 !buffer_delay(bh)) {
1849 lock_buffer(bh);
1850 mark_buffer_async_write_endio(bh, handler);
1851 } else {
1852 /*
1853 * The buffer may have been set dirty during
1854 * attachment to a dirty page.
1855 */
1856 clear_buffer_dirty(bh);
1857 }
1858 } while ((bh = bh->b_this_page) != head);
1859 SetPageError(page);
1860 BUG_ON(PageWriteback(page));
1861 mapping_set_error(page->mapping, err);
1862 set_page_writeback(page);
1863 do {
1864 struct buffer_head *next = bh->b_this_page;
1865 if (buffer_async_write(bh)) {
1866 clear_buffer_dirty(bh);
1867 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1868 inode->i_write_hint, wbc);
1869 nr_underway++;
1870 }
1871 bh = next;
1872 } while (bh != head);
1873 unlock_page(page);
1874 goto done;
1875 }
1876 EXPORT_SYMBOL(__block_write_full_page);
1877
1878 /*
1879 * If a page has any new buffers, zero them out here, and mark them uptodate
1880 * and dirty so they'll be written out (in order to prevent uninitialised
1881 * block data from leaking). And clear the new bit.
1882 */
1883 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1884 {
1885 unsigned int block_start, block_end;
1886 struct buffer_head *head, *bh;
1887
1888 BUG_ON(!PageLocked(page));
1889 if (!page_has_buffers(page))
1890 return;
1891
1892 bh = head = page_buffers(page);
1893 block_start = 0;
1894 do {
1895 block_end = block_start + bh->b_size;
1896
1897 if (buffer_new(bh)) {
1898 if (block_end > from && block_start < to) {
1899 if (!PageUptodate(page)) {
1900 unsigned start, size;
1901
1902 start = max(from, block_start);
1903 size = min(to, block_end) - start;
1904
1905 zero_user(page, start, size);
1906 set_buffer_uptodate(bh);
1907 }
1908
1909 clear_buffer_new(bh);
1910 mark_buffer_dirty(bh);
1911 }
1912 }
1913
1914 block_start = block_end;
1915 bh = bh->b_this_page;
1916 } while (bh != head);
1917 }
1918 EXPORT_SYMBOL(page_zero_new_buffers);
1919
1920 static void
1921 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1922 struct iomap *iomap)
1923 {
1924 loff_t offset = block << inode->i_blkbits;
1925
1926 bh->b_bdev = iomap->bdev;
1927
1928 /*
1929 * Block points to offset in file we need to map, iomap contains
1930 * the offset at which the map starts. If the map ends before the
1931 * current block, then do not map the buffer and let the caller
1932 * handle it.
1933 */
1934 BUG_ON(offset >= iomap->offset + iomap->length);
1935
1936 switch (iomap->type) {
1937 case IOMAP_HOLE:
1938 /*
1939 * If the buffer is not up to date or beyond the current EOF,
1940 * we need to mark it as new to ensure sub-block zeroing is
1941 * executed if necessary.
1942 */
1943 if (!buffer_uptodate(bh) ||
1944 (offset >= i_size_read(inode)))
1945 set_buffer_new(bh);
1946 break;
1947 case IOMAP_DELALLOC:
1948 if (!buffer_uptodate(bh) ||
1949 (offset >= i_size_read(inode)))
1950 set_buffer_new(bh);
1951 set_buffer_uptodate(bh);
1952 set_buffer_mapped(bh);
1953 set_buffer_delay(bh);
1954 break;
1955 case IOMAP_UNWRITTEN:
1956 /*
1957 * For unwritten regions, we always need to ensure that regions
1958 * in the block we are not writing to are zeroed. Mark the
1959 * buffer as new to ensure this.
1960 */
1961 set_buffer_new(bh);
1962 set_buffer_unwritten(bh);
1963 /* FALLTHRU */
1964 case IOMAP_MAPPED:
1965 if ((iomap->flags & IOMAP_F_NEW) ||
1966 offset >= i_size_read(inode))
1967 set_buffer_new(bh);
1968 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1969 inode->i_blkbits;
1970 set_buffer_mapped(bh);
1971 break;
1972 }
1973 }
1974
1975 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1976 get_block_t *get_block, struct iomap *iomap)
1977 {
1978 unsigned from = pos & (PAGE_SIZE - 1);
1979 unsigned to = from + len;
1980 struct inode *inode = page->mapping->host;
1981 unsigned block_start, block_end;
1982 sector_t block;
1983 int err = 0;
1984 unsigned blocksize, bbits;
1985 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1986
1987 BUG_ON(!PageLocked(page));
1988 BUG_ON(from > PAGE_SIZE);
1989 BUG_ON(to > PAGE_SIZE);
1990 BUG_ON(from > to);
1991
1992 head = create_page_buffers(page, inode, 0);
1993 blocksize = head->b_size;
1994 bbits = block_size_bits(blocksize);
1995
1996 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1997
1998 for(bh = head, block_start = 0; bh != head || !block_start;
1999 block++, block_start=block_end, bh = bh->b_this_page) {
2000 block_end = block_start + blocksize;
2001 if (block_end <= from || block_start >= to) {
2002 if (PageUptodate(page)) {
2003 if (!buffer_uptodate(bh))
2004 set_buffer_uptodate(bh);
2005 }
2006 continue;
2007 }
2008 if (buffer_new(bh))
2009 clear_buffer_new(bh);
2010 if (!buffer_mapped(bh)) {
2011 WARN_ON(bh->b_size != blocksize);
2012 if (get_block) {
2013 err = get_block(inode, block, bh, 1);
2014 if (err)
2015 break;
2016 } else {
2017 iomap_to_bh(inode, block, bh, iomap);
2018 }
2019
2020 if (buffer_new(bh)) {
2021 clean_bdev_bh_alias(bh);
2022 if (PageUptodate(page)) {
2023 clear_buffer_new(bh);
2024 set_buffer_uptodate(bh);
2025 mark_buffer_dirty(bh);
2026 continue;
2027 }
2028 if (block_end > to || block_start < from)
2029 zero_user_segments(page,
2030 to, block_end,
2031 block_start, from);
2032 continue;
2033 }
2034 }
2035 if (PageUptodate(page)) {
2036 if (!buffer_uptodate(bh))
2037 set_buffer_uptodate(bh);
2038 continue;
2039 }
2040 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2041 !buffer_unwritten(bh) &&
2042 (block_start < from || block_end > to)) {
2043 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2044 *wait_bh++=bh;
2045 }
2046 }
2047 /*
2048 * If we issued read requests - let them complete.
2049 */
2050 while(wait_bh > wait) {
2051 wait_on_buffer(*--wait_bh);
2052 if (!buffer_uptodate(*wait_bh))
2053 err = -EIO;
2054 }
2055 if (unlikely(err))
2056 page_zero_new_buffers(page, from, to);
2057 return err;
2058 }
2059
2060 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2061 get_block_t *get_block)
2062 {
2063 return __block_write_begin_int(page, pos, len, get_block, NULL);
2064 }
2065 EXPORT_SYMBOL(__block_write_begin);
2066
2067 static int __block_commit_write(struct inode *inode, struct page *page,
2068 unsigned from, unsigned to)
2069 {
2070 unsigned block_start, block_end;
2071 int partial = 0;
2072 unsigned blocksize;
2073 struct buffer_head *bh, *head;
2074
2075 bh = head = page_buffers(page);
2076 blocksize = bh->b_size;
2077
2078 block_start = 0;
2079 do {
2080 block_end = block_start + blocksize;
2081 if (block_end <= from || block_start >= to) {
2082 if (!buffer_uptodate(bh))
2083 partial = 1;
2084 } else {
2085 set_buffer_uptodate(bh);
2086 mark_buffer_dirty(bh);
2087 }
2088 clear_buffer_new(bh);
2089
2090 block_start = block_end;
2091 bh = bh->b_this_page;
2092 } while (bh != head);
2093
2094 /*
2095 * If this is a partial write which happened to make all buffers
2096 * uptodate then we can optimize away a bogus readpage() for
2097 * the next read(). Here we 'discover' whether the page went
2098 * uptodate as a result of this (potentially partial) write.
2099 */
2100 if (!partial)
2101 SetPageUptodate(page);
2102 return 0;
2103 }
2104
2105 /*
2106 * block_write_begin takes care of the basic task of block allocation and
2107 * bringing partial write blocks uptodate first.
2108 *
2109 * The filesystem needs to handle block truncation upon failure.
2110 */
2111 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2112 unsigned flags, struct page **pagep, get_block_t *get_block)
2113 {
2114 pgoff_t index = pos >> PAGE_SHIFT;
2115 struct page *page;
2116 int status;
2117
2118 page = grab_cache_page_write_begin(mapping, index, flags);
2119 if (!page)
2120 return -ENOMEM;
2121
2122 status = __block_write_begin(page, pos, len, get_block);
2123 if (unlikely(status)) {
2124 unlock_page(page);
2125 put_page(page);
2126 page = NULL;
2127 }
2128
2129 *pagep = page;
2130 return status;
2131 }
2132 EXPORT_SYMBOL(block_write_begin);
2133
2134 int block_write_end(struct file *file, struct address_space *mapping,
2135 loff_t pos, unsigned len, unsigned copied,
2136 struct page *page, void *fsdata)
2137 {
2138 struct inode *inode = mapping->host;
2139 unsigned start;
2140
2141 start = pos & (PAGE_SIZE - 1);
2142
2143 if (unlikely(copied < len)) {
2144 /*
2145 * The buffers that were written will now be uptodate, so we
2146 * don't have to worry about a readpage reading them and
2147 * overwriting a partial write. However if we have encountered
2148 * a short write and only partially written into a buffer, it
2149 * will not be marked uptodate, so a readpage might come in and
2150 * destroy our partial write.
2151 *
2152 * Do the simplest thing, and just treat any short write to a
2153 * non uptodate page as a zero-length write, and force the
2154 * caller to redo the whole thing.
2155 */
2156 if (!PageUptodate(page))
2157 copied = 0;
2158
2159 page_zero_new_buffers(page, start+copied, start+len);
2160 }
2161 flush_dcache_page(page);
2162
2163 /* This could be a short (even 0-length) commit */
2164 __block_commit_write(inode, page, start, start+copied);
2165
2166 return copied;
2167 }
2168 EXPORT_SYMBOL(block_write_end);
2169
2170 int generic_write_end(struct file *file, struct address_space *mapping,
2171 loff_t pos, unsigned len, unsigned copied,
2172 struct page *page, void *fsdata)
2173 {
2174 struct inode *inode = mapping->host;
2175 loff_t old_size = inode->i_size;
2176 bool i_size_changed = false;
2177
2178 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2179
2180 /*
2181 * No need to use i_size_read() here, the i_size cannot change under us
2182 * because we hold i_rwsem.
2183 *
2184 * But it's important to update i_size while still holding page lock:
2185 * page writeout could otherwise come in and zero beyond i_size.
2186 */
2187 if (pos + copied > inode->i_size) {
2188 i_size_write(inode, pos + copied);
2189 i_size_changed = true;
2190 }
2191
2192 unlock_page(page);
2193 put_page(page);
2194
2195 if (old_size < pos)
2196 pagecache_isize_extended(inode, old_size, pos);
2197 /*
2198 * Don't mark the inode dirty under page lock. First, it unnecessarily
2199 * makes the holding time of page lock longer. Second, it forces lock
2200 * ordering of page lock and transaction start for journaling
2201 * filesystems.
2202 */
2203 if (i_size_changed)
2204 mark_inode_dirty(inode);
2205 return copied;
2206 }
2207 EXPORT_SYMBOL(generic_write_end);
2208
2209 /*
2210 * block_is_partially_uptodate checks whether buffers within a page are
2211 * uptodate or not.
2212 *
2213 * Returns true if all buffers which correspond to a file portion
2214 * we want to read are uptodate.
2215 */
2216 int block_is_partially_uptodate(struct page *page, unsigned long from,
2217 unsigned long count)
2218 {
2219 unsigned block_start, block_end, blocksize;
2220 unsigned to;
2221 struct buffer_head *bh, *head;
2222 int ret = 1;
2223
2224 if (!page_has_buffers(page))
2225 return 0;
2226
2227 head = page_buffers(page);
2228 blocksize = head->b_size;
2229 to = min_t(unsigned, PAGE_SIZE - from, count);
2230 to = from + to;
2231 if (from < blocksize && to > PAGE_SIZE - blocksize)
2232 return 0;
2233
2234 bh = head;
2235 block_start = 0;
2236 do {
2237 block_end = block_start + blocksize;
2238 if (block_end > from && block_start < to) {
2239 if (!buffer_uptodate(bh)) {
2240 ret = 0;
2241 break;
2242 }
2243 if (block_end >= to)
2244 break;
2245 }
2246 block_start = block_end;
2247 bh = bh->b_this_page;
2248 } while (bh != head);
2249
2250 return ret;
2251 }
2252 EXPORT_SYMBOL(block_is_partially_uptodate);
2253
2254 /*
2255 * Generic "read page" function for block devices that have the normal
2256 * get_block functionality. This is most of the block device filesystems.
2257 * Reads the page asynchronously --- the unlock_buffer() and
2258 * set/clear_buffer_uptodate() functions propagate buffer state into the
2259 * page struct once IO has completed.
2260 */
2261 int block_read_full_page(struct page *page, get_block_t *get_block)
2262 {
2263 struct inode *inode = page->mapping->host;
2264 sector_t iblock, lblock;
2265 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2266 unsigned int blocksize, bbits;
2267 int nr, i;
2268 int fully_mapped = 1;
2269
2270 head = create_page_buffers(page, inode, 0);
2271 blocksize = head->b_size;
2272 bbits = block_size_bits(blocksize);
2273
2274 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2275 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2276 bh = head;
2277 nr = 0;
2278 i = 0;
2279
2280 do {
2281 if (buffer_uptodate(bh))
2282 continue;
2283
2284 if (!buffer_mapped(bh)) {
2285 int err = 0;
2286
2287 fully_mapped = 0;
2288 if (iblock < lblock) {
2289 WARN_ON(bh->b_size != blocksize);
2290 err = get_block(inode, iblock, bh, 0);
2291 if (err)
2292 SetPageError(page);
2293 }
2294 if (!buffer_mapped(bh)) {
2295 zero_user(page, i * blocksize, blocksize);
2296 if (!err)
2297 set_buffer_uptodate(bh);
2298 continue;
2299 }
2300 /*
2301 * get_block() might have updated the buffer
2302 * synchronously
2303 */
2304 if (buffer_uptodate(bh))
2305 continue;
2306 }
2307 arr[nr++] = bh;
2308 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2309
2310 if (fully_mapped)
2311 SetPageMappedToDisk(page);
2312
2313 if (!nr) {
2314 /*
2315 * All buffers are uptodate - we can set the page uptodate
2316 * as well. But not if get_block() returned an error.
2317 */
2318 if (!PageError(page))
2319 SetPageUptodate(page);
2320 unlock_page(page);
2321 return 0;
2322 }
2323
2324 /* Stage two: lock the buffers */
2325 for (i = 0; i < nr; i++) {
2326 bh = arr[i];
2327 lock_buffer(bh);
2328 mark_buffer_async_read(bh);
2329 }
2330
2331 /*
2332 * Stage 3: start the IO. Check for uptodateness
2333 * inside the buffer lock in case another process reading
2334 * the underlying blockdev brought it uptodate (the sct fix).
2335 */
2336 for (i = 0; i < nr; i++) {
2337 bh = arr[i];
2338 if (buffer_uptodate(bh))
2339 end_buffer_async_read(bh, 1);
2340 else
2341 submit_bh(REQ_OP_READ, 0, bh);
2342 }
2343 return 0;
2344 }
2345 EXPORT_SYMBOL(block_read_full_page);
2346
2347 /* utility function for filesystems that need to do work on expanding
2348 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2349 * deal with the hole.
2350 */
2351 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2352 {
2353 struct address_space *mapping = inode->i_mapping;
2354 struct page *page;
2355 void *fsdata;
2356 int err;
2357
2358 err = inode_newsize_ok(inode, size);
2359 if (err)
2360 goto out;
2361
2362 err = pagecache_write_begin(NULL, mapping, size, 0,
2363 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2364 if (err)
2365 goto out;
2366
2367 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2368 BUG_ON(err > 0);
2369
2370 out:
2371 return err;
2372 }
2373 EXPORT_SYMBOL(generic_cont_expand_simple);
2374
2375 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2376 loff_t pos, loff_t *bytes)
2377 {
2378 struct inode *inode = mapping->host;
2379 unsigned int blocksize = i_blocksize(inode);
2380 struct page *page;
2381 void *fsdata;
2382 pgoff_t index, curidx;
2383 loff_t curpos;
2384 unsigned zerofrom, offset, len;
2385 int err = 0;
2386
2387 index = pos >> PAGE_SHIFT;
2388 offset = pos & ~PAGE_MASK;
2389
2390 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2391 zerofrom = curpos & ~PAGE_MASK;
2392 if (zerofrom & (blocksize-1)) {
2393 *bytes |= (blocksize-1);
2394 (*bytes)++;
2395 }
2396 len = PAGE_SIZE - zerofrom;
2397
2398 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2399 &page, &fsdata);
2400 if (err)
2401 goto out;
2402 zero_user(page, zerofrom, len);
2403 err = pagecache_write_end(file, mapping, curpos, len, len,
2404 page, fsdata);
2405 if (err < 0)
2406 goto out;
2407 BUG_ON(err != len);
2408 err = 0;
2409
2410 balance_dirty_pages_ratelimited(mapping);
2411
2412 if (fatal_signal_pending(current)) {
2413 err = -EINTR;
2414 goto out;
2415 }
2416 }
2417
2418 /* page covers the boundary, find the boundary offset */
2419 if (index == curidx) {
2420 zerofrom = curpos & ~PAGE_MASK;
2421 /* if we will expand the thing last block will be filled */
2422 if (offset <= zerofrom) {
2423 goto out;
2424 }
2425 if (zerofrom & (blocksize-1)) {
2426 *bytes |= (blocksize-1);
2427 (*bytes)++;
2428 }
2429 len = offset - zerofrom;
2430
2431 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2432 &page, &fsdata);
2433 if (err)
2434 goto out;
2435 zero_user(page, zerofrom, len);
2436 err = pagecache_write_end(file, mapping, curpos, len, len,
2437 page, fsdata);
2438 if (err < 0)
2439 goto out;
2440 BUG_ON(err != len);
2441 err = 0;
2442 }
2443 out:
2444 return err;
2445 }
2446
2447 /*
2448 * For moronic filesystems that do not allow holes in file.
2449 * We may have to extend the file.
2450 */
2451 int cont_write_begin(struct file *file, struct address_space *mapping,
2452 loff_t pos, unsigned len, unsigned flags,
2453 struct page **pagep, void **fsdata,
2454 get_block_t *get_block, loff_t *bytes)
2455 {
2456 struct inode *inode = mapping->host;
2457 unsigned int blocksize = i_blocksize(inode);
2458 unsigned int zerofrom;
2459 int err;
2460
2461 err = cont_expand_zero(file, mapping, pos, bytes);
2462 if (err)
2463 return err;
2464
2465 zerofrom = *bytes & ~PAGE_MASK;
2466 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2467 *bytes |= (blocksize-1);
2468 (*bytes)++;
2469 }
2470
2471 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2472 }
2473 EXPORT_SYMBOL(cont_write_begin);
2474
2475 int block_commit_write(struct page *page, unsigned from, unsigned to)
2476 {
2477 struct inode *inode = page->mapping->host;
2478 __block_commit_write(inode,page,from,to);
2479 return 0;
2480 }
2481 EXPORT_SYMBOL(block_commit_write);
2482
2483 /*
2484 * block_page_mkwrite() is not allowed to change the file size as it gets
2485 * called from a page fault handler when a page is first dirtied. Hence we must
2486 * be careful to check for EOF conditions here. We set the page up correctly
2487 * for a written page which means we get ENOSPC checking when writing into
2488 * holes and correct delalloc and unwritten extent mapping on filesystems that
2489 * support these features.
2490 *
2491 * We are not allowed to take the i_mutex here so we have to play games to
2492 * protect against truncate races as the page could now be beyond EOF. Because
2493 * truncate writes the inode size before removing pages, once we have the
2494 * page lock we can determine safely if the page is beyond EOF. If it is not
2495 * beyond EOF, then the page is guaranteed safe against truncation until we
2496 * unlock the page.
2497 *
2498 * Direct callers of this function should protect against filesystem freezing
2499 * using sb_start_pagefault() - sb_end_pagefault() functions.
2500 */
2501 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2502 get_block_t get_block)
2503 {
2504 struct page *page = vmf->page;
2505 struct inode *inode = file_inode(vma->vm_file);
2506 unsigned long end;
2507 loff_t size;
2508 int ret;
2509
2510 lock_page(page);
2511 size = i_size_read(inode);
2512 if ((page->mapping != inode->i_mapping) ||
2513 (page_offset(page) > size)) {
2514 /* We overload EFAULT to mean page got truncated */
2515 ret = -EFAULT;
2516 goto out_unlock;
2517 }
2518
2519 /* page is wholly or partially inside EOF */
2520 if (((page->index + 1) << PAGE_SHIFT) > size)
2521 end = size & ~PAGE_MASK;
2522 else
2523 end = PAGE_SIZE;
2524
2525 ret = __block_write_begin(page, 0, end, get_block);
2526 if (!ret)
2527 ret = block_commit_write(page, 0, end);
2528
2529 if (unlikely(ret < 0))
2530 goto out_unlock;
2531 set_page_dirty(page);
2532 wait_for_stable_page(page);
2533 return 0;
2534 out_unlock:
2535 unlock_page(page);
2536 return ret;
2537 }
2538 EXPORT_SYMBOL(block_page_mkwrite);
2539
2540 /*
2541 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2542 * immediately, while under the page lock. So it needs a special end_io
2543 * handler which does not touch the bh after unlocking it.
2544 */
2545 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2546 {
2547 __end_buffer_read_notouch(bh, uptodate);
2548 }
2549
2550 /*
2551 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2552 * the page (converting it to circular linked list and taking care of page
2553 * dirty races).
2554 */
2555 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2556 {
2557 struct buffer_head *bh;
2558
2559 BUG_ON(!PageLocked(page));
2560
2561 spin_lock(&page->mapping->private_lock);
2562 bh = head;
2563 do {
2564 if (PageDirty(page))
2565 set_buffer_dirty(bh);
2566 if (!bh->b_this_page)
2567 bh->b_this_page = head;
2568 bh = bh->b_this_page;
2569 } while (bh != head);
2570 attach_page_buffers(page, head);
2571 spin_unlock(&page->mapping->private_lock);
2572 }
2573
2574 /*
2575 * On entry, the page is fully not uptodate.
2576 * On exit the page is fully uptodate in the areas outside (from,to)
2577 * The filesystem needs to handle block truncation upon failure.
2578 */
2579 int nobh_write_begin(struct address_space *mapping,
2580 loff_t pos, unsigned len, unsigned flags,
2581 struct page **pagep, void **fsdata,
2582 get_block_t *get_block)
2583 {
2584 struct inode *inode = mapping->host;
2585 const unsigned blkbits = inode->i_blkbits;
2586 const unsigned blocksize = 1 << blkbits;
2587 struct buffer_head *head, *bh;
2588 struct page *page;
2589 pgoff_t index;
2590 unsigned from, to;
2591 unsigned block_in_page;
2592 unsigned block_start, block_end;
2593 sector_t block_in_file;
2594 int nr_reads = 0;
2595 int ret = 0;
2596 int is_mapped_to_disk = 1;
2597
2598 index = pos >> PAGE_SHIFT;
2599 from = pos & (PAGE_SIZE - 1);
2600 to = from + len;
2601
2602 page = grab_cache_page_write_begin(mapping, index, flags);
2603 if (!page)
2604 return -ENOMEM;
2605 *pagep = page;
2606 *fsdata = NULL;
2607
2608 if (page_has_buffers(page)) {
2609 ret = __block_write_begin(page, pos, len, get_block);
2610 if (unlikely(ret))
2611 goto out_release;
2612 return ret;
2613 }
2614
2615 if (PageMappedToDisk(page))
2616 return 0;
2617
2618 /*
2619 * Allocate buffers so that we can keep track of state, and potentially
2620 * attach them to the page if an error occurs. In the common case of
2621 * no error, they will just be freed again without ever being attached
2622 * to the page (which is all OK, because we're under the page lock).
2623 *
2624 * Be careful: the buffer linked list is a NULL terminated one, rather
2625 * than the circular one we're used to.
2626 */
2627 head = alloc_page_buffers(page, blocksize, false);
2628 if (!head) {
2629 ret = -ENOMEM;
2630 goto out_release;
2631 }
2632
2633 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2634
2635 /*
2636 * We loop across all blocks in the page, whether or not they are
2637 * part of the affected region. This is so we can discover if the
2638 * page is fully mapped-to-disk.
2639 */
2640 for (block_start = 0, block_in_page = 0, bh = head;
2641 block_start < PAGE_SIZE;
2642 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2643 int create;
2644
2645 block_end = block_start + blocksize;
2646 bh->b_state = 0;
2647 create = 1;
2648 if (block_start >= to)
2649 create = 0;
2650 ret = get_block(inode, block_in_file + block_in_page,
2651 bh, create);
2652 if (ret)
2653 goto failed;
2654 if (!buffer_mapped(bh))
2655 is_mapped_to_disk = 0;
2656 if (buffer_new(bh))
2657 clean_bdev_bh_alias(bh);
2658 if (PageUptodate(page)) {
2659 set_buffer_uptodate(bh);
2660 continue;
2661 }
2662 if (buffer_new(bh) || !buffer_mapped(bh)) {
2663 zero_user_segments(page, block_start, from,
2664 to, block_end);
2665 continue;
2666 }
2667 if (buffer_uptodate(bh))
2668 continue; /* reiserfs does this */
2669 if (block_start < from || block_end > to) {
2670 lock_buffer(bh);
2671 bh->b_end_io = end_buffer_read_nobh;
2672 submit_bh(REQ_OP_READ, 0, bh);
2673 nr_reads++;
2674 }
2675 }
2676
2677 if (nr_reads) {
2678 /*
2679 * The page is locked, so these buffers are protected from
2680 * any VM or truncate activity. Hence we don't need to care
2681 * for the buffer_head refcounts.
2682 */
2683 for (bh = head; bh; bh = bh->b_this_page) {
2684 wait_on_buffer(bh);
2685 if (!buffer_uptodate(bh))
2686 ret = -EIO;
2687 }
2688 if (ret)
2689 goto failed;
2690 }
2691
2692 if (is_mapped_to_disk)
2693 SetPageMappedToDisk(page);
2694
2695 *fsdata = head; /* to be released by nobh_write_end */
2696
2697 return 0;
2698
2699 failed:
2700 BUG_ON(!ret);
2701 /*
2702 * Error recovery is a bit difficult. We need to zero out blocks that
2703 * were newly allocated, and dirty them to ensure they get written out.
2704 * Buffers need to be attached to the page at this point, otherwise
2705 * the handling of potential IO errors during writeout would be hard
2706 * (could try doing synchronous writeout, but what if that fails too?)
2707 */
2708 attach_nobh_buffers(page, head);
2709 page_zero_new_buffers(page, from, to);
2710
2711 out_release:
2712 unlock_page(page);
2713 put_page(page);
2714 *pagep = NULL;
2715
2716 return ret;
2717 }
2718 EXPORT_SYMBOL(nobh_write_begin);
2719
2720 int nobh_write_end(struct file *file, struct address_space *mapping,
2721 loff_t pos, unsigned len, unsigned copied,
2722 struct page *page, void *fsdata)
2723 {
2724 struct inode *inode = page->mapping->host;
2725 struct buffer_head *head = fsdata;
2726 struct buffer_head *bh;
2727 BUG_ON(fsdata != NULL && page_has_buffers(page));
2728
2729 if (unlikely(copied < len) && head)
2730 attach_nobh_buffers(page, head);
2731 if (page_has_buffers(page))
2732 return generic_write_end(file, mapping, pos, len,
2733 copied, page, fsdata);
2734
2735 SetPageUptodate(page);
2736 set_page_dirty(page);
2737 if (pos+copied > inode->i_size) {
2738 i_size_write(inode, pos+copied);
2739 mark_inode_dirty(inode);
2740 }
2741
2742 unlock_page(page);
2743 put_page(page);
2744
2745 while (head) {
2746 bh = head;
2747 head = head->b_this_page;
2748 free_buffer_head(bh);
2749 }
2750
2751 return copied;
2752 }
2753 EXPORT_SYMBOL(nobh_write_end);
2754
2755 /*
2756 * nobh_writepage() - based on block_full_write_page() except
2757 * that it tries to operate without attaching bufferheads to
2758 * the page.
2759 */
2760 int nobh_writepage(struct page *page, get_block_t *get_block,
2761 struct writeback_control *wbc)
2762 {
2763 struct inode * const inode = page->mapping->host;
2764 loff_t i_size = i_size_read(inode);
2765 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2766 unsigned offset;
2767 int ret;
2768
2769 /* Is the page fully inside i_size? */
2770 if (page->index < end_index)
2771 goto out;
2772
2773 /* Is the page fully outside i_size? (truncate in progress) */
2774 offset = i_size & (PAGE_SIZE-1);
2775 if (page->index >= end_index+1 || !offset) {
2776 /*
2777 * The page may have dirty, unmapped buffers. For example,
2778 * they may have been added in ext3_writepage(). Make them
2779 * freeable here, so the page does not leak.
2780 */
2781 #if 0
2782 /* Not really sure about this - do we need this ? */
2783 if (page->mapping->a_ops->invalidatepage)
2784 page->mapping->a_ops->invalidatepage(page, offset);
2785 #endif
2786 unlock_page(page);
2787 return 0; /* don't care */
2788 }
2789
2790 /*
2791 * The page straddles i_size. It must be zeroed out on each and every
2792 * writepage invocation because it may be mmapped. "A file is mapped
2793 * in multiples of the page size. For a file that is not a multiple of
2794 * the page size, the remaining memory is zeroed when mapped, and
2795 * writes to that region are not written out to the file."
2796 */
2797 zero_user_segment(page, offset, PAGE_SIZE);
2798 out:
2799 ret = mpage_writepage(page, get_block, wbc);
2800 if (ret == -EAGAIN)
2801 ret = __block_write_full_page(inode, page, get_block, wbc,
2802 end_buffer_async_write);
2803 return ret;
2804 }
2805 EXPORT_SYMBOL(nobh_writepage);
2806
2807 int nobh_truncate_page(struct address_space *mapping,
2808 loff_t from, get_block_t *get_block)
2809 {
2810 pgoff_t index = from >> PAGE_SHIFT;
2811 unsigned offset = from & (PAGE_SIZE-1);
2812 unsigned blocksize;
2813 sector_t iblock;
2814 unsigned length, pos;
2815 struct inode *inode = mapping->host;
2816 struct page *page;
2817 struct buffer_head map_bh;
2818 int err;
2819
2820 blocksize = i_blocksize(inode);
2821 length = offset & (blocksize - 1);
2822
2823 /* Block boundary? Nothing to do */
2824 if (!length)
2825 return 0;
2826
2827 length = blocksize - length;
2828 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2829
2830 page = grab_cache_page(mapping, index);
2831 err = -ENOMEM;
2832 if (!page)
2833 goto out;
2834
2835 if (page_has_buffers(page)) {
2836 has_buffers:
2837 unlock_page(page);
2838 put_page(page);
2839 return block_truncate_page(mapping, from, get_block);
2840 }
2841
2842 /* Find the buffer that contains "offset" */
2843 pos = blocksize;
2844 while (offset >= pos) {
2845 iblock++;
2846 pos += blocksize;
2847 }
2848
2849 map_bh.b_size = blocksize;
2850 map_bh.b_state = 0;
2851 err = get_block(inode, iblock, &map_bh, 0);
2852 if (err)
2853 goto unlock;
2854 /* unmapped? It's a hole - nothing to do */
2855 if (!buffer_mapped(&map_bh))
2856 goto unlock;
2857
2858 /* Ok, it's mapped. Make sure it's up-to-date */
2859 if (!PageUptodate(page)) {
2860 err = mapping->a_ops->readpage(NULL, page);
2861 if (err) {
2862 put_page(page);
2863 goto out;
2864 }
2865 lock_page(page);
2866 if (!PageUptodate(page)) {
2867 err = -EIO;
2868 goto unlock;
2869 }
2870 if (page_has_buffers(page))
2871 goto has_buffers;
2872 }
2873 zero_user(page, offset, length);
2874 set_page_dirty(page);
2875 err = 0;
2876
2877 unlock:
2878 unlock_page(page);
2879 put_page(page);
2880 out:
2881 return err;
2882 }
2883 EXPORT_SYMBOL(nobh_truncate_page);
2884
2885 int block_truncate_page(struct address_space *mapping,
2886 loff_t from, get_block_t *get_block)
2887 {
2888 pgoff_t index = from >> PAGE_SHIFT;
2889 unsigned offset = from & (PAGE_SIZE-1);
2890 unsigned blocksize;
2891 sector_t iblock;
2892 unsigned length, pos;
2893 struct inode *inode = mapping->host;
2894 struct page *page;
2895 struct buffer_head *bh;
2896 int err;
2897
2898 blocksize = i_blocksize(inode);
2899 length = offset & (blocksize - 1);
2900
2901 /* Block boundary? Nothing to do */
2902 if (!length)
2903 return 0;
2904
2905 length = blocksize - length;
2906 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2907
2908 page = grab_cache_page(mapping, index);
2909 err = -ENOMEM;
2910 if (!page)
2911 goto out;
2912
2913 if (!page_has_buffers(page))
2914 create_empty_buffers(page, blocksize, 0);
2915
2916 /* Find the buffer that contains "offset" */
2917 bh = page_buffers(page);
2918 pos = blocksize;
2919 while (offset >= pos) {
2920 bh = bh->b_this_page;
2921 iblock++;
2922 pos += blocksize;
2923 }
2924
2925 err = 0;
2926 if (!buffer_mapped(bh)) {
2927 WARN_ON(bh->b_size != blocksize);
2928 err = get_block(inode, iblock, bh, 0);
2929 if (err)
2930 goto unlock;
2931 /* unmapped? It's a hole - nothing to do */
2932 if (!buffer_mapped(bh))
2933 goto unlock;
2934 }
2935
2936 /* Ok, it's mapped. Make sure it's up-to-date */
2937 if (PageUptodate(page))
2938 set_buffer_uptodate(bh);
2939
2940 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2941 err = -EIO;
2942 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2943 wait_on_buffer(bh);
2944 /* Uhhuh. Read error. Complain and punt. */
2945 if (!buffer_uptodate(bh))
2946 goto unlock;
2947 }
2948
2949 zero_user(page, offset, length);
2950 mark_buffer_dirty(bh);
2951 err = 0;
2952
2953 unlock:
2954 unlock_page(page);
2955 put_page(page);
2956 out:
2957 return err;
2958 }
2959 EXPORT_SYMBOL(block_truncate_page);
2960
2961 /*
2962 * The generic ->writepage function for buffer-backed address_spaces
2963 */
2964 int block_write_full_page(struct page *page, get_block_t *get_block,
2965 struct writeback_control *wbc)
2966 {
2967 struct inode * const inode = page->mapping->host;
2968 loff_t i_size = i_size_read(inode);
2969 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2970 unsigned offset;
2971
2972 /* Is the page fully inside i_size? */
2973 if (page->index < end_index)
2974 return __block_write_full_page(inode, page, get_block, wbc,
2975 end_buffer_async_write);
2976
2977 /* Is the page fully outside i_size? (truncate in progress) */
2978 offset = i_size & (PAGE_SIZE-1);
2979 if (page->index >= end_index+1 || !offset) {
2980 /*
2981 * The page may have dirty, unmapped buffers. For example,
2982 * they may have been added in ext3_writepage(). Make them
2983 * freeable here, so the page does not leak.
2984 */
2985 do_invalidatepage(page, 0, PAGE_SIZE);
2986 unlock_page(page);
2987 return 0; /* don't care */
2988 }
2989
2990 /*
2991 * The page straddles i_size. It must be zeroed out on each and every
2992 * writepage invocation because it may be mmapped. "A file is mapped
2993 * in multiples of the page size. For a file that is not a multiple of
2994 * the page size, the remaining memory is zeroed when mapped, and
2995 * writes to that region are not written out to the file."
2996 */
2997 zero_user_segment(page, offset, PAGE_SIZE);
2998 return __block_write_full_page(inode, page, get_block, wbc,
2999 end_buffer_async_write);
3000 }
3001 EXPORT_SYMBOL(block_write_full_page);
3002
3003 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3004 get_block_t *get_block)
3005 {
3006 struct inode *inode = mapping->host;
3007 struct buffer_head tmp = {
3008 .b_size = i_blocksize(inode),
3009 };
3010
3011 get_block(inode, block, &tmp, 0);
3012 return tmp.b_blocknr;
3013 }
3014 EXPORT_SYMBOL(generic_block_bmap);
3015
3016 static void end_bio_bh_io_sync(struct bio *bio)
3017 {
3018 struct buffer_head *bh = bio->bi_private;
3019
3020 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3021 set_bit(BH_Quiet, &bh->b_state);
3022
3023 bh->b_end_io(bh, !bio->bi_status);
3024 bio_put(bio);
3025 }
3026
3027 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3028 enum rw_hint write_hint, struct writeback_control *wbc)
3029 {
3030 struct bio *bio;
3031
3032 BUG_ON(!buffer_locked(bh));
3033 BUG_ON(!buffer_mapped(bh));
3034 BUG_ON(!bh->b_end_io);
3035 BUG_ON(buffer_delay(bh));
3036 BUG_ON(buffer_unwritten(bh));
3037
3038 /*
3039 * Only clear out a write error when rewriting
3040 */
3041 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3042 clear_buffer_write_io_error(bh);
3043
3044 /*
3045 * from here on down, it's all bio -- do the initial mapping,
3046 * submit_bio -> generic_make_request may further map this bio around
3047 */
3048 bio = bio_alloc(GFP_NOIO, 1);
3049
3050 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3051 bio_set_dev(bio, bh->b_bdev);
3052 bio->bi_write_hint = write_hint;
3053
3054 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3055 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3056
3057 bio->bi_end_io = end_bio_bh_io_sync;
3058 bio->bi_private = bh;
3059
3060 if (buffer_meta(bh))
3061 op_flags |= REQ_META;
3062 if (buffer_prio(bh))
3063 op_flags |= REQ_PRIO;
3064 bio_set_op_attrs(bio, op, op_flags);
3065
3066 /* Take care of bh's that straddle the end of the device */
3067 guard_bio_eod(bio);
3068
3069 if (wbc) {
3070 wbc_init_bio(wbc, bio);
3071 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3072 }
3073
3074 submit_bio(bio);
3075 return 0;
3076 }
3077
3078 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3079 {
3080 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3081 }
3082 EXPORT_SYMBOL(submit_bh);
3083
3084 /**
3085 * ll_rw_block: low-level access to block devices (DEPRECATED)
3086 * @op: whether to %READ or %WRITE
3087 * @op_flags: req_flag_bits
3088 * @nr: number of &struct buffer_heads in the array
3089 * @bhs: array of pointers to &struct buffer_head
3090 *
3091 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3092 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3093 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3094 * %REQ_RAHEAD.
3095 *
3096 * This function drops any buffer that it cannot get a lock on (with the
3097 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3098 * request, and any buffer that appears to be up-to-date when doing read
3099 * request. Further it marks as clean buffers that are processed for
3100 * writing (the buffer cache won't assume that they are actually clean
3101 * until the buffer gets unlocked).
3102 *
3103 * ll_rw_block sets b_end_io to simple completion handler that marks
3104 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3105 * any waiters.
3106 *
3107 * All of the buffers must be for the same device, and must also be a
3108 * multiple of the current approved size for the device.
3109 */
3110 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3111 {
3112 int i;
3113
3114 for (i = 0; i < nr; i++) {
3115 struct buffer_head *bh = bhs[i];
3116
3117 if (!trylock_buffer(bh))
3118 continue;
3119 if (op == WRITE) {
3120 if (test_clear_buffer_dirty(bh)) {
3121 bh->b_end_io = end_buffer_write_sync;
3122 get_bh(bh);
3123 submit_bh(op, op_flags, bh);
3124 continue;
3125 }
3126 } else {
3127 if (!buffer_uptodate(bh)) {
3128 bh->b_end_io = end_buffer_read_sync;
3129 get_bh(bh);
3130 submit_bh(op, op_flags, bh);
3131 continue;
3132 }
3133 }
3134 unlock_buffer(bh);
3135 }
3136 }
3137 EXPORT_SYMBOL(ll_rw_block);
3138
3139 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3140 {
3141 lock_buffer(bh);
3142 if (!test_clear_buffer_dirty(bh)) {
3143 unlock_buffer(bh);
3144 return;
3145 }
3146 bh->b_end_io = end_buffer_write_sync;
3147 get_bh(bh);
3148 submit_bh(REQ_OP_WRITE, op_flags, bh);
3149 }
3150 EXPORT_SYMBOL(write_dirty_buffer);
3151
3152 /*
3153 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3154 * and then start new I/O and then wait upon it. The caller must have a ref on
3155 * the buffer_head.
3156 */
3157 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3158 {
3159 int ret = 0;
3160
3161 WARN_ON(atomic_read(&bh->b_count) < 1);
3162 lock_buffer(bh);
3163 if (test_clear_buffer_dirty(bh)) {
3164 get_bh(bh);
3165 bh->b_end_io = end_buffer_write_sync;
3166 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3167 wait_on_buffer(bh);
3168 if (!ret && !buffer_uptodate(bh))
3169 ret = -EIO;
3170 } else {
3171 unlock_buffer(bh);
3172 }
3173 return ret;
3174 }
3175 EXPORT_SYMBOL(__sync_dirty_buffer);
3176
3177 int sync_dirty_buffer(struct buffer_head *bh)
3178 {
3179 return __sync_dirty_buffer(bh, REQ_SYNC);
3180 }
3181 EXPORT_SYMBOL(sync_dirty_buffer);
3182
3183 /*
3184 * try_to_free_buffers() checks if all the buffers on this particular page
3185 * are unused, and releases them if so.
3186 *
3187 * Exclusion against try_to_free_buffers may be obtained by either
3188 * locking the page or by holding its mapping's private_lock.
3189 *
3190 * If the page is dirty but all the buffers are clean then we need to
3191 * be sure to mark the page clean as well. This is because the page
3192 * may be against a block device, and a later reattachment of buffers
3193 * to a dirty page will set *all* buffers dirty. Which would corrupt
3194 * filesystem data on the same device.
3195 *
3196 * The same applies to regular filesystem pages: if all the buffers are
3197 * clean then we set the page clean and proceed. To do that, we require
3198 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3199 * private_lock.
3200 *
3201 * try_to_free_buffers() is non-blocking.
3202 */
3203 static inline int buffer_busy(struct buffer_head *bh)
3204 {
3205 return atomic_read(&bh->b_count) |
3206 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3207 }
3208
3209 static int
3210 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3211 {
3212 struct buffer_head *head = page_buffers(page);
3213 struct buffer_head *bh;
3214
3215 bh = head;
3216 do {
3217 if (buffer_busy(bh))
3218 goto failed;
3219 bh = bh->b_this_page;
3220 } while (bh != head);
3221
3222 do {
3223 struct buffer_head *next = bh->b_this_page;
3224
3225 if (bh->b_assoc_map)
3226 __remove_assoc_queue(bh);
3227 bh = next;
3228 } while (bh != head);
3229 *buffers_to_free = head;
3230 __clear_page_buffers(page);
3231 return 1;
3232 failed:
3233 return 0;
3234 }
3235
3236 int try_to_free_buffers(struct page *page)
3237 {
3238 struct address_space * const mapping = page->mapping;
3239 struct buffer_head *buffers_to_free = NULL;
3240 int ret = 0;
3241
3242 BUG_ON(!PageLocked(page));
3243 if (PageWriteback(page))
3244 return 0;
3245
3246 if (mapping == NULL) { /* can this still happen? */
3247 ret = drop_buffers(page, &buffers_to_free);
3248 goto out;
3249 }
3250
3251 spin_lock(&mapping->private_lock);
3252 ret = drop_buffers(page, &buffers_to_free);
3253
3254 /*
3255 * If the filesystem writes its buffers by hand (eg ext3)
3256 * then we can have clean buffers against a dirty page. We
3257 * clean the page here; otherwise the VM will never notice
3258 * that the filesystem did any IO at all.
3259 *
3260 * Also, during truncate, discard_buffer will have marked all
3261 * the page's buffers clean. We discover that here and clean
3262 * the page also.
3263 *
3264 * private_lock must be held over this entire operation in order
3265 * to synchronise against __set_page_dirty_buffers and prevent the
3266 * dirty bit from being lost.
3267 */
3268 if (ret)
3269 cancel_dirty_page(page);
3270 spin_unlock(&mapping->private_lock);
3271 out:
3272 if (buffers_to_free) {
3273 struct buffer_head *bh = buffers_to_free;
3274
3275 do {
3276 struct buffer_head *next = bh->b_this_page;
3277 free_buffer_head(bh);
3278 bh = next;
3279 } while (bh != buffers_to_free);
3280 }
3281 return ret;
3282 }
3283 EXPORT_SYMBOL(try_to_free_buffers);
3284
3285 /*
3286 * There are no bdflush tunables left. But distributions are
3287 * still running obsolete flush daemons, so we terminate them here.
3288 *
3289 * Use of bdflush() is deprecated and will be removed in a future kernel.
3290 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3291 */
3292 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3293 {
3294 static int msg_count;
3295
3296 if (!capable(CAP_SYS_ADMIN))
3297 return -EPERM;
3298
3299 if (msg_count < 5) {
3300 msg_count++;
3301 printk(KERN_INFO
3302 "warning: process `%s' used the obsolete bdflush"
3303 " system call\n", current->comm);
3304 printk(KERN_INFO "Fix your initscripts?\n");
3305 }
3306
3307 if (func == 1)
3308 do_exit(0);
3309 return 0;
3310 }
3311
3312 /*
3313 * Buffer-head allocation
3314 */
3315 static struct kmem_cache *bh_cachep __read_mostly;
3316
3317 /*
3318 * Once the number of bh's in the machine exceeds this level, we start
3319 * stripping them in writeback.
3320 */
3321 static unsigned long max_buffer_heads;
3322
3323 int buffer_heads_over_limit;
3324
3325 struct bh_accounting {
3326 int nr; /* Number of live bh's */
3327 int ratelimit; /* Limit cacheline bouncing */
3328 };
3329
3330 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3331
3332 static void recalc_bh_state(void)
3333 {
3334 int i;
3335 int tot = 0;
3336
3337 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3338 return;
3339 __this_cpu_write(bh_accounting.ratelimit, 0);
3340 for_each_online_cpu(i)
3341 tot += per_cpu(bh_accounting, i).nr;
3342 buffer_heads_over_limit = (tot > max_buffer_heads);
3343 }
3344
3345 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3346 {
3347 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3348 if (ret) {
3349 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3350 spin_lock_init(&ret->b_uptodate_lock);
3351 preempt_disable();
3352 __this_cpu_inc(bh_accounting.nr);
3353 recalc_bh_state();
3354 preempt_enable();
3355 }
3356 return ret;
3357 }
3358 EXPORT_SYMBOL(alloc_buffer_head);
3359
3360 void free_buffer_head(struct buffer_head *bh)
3361 {
3362 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3363 kmem_cache_free(bh_cachep, bh);
3364 preempt_disable();
3365 __this_cpu_dec(bh_accounting.nr);
3366 recalc_bh_state();
3367 preempt_enable();
3368 }
3369 EXPORT_SYMBOL(free_buffer_head);
3370
3371 static int buffer_exit_cpu_dead(unsigned int cpu)
3372 {
3373 int i;
3374 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3375
3376 for (i = 0; i < BH_LRU_SIZE; i++) {
3377 brelse(b->bhs[i]);
3378 b->bhs[i] = NULL;
3379 }
3380 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3381 per_cpu(bh_accounting, cpu).nr = 0;
3382 return 0;
3383 }
3384
3385 /**
3386 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3387 * @bh: struct buffer_head
3388 *
3389 * Return true if the buffer is up-to-date and false,
3390 * with the buffer locked, if not.
3391 */
3392 int bh_uptodate_or_lock(struct buffer_head *bh)
3393 {
3394 if (!buffer_uptodate(bh)) {
3395 lock_buffer(bh);
3396 if (!buffer_uptodate(bh))
3397 return 0;
3398 unlock_buffer(bh);
3399 }
3400 return 1;
3401 }
3402 EXPORT_SYMBOL(bh_uptodate_or_lock);
3403
3404 /**
3405 * bh_submit_read - Submit a locked buffer for reading
3406 * @bh: struct buffer_head
3407 *
3408 * Returns zero on success and -EIO on error.
3409 */
3410 int bh_submit_read(struct buffer_head *bh)
3411 {
3412 BUG_ON(!buffer_locked(bh));
3413
3414 if (buffer_uptodate(bh)) {
3415 unlock_buffer(bh);
3416 return 0;
3417 }
3418
3419 get_bh(bh);
3420 bh->b_end_io = end_buffer_read_sync;
3421 submit_bh(REQ_OP_READ, 0, bh);
3422 wait_on_buffer(bh);
3423 if (buffer_uptodate(bh))
3424 return 0;
3425 return -EIO;
3426 }
3427 EXPORT_SYMBOL(bh_submit_read);
3428
3429 void __init buffer_init(void)
3430 {
3431 unsigned long nrpages;
3432 int ret;
3433
3434 bh_cachep = kmem_cache_create("buffer_head",
3435 sizeof(struct buffer_head), 0,
3436 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3437 SLAB_MEM_SPREAD),
3438 NULL);
3439
3440 /*
3441 * Limit the bh occupancy to 10% of ZONE_NORMAL
3442 */
3443 nrpages = (nr_free_buffer_pages() * 10) / 100;
3444 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3445 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3446 NULL, buffer_exit_cpu_dead);
3447 WARN_ON(ret < 0);
3448 }