]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/buffer.c
treewide: Add SPDX license identifier for missed files
[mirror_ubuntu-hirsute-kernel.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50
51 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
52 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
53 enum rw_hint hint, struct writeback_control *wbc);
54
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83 void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85 {
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 ClearPagePrivate(page);
127 set_page_private(page, 0);
128 put_page(page);
129 }
130
131 static void buffer_io_error(struct buffer_head *bh, char *msg)
132 {
133 if (!test_bit(BH_Quiet, &bh->b_state))
134 printk_ratelimited(KERN_ERR
135 "Buffer I/O error on dev %pg, logical block %llu%s\n",
136 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
137 }
138
139 /*
140 * End-of-IO handler helper function which does not touch the bh after
141 * unlocking it.
142 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
143 * a race there is benign: unlock_buffer() only use the bh's address for
144 * hashing after unlocking the buffer, so it doesn't actually touch the bh
145 * itself.
146 */
147 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
148 {
149 if (uptodate) {
150 set_buffer_uptodate(bh);
151 } else {
152 /* This happens, due to failed read-ahead attempts. */
153 clear_buffer_uptodate(bh);
154 }
155 unlock_buffer(bh);
156 }
157
158 /*
159 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
160 * unlock the buffer. This is what ll_rw_block uses too.
161 */
162 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
163 {
164 __end_buffer_read_notouch(bh, uptodate);
165 put_bh(bh);
166 }
167 EXPORT_SYMBOL(end_buffer_read_sync);
168
169 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
170 {
171 if (uptodate) {
172 set_buffer_uptodate(bh);
173 } else {
174 buffer_io_error(bh, ", lost sync page write");
175 mark_buffer_write_io_error(bh);
176 clear_buffer_uptodate(bh);
177 }
178 unlock_buffer(bh);
179 put_bh(bh);
180 }
181 EXPORT_SYMBOL(end_buffer_write_sync);
182
183 /*
184 * Various filesystems appear to want __find_get_block to be non-blocking.
185 * But it's the page lock which protects the buffers. To get around this,
186 * we get exclusion from try_to_free_buffers with the blockdev mapping's
187 * private_lock.
188 *
189 * Hack idea: for the blockdev mapping, private_lock contention
190 * may be quite high. This code could TryLock the page, and if that
191 * succeeds, there is no need to take private_lock.
192 */
193 static struct buffer_head *
194 __find_get_block_slow(struct block_device *bdev, sector_t block)
195 {
196 struct inode *bd_inode = bdev->bd_inode;
197 struct address_space *bd_mapping = bd_inode->i_mapping;
198 struct buffer_head *ret = NULL;
199 pgoff_t index;
200 struct buffer_head *bh;
201 struct buffer_head *head;
202 struct page *page;
203 int all_mapped = 1;
204 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
205
206 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
207 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
208 if (!page)
209 goto out;
210
211 spin_lock(&bd_mapping->private_lock);
212 if (!page_has_buffers(page))
213 goto out_unlock;
214 head = page_buffers(page);
215 bh = head;
216 do {
217 if (!buffer_mapped(bh))
218 all_mapped = 0;
219 else if (bh->b_blocknr == block) {
220 ret = bh;
221 get_bh(bh);
222 goto out_unlock;
223 }
224 bh = bh->b_this_page;
225 } while (bh != head);
226
227 /* we might be here because some of the buffers on this page are
228 * not mapped. This is due to various races between
229 * file io on the block device and getblk. It gets dealt with
230 * elsewhere, don't buffer_error if we had some unmapped buffers
231 */
232 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
233 if (all_mapped && __ratelimit(&last_warned)) {
234 printk("__find_get_block_slow() failed. block=%llu, "
235 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
236 "device %pg blocksize: %d\n",
237 (unsigned long long)block,
238 (unsigned long long)bh->b_blocknr,
239 bh->b_state, bh->b_size, bdev,
240 1 << bd_inode->i_blkbits);
241 }
242 out_unlock:
243 spin_unlock(&bd_mapping->private_lock);
244 put_page(page);
245 out:
246 return ret;
247 }
248
249 /*
250 * I/O completion handler for block_read_full_page() - pages
251 * which come unlocked at the end of I/O.
252 */
253 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
254 {
255 unsigned long flags;
256 struct buffer_head *first;
257 struct buffer_head *tmp;
258 struct page *page;
259 int page_uptodate = 1;
260
261 BUG_ON(!buffer_async_read(bh));
262
263 page = bh->b_page;
264 if (uptodate) {
265 set_buffer_uptodate(bh);
266 } else {
267 clear_buffer_uptodate(bh);
268 buffer_io_error(bh, ", async page read");
269 SetPageError(page);
270 }
271
272 /*
273 * Be _very_ careful from here on. Bad things can happen if
274 * two buffer heads end IO at almost the same time and both
275 * decide that the page is now completely done.
276 */
277 first = page_buffers(page);
278 local_irq_save(flags);
279 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
280 clear_buffer_async_read(bh);
281 unlock_buffer(bh);
282 tmp = bh;
283 do {
284 if (!buffer_uptodate(tmp))
285 page_uptodate = 0;
286 if (buffer_async_read(tmp)) {
287 BUG_ON(!buffer_locked(tmp));
288 goto still_busy;
289 }
290 tmp = tmp->b_this_page;
291 } while (tmp != bh);
292 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
293 local_irq_restore(flags);
294
295 /*
296 * If none of the buffers had errors and they are all
297 * uptodate then we can set the page uptodate.
298 */
299 if (page_uptodate && !PageError(page))
300 SetPageUptodate(page);
301 unlock_page(page);
302 return;
303
304 still_busy:
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
307 return;
308 }
309
310 /*
311 * Completion handler for block_write_full_page() - pages which are unlocked
312 * during I/O, and which have PageWriteback cleared upon I/O completion.
313 */
314 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
315 {
316 unsigned long flags;
317 struct buffer_head *first;
318 struct buffer_head *tmp;
319 struct page *page;
320
321 BUG_ON(!buffer_async_write(bh));
322
323 page = bh->b_page;
324 if (uptodate) {
325 set_buffer_uptodate(bh);
326 } else {
327 buffer_io_error(bh, ", lost async page write");
328 mark_buffer_write_io_error(bh);
329 clear_buffer_uptodate(bh);
330 SetPageError(page);
331 }
332
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336
337 clear_buffer_async_write(bh);
338 unlock_buffer(bh);
339 tmp = bh->b_this_page;
340 while (tmp != bh) {
341 if (buffer_async_write(tmp)) {
342 BUG_ON(!buffer_locked(tmp));
343 goto still_busy;
344 }
345 tmp = tmp->b_this_page;
346 }
347 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348 local_irq_restore(flags);
349 end_page_writeback(page);
350 return;
351
352 still_busy:
353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 local_irq_restore(flags);
355 return;
356 }
357 EXPORT_SYMBOL(end_buffer_async_write);
358
359 /*
360 * If a page's buffers are under async readin (end_buffer_async_read
361 * completion) then there is a possibility that another thread of
362 * control could lock one of the buffers after it has completed
363 * but while some of the other buffers have not completed. This
364 * locked buffer would confuse end_buffer_async_read() into not unlocking
365 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
366 * that this buffer is not under async I/O.
367 *
368 * The page comes unlocked when it has no locked buffer_async buffers
369 * left.
370 *
371 * PageLocked prevents anyone starting new async I/O reads any of
372 * the buffers.
373 *
374 * PageWriteback is used to prevent simultaneous writeout of the same
375 * page.
376 *
377 * PageLocked prevents anyone from starting writeback of a page which is
378 * under read I/O (PageWriteback is only ever set against a locked page).
379 */
380 static void mark_buffer_async_read(struct buffer_head *bh)
381 {
382 bh->b_end_io = end_buffer_async_read;
383 set_buffer_async_read(bh);
384 }
385
386 static void mark_buffer_async_write_endio(struct buffer_head *bh,
387 bh_end_io_t *handler)
388 {
389 bh->b_end_io = handler;
390 set_buffer_async_write(bh);
391 }
392
393 void mark_buffer_async_write(struct buffer_head *bh)
394 {
395 mark_buffer_async_write_endio(bh, end_buffer_async_write);
396 }
397 EXPORT_SYMBOL(mark_buffer_async_write);
398
399
400 /*
401 * fs/buffer.c contains helper functions for buffer-backed address space's
402 * fsync functions. A common requirement for buffer-based filesystems is
403 * that certain data from the backing blockdev needs to be written out for
404 * a successful fsync(). For example, ext2 indirect blocks need to be
405 * written back and waited upon before fsync() returns.
406 *
407 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
408 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
409 * management of a list of dependent buffers at ->i_mapping->private_list.
410 *
411 * Locking is a little subtle: try_to_free_buffers() will remove buffers
412 * from their controlling inode's queue when they are being freed. But
413 * try_to_free_buffers() will be operating against the *blockdev* mapping
414 * at the time, not against the S_ISREG file which depends on those buffers.
415 * So the locking for private_list is via the private_lock in the address_space
416 * which backs the buffers. Which is different from the address_space
417 * against which the buffers are listed. So for a particular address_space,
418 * mapping->private_lock does *not* protect mapping->private_list! In fact,
419 * mapping->private_list will always be protected by the backing blockdev's
420 * ->private_lock.
421 *
422 * Which introduces a requirement: all buffers on an address_space's
423 * ->private_list must be from the same address_space: the blockdev's.
424 *
425 * address_spaces which do not place buffers at ->private_list via these
426 * utility functions are free to use private_lock and private_list for
427 * whatever they want. The only requirement is that list_empty(private_list)
428 * be true at clear_inode() time.
429 *
430 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
431 * filesystems should do that. invalidate_inode_buffers() should just go
432 * BUG_ON(!list_empty).
433 *
434 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
435 * take an address_space, not an inode. And it should be called
436 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
437 * queued up.
438 *
439 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
440 * list if it is already on a list. Because if the buffer is on a list,
441 * it *must* already be on the right one. If not, the filesystem is being
442 * silly. This will save a ton of locking. But first we have to ensure
443 * that buffers are taken *off* the old inode's list when they are freed
444 * (presumably in truncate). That requires careful auditing of all
445 * filesystems (do it inside bforget()). It could also be done by bringing
446 * b_inode back.
447 */
448
449 /*
450 * The buffer's backing address_space's private_lock must be held
451 */
452 static void __remove_assoc_queue(struct buffer_head *bh)
453 {
454 list_del_init(&bh->b_assoc_buffers);
455 WARN_ON(!bh->b_assoc_map);
456 bh->b_assoc_map = NULL;
457 }
458
459 int inode_has_buffers(struct inode *inode)
460 {
461 return !list_empty(&inode->i_data.private_list);
462 }
463
464 /*
465 * osync is designed to support O_SYNC io. It waits synchronously for
466 * all already-submitted IO to complete, but does not queue any new
467 * writes to the disk.
468 *
469 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
470 * you dirty the buffers, and then use osync_inode_buffers to wait for
471 * completion. Any other dirty buffers which are not yet queued for
472 * write will not be flushed to disk by the osync.
473 */
474 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
475 {
476 struct buffer_head *bh;
477 struct list_head *p;
478 int err = 0;
479
480 spin_lock(lock);
481 repeat:
482 list_for_each_prev(p, list) {
483 bh = BH_ENTRY(p);
484 if (buffer_locked(bh)) {
485 get_bh(bh);
486 spin_unlock(lock);
487 wait_on_buffer(bh);
488 if (!buffer_uptodate(bh))
489 err = -EIO;
490 brelse(bh);
491 spin_lock(lock);
492 goto repeat;
493 }
494 }
495 spin_unlock(lock);
496 return err;
497 }
498
499 void emergency_thaw_bdev(struct super_block *sb)
500 {
501 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
502 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
503 }
504
505 /**
506 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
507 * @mapping: the mapping which wants those buffers written
508 *
509 * Starts I/O against the buffers at mapping->private_list, and waits upon
510 * that I/O.
511 *
512 * Basically, this is a convenience function for fsync().
513 * @mapping is a file or directory which needs those buffers to be written for
514 * a successful fsync().
515 */
516 int sync_mapping_buffers(struct address_space *mapping)
517 {
518 struct address_space *buffer_mapping = mapping->private_data;
519
520 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
521 return 0;
522
523 return fsync_buffers_list(&buffer_mapping->private_lock,
524 &mapping->private_list);
525 }
526 EXPORT_SYMBOL(sync_mapping_buffers);
527
528 /*
529 * Called when we've recently written block `bblock', and it is known that
530 * `bblock' was for a buffer_boundary() buffer. This means that the block at
531 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
532 * dirty, schedule it for IO. So that indirects merge nicely with their data.
533 */
534 void write_boundary_block(struct block_device *bdev,
535 sector_t bblock, unsigned blocksize)
536 {
537 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
538 if (bh) {
539 if (buffer_dirty(bh))
540 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
541 put_bh(bh);
542 }
543 }
544
545 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
546 {
547 struct address_space *mapping = inode->i_mapping;
548 struct address_space *buffer_mapping = bh->b_page->mapping;
549
550 mark_buffer_dirty(bh);
551 if (!mapping->private_data) {
552 mapping->private_data = buffer_mapping;
553 } else {
554 BUG_ON(mapping->private_data != buffer_mapping);
555 }
556 if (!bh->b_assoc_map) {
557 spin_lock(&buffer_mapping->private_lock);
558 list_move_tail(&bh->b_assoc_buffers,
559 &mapping->private_list);
560 bh->b_assoc_map = mapping;
561 spin_unlock(&buffer_mapping->private_lock);
562 }
563 }
564 EXPORT_SYMBOL(mark_buffer_dirty_inode);
565
566 /*
567 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
568 * dirty.
569 *
570 * If warn is true, then emit a warning if the page is not uptodate and has
571 * not been truncated.
572 *
573 * The caller must hold lock_page_memcg().
574 */
575 void __set_page_dirty(struct page *page, struct address_space *mapping,
576 int warn)
577 {
578 unsigned long flags;
579
580 xa_lock_irqsave(&mapping->i_pages, flags);
581 if (page->mapping) { /* Race with truncate? */
582 WARN_ON_ONCE(warn && !PageUptodate(page));
583 account_page_dirtied(page, mapping);
584 __xa_set_mark(&mapping->i_pages, page_index(page),
585 PAGECACHE_TAG_DIRTY);
586 }
587 xa_unlock_irqrestore(&mapping->i_pages, flags);
588 }
589 EXPORT_SYMBOL_GPL(__set_page_dirty);
590
591 /*
592 * Add a page to the dirty page list.
593 *
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
596 *
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
600 * dirty.
601 *
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
608 *
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
612 *
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
615 */
616 int __set_page_dirty_buffers(struct page *page)
617 {
618 int newly_dirty;
619 struct address_space *mapping = page_mapping(page);
620
621 if (unlikely(!mapping))
622 return !TestSetPageDirty(page);
623
624 spin_lock(&mapping->private_lock);
625 if (page_has_buffers(page)) {
626 struct buffer_head *head = page_buffers(page);
627 struct buffer_head *bh = head;
628
629 do {
630 set_buffer_dirty(bh);
631 bh = bh->b_this_page;
632 } while (bh != head);
633 }
634 /*
635 * Lock out page->mem_cgroup migration to keep PageDirty
636 * synchronized with per-memcg dirty page counters.
637 */
638 lock_page_memcg(page);
639 newly_dirty = !TestSetPageDirty(page);
640 spin_unlock(&mapping->private_lock);
641
642 if (newly_dirty)
643 __set_page_dirty(page, mapping, 1);
644
645 unlock_page_memcg(page);
646
647 if (newly_dirty)
648 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649
650 return newly_dirty;
651 }
652 EXPORT_SYMBOL(__set_page_dirty_buffers);
653
654 /*
655 * Write out and wait upon a list of buffers.
656 *
657 * We have conflicting pressures: we want to make sure that all
658 * initially dirty buffers get waited on, but that any subsequently
659 * dirtied buffers don't. After all, we don't want fsync to last
660 * forever if somebody is actively writing to the file.
661 *
662 * Do this in two main stages: first we copy dirty buffers to a
663 * temporary inode list, queueing the writes as we go. Then we clean
664 * up, waiting for those writes to complete.
665 *
666 * During this second stage, any subsequent updates to the file may end
667 * up refiling the buffer on the original inode's dirty list again, so
668 * there is a chance we will end up with a buffer queued for write but
669 * not yet completed on that list. So, as a final cleanup we go through
670 * the osync code to catch these locked, dirty buffers without requeuing
671 * any newly dirty buffers for write.
672 */
673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674 {
675 struct buffer_head *bh;
676 struct list_head tmp;
677 struct address_space *mapping;
678 int err = 0, err2;
679 struct blk_plug plug;
680
681 INIT_LIST_HEAD(&tmp);
682 blk_start_plug(&plug);
683
684 spin_lock(lock);
685 while (!list_empty(list)) {
686 bh = BH_ENTRY(list->next);
687 mapping = bh->b_assoc_map;
688 __remove_assoc_queue(bh);
689 /* Avoid race with mark_buffer_dirty_inode() which does
690 * a lockless check and we rely on seeing the dirty bit */
691 smp_mb();
692 if (buffer_dirty(bh) || buffer_locked(bh)) {
693 list_add(&bh->b_assoc_buffers, &tmp);
694 bh->b_assoc_map = mapping;
695 if (buffer_dirty(bh)) {
696 get_bh(bh);
697 spin_unlock(lock);
698 /*
699 * Ensure any pending I/O completes so that
700 * write_dirty_buffer() actually writes the
701 * current contents - it is a noop if I/O is
702 * still in flight on potentially older
703 * contents.
704 */
705 write_dirty_buffer(bh, REQ_SYNC);
706
707 /*
708 * Kick off IO for the previous mapping. Note
709 * that we will not run the very last mapping,
710 * wait_on_buffer() will do that for us
711 * through sync_buffer().
712 */
713 brelse(bh);
714 spin_lock(lock);
715 }
716 }
717 }
718
719 spin_unlock(lock);
720 blk_finish_plug(&plug);
721 spin_lock(lock);
722
723 while (!list_empty(&tmp)) {
724 bh = BH_ENTRY(tmp.prev);
725 get_bh(bh);
726 mapping = bh->b_assoc_map;
727 __remove_assoc_queue(bh);
728 /* Avoid race with mark_buffer_dirty_inode() which does
729 * a lockless check and we rely on seeing the dirty bit */
730 smp_mb();
731 if (buffer_dirty(bh)) {
732 list_add(&bh->b_assoc_buffers,
733 &mapping->private_list);
734 bh->b_assoc_map = mapping;
735 }
736 spin_unlock(lock);
737 wait_on_buffer(bh);
738 if (!buffer_uptodate(bh))
739 err = -EIO;
740 brelse(bh);
741 spin_lock(lock);
742 }
743
744 spin_unlock(lock);
745 err2 = osync_buffers_list(lock, list);
746 if (err)
747 return err;
748 else
749 return err2;
750 }
751
752 /*
753 * Invalidate any and all dirty buffers on a given inode. We are
754 * probably unmounting the fs, but that doesn't mean we have already
755 * done a sync(). Just drop the buffers from the inode list.
756 *
757 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
758 * assumes that all the buffers are against the blockdev. Not true
759 * for reiserfs.
760 */
761 void invalidate_inode_buffers(struct inode *inode)
762 {
763 if (inode_has_buffers(inode)) {
764 struct address_space *mapping = &inode->i_data;
765 struct list_head *list = &mapping->private_list;
766 struct address_space *buffer_mapping = mapping->private_data;
767
768 spin_lock(&buffer_mapping->private_lock);
769 while (!list_empty(list))
770 __remove_assoc_queue(BH_ENTRY(list->next));
771 spin_unlock(&buffer_mapping->private_lock);
772 }
773 }
774 EXPORT_SYMBOL(invalidate_inode_buffers);
775
776 /*
777 * Remove any clean buffers from the inode's buffer list. This is called
778 * when we're trying to free the inode itself. Those buffers can pin it.
779 *
780 * Returns true if all buffers were removed.
781 */
782 int remove_inode_buffers(struct inode *inode)
783 {
784 int ret = 1;
785
786 if (inode_has_buffers(inode)) {
787 struct address_space *mapping = &inode->i_data;
788 struct list_head *list = &mapping->private_list;
789 struct address_space *buffer_mapping = mapping->private_data;
790
791 spin_lock(&buffer_mapping->private_lock);
792 while (!list_empty(list)) {
793 struct buffer_head *bh = BH_ENTRY(list->next);
794 if (buffer_dirty(bh)) {
795 ret = 0;
796 break;
797 }
798 __remove_assoc_queue(bh);
799 }
800 spin_unlock(&buffer_mapping->private_lock);
801 }
802 return ret;
803 }
804
805 /*
806 * Create the appropriate buffers when given a page for data area and
807 * the size of each buffer.. Use the bh->b_this_page linked list to
808 * follow the buffers created. Return NULL if unable to create more
809 * buffers.
810 *
811 * The retry flag is used to differentiate async IO (paging, swapping)
812 * which may not fail from ordinary buffer allocations.
813 */
814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
815 bool retry)
816 {
817 struct buffer_head *bh, *head;
818 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
819 long offset;
820 struct mem_cgroup *memcg;
821
822 if (retry)
823 gfp |= __GFP_NOFAIL;
824
825 memcg = get_mem_cgroup_from_page(page);
826 memalloc_use_memcg(memcg);
827
828 head = NULL;
829 offset = PAGE_SIZE;
830 while ((offset -= size) >= 0) {
831 bh = alloc_buffer_head(gfp);
832 if (!bh)
833 goto no_grow;
834
835 bh->b_this_page = head;
836 bh->b_blocknr = -1;
837 head = bh;
838
839 bh->b_size = size;
840
841 /* Link the buffer to its page */
842 set_bh_page(bh, page, offset);
843 }
844 out:
845 memalloc_unuse_memcg();
846 mem_cgroup_put(memcg);
847 return head;
848 /*
849 * In case anything failed, we just free everything we got.
850 */
851 no_grow:
852 if (head) {
853 do {
854 bh = head;
855 head = head->b_this_page;
856 free_buffer_head(bh);
857 } while (head);
858 }
859
860 goto out;
861 }
862 EXPORT_SYMBOL_GPL(alloc_page_buffers);
863
864 static inline void
865 link_dev_buffers(struct page *page, struct buffer_head *head)
866 {
867 struct buffer_head *bh, *tail;
868
869 bh = head;
870 do {
871 tail = bh;
872 bh = bh->b_this_page;
873 } while (bh);
874 tail->b_this_page = head;
875 attach_page_buffers(page, head);
876 }
877
878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879 {
880 sector_t retval = ~((sector_t)0);
881 loff_t sz = i_size_read(bdev->bd_inode);
882
883 if (sz) {
884 unsigned int sizebits = blksize_bits(size);
885 retval = (sz >> sizebits);
886 }
887 return retval;
888 }
889
890 /*
891 * Initialise the state of a blockdev page's buffers.
892 */
893 static sector_t
894 init_page_buffers(struct page *page, struct block_device *bdev,
895 sector_t block, int size)
896 {
897 struct buffer_head *head = page_buffers(page);
898 struct buffer_head *bh = head;
899 int uptodate = PageUptodate(page);
900 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
901
902 do {
903 if (!buffer_mapped(bh)) {
904 bh->b_end_io = NULL;
905 bh->b_private = NULL;
906 bh->b_bdev = bdev;
907 bh->b_blocknr = block;
908 if (uptodate)
909 set_buffer_uptodate(bh);
910 if (block < end_block)
911 set_buffer_mapped(bh);
912 }
913 block++;
914 bh = bh->b_this_page;
915 } while (bh != head);
916
917 /*
918 * Caller needs to validate requested block against end of device.
919 */
920 return end_block;
921 }
922
923 /*
924 * Create the page-cache page that contains the requested block.
925 *
926 * This is used purely for blockdev mappings.
927 */
928 static int
929 grow_dev_page(struct block_device *bdev, sector_t block,
930 pgoff_t index, int size, int sizebits, gfp_t gfp)
931 {
932 struct inode *inode = bdev->bd_inode;
933 struct page *page;
934 struct buffer_head *bh;
935 sector_t end_block;
936 int ret = 0; /* Will call free_more_memory() */
937 gfp_t gfp_mask;
938
939 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
940
941 /*
942 * XXX: __getblk_slow() can not really deal with failure and
943 * will endlessly loop on improvised global reclaim. Prefer
944 * looping in the allocator rather than here, at least that
945 * code knows what it's doing.
946 */
947 gfp_mask |= __GFP_NOFAIL;
948
949 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
950
951 BUG_ON(!PageLocked(page));
952
953 if (page_has_buffers(page)) {
954 bh = page_buffers(page);
955 if (bh->b_size == size) {
956 end_block = init_page_buffers(page, bdev,
957 (sector_t)index << sizebits,
958 size);
959 goto done;
960 }
961 if (!try_to_free_buffers(page))
962 goto failed;
963 }
964
965 /*
966 * Allocate some buffers for this page
967 */
968 bh = alloc_page_buffers(page, size, true);
969
970 /*
971 * Link the page to the buffers and initialise them. Take the
972 * lock to be atomic wrt __find_get_block(), which does not
973 * run under the page lock.
974 */
975 spin_lock(&inode->i_mapping->private_lock);
976 link_dev_buffers(page, bh);
977 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978 size);
979 spin_unlock(&inode->i_mapping->private_lock);
980 done:
981 ret = (block < end_block) ? 1 : -ENXIO;
982 failed:
983 unlock_page(page);
984 put_page(page);
985 return ret;
986 }
987
988 /*
989 * Create buffers for the specified block device block's page. If
990 * that page was dirty, the buffers are set dirty also.
991 */
992 static int
993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
994 {
995 pgoff_t index;
996 int sizebits;
997
998 sizebits = -1;
999 do {
1000 sizebits++;
1001 } while ((size << sizebits) < PAGE_SIZE);
1002
1003 index = block >> sizebits;
1004
1005 /*
1006 * Check for a block which wants to lie outside our maximum possible
1007 * pagecache index. (this comparison is done using sector_t types).
1008 */
1009 if (unlikely(index != block >> sizebits)) {
1010 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1011 "device %pg\n",
1012 __func__, (unsigned long long)block,
1013 bdev);
1014 return -EIO;
1015 }
1016
1017 /* Create a page with the proper size buffers.. */
1018 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1019 }
1020
1021 static struct buffer_head *
1022 __getblk_slow(struct block_device *bdev, sector_t block,
1023 unsigned size, gfp_t gfp)
1024 {
1025 /* Size must be multiple of hard sectorsize */
1026 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1027 (size < 512 || size > PAGE_SIZE))) {
1028 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1029 size);
1030 printk(KERN_ERR "logical block size: %d\n",
1031 bdev_logical_block_size(bdev));
1032
1033 dump_stack();
1034 return NULL;
1035 }
1036
1037 for (;;) {
1038 struct buffer_head *bh;
1039 int ret;
1040
1041 bh = __find_get_block(bdev, block, size);
1042 if (bh)
1043 return bh;
1044
1045 ret = grow_buffers(bdev, block, size, gfp);
1046 if (ret < 0)
1047 return NULL;
1048 }
1049 }
1050
1051 /*
1052 * The relationship between dirty buffers and dirty pages:
1053 *
1054 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1055 * the page is tagged dirty in the page cache.
1056 *
1057 * At all times, the dirtiness of the buffers represents the dirtiness of
1058 * subsections of the page. If the page has buffers, the page dirty bit is
1059 * merely a hint about the true dirty state.
1060 *
1061 * When a page is set dirty in its entirety, all its buffers are marked dirty
1062 * (if the page has buffers).
1063 *
1064 * When a buffer is marked dirty, its page is dirtied, but the page's other
1065 * buffers are not.
1066 *
1067 * Also. When blockdev buffers are explicitly read with bread(), they
1068 * individually become uptodate. But their backing page remains not
1069 * uptodate - even if all of its buffers are uptodate. A subsequent
1070 * block_read_full_page() against that page will discover all the uptodate
1071 * buffers, will set the page uptodate and will perform no I/O.
1072 */
1073
1074 /**
1075 * mark_buffer_dirty - mark a buffer_head as needing writeout
1076 * @bh: the buffer_head to mark dirty
1077 *
1078 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1079 * its backing page dirty, then tag the page as dirty in the page cache
1080 * and then attach the address_space's inode to its superblock's dirty
1081 * inode list.
1082 *
1083 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1084 * i_pages lock and mapping->host->i_lock.
1085 */
1086 void mark_buffer_dirty(struct buffer_head *bh)
1087 {
1088 WARN_ON_ONCE(!buffer_uptodate(bh));
1089
1090 trace_block_dirty_buffer(bh);
1091
1092 /*
1093 * Very *carefully* optimize the it-is-already-dirty case.
1094 *
1095 * Don't let the final "is it dirty" escape to before we
1096 * perhaps modified the buffer.
1097 */
1098 if (buffer_dirty(bh)) {
1099 smp_mb();
1100 if (buffer_dirty(bh))
1101 return;
1102 }
1103
1104 if (!test_set_buffer_dirty(bh)) {
1105 struct page *page = bh->b_page;
1106 struct address_space *mapping = NULL;
1107
1108 lock_page_memcg(page);
1109 if (!TestSetPageDirty(page)) {
1110 mapping = page_mapping(page);
1111 if (mapping)
1112 __set_page_dirty(page, mapping, 0);
1113 }
1114 unlock_page_memcg(page);
1115 if (mapping)
1116 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1117 }
1118 }
1119 EXPORT_SYMBOL(mark_buffer_dirty);
1120
1121 void mark_buffer_write_io_error(struct buffer_head *bh)
1122 {
1123 set_buffer_write_io_error(bh);
1124 /* FIXME: do we need to set this in both places? */
1125 if (bh->b_page && bh->b_page->mapping)
1126 mapping_set_error(bh->b_page->mapping, -EIO);
1127 if (bh->b_assoc_map)
1128 mapping_set_error(bh->b_assoc_map, -EIO);
1129 }
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132 /*
1133 * Decrement a buffer_head's reference count. If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
1139 void __brelse(struct buffer_head * buf)
1140 {
1141 if (atomic_read(&buf->b_count)) {
1142 put_bh(buf);
1143 return;
1144 }
1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146 }
1147 EXPORT_SYMBOL(__brelse);
1148
1149 /*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
1153 void __bforget(struct buffer_head *bh)
1154 {
1155 clear_buffer_dirty(bh);
1156 if (bh->b_assoc_map) {
1157 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159 spin_lock(&buffer_mapping->private_lock);
1160 list_del_init(&bh->b_assoc_buffers);
1161 bh->b_assoc_map = NULL;
1162 spin_unlock(&buffer_mapping->private_lock);
1163 }
1164 __brelse(bh);
1165 }
1166 EXPORT_SYMBOL(__bforget);
1167
1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169 {
1170 lock_buffer(bh);
1171 if (buffer_uptodate(bh)) {
1172 unlock_buffer(bh);
1173 return bh;
1174 } else {
1175 get_bh(bh);
1176 bh->b_end_io = end_buffer_read_sync;
1177 submit_bh(REQ_OP_READ, 0, bh);
1178 wait_on_buffer(bh);
1179 if (buffer_uptodate(bh))
1180 return bh;
1181 }
1182 brelse(bh);
1183 return NULL;
1184 }
1185
1186 /*
1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1189 * refcount elevated by one when they're in an LRU. A buffer can only appear
1190 * once in a particular CPU's LRU. A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1197 * a local interrupt disable for that.
1198 */
1199
1200 #define BH_LRU_SIZE 16
1201
1202 struct bh_lru {
1203 struct buffer_head *bhs[BH_LRU_SIZE];
1204 };
1205
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208 #ifdef CONFIG_SMP
1209 #define bh_lru_lock() local_irq_disable()
1210 #define bh_lru_unlock() local_irq_enable()
1211 #else
1212 #define bh_lru_lock() preempt_disable()
1213 #define bh_lru_unlock() preempt_enable()
1214 #endif
1215
1216 static inline void check_irqs_on(void)
1217 {
1218 #ifdef irqs_disabled
1219 BUG_ON(irqs_disabled());
1220 #endif
1221 }
1222
1223 /*
1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1227 */
1228 static void bh_lru_install(struct buffer_head *bh)
1229 {
1230 struct buffer_head *evictee = bh;
1231 struct bh_lru *b;
1232 int i;
1233
1234 check_irqs_on();
1235 bh_lru_lock();
1236
1237 b = this_cpu_ptr(&bh_lrus);
1238 for (i = 0; i < BH_LRU_SIZE; i++) {
1239 swap(evictee, b->bhs[i]);
1240 if (evictee == bh) {
1241 bh_lru_unlock();
1242 return;
1243 }
1244 }
1245
1246 get_bh(bh);
1247 bh_lru_unlock();
1248 brelse(evictee);
1249 }
1250
1251 /*
1252 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1253 */
1254 static struct buffer_head *
1255 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1256 {
1257 struct buffer_head *ret = NULL;
1258 unsigned int i;
1259
1260 check_irqs_on();
1261 bh_lru_lock();
1262 for (i = 0; i < BH_LRU_SIZE; i++) {
1263 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1264
1265 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1266 bh->b_size == size) {
1267 if (i) {
1268 while (i) {
1269 __this_cpu_write(bh_lrus.bhs[i],
1270 __this_cpu_read(bh_lrus.bhs[i - 1]));
1271 i--;
1272 }
1273 __this_cpu_write(bh_lrus.bhs[0], bh);
1274 }
1275 get_bh(bh);
1276 ret = bh;
1277 break;
1278 }
1279 }
1280 bh_lru_unlock();
1281 return ret;
1282 }
1283
1284 /*
1285 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1286 * it in the LRU and mark it as accessed. If it is not present then return
1287 * NULL
1288 */
1289 struct buffer_head *
1290 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1291 {
1292 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1293
1294 if (bh == NULL) {
1295 /* __find_get_block_slow will mark the page accessed */
1296 bh = __find_get_block_slow(bdev, block);
1297 if (bh)
1298 bh_lru_install(bh);
1299 } else
1300 touch_buffer(bh);
1301
1302 return bh;
1303 }
1304 EXPORT_SYMBOL(__find_get_block);
1305
1306 /*
1307 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1308 * which corresponds to the passed block_device, block and size. The
1309 * returned buffer has its reference count incremented.
1310 *
1311 * __getblk_gfp() will lock up the machine if grow_dev_page's
1312 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1313 */
1314 struct buffer_head *
1315 __getblk_gfp(struct block_device *bdev, sector_t block,
1316 unsigned size, gfp_t gfp)
1317 {
1318 struct buffer_head *bh = __find_get_block(bdev, block, size);
1319
1320 might_sleep();
1321 if (bh == NULL)
1322 bh = __getblk_slow(bdev, block, size, gfp);
1323 return bh;
1324 }
1325 EXPORT_SYMBOL(__getblk_gfp);
1326
1327 /*
1328 * Do async read-ahead on a buffer..
1329 */
1330 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332 struct buffer_head *bh = __getblk(bdev, block, size);
1333 if (likely(bh)) {
1334 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1335 brelse(bh);
1336 }
1337 }
1338 EXPORT_SYMBOL(__breadahead);
1339
1340 /**
1341 * __bread_gfp() - reads a specified block and returns the bh
1342 * @bdev: the block_device to read from
1343 * @block: number of block
1344 * @size: size (in bytes) to read
1345 * @gfp: page allocation flag
1346 *
1347 * Reads a specified block, and returns buffer head that contains it.
1348 * The page cache can be allocated from non-movable area
1349 * not to prevent page migration if you set gfp to zero.
1350 * It returns NULL if the block was unreadable.
1351 */
1352 struct buffer_head *
1353 __bread_gfp(struct block_device *bdev, sector_t block,
1354 unsigned size, gfp_t gfp)
1355 {
1356 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1357
1358 if (likely(bh) && !buffer_uptodate(bh))
1359 bh = __bread_slow(bh);
1360 return bh;
1361 }
1362 EXPORT_SYMBOL(__bread_gfp);
1363
1364 /*
1365 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1366 * This doesn't race because it runs in each cpu either in irq
1367 * or with preempt disabled.
1368 */
1369 static void invalidate_bh_lru(void *arg)
1370 {
1371 struct bh_lru *b = &get_cpu_var(bh_lrus);
1372 int i;
1373
1374 for (i = 0; i < BH_LRU_SIZE; i++) {
1375 brelse(b->bhs[i]);
1376 b->bhs[i] = NULL;
1377 }
1378 put_cpu_var(bh_lrus);
1379 }
1380
1381 static bool has_bh_in_lru(int cpu, void *dummy)
1382 {
1383 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1384 int i;
1385
1386 for (i = 0; i < BH_LRU_SIZE; i++) {
1387 if (b->bhs[i])
1388 return 1;
1389 }
1390
1391 return 0;
1392 }
1393
1394 void invalidate_bh_lrus(void)
1395 {
1396 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1397 }
1398 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1399
1400 void set_bh_page(struct buffer_head *bh,
1401 struct page *page, unsigned long offset)
1402 {
1403 bh->b_page = page;
1404 BUG_ON(offset >= PAGE_SIZE);
1405 if (PageHighMem(page))
1406 /*
1407 * This catches illegal uses and preserves the offset:
1408 */
1409 bh->b_data = (char *)(0 + offset);
1410 else
1411 bh->b_data = page_address(page) + offset;
1412 }
1413 EXPORT_SYMBOL(set_bh_page);
1414
1415 /*
1416 * Called when truncating a buffer on a page completely.
1417 */
1418
1419 /* Bits that are cleared during an invalidate */
1420 #define BUFFER_FLAGS_DISCARD \
1421 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1422 1 << BH_Delay | 1 << BH_Unwritten)
1423
1424 static void discard_buffer(struct buffer_head * bh)
1425 {
1426 unsigned long b_state, b_state_old;
1427
1428 lock_buffer(bh);
1429 clear_buffer_dirty(bh);
1430 bh->b_bdev = NULL;
1431 b_state = bh->b_state;
1432 for (;;) {
1433 b_state_old = cmpxchg(&bh->b_state, b_state,
1434 (b_state & ~BUFFER_FLAGS_DISCARD));
1435 if (b_state_old == b_state)
1436 break;
1437 b_state = b_state_old;
1438 }
1439 unlock_buffer(bh);
1440 }
1441
1442 /**
1443 * block_invalidatepage - invalidate part or all of a buffer-backed page
1444 *
1445 * @page: the page which is affected
1446 * @offset: start of the range to invalidate
1447 * @length: length of the range to invalidate
1448 *
1449 * block_invalidatepage() is called when all or part of the page has become
1450 * invalidated by a truncate operation.
1451 *
1452 * block_invalidatepage() does not have to release all buffers, but it must
1453 * ensure that no dirty buffer is left outside @offset and that no I/O
1454 * is underway against any of the blocks which are outside the truncation
1455 * point. Because the caller is about to free (and possibly reuse) those
1456 * blocks on-disk.
1457 */
1458 void block_invalidatepage(struct page *page, unsigned int offset,
1459 unsigned int length)
1460 {
1461 struct buffer_head *head, *bh, *next;
1462 unsigned int curr_off = 0;
1463 unsigned int stop = length + offset;
1464
1465 BUG_ON(!PageLocked(page));
1466 if (!page_has_buffers(page))
1467 goto out;
1468
1469 /*
1470 * Check for overflow
1471 */
1472 BUG_ON(stop > PAGE_SIZE || stop < length);
1473
1474 head = page_buffers(page);
1475 bh = head;
1476 do {
1477 unsigned int next_off = curr_off + bh->b_size;
1478 next = bh->b_this_page;
1479
1480 /*
1481 * Are we still fully in range ?
1482 */
1483 if (next_off > stop)
1484 goto out;
1485
1486 /*
1487 * is this block fully invalidated?
1488 */
1489 if (offset <= curr_off)
1490 discard_buffer(bh);
1491 curr_off = next_off;
1492 bh = next;
1493 } while (bh != head);
1494
1495 /*
1496 * We release buffers only if the entire page is being invalidated.
1497 * The get_block cached value has been unconditionally invalidated,
1498 * so real IO is not possible anymore.
1499 */
1500 if (length == PAGE_SIZE)
1501 try_to_release_page(page, 0);
1502 out:
1503 return;
1504 }
1505 EXPORT_SYMBOL(block_invalidatepage);
1506
1507
1508 /*
1509 * We attach and possibly dirty the buffers atomically wrt
1510 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1511 * is already excluded via the page lock.
1512 */
1513 void create_empty_buffers(struct page *page,
1514 unsigned long blocksize, unsigned long b_state)
1515 {
1516 struct buffer_head *bh, *head, *tail;
1517
1518 head = alloc_page_buffers(page, blocksize, true);
1519 bh = head;
1520 do {
1521 bh->b_state |= b_state;
1522 tail = bh;
1523 bh = bh->b_this_page;
1524 } while (bh);
1525 tail->b_this_page = head;
1526
1527 spin_lock(&page->mapping->private_lock);
1528 if (PageUptodate(page) || PageDirty(page)) {
1529 bh = head;
1530 do {
1531 if (PageDirty(page))
1532 set_buffer_dirty(bh);
1533 if (PageUptodate(page))
1534 set_buffer_uptodate(bh);
1535 bh = bh->b_this_page;
1536 } while (bh != head);
1537 }
1538 attach_page_buffers(page, head);
1539 spin_unlock(&page->mapping->private_lock);
1540 }
1541 EXPORT_SYMBOL(create_empty_buffers);
1542
1543 /**
1544 * clean_bdev_aliases: clean a range of buffers in block device
1545 * @bdev: Block device to clean buffers in
1546 * @block: Start of a range of blocks to clean
1547 * @len: Number of blocks to clean
1548 *
1549 * We are taking a range of blocks for data and we don't want writeback of any
1550 * buffer-cache aliases starting from return from this function and until the
1551 * moment when something will explicitly mark the buffer dirty (hopefully that
1552 * will not happen until we will free that block ;-) We don't even need to mark
1553 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1554 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1555 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1556 * would confuse anyone who might pick it with bread() afterwards...
1557 *
1558 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1559 * writeout I/O going on against recently-freed buffers. We don't wait on that
1560 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1561 * need to. That happens here.
1562 */
1563 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1564 {
1565 struct inode *bd_inode = bdev->bd_inode;
1566 struct address_space *bd_mapping = bd_inode->i_mapping;
1567 struct pagevec pvec;
1568 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1569 pgoff_t end;
1570 int i, count;
1571 struct buffer_head *bh;
1572 struct buffer_head *head;
1573
1574 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1575 pagevec_init(&pvec);
1576 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1577 count = pagevec_count(&pvec);
1578 for (i = 0; i < count; i++) {
1579 struct page *page = pvec.pages[i];
1580
1581 if (!page_has_buffers(page))
1582 continue;
1583 /*
1584 * We use page lock instead of bd_mapping->private_lock
1585 * to pin buffers here since we can afford to sleep and
1586 * it scales better than a global spinlock lock.
1587 */
1588 lock_page(page);
1589 /* Recheck when the page is locked which pins bhs */
1590 if (!page_has_buffers(page))
1591 goto unlock_page;
1592 head = page_buffers(page);
1593 bh = head;
1594 do {
1595 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1596 goto next;
1597 if (bh->b_blocknr >= block + len)
1598 break;
1599 clear_buffer_dirty(bh);
1600 wait_on_buffer(bh);
1601 clear_buffer_req(bh);
1602 next:
1603 bh = bh->b_this_page;
1604 } while (bh != head);
1605 unlock_page:
1606 unlock_page(page);
1607 }
1608 pagevec_release(&pvec);
1609 cond_resched();
1610 /* End of range already reached? */
1611 if (index > end || !index)
1612 break;
1613 }
1614 }
1615 EXPORT_SYMBOL(clean_bdev_aliases);
1616
1617 /*
1618 * Size is a power-of-two in the range 512..PAGE_SIZE,
1619 * and the case we care about most is PAGE_SIZE.
1620 *
1621 * So this *could* possibly be written with those
1622 * constraints in mind (relevant mostly if some
1623 * architecture has a slow bit-scan instruction)
1624 */
1625 static inline int block_size_bits(unsigned int blocksize)
1626 {
1627 return ilog2(blocksize);
1628 }
1629
1630 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1631 {
1632 BUG_ON(!PageLocked(page));
1633
1634 if (!page_has_buffers(page))
1635 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1636 b_state);
1637 return page_buffers(page);
1638 }
1639
1640 /*
1641 * NOTE! All mapped/uptodate combinations are valid:
1642 *
1643 * Mapped Uptodate Meaning
1644 *
1645 * No No "unknown" - must do get_block()
1646 * No Yes "hole" - zero-filled
1647 * Yes No "allocated" - allocated on disk, not read in
1648 * Yes Yes "valid" - allocated and up-to-date in memory.
1649 *
1650 * "Dirty" is valid only with the last case (mapped+uptodate).
1651 */
1652
1653 /*
1654 * While block_write_full_page is writing back the dirty buffers under
1655 * the page lock, whoever dirtied the buffers may decide to clean them
1656 * again at any time. We handle that by only looking at the buffer
1657 * state inside lock_buffer().
1658 *
1659 * If block_write_full_page() is called for regular writeback
1660 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1661 * locked buffer. This only can happen if someone has written the buffer
1662 * directly, with submit_bh(). At the address_space level PageWriteback
1663 * prevents this contention from occurring.
1664 *
1665 * If block_write_full_page() is called with wbc->sync_mode ==
1666 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1667 * causes the writes to be flagged as synchronous writes.
1668 */
1669 int __block_write_full_page(struct inode *inode, struct page *page,
1670 get_block_t *get_block, struct writeback_control *wbc,
1671 bh_end_io_t *handler)
1672 {
1673 int err;
1674 sector_t block;
1675 sector_t last_block;
1676 struct buffer_head *bh, *head;
1677 unsigned int blocksize, bbits;
1678 int nr_underway = 0;
1679 int write_flags = wbc_to_write_flags(wbc);
1680
1681 head = create_page_buffers(page, inode,
1682 (1 << BH_Dirty)|(1 << BH_Uptodate));
1683
1684 /*
1685 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1686 * here, and the (potentially unmapped) buffers may become dirty at
1687 * any time. If a buffer becomes dirty here after we've inspected it
1688 * then we just miss that fact, and the page stays dirty.
1689 *
1690 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1691 * handle that here by just cleaning them.
1692 */
1693
1694 bh = head;
1695 blocksize = bh->b_size;
1696 bbits = block_size_bits(blocksize);
1697
1698 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1699 last_block = (i_size_read(inode) - 1) >> bbits;
1700
1701 /*
1702 * Get all the dirty buffers mapped to disk addresses and
1703 * handle any aliases from the underlying blockdev's mapping.
1704 */
1705 do {
1706 if (block > last_block) {
1707 /*
1708 * mapped buffers outside i_size will occur, because
1709 * this page can be outside i_size when there is a
1710 * truncate in progress.
1711 */
1712 /*
1713 * The buffer was zeroed by block_write_full_page()
1714 */
1715 clear_buffer_dirty(bh);
1716 set_buffer_uptodate(bh);
1717 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1718 buffer_dirty(bh)) {
1719 WARN_ON(bh->b_size != blocksize);
1720 err = get_block(inode, block, bh, 1);
1721 if (err)
1722 goto recover;
1723 clear_buffer_delay(bh);
1724 if (buffer_new(bh)) {
1725 /* blockdev mappings never come here */
1726 clear_buffer_new(bh);
1727 clean_bdev_bh_alias(bh);
1728 }
1729 }
1730 bh = bh->b_this_page;
1731 block++;
1732 } while (bh != head);
1733
1734 do {
1735 if (!buffer_mapped(bh))
1736 continue;
1737 /*
1738 * If it's a fully non-blocking write attempt and we cannot
1739 * lock the buffer then redirty the page. Note that this can
1740 * potentially cause a busy-wait loop from writeback threads
1741 * and kswapd activity, but those code paths have their own
1742 * higher-level throttling.
1743 */
1744 if (wbc->sync_mode != WB_SYNC_NONE) {
1745 lock_buffer(bh);
1746 } else if (!trylock_buffer(bh)) {
1747 redirty_page_for_writepage(wbc, page);
1748 continue;
1749 }
1750 if (test_clear_buffer_dirty(bh)) {
1751 mark_buffer_async_write_endio(bh, handler);
1752 } else {
1753 unlock_buffer(bh);
1754 }
1755 } while ((bh = bh->b_this_page) != head);
1756
1757 /*
1758 * The page and its buffers are protected by PageWriteback(), so we can
1759 * drop the bh refcounts early.
1760 */
1761 BUG_ON(PageWriteback(page));
1762 set_page_writeback(page);
1763
1764 do {
1765 struct buffer_head *next = bh->b_this_page;
1766 if (buffer_async_write(bh)) {
1767 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1768 inode->i_write_hint, wbc);
1769 nr_underway++;
1770 }
1771 bh = next;
1772 } while (bh != head);
1773 unlock_page(page);
1774
1775 err = 0;
1776 done:
1777 if (nr_underway == 0) {
1778 /*
1779 * The page was marked dirty, but the buffers were
1780 * clean. Someone wrote them back by hand with
1781 * ll_rw_block/submit_bh. A rare case.
1782 */
1783 end_page_writeback(page);
1784
1785 /*
1786 * The page and buffer_heads can be released at any time from
1787 * here on.
1788 */
1789 }
1790 return err;
1791
1792 recover:
1793 /*
1794 * ENOSPC, or some other error. We may already have added some
1795 * blocks to the file, so we need to write these out to avoid
1796 * exposing stale data.
1797 * The page is currently locked and not marked for writeback
1798 */
1799 bh = head;
1800 /* Recovery: lock and submit the mapped buffers */
1801 do {
1802 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1803 !buffer_delay(bh)) {
1804 lock_buffer(bh);
1805 mark_buffer_async_write_endio(bh, handler);
1806 } else {
1807 /*
1808 * The buffer may have been set dirty during
1809 * attachment to a dirty page.
1810 */
1811 clear_buffer_dirty(bh);
1812 }
1813 } while ((bh = bh->b_this_page) != head);
1814 SetPageError(page);
1815 BUG_ON(PageWriteback(page));
1816 mapping_set_error(page->mapping, err);
1817 set_page_writeback(page);
1818 do {
1819 struct buffer_head *next = bh->b_this_page;
1820 if (buffer_async_write(bh)) {
1821 clear_buffer_dirty(bh);
1822 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1823 inode->i_write_hint, wbc);
1824 nr_underway++;
1825 }
1826 bh = next;
1827 } while (bh != head);
1828 unlock_page(page);
1829 goto done;
1830 }
1831 EXPORT_SYMBOL(__block_write_full_page);
1832
1833 /*
1834 * If a page has any new buffers, zero them out here, and mark them uptodate
1835 * and dirty so they'll be written out (in order to prevent uninitialised
1836 * block data from leaking). And clear the new bit.
1837 */
1838 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1839 {
1840 unsigned int block_start, block_end;
1841 struct buffer_head *head, *bh;
1842
1843 BUG_ON(!PageLocked(page));
1844 if (!page_has_buffers(page))
1845 return;
1846
1847 bh = head = page_buffers(page);
1848 block_start = 0;
1849 do {
1850 block_end = block_start + bh->b_size;
1851
1852 if (buffer_new(bh)) {
1853 if (block_end > from && block_start < to) {
1854 if (!PageUptodate(page)) {
1855 unsigned start, size;
1856
1857 start = max(from, block_start);
1858 size = min(to, block_end) - start;
1859
1860 zero_user(page, start, size);
1861 set_buffer_uptodate(bh);
1862 }
1863
1864 clear_buffer_new(bh);
1865 mark_buffer_dirty(bh);
1866 }
1867 }
1868
1869 block_start = block_end;
1870 bh = bh->b_this_page;
1871 } while (bh != head);
1872 }
1873 EXPORT_SYMBOL(page_zero_new_buffers);
1874
1875 static void
1876 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1877 struct iomap *iomap)
1878 {
1879 loff_t offset = block << inode->i_blkbits;
1880
1881 bh->b_bdev = iomap->bdev;
1882
1883 /*
1884 * Block points to offset in file we need to map, iomap contains
1885 * the offset at which the map starts. If the map ends before the
1886 * current block, then do not map the buffer and let the caller
1887 * handle it.
1888 */
1889 BUG_ON(offset >= iomap->offset + iomap->length);
1890
1891 switch (iomap->type) {
1892 case IOMAP_HOLE:
1893 /*
1894 * If the buffer is not up to date or beyond the current EOF,
1895 * we need to mark it as new to ensure sub-block zeroing is
1896 * executed if necessary.
1897 */
1898 if (!buffer_uptodate(bh) ||
1899 (offset >= i_size_read(inode)))
1900 set_buffer_new(bh);
1901 break;
1902 case IOMAP_DELALLOC:
1903 if (!buffer_uptodate(bh) ||
1904 (offset >= i_size_read(inode)))
1905 set_buffer_new(bh);
1906 set_buffer_uptodate(bh);
1907 set_buffer_mapped(bh);
1908 set_buffer_delay(bh);
1909 break;
1910 case IOMAP_UNWRITTEN:
1911 /*
1912 * For unwritten regions, we always need to ensure that regions
1913 * in the block we are not writing to are zeroed. Mark the
1914 * buffer as new to ensure this.
1915 */
1916 set_buffer_new(bh);
1917 set_buffer_unwritten(bh);
1918 /* FALLTHRU */
1919 case IOMAP_MAPPED:
1920 if ((iomap->flags & IOMAP_F_NEW) ||
1921 offset >= i_size_read(inode))
1922 set_buffer_new(bh);
1923 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1924 inode->i_blkbits;
1925 set_buffer_mapped(bh);
1926 break;
1927 }
1928 }
1929
1930 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1931 get_block_t *get_block, struct iomap *iomap)
1932 {
1933 unsigned from = pos & (PAGE_SIZE - 1);
1934 unsigned to = from + len;
1935 struct inode *inode = page->mapping->host;
1936 unsigned block_start, block_end;
1937 sector_t block;
1938 int err = 0;
1939 unsigned blocksize, bbits;
1940 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1941
1942 BUG_ON(!PageLocked(page));
1943 BUG_ON(from > PAGE_SIZE);
1944 BUG_ON(to > PAGE_SIZE);
1945 BUG_ON(from > to);
1946
1947 head = create_page_buffers(page, inode, 0);
1948 blocksize = head->b_size;
1949 bbits = block_size_bits(blocksize);
1950
1951 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1952
1953 for(bh = head, block_start = 0; bh != head || !block_start;
1954 block++, block_start=block_end, bh = bh->b_this_page) {
1955 block_end = block_start + blocksize;
1956 if (block_end <= from || block_start >= to) {
1957 if (PageUptodate(page)) {
1958 if (!buffer_uptodate(bh))
1959 set_buffer_uptodate(bh);
1960 }
1961 continue;
1962 }
1963 if (buffer_new(bh))
1964 clear_buffer_new(bh);
1965 if (!buffer_mapped(bh)) {
1966 WARN_ON(bh->b_size != blocksize);
1967 if (get_block) {
1968 err = get_block(inode, block, bh, 1);
1969 if (err)
1970 break;
1971 } else {
1972 iomap_to_bh(inode, block, bh, iomap);
1973 }
1974
1975 if (buffer_new(bh)) {
1976 clean_bdev_bh_alias(bh);
1977 if (PageUptodate(page)) {
1978 clear_buffer_new(bh);
1979 set_buffer_uptodate(bh);
1980 mark_buffer_dirty(bh);
1981 continue;
1982 }
1983 if (block_end > to || block_start < from)
1984 zero_user_segments(page,
1985 to, block_end,
1986 block_start, from);
1987 continue;
1988 }
1989 }
1990 if (PageUptodate(page)) {
1991 if (!buffer_uptodate(bh))
1992 set_buffer_uptodate(bh);
1993 continue;
1994 }
1995 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1996 !buffer_unwritten(bh) &&
1997 (block_start < from || block_end > to)) {
1998 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1999 *wait_bh++=bh;
2000 }
2001 }
2002 /*
2003 * If we issued read requests - let them complete.
2004 */
2005 while(wait_bh > wait) {
2006 wait_on_buffer(*--wait_bh);
2007 if (!buffer_uptodate(*wait_bh))
2008 err = -EIO;
2009 }
2010 if (unlikely(err))
2011 page_zero_new_buffers(page, from, to);
2012 return err;
2013 }
2014
2015 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2016 get_block_t *get_block)
2017 {
2018 return __block_write_begin_int(page, pos, len, get_block, NULL);
2019 }
2020 EXPORT_SYMBOL(__block_write_begin);
2021
2022 static int __block_commit_write(struct inode *inode, struct page *page,
2023 unsigned from, unsigned to)
2024 {
2025 unsigned block_start, block_end;
2026 int partial = 0;
2027 unsigned blocksize;
2028 struct buffer_head *bh, *head;
2029
2030 bh = head = page_buffers(page);
2031 blocksize = bh->b_size;
2032
2033 block_start = 0;
2034 do {
2035 block_end = block_start + blocksize;
2036 if (block_end <= from || block_start >= to) {
2037 if (!buffer_uptodate(bh))
2038 partial = 1;
2039 } else {
2040 set_buffer_uptodate(bh);
2041 mark_buffer_dirty(bh);
2042 }
2043 clear_buffer_new(bh);
2044
2045 block_start = block_end;
2046 bh = bh->b_this_page;
2047 } while (bh != head);
2048
2049 /*
2050 * If this is a partial write which happened to make all buffers
2051 * uptodate then we can optimize away a bogus readpage() for
2052 * the next read(). Here we 'discover' whether the page went
2053 * uptodate as a result of this (potentially partial) write.
2054 */
2055 if (!partial)
2056 SetPageUptodate(page);
2057 return 0;
2058 }
2059
2060 /*
2061 * block_write_begin takes care of the basic task of block allocation and
2062 * bringing partial write blocks uptodate first.
2063 *
2064 * The filesystem needs to handle block truncation upon failure.
2065 */
2066 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2067 unsigned flags, struct page **pagep, get_block_t *get_block)
2068 {
2069 pgoff_t index = pos >> PAGE_SHIFT;
2070 struct page *page;
2071 int status;
2072
2073 page = grab_cache_page_write_begin(mapping, index, flags);
2074 if (!page)
2075 return -ENOMEM;
2076
2077 status = __block_write_begin(page, pos, len, get_block);
2078 if (unlikely(status)) {
2079 unlock_page(page);
2080 put_page(page);
2081 page = NULL;
2082 }
2083
2084 *pagep = page;
2085 return status;
2086 }
2087 EXPORT_SYMBOL(block_write_begin);
2088
2089 void __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2090 struct page *page)
2091 {
2092 loff_t old_size = inode->i_size;
2093 bool i_size_changed = false;
2094
2095 /*
2096 * No need to use i_size_read() here, the i_size cannot change under us
2097 * because we hold i_rwsem.
2098 *
2099 * But it's important to update i_size while still holding page lock:
2100 * page writeout could otherwise come in and zero beyond i_size.
2101 */
2102 if (pos + copied > inode->i_size) {
2103 i_size_write(inode, pos + copied);
2104 i_size_changed = true;
2105 }
2106
2107 unlock_page(page);
2108
2109 if (old_size < pos)
2110 pagecache_isize_extended(inode, old_size, pos);
2111 /*
2112 * Don't mark the inode dirty under page lock. First, it unnecessarily
2113 * makes the holding time of page lock longer. Second, it forces lock
2114 * ordering of page lock and transaction start for journaling
2115 * filesystems.
2116 */
2117 if (i_size_changed)
2118 mark_inode_dirty(inode);
2119 }
2120
2121 int block_write_end(struct file *file, struct address_space *mapping,
2122 loff_t pos, unsigned len, unsigned copied,
2123 struct page *page, void *fsdata)
2124 {
2125 struct inode *inode = mapping->host;
2126 unsigned start;
2127
2128 start = pos & (PAGE_SIZE - 1);
2129
2130 if (unlikely(copied < len)) {
2131 /*
2132 * The buffers that were written will now be uptodate, so we
2133 * don't have to worry about a readpage reading them and
2134 * overwriting a partial write. However if we have encountered
2135 * a short write and only partially written into a buffer, it
2136 * will not be marked uptodate, so a readpage might come in and
2137 * destroy our partial write.
2138 *
2139 * Do the simplest thing, and just treat any short write to a
2140 * non uptodate page as a zero-length write, and force the
2141 * caller to redo the whole thing.
2142 */
2143 if (!PageUptodate(page))
2144 copied = 0;
2145
2146 page_zero_new_buffers(page, start+copied, start+len);
2147 }
2148 flush_dcache_page(page);
2149
2150 /* This could be a short (even 0-length) commit */
2151 __block_commit_write(inode, page, start, start+copied);
2152
2153 return copied;
2154 }
2155 EXPORT_SYMBOL(block_write_end);
2156
2157 int generic_write_end(struct file *file, struct address_space *mapping,
2158 loff_t pos, unsigned len, unsigned copied,
2159 struct page *page, void *fsdata)
2160 {
2161 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2162 __generic_write_end(mapping->host, pos, copied, page);
2163 put_page(page);
2164 return copied;
2165 }
2166 EXPORT_SYMBOL(generic_write_end);
2167
2168 /*
2169 * block_is_partially_uptodate checks whether buffers within a page are
2170 * uptodate or not.
2171 *
2172 * Returns true if all buffers which correspond to a file portion
2173 * we want to read are uptodate.
2174 */
2175 int block_is_partially_uptodate(struct page *page, unsigned long from,
2176 unsigned long count)
2177 {
2178 unsigned block_start, block_end, blocksize;
2179 unsigned to;
2180 struct buffer_head *bh, *head;
2181 int ret = 1;
2182
2183 if (!page_has_buffers(page))
2184 return 0;
2185
2186 head = page_buffers(page);
2187 blocksize = head->b_size;
2188 to = min_t(unsigned, PAGE_SIZE - from, count);
2189 to = from + to;
2190 if (from < blocksize && to > PAGE_SIZE - blocksize)
2191 return 0;
2192
2193 bh = head;
2194 block_start = 0;
2195 do {
2196 block_end = block_start + blocksize;
2197 if (block_end > from && block_start < to) {
2198 if (!buffer_uptodate(bh)) {
2199 ret = 0;
2200 break;
2201 }
2202 if (block_end >= to)
2203 break;
2204 }
2205 block_start = block_end;
2206 bh = bh->b_this_page;
2207 } while (bh != head);
2208
2209 return ret;
2210 }
2211 EXPORT_SYMBOL(block_is_partially_uptodate);
2212
2213 /*
2214 * Generic "read page" function for block devices that have the normal
2215 * get_block functionality. This is most of the block device filesystems.
2216 * Reads the page asynchronously --- the unlock_buffer() and
2217 * set/clear_buffer_uptodate() functions propagate buffer state into the
2218 * page struct once IO has completed.
2219 */
2220 int block_read_full_page(struct page *page, get_block_t *get_block)
2221 {
2222 struct inode *inode = page->mapping->host;
2223 sector_t iblock, lblock;
2224 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2225 unsigned int blocksize, bbits;
2226 int nr, i;
2227 int fully_mapped = 1;
2228
2229 head = create_page_buffers(page, inode, 0);
2230 blocksize = head->b_size;
2231 bbits = block_size_bits(blocksize);
2232
2233 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2234 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2235 bh = head;
2236 nr = 0;
2237 i = 0;
2238
2239 do {
2240 if (buffer_uptodate(bh))
2241 continue;
2242
2243 if (!buffer_mapped(bh)) {
2244 int err = 0;
2245
2246 fully_mapped = 0;
2247 if (iblock < lblock) {
2248 WARN_ON(bh->b_size != blocksize);
2249 err = get_block(inode, iblock, bh, 0);
2250 if (err)
2251 SetPageError(page);
2252 }
2253 if (!buffer_mapped(bh)) {
2254 zero_user(page, i * blocksize, blocksize);
2255 if (!err)
2256 set_buffer_uptodate(bh);
2257 continue;
2258 }
2259 /*
2260 * get_block() might have updated the buffer
2261 * synchronously
2262 */
2263 if (buffer_uptodate(bh))
2264 continue;
2265 }
2266 arr[nr++] = bh;
2267 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2268
2269 if (fully_mapped)
2270 SetPageMappedToDisk(page);
2271
2272 if (!nr) {
2273 /*
2274 * All buffers are uptodate - we can set the page uptodate
2275 * as well. But not if get_block() returned an error.
2276 */
2277 if (!PageError(page))
2278 SetPageUptodate(page);
2279 unlock_page(page);
2280 return 0;
2281 }
2282
2283 /* Stage two: lock the buffers */
2284 for (i = 0; i < nr; i++) {
2285 bh = arr[i];
2286 lock_buffer(bh);
2287 mark_buffer_async_read(bh);
2288 }
2289
2290 /*
2291 * Stage 3: start the IO. Check for uptodateness
2292 * inside the buffer lock in case another process reading
2293 * the underlying blockdev brought it uptodate (the sct fix).
2294 */
2295 for (i = 0; i < nr; i++) {
2296 bh = arr[i];
2297 if (buffer_uptodate(bh))
2298 end_buffer_async_read(bh, 1);
2299 else
2300 submit_bh(REQ_OP_READ, 0, bh);
2301 }
2302 return 0;
2303 }
2304 EXPORT_SYMBOL(block_read_full_page);
2305
2306 /* utility function for filesystems that need to do work on expanding
2307 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2308 * deal with the hole.
2309 */
2310 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2311 {
2312 struct address_space *mapping = inode->i_mapping;
2313 struct page *page;
2314 void *fsdata;
2315 int err;
2316
2317 err = inode_newsize_ok(inode, size);
2318 if (err)
2319 goto out;
2320
2321 err = pagecache_write_begin(NULL, mapping, size, 0,
2322 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2323 if (err)
2324 goto out;
2325
2326 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2327 BUG_ON(err > 0);
2328
2329 out:
2330 return err;
2331 }
2332 EXPORT_SYMBOL(generic_cont_expand_simple);
2333
2334 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2335 loff_t pos, loff_t *bytes)
2336 {
2337 struct inode *inode = mapping->host;
2338 unsigned int blocksize = i_blocksize(inode);
2339 struct page *page;
2340 void *fsdata;
2341 pgoff_t index, curidx;
2342 loff_t curpos;
2343 unsigned zerofrom, offset, len;
2344 int err = 0;
2345
2346 index = pos >> PAGE_SHIFT;
2347 offset = pos & ~PAGE_MASK;
2348
2349 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2350 zerofrom = curpos & ~PAGE_MASK;
2351 if (zerofrom & (blocksize-1)) {
2352 *bytes |= (blocksize-1);
2353 (*bytes)++;
2354 }
2355 len = PAGE_SIZE - zerofrom;
2356
2357 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2358 &page, &fsdata);
2359 if (err)
2360 goto out;
2361 zero_user(page, zerofrom, len);
2362 err = pagecache_write_end(file, mapping, curpos, len, len,
2363 page, fsdata);
2364 if (err < 0)
2365 goto out;
2366 BUG_ON(err != len);
2367 err = 0;
2368
2369 balance_dirty_pages_ratelimited(mapping);
2370
2371 if (fatal_signal_pending(current)) {
2372 err = -EINTR;
2373 goto out;
2374 }
2375 }
2376
2377 /* page covers the boundary, find the boundary offset */
2378 if (index == curidx) {
2379 zerofrom = curpos & ~PAGE_MASK;
2380 /* if we will expand the thing last block will be filled */
2381 if (offset <= zerofrom) {
2382 goto out;
2383 }
2384 if (zerofrom & (blocksize-1)) {
2385 *bytes |= (blocksize-1);
2386 (*bytes)++;
2387 }
2388 len = offset - zerofrom;
2389
2390 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2391 &page, &fsdata);
2392 if (err)
2393 goto out;
2394 zero_user(page, zerofrom, len);
2395 err = pagecache_write_end(file, mapping, curpos, len, len,
2396 page, fsdata);
2397 if (err < 0)
2398 goto out;
2399 BUG_ON(err != len);
2400 err = 0;
2401 }
2402 out:
2403 return err;
2404 }
2405
2406 /*
2407 * For moronic filesystems that do not allow holes in file.
2408 * We may have to extend the file.
2409 */
2410 int cont_write_begin(struct file *file, struct address_space *mapping,
2411 loff_t pos, unsigned len, unsigned flags,
2412 struct page **pagep, void **fsdata,
2413 get_block_t *get_block, loff_t *bytes)
2414 {
2415 struct inode *inode = mapping->host;
2416 unsigned int blocksize = i_blocksize(inode);
2417 unsigned int zerofrom;
2418 int err;
2419
2420 err = cont_expand_zero(file, mapping, pos, bytes);
2421 if (err)
2422 return err;
2423
2424 zerofrom = *bytes & ~PAGE_MASK;
2425 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2426 *bytes |= (blocksize-1);
2427 (*bytes)++;
2428 }
2429
2430 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2431 }
2432 EXPORT_SYMBOL(cont_write_begin);
2433
2434 int block_commit_write(struct page *page, unsigned from, unsigned to)
2435 {
2436 struct inode *inode = page->mapping->host;
2437 __block_commit_write(inode,page,from,to);
2438 return 0;
2439 }
2440 EXPORT_SYMBOL(block_commit_write);
2441
2442 /*
2443 * block_page_mkwrite() is not allowed to change the file size as it gets
2444 * called from a page fault handler when a page is first dirtied. Hence we must
2445 * be careful to check for EOF conditions here. We set the page up correctly
2446 * for a written page which means we get ENOSPC checking when writing into
2447 * holes and correct delalloc and unwritten extent mapping on filesystems that
2448 * support these features.
2449 *
2450 * We are not allowed to take the i_mutex here so we have to play games to
2451 * protect against truncate races as the page could now be beyond EOF. Because
2452 * truncate writes the inode size before removing pages, once we have the
2453 * page lock we can determine safely if the page is beyond EOF. If it is not
2454 * beyond EOF, then the page is guaranteed safe against truncation until we
2455 * unlock the page.
2456 *
2457 * Direct callers of this function should protect against filesystem freezing
2458 * using sb_start_pagefault() - sb_end_pagefault() functions.
2459 */
2460 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2461 get_block_t get_block)
2462 {
2463 struct page *page = vmf->page;
2464 struct inode *inode = file_inode(vma->vm_file);
2465 unsigned long end;
2466 loff_t size;
2467 int ret;
2468
2469 lock_page(page);
2470 size = i_size_read(inode);
2471 if ((page->mapping != inode->i_mapping) ||
2472 (page_offset(page) > size)) {
2473 /* We overload EFAULT to mean page got truncated */
2474 ret = -EFAULT;
2475 goto out_unlock;
2476 }
2477
2478 /* page is wholly or partially inside EOF */
2479 if (((page->index + 1) << PAGE_SHIFT) > size)
2480 end = size & ~PAGE_MASK;
2481 else
2482 end = PAGE_SIZE;
2483
2484 ret = __block_write_begin(page, 0, end, get_block);
2485 if (!ret)
2486 ret = block_commit_write(page, 0, end);
2487
2488 if (unlikely(ret < 0))
2489 goto out_unlock;
2490 set_page_dirty(page);
2491 wait_for_stable_page(page);
2492 return 0;
2493 out_unlock:
2494 unlock_page(page);
2495 return ret;
2496 }
2497 EXPORT_SYMBOL(block_page_mkwrite);
2498
2499 /*
2500 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2501 * immediately, while under the page lock. So it needs a special end_io
2502 * handler which does not touch the bh after unlocking it.
2503 */
2504 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2505 {
2506 __end_buffer_read_notouch(bh, uptodate);
2507 }
2508
2509 /*
2510 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2511 * the page (converting it to circular linked list and taking care of page
2512 * dirty races).
2513 */
2514 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2515 {
2516 struct buffer_head *bh;
2517
2518 BUG_ON(!PageLocked(page));
2519
2520 spin_lock(&page->mapping->private_lock);
2521 bh = head;
2522 do {
2523 if (PageDirty(page))
2524 set_buffer_dirty(bh);
2525 if (!bh->b_this_page)
2526 bh->b_this_page = head;
2527 bh = bh->b_this_page;
2528 } while (bh != head);
2529 attach_page_buffers(page, head);
2530 spin_unlock(&page->mapping->private_lock);
2531 }
2532
2533 /*
2534 * On entry, the page is fully not uptodate.
2535 * On exit the page is fully uptodate in the areas outside (from,to)
2536 * The filesystem needs to handle block truncation upon failure.
2537 */
2538 int nobh_write_begin(struct address_space *mapping,
2539 loff_t pos, unsigned len, unsigned flags,
2540 struct page **pagep, void **fsdata,
2541 get_block_t *get_block)
2542 {
2543 struct inode *inode = mapping->host;
2544 const unsigned blkbits = inode->i_blkbits;
2545 const unsigned blocksize = 1 << blkbits;
2546 struct buffer_head *head, *bh;
2547 struct page *page;
2548 pgoff_t index;
2549 unsigned from, to;
2550 unsigned block_in_page;
2551 unsigned block_start, block_end;
2552 sector_t block_in_file;
2553 int nr_reads = 0;
2554 int ret = 0;
2555 int is_mapped_to_disk = 1;
2556
2557 index = pos >> PAGE_SHIFT;
2558 from = pos & (PAGE_SIZE - 1);
2559 to = from + len;
2560
2561 page = grab_cache_page_write_begin(mapping, index, flags);
2562 if (!page)
2563 return -ENOMEM;
2564 *pagep = page;
2565 *fsdata = NULL;
2566
2567 if (page_has_buffers(page)) {
2568 ret = __block_write_begin(page, pos, len, get_block);
2569 if (unlikely(ret))
2570 goto out_release;
2571 return ret;
2572 }
2573
2574 if (PageMappedToDisk(page))
2575 return 0;
2576
2577 /*
2578 * Allocate buffers so that we can keep track of state, and potentially
2579 * attach them to the page if an error occurs. In the common case of
2580 * no error, they will just be freed again without ever being attached
2581 * to the page (which is all OK, because we're under the page lock).
2582 *
2583 * Be careful: the buffer linked list is a NULL terminated one, rather
2584 * than the circular one we're used to.
2585 */
2586 head = alloc_page_buffers(page, blocksize, false);
2587 if (!head) {
2588 ret = -ENOMEM;
2589 goto out_release;
2590 }
2591
2592 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2593
2594 /*
2595 * We loop across all blocks in the page, whether or not they are
2596 * part of the affected region. This is so we can discover if the
2597 * page is fully mapped-to-disk.
2598 */
2599 for (block_start = 0, block_in_page = 0, bh = head;
2600 block_start < PAGE_SIZE;
2601 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2602 int create;
2603
2604 block_end = block_start + blocksize;
2605 bh->b_state = 0;
2606 create = 1;
2607 if (block_start >= to)
2608 create = 0;
2609 ret = get_block(inode, block_in_file + block_in_page,
2610 bh, create);
2611 if (ret)
2612 goto failed;
2613 if (!buffer_mapped(bh))
2614 is_mapped_to_disk = 0;
2615 if (buffer_new(bh))
2616 clean_bdev_bh_alias(bh);
2617 if (PageUptodate(page)) {
2618 set_buffer_uptodate(bh);
2619 continue;
2620 }
2621 if (buffer_new(bh) || !buffer_mapped(bh)) {
2622 zero_user_segments(page, block_start, from,
2623 to, block_end);
2624 continue;
2625 }
2626 if (buffer_uptodate(bh))
2627 continue; /* reiserfs does this */
2628 if (block_start < from || block_end > to) {
2629 lock_buffer(bh);
2630 bh->b_end_io = end_buffer_read_nobh;
2631 submit_bh(REQ_OP_READ, 0, bh);
2632 nr_reads++;
2633 }
2634 }
2635
2636 if (nr_reads) {
2637 /*
2638 * The page is locked, so these buffers are protected from
2639 * any VM or truncate activity. Hence we don't need to care
2640 * for the buffer_head refcounts.
2641 */
2642 for (bh = head; bh; bh = bh->b_this_page) {
2643 wait_on_buffer(bh);
2644 if (!buffer_uptodate(bh))
2645 ret = -EIO;
2646 }
2647 if (ret)
2648 goto failed;
2649 }
2650
2651 if (is_mapped_to_disk)
2652 SetPageMappedToDisk(page);
2653
2654 *fsdata = head; /* to be released by nobh_write_end */
2655
2656 return 0;
2657
2658 failed:
2659 BUG_ON(!ret);
2660 /*
2661 * Error recovery is a bit difficult. We need to zero out blocks that
2662 * were newly allocated, and dirty them to ensure they get written out.
2663 * Buffers need to be attached to the page at this point, otherwise
2664 * the handling of potential IO errors during writeout would be hard
2665 * (could try doing synchronous writeout, but what if that fails too?)
2666 */
2667 attach_nobh_buffers(page, head);
2668 page_zero_new_buffers(page, from, to);
2669
2670 out_release:
2671 unlock_page(page);
2672 put_page(page);
2673 *pagep = NULL;
2674
2675 return ret;
2676 }
2677 EXPORT_SYMBOL(nobh_write_begin);
2678
2679 int nobh_write_end(struct file *file, struct address_space *mapping,
2680 loff_t pos, unsigned len, unsigned copied,
2681 struct page *page, void *fsdata)
2682 {
2683 struct inode *inode = page->mapping->host;
2684 struct buffer_head *head = fsdata;
2685 struct buffer_head *bh;
2686 BUG_ON(fsdata != NULL && page_has_buffers(page));
2687
2688 if (unlikely(copied < len) && head)
2689 attach_nobh_buffers(page, head);
2690 if (page_has_buffers(page))
2691 return generic_write_end(file, mapping, pos, len,
2692 copied, page, fsdata);
2693
2694 SetPageUptodate(page);
2695 set_page_dirty(page);
2696 if (pos+copied > inode->i_size) {
2697 i_size_write(inode, pos+copied);
2698 mark_inode_dirty(inode);
2699 }
2700
2701 unlock_page(page);
2702 put_page(page);
2703
2704 while (head) {
2705 bh = head;
2706 head = head->b_this_page;
2707 free_buffer_head(bh);
2708 }
2709
2710 return copied;
2711 }
2712 EXPORT_SYMBOL(nobh_write_end);
2713
2714 /*
2715 * nobh_writepage() - based on block_full_write_page() except
2716 * that it tries to operate without attaching bufferheads to
2717 * the page.
2718 */
2719 int nobh_writepage(struct page *page, get_block_t *get_block,
2720 struct writeback_control *wbc)
2721 {
2722 struct inode * const inode = page->mapping->host;
2723 loff_t i_size = i_size_read(inode);
2724 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2725 unsigned offset;
2726 int ret;
2727
2728 /* Is the page fully inside i_size? */
2729 if (page->index < end_index)
2730 goto out;
2731
2732 /* Is the page fully outside i_size? (truncate in progress) */
2733 offset = i_size & (PAGE_SIZE-1);
2734 if (page->index >= end_index+1 || !offset) {
2735 /*
2736 * The page may have dirty, unmapped buffers. For example,
2737 * they may have been added in ext3_writepage(). Make them
2738 * freeable here, so the page does not leak.
2739 */
2740 #if 0
2741 /* Not really sure about this - do we need this ? */
2742 if (page->mapping->a_ops->invalidatepage)
2743 page->mapping->a_ops->invalidatepage(page, offset);
2744 #endif
2745 unlock_page(page);
2746 return 0; /* don't care */
2747 }
2748
2749 /*
2750 * The page straddles i_size. It must be zeroed out on each and every
2751 * writepage invocation because it may be mmapped. "A file is mapped
2752 * in multiples of the page size. For a file that is not a multiple of
2753 * the page size, the remaining memory is zeroed when mapped, and
2754 * writes to that region are not written out to the file."
2755 */
2756 zero_user_segment(page, offset, PAGE_SIZE);
2757 out:
2758 ret = mpage_writepage(page, get_block, wbc);
2759 if (ret == -EAGAIN)
2760 ret = __block_write_full_page(inode, page, get_block, wbc,
2761 end_buffer_async_write);
2762 return ret;
2763 }
2764 EXPORT_SYMBOL(nobh_writepage);
2765
2766 int nobh_truncate_page(struct address_space *mapping,
2767 loff_t from, get_block_t *get_block)
2768 {
2769 pgoff_t index = from >> PAGE_SHIFT;
2770 unsigned offset = from & (PAGE_SIZE-1);
2771 unsigned blocksize;
2772 sector_t iblock;
2773 unsigned length, pos;
2774 struct inode *inode = mapping->host;
2775 struct page *page;
2776 struct buffer_head map_bh;
2777 int err;
2778
2779 blocksize = i_blocksize(inode);
2780 length = offset & (blocksize - 1);
2781
2782 /* Block boundary? Nothing to do */
2783 if (!length)
2784 return 0;
2785
2786 length = blocksize - length;
2787 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2788
2789 page = grab_cache_page(mapping, index);
2790 err = -ENOMEM;
2791 if (!page)
2792 goto out;
2793
2794 if (page_has_buffers(page)) {
2795 has_buffers:
2796 unlock_page(page);
2797 put_page(page);
2798 return block_truncate_page(mapping, from, get_block);
2799 }
2800
2801 /* Find the buffer that contains "offset" */
2802 pos = blocksize;
2803 while (offset >= pos) {
2804 iblock++;
2805 pos += blocksize;
2806 }
2807
2808 map_bh.b_size = blocksize;
2809 map_bh.b_state = 0;
2810 err = get_block(inode, iblock, &map_bh, 0);
2811 if (err)
2812 goto unlock;
2813 /* unmapped? It's a hole - nothing to do */
2814 if (!buffer_mapped(&map_bh))
2815 goto unlock;
2816
2817 /* Ok, it's mapped. Make sure it's up-to-date */
2818 if (!PageUptodate(page)) {
2819 err = mapping->a_ops->readpage(NULL, page);
2820 if (err) {
2821 put_page(page);
2822 goto out;
2823 }
2824 lock_page(page);
2825 if (!PageUptodate(page)) {
2826 err = -EIO;
2827 goto unlock;
2828 }
2829 if (page_has_buffers(page))
2830 goto has_buffers;
2831 }
2832 zero_user(page, offset, length);
2833 set_page_dirty(page);
2834 err = 0;
2835
2836 unlock:
2837 unlock_page(page);
2838 put_page(page);
2839 out:
2840 return err;
2841 }
2842 EXPORT_SYMBOL(nobh_truncate_page);
2843
2844 int block_truncate_page(struct address_space *mapping,
2845 loff_t from, get_block_t *get_block)
2846 {
2847 pgoff_t index = from >> PAGE_SHIFT;
2848 unsigned offset = from & (PAGE_SIZE-1);
2849 unsigned blocksize;
2850 sector_t iblock;
2851 unsigned length, pos;
2852 struct inode *inode = mapping->host;
2853 struct page *page;
2854 struct buffer_head *bh;
2855 int err;
2856
2857 blocksize = i_blocksize(inode);
2858 length = offset & (blocksize - 1);
2859
2860 /* Block boundary? Nothing to do */
2861 if (!length)
2862 return 0;
2863
2864 length = blocksize - length;
2865 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2866
2867 page = grab_cache_page(mapping, index);
2868 err = -ENOMEM;
2869 if (!page)
2870 goto out;
2871
2872 if (!page_has_buffers(page))
2873 create_empty_buffers(page, blocksize, 0);
2874
2875 /* Find the buffer that contains "offset" */
2876 bh = page_buffers(page);
2877 pos = blocksize;
2878 while (offset >= pos) {
2879 bh = bh->b_this_page;
2880 iblock++;
2881 pos += blocksize;
2882 }
2883
2884 err = 0;
2885 if (!buffer_mapped(bh)) {
2886 WARN_ON(bh->b_size != blocksize);
2887 err = get_block(inode, iblock, bh, 0);
2888 if (err)
2889 goto unlock;
2890 /* unmapped? It's a hole - nothing to do */
2891 if (!buffer_mapped(bh))
2892 goto unlock;
2893 }
2894
2895 /* Ok, it's mapped. Make sure it's up-to-date */
2896 if (PageUptodate(page))
2897 set_buffer_uptodate(bh);
2898
2899 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2900 err = -EIO;
2901 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2902 wait_on_buffer(bh);
2903 /* Uhhuh. Read error. Complain and punt. */
2904 if (!buffer_uptodate(bh))
2905 goto unlock;
2906 }
2907
2908 zero_user(page, offset, length);
2909 mark_buffer_dirty(bh);
2910 err = 0;
2911
2912 unlock:
2913 unlock_page(page);
2914 put_page(page);
2915 out:
2916 return err;
2917 }
2918 EXPORT_SYMBOL(block_truncate_page);
2919
2920 /*
2921 * The generic ->writepage function for buffer-backed address_spaces
2922 */
2923 int block_write_full_page(struct page *page, get_block_t *get_block,
2924 struct writeback_control *wbc)
2925 {
2926 struct inode * const inode = page->mapping->host;
2927 loff_t i_size = i_size_read(inode);
2928 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2929 unsigned offset;
2930
2931 /* Is the page fully inside i_size? */
2932 if (page->index < end_index)
2933 return __block_write_full_page(inode, page, get_block, wbc,
2934 end_buffer_async_write);
2935
2936 /* Is the page fully outside i_size? (truncate in progress) */
2937 offset = i_size & (PAGE_SIZE-1);
2938 if (page->index >= end_index+1 || !offset) {
2939 /*
2940 * The page may have dirty, unmapped buffers. For example,
2941 * they may have been added in ext3_writepage(). Make them
2942 * freeable here, so the page does not leak.
2943 */
2944 do_invalidatepage(page, 0, PAGE_SIZE);
2945 unlock_page(page);
2946 return 0; /* don't care */
2947 }
2948
2949 /*
2950 * The page straddles i_size. It must be zeroed out on each and every
2951 * writepage invocation because it may be mmapped. "A file is mapped
2952 * in multiples of the page size. For a file that is not a multiple of
2953 * the page size, the remaining memory is zeroed when mapped, and
2954 * writes to that region are not written out to the file."
2955 */
2956 zero_user_segment(page, offset, PAGE_SIZE);
2957 return __block_write_full_page(inode, page, get_block, wbc,
2958 end_buffer_async_write);
2959 }
2960 EXPORT_SYMBOL(block_write_full_page);
2961
2962 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2963 get_block_t *get_block)
2964 {
2965 struct inode *inode = mapping->host;
2966 struct buffer_head tmp = {
2967 .b_size = i_blocksize(inode),
2968 };
2969
2970 get_block(inode, block, &tmp, 0);
2971 return tmp.b_blocknr;
2972 }
2973 EXPORT_SYMBOL(generic_block_bmap);
2974
2975 static void end_bio_bh_io_sync(struct bio *bio)
2976 {
2977 struct buffer_head *bh = bio->bi_private;
2978
2979 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2980 set_bit(BH_Quiet, &bh->b_state);
2981
2982 bh->b_end_io(bh, !bio->bi_status);
2983 bio_put(bio);
2984 }
2985
2986 /*
2987 * This allows us to do IO even on the odd last sectors
2988 * of a device, even if the block size is some multiple
2989 * of the physical sector size.
2990 *
2991 * We'll just truncate the bio to the size of the device,
2992 * and clear the end of the buffer head manually.
2993 *
2994 * Truly out-of-range accesses will turn into actual IO
2995 * errors, this only handles the "we need to be able to
2996 * do IO at the final sector" case.
2997 */
2998 void guard_bio_eod(int op, struct bio *bio)
2999 {
3000 sector_t maxsector;
3001 struct bio_vec *bvec = bio_last_bvec_all(bio);
3002 unsigned truncated_bytes;
3003 struct hd_struct *part;
3004
3005 rcu_read_lock();
3006 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3007 if (part)
3008 maxsector = part_nr_sects_read(part);
3009 else
3010 maxsector = get_capacity(bio->bi_disk);
3011 rcu_read_unlock();
3012
3013 if (!maxsector)
3014 return;
3015
3016 /*
3017 * If the *whole* IO is past the end of the device,
3018 * let it through, and the IO layer will turn it into
3019 * an EIO.
3020 */
3021 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3022 return;
3023
3024 maxsector -= bio->bi_iter.bi_sector;
3025 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3026 return;
3027
3028 /* Uhhuh. We've got a bio that straddles the device size! */
3029 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3030
3031 /*
3032 * The bio contains more than one segment which spans EOD, just return
3033 * and let IO layer turn it into an EIO
3034 */
3035 if (truncated_bytes > bvec->bv_len)
3036 return;
3037
3038 /* Truncate the bio.. */
3039 bio->bi_iter.bi_size -= truncated_bytes;
3040 bvec->bv_len -= truncated_bytes;
3041
3042 /* ..and clear the end of the buffer for reads */
3043 if (op == REQ_OP_READ) {
3044 struct bio_vec bv;
3045
3046 mp_bvec_last_segment(bvec, &bv);
3047 zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3048 truncated_bytes);
3049 }
3050 }
3051
3052 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3053 enum rw_hint write_hint, struct writeback_control *wbc)
3054 {
3055 struct bio *bio;
3056
3057 BUG_ON(!buffer_locked(bh));
3058 BUG_ON(!buffer_mapped(bh));
3059 BUG_ON(!bh->b_end_io);
3060 BUG_ON(buffer_delay(bh));
3061 BUG_ON(buffer_unwritten(bh));
3062
3063 /*
3064 * Only clear out a write error when rewriting
3065 */
3066 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3067 clear_buffer_write_io_error(bh);
3068
3069 /*
3070 * from here on down, it's all bio -- do the initial mapping,
3071 * submit_bio -> generic_make_request may further map this bio around
3072 */
3073 bio = bio_alloc(GFP_NOIO, 1);
3074
3075 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3076 bio_set_dev(bio, bh->b_bdev);
3077 bio->bi_write_hint = write_hint;
3078
3079 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3080 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3081
3082 bio->bi_end_io = end_bio_bh_io_sync;
3083 bio->bi_private = bh;
3084
3085 /* Take care of bh's that straddle the end of the device */
3086 guard_bio_eod(op, bio);
3087
3088 if (buffer_meta(bh))
3089 op_flags |= REQ_META;
3090 if (buffer_prio(bh))
3091 op_flags |= REQ_PRIO;
3092 bio_set_op_attrs(bio, op, op_flags);
3093
3094 if (wbc) {
3095 wbc_init_bio(wbc, bio);
3096 wbc_account_io(wbc, bh->b_page, bh->b_size);
3097 }
3098
3099 submit_bio(bio);
3100 return 0;
3101 }
3102
3103 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3104 {
3105 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3106 }
3107 EXPORT_SYMBOL(submit_bh);
3108
3109 /**
3110 * ll_rw_block: low-level access to block devices (DEPRECATED)
3111 * @op: whether to %READ or %WRITE
3112 * @op_flags: req_flag_bits
3113 * @nr: number of &struct buffer_heads in the array
3114 * @bhs: array of pointers to &struct buffer_head
3115 *
3116 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3117 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3118 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3119 * %REQ_RAHEAD.
3120 *
3121 * This function drops any buffer that it cannot get a lock on (with the
3122 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3123 * request, and any buffer that appears to be up-to-date when doing read
3124 * request. Further it marks as clean buffers that are processed for
3125 * writing (the buffer cache won't assume that they are actually clean
3126 * until the buffer gets unlocked).
3127 *
3128 * ll_rw_block sets b_end_io to simple completion handler that marks
3129 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3130 * any waiters.
3131 *
3132 * All of the buffers must be for the same device, and must also be a
3133 * multiple of the current approved size for the device.
3134 */
3135 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3136 {
3137 int i;
3138
3139 for (i = 0; i < nr; i++) {
3140 struct buffer_head *bh = bhs[i];
3141
3142 if (!trylock_buffer(bh))
3143 continue;
3144 if (op == WRITE) {
3145 if (test_clear_buffer_dirty(bh)) {
3146 bh->b_end_io = end_buffer_write_sync;
3147 get_bh(bh);
3148 submit_bh(op, op_flags, bh);
3149 continue;
3150 }
3151 } else {
3152 if (!buffer_uptodate(bh)) {
3153 bh->b_end_io = end_buffer_read_sync;
3154 get_bh(bh);
3155 submit_bh(op, op_flags, bh);
3156 continue;
3157 }
3158 }
3159 unlock_buffer(bh);
3160 }
3161 }
3162 EXPORT_SYMBOL(ll_rw_block);
3163
3164 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3165 {
3166 lock_buffer(bh);
3167 if (!test_clear_buffer_dirty(bh)) {
3168 unlock_buffer(bh);
3169 return;
3170 }
3171 bh->b_end_io = end_buffer_write_sync;
3172 get_bh(bh);
3173 submit_bh(REQ_OP_WRITE, op_flags, bh);
3174 }
3175 EXPORT_SYMBOL(write_dirty_buffer);
3176
3177 /*
3178 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3179 * and then start new I/O and then wait upon it. The caller must have a ref on
3180 * the buffer_head.
3181 */
3182 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3183 {
3184 int ret = 0;
3185
3186 WARN_ON(atomic_read(&bh->b_count) < 1);
3187 lock_buffer(bh);
3188 if (test_clear_buffer_dirty(bh)) {
3189 get_bh(bh);
3190 bh->b_end_io = end_buffer_write_sync;
3191 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3192 wait_on_buffer(bh);
3193 if (!ret && !buffer_uptodate(bh))
3194 ret = -EIO;
3195 } else {
3196 unlock_buffer(bh);
3197 }
3198 return ret;
3199 }
3200 EXPORT_SYMBOL(__sync_dirty_buffer);
3201
3202 int sync_dirty_buffer(struct buffer_head *bh)
3203 {
3204 return __sync_dirty_buffer(bh, REQ_SYNC);
3205 }
3206 EXPORT_SYMBOL(sync_dirty_buffer);
3207
3208 /*
3209 * try_to_free_buffers() checks if all the buffers on this particular page
3210 * are unused, and releases them if so.
3211 *
3212 * Exclusion against try_to_free_buffers may be obtained by either
3213 * locking the page or by holding its mapping's private_lock.
3214 *
3215 * If the page is dirty but all the buffers are clean then we need to
3216 * be sure to mark the page clean as well. This is because the page
3217 * may be against a block device, and a later reattachment of buffers
3218 * to a dirty page will set *all* buffers dirty. Which would corrupt
3219 * filesystem data on the same device.
3220 *
3221 * The same applies to regular filesystem pages: if all the buffers are
3222 * clean then we set the page clean and proceed. To do that, we require
3223 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3224 * private_lock.
3225 *
3226 * try_to_free_buffers() is non-blocking.
3227 */
3228 static inline int buffer_busy(struct buffer_head *bh)
3229 {
3230 return atomic_read(&bh->b_count) |
3231 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3232 }
3233
3234 static int
3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3236 {
3237 struct buffer_head *head = page_buffers(page);
3238 struct buffer_head *bh;
3239
3240 bh = head;
3241 do {
3242 if (buffer_busy(bh))
3243 goto failed;
3244 bh = bh->b_this_page;
3245 } while (bh != head);
3246
3247 do {
3248 struct buffer_head *next = bh->b_this_page;
3249
3250 if (bh->b_assoc_map)
3251 __remove_assoc_queue(bh);
3252 bh = next;
3253 } while (bh != head);
3254 *buffers_to_free = head;
3255 __clear_page_buffers(page);
3256 return 1;
3257 failed:
3258 return 0;
3259 }
3260
3261 int try_to_free_buffers(struct page *page)
3262 {
3263 struct address_space * const mapping = page->mapping;
3264 struct buffer_head *buffers_to_free = NULL;
3265 int ret = 0;
3266
3267 BUG_ON(!PageLocked(page));
3268 if (PageWriteback(page))
3269 return 0;
3270
3271 if (mapping == NULL) { /* can this still happen? */
3272 ret = drop_buffers(page, &buffers_to_free);
3273 goto out;
3274 }
3275
3276 spin_lock(&mapping->private_lock);
3277 ret = drop_buffers(page, &buffers_to_free);
3278
3279 /*
3280 * If the filesystem writes its buffers by hand (eg ext3)
3281 * then we can have clean buffers against a dirty page. We
3282 * clean the page here; otherwise the VM will never notice
3283 * that the filesystem did any IO at all.
3284 *
3285 * Also, during truncate, discard_buffer will have marked all
3286 * the page's buffers clean. We discover that here and clean
3287 * the page also.
3288 *
3289 * private_lock must be held over this entire operation in order
3290 * to synchronise against __set_page_dirty_buffers and prevent the
3291 * dirty bit from being lost.
3292 */
3293 if (ret)
3294 cancel_dirty_page(page);
3295 spin_unlock(&mapping->private_lock);
3296 out:
3297 if (buffers_to_free) {
3298 struct buffer_head *bh = buffers_to_free;
3299
3300 do {
3301 struct buffer_head *next = bh->b_this_page;
3302 free_buffer_head(bh);
3303 bh = next;
3304 } while (bh != buffers_to_free);
3305 }
3306 return ret;
3307 }
3308 EXPORT_SYMBOL(try_to_free_buffers);
3309
3310 /*
3311 * There are no bdflush tunables left. But distributions are
3312 * still running obsolete flush daemons, so we terminate them here.
3313 *
3314 * Use of bdflush() is deprecated and will be removed in a future kernel.
3315 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3316 */
3317 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3318 {
3319 static int msg_count;
3320
3321 if (!capable(CAP_SYS_ADMIN))
3322 return -EPERM;
3323
3324 if (msg_count < 5) {
3325 msg_count++;
3326 printk(KERN_INFO
3327 "warning: process `%s' used the obsolete bdflush"
3328 " system call\n", current->comm);
3329 printk(KERN_INFO "Fix your initscripts?\n");
3330 }
3331
3332 if (func == 1)
3333 do_exit(0);
3334 return 0;
3335 }
3336
3337 /*
3338 * Buffer-head allocation
3339 */
3340 static struct kmem_cache *bh_cachep __read_mostly;
3341
3342 /*
3343 * Once the number of bh's in the machine exceeds this level, we start
3344 * stripping them in writeback.
3345 */
3346 static unsigned long max_buffer_heads;
3347
3348 int buffer_heads_over_limit;
3349
3350 struct bh_accounting {
3351 int nr; /* Number of live bh's */
3352 int ratelimit; /* Limit cacheline bouncing */
3353 };
3354
3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3356
3357 static void recalc_bh_state(void)
3358 {
3359 int i;
3360 int tot = 0;
3361
3362 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3363 return;
3364 __this_cpu_write(bh_accounting.ratelimit, 0);
3365 for_each_online_cpu(i)
3366 tot += per_cpu(bh_accounting, i).nr;
3367 buffer_heads_over_limit = (tot > max_buffer_heads);
3368 }
3369
3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3371 {
3372 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3373 if (ret) {
3374 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3375 preempt_disable();
3376 __this_cpu_inc(bh_accounting.nr);
3377 recalc_bh_state();
3378 preempt_enable();
3379 }
3380 return ret;
3381 }
3382 EXPORT_SYMBOL(alloc_buffer_head);
3383
3384 void free_buffer_head(struct buffer_head *bh)
3385 {
3386 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3387 kmem_cache_free(bh_cachep, bh);
3388 preempt_disable();
3389 __this_cpu_dec(bh_accounting.nr);
3390 recalc_bh_state();
3391 preempt_enable();
3392 }
3393 EXPORT_SYMBOL(free_buffer_head);
3394
3395 static int buffer_exit_cpu_dead(unsigned int cpu)
3396 {
3397 int i;
3398 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3399
3400 for (i = 0; i < BH_LRU_SIZE; i++) {
3401 brelse(b->bhs[i]);
3402 b->bhs[i] = NULL;
3403 }
3404 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3405 per_cpu(bh_accounting, cpu).nr = 0;
3406 return 0;
3407 }
3408
3409 /**
3410 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411 * @bh: struct buffer_head
3412 *
3413 * Return true if the buffer is up-to-date and false,
3414 * with the buffer locked, if not.
3415 */
3416 int bh_uptodate_or_lock(struct buffer_head *bh)
3417 {
3418 if (!buffer_uptodate(bh)) {
3419 lock_buffer(bh);
3420 if (!buffer_uptodate(bh))
3421 return 0;
3422 unlock_buffer(bh);
3423 }
3424 return 1;
3425 }
3426 EXPORT_SYMBOL(bh_uptodate_or_lock);
3427
3428 /**
3429 * bh_submit_read - Submit a locked buffer for reading
3430 * @bh: struct buffer_head
3431 *
3432 * Returns zero on success and -EIO on error.
3433 */
3434 int bh_submit_read(struct buffer_head *bh)
3435 {
3436 BUG_ON(!buffer_locked(bh));
3437
3438 if (buffer_uptodate(bh)) {
3439 unlock_buffer(bh);
3440 return 0;
3441 }
3442
3443 get_bh(bh);
3444 bh->b_end_io = end_buffer_read_sync;
3445 submit_bh(REQ_OP_READ, 0, bh);
3446 wait_on_buffer(bh);
3447 if (buffer_uptodate(bh))
3448 return 0;
3449 return -EIO;
3450 }
3451 EXPORT_SYMBOL(bh_submit_read);
3452
3453 void __init buffer_init(void)
3454 {
3455 unsigned long nrpages;
3456 int ret;
3457
3458 bh_cachep = kmem_cache_create("buffer_head",
3459 sizeof(struct buffer_head), 0,
3460 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3461 SLAB_MEM_SPREAD),
3462 NULL);
3463
3464 /*
3465 * Limit the bh occupancy to 10% of ZONE_NORMAL
3466 */
3467 nrpages = (nr_free_buffer_pages() * 10) / 100;
3468 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3469 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3470 NULL, buffer_exit_cpu_dead);
3471 WARN_ON(ret < 0);
3472 }