]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/buffer.c
mm: change invalidatepage prototype to accept length
[mirror_ubuntu-bionic-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 static int sleep_on_buffer(void *word)
65 {
66 io_schedule();
67 return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
102 }
103
104
105 static int quiet_error(struct buffer_head *bh)
106 {
107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 return 0;
109 return 1;
110 }
111
112
113 static void buffer_io_error(struct buffer_head *bh)
114 {
115 char b[BDEVNAME_SIZE];
116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh->b_bdev, b),
118 (unsigned long long)bh->b_blocknr);
119 }
120
121 /*
122 * End-of-IO handler helper function which does not touch the bh after
123 * unlocking it.
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 * itself.
128 */
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131 if (uptodate) {
132 set_buffer_uptodate(bh);
133 } else {
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh);
136 }
137 unlock_buffer(bh);
138 }
139
140 /*
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
143 */
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146 __end_buffer_read_notouch(bh, uptodate);
147 put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153 char b[BDEVNAME_SIZE];
154
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 if (!quiet_error(bh)) {
159 buffer_io_error(bh);
160 printk(KERN_WARNING "lost page write due to "
161 "I/O error on %s\n",
162 bdevname(bh->b_bdev, b));
163 }
164 set_buffer_write_io_error(bh);
165 clear_buffer_uptodate(bh);
166 }
167 unlock_buffer(bh);
168 put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171
172 /*
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
176 * private_lock.
177 *
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
182 */
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186 struct inode *bd_inode = bdev->bd_inode;
187 struct address_space *bd_mapping = bd_inode->i_mapping;
188 struct buffer_head *ret = NULL;
189 pgoff_t index;
190 struct buffer_head *bh;
191 struct buffer_head *head;
192 struct page *page;
193 int all_mapped = 1;
194
195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 page = find_get_page(bd_mapping, index);
197 if (!page)
198 goto out;
199
200 spin_lock(&bd_mapping->private_lock);
201 if (!page_has_buffers(page))
202 goto out_unlock;
203 head = page_buffers(page);
204 bh = head;
205 do {
206 if (!buffer_mapped(bh))
207 all_mapped = 0;
208 else if (bh->b_blocknr == block) {
209 ret = bh;
210 get_bh(bh);
211 goto out_unlock;
212 }
213 bh = bh->b_this_page;
214 } while (bh != head);
215
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
220 */
221 if (all_mapped) {
222 char b[BDEVNAME_SIZE];
223
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
226 (unsigned long long)block,
227 (unsigned long long)bh->b_blocknr);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh->b_state, bh->b_size);
230 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 1 << bd_inode->i_blkbits);
232 }
233 out_unlock:
234 spin_unlock(&bd_mapping->private_lock);
235 page_cache_release(page);
236 out:
237 return ret;
238 }
239
240 /*
241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242 */
243 static void free_more_memory(void)
244 {
245 struct zone *zone;
246 int nid;
247
248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249 yield();
250
251 for_each_online_node(nid) {
252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 gfp_zone(GFP_NOFS), NULL,
254 &zone);
255 if (zone)
256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257 GFP_NOFS, NULL);
258 }
259 }
260
261 /*
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
264 */
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267 unsigned long flags;
268 struct buffer_head *first;
269 struct buffer_head *tmp;
270 struct page *page;
271 int page_uptodate = 1;
272
273 BUG_ON(!buffer_async_read(bh));
274
275 page = bh->b_page;
276 if (uptodate) {
277 set_buffer_uptodate(bh);
278 } else {
279 clear_buffer_uptodate(bh);
280 if (!quiet_error(bh))
281 buffer_io_error(bh);
282 SetPageError(page);
283 }
284
285 /*
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
289 */
290 first = page_buffers(page);
291 local_irq_save(flags);
292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293 clear_buffer_async_read(bh);
294 unlock_buffer(bh);
295 tmp = bh;
296 do {
297 if (!buffer_uptodate(tmp))
298 page_uptodate = 0;
299 if (buffer_async_read(tmp)) {
300 BUG_ON(!buffer_locked(tmp));
301 goto still_busy;
302 }
303 tmp = tmp->b_this_page;
304 } while (tmp != bh);
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
307
308 /*
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
311 */
312 if (page_uptodate && !PageError(page))
313 SetPageUptodate(page);
314 unlock_page(page);
315 return;
316
317 still_busy:
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
320 return;
321 }
322
323 /*
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
326 */
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329 char b[BDEVNAME_SIZE];
330 unsigned long flags;
331 struct buffer_head *first;
332 struct buffer_head *tmp;
333 struct page *page;
334
335 BUG_ON(!buffer_async_write(bh));
336
337 page = bh->b_page;
338 if (uptodate) {
339 set_buffer_uptodate(bh);
340 } else {
341 if (!quiet_error(bh)) {
342 buffer_io_error(bh);
343 printk(KERN_WARNING "lost page write due to "
344 "I/O error on %s\n",
345 bdevname(bh->b_bdev, b));
346 }
347 set_bit(AS_EIO, &page->mapping->flags);
348 set_buffer_write_io_error(bh);
349 clear_buffer_uptodate(bh);
350 SetPageError(page);
351 }
352
353 first = page_buffers(page);
354 local_irq_save(flags);
355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
357 clear_buffer_async_write(bh);
358 unlock_buffer(bh);
359 tmp = bh->b_this_page;
360 while (tmp != bh) {
361 if (buffer_async_write(tmp)) {
362 BUG_ON(!buffer_locked(tmp));
363 goto still_busy;
364 }
365 tmp = tmp->b_this_page;
366 }
367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 local_irq_restore(flags);
369 end_page_writeback(page);
370 return;
371
372 still_busy:
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
375 return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378
379 /*
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
387 *
388 * The page comes unlocked when it has no locked buffer_async buffers
389 * left.
390 *
391 * PageLocked prevents anyone starting new async I/O reads any of
392 * the buffers.
393 *
394 * PageWriteback is used to prevent simultaneous writeout of the same
395 * page.
396 *
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
399 */
400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402 bh->b_end_io = end_buffer_async_read;
403 set_buffer_async_read(bh);
404 }
405
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 bh_end_io_t *handler)
408 {
409 bh->b_end_io = handler;
410 set_buffer_async_write(bh);
411 }
412
413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415 mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420 /*
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
426 *
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
430 *
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
440 * ->private_lock.
441 *
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
444 *
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
449 *
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
453 *
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457 * queued up.
458 *
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
466 * b_inode back.
467 */
468
469 /*
470 * The buffer's backing address_space's private_lock must be held
471 */
472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474 list_del_init(&bh->b_assoc_buffers);
475 WARN_ON(!bh->b_assoc_map);
476 if (buffer_write_io_error(bh))
477 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 bh->b_assoc_map = NULL;
479 }
480
481 int inode_has_buffers(struct inode *inode)
482 {
483 return !list_empty(&inode->i_data.private_list);
484 }
485
486 /*
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
490 *
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
495 */
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498 struct buffer_head *bh;
499 struct list_head *p;
500 int err = 0;
501
502 spin_lock(lock);
503 repeat:
504 list_for_each_prev(p, list) {
505 bh = BH_ENTRY(p);
506 if (buffer_locked(bh)) {
507 get_bh(bh);
508 spin_unlock(lock);
509 wait_on_buffer(bh);
510 if (!buffer_uptodate(bh))
511 err = -EIO;
512 brelse(bh);
513 spin_lock(lock);
514 goto repeat;
515 }
516 }
517 spin_unlock(lock);
518 return err;
519 }
520
521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523 char b[BDEVNAME_SIZE];
524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 printk(KERN_WARNING "Emergency Thaw on %s\n",
526 bdevname(sb->s_bdev, b));
527 }
528
529 static void do_thaw_all(struct work_struct *work)
530 {
531 iterate_supers(do_thaw_one, NULL);
532 kfree(work);
533 printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535
536 /**
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
538 *
539 * Used for emergency unfreeze of all filesystems via SysRq
540 */
541 void emergency_thaw_all(void)
542 {
543 struct work_struct *work;
544
545 work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 if (work) {
547 INIT_WORK(work, do_thaw_all);
548 schedule_work(work);
549 }
550 }
551
552 /**
553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554 * @mapping: the mapping which wants those buffers written
555 *
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
557 * that I/O.
558 *
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
562 */
563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565 struct address_space *buffer_mapping = mapping->private_data;
566
567 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 return 0;
569
570 return fsync_buffers_list(&buffer_mapping->private_lock,
571 &mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574
575 /*
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
580 */
581 void write_boundary_block(struct block_device *bdev,
582 sector_t bblock, unsigned blocksize)
583 {
584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 if (bh) {
586 if (buffer_dirty(bh))
587 ll_rw_block(WRITE, 1, &bh);
588 put_bh(bh);
589 }
590 }
591
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594 struct address_space *mapping = inode->i_mapping;
595 struct address_space *buffer_mapping = bh->b_page->mapping;
596
597 mark_buffer_dirty(bh);
598 if (!mapping->private_data) {
599 mapping->private_data = buffer_mapping;
600 } else {
601 BUG_ON(mapping->private_data != buffer_mapping);
602 }
603 if (!bh->b_assoc_map) {
604 spin_lock(&buffer_mapping->private_lock);
605 list_move_tail(&bh->b_assoc_buffers,
606 &mapping->private_list);
607 bh->b_assoc_map = mapping;
608 spin_unlock(&buffer_mapping->private_lock);
609 }
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
613 /*
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615 * dirty.
616 *
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
619 */
620 static void __set_page_dirty(struct page *page,
621 struct address_space *mapping, int warn)
622 {
623 spin_lock_irq(&mapping->tree_lock);
624 if (page->mapping) { /* Race with truncate? */
625 WARN_ON_ONCE(warn && !PageUptodate(page));
626 account_page_dirtied(page, mapping);
627 radix_tree_tag_set(&mapping->page_tree,
628 page_index(page), PAGECACHE_TAG_DIRTY);
629 }
630 spin_unlock_irq(&mapping->tree_lock);
631 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
632 }
633
634 /*
635 * Add a page to the dirty page list.
636 *
637 * It is a sad fact of life that this function is called from several places
638 * deeply under spinlocking. It may not sleep.
639 *
640 * If the page has buffers, the uptodate buffers are set dirty, to preserve
641 * dirty-state coherency between the page and the buffers. It the page does
642 * not have buffers then when they are later attached they will all be set
643 * dirty.
644 *
645 * The buffers are dirtied before the page is dirtied. There's a small race
646 * window in which a writepage caller may see the page cleanness but not the
647 * buffer dirtiness. That's fine. If this code were to set the page dirty
648 * before the buffers, a concurrent writepage caller could clear the page dirty
649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650 * page on the dirty page list.
651 *
652 * We use private_lock to lock against try_to_free_buffers while using the
653 * page's buffer list. Also use this to protect against clean buffers being
654 * added to the page after it was set dirty.
655 *
656 * FIXME: may need to call ->reservepage here as well. That's rather up to the
657 * address_space though.
658 */
659 int __set_page_dirty_buffers(struct page *page)
660 {
661 int newly_dirty;
662 struct address_space *mapping = page_mapping(page);
663
664 if (unlikely(!mapping))
665 return !TestSetPageDirty(page);
666
667 spin_lock(&mapping->private_lock);
668 if (page_has_buffers(page)) {
669 struct buffer_head *head = page_buffers(page);
670 struct buffer_head *bh = head;
671
672 do {
673 set_buffer_dirty(bh);
674 bh = bh->b_this_page;
675 } while (bh != head);
676 }
677 newly_dirty = !TestSetPageDirty(page);
678 spin_unlock(&mapping->private_lock);
679
680 if (newly_dirty)
681 __set_page_dirty(page, mapping, 1);
682 return newly_dirty;
683 }
684 EXPORT_SYMBOL(__set_page_dirty_buffers);
685
686 /*
687 * Write out and wait upon a list of buffers.
688 *
689 * We have conflicting pressures: we want to make sure that all
690 * initially dirty buffers get waited on, but that any subsequently
691 * dirtied buffers don't. After all, we don't want fsync to last
692 * forever if somebody is actively writing to the file.
693 *
694 * Do this in two main stages: first we copy dirty buffers to a
695 * temporary inode list, queueing the writes as we go. Then we clean
696 * up, waiting for those writes to complete.
697 *
698 * During this second stage, any subsequent updates to the file may end
699 * up refiling the buffer on the original inode's dirty list again, so
700 * there is a chance we will end up with a buffer queued for write but
701 * not yet completed on that list. So, as a final cleanup we go through
702 * the osync code to catch these locked, dirty buffers without requeuing
703 * any newly dirty buffers for write.
704 */
705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
706 {
707 struct buffer_head *bh;
708 struct list_head tmp;
709 struct address_space *mapping;
710 int err = 0, err2;
711 struct blk_plug plug;
712
713 INIT_LIST_HEAD(&tmp);
714 blk_start_plug(&plug);
715
716 spin_lock(lock);
717 while (!list_empty(list)) {
718 bh = BH_ENTRY(list->next);
719 mapping = bh->b_assoc_map;
720 __remove_assoc_queue(bh);
721 /* Avoid race with mark_buffer_dirty_inode() which does
722 * a lockless check and we rely on seeing the dirty bit */
723 smp_mb();
724 if (buffer_dirty(bh) || buffer_locked(bh)) {
725 list_add(&bh->b_assoc_buffers, &tmp);
726 bh->b_assoc_map = mapping;
727 if (buffer_dirty(bh)) {
728 get_bh(bh);
729 spin_unlock(lock);
730 /*
731 * Ensure any pending I/O completes so that
732 * write_dirty_buffer() actually writes the
733 * current contents - it is a noop if I/O is
734 * still in flight on potentially older
735 * contents.
736 */
737 write_dirty_buffer(bh, WRITE_SYNC);
738
739 /*
740 * Kick off IO for the previous mapping. Note
741 * that we will not run the very last mapping,
742 * wait_on_buffer() will do that for us
743 * through sync_buffer().
744 */
745 brelse(bh);
746 spin_lock(lock);
747 }
748 }
749 }
750
751 spin_unlock(lock);
752 blk_finish_plug(&plug);
753 spin_lock(lock);
754
755 while (!list_empty(&tmp)) {
756 bh = BH_ENTRY(tmp.prev);
757 get_bh(bh);
758 mapping = bh->b_assoc_map;
759 __remove_assoc_queue(bh);
760 /* Avoid race with mark_buffer_dirty_inode() which does
761 * a lockless check and we rely on seeing the dirty bit */
762 smp_mb();
763 if (buffer_dirty(bh)) {
764 list_add(&bh->b_assoc_buffers,
765 &mapping->private_list);
766 bh->b_assoc_map = mapping;
767 }
768 spin_unlock(lock);
769 wait_on_buffer(bh);
770 if (!buffer_uptodate(bh))
771 err = -EIO;
772 brelse(bh);
773 spin_lock(lock);
774 }
775
776 spin_unlock(lock);
777 err2 = osync_buffers_list(lock, list);
778 if (err)
779 return err;
780 else
781 return err2;
782 }
783
784 /*
785 * Invalidate any and all dirty buffers on a given inode. We are
786 * probably unmounting the fs, but that doesn't mean we have already
787 * done a sync(). Just drop the buffers from the inode list.
788 *
789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
790 * assumes that all the buffers are against the blockdev. Not true
791 * for reiserfs.
792 */
793 void invalidate_inode_buffers(struct inode *inode)
794 {
795 if (inode_has_buffers(inode)) {
796 struct address_space *mapping = &inode->i_data;
797 struct list_head *list = &mapping->private_list;
798 struct address_space *buffer_mapping = mapping->private_data;
799
800 spin_lock(&buffer_mapping->private_lock);
801 while (!list_empty(list))
802 __remove_assoc_queue(BH_ENTRY(list->next));
803 spin_unlock(&buffer_mapping->private_lock);
804 }
805 }
806 EXPORT_SYMBOL(invalidate_inode_buffers);
807
808 /*
809 * Remove any clean buffers from the inode's buffer list. This is called
810 * when we're trying to free the inode itself. Those buffers can pin it.
811 *
812 * Returns true if all buffers were removed.
813 */
814 int remove_inode_buffers(struct inode *inode)
815 {
816 int ret = 1;
817
818 if (inode_has_buffers(inode)) {
819 struct address_space *mapping = &inode->i_data;
820 struct list_head *list = &mapping->private_list;
821 struct address_space *buffer_mapping = mapping->private_data;
822
823 spin_lock(&buffer_mapping->private_lock);
824 while (!list_empty(list)) {
825 struct buffer_head *bh = BH_ENTRY(list->next);
826 if (buffer_dirty(bh)) {
827 ret = 0;
828 break;
829 }
830 __remove_assoc_queue(bh);
831 }
832 spin_unlock(&buffer_mapping->private_lock);
833 }
834 return ret;
835 }
836
837 /*
838 * Create the appropriate buffers when given a page for data area and
839 * the size of each buffer.. Use the bh->b_this_page linked list to
840 * follow the buffers created. Return NULL if unable to create more
841 * buffers.
842 *
843 * The retry flag is used to differentiate async IO (paging, swapping)
844 * which may not fail from ordinary buffer allocations.
845 */
846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
847 int retry)
848 {
849 struct buffer_head *bh, *head;
850 long offset;
851
852 try_again:
853 head = NULL;
854 offset = PAGE_SIZE;
855 while ((offset -= size) >= 0) {
856 bh = alloc_buffer_head(GFP_NOFS);
857 if (!bh)
858 goto no_grow;
859
860 bh->b_this_page = head;
861 bh->b_blocknr = -1;
862 head = bh;
863
864 bh->b_size = size;
865
866 /* Link the buffer to its page */
867 set_bh_page(bh, page, offset);
868 }
869 return head;
870 /*
871 * In case anything failed, we just free everything we got.
872 */
873 no_grow:
874 if (head) {
875 do {
876 bh = head;
877 head = head->b_this_page;
878 free_buffer_head(bh);
879 } while (head);
880 }
881
882 /*
883 * Return failure for non-async IO requests. Async IO requests
884 * are not allowed to fail, so we have to wait until buffer heads
885 * become available. But we don't want tasks sleeping with
886 * partially complete buffers, so all were released above.
887 */
888 if (!retry)
889 return NULL;
890
891 /* We're _really_ low on memory. Now we just
892 * wait for old buffer heads to become free due to
893 * finishing IO. Since this is an async request and
894 * the reserve list is empty, we're sure there are
895 * async buffer heads in use.
896 */
897 free_more_memory();
898 goto try_again;
899 }
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
901
902 static inline void
903 link_dev_buffers(struct page *page, struct buffer_head *head)
904 {
905 struct buffer_head *bh, *tail;
906
907 bh = head;
908 do {
909 tail = bh;
910 bh = bh->b_this_page;
911 } while (bh);
912 tail->b_this_page = head;
913 attach_page_buffers(page, head);
914 }
915
916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
917 {
918 sector_t retval = ~((sector_t)0);
919 loff_t sz = i_size_read(bdev->bd_inode);
920
921 if (sz) {
922 unsigned int sizebits = blksize_bits(size);
923 retval = (sz >> sizebits);
924 }
925 return retval;
926 }
927
928 /*
929 * Initialise the state of a blockdev page's buffers.
930 */
931 static sector_t
932 init_page_buffers(struct page *page, struct block_device *bdev,
933 sector_t block, int size)
934 {
935 struct buffer_head *head = page_buffers(page);
936 struct buffer_head *bh = head;
937 int uptodate = PageUptodate(page);
938 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
939
940 do {
941 if (!buffer_mapped(bh)) {
942 init_buffer(bh, NULL, NULL);
943 bh->b_bdev = bdev;
944 bh->b_blocknr = block;
945 if (uptodate)
946 set_buffer_uptodate(bh);
947 if (block < end_block)
948 set_buffer_mapped(bh);
949 }
950 block++;
951 bh = bh->b_this_page;
952 } while (bh != head);
953
954 /*
955 * Caller needs to validate requested block against end of device.
956 */
957 return end_block;
958 }
959
960 /*
961 * Create the page-cache page that contains the requested block.
962 *
963 * This is used purely for blockdev mappings.
964 */
965 static int
966 grow_dev_page(struct block_device *bdev, sector_t block,
967 pgoff_t index, int size, int sizebits)
968 {
969 struct inode *inode = bdev->bd_inode;
970 struct page *page;
971 struct buffer_head *bh;
972 sector_t end_block;
973 int ret = 0; /* Will call free_more_memory() */
974
975 page = find_or_create_page(inode->i_mapping, index,
976 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
977 if (!page)
978 return ret;
979
980 BUG_ON(!PageLocked(page));
981
982 if (page_has_buffers(page)) {
983 bh = page_buffers(page);
984 if (bh->b_size == size) {
985 end_block = init_page_buffers(page, bdev,
986 index << sizebits, size);
987 goto done;
988 }
989 if (!try_to_free_buffers(page))
990 goto failed;
991 }
992
993 /*
994 * Allocate some buffers for this page
995 */
996 bh = alloc_page_buffers(page, size, 0);
997 if (!bh)
998 goto failed;
999
1000 /*
1001 * Link the page to the buffers and initialise them. Take the
1002 * lock to be atomic wrt __find_get_block(), which does not
1003 * run under the page lock.
1004 */
1005 spin_lock(&inode->i_mapping->private_lock);
1006 link_dev_buffers(page, bh);
1007 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1008 spin_unlock(&inode->i_mapping->private_lock);
1009 done:
1010 ret = (block < end_block) ? 1 : -ENXIO;
1011 failed:
1012 unlock_page(page);
1013 page_cache_release(page);
1014 return ret;
1015 }
1016
1017 /*
1018 * Create buffers for the specified block device block's page. If
1019 * that page was dirty, the buffers are set dirty also.
1020 */
1021 static int
1022 grow_buffers(struct block_device *bdev, sector_t block, int size)
1023 {
1024 pgoff_t index;
1025 int sizebits;
1026
1027 sizebits = -1;
1028 do {
1029 sizebits++;
1030 } while ((size << sizebits) < PAGE_SIZE);
1031
1032 index = block >> sizebits;
1033
1034 /*
1035 * Check for a block which wants to lie outside our maximum possible
1036 * pagecache index. (this comparison is done using sector_t types).
1037 */
1038 if (unlikely(index != block >> sizebits)) {
1039 char b[BDEVNAME_SIZE];
1040
1041 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1042 "device %s\n",
1043 __func__, (unsigned long long)block,
1044 bdevname(bdev, b));
1045 return -EIO;
1046 }
1047
1048 /* Create a page with the proper size buffers.. */
1049 return grow_dev_page(bdev, block, index, size, sizebits);
1050 }
1051
1052 static struct buffer_head *
1053 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1054 {
1055 /* Size must be multiple of hard sectorsize */
1056 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1057 (size < 512 || size > PAGE_SIZE))) {
1058 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1059 size);
1060 printk(KERN_ERR "logical block size: %d\n",
1061 bdev_logical_block_size(bdev));
1062
1063 dump_stack();
1064 return NULL;
1065 }
1066
1067 for (;;) {
1068 struct buffer_head *bh;
1069 int ret;
1070
1071 bh = __find_get_block(bdev, block, size);
1072 if (bh)
1073 return bh;
1074
1075 ret = grow_buffers(bdev, block, size);
1076 if (ret < 0)
1077 return NULL;
1078 if (ret == 0)
1079 free_more_memory();
1080 }
1081 }
1082
1083 /*
1084 * The relationship between dirty buffers and dirty pages:
1085 *
1086 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087 * the page is tagged dirty in its radix tree.
1088 *
1089 * At all times, the dirtiness of the buffers represents the dirtiness of
1090 * subsections of the page. If the page has buffers, the page dirty bit is
1091 * merely a hint about the true dirty state.
1092 *
1093 * When a page is set dirty in its entirety, all its buffers are marked dirty
1094 * (if the page has buffers).
1095 *
1096 * When a buffer is marked dirty, its page is dirtied, but the page's other
1097 * buffers are not.
1098 *
1099 * Also. When blockdev buffers are explicitly read with bread(), they
1100 * individually become uptodate. But their backing page remains not
1101 * uptodate - even if all of its buffers are uptodate. A subsequent
1102 * block_read_full_page() against that page will discover all the uptodate
1103 * buffers, will set the page uptodate and will perform no I/O.
1104 */
1105
1106 /**
1107 * mark_buffer_dirty - mark a buffer_head as needing writeout
1108 * @bh: the buffer_head to mark dirty
1109 *
1110 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111 * backing page dirty, then tag the page as dirty in its address_space's radix
1112 * tree and then attach the address_space's inode to its superblock's dirty
1113 * inode list.
1114 *
1115 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1116 * mapping->tree_lock and mapping->host->i_lock.
1117 */
1118 void mark_buffer_dirty(struct buffer_head *bh)
1119 {
1120 WARN_ON_ONCE(!buffer_uptodate(bh));
1121
1122 trace_block_dirty_buffer(bh);
1123
1124 /*
1125 * Very *carefully* optimize the it-is-already-dirty case.
1126 *
1127 * Don't let the final "is it dirty" escape to before we
1128 * perhaps modified the buffer.
1129 */
1130 if (buffer_dirty(bh)) {
1131 smp_mb();
1132 if (buffer_dirty(bh))
1133 return;
1134 }
1135
1136 if (!test_set_buffer_dirty(bh)) {
1137 struct page *page = bh->b_page;
1138 if (!TestSetPageDirty(page)) {
1139 struct address_space *mapping = page_mapping(page);
1140 if (mapping)
1141 __set_page_dirty(page, mapping, 0);
1142 }
1143 }
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146
1147 /*
1148 * Decrement a buffer_head's reference count. If all buffers against a page
1149 * have zero reference count, are clean and unlocked, and if the page is clean
1150 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152 * a page but it ends up not being freed, and buffers may later be reattached).
1153 */
1154 void __brelse(struct buffer_head * buf)
1155 {
1156 if (atomic_read(&buf->b_count)) {
1157 put_bh(buf);
1158 return;
1159 }
1160 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161 }
1162 EXPORT_SYMBOL(__brelse);
1163
1164 /*
1165 * bforget() is like brelse(), except it discards any
1166 * potentially dirty data.
1167 */
1168 void __bforget(struct buffer_head *bh)
1169 {
1170 clear_buffer_dirty(bh);
1171 if (bh->b_assoc_map) {
1172 struct address_space *buffer_mapping = bh->b_page->mapping;
1173
1174 spin_lock(&buffer_mapping->private_lock);
1175 list_del_init(&bh->b_assoc_buffers);
1176 bh->b_assoc_map = NULL;
1177 spin_unlock(&buffer_mapping->private_lock);
1178 }
1179 __brelse(bh);
1180 }
1181 EXPORT_SYMBOL(__bforget);
1182
1183 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1184 {
1185 lock_buffer(bh);
1186 if (buffer_uptodate(bh)) {
1187 unlock_buffer(bh);
1188 return bh;
1189 } else {
1190 get_bh(bh);
1191 bh->b_end_io = end_buffer_read_sync;
1192 submit_bh(READ, bh);
1193 wait_on_buffer(bh);
1194 if (buffer_uptodate(bh))
1195 return bh;
1196 }
1197 brelse(bh);
1198 return NULL;
1199 }
1200
1201 /*
1202 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1203 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1204 * refcount elevated by one when they're in an LRU. A buffer can only appear
1205 * once in a particular CPU's LRU. A single buffer can be present in multiple
1206 * CPU's LRUs at the same time.
1207 *
1208 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209 * sb_find_get_block().
1210 *
1211 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1212 * a local interrupt disable for that.
1213 */
1214
1215 #define BH_LRU_SIZE 8
1216
1217 struct bh_lru {
1218 struct buffer_head *bhs[BH_LRU_SIZE];
1219 };
1220
1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1222
1223 #ifdef CONFIG_SMP
1224 #define bh_lru_lock() local_irq_disable()
1225 #define bh_lru_unlock() local_irq_enable()
1226 #else
1227 #define bh_lru_lock() preempt_disable()
1228 #define bh_lru_unlock() preempt_enable()
1229 #endif
1230
1231 static inline void check_irqs_on(void)
1232 {
1233 #ifdef irqs_disabled
1234 BUG_ON(irqs_disabled());
1235 #endif
1236 }
1237
1238 /*
1239 * The LRU management algorithm is dopey-but-simple. Sorry.
1240 */
1241 static void bh_lru_install(struct buffer_head *bh)
1242 {
1243 struct buffer_head *evictee = NULL;
1244
1245 check_irqs_on();
1246 bh_lru_lock();
1247 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1248 struct buffer_head *bhs[BH_LRU_SIZE];
1249 int in;
1250 int out = 0;
1251
1252 get_bh(bh);
1253 bhs[out++] = bh;
1254 for (in = 0; in < BH_LRU_SIZE; in++) {
1255 struct buffer_head *bh2 =
1256 __this_cpu_read(bh_lrus.bhs[in]);
1257
1258 if (bh2 == bh) {
1259 __brelse(bh2);
1260 } else {
1261 if (out >= BH_LRU_SIZE) {
1262 BUG_ON(evictee != NULL);
1263 evictee = bh2;
1264 } else {
1265 bhs[out++] = bh2;
1266 }
1267 }
1268 }
1269 while (out < BH_LRU_SIZE)
1270 bhs[out++] = NULL;
1271 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1272 }
1273 bh_lru_unlock();
1274
1275 if (evictee)
1276 __brelse(evictee);
1277 }
1278
1279 /*
1280 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1281 */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1284 {
1285 struct buffer_head *ret = NULL;
1286 unsigned int i;
1287
1288 check_irqs_on();
1289 bh_lru_lock();
1290 for (i = 0; i < BH_LRU_SIZE; i++) {
1291 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1292
1293 if (bh && bh->b_bdev == bdev &&
1294 bh->b_blocknr == block && bh->b_size == size) {
1295 if (i) {
1296 while (i) {
1297 __this_cpu_write(bh_lrus.bhs[i],
1298 __this_cpu_read(bh_lrus.bhs[i - 1]));
1299 i--;
1300 }
1301 __this_cpu_write(bh_lrus.bhs[0], bh);
1302 }
1303 get_bh(bh);
1304 ret = bh;
1305 break;
1306 }
1307 }
1308 bh_lru_unlock();
1309 return ret;
1310 }
1311
1312 /*
1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1314 * it in the LRU and mark it as accessed. If it is not present then return
1315 * NULL
1316 */
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1319 {
1320 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321
1322 if (bh == NULL) {
1323 bh = __find_get_block_slow(bdev, block);
1324 if (bh)
1325 bh_lru_install(bh);
1326 }
1327 if (bh)
1328 touch_buffer(bh);
1329 return bh;
1330 }
1331 EXPORT_SYMBOL(__find_get_block);
1332
1333 /*
1334 * __getblk will locate (and, if necessary, create) the buffer_head
1335 * which corresponds to the passed block_device, block and size. The
1336 * returned buffer has its reference count incremented.
1337 *
1338 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1339 * attempt is failing. FIXME, perhaps?
1340 */
1341 struct buffer_head *
1342 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344 struct buffer_head *bh = __find_get_block(bdev, block, size);
1345
1346 might_sleep();
1347 if (bh == NULL)
1348 bh = __getblk_slow(bdev, block, size);
1349 return bh;
1350 }
1351 EXPORT_SYMBOL(__getblk);
1352
1353 /*
1354 * Do async read-ahead on a buffer..
1355 */
1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 struct buffer_head *bh = __getblk(bdev, block, size);
1359 if (likely(bh)) {
1360 ll_rw_block(READA, 1, &bh);
1361 brelse(bh);
1362 }
1363 }
1364 EXPORT_SYMBOL(__breadahead);
1365
1366 /**
1367 * __bread() - reads a specified block and returns the bh
1368 * @bdev: the block_device to read from
1369 * @block: number of block
1370 * @size: size (in bytes) to read
1371 *
1372 * Reads a specified block, and returns buffer head that contains it.
1373 * It returns NULL if the block was unreadable.
1374 */
1375 struct buffer_head *
1376 __bread(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378 struct buffer_head *bh = __getblk(bdev, block, size);
1379
1380 if (likely(bh) && !buffer_uptodate(bh))
1381 bh = __bread_slow(bh);
1382 return bh;
1383 }
1384 EXPORT_SYMBOL(__bread);
1385
1386 /*
1387 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1388 * This doesn't race because it runs in each cpu either in irq
1389 * or with preempt disabled.
1390 */
1391 static void invalidate_bh_lru(void *arg)
1392 {
1393 struct bh_lru *b = &get_cpu_var(bh_lrus);
1394 int i;
1395
1396 for (i = 0; i < BH_LRU_SIZE; i++) {
1397 brelse(b->bhs[i]);
1398 b->bhs[i] = NULL;
1399 }
1400 put_cpu_var(bh_lrus);
1401 }
1402
1403 static bool has_bh_in_lru(int cpu, void *dummy)
1404 {
1405 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1406 int i;
1407
1408 for (i = 0; i < BH_LRU_SIZE; i++) {
1409 if (b->bhs[i])
1410 return 1;
1411 }
1412
1413 return 0;
1414 }
1415
1416 void invalidate_bh_lrus(void)
1417 {
1418 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1419 }
1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1421
1422 void set_bh_page(struct buffer_head *bh,
1423 struct page *page, unsigned long offset)
1424 {
1425 bh->b_page = page;
1426 BUG_ON(offset >= PAGE_SIZE);
1427 if (PageHighMem(page))
1428 /*
1429 * This catches illegal uses and preserves the offset:
1430 */
1431 bh->b_data = (char *)(0 + offset);
1432 else
1433 bh->b_data = page_address(page) + offset;
1434 }
1435 EXPORT_SYMBOL(set_bh_page);
1436
1437 /*
1438 * Called when truncating a buffer on a page completely.
1439 */
1440 static void discard_buffer(struct buffer_head * bh)
1441 {
1442 lock_buffer(bh);
1443 clear_buffer_dirty(bh);
1444 bh->b_bdev = NULL;
1445 clear_buffer_mapped(bh);
1446 clear_buffer_req(bh);
1447 clear_buffer_new(bh);
1448 clear_buffer_delay(bh);
1449 clear_buffer_unwritten(bh);
1450 unlock_buffer(bh);
1451 }
1452
1453 /**
1454 * block_invalidatepage - invalidate part or all of a buffer-backed page
1455 *
1456 * @page: the page which is affected
1457 * @offset: start of the range to invalidate
1458 * @length: length of the range to invalidate
1459 *
1460 * block_invalidatepage() is called when all or part of the page has become
1461 * invalidated by a truncate operation.
1462 *
1463 * block_invalidatepage() does not have to release all buffers, but it must
1464 * ensure that no dirty buffer is left outside @offset and that no I/O
1465 * is underway against any of the blocks which are outside the truncation
1466 * point. Because the caller is about to free (and possibly reuse) those
1467 * blocks on-disk.
1468 */
1469 void block_invalidatepage(struct page *page, unsigned int offset,
1470 unsigned int length)
1471 {
1472 struct buffer_head *head, *bh, *next;
1473 unsigned int curr_off = 0;
1474 unsigned int stop = length + offset;
1475
1476 BUG_ON(!PageLocked(page));
1477 if (!page_has_buffers(page))
1478 goto out;
1479
1480 /*
1481 * Check for overflow
1482 */
1483 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1484
1485 head = page_buffers(page);
1486 bh = head;
1487 do {
1488 unsigned int next_off = curr_off + bh->b_size;
1489 next = bh->b_this_page;
1490
1491 /*
1492 * Are we still fully in range ?
1493 */
1494 if (next_off > stop)
1495 goto out;
1496
1497 /*
1498 * is this block fully invalidated?
1499 */
1500 if (offset <= curr_off)
1501 discard_buffer(bh);
1502 curr_off = next_off;
1503 bh = next;
1504 } while (bh != head);
1505
1506 /*
1507 * We release buffers only if the entire page is being invalidated.
1508 * The get_block cached value has been unconditionally invalidated,
1509 * so real IO is not possible anymore.
1510 */
1511 if (offset == 0)
1512 try_to_release_page(page, 0);
1513 out:
1514 return;
1515 }
1516 EXPORT_SYMBOL(block_invalidatepage);
1517
1518
1519 /*
1520 * We attach and possibly dirty the buffers atomically wrt
1521 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1522 * is already excluded via the page lock.
1523 */
1524 void create_empty_buffers(struct page *page,
1525 unsigned long blocksize, unsigned long b_state)
1526 {
1527 struct buffer_head *bh, *head, *tail;
1528
1529 head = alloc_page_buffers(page, blocksize, 1);
1530 bh = head;
1531 do {
1532 bh->b_state |= b_state;
1533 tail = bh;
1534 bh = bh->b_this_page;
1535 } while (bh);
1536 tail->b_this_page = head;
1537
1538 spin_lock(&page->mapping->private_lock);
1539 if (PageUptodate(page) || PageDirty(page)) {
1540 bh = head;
1541 do {
1542 if (PageDirty(page))
1543 set_buffer_dirty(bh);
1544 if (PageUptodate(page))
1545 set_buffer_uptodate(bh);
1546 bh = bh->b_this_page;
1547 } while (bh != head);
1548 }
1549 attach_page_buffers(page, head);
1550 spin_unlock(&page->mapping->private_lock);
1551 }
1552 EXPORT_SYMBOL(create_empty_buffers);
1553
1554 /*
1555 * We are taking a block for data and we don't want any output from any
1556 * buffer-cache aliases starting from return from that function and
1557 * until the moment when something will explicitly mark the buffer
1558 * dirty (hopefully that will not happen until we will free that block ;-)
1559 * We don't even need to mark it not-uptodate - nobody can expect
1560 * anything from a newly allocated buffer anyway. We used to used
1561 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1562 * don't want to mark the alias unmapped, for example - it would confuse
1563 * anyone who might pick it with bread() afterwards...
1564 *
1565 * Also.. Note that bforget() doesn't lock the buffer. So there can
1566 * be writeout I/O going on against recently-freed buffers. We don't
1567 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1568 * only if we really need to. That happens here.
1569 */
1570 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1571 {
1572 struct buffer_head *old_bh;
1573
1574 might_sleep();
1575
1576 old_bh = __find_get_block_slow(bdev, block);
1577 if (old_bh) {
1578 clear_buffer_dirty(old_bh);
1579 wait_on_buffer(old_bh);
1580 clear_buffer_req(old_bh);
1581 __brelse(old_bh);
1582 }
1583 }
1584 EXPORT_SYMBOL(unmap_underlying_metadata);
1585
1586 /*
1587 * Size is a power-of-two in the range 512..PAGE_SIZE,
1588 * and the case we care about most is PAGE_SIZE.
1589 *
1590 * So this *could* possibly be written with those
1591 * constraints in mind (relevant mostly if some
1592 * architecture has a slow bit-scan instruction)
1593 */
1594 static inline int block_size_bits(unsigned int blocksize)
1595 {
1596 return ilog2(blocksize);
1597 }
1598
1599 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1600 {
1601 BUG_ON(!PageLocked(page));
1602
1603 if (!page_has_buffers(page))
1604 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1605 return page_buffers(page);
1606 }
1607
1608 /*
1609 * NOTE! All mapped/uptodate combinations are valid:
1610 *
1611 * Mapped Uptodate Meaning
1612 *
1613 * No No "unknown" - must do get_block()
1614 * No Yes "hole" - zero-filled
1615 * Yes No "allocated" - allocated on disk, not read in
1616 * Yes Yes "valid" - allocated and up-to-date in memory.
1617 *
1618 * "Dirty" is valid only with the last case (mapped+uptodate).
1619 */
1620
1621 /*
1622 * While block_write_full_page is writing back the dirty buffers under
1623 * the page lock, whoever dirtied the buffers may decide to clean them
1624 * again at any time. We handle that by only looking at the buffer
1625 * state inside lock_buffer().
1626 *
1627 * If block_write_full_page() is called for regular writeback
1628 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1629 * locked buffer. This only can happen if someone has written the buffer
1630 * directly, with submit_bh(). At the address_space level PageWriteback
1631 * prevents this contention from occurring.
1632 *
1633 * If block_write_full_page() is called with wbc->sync_mode ==
1634 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1635 * causes the writes to be flagged as synchronous writes.
1636 */
1637 static int __block_write_full_page(struct inode *inode, struct page *page,
1638 get_block_t *get_block, struct writeback_control *wbc,
1639 bh_end_io_t *handler)
1640 {
1641 int err;
1642 sector_t block;
1643 sector_t last_block;
1644 struct buffer_head *bh, *head;
1645 unsigned int blocksize, bbits;
1646 int nr_underway = 0;
1647 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1648 WRITE_SYNC : WRITE);
1649
1650 head = create_page_buffers(page, inode,
1651 (1 << BH_Dirty)|(1 << BH_Uptodate));
1652
1653 /*
1654 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1655 * here, and the (potentially unmapped) buffers may become dirty at
1656 * any time. If a buffer becomes dirty here after we've inspected it
1657 * then we just miss that fact, and the page stays dirty.
1658 *
1659 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1660 * handle that here by just cleaning them.
1661 */
1662
1663 bh = head;
1664 blocksize = bh->b_size;
1665 bbits = block_size_bits(blocksize);
1666
1667 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1668 last_block = (i_size_read(inode) - 1) >> bbits;
1669
1670 /*
1671 * Get all the dirty buffers mapped to disk addresses and
1672 * handle any aliases from the underlying blockdev's mapping.
1673 */
1674 do {
1675 if (block > last_block) {
1676 /*
1677 * mapped buffers outside i_size will occur, because
1678 * this page can be outside i_size when there is a
1679 * truncate in progress.
1680 */
1681 /*
1682 * The buffer was zeroed by block_write_full_page()
1683 */
1684 clear_buffer_dirty(bh);
1685 set_buffer_uptodate(bh);
1686 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1687 buffer_dirty(bh)) {
1688 WARN_ON(bh->b_size != blocksize);
1689 err = get_block(inode, block, bh, 1);
1690 if (err)
1691 goto recover;
1692 clear_buffer_delay(bh);
1693 if (buffer_new(bh)) {
1694 /* blockdev mappings never come here */
1695 clear_buffer_new(bh);
1696 unmap_underlying_metadata(bh->b_bdev,
1697 bh->b_blocknr);
1698 }
1699 }
1700 bh = bh->b_this_page;
1701 block++;
1702 } while (bh != head);
1703
1704 do {
1705 if (!buffer_mapped(bh))
1706 continue;
1707 /*
1708 * If it's a fully non-blocking write attempt and we cannot
1709 * lock the buffer then redirty the page. Note that this can
1710 * potentially cause a busy-wait loop from writeback threads
1711 * and kswapd activity, but those code paths have their own
1712 * higher-level throttling.
1713 */
1714 if (wbc->sync_mode != WB_SYNC_NONE) {
1715 lock_buffer(bh);
1716 } else if (!trylock_buffer(bh)) {
1717 redirty_page_for_writepage(wbc, page);
1718 continue;
1719 }
1720 if (test_clear_buffer_dirty(bh)) {
1721 mark_buffer_async_write_endio(bh, handler);
1722 } else {
1723 unlock_buffer(bh);
1724 }
1725 } while ((bh = bh->b_this_page) != head);
1726
1727 /*
1728 * The page and its buffers are protected by PageWriteback(), so we can
1729 * drop the bh refcounts early.
1730 */
1731 BUG_ON(PageWriteback(page));
1732 set_page_writeback(page);
1733
1734 do {
1735 struct buffer_head *next = bh->b_this_page;
1736 if (buffer_async_write(bh)) {
1737 submit_bh(write_op, bh);
1738 nr_underway++;
1739 }
1740 bh = next;
1741 } while (bh != head);
1742 unlock_page(page);
1743
1744 err = 0;
1745 done:
1746 if (nr_underway == 0) {
1747 /*
1748 * The page was marked dirty, but the buffers were
1749 * clean. Someone wrote them back by hand with
1750 * ll_rw_block/submit_bh. A rare case.
1751 */
1752 end_page_writeback(page);
1753
1754 /*
1755 * The page and buffer_heads can be released at any time from
1756 * here on.
1757 */
1758 }
1759 return err;
1760
1761 recover:
1762 /*
1763 * ENOSPC, or some other error. We may already have added some
1764 * blocks to the file, so we need to write these out to avoid
1765 * exposing stale data.
1766 * The page is currently locked and not marked for writeback
1767 */
1768 bh = head;
1769 /* Recovery: lock and submit the mapped buffers */
1770 do {
1771 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1772 !buffer_delay(bh)) {
1773 lock_buffer(bh);
1774 mark_buffer_async_write_endio(bh, handler);
1775 } else {
1776 /*
1777 * The buffer may have been set dirty during
1778 * attachment to a dirty page.
1779 */
1780 clear_buffer_dirty(bh);
1781 }
1782 } while ((bh = bh->b_this_page) != head);
1783 SetPageError(page);
1784 BUG_ON(PageWriteback(page));
1785 mapping_set_error(page->mapping, err);
1786 set_page_writeback(page);
1787 do {
1788 struct buffer_head *next = bh->b_this_page;
1789 if (buffer_async_write(bh)) {
1790 clear_buffer_dirty(bh);
1791 submit_bh(write_op, bh);
1792 nr_underway++;
1793 }
1794 bh = next;
1795 } while (bh != head);
1796 unlock_page(page);
1797 goto done;
1798 }
1799
1800 /*
1801 * If a page has any new buffers, zero them out here, and mark them uptodate
1802 * and dirty so they'll be written out (in order to prevent uninitialised
1803 * block data from leaking). And clear the new bit.
1804 */
1805 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1806 {
1807 unsigned int block_start, block_end;
1808 struct buffer_head *head, *bh;
1809
1810 BUG_ON(!PageLocked(page));
1811 if (!page_has_buffers(page))
1812 return;
1813
1814 bh = head = page_buffers(page);
1815 block_start = 0;
1816 do {
1817 block_end = block_start + bh->b_size;
1818
1819 if (buffer_new(bh)) {
1820 if (block_end > from && block_start < to) {
1821 if (!PageUptodate(page)) {
1822 unsigned start, size;
1823
1824 start = max(from, block_start);
1825 size = min(to, block_end) - start;
1826
1827 zero_user(page, start, size);
1828 set_buffer_uptodate(bh);
1829 }
1830
1831 clear_buffer_new(bh);
1832 mark_buffer_dirty(bh);
1833 }
1834 }
1835
1836 block_start = block_end;
1837 bh = bh->b_this_page;
1838 } while (bh != head);
1839 }
1840 EXPORT_SYMBOL(page_zero_new_buffers);
1841
1842 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1843 get_block_t *get_block)
1844 {
1845 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1846 unsigned to = from + len;
1847 struct inode *inode = page->mapping->host;
1848 unsigned block_start, block_end;
1849 sector_t block;
1850 int err = 0;
1851 unsigned blocksize, bbits;
1852 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1853
1854 BUG_ON(!PageLocked(page));
1855 BUG_ON(from > PAGE_CACHE_SIZE);
1856 BUG_ON(to > PAGE_CACHE_SIZE);
1857 BUG_ON(from > to);
1858
1859 head = create_page_buffers(page, inode, 0);
1860 blocksize = head->b_size;
1861 bbits = block_size_bits(blocksize);
1862
1863 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1864
1865 for(bh = head, block_start = 0; bh != head || !block_start;
1866 block++, block_start=block_end, bh = bh->b_this_page) {
1867 block_end = block_start + blocksize;
1868 if (block_end <= from || block_start >= to) {
1869 if (PageUptodate(page)) {
1870 if (!buffer_uptodate(bh))
1871 set_buffer_uptodate(bh);
1872 }
1873 continue;
1874 }
1875 if (buffer_new(bh))
1876 clear_buffer_new(bh);
1877 if (!buffer_mapped(bh)) {
1878 WARN_ON(bh->b_size != blocksize);
1879 err = get_block(inode, block, bh, 1);
1880 if (err)
1881 break;
1882 if (buffer_new(bh)) {
1883 unmap_underlying_metadata(bh->b_bdev,
1884 bh->b_blocknr);
1885 if (PageUptodate(page)) {
1886 clear_buffer_new(bh);
1887 set_buffer_uptodate(bh);
1888 mark_buffer_dirty(bh);
1889 continue;
1890 }
1891 if (block_end > to || block_start < from)
1892 zero_user_segments(page,
1893 to, block_end,
1894 block_start, from);
1895 continue;
1896 }
1897 }
1898 if (PageUptodate(page)) {
1899 if (!buffer_uptodate(bh))
1900 set_buffer_uptodate(bh);
1901 continue;
1902 }
1903 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1904 !buffer_unwritten(bh) &&
1905 (block_start < from || block_end > to)) {
1906 ll_rw_block(READ, 1, &bh);
1907 *wait_bh++=bh;
1908 }
1909 }
1910 /*
1911 * If we issued read requests - let them complete.
1912 */
1913 while(wait_bh > wait) {
1914 wait_on_buffer(*--wait_bh);
1915 if (!buffer_uptodate(*wait_bh))
1916 err = -EIO;
1917 }
1918 if (unlikely(err))
1919 page_zero_new_buffers(page, from, to);
1920 return err;
1921 }
1922 EXPORT_SYMBOL(__block_write_begin);
1923
1924 static int __block_commit_write(struct inode *inode, struct page *page,
1925 unsigned from, unsigned to)
1926 {
1927 unsigned block_start, block_end;
1928 int partial = 0;
1929 unsigned blocksize;
1930 struct buffer_head *bh, *head;
1931
1932 bh = head = page_buffers(page);
1933 blocksize = bh->b_size;
1934
1935 block_start = 0;
1936 do {
1937 block_end = block_start + blocksize;
1938 if (block_end <= from || block_start >= to) {
1939 if (!buffer_uptodate(bh))
1940 partial = 1;
1941 } else {
1942 set_buffer_uptodate(bh);
1943 mark_buffer_dirty(bh);
1944 }
1945 clear_buffer_new(bh);
1946
1947 block_start = block_end;
1948 bh = bh->b_this_page;
1949 } while (bh != head);
1950
1951 /*
1952 * If this is a partial write which happened to make all buffers
1953 * uptodate then we can optimize away a bogus readpage() for
1954 * the next read(). Here we 'discover' whether the page went
1955 * uptodate as a result of this (potentially partial) write.
1956 */
1957 if (!partial)
1958 SetPageUptodate(page);
1959 return 0;
1960 }
1961
1962 /*
1963 * block_write_begin takes care of the basic task of block allocation and
1964 * bringing partial write blocks uptodate first.
1965 *
1966 * The filesystem needs to handle block truncation upon failure.
1967 */
1968 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1969 unsigned flags, struct page **pagep, get_block_t *get_block)
1970 {
1971 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1972 struct page *page;
1973 int status;
1974
1975 page = grab_cache_page_write_begin(mapping, index, flags);
1976 if (!page)
1977 return -ENOMEM;
1978
1979 status = __block_write_begin(page, pos, len, get_block);
1980 if (unlikely(status)) {
1981 unlock_page(page);
1982 page_cache_release(page);
1983 page = NULL;
1984 }
1985
1986 *pagep = page;
1987 return status;
1988 }
1989 EXPORT_SYMBOL(block_write_begin);
1990
1991 int block_write_end(struct file *file, struct address_space *mapping,
1992 loff_t pos, unsigned len, unsigned copied,
1993 struct page *page, void *fsdata)
1994 {
1995 struct inode *inode = mapping->host;
1996 unsigned start;
1997
1998 start = pos & (PAGE_CACHE_SIZE - 1);
1999
2000 if (unlikely(copied < len)) {
2001 /*
2002 * The buffers that were written will now be uptodate, so we
2003 * don't have to worry about a readpage reading them and
2004 * overwriting a partial write. However if we have encountered
2005 * a short write and only partially written into a buffer, it
2006 * will not be marked uptodate, so a readpage might come in and
2007 * destroy our partial write.
2008 *
2009 * Do the simplest thing, and just treat any short write to a
2010 * non uptodate page as a zero-length write, and force the
2011 * caller to redo the whole thing.
2012 */
2013 if (!PageUptodate(page))
2014 copied = 0;
2015
2016 page_zero_new_buffers(page, start+copied, start+len);
2017 }
2018 flush_dcache_page(page);
2019
2020 /* This could be a short (even 0-length) commit */
2021 __block_commit_write(inode, page, start, start+copied);
2022
2023 return copied;
2024 }
2025 EXPORT_SYMBOL(block_write_end);
2026
2027 int generic_write_end(struct file *file, struct address_space *mapping,
2028 loff_t pos, unsigned len, unsigned copied,
2029 struct page *page, void *fsdata)
2030 {
2031 struct inode *inode = mapping->host;
2032 int i_size_changed = 0;
2033
2034 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2035
2036 /*
2037 * No need to use i_size_read() here, the i_size
2038 * cannot change under us because we hold i_mutex.
2039 *
2040 * But it's important to update i_size while still holding page lock:
2041 * page writeout could otherwise come in and zero beyond i_size.
2042 */
2043 if (pos+copied > inode->i_size) {
2044 i_size_write(inode, pos+copied);
2045 i_size_changed = 1;
2046 }
2047
2048 unlock_page(page);
2049 page_cache_release(page);
2050
2051 /*
2052 * Don't mark the inode dirty under page lock. First, it unnecessarily
2053 * makes the holding time of page lock longer. Second, it forces lock
2054 * ordering of page lock and transaction start for journaling
2055 * filesystems.
2056 */
2057 if (i_size_changed)
2058 mark_inode_dirty(inode);
2059
2060 return copied;
2061 }
2062 EXPORT_SYMBOL(generic_write_end);
2063
2064 /*
2065 * block_is_partially_uptodate checks whether buffers within a page are
2066 * uptodate or not.
2067 *
2068 * Returns true if all buffers which correspond to a file portion
2069 * we want to read are uptodate.
2070 */
2071 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2072 unsigned long from)
2073 {
2074 unsigned block_start, block_end, blocksize;
2075 unsigned to;
2076 struct buffer_head *bh, *head;
2077 int ret = 1;
2078
2079 if (!page_has_buffers(page))
2080 return 0;
2081
2082 head = page_buffers(page);
2083 blocksize = head->b_size;
2084 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2085 to = from + to;
2086 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2087 return 0;
2088
2089 bh = head;
2090 block_start = 0;
2091 do {
2092 block_end = block_start + blocksize;
2093 if (block_end > from && block_start < to) {
2094 if (!buffer_uptodate(bh)) {
2095 ret = 0;
2096 break;
2097 }
2098 if (block_end >= to)
2099 break;
2100 }
2101 block_start = block_end;
2102 bh = bh->b_this_page;
2103 } while (bh != head);
2104
2105 return ret;
2106 }
2107 EXPORT_SYMBOL(block_is_partially_uptodate);
2108
2109 /*
2110 * Generic "read page" function for block devices that have the normal
2111 * get_block functionality. This is most of the block device filesystems.
2112 * Reads the page asynchronously --- the unlock_buffer() and
2113 * set/clear_buffer_uptodate() functions propagate buffer state into the
2114 * page struct once IO has completed.
2115 */
2116 int block_read_full_page(struct page *page, get_block_t *get_block)
2117 {
2118 struct inode *inode = page->mapping->host;
2119 sector_t iblock, lblock;
2120 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2121 unsigned int blocksize, bbits;
2122 int nr, i;
2123 int fully_mapped = 1;
2124
2125 head = create_page_buffers(page, inode, 0);
2126 blocksize = head->b_size;
2127 bbits = block_size_bits(blocksize);
2128
2129 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2130 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2131 bh = head;
2132 nr = 0;
2133 i = 0;
2134
2135 do {
2136 if (buffer_uptodate(bh))
2137 continue;
2138
2139 if (!buffer_mapped(bh)) {
2140 int err = 0;
2141
2142 fully_mapped = 0;
2143 if (iblock < lblock) {
2144 WARN_ON(bh->b_size != blocksize);
2145 err = get_block(inode, iblock, bh, 0);
2146 if (err)
2147 SetPageError(page);
2148 }
2149 if (!buffer_mapped(bh)) {
2150 zero_user(page, i * blocksize, blocksize);
2151 if (!err)
2152 set_buffer_uptodate(bh);
2153 continue;
2154 }
2155 /*
2156 * get_block() might have updated the buffer
2157 * synchronously
2158 */
2159 if (buffer_uptodate(bh))
2160 continue;
2161 }
2162 arr[nr++] = bh;
2163 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2164
2165 if (fully_mapped)
2166 SetPageMappedToDisk(page);
2167
2168 if (!nr) {
2169 /*
2170 * All buffers are uptodate - we can set the page uptodate
2171 * as well. But not if get_block() returned an error.
2172 */
2173 if (!PageError(page))
2174 SetPageUptodate(page);
2175 unlock_page(page);
2176 return 0;
2177 }
2178
2179 /* Stage two: lock the buffers */
2180 for (i = 0; i < nr; i++) {
2181 bh = arr[i];
2182 lock_buffer(bh);
2183 mark_buffer_async_read(bh);
2184 }
2185
2186 /*
2187 * Stage 3: start the IO. Check for uptodateness
2188 * inside the buffer lock in case another process reading
2189 * the underlying blockdev brought it uptodate (the sct fix).
2190 */
2191 for (i = 0; i < nr; i++) {
2192 bh = arr[i];
2193 if (buffer_uptodate(bh))
2194 end_buffer_async_read(bh, 1);
2195 else
2196 submit_bh(READ, bh);
2197 }
2198 return 0;
2199 }
2200 EXPORT_SYMBOL(block_read_full_page);
2201
2202 /* utility function for filesystems that need to do work on expanding
2203 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2204 * deal with the hole.
2205 */
2206 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2207 {
2208 struct address_space *mapping = inode->i_mapping;
2209 struct page *page;
2210 void *fsdata;
2211 int err;
2212
2213 err = inode_newsize_ok(inode, size);
2214 if (err)
2215 goto out;
2216
2217 err = pagecache_write_begin(NULL, mapping, size, 0,
2218 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2219 &page, &fsdata);
2220 if (err)
2221 goto out;
2222
2223 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2224 BUG_ON(err > 0);
2225
2226 out:
2227 return err;
2228 }
2229 EXPORT_SYMBOL(generic_cont_expand_simple);
2230
2231 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2232 loff_t pos, loff_t *bytes)
2233 {
2234 struct inode *inode = mapping->host;
2235 unsigned blocksize = 1 << inode->i_blkbits;
2236 struct page *page;
2237 void *fsdata;
2238 pgoff_t index, curidx;
2239 loff_t curpos;
2240 unsigned zerofrom, offset, len;
2241 int err = 0;
2242
2243 index = pos >> PAGE_CACHE_SHIFT;
2244 offset = pos & ~PAGE_CACHE_MASK;
2245
2246 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2247 zerofrom = curpos & ~PAGE_CACHE_MASK;
2248 if (zerofrom & (blocksize-1)) {
2249 *bytes |= (blocksize-1);
2250 (*bytes)++;
2251 }
2252 len = PAGE_CACHE_SIZE - zerofrom;
2253
2254 err = pagecache_write_begin(file, mapping, curpos, len,
2255 AOP_FLAG_UNINTERRUPTIBLE,
2256 &page, &fsdata);
2257 if (err)
2258 goto out;
2259 zero_user(page, zerofrom, len);
2260 err = pagecache_write_end(file, mapping, curpos, len, len,
2261 page, fsdata);
2262 if (err < 0)
2263 goto out;
2264 BUG_ON(err != len);
2265 err = 0;
2266
2267 balance_dirty_pages_ratelimited(mapping);
2268 }
2269
2270 /* page covers the boundary, find the boundary offset */
2271 if (index == curidx) {
2272 zerofrom = curpos & ~PAGE_CACHE_MASK;
2273 /* if we will expand the thing last block will be filled */
2274 if (offset <= zerofrom) {
2275 goto out;
2276 }
2277 if (zerofrom & (blocksize-1)) {
2278 *bytes |= (blocksize-1);
2279 (*bytes)++;
2280 }
2281 len = offset - zerofrom;
2282
2283 err = pagecache_write_begin(file, mapping, curpos, len,
2284 AOP_FLAG_UNINTERRUPTIBLE,
2285 &page, &fsdata);
2286 if (err)
2287 goto out;
2288 zero_user(page, zerofrom, len);
2289 err = pagecache_write_end(file, mapping, curpos, len, len,
2290 page, fsdata);
2291 if (err < 0)
2292 goto out;
2293 BUG_ON(err != len);
2294 err = 0;
2295 }
2296 out:
2297 return err;
2298 }
2299
2300 /*
2301 * For moronic filesystems that do not allow holes in file.
2302 * We may have to extend the file.
2303 */
2304 int cont_write_begin(struct file *file, struct address_space *mapping,
2305 loff_t pos, unsigned len, unsigned flags,
2306 struct page **pagep, void **fsdata,
2307 get_block_t *get_block, loff_t *bytes)
2308 {
2309 struct inode *inode = mapping->host;
2310 unsigned blocksize = 1 << inode->i_blkbits;
2311 unsigned zerofrom;
2312 int err;
2313
2314 err = cont_expand_zero(file, mapping, pos, bytes);
2315 if (err)
2316 return err;
2317
2318 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2319 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2320 *bytes |= (blocksize-1);
2321 (*bytes)++;
2322 }
2323
2324 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2325 }
2326 EXPORT_SYMBOL(cont_write_begin);
2327
2328 int block_commit_write(struct page *page, unsigned from, unsigned to)
2329 {
2330 struct inode *inode = page->mapping->host;
2331 __block_commit_write(inode,page,from,to);
2332 return 0;
2333 }
2334 EXPORT_SYMBOL(block_commit_write);
2335
2336 /*
2337 * block_page_mkwrite() is not allowed to change the file size as it gets
2338 * called from a page fault handler when a page is first dirtied. Hence we must
2339 * be careful to check for EOF conditions here. We set the page up correctly
2340 * for a written page which means we get ENOSPC checking when writing into
2341 * holes and correct delalloc and unwritten extent mapping on filesystems that
2342 * support these features.
2343 *
2344 * We are not allowed to take the i_mutex here so we have to play games to
2345 * protect against truncate races as the page could now be beyond EOF. Because
2346 * truncate writes the inode size before removing pages, once we have the
2347 * page lock we can determine safely if the page is beyond EOF. If it is not
2348 * beyond EOF, then the page is guaranteed safe against truncation until we
2349 * unlock the page.
2350 *
2351 * Direct callers of this function should protect against filesystem freezing
2352 * using sb_start_write() - sb_end_write() functions.
2353 */
2354 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2355 get_block_t get_block)
2356 {
2357 struct page *page = vmf->page;
2358 struct inode *inode = file_inode(vma->vm_file);
2359 unsigned long end;
2360 loff_t size;
2361 int ret;
2362
2363 lock_page(page);
2364 size = i_size_read(inode);
2365 if ((page->mapping != inode->i_mapping) ||
2366 (page_offset(page) > size)) {
2367 /* We overload EFAULT to mean page got truncated */
2368 ret = -EFAULT;
2369 goto out_unlock;
2370 }
2371
2372 /* page is wholly or partially inside EOF */
2373 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2374 end = size & ~PAGE_CACHE_MASK;
2375 else
2376 end = PAGE_CACHE_SIZE;
2377
2378 ret = __block_write_begin(page, 0, end, get_block);
2379 if (!ret)
2380 ret = block_commit_write(page, 0, end);
2381
2382 if (unlikely(ret < 0))
2383 goto out_unlock;
2384 set_page_dirty(page);
2385 wait_for_stable_page(page);
2386 return 0;
2387 out_unlock:
2388 unlock_page(page);
2389 return ret;
2390 }
2391 EXPORT_SYMBOL(__block_page_mkwrite);
2392
2393 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2394 get_block_t get_block)
2395 {
2396 int ret;
2397 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2398
2399 sb_start_pagefault(sb);
2400
2401 /*
2402 * Update file times before taking page lock. We may end up failing the
2403 * fault so this update may be superfluous but who really cares...
2404 */
2405 file_update_time(vma->vm_file);
2406
2407 ret = __block_page_mkwrite(vma, vmf, get_block);
2408 sb_end_pagefault(sb);
2409 return block_page_mkwrite_return(ret);
2410 }
2411 EXPORT_SYMBOL(block_page_mkwrite);
2412
2413 /*
2414 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2415 * immediately, while under the page lock. So it needs a special end_io
2416 * handler which does not touch the bh after unlocking it.
2417 */
2418 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2419 {
2420 __end_buffer_read_notouch(bh, uptodate);
2421 }
2422
2423 /*
2424 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2425 * the page (converting it to circular linked list and taking care of page
2426 * dirty races).
2427 */
2428 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2429 {
2430 struct buffer_head *bh;
2431
2432 BUG_ON(!PageLocked(page));
2433
2434 spin_lock(&page->mapping->private_lock);
2435 bh = head;
2436 do {
2437 if (PageDirty(page))
2438 set_buffer_dirty(bh);
2439 if (!bh->b_this_page)
2440 bh->b_this_page = head;
2441 bh = bh->b_this_page;
2442 } while (bh != head);
2443 attach_page_buffers(page, head);
2444 spin_unlock(&page->mapping->private_lock);
2445 }
2446
2447 /*
2448 * On entry, the page is fully not uptodate.
2449 * On exit the page is fully uptodate in the areas outside (from,to)
2450 * The filesystem needs to handle block truncation upon failure.
2451 */
2452 int nobh_write_begin(struct address_space *mapping,
2453 loff_t pos, unsigned len, unsigned flags,
2454 struct page **pagep, void **fsdata,
2455 get_block_t *get_block)
2456 {
2457 struct inode *inode = mapping->host;
2458 const unsigned blkbits = inode->i_blkbits;
2459 const unsigned blocksize = 1 << blkbits;
2460 struct buffer_head *head, *bh;
2461 struct page *page;
2462 pgoff_t index;
2463 unsigned from, to;
2464 unsigned block_in_page;
2465 unsigned block_start, block_end;
2466 sector_t block_in_file;
2467 int nr_reads = 0;
2468 int ret = 0;
2469 int is_mapped_to_disk = 1;
2470
2471 index = pos >> PAGE_CACHE_SHIFT;
2472 from = pos & (PAGE_CACHE_SIZE - 1);
2473 to = from + len;
2474
2475 page = grab_cache_page_write_begin(mapping, index, flags);
2476 if (!page)
2477 return -ENOMEM;
2478 *pagep = page;
2479 *fsdata = NULL;
2480
2481 if (page_has_buffers(page)) {
2482 ret = __block_write_begin(page, pos, len, get_block);
2483 if (unlikely(ret))
2484 goto out_release;
2485 return ret;
2486 }
2487
2488 if (PageMappedToDisk(page))
2489 return 0;
2490
2491 /*
2492 * Allocate buffers so that we can keep track of state, and potentially
2493 * attach them to the page if an error occurs. In the common case of
2494 * no error, they will just be freed again without ever being attached
2495 * to the page (which is all OK, because we're under the page lock).
2496 *
2497 * Be careful: the buffer linked list is a NULL terminated one, rather
2498 * than the circular one we're used to.
2499 */
2500 head = alloc_page_buffers(page, blocksize, 0);
2501 if (!head) {
2502 ret = -ENOMEM;
2503 goto out_release;
2504 }
2505
2506 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2507
2508 /*
2509 * We loop across all blocks in the page, whether or not they are
2510 * part of the affected region. This is so we can discover if the
2511 * page is fully mapped-to-disk.
2512 */
2513 for (block_start = 0, block_in_page = 0, bh = head;
2514 block_start < PAGE_CACHE_SIZE;
2515 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2516 int create;
2517
2518 block_end = block_start + blocksize;
2519 bh->b_state = 0;
2520 create = 1;
2521 if (block_start >= to)
2522 create = 0;
2523 ret = get_block(inode, block_in_file + block_in_page,
2524 bh, create);
2525 if (ret)
2526 goto failed;
2527 if (!buffer_mapped(bh))
2528 is_mapped_to_disk = 0;
2529 if (buffer_new(bh))
2530 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2531 if (PageUptodate(page)) {
2532 set_buffer_uptodate(bh);
2533 continue;
2534 }
2535 if (buffer_new(bh) || !buffer_mapped(bh)) {
2536 zero_user_segments(page, block_start, from,
2537 to, block_end);
2538 continue;
2539 }
2540 if (buffer_uptodate(bh))
2541 continue; /* reiserfs does this */
2542 if (block_start < from || block_end > to) {
2543 lock_buffer(bh);
2544 bh->b_end_io = end_buffer_read_nobh;
2545 submit_bh(READ, bh);
2546 nr_reads++;
2547 }
2548 }
2549
2550 if (nr_reads) {
2551 /*
2552 * The page is locked, so these buffers are protected from
2553 * any VM or truncate activity. Hence we don't need to care
2554 * for the buffer_head refcounts.
2555 */
2556 for (bh = head; bh; bh = bh->b_this_page) {
2557 wait_on_buffer(bh);
2558 if (!buffer_uptodate(bh))
2559 ret = -EIO;
2560 }
2561 if (ret)
2562 goto failed;
2563 }
2564
2565 if (is_mapped_to_disk)
2566 SetPageMappedToDisk(page);
2567
2568 *fsdata = head; /* to be released by nobh_write_end */
2569
2570 return 0;
2571
2572 failed:
2573 BUG_ON(!ret);
2574 /*
2575 * Error recovery is a bit difficult. We need to zero out blocks that
2576 * were newly allocated, and dirty them to ensure they get written out.
2577 * Buffers need to be attached to the page at this point, otherwise
2578 * the handling of potential IO errors during writeout would be hard
2579 * (could try doing synchronous writeout, but what if that fails too?)
2580 */
2581 attach_nobh_buffers(page, head);
2582 page_zero_new_buffers(page, from, to);
2583
2584 out_release:
2585 unlock_page(page);
2586 page_cache_release(page);
2587 *pagep = NULL;
2588
2589 return ret;
2590 }
2591 EXPORT_SYMBOL(nobh_write_begin);
2592
2593 int nobh_write_end(struct file *file, struct address_space *mapping,
2594 loff_t pos, unsigned len, unsigned copied,
2595 struct page *page, void *fsdata)
2596 {
2597 struct inode *inode = page->mapping->host;
2598 struct buffer_head *head = fsdata;
2599 struct buffer_head *bh;
2600 BUG_ON(fsdata != NULL && page_has_buffers(page));
2601
2602 if (unlikely(copied < len) && head)
2603 attach_nobh_buffers(page, head);
2604 if (page_has_buffers(page))
2605 return generic_write_end(file, mapping, pos, len,
2606 copied, page, fsdata);
2607
2608 SetPageUptodate(page);
2609 set_page_dirty(page);
2610 if (pos+copied > inode->i_size) {
2611 i_size_write(inode, pos+copied);
2612 mark_inode_dirty(inode);
2613 }
2614
2615 unlock_page(page);
2616 page_cache_release(page);
2617
2618 while (head) {
2619 bh = head;
2620 head = head->b_this_page;
2621 free_buffer_head(bh);
2622 }
2623
2624 return copied;
2625 }
2626 EXPORT_SYMBOL(nobh_write_end);
2627
2628 /*
2629 * nobh_writepage() - based on block_full_write_page() except
2630 * that it tries to operate without attaching bufferheads to
2631 * the page.
2632 */
2633 int nobh_writepage(struct page *page, get_block_t *get_block,
2634 struct writeback_control *wbc)
2635 {
2636 struct inode * const inode = page->mapping->host;
2637 loff_t i_size = i_size_read(inode);
2638 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639 unsigned offset;
2640 int ret;
2641
2642 /* Is the page fully inside i_size? */
2643 if (page->index < end_index)
2644 goto out;
2645
2646 /* Is the page fully outside i_size? (truncate in progress) */
2647 offset = i_size & (PAGE_CACHE_SIZE-1);
2648 if (page->index >= end_index+1 || !offset) {
2649 /*
2650 * The page may have dirty, unmapped buffers. For example,
2651 * they may have been added in ext3_writepage(). Make them
2652 * freeable here, so the page does not leak.
2653 */
2654 #if 0
2655 /* Not really sure about this - do we need this ? */
2656 if (page->mapping->a_ops->invalidatepage)
2657 page->mapping->a_ops->invalidatepage(page, offset);
2658 #endif
2659 unlock_page(page);
2660 return 0; /* don't care */
2661 }
2662
2663 /*
2664 * The page straddles i_size. It must be zeroed out on each and every
2665 * writepage invocation because it may be mmapped. "A file is mapped
2666 * in multiples of the page size. For a file that is not a multiple of
2667 * the page size, the remaining memory is zeroed when mapped, and
2668 * writes to that region are not written out to the file."
2669 */
2670 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2671 out:
2672 ret = mpage_writepage(page, get_block, wbc);
2673 if (ret == -EAGAIN)
2674 ret = __block_write_full_page(inode, page, get_block, wbc,
2675 end_buffer_async_write);
2676 return ret;
2677 }
2678 EXPORT_SYMBOL(nobh_writepage);
2679
2680 int nobh_truncate_page(struct address_space *mapping,
2681 loff_t from, get_block_t *get_block)
2682 {
2683 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2684 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2685 unsigned blocksize;
2686 sector_t iblock;
2687 unsigned length, pos;
2688 struct inode *inode = mapping->host;
2689 struct page *page;
2690 struct buffer_head map_bh;
2691 int err;
2692
2693 blocksize = 1 << inode->i_blkbits;
2694 length = offset & (blocksize - 1);
2695
2696 /* Block boundary? Nothing to do */
2697 if (!length)
2698 return 0;
2699
2700 length = blocksize - length;
2701 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2702
2703 page = grab_cache_page(mapping, index);
2704 err = -ENOMEM;
2705 if (!page)
2706 goto out;
2707
2708 if (page_has_buffers(page)) {
2709 has_buffers:
2710 unlock_page(page);
2711 page_cache_release(page);
2712 return block_truncate_page(mapping, from, get_block);
2713 }
2714
2715 /* Find the buffer that contains "offset" */
2716 pos = blocksize;
2717 while (offset >= pos) {
2718 iblock++;
2719 pos += blocksize;
2720 }
2721
2722 map_bh.b_size = blocksize;
2723 map_bh.b_state = 0;
2724 err = get_block(inode, iblock, &map_bh, 0);
2725 if (err)
2726 goto unlock;
2727 /* unmapped? It's a hole - nothing to do */
2728 if (!buffer_mapped(&map_bh))
2729 goto unlock;
2730
2731 /* Ok, it's mapped. Make sure it's up-to-date */
2732 if (!PageUptodate(page)) {
2733 err = mapping->a_ops->readpage(NULL, page);
2734 if (err) {
2735 page_cache_release(page);
2736 goto out;
2737 }
2738 lock_page(page);
2739 if (!PageUptodate(page)) {
2740 err = -EIO;
2741 goto unlock;
2742 }
2743 if (page_has_buffers(page))
2744 goto has_buffers;
2745 }
2746 zero_user(page, offset, length);
2747 set_page_dirty(page);
2748 err = 0;
2749
2750 unlock:
2751 unlock_page(page);
2752 page_cache_release(page);
2753 out:
2754 return err;
2755 }
2756 EXPORT_SYMBOL(nobh_truncate_page);
2757
2758 int block_truncate_page(struct address_space *mapping,
2759 loff_t from, get_block_t *get_block)
2760 {
2761 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2762 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2763 unsigned blocksize;
2764 sector_t iblock;
2765 unsigned length, pos;
2766 struct inode *inode = mapping->host;
2767 struct page *page;
2768 struct buffer_head *bh;
2769 int err;
2770
2771 blocksize = 1 << inode->i_blkbits;
2772 length = offset & (blocksize - 1);
2773
2774 /* Block boundary? Nothing to do */
2775 if (!length)
2776 return 0;
2777
2778 length = blocksize - length;
2779 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2780
2781 page = grab_cache_page(mapping, index);
2782 err = -ENOMEM;
2783 if (!page)
2784 goto out;
2785
2786 if (!page_has_buffers(page))
2787 create_empty_buffers(page, blocksize, 0);
2788
2789 /* Find the buffer that contains "offset" */
2790 bh = page_buffers(page);
2791 pos = blocksize;
2792 while (offset >= pos) {
2793 bh = bh->b_this_page;
2794 iblock++;
2795 pos += blocksize;
2796 }
2797
2798 err = 0;
2799 if (!buffer_mapped(bh)) {
2800 WARN_ON(bh->b_size != blocksize);
2801 err = get_block(inode, iblock, bh, 0);
2802 if (err)
2803 goto unlock;
2804 /* unmapped? It's a hole - nothing to do */
2805 if (!buffer_mapped(bh))
2806 goto unlock;
2807 }
2808
2809 /* Ok, it's mapped. Make sure it's up-to-date */
2810 if (PageUptodate(page))
2811 set_buffer_uptodate(bh);
2812
2813 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2814 err = -EIO;
2815 ll_rw_block(READ, 1, &bh);
2816 wait_on_buffer(bh);
2817 /* Uhhuh. Read error. Complain and punt. */
2818 if (!buffer_uptodate(bh))
2819 goto unlock;
2820 }
2821
2822 zero_user(page, offset, length);
2823 mark_buffer_dirty(bh);
2824 err = 0;
2825
2826 unlock:
2827 unlock_page(page);
2828 page_cache_release(page);
2829 out:
2830 return err;
2831 }
2832 EXPORT_SYMBOL(block_truncate_page);
2833
2834 /*
2835 * The generic ->writepage function for buffer-backed address_spaces
2836 * this form passes in the end_io handler used to finish the IO.
2837 */
2838 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2839 struct writeback_control *wbc, bh_end_io_t *handler)
2840 {
2841 struct inode * const inode = page->mapping->host;
2842 loff_t i_size = i_size_read(inode);
2843 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2844 unsigned offset;
2845
2846 /* Is the page fully inside i_size? */
2847 if (page->index < end_index)
2848 return __block_write_full_page(inode, page, get_block, wbc,
2849 handler);
2850
2851 /* Is the page fully outside i_size? (truncate in progress) */
2852 offset = i_size & (PAGE_CACHE_SIZE-1);
2853 if (page->index >= end_index+1 || !offset) {
2854 /*
2855 * The page may have dirty, unmapped buffers. For example,
2856 * they may have been added in ext3_writepage(). Make them
2857 * freeable here, so the page does not leak.
2858 */
2859 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2860 unlock_page(page);
2861 return 0; /* don't care */
2862 }
2863
2864 /*
2865 * The page straddles i_size. It must be zeroed out on each and every
2866 * writepage invocation because it may be mmapped. "A file is mapped
2867 * in multiples of the page size. For a file that is not a multiple of
2868 * the page size, the remaining memory is zeroed when mapped, and
2869 * writes to that region are not written out to the file."
2870 */
2871 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2872 return __block_write_full_page(inode, page, get_block, wbc, handler);
2873 }
2874 EXPORT_SYMBOL(block_write_full_page_endio);
2875
2876 /*
2877 * The generic ->writepage function for buffer-backed address_spaces
2878 */
2879 int block_write_full_page(struct page *page, get_block_t *get_block,
2880 struct writeback_control *wbc)
2881 {
2882 return block_write_full_page_endio(page, get_block, wbc,
2883 end_buffer_async_write);
2884 }
2885 EXPORT_SYMBOL(block_write_full_page);
2886
2887 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2888 get_block_t *get_block)
2889 {
2890 struct buffer_head tmp;
2891 struct inode *inode = mapping->host;
2892 tmp.b_state = 0;
2893 tmp.b_blocknr = 0;
2894 tmp.b_size = 1 << inode->i_blkbits;
2895 get_block(inode, block, &tmp, 0);
2896 return tmp.b_blocknr;
2897 }
2898 EXPORT_SYMBOL(generic_block_bmap);
2899
2900 static void end_bio_bh_io_sync(struct bio *bio, int err)
2901 {
2902 struct buffer_head *bh = bio->bi_private;
2903
2904 if (err == -EOPNOTSUPP) {
2905 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2906 }
2907
2908 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2909 set_bit(BH_Quiet, &bh->b_state);
2910
2911 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2912 bio_put(bio);
2913 }
2914
2915 /*
2916 * This allows us to do IO even on the odd last sectors
2917 * of a device, even if the bh block size is some multiple
2918 * of the physical sector size.
2919 *
2920 * We'll just truncate the bio to the size of the device,
2921 * and clear the end of the buffer head manually.
2922 *
2923 * Truly out-of-range accesses will turn into actual IO
2924 * errors, this only handles the "we need to be able to
2925 * do IO at the final sector" case.
2926 */
2927 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2928 {
2929 sector_t maxsector;
2930 unsigned bytes;
2931
2932 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2933 if (!maxsector)
2934 return;
2935
2936 /*
2937 * If the *whole* IO is past the end of the device,
2938 * let it through, and the IO layer will turn it into
2939 * an EIO.
2940 */
2941 if (unlikely(bio->bi_sector >= maxsector))
2942 return;
2943
2944 maxsector -= bio->bi_sector;
2945 bytes = bio->bi_size;
2946 if (likely((bytes >> 9) <= maxsector))
2947 return;
2948
2949 /* Uhhuh. We've got a bh that straddles the device size! */
2950 bytes = maxsector << 9;
2951
2952 /* Truncate the bio.. */
2953 bio->bi_size = bytes;
2954 bio->bi_io_vec[0].bv_len = bytes;
2955
2956 /* ..and clear the end of the buffer for reads */
2957 if ((rw & RW_MASK) == READ) {
2958 void *kaddr = kmap_atomic(bh->b_page);
2959 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2960 kunmap_atomic(kaddr);
2961 flush_dcache_page(bh->b_page);
2962 }
2963 }
2964
2965 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
2966 {
2967 struct bio *bio;
2968 int ret = 0;
2969
2970 BUG_ON(!buffer_locked(bh));
2971 BUG_ON(!buffer_mapped(bh));
2972 BUG_ON(!bh->b_end_io);
2973 BUG_ON(buffer_delay(bh));
2974 BUG_ON(buffer_unwritten(bh));
2975
2976 /*
2977 * Only clear out a write error when rewriting
2978 */
2979 if (test_set_buffer_req(bh) && (rw & WRITE))
2980 clear_buffer_write_io_error(bh);
2981
2982 /*
2983 * from here on down, it's all bio -- do the initial mapping,
2984 * submit_bio -> generic_make_request may further map this bio around
2985 */
2986 bio = bio_alloc(GFP_NOIO, 1);
2987
2988 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2989 bio->bi_bdev = bh->b_bdev;
2990 bio->bi_io_vec[0].bv_page = bh->b_page;
2991 bio->bi_io_vec[0].bv_len = bh->b_size;
2992 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2993
2994 bio->bi_vcnt = 1;
2995 bio->bi_size = bh->b_size;
2996
2997 bio->bi_end_io = end_bio_bh_io_sync;
2998 bio->bi_private = bh;
2999 bio->bi_flags |= bio_flags;
3000
3001 /* Take care of bh's that straddle the end of the device */
3002 guard_bh_eod(rw, bio, bh);
3003
3004 if (buffer_meta(bh))
3005 rw |= REQ_META;
3006 if (buffer_prio(bh))
3007 rw |= REQ_PRIO;
3008
3009 bio_get(bio);
3010 submit_bio(rw, bio);
3011
3012 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3013 ret = -EOPNOTSUPP;
3014
3015 bio_put(bio);
3016 return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(_submit_bh);
3019
3020 int submit_bh(int rw, struct buffer_head *bh)
3021 {
3022 return _submit_bh(rw, bh, 0);
3023 }
3024 EXPORT_SYMBOL(submit_bh);
3025
3026 /**
3027 * ll_rw_block: low-level access to block devices (DEPRECATED)
3028 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3029 * @nr: number of &struct buffer_heads in the array
3030 * @bhs: array of pointers to &struct buffer_head
3031 *
3032 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3033 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3034 * %READA option is described in the documentation for generic_make_request()
3035 * which ll_rw_block() calls.
3036 *
3037 * This function drops any buffer that it cannot get a lock on (with the
3038 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3039 * request, and any buffer that appears to be up-to-date when doing read
3040 * request. Further it marks as clean buffers that are processed for
3041 * writing (the buffer cache won't assume that they are actually clean
3042 * until the buffer gets unlocked).
3043 *
3044 * ll_rw_block sets b_end_io to simple completion handler that marks
3045 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3046 * any waiters.
3047 *
3048 * All of the buffers must be for the same device, and must also be a
3049 * multiple of the current approved size for the device.
3050 */
3051 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3052 {
3053 int i;
3054
3055 for (i = 0; i < nr; i++) {
3056 struct buffer_head *bh = bhs[i];
3057
3058 if (!trylock_buffer(bh))
3059 continue;
3060 if (rw == WRITE) {
3061 if (test_clear_buffer_dirty(bh)) {
3062 bh->b_end_io = end_buffer_write_sync;
3063 get_bh(bh);
3064 submit_bh(WRITE, bh);
3065 continue;
3066 }
3067 } else {
3068 if (!buffer_uptodate(bh)) {
3069 bh->b_end_io = end_buffer_read_sync;
3070 get_bh(bh);
3071 submit_bh(rw, bh);
3072 continue;
3073 }
3074 }
3075 unlock_buffer(bh);
3076 }
3077 }
3078 EXPORT_SYMBOL(ll_rw_block);
3079
3080 void write_dirty_buffer(struct buffer_head *bh, int rw)
3081 {
3082 lock_buffer(bh);
3083 if (!test_clear_buffer_dirty(bh)) {
3084 unlock_buffer(bh);
3085 return;
3086 }
3087 bh->b_end_io = end_buffer_write_sync;
3088 get_bh(bh);
3089 submit_bh(rw, bh);
3090 }
3091 EXPORT_SYMBOL(write_dirty_buffer);
3092
3093 /*
3094 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3095 * and then start new I/O and then wait upon it. The caller must have a ref on
3096 * the buffer_head.
3097 */
3098 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3099 {
3100 int ret = 0;
3101
3102 WARN_ON(atomic_read(&bh->b_count) < 1);
3103 lock_buffer(bh);
3104 if (test_clear_buffer_dirty(bh)) {
3105 get_bh(bh);
3106 bh->b_end_io = end_buffer_write_sync;
3107 ret = submit_bh(rw, bh);
3108 wait_on_buffer(bh);
3109 if (!ret && !buffer_uptodate(bh))
3110 ret = -EIO;
3111 } else {
3112 unlock_buffer(bh);
3113 }
3114 return ret;
3115 }
3116 EXPORT_SYMBOL(__sync_dirty_buffer);
3117
3118 int sync_dirty_buffer(struct buffer_head *bh)
3119 {
3120 return __sync_dirty_buffer(bh, WRITE_SYNC);
3121 }
3122 EXPORT_SYMBOL(sync_dirty_buffer);
3123
3124 /*
3125 * try_to_free_buffers() checks if all the buffers on this particular page
3126 * are unused, and releases them if so.
3127 *
3128 * Exclusion against try_to_free_buffers may be obtained by either
3129 * locking the page or by holding its mapping's private_lock.
3130 *
3131 * If the page is dirty but all the buffers are clean then we need to
3132 * be sure to mark the page clean as well. This is because the page
3133 * may be against a block device, and a later reattachment of buffers
3134 * to a dirty page will set *all* buffers dirty. Which would corrupt
3135 * filesystem data on the same device.
3136 *
3137 * The same applies to regular filesystem pages: if all the buffers are
3138 * clean then we set the page clean and proceed. To do that, we require
3139 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3140 * private_lock.
3141 *
3142 * try_to_free_buffers() is non-blocking.
3143 */
3144 static inline int buffer_busy(struct buffer_head *bh)
3145 {
3146 return atomic_read(&bh->b_count) |
3147 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3148 }
3149
3150 static int
3151 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3152 {
3153 struct buffer_head *head = page_buffers(page);
3154 struct buffer_head *bh;
3155
3156 bh = head;
3157 do {
3158 if (buffer_write_io_error(bh) && page->mapping)
3159 set_bit(AS_EIO, &page->mapping->flags);
3160 if (buffer_busy(bh))
3161 goto failed;
3162 bh = bh->b_this_page;
3163 } while (bh != head);
3164
3165 do {
3166 struct buffer_head *next = bh->b_this_page;
3167
3168 if (bh->b_assoc_map)
3169 __remove_assoc_queue(bh);
3170 bh = next;
3171 } while (bh != head);
3172 *buffers_to_free = head;
3173 __clear_page_buffers(page);
3174 return 1;
3175 failed:
3176 return 0;
3177 }
3178
3179 int try_to_free_buffers(struct page *page)
3180 {
3181 struct address_space * const mapping = page->mapping;
3182 struct buffer_head *buffers_to_free = NULL;
3183 int ret = 0;
3184
3185 BUG_ON(!PageLocked(page));
3186 if (PageWriteback(page))
3187 return 0;
3188
3189 if (mapping == NULL) { /* can this still happen? */
3190 ret = drop_buffers(page, &buffers_to_free);
3191 goto out;
3192 }
3193
3194 spin_lock(&mapping->private_lock);
3195 ret = drop_buffers(page, &buffers_to_free);
3196
3197 /*
3198 * If the filesystem writes its buffers by hand (eg ext3)
3199 * then we can have clean buffers against a dirty page. We
3200 * clean the page here; otherwise the VM will never notice
3201 * that the filesystem did any IO at all.
3202 *
3203 * Also, during truncate, discard_buffer will have marked all
3204 * the page's buffers clean. We discover that here and clean
3205 * the page also.
3206 *
3207 * private_lock must be held over this entire operation in order
3208 * to synchronise against __set_page_dirty_buffers and prevent the
3209 * dirty bit from being lost.
3210 */
3211 if (ret)
3212 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3213 spin_unlock(&mapping->private_lock);
3214 out:
3215 if (buffers_to_free) {
3216 struct buffer_head *bh = buffers_to_free;
3217
3218 do {
3219 struct buffer_head *next = bh->b_this_page;
3220 free_buffer_head(bh);
3221 bh = next;
3222 } while (bh != buffers_to_free);
3223 }
3224 return ret;
3225 }
3226 EXPORT_SYMBOL(try_to_free_buffers);
3227
3228 /*
3229 * There are no bdflush tunables left. But distributions are
3230 * still running obsolete flush daemons, so we terminate them here.
3231 *
3232 * Use of bdflush() is deprecated and will be removed in a future kernel.
3233 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3234 */
3235 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3236 {
3237 static int msg_count;
3238
3239 if (!capable(CAP_SYS_ADMIN))
3240 return -EPERM;
3241
3242 if (msg_count < 5) {
3243 msg_count++;
3244 printk(KERN_INFO
3245 "warning: process `%s' used the obsolete bdflush"
3246 " system call\n", current->comm);
3247 printk(KERN_INFO "Fix your initscripts?\n");
3248 }
3249
3250 if (func == 1)
3251 do_exit(0);
3252 return 0;
3253 }
3254
3255 /*
3256 * Buffer-head allocation
3257 */
3258 static struct kmem_cache *bh_cachep __read_mostly;
3259
3260 /*
3261 * Once the number of bh's in the machine exceeds this level, we start
3262 * stripping them in writeback.
3263 */
3264 static unsigned long max_buffer_heads;
3265
3266 int buffer_heads_over_limit;
3267
3268 struct bh_accounting {
3269 int nr; /* Number of live bh's */
3270 int ratelimit; /* Limit cacheline bouncing */
3271 };
3272
3273 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3274
3275 static void recalc_bh_state(void)
3276 {
3277 int i;
3278 int tot = 0;
3279
3280 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3281 return;
3282 __this_cpu_write(bh_accounting.ratelimit, 0);
3283 for_each_online_cpu(i)
3284 tot += per_cpu(bh_accounting, i).nr;
3285 buffer_heads_over_limit = (tot > max_buffer_heads);
3286 }
3287
3288 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3289 {
3290 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3291 if (ret) {
3292 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3293 preempt_disable();
3294 __this_cpu_inc(bh_accounting.nr);
3295 recalc_bh_state();
3296 preempt_enable();
3297 }
3298 return ret;
3299 }
3300 EXPORT_SYMBOL(alloc_buffer_head);
3301
3302 void free_buffer_head(struct buffer_head *bh)
3303 {
3304 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3305 kmem_cache_free(bh_cachep, bh);
3306 preempt_disable();
3307 __this_cpu_dec(bh_accounting.nr);
3308 recalc_bh_state();
3309 preempt_enable();
3310 }
3311 EXPORT_SYMBOL(free_buffer_head);
3312
3313 static void buffer_exit_cpu(int cpu)
3314 {
3315 int i;
3316 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3317
3318 for (i = 0; i < BH_LRU_SIZE; i++) {
3319 brelse(b->bhs[i]);
3320 b->bhs[i] = NULL;
3321 }
3322 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3323 per_cpu(bh_accounting, cpu).nr = 0;
3324 }
3325
3326 static int buffer_cpu_notify(struct notifier_block *self,
3327 unsigned long action, void *hcpu)
3328 {
3329 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3330 buffer_exit_cpu((unsigned long)hcpu);
3331 return NOTIFY_OK;
3332 }
3333
3334 /**
3335 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3336 * @bh: struct buffer_head
3337 *
3338 * Return true if the buffer is up-to-date and false,
3339 * with the buffer locked, if not.
3340 */
3341 int bh_uptodate_or_lock(struct buffer_head *bh)
3342 {
3343 if (!buffer_uptodate(bh)) {
3344 lock_buffer(bh);
3345 if (!buffer_uptodate(bh))
3346 return 0;
3347 unlock_buffer(bh);
3348 }
3349 return 1;
3350 }
3351 EXPORT_SYMBOL(bh_uptodate_or_lock);
3352
3353 /**
3354 * bh_submit_read - Submit a locked buffer for reading
3355 * @bh: struct buffer_head
3356 *
3357 * Returns zero on success and -EIO on error.
3358 */
3359 int bh_submit_read(struct buffer_head *bh)
3360 {
3361 BUG_ON(!buffer_locked(bh));
3362
3363 if (buffer_uptodate(bh)) {
3364 unlock_buffer(bh);
3365 return 0;
3366 }
3367
3368 get_bh(bh);
3369 bh->b_end_io = end_buffer_read_sync;
3370 submit_bh(READ, bh);
3371 wait_on_buffer(bh);
3372 if (buffer_uptodate(bh))
3373 return 0;
3374 return -EIO;
3375 }
3376 EXPORT_SYMBOL(bh_submit_read);
3377
3378 void __init buffer_init(void)
3379 {
3380 unsigned long nrpages;
3381
3382 bh_cachep = kmem_cache_create("buffer_head",
3383 sizeof(struct buffer_head), 0,
3384 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3385 SLAB_MEM_SPREAD),
3386 NULL);
3387
3388 /*
3389 * Limit the bh occupancy to 10% of ZONE_NORMAL
3390 */
3391 nrpages = (nr_free_buffer_pages() * 10) / 100;
3392 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3393 hotcpu_notifier(buffer_cpu_notify, 0);
3394 }