]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - fs/buffer.c
UBUNTU: link-to-tracker: update tracking bug
[mirror_ubuntu-impish-kernel.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151 }
152
153 /*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237 out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240 out:
241 return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293 still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296 }
297
298 struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314 }
315
316 /*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378 still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413 {
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474 /*
475 * The buffer's backing address_space's private_lock must be held
476 */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486 return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506 repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
559 void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561 {
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 put_bh(bh);
567 }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593 * dirty.
594 *
595 * If warn is true, then emit a warning if the page is not uptodate and has
596 * not been truncated.
597 *
598 * The caller must hold lock_page_memcg().
599 */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601 int warn)
602 {
603 unsigned long flags;
604
605 xa_lock_irqsave(&mapping->i_pages, flags);
606 if (page->mapping) { /* Race with truncate? */
607 WARN_ON_ONCE(warn && !PageUptodate(page));
608 account_page_dirtied(page, mapping);
609 __xa_set_mark(&mapping->i_pages, page_index(page),
610 PAGECACHE_TAG_DIRTY);
611 }
612 xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616 /*
617 * Add a page to the dirty page list.
618 *
619 * It is a sad fact of life that this function is called from several places
620 * deeply under spinlocking. It may not sleep.
621 *
622 * If the page has buffers, the uptodate buffers are set dirty, to preserve
623 * dirty-state coherency between the page and the buffers. It the page does
624 * not have buffers then when they are later attached they will all be set
625 * dirty.
626 *
627 * The buffers are dirtied before the page is dirtied. There's a small race
628 * window in which a writepage caller may see the page cleanness but not the
629 * buffer dirtiness. That's fine. If this code were to set the page dirty
630 * before the buffers, a concurrent writepage caller could clear the page dirty
631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632 * page on the dirty page list.
633 *
634 * We use private_lock to lock against try_to_free_buffers while using the
635 * page's buffer list. Also use this to protect against clean buffers being
636 * added to the page after it was set dirty.
637 *
638 * FIXME: may need to call ->reservepage here as well. That's rather up to the
639 * address_space though.
640 */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643 int newly_dirty;
644 struct address_space *mapping = page_mapping(page);
645
646 if (unlikely(!mapping))
647 return !TestSetPageDirty(page);
648
649 spin_lock(&mapping->private_lock);
650 if (page_has_buffers(page)) {
651 struct buffer_head *head = page_buffers(page);
652 struct buffer_head *bh = head;
653
654 do {
655 set_buffer_dirty(bh);
656 bh = bh->b_this_page;
657 } while (bh != head);
658 }
659 /*
660 * Lock out page's memcg migration to keep PageDirty
661 * synchronized with per-memcg dirty page counters.
662 */
663 lock_page_memcg(page);
664 newly_dirty = !TestSetPageDirty(page);
665 spin_unlock(&mapping->private_lock);
666
667 if (newly_dirty)
668 __set_page_dirty(page, mapping, 1);
669
670 unlock_page_memcg(page);
671
672 if (newly_dirty)
673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675 return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
705
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
729 */
730 write_dirty_buffer(bh, REQ_SYNC);
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
760 }
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775 }
776
777 /*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->private_data;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->private_data;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828 }
829
830 /*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 bool retry)
841 {
842 struct buffer_head *bh, *head;
843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 long offset;
845 struct mem_cgroup *memcg, *old_memcg;
846
847 if (retry)
848 gfp |= __GFP_NOFAIL;
849
850 /* The page lock pins the memcg */
851 memcg = page_memcg(page);
852 old_memcg = set_active_memcg(memcg);
853
854 head = NULL;
855 offset = PAGE_SIZE;
856 while ((offset -= size) >= 0) {
857 bh = alloc_buffer_head(gfp);
858 if (!bh)
859 goto no_grow;
860
861 bh->b_this_page = head;
862 bh->b_blocknr = -1;
863 head = bh;
864
865 bh->b_size = size;
866
867 /* Link the buffer to its page */
868 set_bh_page(bh, page, offset);
869 }
870 out:
871 set_active_memcg(old_memcg);
872 return head;
873 /*
874 * In case anything failed, we just free everything we got.
875 */
876 no_grow:
877 if (head) {
878 do {
879 bh = head;
880 head = head->b_this_page;
881 free_buffer_head(bh);
882 } while (head);
883 }
884
885 goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892 struct buffer_head *bh, *tail;
893
894 bh = head;
895 do {
896 tail = bh;
897 bh = bh->b_this_page;
898 } while (bh);
899 tail->b_this_page = head;
900 attach_page_private(page, head);
901 }
902
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905 sector_t retval = ~((sector_t)0);
906 loff_t sz = i_size_read(bdev->bd_inode);
907
908 if (sz) {
909 unsigned int sizebits = blksize_bits(size);
910 retval = (sz >> sizebits);
911 }
912 return retval;
913 }
914
915 /*
916 * Initialise the state of a blockdev page's buffers.
917 */
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920 sector_t block, int size)
921 {
922 struct buffer_head *head = page_buffers(page);
923 struct buffer_head *bh = head;
924 int uptodate = PageUptodate(page);
925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927 do {
928 if (!buffer_mapped(bh)) {
929 bh->b_end_io = NULL;
930 bh->b_private = NULL;
931 bh->b_bdev = bdev;
932 bh->b_blocknr = block;
933 if (uptodate)
934 set_buffer_uptodate(bh);
935 if (block < end_block)
936 set_buffer_mapped(bh);
937 }
938 block++;
939 bh = bh->b_this_page;
940 } while (bh != head);
941
942 /*
943 * Caller needs to validate requested block against end of device.
944 */
945 return end_block;
946 }
947
948 /*
949 * Create the page-cache page that contains the requested block.
950 *
951 * This is used purely for blockdev mappings.
952 */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955 pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957 struct inode *inode = bdev->bd_inode;
958 struct page *page;
959 struct buffer_head *bh;
960 sector_t end_block;
961 int ret = 0;
962 gfp_t gfp_mask;
963
964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966 /*
967 * XXX: __getblk_slow() can not really deal with failure and
968 * will endlessly loop on improvised global reclaim. Prefer
969 * looping in the allocator rather than here, at least that
970 * code knows what it's doing.
971 */
972 gfp_mask |= __GFP_NOFAIL;
973
974 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976 BUG_ON(!PageLocked(page));
977
978 if (page_has_buffers(page)) {
979 bh = page_buffers(page);
980 if (bh->b_size == size) {
981 end_block = init_page_buffers(page, bdev,
982 (sector_t)index << sizebits,
983 size);
984 goto done;
985 }
986 if (!try_to_free_buffers(page))
987 goto failed;
988 }
989
990 /*
991 * Allocate some buffers for this page
992 */
993 bh = alloc_page_buffers(page, size, true);
994
995 /*
996 * Link the page to the buffers and initialise them. Take the
997 * lock to be atomic wrt __find_get_block(), which does not
998 * run under the page lock.
999 */
1000 spin_lock(&inode->i_mapping->private_lock);
1001 link_dev_buffers(page, bh);
1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 size);
1004 spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006 ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008 unlock_page(page);
1009 put_page(page);
1010 return ret;
1011 }
1012
1013 /*
1014 * Create buffers for the specified block device block's page. If
1015 * that page was dirty, the buffers are set dirty also.
1016 */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020 pgoff_t index;
1021 int sizebits;
1022
1023 sizebits = PAGE_SHIFT - __ffs(size);
1024 index = block >> sizebits;
1025
1026 /*
1027 * Check for a block which wants to lie outside our maximum possible
1028 * pagecache index. (this comparison is done using sector_t types).
1029 */
1030 if (unlikely(index != block >> sizebits)) {
1031 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1032 "device %pg\n",
1033 __func__, (unsigned long long)block,
1034 bdev);
1035 return -EIO;
1036 }
1037
1038 /* Create a page with the proper size buffers.. */
1039 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1040 }
1041
1042 static struct buffer_head *
1043 __getblk_slow(struct block_device *bdev, sector_t block,
1044 unsigned size, gfp_t gfp)
1045 {
1046 /* Size must be multiple of hard sectorsize */
1047 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1048 (size < 512 || size > PAGE_SIZE))) {
1049 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1050 size);
1051 printk(KERN_ERR "logical block size: %d\n",
1052 bdev_logical_block_size(bdev));
1053
1054 dump_stack();
1055 return NULL;
1056 }
1057
1058 for (;;) {
1059 struct buffer_head *bh;
1060 int ret;
1061
1062 bh = __find_get_block(bdev, block, size);
1063 if (bh)
1064 return bh;
1065
1066 ret = grow_buffers(bdev, block, size, gfp);
1067 if (ret < 0)
1068 return NULL;
1069 }
1070 }
1071
1072 /*
1073 * The relationship between dirty buffers and dirty pages:
1074 *
1075 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1076 * the page is tagged dirty in the page cache.
1077 *
1078 * At all times, the dirtiness of the buffers represents the dirtiness of
1079 * subsections of the page. If the page has buffers, the page dirty bit is
1080 * merely a hint about the true dirty state.
1081 *
1082 * When a page is set dirty in its entirety, all its buffers are marked dirty
1083 * (if the page has buffers).
1084 *
1085 * When a buffer is marked dirty, its page is dirtied, but the page's other
1086 * buffers are not.
1087 *
1088 * Also. When blockdev buffers are explicitly read with bread(), they
1089 * individually become uptodate. But their backing page remains not
1090 * uptodate - even if all of its buffers are uptodate. A subsequent
1091 * block_read_full_page() against that page will discover all the uptodate
1092 * buffers, will set the page uptodate and will perform no I/O.
1093 */
1094
1095 /**
1096 * mark_buffer_dirty - mark a buffer_head as needing writeout
1097 * @bh: the buffer_head to mark dirty
1098 *
1099 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1100 * its backing page dirty, then tag the page as dirty in the page cache
1101 * and then attach the address_space's inode to its superblock's dirty
1102 * inode list.
1103 *
1104 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1105 * i_pages lock and mapping->host->i_lock.
1106 */
1107 void mark_buffer_dirty(struct buffer_head *bh)
1108 {
1109 WARN_ON_ONCE(!buffer_uptodate(bh));
1110
1111 trace_block_dirty_buffer(bh);
1112
1113 /*
1114 * Very *carefully* optimize the it-is-already-dirty case.
1115 *
1116 * Don't let the final "is it dirty" escape to before we
1117 * perhaps modified the buffer.
1118 */
1119 if (buffer_dirty(bh)) {
1120 smp_mb();
1121 if (buffer_dirty(bh))
1122 return;
1123 }
1124
1125 if (!test_set_buffer_dirty(bh)) {
1126 struct page *page = bh->b_page;
1127 struct address_space *mapping = NULL;
1128
1129 lock_page_memcg(page);
1130 if (!TestSetPageDirty(page)) {
1131 mapping = page_mapping(page);
1132 if (mapping)
1133 __set_page_dirty(page, mapping, 0);
1134 }
1135 unlock_page_memcg(page);
1136 if (mapping)
1137 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138 }
1139 }
1140 EXPORT_SYMBOL(mark_buffer_dirty);
1141
1142 void mark_buffer_write_io_error(struct buffer_head *bh)
1143 {
1144 struct super_block *sb;
1145
1146 set_buffer_write_io_error(bh);
1147 /* FIXME: do we need to set this in both places? */
1148 if (bh->b_page && bh->b_page->mapping)
1149 mapping_set_error(bh->b_page->mapping, -EIO);
1150 if (bh->b_assoc_map)
1151 mapping_set_error(bh->b_assoc_map, -EIO);
1152 rcu_read_lock();
1153 sb = READ_ONCE(bh->b_bdev->bd_super);
1154 if (sb)
1155 errseq_set(&sb->s_wb_err, -EIO);
1156 rcu_read_unlock();
1157 }
1158 EXPORT_SYMBOL(mark_buffer_write_io_error);
1159
1160 /*
1161 * Decrement a buffer_head's reference count. If all buffers against a page
1162 * have zero reference count, are clean and unlocked, and if the page is clean
1163 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1164 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1165 * a page but it ends up not being freed, and buffers may later be reattached).
1166 */
1167 void __brelse(struct buffer_head * buf)
1168 {
1169 if (atomic_read(&buf->b_count)) {
1170 put_bh(buf);
1171 return;
1172 }
1173 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1174 }
1175 EXPORT_SYMBOL(__brelse);
1176
1177 /*
1178 * bforget() is like brelse(), except it discards any
1179 * potentially dirty data.
1180 */
1181 void __bforget(struct buffer_head *bh)
1182 {
1183 clear_buffer_dirty(bh);
1184 if (bh->b_assoc_map) {
1185 struct address_space *buffer_mapping = bh->b_page->mapping;
1186
1187 spin_lock(&buffer_mapping->private_lock);
1188 list_del_init(&bh->b_assoc_buffers);
1189 bh->b_assoc_map = NULL;
1190 spin_unlock(&buffer_mapping->private_lock);
1191 }
1192 __brelse(bh);
1193 }
1194 EXPORT_SYMBOL(__bforget);
1195
1196 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1197 {
1198 lock_buffer(bh);
1199 if (buffer_uptodate(bh)) {
1200 unlock_buffer(bh);
1201 return bh;
1202 } else {
1203 get_bh(bh);
1204 bh->b_end_io = end_buffer_read_sync;
1205 submit_bh(REQ_OP_READ, 0, bh);
1206 wait_on_buffer(bh);
1207 if (buffer_uptodate(bh))
1208 return bh;
1209 }
1210 brelse(bh);
1211 return NULL;
1212 }
1213
1214 /*
1215 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1216 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1217 * refcount elevated by one when they're in an LRU. A buffer can only appear
1218 * once in a particular CPU's LRU. A single buffer can be present in multiple
1219 * CPU's LRUs at the same time.
1220 *
1221 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1222 * sb_find_get_block().
1223 *
1224 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1225 * a local interrupt disable for that.
1226 */
1227
1228 #define BH_LRU_SIZE 16
1229
1230 struct bh_lru {
1231 struct buffer_head *bhs[BH_LRU_SIZE];
1232 };
1233
1234 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1235
1236 #ifdef CONFIG_SMP
1237 #define bh_lru_lock() local_irq_disable()
1238 #define bh_lru_unlock() local_irq_enable()
1239 #else
1240 #define bh_lru_lock() preempt_disable()
1241 #define bh_lru_unlock() preempt_enable()
1242 #endif
1243
1244 static inline void check_irqs_on(void)
1245 {
1246 #ifdef irqs_disabled
1247 BUG_ON(irqs_disabled());
1248 #endif
1249 }
1250
1251 /*
1252 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1253 * inserted at the front, and the buffer_head at the back if any is evicted.
1254 * Or, if already in the LRU it is moved to the front.
1255 */
1256 static void bh_lru_install(struct buffer_head *bh)
1257 {
1258 struct buffer_head *evictee = bh;
1259 struct bh_lru *b;
1260 int i;
1261
1262 check_irqs_on();
1263 /*
1264 * the refcount of buffer_head in bh_lru prevents dropping the
1265 * attached page(i.e., try_to_free_buffers) so it could cause
1266 * failing page migration.
1267 * Skip putting upcoming bh into bh_lru until migration is done.
1268 */
1269 if (lru_cache_disabled())
1270 return;
1271
1272 bh_lru_lock();
1273
1274 b = this_cpu_ptr(&bh_lrus);
1275 for (i = 0; i < BH_LRU_SIZE; i++) {
1276 swap(evictee, b->bhs[i]);
1277 if (evictee == bh) {
1278 bh_lru_unlock();
1279 return;
1280 }
1281 }
1282
1283 get_bh(bh);
1284 bh_lru_unlock();
1285 brelse(evictee);
1286 }
1287
1288 /*
1289 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1290 */
1291 static struct buffer_head *
1292 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1293 {
1294 struct buffer_head *ret = NULL;
1295 unsigned int i;
1296
1297 check_irqs_on();
1298 bh_lru_lock();
1299 for (i = 0; i < BH_LRU_SIZE; i++) {
1300 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1301
1302 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1303 bh->b_size == size) {
1304 if (i) {
1305 while (i) {
1306 __this_cpu_write(bh_lrus.bhs[i],
1307 __this_cpu_read(bh_lrus.bhs[i - 1]));
1308 i--;
1309 }
1310 __this_cpu_write(bh_lrus.bhs[0], bh);
1311 }
1312 get_bh(bh);
1313 ret = bh;
1314 break;
1315 }
1316 }
1317 bh_lru_unlock();
1318 return ret;
1319 }
1320
1321 /*
1322 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1323 * it in the LRU and mark it as accessed. If it is not present then return
1324 * NULL
1325 */
1326 struct buffer_head *
1327 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1328 {
1329 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1330
1331 if (bh == NULL) {
1332 /* __find_get_block_slow will mark the page accessed */
1333 bh = __find_get_block_slow(bdev, block);
1334 if (bh)
1335 bh_lru_install(bh);
1336 } else
1337 touch_buffer(bh);
1338
1339 return bh;
1340 }
1341 EXPORT_SYMBOL(__find_get_block);
1342
1343 /*
1344 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1345 * which corresponds to the passed block_device, block and size. The
1346 * returned buffer has its reference count incremented.
1347 *
1348 * __getblk_gfp() will lock up the machine if grow_dev_page's
1349 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1350 */
1351 struct buffer_head *
1352 __getblk_gfp(struct block_device *bdev, sector_t block,
1353 unsigned size, gfp_t gfp)
1354 {
1355 struct buffer_head *bh = __find_get_block(bdev, block, size);
1356
1357 might_sleep();
1358 if (bh == NULL)
1359 bh = __getblk_slow(bdev, block, size, gfp);
1360 return bh;
1361 }
1362 EXPORT_SYMBOL(__getblk_gfp);
1363
1364 /*
1365 * Do async read-ahead on a buffer..
1366 */
1367 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1368 {
1369 struct buffer_head *bh = __getblk(bdev, block, size);
1370 if (likely(bh)) {
1371 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1372 brelse(bh);
1373 }
1374 }
1375 EXPORT_SYMBOL(__breadahead);
1376
1377 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1378 gfp_t gfp)
1379 {
1380 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1381 if (likely(bh)) {
1382 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1383 brelse(bh);
1384 }
1385 }
1386 EXPORT_SYMBOL(__breadahead_gfp);
1387
1388 /**
1389 * __bread_gfp() - reads a specified block and returns the bh
1390 * @bdev: the block_device to read from
1391 * @block: number of block
1392 * @size: size (in bytes) to read
1393 * @gfp: page allocation flag
1394 *
1395 * Reads a specified block, and returns buffer head that contains it.
1396 * The page cache can be allocated from non-movable area
1397 * not to prevent page migration if you set gfp to zero.
1398 * It returns NULL if the block was unreadable.
1399 */
1400 struct buffer_head *
1401 __bread_gfp(struct block_device *bdev, sector_t block,
1402 unsigned size, gfp_t gfp)
1403 {
1404 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1405
1406 if (likely(bh) && !buffer_uptodate(bh))
1407 bh = __bread_slow(bh);
1408 return bh;
1409 }
1410 EXPORT_SYMBOL(__bread_gfp);
1411
1412 static void __invalidate_bh_lrus(struct bh_lru *b)
1413 {
1414 int i;
1415
1416 for (i = 0; i < BH_LRU_SIZE; i++) {
1417 brelse(b->bhs[i]);
1418 b->bhs[i] = NULL;
1419 }
1420 }
1421 /*
1422 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423 * This doesn't race because it runs in each cpu either in irq
1424 * or with preempt disabled.
1425 */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428 struct bh_lru *b = &get_cpu_var(bh_lrus);
1429
1430 __invalidate_bh_lrus(b);
1431 put_cpu_var(bh_lrus);
1432 }
1433
1434 bool has_bh_in_lru(int cpu, void *dummy)
1435 {
1436 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1437 int i;
1438
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 if (b->bhs[i])
1441 return true;
1442 }
1443
1444 return false;
1445 }
1446
1447 void invalidate_bh_lrus(void)
1448 {
1449 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1450 }
1451 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1452
1453 void invalidate_bh_lrus_cpu(int cpu)
1454 {
1455 struct bh_lru *b;
1456
1457 bh_lru_lock();
1458 b = per_cpu_ptr(&bh_lrus, cpu);
1459 __invalidate_bh_lrus(b);
1460 bh_lru_unlock();
1461 }
1462
1463 void set_bh_page(struct buffer_head *bh,
1464 struct page *page, unsigned long offset)
1465 {
1466 bh->b_page = page;
1467 BUG_ON(offset >= PAGE_SIZE);
1468 if (PageHighMem(page))
1469 /*
1470 * This catches illegal uses and preserves the offset:
1471 */
1472 bh->b_data = (char *)(0 + offset);
1473 else
1474 bh->b_data = page_address(page) + offset;
1475 }
1476 EXPORT_SYMBOL(set_bh_page);
1477
1478 /*
1479 * Called when truncating a buffer on a page completely.
1480 */
1481
1482 /* Bits that are cleared during an invalidate */
1483 #define BUFFER_FLAGS_DISCARD \
1484 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1485 1 << BH_Delay | 1 << BH_Unwritten)
1486
1487 static void discard_buffer(struct buffer_head * bh)
1488 {
1489 unsigned long b_state, b_state_old;
1490
1491 lock_buffer(bh);
1492 clear_buffer_dirty(bh);
1493 bh->b_bdev = NULL;
1494 b_state = bh->b_state;
1495 for (;;) {
1496 b_state_old = cmpxchg(&bh->b_state, b_state,
1497 (b_state & ~BUFFER_FLAGS_DISCARD));
1498 if (b_state_old == b_state)
1499 break;
1500 b_state = b_state_old;
1501 }
1502 unlock_buffer(bh);
1503 }
1504
1505 /**
1506 * block_invalidatepage - invalidate part or all of a buffer-backed page
1507 *
1508 * @page: the page which is affected
1509 * @offset: start of the range to invalidate
1510 * @length: length of the range to invalidate
1511 *
1512 * block_invalidatepage() is called when all or part of the page has become
1513 * invalidated by a truncate operation.
1514 *
1515 * block_invalidatepage() does not have to release all buffers, but it must
1516 * ensure that no dirty buffer is left outside @offset and that no I/O
1517 * is underway against any of the blocks which are outside the truncation
1518 * point. Because the caller is about to free (and possibly reuse) those
1519 * blocks on-disk.
1520 */
1521 void block_invalidatepage(struct page *page, unsigned int offset,
1522 unsigned int length)
1523 {
1524 struct buffer_head *head, *bh, *next;
1525 unsigned int curr_off = 0;
1526 unsigned int stop = length + offset;
1527
1528 BUG_ON(!PageLocked(page));
1529 if (!page_has_buffers(page))
1530 goto out;
1531
1532 /*
1533 * Check for overflow
1534 */
1535 BUG_ON(stop > PAGE_SIZE || stop < length);
1536
1537 head = page_buffers(page);
1538 bh = head;
1539 do {
1540 unsigned int next_off = curr_off + bh->b_size;
1541 next = bh->b_this_page;
1542
1543 /*
1544 * Are we still fully in range ?
1545 */
1546 if (next_off > stop)
1547 goto out;
1548
1549 /*
1550 * is this block fully invalidated?
1551 */
1552 if (offset <= curr_off)
1553 discard_buffer(bh);
1554 curr_off = next_off;
1555 bh = next;
1556 } while (bh != head);
1557
1558 /*
1559 * We release buffers only if the entire page is being invalidated.
1560 * The get_block cached value has been unconditionally invalidated,
1561 * so real IO is not possible anymore.
1562 */
1563 if (length == PAGE_SIZE)
1564 try_to_release_page(page, 0);
1565 out:
1566 return;
1567 }
1568 EXPORT_SYMBOL(block_invalidatepage);
1569
1570
1571 /*
1572 * We attach and possibly dirty the buffers atomically wrt
1573 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1574 * is already excluded via the page lock.
1575 */
1576 void create_empty_buffers(struct page *page,
1577 unsigned long blocksize, unsigned long b_state)
1578 {
1579 struct buffer_head *bh, *head, *tail;
1580
1581 head = alloc_page_buffers(page, blocksize, true);
1582 bh = head;
1583 do {
1584 bh->b_state |= b_state;
1585 tail = bh;
1586 bh = bh->b_this_page;
1587 } while (bh);
1588 tail->b_this_page = head;
1589
1590 spin_lock(&page->mapping->private_lock);
1591 if (PageUptodate(page) || PageDirty(page)) {
1592 bh = head;
1593 do {
1594 if (PageDirty(page))
1595 set_buffer_dirty(bh);
1596 if (PageUptodate(page))
1597 set_buffer_uptodate(bh);
1598 bh = bh->b_this_page;
1599 } while (bh != head);
1600 }
1601 attach_page_private(page, head);
1602 spin_unlock(&page->mapping->private_lock);
1603 }
1604 EXPORT_SYMBOL(create_empty_buffers);
1605
1606 /**
1607 * clean_bdev_aliases: clean a range of buffers in block device
1608 * @bdev: Block device to clean buffers in
1609 * @block: Start of a range of blocks to clean
1610 * @len: Number of blocks to clean
1611 *
1612 * We are taking a range of blocks for data and we don't want writeback of any
1613 * buffer-cache aliases starting from return from this function and until the
1614 * moment when something will explicitly mark the buffer dirty (hopefully that
1615 * will not happen until we will free that block ;-) We don't even need to mark
1616 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1617 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1618 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1619 * would confuse anyone who might pick it with bread() afterwards...
1620 *
1621 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1622 * writeout I/O going on against recently-freed buffers. We don't wait on that
1623 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1624 * need to. That happens here.
1625 */
1626 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1627 {
1628 struct inode *bd_inode = bdev->bd_inode;
1629 struct address_space *bd_mapping = bd_inode->i_mapping;
1630 struct pagevec pvec;
1631 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1632 pgoff_t end;
1633 int i, count;
1634 struct buffer_head *bh;
1635 struct buffer_head *head;
1636
1637 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1638 pagevec_init(&pvec);
1639 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1640 count = pagevec_count(&pvec);
1641 for (i = 0; i < count; i++) {
1642 struct page *page = pvec.pages[i];
1643
1644 if (!page_has_buffers(page))
1645 continue;
1646 /*
1647 * We use page lock instead of bd_mapping->private_lock
1648 * to pin buffers here since we can afford to sleep and
1649 * it scales better than a global spinlock lock.
1650 */
1651 lock_page(page);
1652 /* Recheck when the page is locked which pins bhs */
1653 if (!page_has_buffers(page))
1654 goto unlock_page;
1655 head = page_buffers(page);
1656 bh = head;
1657 do {
1658 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1659 goto next;
1660 if (bh->b_blocknr >= block + len)
1661 break;
1662 clear_buffer_dirty(bh);
1663 wait_on_buffer(bh);
1664 clear_buffer_req(bh);
1665 next:
1666 bh = bh->b_this_page;
1667 } while (bh != head);
1668 unlock_page:
1669 unlock_page(page);
1670 }
1671 pagevec_release(&pvec);
1672 cond_resched();
1673 /* End of range already reached? */
1674 if (index > end || !index)
1675 break;
1676 }
1677 }
1678 EXPORT_SYMBOL(clean_bdev_aliases);
1679
1680 /*
1681 * Size is a power-of-two in the range 512..PAGE_SIZE,
1682 * and the case we care about most is PAGE_SIZE.
1683 *
1684 * So this *could* possibly be written with those
1685 * constraints in mind (relevant mostly if some
1686 * architecture has a slow bit-scan instruction)
1687 */
1688 static inline int block_size_bits(unsigned int blocksize)
1689 {
1690 return ilog2(blocksize);
1691 }
1692
1693 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1694 {
1695 BUG_ON(!PageLocked(page));
1696
1697 if (!page_has_buffers(page))
1698 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1699 b_state);
1700 return page_buffers(page);
1701 }
1702
1703 /*
1704 * NOTE! All mapped/uptodate combinations are valid:
1705 *
1706 * Mapped Uptodate Meaning
1707 *
1708 * No No "unknown" - must do get_block()
1709 * No Yes "hole" - zero-filled
1710 * Yes No "allocated" - allocated on disk, not read in
1711 * Yes Yes "valid" - allocated and up-to-date in memory.
1712 *
1713 * "Dirty" is valid only with the last case (mapped+uptodate).
1714 */
1715
1716 /*
1717 * While block_write_full_page is writing back the dirty buffers under
1718 * the page lock, whoever dirtied the buffers may decide to clean them
1719 * again at any time. We handle that by only looking at the buffer
1720 * state inside lock_buffer().
1721 *
1722 * If block_write_full_page() is called for regular writeback
1723 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1724 * locked buffer. This only can happen if someone has written the buffer
1725 * directly, with submit_bh(). At the address_space level PageWriteback
1726 * prevents this contention from occurring.
1727 *
1728 * If block_write_full_page() is called with wbc->sync_mode ==
1729 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1730 * causes the writes to be flagged as synchronous writes.
1731 */
1732 int __block_write_full_page(struct inode *inode, struct page *page,
1733 get_block_t *get_block, struct writeback_control *wbc,
1734 bh_end_io_t *handler)
1735 {
1736 int err;
1737 sector_t block;
1738 sector_t last_block;
1739 struct buffer_head *bh, *head;
1740 unsigned int blocksize, bbits;
1741 int nr_underway = 0;
1742 int write_flags = wbc_to_write_flags(wbc);
1743
1744 head = create_page_buffers(page, inode,
1745 (1 << BH_Dirty)|(1 << BH_Uptodate));
1746
1747 /*
1748 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1749 * here, and the (potentially unmapped) buffers may become dirty at
1750 * any time. If a buffer becomes dirty here after we've inspected it
1751 * then we just miss that fact, and the page stays dirty.
1752 *
1753 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1754 * handle that here by just cleaning them.
1755 */
1756
1757 bh = head;
1758 blocksize = bh->b_size;
1759 bbits = block_size_bits(blocksize);
1760
1761 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1762 last_block = (i_size_read(inode) - 1) >> bbits;
1763
1764 /*
1765 * Get all the dirty buffers mapped to disk addresses and
1766 * handle any aliases from the underlying blockdev's mapping.
1767 */
1768 do {
1769 if (block > last_block) {
1770 /*
1771 * mapped buffers outside i_size will occur, because
1772 * this page can be outside i_size when there is a
1773 * truncate in progress.
1774 */
1775 /*
1776 * The buffer was zeroed by block_write_full_page()
1777 */
1778 clear_buffer_dirty(bh);
1779 set_buffer_uptodate(bh);
1780 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1781 buffer_dirty(bh)) {
1782 WARN_ON(bh->b_size != blocksize);
1783 err = get_block(inode, block, bh, 1);
1784 if (err)
1785 goto recover;
1786 clear_buffer_delay(bh);
1787 if (buffer_new(bh)) {
1788 /* blockdev mappings never come here */
1789 clear_buffer_new(bh);
1790 clean_bdev_bh_alias(bh);
1791 }
1792 }
1793 bh = bh->b_this_page;
1794 block++;
1795 } while (bh != head);
1796
1797 do {
1798 if (!buffer_mapped(bh))
1799 continue;
1800 /*
1801 * If it's a fully non-blocking write attempt and we cannot
1802 * lock the buffer then redirty the page. Note that this can
1803 * potentially cause a busy-wait loop from writeback threads
1804 * and kswapd activity, but those code paths have their own
1805 * higher-level throttling.
1806 */
1807 if (wbc->sync_mode != WB_SYNC_NONE) {
1808 lock_buffer(bh);
1809 } else if (!trylock_buffer(bh)) {
1810 redirty_page_for_writepage(wbc, page);
1811 continue;
1812 }
1813 if (test_clear_buffer_dirty(bh)) {
1814 mark_buffer_async_write_endio(bh, handler);
1815 } else {
1816 unlock_buffer(bh);
1817 }
1818 } while ((bh = bh->b_this_page) != head);
1819
1820 /*
1821 * The page and its buffers are protected by PageWriteback(), so we can
1822 * drop the bh refcounts early.
1823 */
1824 BUG_ON(PageWriteback(page));
1825 set_page_writeback(page);
1826
1827 do {
1828 struct buffer_head *next = bh->b_this_page;
1829 if (buffer_async_write(bh)) {
1830 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1831 inode->i_write_hint, wbc);
1832 nr_underway++;
1833 }
1834 bh = next;
1835 } while (bh != head);
1836 unlock_page(page);
1837
1838 err = 0;
1839 done:
1840 if (nr_underway == 0) {
1841 /*
1842 * The page was marked dirty, but the buffers were
1843 * clean. Someone wrote them back by hand with
1844 * ll_rw_block/submit_bh. A rare case.
1845 */
1846 end_page_writeback(page);
1847
1848 /*
1849 * The page and buffer_heads can be released at any time from
1850 * here on.
1851 */
1852 }
1853 return err;
1854
1855 recover:
1856 /*
1857 * ENOSPC, or some other error. We may already have added some
1858 * blocks to the file, so we need to write these out to avoid
1859 * exposing stale data.
1860 * The page is currently locked and not marked for writeback
1861 */
1862 bh = head;
1863 /* Recovery: lock and submit the mapped buffers */
1864 do {
1865 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1866 !buffer_delay(bh)) {
1867 lock_buffer(bh);
1868 mark_buffer_async_write_endio(bh, handler);
1869 } else {
1870 /*
1871 * The buffer may have been set dirty during
1872 * attachment to a dirty page.
1873 */
1874 clear_buffer_dirty(bh);
1875 }
1876 } while ((bh = bh->b_this_page) != head);
1877 SetPageError(page);
1878 BUG_ON(PageWriteback(page));
1879 mapping_set_error(page->mapping, err);
1880 set_page_writeback(page);
1881 do {
1882 struct buffer_head *next = bh->b_this_page;
1883 if (buffer_async_write(bh)) {
1884 clear_buffer_dirty(bh);
1885 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1886 inode->i_write_hint, wbc);
1887 nr_underway++;
1888 }
1889 bh = next;
1890 } while (bh != head);
1891 unlock_page(page);
1892 goto done;
1893 }
1894 EXPORT_SYMBOL(__block_write_full_page);
1895
1896 /*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902 {
1903 unsigned int block_start, block_end;
1904 struct buffer_head *head, *bh;
1905
1906 BUG_ON(!PageLocked(page));
1907 if (!page_has_buffers(page))
1908 return;
1909
1910 bh = head = page_buffers(page);
1911 block_start = 0;
1912 do {
1913 block_end = block_start + bh->b_size;
1914
1915 if (buffer_new(bh)) {
1916 if (block_end > from && block_start < to) {
1917 if (!PageUptodate(page)) {
1918 unsigned start, size;
1919
1920 start = max(from, block_start);
1921 size = min(to, block_end) - start;
1922
1923 zero_user(page, start, size);
1924 set_buffer_uptodate(bh);
1925 }
1926
1927 clear_buffer_new(bh);
1928 mark_buffer_dirty(bh);
1929 }
1930 }
1931
1932 block_start = block_end;
1933 bh = bh->b_this_page;
1934 } while (bh != head);
1935 }
1936 EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938 static void
1939 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940 struct iomap *iomap)
1941 {
1942 loff_t offset = block << inode->i_blkbits;
1943
1944 bh->b_bdev = iomap->bdev;
1945
1946 /*
1947 * Block points to offset in file we need to map, iomap contains
1948 * the offset at which the map starts. If the map ends before the
1949 * current block, then do not map the buffer and let the caller
1950 * handle it.
1951 */
1952 BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954 switch (iomap->type) {
1955 case IOMAP_HOLE:
1956 /*
1957 * If the buffer is not up to date or beyond the current EOF,
1958 * we need to mark it as new to ensure sub-block zeroing is
1959 * executed if necessary.
1960 */
1961 if (!buffer_uptodate(bh) ||
1962 (offset >= i_size_read(inode)))
1963 set_buffer_new(bh);
1964 break;
1965 case IOMAP_DELALLOC:
1966 if (!buffer_uptodate(bh) ||
1967 (offset >= i_size_read(inode)))
1968 set_buffer_new(bh);
1969 set_buffer_uptodate(bh);
1970 set_buffer_mapped(bh);
1971 set_buffer_delay(bh);
1972 break;
1973 case IOMAP_UNWRITTEN:
1974 /*
1975 * For unwritten regions, we always need to ensure that regions
1976 * in the block we are not writing to are zeroed. Mark the
1977 * buffer as new to ensure this.
1978 */
1979 set_buffer_new(bh);
1980 set_buffer_unwritten(bh);
1981 fallthrough;
1982 case IOMAP_MAPPED:
1983 if ((iomap->flags & IOMAP_F_NEW) ||
1984 offset >= i_size_read(inode))
1985 set_buffer_new(bh);
1986 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1987 inode->i_blkbits;
1988 set_buffer_mapped(bh);
1989 break;
1990 }
1991 }
1992
1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1994 get_block_t *get_block, struct iomap *iomap)
1995 {
1996 unsigned from = pos & (PAGE_SIZE - 1);
1997 unsigned to = from + len;
1998 struct inode *inode = page->mapping->host;
1999 unsigned block_start, block_end;
2000 sector_t block;
2001 int err = 0;
2002 unsigned blocksize, bbits;
2003 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2004
2005 BUG_ON(!PageLocked(page));
2006 BUG_ON(from > PAGE_SIZE);
2007 BUG_ON(to > PAGE_SIZE);
2008 BUG_ON(from > to);
2009
2010 head = create_page_buffers(page, inode, 0);
2011 blocksize = head->b_size;
2012 bbits = block_size_bits(blocksize);
2013
2014 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2015
2016 for(bh = head, block_start = 0; bh != head || !block_start;
2017 block++, block_start=block_end, bh = bh->b_this_page) {
2018 block_end = block_start + blocksize;
2019 if (block_end <= from || block_start >= to) {
2020 if (PageUptodate(page)) {
2021 if (!buffer_uptodate(bh))
2022 set_buffer_uptodate(bh);
2023 }
2024 continue;
2025 }
2026 if (buffer_new(bh))
2027 clear_buffer_new(bh);
2028 if (!buffer_mapped(bh)) {
2029 WARN_ON(bh->b_size != blocksize);
2030 if (get_block) {
2031 err = get_block(inode, block, bh, 1);
2032 if (err)
2033 break;
2034 } else {
2035 iomap_to_bh(inode, block, bh, iomap);
2036 }
2037
2038 if (buffer_new(bh)) {
2039 clean_bdev_bh_alias(bh);
2040 if (PageUptodate(page)) {
2041 clear_buffer_new(bh);
2042 set_buffer_uptodate(bh);
2043 mark_buffer_dirty(bh);
2044 continue;
2045 }
2046 if (block_end > to || block_start < from)
2047 zero_user_segments(page,
2048 to, block_end,
2049 block_start, from);
2050 continue;
2051 }
2052 }
2053 if (PageUptodate(page)) {
2054 if (!buffer_uptodate(bh))
2055 set_buffer_uptodate(bh);
2056 continue;
2057 }
2058 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2059 !buffer_unwritten(bh) &&
2060 (block_start < from || block_end > to)) {
2061 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2062 *wait_bh++=bh;
2063 }
2064 }
2065 /*
2066 * If we issued read requests - let them complete.
2067 */
2068 while(wait_bh > wait) {
2069 wait_on_buffer(*--wait_bh);
2070 if (!buffer_uptodate(*wait_bh))
2071 err = -EIO;
2072 }
2073 if (unlikely(err))
2074 page_zero_new_buffers(page, from, to);
2075 return err;
2076 }
2077
2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2079 get_block_t *get_block)
2080 {
2081 return __block_write_begin_int(page, pos, len, get_block, NULL);
2082 }
2083 EXPORT_SYMBOL(__block_write_begin);
2084
2085 static int __block_commit_write(struct inode *inode, struct page *page,
2086 unsigned from, unsigned to)
2087 {
2088 unsigned block_start, block_end;
2089 int partial = 0;
2090 unsigned blocksize;
2091 struct buffer_head *bh, *head;
2092
2093 bh = head = page_buffers(page);
2094 blocksize = bh->b_size;
2095
2096 block_start = 0;
2097 do {
2098 block_end = block_start + blocksize;
2099 if (block_end <= from || block_start >= to) {
2100 if (!buffer_uptodate(bh))
2101 partial = 1;
2102 } else {
2103 set_buffer_uptodate(bh);
2104 mark_buffer_dirty(bh);
2105 }
2106 if (buffer_new(bh))
2107 clear_buffer_new(bh);
2108
2109 block_start = block_end;
2110 bh = bh->b_this_page;
2111 } while (bh != head);
2112
2113 /*
2114 * If this is a partial write which happened to make all buffers
2115 * uptodate then we can optimize away a bogus readpage() for
2116 * the next read(). Here we 'discover' whether the page went
2117 * uptodate as a result of this (potentially partial) write.
2118 */
2119 if (!partial)
2120 SetPageUptodate(page);
2121 return 0;
2122 }
2123
2124 /*
2125 * block_write_begin takes care of the basic task of block allocation and
2126 * bringing partial write blocks uptodate first.
2127 *
2128 * The filesystem needs to handle block truncation upon failure.
2129 */
2130 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2131 unsigned flags, struct page **pagep, get_block_t *get_block)
2132 {
2133 pgoff_t index = pos >> PAGE_SHIFT;
2134 struct page *page;
2135 int status;
2136
2137 page = grab_cache_page_write_begin(mapping, index, flags);
2138 if (!page)
2139 return -ENOMEM;
2140
2141 status = __block_write_begin(page, pos, len, get_block);
2142 if (unlikely(status)) {
2143 unlock_page(page);
2144 put_page(page);
2145 page = NULL;
2146 }
2147
2148 *pagep = page;
2149 return status;
2150 }
2151 EXPORT_SYMBOL(block_write_begin);
2152
2153 int block_write_end(struct file *file, struct address_space *mapping,
2154 loff_t pos, unsigned len, unsigned copied,
2155 struct page *page, void *fsdata)
2156 {
2157 struct inode *inode = mapping->host;
2158 unsigned start;
2159
2160 start = pos & (PAGE_SIZE - 1);
2161
2162 if (unlikely(copied < len)) {
2163 /*
2164 * The buffers that were written will now be uptodate, so we
2165 * don't have to worry about a readpage reading them and
2166 * overwriting a partial write. However if we have encountered
2167 * a short write and only partially written into a buffer, it
2168 * will not be marked uptodate, so a readpage might come in and
2169 * destroy our partial write.
2170 *
2171 * Do the simplest thing, and just treat any short write to a
2172 * non uptodate page as a zero-length write, and force the
2173 * caller to redo the whole thing.
2174 */
2175 if (!PageUptodate(page))
2176 copied = 0;
2177
2178 page_zero_new_buffers(page, start+copied, start+len);
2179 }
2180 flush_dcache_page(page);
2181
2182 /* This could be a short (even 0-length) commit */
2183 __block_commit_write(inode, page, start, start+copied);
2184
2185 return copied;
2186 }
2187 EXPORT_SYMBOL(block_write_end);
2188
2189 int generic_write_end(struct file *file, struct address_space *mapping,
2190 loff_t pos, unsigned len, unsigned copied,
2191 struct page *page, void *fsdata)
2192 {
2193 struct inode *inode = mapping->host;
2194 loff_t old_size = inode->i_size;
2195 bool i_size_changed = false;
2196
2197 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2198
2199 /*
2200 * No need to use i_size_read() here, the i_size cannot change under us
2201 * because we hold i_rwsem.
2202 *
2203 * But it's important to update i_size while still holding page lock:
2204 * page writeout could otherwise come in and zero beyond i_size.
2205 */
2206 if (pos + copied > inode->i_size) {
2207 i_size_write(inode, pos + copied);
2208 i_size_changed = true;
2209 }
2210
2211 unlock_page(page);
2212 put_page(page);
2213
2214 if (old_size < pos)
2215 pagecache_isize_extended(inode, old_size, pos);
2216 /*
2217 * Don't mark the inode dirty under page lock. First, it unnecessarily
2218 * makes the holding time of page lock longer. Second, it forces lock
2219 * ordering of page lock and transaction start for journaling
2220 * filesystems.
2221 */
2222 if (i_size_changed)
2223 mark_inode_dirty(inode);
2224 return copied;
2225 }
2226 EXPORT_SYMBOL(generic_write_end);
2227
2228 /*
2229 * block_is_partially_uptodate checks whether buffers within a page are
2230 * uptodate or not.
2231 *
2232 * Returns true if all buffers which correspond to a file portion
2233 * we want to read are uptodate.
2234 */
2235 int block_is_partially_uptodate(struct page *page, unsigned long from,
2236 unsigned long count)
2237 {
2238 unsigned block_start, block_end, blocksize;
2239 unsigned to;
2240 struct buffer_head *bh, *head;
2241 int ret = 1;
2242
2243 if (!page_has_buffers(page))
2244 return 0;
2245
2246 head = page_buffers(page);
2247 blocksize = head->b_size;
2248 to = min_t(unsigned, PAGE_SIZE - from, count);
2249 to = from + to;
2250 if (from < blocksize && to > PAGE_SIZE - blocksize)
2251 return 0;
2252
2253 bh = head;
2254 block_start = 0;
2255 do {
2256 block_end = block_start + blocksize;
2257 if (block_end > from && block_start < to) {
2258 if (!buffer_uptodate(bh)) {
2259 ret = 0;
2260 break;
2261 }
2262 if (block_end >= to)
2263 break;
2264 }
2265 block_start = block_end;
2266 bh = bh->b_this_page;
2267 } while (bh != head);
2268
2269 return ret;
2270 }
2271 EXPORT_SYMBOL(block_is_partially_uptodate);
2272
2273 /*
2274 * Generic "read page" function for block devices that have the normal
2275 * get_block functionality. This is most of the block device filesystems.
2276 * Reads the page asynchronously --- the unlock_buffer() and
2277 * set/clear_buffer_uptodate() functions propagate buffer state into the
2278 * page struct once IO has completed.
2279 */
2280 int block_read_full_page(struct page *page, get_block_t *get_block)
2281 {
2282 struct inode *inode = page->mapping->host;
2283 sector_t iblock, lblock;
2284 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2285 unsigned int blocksize, bbits;
2286 int nr, i;
2287 int fully_mapped = 1;
2288
2289 head = create_page_buffers(page, inode, 0);
2290 blocksize = head->b_size;
2291 bbits = block_size_bits(blocksize);
2292
2293 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2294 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2295 bh = head;
2296 nr = 0;
2297 i = 0;
2298
2299 do {
2300 if (buffer_uptodate(bh))
2301 continue;
2302
2303 if (!buffer_mapped(bh)) {
2304 int err = 0;
2305
2306 fully_mapped = 0;
2307 if (iblock < lblock) {
2308 WARN_ON(bh->b_size != blocksize);
2309 err = get_block(inode, iblock, bh, 0);
2310 if (err)
2311 SetPageError(page);
2312 }
2313 if (!buffer_mapped(bh)) {
2314 zero_user(page, i * blocksize, blocksize);
2315 if (!err)
2316 set_buffer_uptodate(bh);
2317 continue;
2318 }
2319 /*
2320 * get_block() might have updated the buffer
2321 * synchronously
2322 */
2323 if (buffer_uptodate(bh))
2324 continue;
2325 }
2326 arr[nr++] = bh;
2327 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2328
2329 if (fully_mapped)
2330 SetPageMappedToDisk(page);
2331
2332 if (!nr) {
2333 /*
2334 * All buffers are uptodate - we can set the page uptodate
2335 * as well. But not if get_block() returned an error.
2336 */
2337 if (!PageError(page))
2338 SetPageUptodate(page);
2339 unlock_page(page);
2340 return 0;
2341 }
2342
2343 /* Stage two: lock the buffers */
2344 for (i = 0; i < nr; i++) {
2345 bh = arr[i];
2346 lock_buffer(bh);
2347 mark_buffer_async_read(bh);
2348 }
2349
2350 /*
2351 * Stage 3: start the IO. Check for uptodateness
2352 * inside the buffer lock in case another process reading
2353 * the underlying blockdev brought it uptodate (the sct fix).
2354 */
2355 for (i = 0; i < nr; i++) {
2356 bh = arr[i];
2357 if (buffer_uptodate(bh))
2358 end_buffer_async_read(bh, 1);
2359 else
2360 submit_bh(REQ_OP_READ, 0, bh);
2361 }
2362 return 0;
2363 }
2364 EXPORT_SYMBOL(block_read_full_page);
2365
2366 /* utility function for filesystems that need to do work on expanding
2367 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2368 * deal with the hole.
2369 */
2370 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2371 {
2372 struct address_space *mapping = inode->i_mapping;
2373 struct page *page;
2374 void *fsdata;
2375 int err;
2376
2377 err = inode_newsize_ok(inode, size);
2378 if (err)
2379 goto out;
2380
2381 err = pagecache_write_begin(NULL, mapping, size, 0,
2382 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2383 if (err)
2384 goto out;
2385
2386 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387 BUG_ON(err > 0);
2388
2389 out:
2390 return err;
2391 }
2392 EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395 loff_t pos, loff_t *bytes)
2396 {
2397 struct inode *inode = mapping->host;
2398 unsigned int blocksize = i_blocksize(inode);
2399 struct page *page;
2400 void *fsdata;
2401 pgoff_t index, curidx;
2402 loff_t curpos;
2403 unsigned zerofrom, offset, len;
2404 int err = 0;
2405
2406 index = pos >> PAGE_SHIFT;
2407 offset = pos & ~PAGE_MASK;
2408
2409 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410 zerofrom = curpos & ~PAGE_MASK;
2411 if (zerofrom & (blocksize-1)) {
2412 *bytes |= (blocksize-1);
2413 (*bytes)++;
2414 }
2415 len = PAGE_SIZE - zerofrom;
2416
2417 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2418 &page, &fsdata);
2419 if (err)
2420 goto out;
2421 zero_user(page, zerofrom, len);
2422 err = pagecache_write_end(file, mapping, curpos, len, len,
2423 page, fsdata);
2424 if (err < 0)
2425 goto out;
2426 BUG_ON(err != len);
2427 err = 0;
2428
2429 balance_dirty_pages_ratelimited(mapping);
2430
2431 if (fatal_signal_pending(current)) {
2432 err = -EINTR;
2433 goto out;
2434 }
2435 }
2436
2437 /* page covers the boundary, find the boundary offset */
2438 if (index == curidx) {
2439 zerofrom = curpos & ~PAGE_MASK;
2440 /* if we will expand the thing last block will be filled */
2441 if (offset <= zerofrom) {
2442 goto out;
2443 }
2444 if (zerofrom & (blocksize-1)) {
2445 *bytes |= (blocksize-1);
2446 (*bytes)++;
2447 }
2448 len = offset - zerofrom;
2449
2450 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2451 &page, &fsdata);
2452 if (err)
2453 goto out;
2454 zero_user(page, zerofrom, len);
2455 err = pagecache_write_end(file, mapping, curpos, len, len,
2456 page, fsdata);
2457 if (err < 0)
2458 goto out;
2459 BUG_ON(err != len);
2460 err = 0;
2461 }
2462 out:
2463 return err;
2464 }
2465
2466 /*
2467 * For moronic filesystems that do not allow holes in file.
2468 * We may have to extend the file.
2469 */
2470 int cont_write_begin(struct file *file, struct address_space *mapping,
2471 loff_t pos, unsigned len, unsigned flags,
2472 struct page **pagep, void **fsdata,
2473 get_block_t *get_block, loff_t *bytes)
2474 {
2475 struct inode *inode = mapping->host;
2476 unsigned int blocksize = i_blocksize(inode);
2477 unsigned int zerofrom;
2478 int err;
2479
2480 err = cont_expand_zero(file, mapping, pos, bytes);
2481 if (err)
2482 return err;
2483
2484 zerofrom = *bytes & ~PAGE_MASK;
2485 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2486 *bytes |= (blocksize-1);
2487 (*bytes)++;
2488 }
2489
2490 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2491 }
2492 EXPORT_SYMBOL(cont_write_begin);
2493
2494 int block_commit_write(struct page *page, unsigned from, unsigned to)
2495 {
2496 struct inode *inode = page->mapping->host;
2497 __block_commit_write(inode,page,from,to);
2498 return 0;
2499 }
2500 EXPORT_SYMBOL(block_commit_write);
2501
2502 /*
2503 * block_page_mkwrite() is not allowed to change the file size as it gets
2504 * called from a page fault handler when a page is first dirtied. Hence we must
2505 * be careful to check for EOF conditions here. We set the page up correctly
2506 * for a written page which means we get ENOSPC checking when writing into
2507 * holes and correct delalloc and unwritten extent mapping on filesystems that
2508 * support these features.
2509 *
2510 * We are not allowed to take the i_mutex here so we have to play games to
2511 * protect against truncate races as the page could now be beyond EOF. Because
2512 * truncate writes the inode size before removing pages, once we have the
2513 * page lock we can determine safely if the page is beyond EOF. If it is not
2514 * beyond EOF, then the page is guaranteed safe against truncation until we
2515 * unlock the page.
2516 *
2517 * Direct callers of this function should protect against filesystem freezing
2518 * using sb_start_pagefault() - sb_end_pagefault() functions.
2519 */
2520 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2521 get_block_t get_block)
2522 {
2523 struct page *page = vmf->page;
2524 struct inode *inode = file_inode(vma->vm_file);
2525 unsigned long end;
2526 loff_t size;
2527 int ret;
2528
2529 lock_page(page);
2530 size = i_size_read(inode);
2531 if ((page->mapping != inode->i_mapping) ||
2532 (page_offset(page) > size)) {
2533 /* We overload EFAULT to mean page got truncated */
2534 ret = -EFAULT;
2535 goto out_unlock;
2536 }
2537
2538 /* page is wholly or partially inside EOF */
2539 if (((page->index + 1) << PAGE_SHIFT) > size)
2540 end = size & ~PAGE_MASK;
2541 else
2542 end = PAGE_SIZE;
2543
2544 ret = __block_write_begin(page, 0, end, get_block);
2545 if (!ret)
2546 ret = block_commit_write(page, 0, end);
2547
2548 if (unlikely(ret < 0))
2549 goto out_unlock;
2550 set_page_dirty(page);
2551 wait_for_stable_page(page);
2552 return 0;
2553 out_unlock:
2554 unlock_page(page);
2555 return ret;
2556 }
2557 EXPORT_SYMBOL(block_page_mkwrite);
2558
2559 /*
2560 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2561 * immediately, while under the page lock. So it needs a special end_io
2562 * handler which does not touch the bh after unlocking it.
2563 */
2564 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2565 {
2566 __end_buffer_read_notouch(bh, uptodate);
2567 }
2568
2569 /*
2570 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2571 * the page (converting it to circular linked list and taking care of page
2572 * dirty races).
2573 */
2574 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2575 {
2576 struct buffer_head *bh;
2577
2578 BUG_ON(!PageLocked(page));
2579
2580 spin_lock(&page->mapping->private_lock);
2581 bh = head;
2582 do {
2583 if (PageDirty(page))
2584 set_buffer_dirty(bh);
2585 if (!bh->b_this_page)
2586 bh->b_this_page = head;
2587 bh = bh->b_this_page;
2588 } while (bh != head);
2589 attach_page_private(page, head);
2590 spin_unlock(&page->mapping->private_lock);
2591 }
2592
2593 /*
2594 * On entry, the page is fully not uptodate.
2595 * On exit the page is fully uptodate in the areas outside (from,to)
2596 * The filesystem needs to handle block truncation upon failure.
2597 */
2598 int nobh_write_begin(struct address_space *mapping,
2599 loff_t pos, unsigned len, unsigned flags,
2600 struct page **pagep, void **fsdata,
2601 get_block_t *get_block)
2602 {
2603 struct inode *inode = mapping->host;
2604 const unsigned blkbits = inode->i_blkbits;
2605 const unsigned blocksize = 1 << blkbits;
2606 struct buffer_head *head, *bh;
2607 struct page *page;
2608 pgoff_t index;
2609 unsigned from, to;
2610 unsigned block_in_page;
2611 unsigned block_start, block_end;
2612 sector_t block_in_file;
2613 int nr_reads = 0;
2614 int ret = 0;
2615 int is_mapped_to_disk = 1;
2616
2617 index = pos >> PAGE_SHIFT;
2618 from = pos & (PAGE_SIZE - 1);
2619 to = from + len;
2620
2621 page = grab_cache_page_write_begin(mapping, index, flags);
2622 if (!page)
2623 return -ENOMEM;
2624 *pagep = page;
2625 *fsdata = NULL;
2626
2627 if (page_has_buffers(page)) {
2628 ret = __block_write_begin(page, pos, len, get_block);
2629 if (unlikely(ret))
2630 goto out_release;
2631 return ret;
2632 }
2633
2634 if (PageMappedToDisk(page))
2635 return 0;
2636
2637 /*
2638 * Allocate buffers so that we can keep track of state, and potentially
2639 * attach them to the page if an error occurs. In the common case of
2640 * no error, they will just be freed again without ever being attached
2641 * to the page (which is all OK, because we're under the page lock).
2642 *
2643 * Be careful: the buffer linked list is a NULL terminated one, rather
2644 * than the circular one we're used to.
2645 */
2646 head = alloc_page_buffers(page, blocksize, false);
2647 if (!head) {
2648 ret = -ENOMEM;
2649 goto out_release;
2650 }
2651
2652 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2653
2654 /*
2655 * We loop across all blocks in the page, whether or not they are
2656 * part of the affected region. This is so we can discover if the
2657 * page is fully mapped-to-disk.
2658 */
2659 for (block_start = 0, block_in_page = 0, bh = head;
2660 block_start < PAGE_SIZE;
2661 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2662 int create;
2663
2664 block_end = block_start + blocksize;
2665 bh->b_state = 0;
2666 create = 1;
2667 if (block_start >= to)
2668 create = 0;
2669 ret = get_block(inode, block_in_file + block_in_page,
2670 bh, create);
2671 if (ret)
2672 goto failed;
2673 if (!buffer_mapped(bh))
2674 is_mapped_to_disk = 0;
2675 if (buffer_new(bh))
2676 clean_bdev_bh_alias(bh);
2677 if (PageUptodate(page)) {
2678 set_buffer_uptodate(bh);
2679 continue;
2680 }
2681 if (buffer_new(bh) || !buffer_mapped(bh)) {
2682 zero_user_segments(page, block_start, from,
2683 to, block_end);
2684 continue;
2685 }
2686 if (buffer_uptodate(bh))
2687 continue; /* reiserfs does this */
2688 if (block_start < from || block_end > to) {
2689 lock_buffer(bh);
2690 bh->b_end_io = end_buffer_read_nobh;
2691 submit_bh(REQ_OP_READ, 0, bh);
2692 nr_reads++;
2693 }
2694 }
2695
2696 if (nr_reads) {
2697 /*
2698 * The page is locked, so these buffers are protected from
2699 * any VM or truncate activity. Hence we don't need to care
2700 * for the buffer_head refcounts.
2701 */
2702 for (bh = head; bh; bh = bh->b_this_page) {
2703 wait_on_buffer(bh);
2704 if (!buffer_uptodate(bh))
2705 ret = -EIO;
2706 }
2707 if (ret)
2708 goto failed;
2709 }
2710
2711 if (is_mapped_to_disk)
2712 SetPageMappedToDisk(page);
2713
2714 *fsdata = head; /* to be released by nobh_write_end */
2715
2716 return 0;
2717
2718 failed:
2719 BUG_ON(!ret);
2720 /*
2721 * Error recovery is a bit difficult. We need to zero out blocks that
2722 * were newly allocated, and dirty them to ensure they get written out.
2723 * Buffers need to be attached to the page at this point, otherwise
2724 * the handling of potential IO errors during writeout would be hard
2725 * (could try doing synchronous writeout, but what if that fails too?)
2726 */
2727 attach_nobh_buffers(page, head);
2728 page_zero_new_buffers(page, from, to);
2729
2730 out_release:
2731 unlock_page(page);
2732 put_page(page);
2733 *pagep = NULL;
2734
2735 return ret;
2736 }
2737 EXPORT_SYMBOL(nobh_write_begin);
2738
2739 int nobh_write_end(struct file *file, struct address_space *mapping,
2740 loff_t pos, unsigned len, unsigned copied,
2741 struct page *page, void *fsdata)
2742 {
2743 struct inode *inode = page->mapping->host;
2744 struct buffer_head *head = fsdata;
2745 struct buffer_head *bh;
2746 BUG_ON(fsdata != NULL && page_has_buffers(page));
2747
2748 if (unlikely(copied < len) && head)
2749 attach_nobh_buffers(page, head);
2750 if (page_has_buffers(page))
2751 return generic_write_end(file, mapping, pos, len,
2752 copied, page, fsdata);
2753
2754 SetPageUptodate(page);
2755 set_page_dirty(page);
2756 if (pos+copied > inode->i_size) {
2757 i_size_write(inode, pos+copied);
2758 mark_inode_dirty(inode);
2759 }
2760
2761 unlock_page(page);
2762 put_page(page);
2763
2764 while (head) {
2765 bh = head;
2766 head = head->b_this_page;
2767 free_buffer_head(bh);
2768 }
2769
2770 return copied;
2771 }
2772 EXPORT_SYMBOL(nobh_write_end);
2773
2774 /*
2775 * nobh_writepage() - based on block_full_write_page() except
2776 * that it tries to operate without attaching bufferheads to
2777 * the page.
2778 */
2779 int nobh_writepage(struct page *page, get_block_t *get_block,
2780 struct writeback_control *wbc)
2781 {
2782 struct inode * const inode = page->mapping->host;
2783 loff_t i_size = i_size_read(inode);
2784 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2785 unsigned offset;
2786 int ret;
2787
2788 /* Is the page fully inside i_size? */
2789 if (page->index < end_index)
2790 goto out;
2791
2792 /* Is the page fully outside i_size? (truncate in progress) */
2793 offset = i_size & (PAGE_SIZE-1);
2794 if (page->index >= end_index+1 || !offset) {
2795 unlock_page(page);
2796 return 0; /* don't care */
2797 }
2798
2799 /*
2800 * The page straddles i_size. It must be zeroed out on each and every
2801 * writepage invocation because it may be mmapped. "A file is mapped
2802 * in multiples of the page size. For a file that is not a multiple of
2803 * the page size, the remaining memory is zeroed when mapped, and
2804 * writes to that region are not written out to the file."
2805 */
2806 zero_user_segment(page, offset, PAGE_SIZE);
2807 out:
2808 ret = mpage_writepage(page, get_block, wbc);
2809 if (ret == -EAGAIN)
2810 ret = __block_write_full_page(inode, page, get_block, wbc,
2811 end_buffer_async_write);
2812 return ret;
2813 }
2814 EXPORT_SYMBOL(nobh_writepage);
2815
2816 int nobh_truncate_page(struct address_space *mapping,
2817 loff_t from, get_block_t *get_block)
2818 {
2819 pgoff_t index = from >> PAGE_SHIFT;
2820 unsigned offset = from & (PAGE_SIZE-1);
2821 unsigned blocksize;
2822 sector_t iblock;
2823 unsigned length, pos;
2824 struct inode *inode = mapping->host;
2825 struct page *page;
2826 struct buffer_head map_bh;
2827 int err;
2828
2829 blocksize = i_blocksize(inode);
2830 length = offset & (blocksize - 1);
2831
2832 /* Block boundary? Nothing to do */
2833 if (!length)
2834 return 0;
2835
2836 length = blocksize - length;
2837 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2838
2839 page = grab_cache_page(mapping, index);
2840 err = -ENOMEM;
2841 if (!page)
2842 goto out;
2843
2844 if (page_has_buffers(page)) {
2845 has_buffers:
2846 unlock_page(page);
2847 put_page(page);
2848 return block_truncate_page(mapping, from, get_block);
2849 }
2850
2851 /* Find the buffer that contains "offset" */
2852 pos = blocksize;
2853 while (offset >= pos) {
2854 iblock++;
2855 pos += blocksize;
2856 }
2857
2858 map_bh.b_size = blocksize;
2859 map_bh.b_state = 0;
2860 err = get_block(inode, iblock, &map_bh, 0);
2861 if (err)
2862 goto unlock;
2863 /* unmapped? It's a hole - nothing to do */
2864 if (!buffer_mapped(&map_bh))
2865 goto unlock;
2866
2867 /* Ok, it's mapped. Make sure it's up-to-date */
2868 if (!PageUptodate(page)) {
2869 err = mapping->a_ops->readpage(NULL, page);
2870 if (err) {
2871 put_page(page);
2872 goto out;
2873 }
2874 lock_page(page);
2875 if (!PageUptodate(page)) {
2876 err = -EIO;
2877 goto unlock;
2878 }
2879 if (page_has_buffers(page))
2880 goto has_buffers;
2881 }
2882 zero_user(page, offset, length);
2883 set_page_dirty(page);
2884 err = 0;
2885
2886 unlock:
2887 unlock_page(page);
2888 put_page(page);
2889 out:
2890 return err;
2891 }
2892 EXPORT_SYMBOL(nobh_truncate_page);
2893
2894 int block_truncate_page(struct address_space *mapping,
2895 loff_t from, get_block_t *get_block)
2896 {
2897 pgoff_t index = from >> PAGE_SHIFT;
2898 unsigned offset = from & (PAGE_SIZE-1);
2899 unsigned blocksize;
2900 sector_t iblock;
2901 unsigned length, pos;
2902 struct inode *inode = mapping->host;
2903 struct page *page;
2904 struct buffer_head *bh;
2905 int err;
2906
2907 blocksize = i_blocksize(inode);
2908 length = offset & (blocksize - 1);
2909
2910 /* Block boundary? Nothing to do */
2911 if (!length)
2912 return 0;
2913
2914 length = blocksize - length;
2915 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2916
2917 page = grab_cache_page(mapping, index);
2918 err = -ENOMEM;
2919 if (!page)
2920 goto out;
2921
2922 if (!page_has_buffers(page))
2923 create_empty_buffers(page, blocksize, 0);
2924
2925 /* Find the buffer that contains "offset" */
2926 bh = page_buffers(page);
2927 pos = blocksize;
2928 while (offset >= pos) {
2929 bh = bh->b_this_page;
2930 iblock++;
2931 pos += blocksize;
2932 }
2933
2934 err = 0;
2935 if (!buffer_mapped(bh)) {
2936 WARN_ON(bh->b_size != blocksize);
2937 err = get_block(inode, iblock, bh, 0);
2938 if (err)
2939 goto unlock;
2940 /* unmapped? It's a hole - nothing to do */
2941 if (!buffer_mapped(bh))
2942 goto unlock;
2943 }
2944
2945 /* Ok, it's mapped. Make sure it's up-to-date */
2946 if (PageUptodate(page))
2947 set_buffer_uptodate(bh);
2948
2949 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2950 err = -EIO;
2951 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2952 wait_on_buffer(bh);
2953 /* Uhhuh. Read error. Complain and punt. */
2954 if (!buffer_uptodate(bh))
2955 goto unlock;
2956 }
2957
2958 zero_user(page, offset, length);
2959 mark_buffer_dirty(bh);
2960 err = 0;
2961
2962 unlock:
2963 unlock_page(page);
2964 put_page(page);
2965 out:
2966 return err;
2967 }
2968 EXPORT_SYMBOL(block_truncate_page);
2969
2970 /*
2971 * The generic ->writepage function for buffer-backed address_spaces
2972 */
2973 int block_write_full_page(struct page *page, get_block_t *get_block,
2974 struct writeback_control *wbc)
2975 {
2976 struct inode * const inode = page->mapping->host;
2977 loff_t i_size = i_size_read(inode);
2978 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2979 unsigned offset;
2980
2981 /* Is the page fully inside i_size? */
2982 if (page->index < end_index)
2983 return __block_write_full_page(inode, page, get_block, wbc,
2984 end_buffer_async_write);
2985
2986 /* Is the page fully outside i_size? (truncate in progress) */
2987 offset = i_size & (PAGE_SIZE-1);
2988 if (page->index >= end_index+1 || !offset) {
2989 unlock_page(page);
2990 return 0; /* don't care */
2991 }
2992
2993 /*
2994 * The page straddles i_size. It must be zeroed out on each and every
2995 * writepage invocation because it may be mmapped. "A file is mapped
2996 * in multiples of the page size. For a file that is not a multiple of
2997 * the page size, the remaining memory is zeroed when mapped, and
2998 * writes to that region are not written out to the file."
2999 */
3000 zero_user_segment(page, offset, PAGE_SIZE);
3001 return __block_write_full_page(inode, page, get_block, wbc,
3002 end_buffer_async_write);
3003 }
3004 EXPORT_SYMBOL(block_write_full_page);
3005
3006 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3007 get_block_t *get_block)
3008 {
3009 struct inode *inode = mapping->host;
3010 struct buffer_head tmp = {
3011 .b_size = i_blocksize(inode),
3012 };
3013
3014 get_block(inode, block, &tmp, 0);
3015 return tmp.b_blocknr;
3016 }
3017 EXPORT_SYMBOL(generic_block_bmap);
3018
3019 static void end_bio_bh_io_sync(struct bio *bio)
3020 {
3021 struct buffer_head *bh = bio->bi_private;
3022
3023 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3024 set_bit(BH_Quiet, &bh->b_state);
3025
3026 bh->b_end_io(bh, !bio->bi_status);
3027 bio_put(bio);
3028 }
3029
3030 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3031 enum rw_hint write_hint, struct writeback_control *wbc)
3032 {
3033 struct bio *bio;
3034
3035 BUG_ON(!buffer_locked(bh));
3036 BUG_ON(!buffer_mapped(bh));
3037 BUG_ON(!bh->b_end_io);
3038 BUG_ON(buffer_delay(bh));
3039 BUG_ON(buffer_unwritten(bh));
3040
3041 /*
3042 * Only clear out a write error when rewriting
3043 */
3044 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3045 clear_buffer_write_io_error(bh);
3046
3047 bio = bio_alloc(GFP_NOIO, 1);
3048
3049 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3050
3051 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3052 bio_set_dev(bio, bh->b_bdev);
3053 bio->bi_write_hint = write_hint;
3054
3055 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3056 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3057
3058 bio->bi_end_io = end_bio_bh_io_sync;
3059 bio->bi_private = bh;
3060
3061 if (buffer_meta(bh))
3062 op_flags |= REQ_META;
3063 if (buffer_prio(bh))
3064 op_flags |= REQ_PRIO;
3065 bio_set_op_attrs(bio, op, op_flags);
3066
3067 /* Take care of bh's that straddle the end of the device */
3068 guard_bio_eod(bio);
3069
3070 if (wbc) {
3071 wbc_init_bio(wbc, bio);
3072 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3073 }
3074
3075 submit_bio(bio);
3076 return 0;
3077 }
3078
3079 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3080 {
3081 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3082 }
3083 EXPORT_SYMBOL(submit_bh);
3084
3085 /**
3086 * ll_rw_block: low-level access to block devices (DEPRECATED)
3087 * @op: whether to %READ or %WRITE
3088 * @op_flags: req_flag_bits
3089 * @nr: number of &struct buffer_heads in the array
3090 * @bhs: array of pointers to &struct buffer_head
3091 *
3092 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3093 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3094 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3095 * %REQ_RAHEAD.
3096 *
3097 * This function drops any buffer that it cannot get a lock on (with the
3098 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3099 * request, and any buffer that appears to be up-to-date when doing read
3100 * request. Further it marks as clean buffers that are processed for
3101 * writing (the buffer cache won't assume that they are actually clean
3102 * until the buffer gets unlocked).
3103 *
3104 * ll_rw_block sets b_end_io to simple completion handler that marks
3105 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3106 * any waiters.
3107 *
3108 * All of the buffers must be for the same device, and must also be a
3109 * multiple of the current approved size for the device.
3110 */
3111 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3112 {
3113 int i;
3114
3115 for (i = 0; i < nr; i++) {
3116 struct buffer_head *bh = bhs[i];
3117
3118 if (!trylock_buffer(bh))
3119 continue;
3120 if (op == WRITE) {
3121 if (test_clear_buffer_dirty(bh)) {
3122 bh->b_end_io = end_buffer_write_sync;
3123 get_bh(bh);
3124 submit_bh(op, op_flags, bh);
3125 continue;
3126 }
3127 } else {
3128 if (!buffer_uptodate(bh)) {
3129 bh->b_end_io = end_buffer_read_sync;
3130 get_bh(bh);
3131 submit_bh(op, op_flags, bh);
3132 continue;
3133 }
3134 }
3135 unlock_buffer(bh);
3136 }
3137 }
3138 EXPORT_SYMBOL(ll_rw_block);
3139
3140 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3141 {
3142 lock_buffer(bh);
3143 if (!test_clear_buffer_dirty(bh)) {
3144 unlock_buffer(bh);
3145 return;
3146 }
3147 bh->b_end_io = end_buffer_write_sync;
3148 get_bh(bh);
3149 submit_bh(REQ_OP_WRITE, op_flags, bh);
3150 }
3151 EXPORT_SYMBOL(write_dirty_buffer);
3152
3153 /*
3154 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3155 * and then start new I/O and then wait upon it. The caller must have a ref on
3156 * the buffer_head.
3157 */
3158 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3159 {
3160 int ret = 0;
3161
3162 WARN_ON(atomic_read(&bh->b_count) < 1);
3163 lock_buffer(bh);
3164 if (test_clear_buffer_dirty(bh)) {
3165 /*
3166 * The bh should be mapped, but it might not be if the
3167 * device was hot-removed. Not much we can do but fail the I/O.
3168 */
3169 if (!buffer_mapped(bh)) {
3170 unlock_buffer(bh);
3171 return -EIO;
3172 }
3173
3174 get_bh(bh);
3175 bh->b_end_io = end_buffer_write_sync;
3176 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3177 wait_on_buffer(bh);
3178 if (!ret && !buffer_uptodate(bh))
3179 ret = -EIO;
3180 } else {
3181 unlock_buffer(bh);
3182 }
3183 return ret;
3184 }
3185 EXPORT_SYMBOL(__sync_dirty_buffer);
3186
3187 int sync_dirty_buffer(struct buffer_head *bh)
3188 {
3189 return __sync_dirty_buffer(bh, REQ_SYNC);
3190 }
3191 EXPORT_SYMBOL(sync_dirty_buffer);
3192
3193 /*
3194 * try_to_free_buffers() checks if all the buffers on this particular page
3195 * are unused, and releases them if so.
3196 *
3197 * Exclusion against try_to_free_buffers may be obtained by either
3198 * locking the page or by holding its mapping's private_lock.
3199 *
3200 * If the page is dirty but all the buffers are clean then we need to
3201 * be sure to mark the page clean as well. This is because the page
3202 * may be against a block device, and a later reattachment of buffers
3203 * to a dirty page will set *all* buffers dirty. Which would corrupt
3204 * filesystem data on the same device.
3205 *
3206 * The same applies to regular filesystem pages: if all the buffers are
3207 * clean then we set the page clean and proceed. To do that, we require
3208 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3209 * private_lock.
3210 *
3211 * try_to_free_buffers() is non-blocking.
3212 */
3213 static inline int buffer_busy(struct buffer_head *bh)
3214 {
3215 return atomic_read(&bh->b_count) |
3216 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3217 }
3218
3219 static int
3220 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3221 {
3222 struct buffer_head *head = page_buffers(page);
3223 struct buffer_head *bh;
3224
3225 bh = head;
3226 do {
3227 if (buffer_busy(bh))
3228 goto failed;
3229 bh = bh->b_this_page;
3230 } while (bh != head);
3231
3232 do {
3233 struct buffer_head *next = bh->b_this_page;
3234
3235 if (bh->b_assoc_map)
3236 __remove_assoc_queue(bh);
3237 bh = next;
3238 } while (bh != head);
3239 *buffers_to_free = head;
3240 detach_page_private(page);
3241 return 1;
3242 failed:
3243 return 0;
3244 }
3245
3246 int try_to_free_buffers(struct page *page)
3247 {
3248 struct address_space * const mapping = page->mapping;
3249 struct buffer_head *buffers_to_free = NULL;
3250 int ret = 0;
3251
3252 BUG_ON(!PageLocked(page));
3253 if (PageWriteback(page))
3254 return 0;
3255
3256 if (mapping == NULL) { /* can this still happen? */
3257 ret = drop_buffers(page, &buffers_to_free);
3258 goto out;
3259 }
3260
3261 spin_lock(&mapping->private_lock);
3262 ret = drop_buffers(page, &buffers_to_free);
3263
3264 /*
3265 * If the filesystem writes its buffers by hand (eg ext3)
3266 * then we can have clean buffers against a dirty page. We
3267 * clean the page here; otherwise the VM will never notice
3268 * that the filesystem did any IO at all.
3269 *
3270 * Also, during truncate, discard_buffer will have marked all
3271 * the page's buffers clean. We discover that here and clean
3272 * the page also.
3273 *
3274 * private_lock must be held over this entire operation in order
3275 * to synchronise against __set_page_dirty_buffers and prevent the
3276 * dirty bit from being lost.
3277 */
3278 if (ret)
3279 cancel_dirty_page(page);
3280 spin_unlock(&mapping->private_lock);
3281 out:
3282 if (buffers_to_free) {
3283 struct buffer_head *bh = buffers_to_free;
3284
3285 do {
3286 struct buffer_head *next = bh->b_this_page;
3287 free_buffer_head(bh);
3288 bh = next;
3289 } while (bh != buffers_to_free);
3290 }
3291 return ret;
3292 }
3293 EXPORT_SYMBOL(try_to_free_buffers);
3294
3295 /*
3296 * There are no bdflush tunables left. But distributions are
3297 * still running obsolete flush daemons, so we terminate them here.
3298 *
3299 * Use of bdflush() is deprecated and will be removed in a future kernel.
3300 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3301 */
3302 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3303 {
3304 static int msg_count;
3305
3306 if (!capable(CAP_SYS_ADMIN))
3307 return -EPERM;
3308
3309 if (msg_count < 5) {
3310 msg_count++;
3311 printk(KERN_INFO
3312 "warning: process `%s' used the obsolete bdflush"
3313 " system call\n", current->comm);
3314 printk(KERN_INFO "Fix your initscripts?\n");
3315 }
3316
3317 if (func == 1)
3318 do_exit(0);
3319 return 0;
3320 }
3321
3322 /*
3323 * Buffer-head allocation
3324 */
3325 static struct kmem_cache *bh_cachep __read_mostly;
3326
3327 /*
3328 * Once the number of bh's in the machine exceeds this level, we start
3329 * stripping them in writeback.
3330 */
3331 static unsigned long max_buffer_heads;
3332
3333 int buffer_heads_over_limit;
3334
3335 struct bh_accounting {
3336 int nr; /* Number of live bh's */
3337 int ratelimit; /* Limit cacheline bouncing */
3338 };
3339
3340 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3341
3342 static void recalc_bh_state(void)
3343 {
3344 int i;
3345 int tot = 0;
3346
3347 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3348 return;
3349 __this_cpu_write(bh_accounting.ratelimit, 0);
3350 for_each_online_cpu(i)
3351 tot += per_cpu(bh_accounting, i).nr;
3352 buffer_heads_over_limit = (tot > max_buffer_heads);
3353 }
3354
3355 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3356 {
3357 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3358 if (ret) {
3359 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3360 spin_lock_init(&ret->b_uptodate_lock);
3361 preempt_disable();
3362 __this_cpu_inc(bh_accounting.nr);
3363 recalc_bh_state();
3364 preempt_enable();
3365 }
3366 return ret;
3367 }
3368 EXPORT_SYMBOL(alloc_buffer_head);
3369
3370 void free_buffer_head(struct buffer_head *bh)
3371 {
3372 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3373 kmem_cache_free(bh_cachep, bh);
3374 preempt_disable();
3375 __this_cpu_dec(bh_accounting.nr);
3376 recalc_bh_state();
3377 preempt_enable();
3378 }
3379 EXPORT_SYMBOL(free_buffer_head);
3380
3381 static int buffer_exit_cpu_dead(unsigned int cpu)
3382 {
3383 int i;
3384 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3385
3386 for (i = 0; i < BH_LRU_SIZE; i++) {
3387 brelse(b->bhs[i]);
3388 b->bhs[i] = NULL;
3389 }
3390 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3391 per_cpu(bh_accounting, cpu).nr = 0;
3392 return 0;
3393 }
3394
3395 /**
3396 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3397 * @bh: struct buffer_head
3398 *
3399 * Return true if the buffer is up-to-date and false,
3400 * with the buffer locked, if not.
3401 */
3402 int bh_uptodate_or_lock(struct buffer_head *bh)
3403 {
3404 if (!buffer_uptodate(bh)) {
3405 lock_buffer(bh);
3406 if (!buffer_uptodate(bh))
3407 return 0;
3408 unlock_buffer(bh);
3409 }
3410 return 1;
3411 }
3412 EXPORT_SYMBOL(bh_uptodate_or_lock);
3413
3414 /**
3415 * bh_submit_read - Submit a locked buffer for reading
3416 * @bh: struct buffer_head
3417 *
3418 * Returns zero on success and -EIO on error.
3419 */
3420 int bh_submit_read(struct buffer_head *bh)
3421 {
3422 BUG_ON(!buffer_locked(bh));
3423
3424 if (buffer_uptodate(bh)) {
3425 unlock_buffer(bh);
3426 return 0;
3427 }
3428
3429 get_bh(bh);
3430 bh->b_end_io = end_buffer_read_sync;
3431 submit_bh(REQ_OP_READ, 0, bh);
3432 wait_on_buffer(bh);
3433 if (buffer_uptodate(bh))
3434 return 0;
3435 return -EIO;
3436 }
3437 EXPORT_SYMBOL(bh_submit_read);
3438
3439 void __init buffer_init(void)
3440 {
3441 unsigned long nrpages;
3442 int ret;
3443
3444 bh_cachep = kmem_cache_create("buffer_head",
3445 sizeof(struct buffer_head), 0,
3446 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3447 SLAB_MEM_SPREAD),
3448 NULL);
3449
3450 /*
3451 * Limit the bh occupancy to 10% of ZONE_NORMAL
3452 */
3453 nrpages = (nr_free_buffer_pages() * 10) / 100;
3454 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3455 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3456 NULL, buffer_exit_cpu_dead);
3457 WARN_ON(ret < 0);
3458 }