]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/buffer.c
fs: ratelimit __find_get_block_slow() failure message.
[mirror_ubuntu-bionic-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 bh->b_end_io = handler;
59 bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91 {
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118 /*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
135 }
136
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144
145 /*
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
152 */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162 }
163
164 /*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 mark_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188
189 /*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
212
213 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
214 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215 if (!page)
216 goto out;
217
218 spin_lock(&bd_mapping->private_lock);
219 if (!page_has_buffers(page))
220 goto out_unlock;
221 head = page_buffers(page);
222 bh = head;
223 do {
224 if (!buffer_mapped(bh))
225 all_mapped = 0;
226 else if (bh->b_blocknr == block) {
227 ret = bh;
228 get_bh(bh);
229 goto out_unlock;
230 }
231 bh = bh->b_this_page;
232 } while (bh != head);
233
234 /* we might be here because some of the buffers on this page are
235 * not mapped. This is due to various races between
236 * file io on the block device and getblk. It gets dealt with
237 * elsewhere, don't buffer_error if we had some unmapped buffers
238 */
239 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
240 if (all_mapped && __ratelimit(&last_warned)) {
241 printk("__find_get_block_slow() failed. block=%llu, "
242 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
243 "device %pg blocksize: %d\n",
244 (unsigned long long)block,
245 (unsigned long long)bh->b_blocknr,
246 bh->b_state, bh->b_size, bdev,
247 1 << bd_inode->i_blkbits);
248 }
249 out_unlock:
250 spin_unlock(&bd_mapping->private_lock);
251 put_page(page);
252 out:
253 return ret;
254 }
255
256 /*
257 * I/O completion handler for block_read_full_page() - pages
258 * which come unlocked at the end of I/O.
259 */
260 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
261 {
262 unsigned long flags;
263 struct buffer_head *first;
264 struct buffer_head *tmp;
265 struct page *page;
266 int page_uptodate = 1;
267
268 BUG_ON(!buffer_async_read(bh));
269
270 page = bh->b_page;
271 if (uptodate) {
272 set_buffer_uptodate(bh);
273 } else {
274 clear_buffer_uptodate(bh);
275 buffer_io_error(bh, ", async page read");
276 SetPageError(page);
277 }
278
279 /*
280 * Be _very_ careful from here on. Bad things can happen if
281 * two buffer heads end IO at almost the same time and both
282 * decide that the page is now completely done.
283 */
284 first = page_buffers(page);
285 local_irq_save(flags);
286 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
287 clear_buffer_async_read(bh);
288 unlock_buffer(bh);
289 tmp = bh;
290 do {
291 if (!buffer_uptodate(tmp))
292 page_uptodate = 0;
293 if (buffer_async_read(tmp)) {
294 BUG_ON(!buffer_locked(tmp));
295 goto still_busy;
296 }
297 tmp = tmp->b_this_page;
298 } while (tmp != bh);
299 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
300 local_irq_restore(flags);
301
302 /*
303 * If none of the buffers had errors and they are all
304 * uptodate then we can set the page uptodate.
305 */
306 if (page_uptodate && !PageError(page))
307 SetPageUptodate(page);
308 unlock_page(page);
309 return;
310
311 still_busy:
312 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
313 local_irq_restore(flags);
314 return;
315 }
316
317 /*
318 * Completion handler for block_write_full_page() - pages which are unlocked
319 * during I/O, and which have PageWriteback cleared upon I/O completion.
320 */
321 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
322 {
323 unsigned long flags;
324 struct buffer_head *first;
325 struct buffer_head *tmp;
326 struct page *page;
327
328 BUG_ON(!buffer_async_write(bh));
329
330 page = bh->b_page;
331 if (uptodate) {
332 set_buffer_uptodate(bh);
333 } else {
334 buffer_io_error(bh, ", lost async page write");
335 mark_buffer_write_io_error(bh);
336 clear_buffer_uptodate(bh);
337 SetPageError(page);
338 }
339
340 first = page_buffers(page);
341 local_irq_save(flags);
342 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
343
344 clear_buffer_async_write(bh);
345 unlock_buffer(bh);
346 tmp = bh->b_this_page;
347 while (tmp != bh) {
348 if (buffer_async_write(tmp)) {
349 BUG_ON(!buffer_locked(tmp));
350 goto still_busy;
351 }
352 tmp = tmp->b_this_page;
353 }
354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 local_irq_restore(flags);
356 end_page_writeback(page);
357 return;
358
359 still_busy:
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
362 return;
363 }
364 EXPORT_SYMBOL(end_buffer_async_write);
365
366 /*
367 * If a page's buffers are under async readin (end_buffer_async_read
368 * completion) then there is a possibility that another thread of
369 * control could lock one of the buffers after it has completed
370 * but while some of the other buffers have not completed. This
371 * locked buffer would confuse end_buffer_async_read() into not unlocking
372 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
373 * that this buffer is not under async I/O.
374 *
375 * The page comes unlocked when it has no locked buffer_async buffers
376 * left.
377 *
378 * PageLocked prevents anyone starting new async I/O reads any of
379 * the buffers.
380 *
381 * PageWriteback is used to prevent simultaneous writeout of the same
382 * page.
383 *
384 * PageLocked prevents anyone from starting writeback of a page which is
385 * under read I/O (PageWriteback is only ever set against a locked page).
386 */
387 static void mark_buffer_async_read(struct buffer_head *bh)
388 {
389 bh->b_end_io = end_buffer_async_read;
390 set_buffer_async_read(bh);
391 }
392
393 static void mark_buffer_async_write_endio(struct buffer_head *bh,
394 bh_end_io_t *handler)
395 {
396 bh->b_end_io = handler;
397 set_buffer_async_write(bh);
398 }
399
400 void mark_buffer_async_write(struct buffer_head *bh)
401 {
402 mark_buffer_async_write_endio(bh, end_buffer_async_write);
403 }
404 EXPORT_SYMBOL(mark_buffer_async_write);
405
406
407 /*
408 * fs/buffer.c contains helper functions for buffer-backed address space's
409 * fsync functions. A common requirement for buffer-based filesystems is
410 * that certain data from the backing blockdev needs to be written out for
411 * a successful fsync(). For example, ext2 indirect blocks need to be
412 * written back and waited upon before fsync() returns.
413 *
414 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
415 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
416 * management of a list of dependent buffers at ->i_mapping->private_list.
417 *
418 * Locking is a little subtle: try_to_free_buffers() will remove buffers
419 * from their controlling inode's queue when they are being freed. But
420 * try_to_free_buffers() will be operating against the *blockdev* mapping
421 * at the time, not against the S_ISREG file which depends on those buffers.
422 * So the locking for private_list is via the private_lock in the address_space
423 * which backs the buffers. Which is different from the address_space
424 * against which the buffers are listed. So for a particular address_space,
425 * mapping->private_lock does *not* protect mapping->private_list! In fact,
426 * mapping->private_list will always be protected by the backing blockdev's
427 * ->private_lock.
428 *
429 * Which introduces a requirement: all buffers on an address_space's
430 * ->private_list must be from the same address_space: the blockdev's.
431 *
432 * address_spaces which do not place buffers at ->private_list via these
433 * utility functions are free to use private_lock and private_list for
434 * whatever they want. The only requirement is that list_empty(private_list)
435 * be true at clear_inode() time.
436 *
437 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
438 * filesystems should do that. invalidate_inode_buffers() should just go
439 * BUG_ON(!list_empty).
440 *
441 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
442 * take an address_space, not an inode. And it should be called
443 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
444 * queued up.
445 *
446 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
447 * list if it is already on a list. Because if the buffer is on a list,
448 * it *must* already be on the right one. If not, the filesystem is being
449 * silly. This will save a ton of locking. But first we have to ensure
450 * that buffers are taken *off* the old inode's list when they are freed
451 * (presumably in truncate). That requires careful auditing of all
452 * filesystems (do it inside bforget()). It could also be done by bringing
453 * b_inode back.
454 */
455
456 /*
457 * The buffer's backing address_space's private_lock must be held
458 */
459 static void __remove_assoc_queue(struct buffer_head *bh)
460 {
461 list_del_init(&bh->b_assoc_buffers);
462 WARN_ON(!bh->b_assoc_map);
463 bh->b_assoc_map = NULL;
464 }
465
466 int inode_has_buffers(struct inode *inode)
467 {
468 return !list_empty(&inode->i_data.private_list);
469 }
470
471 /*
472 * osync is designed to support O_SYNC io. It waits synchronously for
473 * all already-submitted IO to complete, but does not queue any new
474 * writes to the disk.
475 *
476 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
477 * you dirty the buffers, and then use osync_inode_buffers to wait for
478 * completion. Any other dirty buffers which are not yet queued for
479 * write will not be flushed to disk by the osync.
480 */
481 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
482 {
483 struct buffer_head *bh;
484 struct list_head *p;
485 int err = 0;
486
487 spin_lock(lock);
488 repeat:
489 list_for_each_prev(p, list) {
490 bh = BH_ENTRY(p);
491 if (buffer_locked(bh)) {
492 get_bh(bh);
493 spin_unlock(lock);
494 wait_on_buffer(bh);
495 if (!buffer_uptodate(bh))
496 err = -EIO;
497 brelse(bh);
498 spin_lock(lock);
499 goto repeat;
500 }
501 }
502 spin_unlock(lock);
503 return err;
504 }
505
506 static void do_thaw_one(struct super_block *sb, void *unused)
507 {
508 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
509 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
510 }
511
512 static void do_thaw_all(struct work_struct *work)
513 {
514 iterate_supers(do_thaw_one, NULL);
515 kfree(work);
516 printk(KERN_WARNING "Emergency Thaw complete\n");
517 }
518
519 /**
520 * emergency_thaw_all -- forcibly thaw every frozen filesystem
521 *
522 * Used for emergency unfreeze of all filesystems via SysRq
523 */
524 void emergency_thaw_all(void)
525 {
526 struct work_struct *work;
527
528 work = kmalloc(sizeof(*work), GFP_ATOMIC);
529 if (work) {
530 INIT_WORK(work, do_thaw_all);
531 schedule_work(work);
532 }
533 }
534
535 /**
536 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
537 * @mapping: the mapping which wants those buffers written
538 *
539 * Starts I/O against the buffers at mapping->private_list, and waits upon
540 * that I/O.
541 *
542 * Basically, this is a convenience function for fsync().
543 * @mapping is a file or directory which needs those buffers to be written for
544 * a successful fsync().
545 */
546 int sync_mapping_buffers(struct address_space *mapping)
547 {
548 struct address_space *buffer_mapping = mapping->private_data;
549
550 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
551 return 0;
552
553 return fsync_buffers_list(&buffer_mapping->private_lock,
554 &mapping->private_list);
555 }
556 EXPORT_SYMBOL(sync_mapping_buffers);
557
558 /*
559 * Called when we've recently written block `bblock', and it is known that
560 * `bblock' was for a buffer_boundary() buffer. This means that the block at
561 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
562 * dirty, schedule it for IO. So that indirects merge nicely with their data.
563 */
564 void write_boundary_block(struct block_device *bdev,
565 sector_t bblock, unsigned blocksize)
566 {
567 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
568 if (bh) {
569 if (buffer_dirty(bh))
570 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
571 put_bh(bh);
572 }
573 }
574
575 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
576 {
577 struct address_space *mapping = inode->i_mapping;
578 struct address_space *buffer_mapping = bh->b_page->mapping;
579
580 mark_buffer_dirty(bh);
581 if (!mapping->private_data) {
582 mapping->private_data = buffer_mapping;
583 } else {
584 BUG_ON(mapping->private_data != buffer_mapping);
585 }
586 if (!bh->b_assoc_map) {
587 spin_lock(&buffer_mapping->private_lock);
588 list_move_tail(&bh->b_assoc_buffers,
589 &mapping->private_list);
590 bh->b_assoc_map = mapping;
591 spin_unlock(&buffer_mapping->private_lock);
592 }
593 }
594 EXPORT_SYMBOL(mark_buffer_dirty_inode);
595
596 /*
597 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
598 * dirty.
599 *
600 * If warn is true, then emit a warning if the page is not uptodate and has
601 * not been truncated.
602 *
603 * The caller must hold lock_page_memcg().
604 */
605 static void __set_page_dirty(struct page *page, struct address_space *mapping,
606 int warn)
607 {
608 unsigned long flags;
609
610 spin_lock_irqsave(&mapping->tree_lock, flags);
611 if (page->mapping) { /* Race with truncate? */
612 WARN_ON_ONCE(warn && !PageUptodate(page));
613 account_page_dirtied(page, mapping);
614 radix_tree_tag_set(&mapping->page_tree,
615 page_index(page), PAGECACHE_TAG_DIRTY);
616 }
617 spin_unlock_irqrestore(&mapping->tree_lock, flags);
618 }
619
620 /*
621 * Add a page to the dirty page list.
622 *
623 * It is a sad fact of life that this function is called from several places
624 * deeply under spinlocking. It may not sleep.
625 *
626 * If the page has buffers, the uptodate buffers are set dirty, to preserve
627 * dirty-state coherency between the page and the buffers. It the page does
628 * not have buffers then when they are later attached they will all be set
629 * dirty.
630 *
631 * The buffers are dirtied before the page is dirtied. There's a small race
632 * window in which a writepage caller may see the page cleanness but not the
633 * buffer dirtiness. That's fine. If this code were to set the page dirty
634 * before the buffers, a concurrent writepage caller could clear the page dirty
635 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
636 * page on the dirty page list.
637 *
638 * We use private_lock to lock against try_to_free_buffers while using the
639 * page's buffer list. Also use this to protect against clean buffers being
640 * added to the page after it was set dirty.
641 *
642 * FIXME: may need to call ->reservepage here as well. That's rather up to the
643 * address_space though.
644 */
645 int __set_page_dirty_buffers(struct page *page)
646 {
647 int newly_dirty;
648 struct address_space *mapping = page_mapping(page);
649
650 if (unlikely(!mapping))
651 return !TestSetPageDirty(page);
652
653 spin_lock(&mapping->private_lock);
654 if (page_has_buffers(page)) {
655 struct buffer_head *head = page_buffers(page);
656 struct buffer_head *bh = head;
657
658 do {
659 set_buffer_dirty(bh);
660 bh = bh->b_this_page;
661 } while (bh != head);
662 }
663 /*
664 * Lock out page->mem_cgroup migration to keep PageDirty
665 * synchronized with per-memcg dirty page counters.
666 */
667 lock_page_memcg(page);
668 newly_dirty = !TestSetPageDirty(page);
669 spin_unlock(&mapping->private_lock);
670
671 if (newly_dirty)
672 __set_page_dirty(page, mapping, 1);
673
674 unlock_page_memcg(page);
675
676 if (newly_dirty)
677 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
678
679 return newly_dirty;
680 }
681 EXPORT_SYMBOL(__set_page_dirty_buffers);
682
683 /*
684 * Write out and wait upon a list of buffers.
685 *
686 * We have conflicting pressures: we want to make sure that all
687 * initially dirty buffers get waited on, but that any subsequently
688 * dirtied buffers don't. After all, we don't want fsync to last
689 * forever if somebody is actively writing to the file.
690 *
691 * Do this in two main stages: first we copy dirty buffers to a
692 * temporary inode list, queueing the writes as we go. Then we clean
693 * up, waiting for those writes to complete.
694 *
695 * During this second stage, any subsequent updates to the file may end
696 * up refiling the buffer on the original inode's dirty list again, so
697 * there is a chance we will end up with a buffer queued for write but
698 * not yet completed on that list. So, as a final cleanup we go through
699 * the osync code to catch these locked, dirty buffers without requeuing
700 * any newly dirty buffers for write.
701 */
702 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
703 {
704 struct buffer_head *bh;
705 struct list_head tmp;
706 struct address_space *mapping;
707 int err = 0, err2;
708 struct blk_plug plug;
709
710 INIT_LIST_HEAD(&tmp);
711 blk_start_plug(&plug);
712
713 spin_lock(lock);
714 while (!list_empty(list)) {
715 bh = BH_ENTRY(list->next);
716 mapping = bh->b_assoc_map;
717 __remove_assoc_queue(bh);
718 /* Avoid race with mark_buffer_dirty_inode() which does
719 * a lockless check and we rely on seeing the dirty bit */
720 smp_mb();
721 if (buffer_dirty(bh) || buffer_locked(bh)) {
722 list_add(&bh->b_assoc_buffers, &tmp);
723 bh->b_assoc_map = mapping;
724 if (buffer_dirty(bh)) {
725 get_bh(bh);
726 spin_unlock(lock);
727 /*
728 * Ensure any pending I/O completes so that
729 * write_dirty_buffer() actually writes the
730 * current contents - it is a noop if I/O is
731 * still in flight on potentially older
732 * contents.
733 */
734 write_dirty_buffer(bh, REQ_SYNC);
735
736 /*
737 * Kick off IO for the previous mapping. Note
738 * that we will not run the very last mapping,
739 * wait_on_buffer() will do that for us
740 * through sync_buffer().
741 */
742 brelse(bh);
743 spin_lock(lock);
744 }
745 }
746 }
747
748 spin_unlock(lock);
749 blk_finish_plug(&plug);
750 spin_lock(lock);
751
752 while (!list_empty(&tmp)) {
753 bh = BH_ENTRY(tmp.prev);
754 get_bh(bh);
755 mapping = bh->b_assoc_map;
756 __remove_assoc_queue(bh);
757 /* Avoid race with mark_buffer_dirty_inode() which does
758 * a lockless check and we rely on seeing the dirty bit */
759 smp_mb();
760 if (buffer_dirty(bh)) {
761 list_add(&bh->b_assoc_buffers,
762 &mapping->private_list);
763 bh->b_assoc_map = mapping;
764 }
765 spin_unlock(lock);
766 wait_on_buffer(bh);
767 if (!buffer_uptodate(bh))
768 err = -EIO;
769 brelse(bh);
770 spin_lock(lock);
771 }
772
773 spin_unlock(lock);
774 err2 = osync_buffers_list(lock, list);
775 if (err)
776 return err;
777 else
778 return err2;
779 }
780
781 /*
782 * Invalidate any and all dirty buffers on a given inode. We are
783 * probably unmounting the fs, but that doesn't mean we have already
784 * done a sync(). Just drop the buffers from the inode list.
785 *
786 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
787 * assumes that all the buffers are against the blockdev. Not true
788 * for reiserfs.
789 */
790 void invalidate_inode_buffers(struct inode *inode)
791 {
792 if (inode_has_buffers(inode)) {
793 struct address_space *mapping = &inode->i_data;
794 struct list_head *list = &mapping->private_list;
795 struct address_space *buffer_mapping = mapping->private_data;
796
797 spin_lock(&buffer_mapping->private_lock);
798 while (!list_empty(list))
799 __remove_assoc_queue(BH_ENTRY(list->next));
800 spin_unlock(&buffer_mapping->private_lock);
801 }
802 }
803 EXPORT_SYMBOL(invalidate_inode_buffers);
804
805 /*
806 * Remove any clean buffers from the inode's buffer list. This is called
807 * when we're trying to free the inode itself. Those buffers can pin it.
808 *
809 * Returns true if all buffers were removed.
810 */
811 int remove_inode_buffers(struct inode *inode)
812 {
813 int ret = 1;
814
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
818 struct address_space *buffer_mapping = mapping->private_data;
819
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list)) {
822 struct buffer_head *bh = BH_ENTRY(list->next);
823 if (buffer_dirty(bh)) {
824 ret = 0;
825 break;
826 }
827 __remove_assoc_queue(bh);
828 }
829 spin_unlock(&buffer_mapping->private_lock);
830 }
831 return ret;
832 }
833
834 /*
835 * Create the appropriate buffers when given a page for data area and
836 * the size of each buffer.. Use the bh->b_this_page linked list to
837 * follow the buffers created. Return NULL if unable to create more
838 * buffers.
839 *
840 * The retry flag is used to differentiate async IO (paging, swapping)
841 * which may not fail from ordinary buffer allocations.
842 */
843 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
844 bool retry)
845 {
846 struct buffer_head *bh, *head;
847 gfp_t gfp = GFP_NOFS;
848 long offset;
849
850 if (retry)
851 gfp |= __GFP_NOFAIL;
852
853 head = NULL;
854 offset = PAGE_SIZE;
855 while ((offset -= size) >= 0) {
856 bh = alloc_buffer_head(gfp);
857 if (!bh)
858 goto no_grow;
859
860 bh->b_this_page = head;
861 bh->b_blocknr = -1;
862 head = bh;
863
864 bh->b_size = size;
865
866 /* Link the buffer to its page */
867 set_bh_page(bh, page, offset);
868 }
869 return head;
870 /*
871 * In case anything failed, we just free everything we got.
872 */
873 no_grow:
874 if (head) {
875 do {
876 bh = head;
877 head = head->b_this_page;
878 free_buffer_head(bh);
879 } while (head);
880 }
881
882 return NULL;
883 }
884 EXPORT_SYMBOL_GPL(alloc_page_buffers);
885
886 static inline void
887 link_dev_buffers(struct page *page, struct buffer_head *head)
888 {
889 struct buffer_head *bh, *tail;
890
891 bh = head;
892 do {
893 tail = bh;
894 bh = bh->b_this_page;
895 } while (bh);
896 tail->b_this_page = head;
897 attach_page_buffers(page, head);
898 }
899
900 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
901 {
902 sector_t retval = ~((sector_t)0);
903 loff_t sz = i_size_read(bdev->bd_inode);
904
905 if (sz) {
906 unsigned int sizebits = blksize_bits(size);
907 retval = (sz >> sizebits);
908 }
909 return retval;
910 }
911
912 /*
913 * Initialise the state of a blockdev page's buffers.
914 */
915 static sector_t
916 init_page_buffers(struct page *page, struct block_device *bdev,
917 sector_t block, int size)
918 {
919 struct buffer_head *head = page_buffers(page);
920 struct buffer_head *bh = head;
921 int uptodate = PageUptodate(page);
922 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
923
924 do {
925 if (!buffer_mapped(bh)) {
926 init_buffer(bh, NULL, NULL);
927 bh->b_bdev = bdev;
928 bh->b_blocknr = block;
929 if (uptodate)
930 set_buffer_uptodate(bh);
931 if (block < end_block)
932 set_buffer_mapped(bh);
933 }
934 block++;
935 bh = bh->b_this_page;
936 } while (bh != head);
937
938 /*
939 * Caller needs to validate requested block against end of device.
940 */
941 return end_block;
942 }
943
944 /*
945 * Create the page-cache page that contains the requested block.
946 *
947 * This is used purely for blockdev mappings.
948 */
949 static int
950 grow_dev_page(struct block_device *bdev, sector_t block,
951 pgoff_t index, int size, int sizebits, gfp_t gfp)
952 {
953 struct inode *inode = bdev->bd_inode;
954 struct page *page;
955 struct buffer_head *bh;
956 sector_t end_block;
957 int ret = 0; /* Will call free_more_memory() */
958 gfp_t gfp_mask;
959
960 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
961
962 /*
963 * XXX: __getblk_slow() can not really deal with failure and
964 * will endlessly loop on improvised global reclaim. Prefer
965 * looping in the allocator rather than here, at least that
966 * code knows what it's doing.
967 */
968 gfp_mask |= __GFP_NOFAIL;
969
970 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
971
972 BUG_ON(!PageLocked(page));
973
974 if (page_has_buffers(page)) {
975 bh = page_buffers(page);
976 if (bh->b_size == size) {
977 end_block = init_page_buffers(page, bdev,
978 (sector_t)index << sizebits,
979 size);
980 goto done;
981 }
982 if (!try_to_free_buffers(page))
983 goto failed;
984 }
985
986 /*
987 * Allocate some buffers for this page
988 */
989 bh = alloc_page_buffers(page, size, true);
990
991 /*
992 * Link the page to the buffers and initialise them. Take the
993 * lock to be atomic wrt __find_get_block(), which does not
994 * run under the page lock.
995 */
996 spin_lock(&inode->i_mapping->private_lock);
997 link_dev_buffers(page, bh);
998 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
999 size);
1000 spin_unlock(&inode->i_mapping->private_lock);
1001 done:
1002 ret = (block < end_block) ? 1 : -ENXIO;
1003 failed:
1004 unlock_page(page);
1005 put_page(page);
1006 return ret;
1007 }
1008
1009 /*
1010 * Create buffers for the specified block device block's page. If
1011 * that page was dirty, the buffers are set dirty also.
1012 */
1013 static int
1014 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1015 {
1016 pgoff_t index;
1017 int sizebits;
1018
1019 sizebits = -1;
1020 do {
1021 sizebits++;
1022 } while ((size << sizebits) < PAGE_SIZE);
1023
1024 index = block >> sizebits;
1025
1026 /*
1027 * Check for a block which wants to lie outside our maximum possible
1028 * pagecache index. (this comparison is done using sector_t types).
1029 */
1030 if (unlikely(index != block >> sizebits)) {
1031 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1032 "device %pg\n",
1033 __func__, (unsigned long long)block,
1034 bdev);
1035 return -EIO;
1036 }
1037
1038 /* Create a page with the proper size buffers.. */
1039 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1040 }
1041
1042 static struct buffer_head *
1043 __getblk_slow(struct block_device *bdev, sector_t block,
1044 unsigned size, gfp_t gfp)
1045 {
1046 /* Size must be multiple of hard sectorsize */
1047 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1048 (size < 512 || size > PAGE_SIZE))) {
1049 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1050 size);
1051 printk(KERN_ERR "logical block size: %d\n",
1052 bdev_logical_block_size(bdev));
1053
1054 dump_stack();
1055 return NULL;
1056 }
1057
1058 for (;;) {
1059 struct buffer_head *bh;
1060 int ret;
1061
1062 bh = __find_get_block(bdev, block, size);
1063 if (bh)
1064 return bh;
1065
1066 ret = grow_buffers(bdev, block, size, gfp);
1067 if (ret < 0)
1068 return NULL;
1069 }
1070 }
1071
1072 /*
1073 * The relationship between dirty buffers and dirty pages:
1074 *
1075 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1076 * the page is tagged dirty in its radix tree.
1077 *
1078 * At all times, the dirtiness of the buffers represents the dirtiness of
1079 * subsections of the page. If the page has buffers, the page dirty bit is
1080 * merely a hint about the true dirty state.
1081 *
1082 * When a page is set dirty in its entirety, all its buffers are marked dirty
1083 * (if the page has buffers).
1084 *
1085 * When a buffer is marked dirty, its page is dirtied, but the page's other
1086 * buffers are not.
1087 *
1088 * Also. When blockdev buffers are explicitly read with bread(), they
1089 * individually become uptodate. But their backing page remains not
1090 * uptodate - even if all of its buffers are uptodate. A subsequent
1091 * block_read_full_page() against that page will discover all the uptodate
1092 * buffers, will set the page uptodate and will perform no I/O.
1093 */
1094
1095 /**
1096 * mark_buffer_dirty - mark a buffer_head as needing writeout
1097 * @bh: the buffer_head to mark dirty
1098 *
1099 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1100 * backing page dirty, then tag the page as dirty in its address_space's radix
1101 * tree and then attach the address_space's inode to its superblock's dirty
1102 * inode list.
1103 *
1104 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1105 * mapping->tree_lock and mapping->host->i_lock.
1106 */
1107 void mark_buffer_dirty(struct buffer_head *bh)
1108 {
1109 WARN_ON_ONCE(!buffer_uptodate(bh));
1110
1111 trace_block_dirty_buffer(bh);
1112
1113 /*
1114 * Very *carefully* optimize the it-is-already-dirty case.
1115 *
1116 * Don't let the final "is it dirty" escape to before we
1117 * perhaps modified the buffer.
1118 */
1119 if (buffer_dirty(bh)) {
1120 smp_mb();
1121 if (buffer_dirty(bh))
1122 return;
1123 }
1124
1125 if (!test_set_buffer_dirty(bh)) {
1126 struct page *page = bh->b_page;
1127 struct address_space *mapping = NULL;
1128
1129 lock_page_memcg(page);
1130 if (!TestSetPageDirty(page)) {
1131 mapping = page_mapping(page);
1132 if (mapping)
1133 __set_page_dirty(page, mapping, 0);
1134 }
1135 unlock_page_memcg(page);
1136 if (mapping)
1137 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138 }
1139 }
1140 EXPORT_SYMBOL(mark_buffer_dirty);
1141
1142 void mark_buffer_write_io_error(struct buffer_head *bh)
1143 {
1144 set_buffer_write_io_error(bh);
1145 /* FIXME: do we need to set this in both places? */
1146 if (bh->b_page && bh->b_page->mapping)
1147 mapping_set_error(bh->b_page->mapping, -EIO);
1148 if (bh->b_assoc_map)
1149 mapping_set_error(bh->b_assoc_map, -EIO);
1150 }
1151 EXPORT_SYMBOL(mark_buffer_write_io_error);
1152
1153 /*
1154 * Decrement a buffer_head's reference count. If all buffers against a page
1155 * have zero reference count, are clean and unlocked, and if the page is clean
1156 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1157 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1158 * a page but it ends up not being freed, and buffers may later be reattached).
1159 */
1160 void __brelse(struct buffer_head * buf)
1161 {
1162 if (atomic_read(&buf->b_count)) {
1163 put_bh(buf);
1164 return;
1165 }
1166 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1167 }
1168 EXPORT_SYMBOL(__brelse);
1169
1170 /*
1171 * bforget() is like brelse(), except it discards any
1172 * potentially dirty data.
1173 */
1174 void __bforget(struct buffer_head *bh)
1175 {
1176 clear_buffer_dirty(bh);
1177 if (bh->b_assoc_map) {
1178 struct address_space *buffer_mapping = bh->b_page->mapping;
1179
1180 spin_lock(&buffer_mapping->private_lock);
1181 list_del_init(&bh->b_assoc_buffers);
1182 bh->b_assoc_map = NULL;
1183 spin_unlock(&buffer_mapping->private_lock);
1184 }
1185 __brelse(bh);
1186 }
1187 EXPORT_SYMBOL(__bforget);
1188
1189 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1190 {
1191 lock_buffer(bh);
1192 if (buffer_uptodate(bh)) {
1193 unlock_buffer(bh);
1194 return bh;
1195 } else {
1196 get_bh(bh);
1197 bh->b_end_io = end_buffer_read_sync;
1198 submit_bh(REQ_OP_READ, 0, bh);
1199 wait_on_buffer(bh);
1200 if (buffer_uptodate(bh))
1201 return bh;
1202 }
1203 brelse(bh);
1204 return NULL;
1205 }
1206
1207 /*
1208 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1209 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1210 * refcount elevated by one when they're in an LRU. A buffer can only appear
1211 * once in a particular CPU's LRU. A single buffer can be present in multiple
1212 * CPU's LRUs at the same time.
1213 *
1214 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1215 * sb_find_get_block().
1216 *
1217 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1218 * a local interrupt disable for that.
1219 */
1220
1221 #define BH_LRU_SIZE 16
1222
1223 struct bh_lru {
1224 struct buffer_head *bhs[BH_LRU_SIZE];
1225 };
1226
1227 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1228
1229 #ifdef CONFIG_SMP
1230 #define bh_lru_lock() local_irq_disable()
1231 #define bh_lru_unlock() local_irq_enable()
1232 #else
1233 #define bh_lru_lock() preempt_disable()
1234 #define bh_lru_unlock() preempt_enable()
1235 #endif
1236
1237 static inline void check_irqs_on(void)
1238 {
1239 #ifdef irqs_disabled
1240 BUG_ON(irqs_disabled());
1241 #endif
1242 }
1243
1244 /*
1245 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1246 * inserted at the front, and the buffer_head at the back if any is evicted.
1247 * Or, if already in the LRU it is moved to the front.
1248 */
1249 static void bh_lru_install(struct buffer_head *bh)
1250 {
1251 struct buffer_head *evictee = bh;
1252 struct bh_lru *b;
1253 int i;
1254
1255 check_irqs_on();
1256 bh_lru_lock();
1257
1258 b = this_cpu_ptr(&bh_lrus);
1259 for (i = 0; i < BH_LRU_SIZE; i++) {
1260 swap(evictee, b->bhs[i]);
1261 if (evictee == bh) {
1262 bh_lru_unlock();
1263 return;
1264 }
1265 }
1266
1267 get_bh(bh);
1268 bh_lru_unlock();
1269 brelse(evictee);
1270 }
1271
1272 /*
1273 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1274 */
1275 static struct buffer_head *
1276 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1277 {
1278 struct buffer_head *ret = NULL;
1279 unsigned int i;
1280
1281 check_irqs_on();
1282 bh_lru_lock();
1283 for (i = 0; i < BH_LRU_SIZE; i++) {
1284 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1285
1286 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1287 bh->b_size == size) {
1288 if (i) {
1289 while (i) {
1290 __this_cpu_write(bh_lrus.bhs[i],
1291 __this_cpu_read(bh_lrus.bhs[i - 1]));
1292 i--;
1293 }
1294 __this_cpu_write(bh_lrus.bhs[0], bh);
1295 }
1296 get_bh(bh);
1297 ret = bh;
1298 break;
1299 }
1300 }
1301 bh_lru_unlock();
1302 return ret;
1303 }
1304
1305 /*
1306 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1307 * it in the LRU and mark it as accessed. If it is not present then return
1308 * NULL
1309 */
1310 struct buffer_head *
1311 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1312 {
1313 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1314
1315 if (bh == NULL) {
1316 /* __find_get_block_slow will mark the page accessed */
1317 bh = __find_get_block_slow(bdev, block);
1318 if (bh)
1319 bh_lru_install(bh);
1320 } else
1321 touch_buffer(bh);
1322
1323 return bh;
1324 }
1325 EXPORT_SYMBOL(__find_get_block);
1326
1327 /*
1328 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1329 * which corresponds to the passed block_device, block and size. The
1330 * returned buffer has its reference count incremented.
1331 *
1332 * __getblk_gfp() will lock up the machine if grow_dev_page's
1333 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1334 */
1335 struct buffer_head *
1336 __getblk_gfp(struct block_device *bdev, sector_t block,
1337 unsigned size, gfp_t gfp)
1338 {
1339 struct buffer_head *bh = __find_get_block(bdev, block, size);
1340
1341 might_sleep();
1342 if (bh == NULL)
1343 bh = __getblk_slow(bdev, block, size, gfp);
1344 return bh;
1345 }
1346 EXPORT_SYMBOL(__getblk_gfp);
1347
1348 /*
1349 * Do async read-ahead on a buffer..
1350 */
1351 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1352 {
1353 struct buffer_head *bh = __getblk(bdev, block, size);
1354 if (likely(bh)) {
1355 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1356 brelse(bh);
1357 }
1358 }
1359 EXPORT_SYMBOL(__breadahead);
1360
1361 /**
1362 * __bread_gfp() - reads a specified block and returns the bh
1363 * @bdev: the block_device to read from
1364 * @block: number of block
1365 * @size: size (in bytes) to read
1366 * @gfp: page allocation flag
1367 *
1368 * Reads a specified block, and returns buffer head that contains it.
1369 * The page cache can be allocated from non-movable area
1370 * not to prevent page migration if you set gfp to zero.
1371 * It returns NULL if the block was unreadable.
1372 */
1373 struct buffer_head *
1374 __bread_gfp(struct block_device *bdev, sector_t block,
1375 unsigned size, gfp_t gfp)
1376 {
1377 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1378
1379 if (likely(bh) && !buffer_uptodate(bh))
1380 bh = __bread_slow(bh);
1381 return bh;
1382 }
1383 EXPORT_SYMBOL(__bread_gfp);
1384
1385 /*
1386 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1387 * This doesn't race because it runs in each cpu either in irq
1388 * or with preempt disabled.
1389 */
1390 static void invalidate_bh_lru(void *arg)
1391 {
1392 struct bh_lru *b = &get_cpu_var(bh_lrus);
1393 int i;
1394
1395 for (i = 0; i < BH_LRU_SIZE; i++) {
1396 brelse(b->bhs[i]);
1397 b->bhs[i] = NULL;
1398 }
1399 put_cpu_var(bh_lrus);
1400 }
1401
1402 static bool has_bh_in_lru(int cpu, void *dummy)
1403 {
1404 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1405 int i;
1406
1407 for (i = 0; i < BH_LRU_SIZE; i++) {
1408 if (b->bhs[i])
1409 return 1;
1410 }
1411
1412 return 0;
1413 }
1414
1415 void invalidate_bh_lrus(void)
1416 {
1417 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1418 }
1419 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1420
1421 void set_bh_page(struct buffer_head *bh,
1422 struct page *page, unsigned long offset)
1423 {
1424 bh->b_page = page;
1425 BUG_ON(offset >= PAGE_SIZE);
1426 if (PageHighMem(page))
1427 /*
1428 * This catches illegal uses and preserves the offset:
1429 */
1430 bh->b_data = (char *)(0 + offset);
1431 else
1432 bh->b_data = page_address(page) + offset;
1433 }
1434 EXPORT_SYMBOL(set_bh_page);
1435
1436 /*
1437 * Called when truncating a buffer on a page completely.
1438 */
1439
1440 /* Bits that are cleared during an invalidate */
1441 #define BUFFER_FLAGS_DISCARD \
1442 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1443 1 << BH_Delay | 1 << BH_Unwritten)
1444
1445 static void discard_buffer(struct buffer_head * bh)
1446 {
1447 unsigned long b_state, b_state_old;
1448
1449 lock_buffer(bh);
1450 clear_buffer_dirty(bh);
1451 bh->b_bdev = NULL;
1452 b_state = bh->b_state;
1453 for (;;) {
1454 b_state_old = cmpxchg(&bh->b_state, b_state,
1455 (b_state & ~BUFFER_FLAGS_DISCARD));
1456 if (b_state_old == b_state)
1457 break;
1458 b_state = b_state_old;
1459 }
1460 unlock_buffer(bh);
1461 }
1462
1463 /**
1464 * block_invalidatepage - invalidate part or all of a buffer-backed page
1465 *
1466 * @page: the page which is affected
1467 * @offset: start of the range to invalidate
1468 * @length: length of the range to invalidate
1469 *
1470 * block_invalidatepage() is called when all or part of the page has become
1471 * invalidated by a truncate operation.
1472 *
1473 * block_invalidatepage() does not have to release all buffers, but it must
1474 * ensure that no dirty buffer is left outside @offset and that no I/O
1475 * is underway against any of the blocks which are outside the truncation
1476 * point. Because the caller is about to free (and possibly reuse) those
1477 * blocks on-disk.
1478 */
1479 void block_invalidatepage(struct page *page, unsigned int offset,
1480 unsigned int length)
1481 {
1482 struct buffer_head *head, *bh, *next;
1483 unsigned int curr_off = 0;
1484 unsigned int stop = length + offset;
1485
1486 BUG_ON(!PageLocked(page));
1487 if (!page_has_buffers(page))
1488 goto out;
1489
1490 /*
1491 * Check for overflow
1492 */
1493 BUG_ON(stop > PAGE_SIZE || stop < length);
1494
1495 head = page_buffers(page);
1496 bh = head;
1497 do {
1498 unsigned int next_off = curr_off + bh->b_size;
1499 next = bh->b_this_page;
1500
1501 /*
1502 * Are we still fully in range ?
1503 */
1504 if (next_off > stop)
1505 goto out;
1506
1507 /*
1508 * is this block fully invalidated?
1509 */
1510 if (offset <= curr_off)
1511 discard_buffer(bh);
1512 curr_off = next_off;
1513 bh = next;
1514 } while (bh != head);
1515
1516 /*
1517 * We release buffers only if the entire page is being invalidated.
1518 * The get_block cached value has been unconditionally invalidated,
1519 * so real IO is not possible anymore.
1520 */
1521 if (offset == 0)
1522 try_to_release_page(page, 0);
1523 out:
1524 return;
1525 }
1526 EXPORT_SYMBOL(block_invalidatepage);
1527
1528
1529 /*
1530 * We attach and possibly dirty the buffers atomically wrt
1531 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1532 * is already excluded via the page lock.
1533 */
1534 void create_empty_buffers(struct page *page,
1535 unsigned long blocksize, unsigned long b_state)
1536 {
1537 struct buffer_head *bh, *head, *tail;
1538
1539 head = alloc_page_buffers(page, blocksize, true);
1540 bh = head;
1541 do {
1542 bh->b_state |= b_state;
1543 tail = bh;
1544 bh = bh->b_this_page;
1545 } while (bh);
1546 tail->b_this_page = head;
1547
1548 spin_lock(&page->mapping->private_lock);
1549 if (PageUptodate(page) || PageDirty(page)) {
1550 bh = head;
1551 do {
1552 if (PageDirty(page))
1553 set_buffer_dirty(bh);
1554 if (PageUptodate(page))
1555 set_buffer_uptodate(bh);
1556 bh = bh->b_this_page;
1557 } while (bh != head);
1558 }
1559 attach_page_buffers(page, head);
1560 spin_unlock(&page->mapping->private_lock);
1561 }
1562 EXPORT_SYMBOL(create_empty_buffers);
1563
1564 /**
1565 * clean_bdev_aliases: clean a range of buffers in block device
1566 * @bdev: Block device to clean buffers in
1567 * @block: Start of a range of blocks to clean
1568 * @len: Number of blocks to clean
1569 *
1570 * We are taking a range of blocks for data and we don't want writeback of any
1571 * buffer-cache aliases starting from return from this function and until the
1572 * moment when something will explicitly mark the buffer dirty (hopefully that
1573 * will not happen until we will free that block ;-) We don't even need to mark
1574 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1575 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1576 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1577 * would confuse anyone who might pick it with bread() afterwards...
1578 *
1579 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1580 * writeout I/O going on against recently-freed buffers. We don't wait on that
1581 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1582 * need to. That happens here.
1583 */
1584 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1585 {
1586 struct inode *bd_inode = bdev->bd_inode;
1587 struct address_space *bd_mapping = bd_inode->i_mapping;
1588 struct pagevec pvec;
1589 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1590 pgoff_t end;
1591 int i, count;
1592 struct buffer_head *bh;
1593 struct buffer_head *head;
1594
1595 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1596 pagevec_init(&pvec);
1597 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1598 count = pagevec_count(&pvec);
1599 for (i = 0; i < count; i++) {
1600 struct page *page = pvec.pages[i];
1601
1602 if (!page_has_buffers(page))
1603 continue;
1604 /*
1605 * We use page lock instead of bd_mapping->private_lock
1606 * to pin buffers here since we can afford to sleep and
1607 * it scales better than a global spinlock lock.
1608 */
1609 lock_page(page);
1610 /* Recheck when the page is locked which pins bhs */
1611 if (!page_has_buffers(page))
1612 goto unlock_page;
1613 head = page_buffers(page);
1614 bh = head;
1615 do {
1616 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1617 goto next;
1618 if (bh->b_blocknr >= block + len)
1619 break;
1620 clear_buffer_dirty(bh);
1621 wait_on_buffer(bh);
1622 clear_buffer_req(bh);
1623 next:
1624 bh = bh->b_this_page;
1625 } while (bh != head);
1626 unlock_page:
1627 unlock_page(page);
1628 }
1629 pagevec_release(&pvec);
1630 cond_resched();
1631 /* End of range already reached? */
1632 if (index > end || !index)
1633 break;
1634 }
1635 }
1636 EXPORT_SYMBOL(clean_bdev_aliases);
1637
1638 /*
1639 * Size is a power-of-two in the range 512..PAGE_SIZE,
1640 * and the case we care about most is PAGE_SIZE.
1641 *
1642 * So this *could* possibly be written with those
1643 * constraints in mind (relevant mostly if some
1644 * architecture has a slow bit-scan instruction)
1645 */
1646 static inline int block_size_bits(unsigned int blocksize)
1647 {
1648 return ilog2(blocksize);
1649 }
1650
1651 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1652 {
1653 BUG_ON(!PageLocked(page));
1654
1655 if (!page_has_buffers(page))
1656 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1657 b_state);
1658 return page_buffers(page);
1659 }
1660
1661 /*
1662 * NOTE! All mapped/uptodate combinations are valid:
1663 *
1664 * Mapped Uptodate Meaning
1665 *
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1670 *
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1672 */
1673
1674 /*
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1679 *
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1685 *
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1689 */
1690 int __block_write_full_page(struct inode *inode, struct page *page,
1691 get_block_t *get_block, struct writeback_control *wbc,
1692 bh_end_io_t *handler)
1693 {
1694 int err;
1695 sector_t block;
1696 sector_t last_block;
1697 struct buffer_head *bh, *head;
1698 unsigned int blocksize, bbits;
1699 int nr_underway = 0;
1700 int write_flags = wbc_to_write_flags(wbc);
1701
1702 head = create_page_buffers(page, inode,
1703 (1 << BH_Dirty)|(1 << BH_Uptodate));
1704
1705 /*
1706 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1707 * here, and the (potentially unmapped) buffers may become dirty at
1708 * any time. If a buffer becomes dirty here after we've inspected it
1709 * then we just miss that fact, and the page stays dirty.
1710 *
1711 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712 * handle that here by just cleaning them.
1713 */
1714
1715 bh = head;
1716 blocksize = bh->b_size;
1717 bbits = block_size_bits(blocksize);
1718
1719 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1720 last_block = (i_size_read(inode) - 1) >> bbits;
1721
1722 /*
1723 * Get all the dirty buffers mapped to disk addresses and
1724 * handle any aliases from the underlying blockdev's mapping.
1725 */
1726 do {
1727 if (block > last_block) {
1728 /*
1729 * mapped buffers outside i_size will occur, because
1730 * this page can be outside i_size when there is a
1731 * truncate in progress.
1732 */
1733 /*
1734 * The buffer was zeroed by block_write_full_page()
1735 */
1736 clear_buffer_dirty(bh);
1737 set_buffer_uptodate(bh);
1738 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739 buffer_dirty(bh)) {
1740 WARN_ON(bh->b_size != blocksize);
1741 err = get_block(inode, block, bh, 1);
1742 if (err)
1743 goto recover;
1744 clear_buffer_delay(bh);
1745 if (buffer_new(bh)) {
1746 /* blockdev mappings never come here */
1747 clear_buffer_new(bh);
1748 clean_bdev_bh_alias(bh);
1749 }
1750 }
1751 bh = bh->b_this_page;
1752 block++;
1753 } while (bh != head);
1754
1755 do {
1756 if (!buffer_mapped(bh))
1757 continue;
1758 /*
1759 * If it's a fully non-blocking write attempt and we cannot
1760 * lock the buffer then redirty the page. Note that this can
1761 * potentially cause a busy-wait loop from writeback threads
1762 * and kswapd activity, but those code paths have their own
1763 * higher-level throttling.
1764 */
1765 if (wbc->sync_mode != WB_SYNC_NONE) {
1766 lock_buffer(bh);
1767 } else if (!trylock_buffer(bh)) {
1768 redirty_page_for_writepage(wbc, page);
1769 continue;
1770 }
1771 if (test_clear_buffer_dirty(bh)) {
1772 mark_buffer_async_write_endio(bh, handler);
1773 } else {
1774 unlock_buffer(bh);
1775 }
1776 } while ((bh = bh->b_this_page) != head);
1777
1778 /*
1779 * The page and its buffers are protected by PageWriteback(), so we can
1780 * drop the bh refcounts early.
1781 */
1782 BUG_ON(PageWriteback(page));
1783 set_page_writeback(page);
1784
1785 do {
1786 struct buffer_head *next = bh->b_this_page;
1787 if (buffer_async_write(bh)) {
1788 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1789 inode->i_write_hint, wbc);
1790 nr_underway++;
1791 }
1792 bh = next;
1793 } while (bh != head);
1794 unlock_page(page);
1795
1796 err = 0;
1797 done:
1798 if (nr_underway == 0) {
1799 /*
1800 * The page was marked dirty, but the buffers were
1801 * clean. Someone wrote them back by hand with
1802 * ll_rw_block/submit_bh. A rare case.
1803 */
1804 end_page_writeback(page);
1805
1806 /*
1807 * The page and buffer_heads can be released at any time from
1808 * here on.
1809 */
1810 }
1811 return err;
1812
1813 recover:
1814 /*
1815 * ENOSPC, or some other error. We may already have added some
1816 * blocks to the file, so we need to write these out to avoid
1817 * exposing stale data.
1818 * The page is currently locked and not marked for writeback
1819 */
1820 bh = head;
1821 /* Recovery: lock and submit the mapped buffers */
1822 do {
1823 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824 !buffer_delay(bh)) {
1825 lock_buffer(bh);
1826 mark_buffer_async_write_endio(bh, handler);
1827 } else {
1828 /*
1829 * The buffer may have been set dirty during
1830 * attachment to a dirty page.
1831 */
1832 clear_buffer_dirty(bh);
1833 }
1834 } while ((bh = bh->b_this_page) != head);
1835 SetPageError(page);
1836 BUG_ON(PageWriteback(page));
1837 mapping_set_error(page->mapping, err);
1838 set_page_writeback(page);
1839 do {
1840 struct buffer_head *next = bh->b_this_page;
1841 if (buffer_async_write(bh)) {
1842 clear_buffer_dirty(bh);
1843 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1844 inode->i_write_hint, wbc);
1845 nr_underway++;
1846 }
1847 bh = next;
1848 } while (bh != head);
1849 unlock_page(page);
1850 goto done;
1851 }
1852 EXPORT_SYMBOL(__block_write_full_page);
1853
1854 /*
1855 * If a page has any new buffers, zero them out here, and mark them uptodate
1856 * and dirty so they'll be written out (in order to prevent uninitialised
1857 * block data from leaking). And clear the new bit.
1858 */
1859 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1860 {
1861 unsigned int block_start, block_end;
1862 struct buffer_head *head, *bh;
1863
1864 BUG_ON(!PageLocked(page));
1865 if (!page_has_buffers(page))
1866 return;
1867
1868 bh = head = page_buffers(page);
1869 block_start = 0;
1870 do {
1871 block_end = block_start + bh->b_size;
1872
1873 if (buffer_new(bh)) {
1874 if (block_end > from && block_start < to) {
1875 if (!PageUptodate(page)) {
1876 unsigned start, size;
1877
1878 start = max(from, block_start);
1879 size = min(to, block_end) - start;
1880
1881 zero_user(page, start, size);
1882 set_buffer_uptodate(bh);
1883 }
1884
1885 clear_buffer_new(bh);
1886 mark_buffer_dirty(bh);
1887 }
1888 }
1889
1890 block_start = block_end;
1891 bh = bh->b_this_page;
1892 } while (bh != head);
1893 }
1894 EXPORT_SYMBOL(page_zero_new_buffers);
1895
1896 static void
1897 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1898 struct iomap *iomap)
1899 {
1900 loff_t offset = block << inode->i_blkbits;
1901
1902 bh->b_bdev = iomap->bdev;
1903
1904 /*
1905 * Block points to offset in file we need to map, iomap contains
1906 * the offset at which the map starts. If the map ends before the
1907 * current block, then do not map the buffer and let the caller
1908 * handle it.
1909 */
1910 BUG_ON(offset >= iomap->offset + iomap->length);
1911
1912 switch (iomap->type) {
1913 case IOMAP_HOLE:
1914 /*
1915 * If the buffer is not up to date or beyond the current EOF,
1916 * we need to mark it as new to ensure sub-block zeroing is
1917 * executed if necessary.
1918 */
1919 if (!buffer_uptodate(bh) ||
1920 (offset >= i_size_read(inode)))
1921 set_buffer_new(bh);
1922 break;
1923 case IOMAP_DELALLOC:
1924 if (!buffer_uptodate(bh) ||
1925 (offset >= i_size_read(inode)))
1926 set_buffer_new(bh);
1927 set_buffer_uptodate(bh);
1928 set_buffer_mapped(bh);
1929 set_buffer_delay(bh);
1930 break;
1931 case IOMAP_UNWRITTEN:
1932 /*
1933 * For unwritten regions, we always need to ensure that
1934 * sub-block writes cause the regions in the block we are not
1935 * writing to are zeroed. Set the buffer as new to ensure this.
1936 */
1937 set_buffer_new(bh);
1938 set_buffer_unwritten(bh);
1939 /* FALLTHRU */
1940 case IOMAP_MAPPED:
1941 if (offset >= i_size_read(inode))
1942 set_buffer_new(bh);
1943 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1944 inode->i_blkbits;
1945 set_buffer_mapped(bh);
1946 break;
1947 }
1948 }
1949
1950 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1951 get_block_t *get_block, struct iomap *iomap)
1952 {
1953 unsigned from = pos & (PAGE_SIZE - 1);
1954 unsigned to = from + len;
1955 struct inode *inode = page->mapping->host;
1956 unsigned block_start, block_end;
1957 sector_t block;
1958 int err = 0;
1959 unsigned blocksize, bbits;
1960 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1961
1962 BUG_ON(!PageLocked(page));
1963 BUG_ON(from > PAGE_SIZE);
1964 BUG_ON(to > PAGE_SIZE);
1965 BUG_ON(from > to);
1966
1967 head = create_page_buffers(page, inode, 0);
1968 blocksize = head->b_size;
1969 bbits = block_size_bits(blocksize);
1970
1971 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1972
1973 for(bh = head, block_start = 0; bh != head || !block_start;
1974 block++, block_start=block_end, bh = bh->b_this_page) {
1975 block_end = block_start + blocksize;
1976 if (block_end <= from || block_start >= to) {
1977 if (PageUptodate(page)) {
1978 if (!buffer_uptodate(bh))
1979 set_buffer_uptodate(bh);
1980 }
1981 continue;
1982 }
1983 if (buffer_new(bh))
1984 clear_buffer_new(bh);
1985 if (!buffer_mapped(bh)) {
1986 WARN_ON(bh->b_size != blocksize);
1987 if (get_block) {
1988 err = get_block(inode, block, bh, 1);
1989 if (err)
1990 break;
1991 } else {
1992 iomap_to_bh(inode, block, bh, iomap);
1993 }
1994
1995 if (buffer_new(bh)) {
1996 clean_bdev_bh_alias(bh);
1997 if (PageUptodate(page)) {
1998 clear_buffer_new(bh);
1999 set_buffer_uptodate(bh);
2000 mark_buffer_dirty(bh);
2001 continue;
2002 }
2003 if (block_end > to || block_start < from)
2004 zero_user_segments(page,
2005 to, block_end,
2006 block_start, from);
2007 continue;
2008 }
2009 }
2010 if (PageUptodate(page)) {
2011 if (!buffer_uptodate(bh))
2012 set_buffer_uptodate(bh);
2013 continue;
2014 }
2015 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2016 !buffer_unwritten(bh) &&
2017 (block_start < from || block_end > to)) {
2018 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2019 *wait_bh++=bh;
2020 }
2021 }
2022 /*
2023 * If we issued read requests - let them complete.
2024 */
2025 while(wait_bh > wait) {
2026 wait_on_buffer(*--wait_bh);
2027 if (!buffer_uptodate(*wait_bh))
2028 err = -EIO;
2029 }
2030 if (unlikely(err))
2031 page_zero_new_buffers(page, from, to);
2032 return err;
2033 }
2034
2035 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2036 get_block_t *get_block)
2037 {
2038 return __block_write_begin_int(page, pos, len, get_block, NULL);
2039 }
2040 EXPORT_SYMBOL(__block_write_begin);
2041
2042 static int __block_commit_write(struct inode *inode, struct page *page,
2043 unsigned from, unsigned to)
2044 {
2045 unsigned block_start, block_end;
2046 int partial = 0;
2047 unsigned blocksize;
2048 struct buffer_head *bh, *head;
2049
2050 bh = head = page_buffers(page);
2051 blocksize = bh->b_size;
2052
2053 block_start = 0;
2054 do {
2055 block_end = block_start + blocksize;
2056 if (block_end <= from || block_start >= to) {
2057 if (!buffer_uptodate(bh))
2058 partial = 1;
2059 } else {
2060 set_buffer_uptodate(bh);
2061 mark_buffer_dirty(bh);
2062 }
2063 clear_buffer_new(bh);
2064
2065 block_start = block_end;
2066 bh = bh->b_this_page;
2067 } while (bh != head);
2068
2069 /*
2070 * If this is a partial write which happened to make all buffers
2071 * uptodate then we can optimize away a bogus readpage() for
2072 * the next read(). Here we 'discover' whether the page went
2073 * uptodate as a result of this (potentially partial) write.
2074 */
2075 if (!partial)
2076 SetPageUptodate(page);
2077 return 0;
2078 }
2079
2080 /*
2081 * block_write_begin takes care of the basic task of block allocation and
2082 * bringing partial write blocks uptodate first.
2083 *
2084 * The filesystem needs to handle block truncation upon failure.
2085 */
2086 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2087 unsigned flags, struct page **pagep, get_block_t *get_block)
2088 {
2089 pgoff_t index = pos >> PAGE_SHIFT;
2090 struct page *page;
2091 int status;
2092
2093 page = grab_cache_page_write_begin(mapping, index, flags);
2094 if (!page)
2095 return -ENOMEM;
2096
2097 status = __block_write_begin(page, pos, len, get_block);
2098 if (unlikely(status)) {
2099 unlock_page(page);
2100 put_page(page);
2101 page = NULL;
2102 }
2103
2104 *pagep = page;
2105 return status;
2106 }
2107 EXPORT_SYMBOL(block_write_begin);
2108
2109 int block_write_end(struct file *file, struct address_space *mapping,
2110 loff_t pos, unsigned len, unsigned copied,
2111 struct page *page, void *fsdata)
2112 {
2113 struct inode *inode = mapping->host;
2114 unsigned start;
2115
2116 start = pos & (PAGE_SIZE - 1);
2117
2118 if (unlikely(copied < len)) {
2119 /*
2120 * The buffers that were written will now be uptodate, so we
2121 * don't have to worry about a readpage reading them and
2122 * overwriting a partial write. However if we have encountered
2123 * a short write and only partially written into a buffer, it
2124 * will not be marked uptodate, so a readpage might come in and
2125 * destroy our partial write.
2126 *
2127 * Do the simplest thing, and just treat any short write to a
2128 * non uptodate page as a zero-length write, and force the
2129 * caller to redo the whole thing.
2130 */
2131 if (!PageUptodate(page))
2132 copied = 0;
2133
2134 page_zero_new_buffers(page, start+copied, start+len);
2135 }
2136 flush_dcache_page(page);
2137
2138 /* This could be a short (even 0-length) commit */
2139 __block_commit_write(inode, page, start, start+copied);
2140
2141 return copied;
2142 }
2143 EXPORT_SYMBOL(block_write_end);
2144
2145 int generic_write_end(struct file *file, struct address_space *mapping,
2146 loff_t pos, unsigned len, unsigned copied,
2147 struct page *page, void *fsdata)
2148 {
2149 struct inode *inode = mapping->host;
2150 loff_t old_size = inode->i_size;
2151 int i_size_changed = 0;
2152
2153 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2154
2155 /*
2156 * No need to use i_size_read() here, the i_size
2157 * cannot change under us because we hold i_mutex.
2158 *
2159 * But it's important to update i_size while still holding page lock:
2160 * page writeout could otherwise come in and zero beyond i_size.
2161 */
2162 if (pos+copied > inode->i_size) {
2163 i_size_write(inode, pos+copied);
2164 i_size_changed = 1;
2165 }
2166
2167 unlock_page(page);
2168 put_page(page);
2169
2170 if (old_size < pos)
2171 pagecache_isize_extended(inode, old_size, pos);
2172 /*
2173 * Don't mark the inode dirty under page lock. First, it unnecessarily
2174 * makes the holding time of page lock longer. Second, it forces lock
2175 * ordering of page lock and transaction start for journaling
2176 * filesystems.
2177 */
2178 if (i_size_changed)
2179 mark_inode_dirty(inode);
2180
2181 return copied;
2182 }
2183 EXPORT_SYMBOL(generic_write_end);
2184
2185 /*
2186 * block_is_partially_uptodate checks whether buffers within a page are
2187 * uptodate or not.
2188 *
2189 * Returns true if all buffers which correspond to a file portion
2190 * we want to read are uptodate.
2191 */
2192 int block_is_partially_uptodate(struct page *page, unsigned long from,
2193 unsigned long count)
2194 {
2195 unsigned block_start, block_end, blocksize;
2196 unsigned to;
2197 struct buffer_head *bh, *head;
2198 int ret = 1;
2199
2200 if (!page_has_buffers(page))
2201 return 0;
2202
2203 head = page_buffers(page);
2204 blocksize = head->b_size;
2205 to = min_t(unsigned, PAGE_SIZE - from, count);
2206 to = from + to;
2207 if (from < blocksize && to > PAGE_SIZE - blocksize)
2208 return 0;
2209
2210 bh = head;
2211 block_start = 0;
2212 do {
2213 block_end = block_start + blocksize;
2214 if (block_end > from && block_start < to) {
2215 if (!buffer_uptodate(bh)) {
2216 ret = 0;
2217 break;
2218 }
2219 if (block_end >= to)
2220 break;
2221 }
2222 block_start = block_end;
2223 bh = bh->b_this_page;
2224 } while (bh != head);
2225
2226 return ret;
2227 }
2228 EXPORT_SYMBOL(block_is_partially_uptodate);
2229
2230 /*
2231 * Generic "read page" function for block devices that have the normal
2232 * get_block functionality. This is most of the block device filesystems.
2233 * Reads the page asynchronously --- the unlock_buffer() and
2234 * set/clear_buffer_uptodate() functions propagate buffer state into the
2235 * page struct once IO has completed.
2236 */
2237 int block_read_full_page(struct page *page, get_block_t *get_block)
2238 {
2239 struct inode *inode = page->mapping->host;
2240 sector_t iblock, lblock;
2241 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2242 unsigned int blocksize, bbits;
2243 int nr, i;
2244 int fully_mapped = 1;
2245
2246 head = create_page_buffers(page, inode, 0);
2247 blocksize = head->b_size;
2248 bbits = block_size_bits(blocksize);
2249
2250 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2251 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2252 bh = head;
2253 nr = 0;
2254 i = 0;
2255
2256 do {
2257 if (buffer_uptodate(bh))
2258 continue;
2259
2260 if (!buffer_mapped(bh)) {
2261 int err = 0;
2262
2263 fully_mapped = 0;
2264 if (iblock < lblock) {
2265 WARN_ON(bh->b_size != blocksize);
2266 err = get_block(inode, iblock, bh, 0);
2267 if (err)
2268 SetPageError(page);
2269 }
2270 if (!buffer_mapped(bh)) {
2271 zero_user(page, i * blocksize, blocksize);
2272 if (!err)
2273 set_buffer_uptodate(bh);
2274 continue;
2275 }
2276 /*
2277 * get_block() might have updated the buffer
2278 * synchronously
2279 */
2280 if (buffer_uptodate(bh))
2281 continue;
2282 }
2283 arr[nr++] = bh;
2284 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2285
2286 if (fully_mapped)
2287 SetPageMappedToDisk(page);
2288
2289 if (!nr) {
2290 /*
2291 * All buffers are uptodate - we can set the page uptodate
2292 * as well. But not if get_block() returned an error.
2293 */
2294 if (!PageError(page))
2295 SetPageUptodate(page);
2296 unlock_page(page);
2297 return 0;
2298 }
2299
2300 /* Stage two: lock the buffers */
2301 for (i = 0; i < nr; i++) {
2302 bh = arr[i];
2303 lock_buffer(bh);
2304 mark_buffer_async_read(bh);
2305 }
2306
2307 /*
2308 * Stage 3: start the IO. Check for uptodateness
2309 * inside the buffer lock in case another process reading
2310 * the underlying blockdev brought it uptodate (the sct fix).
2311 */
2312 for (i = 0; i < nr; i++) {
2313 bh = arr[i];
2314 if (buffer_uptodate(bh))
2315 end_buffer_async_read(bh, 1);
2316 else
2317 submit_bh(REQ_OP_READ, 0, bh);
2318 }
2319 return 0;
2320 }
2321 EXPORT_SYMBOL(block_read_full_page);
2322
2323 /* utility function for filesystems that need to do work on expanding
2324 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2325 * deal with the hole.
2326 */
2327 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2328 {
2329 struct address_space *mapping = inode->i_mapping;
2330 struct page *page;
2331 void *fsdata;
2332 int err;
2333
2334 err = inode_newsize_ok(inode, size);
2335 if (err)
2336 goto out;
2337
2338 err = pagecache_write_begin(NULL, mapping, size, 0,
2339 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2340 if (err)
2341 goto out;
2342
2343 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2344 BUG_ON(err > 0);
2345
2346 out:
2347 return err;
2348 }
2349 EXPORT_SYMBOL(generic_cont_expand_simple);
2350
2351 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2352 loff_t pos, loff_t *bytes)
2353 {
2354 struct inode *inode = mapping->host;
2355 unsigned int blocksize = i_blocksize(inode);
2356 struct page *page;
2357 void *fsdata;
2358 pgoff_t index, curidx;
2359 loff_t curpos;
2360 unsigned zerofrom, offset, len;
2361 int err = 0;
2362
2363 index = pos >> PAGE_SHIFT;
2364 offset = pos & ~PAGE_MASK;
2365
2366 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2367 zerofrom = curpos & ~PAGE_MASK;
2368 if (zerofrom & (blocksize-1)) {
2369 *bytes |= (blocksize-1);
2370 (*bytes)++;
2371 }
2372 len = PAGE_SIZE - zerofrom;
2373
2374 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2375 &page, &fsdata);
2376 if (err)
2377 goto out;
2378 zero_user(page, zerofrom, len);
2379 err = pagecache_write_end(file, mapping, curpos, len, len,
2380 page, fsdata);
2381 if (err < 0)
2382 goto out;
2383 BUG_ON(err != len);
2384 err = 0;
2385
2386 balance_dirty_pages_ratelimited(mapping);
2387
2388 if (unlikely(fatal_signal_pending(current))) {
2389 err = -EINTR;
2390 goto out;
2391 }
2392 }
2393
2394 /* page covers the boundary, find the boundary offset */
2395 if (index == curidx) {
2396 zerofrom = curpos & ~PAGE_MASK;
2397 /* if we will expand the thing last block will be filled */
2398 if (offset <= zerofrom) {
2399 goto out;
2400 }
2401 if (zerofrom & (blocksize-1)) {
2402 *bytes |= (blocksize-1);
2403 (*bytes)++;
2404 }
2405 len = offset - zerofrom;
2406
2407 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2408 &page, &fsdata);
2409 if (err)
2410 goto out;
2411 zero_user(page, zerofrom, len);
2412 err = pagecache_write_end(file, mapping, curpos, len, len,
2413 page, fsdata);
2414 if (err < 0)
2415 goto out;
2416 BUG_ON(err != len);
2417 err = 0;
2418 }
2419 out:
2420 return err;
2421 }
2422
2423 /*
2424 * For moronic filesystems that do not allow holes in file.
2425 * We may have to extend the file.
2426 */
2427 int cont_write_begin(struct file *file, struct address_space *mapping,
2428 loff_t pos, unsigned len, unsigned flags,
2429 struct page **pagep, void **fsdata,
2430 get_block_t *get_block, loff_t *bytes)
2431 {
2432 struct inode *inode = mapping->host;
2433 unsigned int blocksize = i_blocksize(inode);
2434 unsigned int zerofrom;
2435 int err;
2436
2437 err = cont_expand_zero(file, mapping, pos, bytes);
2438 if (err)
2439 return err;
2440
2441 zerofrom = *bytes & ~PAGE_MASK;
2442 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2443 *bytes |= (blocksize-1);
2444 (*bytes)++;
2445 }
2446
2447 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2448 }
2449 EXPORT_SYMBOL(cont_write_begin);
2450
2451 int block_commit_write(struct page *page, unsigned from, unsigned to)
2452 {
2453 struct inode *inode = page->mapping->host;
2454 __block_commit_write(inode,page,from,to);
2455 return 0;
2456 }
2457 EXPORT_SYMBOL(block_commit_write);
2458
2459 /*
2460 * block_page_mkwrite() is not allowed to change the file size as it gets
2461 * called from a page fault handler when a page is first dirtied. Hence we must
2462 * be careful to check for EOF conditions here. We set the page up correctly
2463 * for a written page which means we get ENOSPC checking when writing into
2464 * holes and correct delalloc and unwritten extent mapping on filesystems that
2465 * support these features.
2466 *
2467 * We are not allowed to take the i_mutex here so we have to play games to
2468 * protect against truncate races as the page could now be beyond EOF. Because
2469 * truncate writes the inode size before removing pages, once we have the
2470 * page lock we can determine safely if the page is beyond EOF. If it is not
2471 * beyond EOF, then the page is guaranteed safe against truncation until we
2472 * unlock the page.
2473 *
2474 * Direct callers of this function should protect against filesystem freezing
2475 * using sb_start_pagefault() - sb_end_pagefault() functions.
2476 */
2477 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2478 get_block_t get_block)
2479 {
2480 struct page *page = vmf->page;
2481 struct inode *inode = file_inode(vma->vm_file);
2482 unsigned long end;
2483 loff_t size;
2484 int ret;
2485
2486 lock_page(page);
2487 size = i_size_read(inode);
2488 if ((page->mapping != inode->i_mapping) ||
2489 (page_offset(page) > size)) {
2490 /* We overload EFAULT to mean page got truncated */
2491 ret = -EFAULT;
2492 goto out_unlock;
2493 }
2494
2495 /* page is wholly or partially inside EOF */
2496 if (((page->index + 1) << PAGE_SHIFT) > size)
2497 end = size & ~PAGE_MASK;
2498 else
2499 end = PAGE_SIZE;
2500
2501 ret = __block_write_begin(page, 0, end, get_block);
2502 if (!ret)
2503 ret = block_commit_write(page, 0, end);
2504
2505 if (unlikely(ret < 0))
2506 goto out_unlock;
2507 set_page_dirty(page);
2508 wait_for_stable_page(page);
2509 return 0;
2510 out_unlock:
2511 unlock_page(page);
2512 return ret;
2513 }
2514 EXPORT_SYMBOL(block_page_mkwrite);
2515
2516 /*
2517 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2518 * immediately, while under the page lock. So it needs a special end_io
2519 * handler which does not touch the bh after unlocking it.
2520 */
2521 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2522 {
2523 __end_buffer_read_notouch(bh, uptodate);
2524 }
2525
2526 /*
2527 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2528 * the page (converting it to circular linked list and taking care of page
2529 * dirty races).
2530 */
2531 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2532 {
2533 struct buffer_head *bh;
2534
2535 BUG_ON(!PageLocked(page));
2536
2537 spin_lock(&page->mapping->private_lock);
2538 bh = head;
2539 do {
2540 if (PageDirty(page))
2541 set_buffer_dirty(bh);
2542 if (!bh->b_this_page)
2543 bh->b_this_page = head;
2544 bh = bh->b_this_page;
2545 } while (bh != head);
2546 attach_page_buffers(page, head);
2547 spin_unlock(&page->mapping->private_lock);
2548 }
2549
2550 /*
2551 * On entry, the page is fully not uptodate.
2552 * On exit the page is fully uptodate in the areas outside (from,to)
2553 * The filesystem needs to handle block truncation upon failure.
2554 */
2555 int nobh_write_begin(struct address_space *mapping,
2556 loff_t pos, unsigned len, unsigned flags,
2557 struct page **pagep, void **fsdata,
2558 get_block_t *get_block)
2559 {
2560 struct inode *inode = mapping->host;
2561 const unsigned blkbits = inode->i_blkbits;
2562 const unsigned blocksize = 1 << blkbits;
2563 struct buffer_head *head, *bh;
2564 struct page *page;
2565 pgoff_t index;
2566 unsigned from, to;
2567 unsigned block_in_page;
2568 unsigned block_start, block_end;
2569 sector_t block_in_file;
2570 int nr_reads = 0;
2571 int ret = 0;
2572 int is_mapped_to_disk = 1;
2573
2574 index = pos >> PAGE_SHIFT;
2575 from = pos & (PAGE_SIZE - 1);
2576 to = from + len;
2577
2578 page = grab_cache_page_write_begin(mapping, index, flags);
2579 if (!page)
2580 return -ENOMEM;
2581 *pagep = page;
2582 *fsdata = NULL;
2583
2584 if (page_has_buffers(page)) {
2585 ret = __block_write_begin(page, pos, len, get_block);
2586 if (unlikely(ret))
2587 goto out_release;
2588 return ret;
2589 }
2590
2591 if (PageMappedToDisk(page))
2592 return 0;
2593
2594 /*
2595 * Allocate buffers so that we can keep track of state, and potentially
2596 * attach them to the page if an error occurs. In the common case of
2597 * no error, they will just be freed again without ever being attached
2598 * to the page (which is all OK, because we're under the page lock).
2599 *
2600 * Be careful: the buffer linked list is a NULL terminated one, rather
2601 * than the circular one we're used to.
2602 */
2603 head = alloc_page_buffers(page, blocksize, false);
2604 if (!head) {
2605 ret = -ENOMEM;
2606 goto out_release;
2607 }
2608
2609 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2610
2611 /*
2612 * We loop across all blocks in the page, whether or not they are
2613 * part of the affected region. This is so we can discover if the
2614 * page is fully mapped-to-disk.
2615 */
2616 for (block_start = 0, block_in_page = 0, bh = head;
2617 block_start < PAGE_SIZE;
2618 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2619 int create;
2620
2621 block_end = block_start + blocksize;
2622 bh->b_state = 0;
2623 create = 1;
2624 if (block_start >= to)
2625 create = 0;
2626 ret = get_block(inode, block_in_file + block_in_page,
2627 bh, create);
2628 if (ret)
2629 goto failed;
2630 if (!buffer_mapped(bh))
2631 is_mapped_to_disk = 0;
2632 if (buffer_new(bh))
2633 clean_bdev_bh_alias(bh);
2634 if (PageUptodate(page)) {
2635 set_buffer_uptodate(bh);
2636 continue;
2637 }
2638 if (buffer_new(bh) || !buffer_mapped(bh)) {
2639 zero_user_segments(page, block_start, from,
2640 to, block_end);
2641 continue;
2642 }
2643 if (buffer_uptodate(bh))
2644 continue; /* reiserfs does this */
2645 if (block_start < from || block_end > to) {
2646 lock_buffer(bh);
2647 bh->b_end_io = end_buffer_read_nobh;
2648 submit_bh(REQ_OP_READ, 0, bh);
2649 nr_reads++;
2650 }
2651 }
2652
2653 if (nr_reads) {
2654 /*
2655 * The page is locked, so these buffers are protected from
2656 * any VM or truncate activity. Hence we don't need to care
2657 * for the buffer_head refcounts.
2658 */
2659 for (bh = head; bh; bh = bh->b_this_page) {
2660 wait_on_buffer(bh);
2661 if (!buffer_uptodate(bh))
2662 ret = -EIO;
2663 }
2664 if (ret)
2665 goto failed;
2666 }
2667
2668 if (is_mapped_to_disk)
2669 SetPageMappedToDisk(page);
2670
2671 *fsdata = head; /* to be released by nobh_write_end */
2672
2673 return 0;
2674
2675 failed:
2676 BUG_ON(!ret);
2677 /*
2678 * Error recovery is a bit difficult. We need to zero out blocks that
2679 * were newly allocated, and dirty them to ensure they get written out.
2680 * Buffers need to be attached to the page at this point, otherwise
2681 * the handling of potential IO errors during writeout would be hard
2682 * (could try doing synchronous writeout, but what if that fails too?)
2683 */
2684 attach_nobh_buffers(page, head);
2685 page_zero_new_buffers(page, from, to);
2686
2687 out_release:
2688 unlock_page(page);
2689 put_page(page);
2690 *pagep = NULL;
2691
2692 return ret;
2693 }
2694 EXPORT_SYMBOL(nobh_write_begin);
2695
2696 int nobh_write_end(struct file *file, struct address_space *mapping,
2697 loff_t pos, unsigned len, unsigned copied,
2698 struct page *page, void *fsdata)
2699 {
2700 struct inode *inode = page->mapping->host;
2701 struct buffer_head *head = fsdata;
2702 struct buffer_head *bh;
2703 BUG_ON(fsdata != NULL && page_has_buffers(page));
2704
2705 if (unlikely(copied < len) && head)
2706 attach_nobh_buffers(page, head);
2707 if (page_has_buffers(page))
2708 return generic_write_end(file, mapping, pos, len,
2709 copied, page, fsdata);
2710
2711 SetPageUptodate(page);
2712 set_page_dirty(page);
2713 if (pos+copied > inode->i_size) {
2714 i_size_write(inode, pos+copied);
2715 mark_inode_dirty(inode);
2716 }
2717
2718 unlock_page(page);
2719 put_page(page);
2720
2721 while (head) {
2722 bh = head;
2723 head = head->b_this_page;
2724 free_buffer_head(bh);
2725 }
2726
2727 return copied;
2728 }
2729 EXPORT_SYMBOL(nobh_write_end);
2730
2731 /*
2732 * nobh_writepage() - based on block_full_write_page() except
2733 * that it tries to operate without attaching bufferheads to
2734 * the page.
2735 */
2736 int nobh_writepage(struct page *page, get_block_t *get_block,
2737 struct writeback_control *wbc)
2738 {
2739 struct inode * const inode = page->mapping->host;
2740 loff_t i_size = i_size_read(inode);
2741 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2742 unsigned offset;
2743 int ret;
2744
2745 /* Is the page fully inside i_size? */
2746 if (page->index < end_index)
2747 goto out;
2748
2749 /* Is the page fully outside i_size? (truncate in progress) */
2750 offset = i_size & (PAGE_SIZE-1);
2751 if (page->index >= end_index+1 || !offset) {
2752 /*
2753 * The page may have dirty, unmapped buffers. For example,
2754 * they may have been added in ext3_writepage(). Make them
2755 * freeable here, so the page does not leak.
2756 */
2757 #if 0
2758 /* Not really sure about this - do we need this ? */
2759 if (page->mapping->a_ops->invalidatepage)
2760 page->mapping->a_ops->invalidatepage(page, offset);
2761 #endif
2762 unlock_page(page);
2763 return 0; /* don't care */
2764 }
2765
2766 /*
2767 * The page straddles i_size. It must be zeroed out on each and every
2768 * writepage invocation because it may be mmapped. "A file is mapped
2769 * in multiples of the page size. For a file that is not a multiple of
2770 * the page size, the remaining memory is zeroed when mapped, and
2771 * writes to that region are not written out to the file."
2772 */
2773 zero_user_segment(page, offset, PAGE_SIZE);
2774 out:
2775 ret = mpage_writepage(page, get_block, wbc);
2776 if (ret == -EAGAIN)
2777 ret = __block_write_full_page(inode, page, get_block, wbc,
2778 end_buffer_async_write);
2779 return ret;
2780 }
2781 EXPORT_SYMBOL(nobh_writepage);
2782
2783 int nobh_truncate_page(struct address_space *mapping,
2784 loff_t from, get_block_t *get_block)
2785 {
2786 pgoff_t index = from >> PAGE_SHIFT;
2787 unsigned offset = from & (PAGE_SIZE-1);
2788 unsigned blocksize;
2789 sector_t iblock;
2790 unsigned length, pos;
2791 struct inode *inode = mapping->host;
2792 struct page *page;
2793 struct buffer_head map_bh;
2794 int err;
2795
2796 blocksize = i_blocksize(inode);
2797 length = offset & (blocksize - 1);
2798
2799 /* Block boundary? Nothing to do */
2800 if (!length)
2801 return 0;
2802
2803 length = blocksize - length;
2804 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2805
2806 page = grab_cache_page(mapping, index);
2807 err = -ENOMEM;
2808 if (!page)
2809 goto out;
2810
2811 if (page_has_buffers(page)) {
2812 has_buffers:
2813 unlock_page(page);
2814 put_page(page);
2815 return block_truncate_page(mapping, from, get_block);
2816 }
2817
2818 /* Find the buffer that contains "offset" */
2819 pos = blocksize;
2820 while (offset >= pos) {
2821 iblock++;
2822 pos += blocksize;
2823 }
2824
2825 map_bh.b_size = blocksize;
2826 map_bh.b_state = 0;
2827 err = get_block(inode, iblock, &map_bh, 0);
2828 if (err)
2829 goto unlock;
2830 /* unmapped? It's a hole - nothing to do */
2831 if (!buffer_mapped(&map_bh))
2832 goto unlock;
2833
2834 /* Ok, it's mapped. Make sure it's up-to-date */
2835 if (!PageUptodate(page)) {
2836 err = mapping->a_ops->readpage(NULL, page);
2837 if (err) {
2838 put_page(page);
2839 goto out;
2840 }
2841 lock_page(page);
2842 if (!PageUptodate(page)) {
2843 err = -EIO;
2844 goto unlock;
2845 }
2846 if (page_has_buffers(page))
2847 goto has_buffers;
2848 }
2849 zero_user(page, offset, length);
2850 set_page_dirty(page);
2851 err = 0;
2852
2853 unlock:
2854 unlock_page(page);
2855 put_page(page);
2856 out:
2857 return err;
2858 }
2859 EXPORT_SYMBOL(nobh_truncate_page);
2860
2861 int block_truncate_page(struct address_space *mapping,
2862 loff_t from, get_block_t *get_block)
2863 {
2864 pgoff_t index = from >> PAGE_SHIFT;
2865 unsigned offset = from & (PAGE_SIZE-1);
2866 unsigned blocksize;
2867 sector_t iblock;
2868 unsigned length, pos;
2869 struct inode *inode = mapping->host;
2870 struct page *page;
2871 struct buffer_head *bh;
2872 int err;
2873
2874 blocksize = i_blocksize(inode);
2875 length = offset & (blocksize - 1);
2876
2877 /* Block boundary? Nothing to do */
2878 if (!length)
2879 return 0;
2880
2881 length = blocksize - length;
2882 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2883
2884 page = grab_cache_page(mapping, index);
2885 err = -ENOMEM;
2886 if (!page)
2887 goto out;
2888
2889 if (!page_has_buffers(page))
2890 create_empty_buffers(page, blocksize, 0);
2891
2892 /* Find the buffer that contains "offset" */
2893 bh = page_buffers(page);
2894 pos = blocksize;
2895 while (offset >= pos) {
2896 bh = bh->b_this_page;
2897 iblock++;
2898 pos += blocksize;
2899 }
2900
2901 err = 0;
2902 if (!buffer_mapped(bh)) {
2903 WARN_ON(bh->b_size != blocksize);
2904 err = get_block(inode, iblock, bh, 0);
2905 if (err)
2906 goto unlock;
2907 /* unmapped? It's a hole - nothing to do */
2908 if (!buffer_mapped(bh))
2909 goto unlock;
2910 }
2911
2912 /* Ok, it's mapped. Make sure it's up-to-date */
2913 if (PageUptodate(page))
2914 set_buffer_uptodate(bh);
2915
2916 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2917 err = -EIO;
2918 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2919 wait_on_buffer(bh);
2920 /* Uhhuh. Read error. Complain and punt. */
2921 if (!buffer_uptodate(bh))
2922 goto unlock;
2923 }
2924
2925 zero_user(page, offset, length);
2926 mark_buffer_dirty(bh);
2927 err = 0;
2928
2929 unlock:
2930 unlock_page(page);
2931 put_page(page);
2932 out:
2933 return err;
2934 }
2935 EXPORT_SYMBOL(block_truncate_page);
2936
2937 /*
2938 * The generic ->writepage function for buffer-backed address_spaces
2939 */
2940 int block_write_full_page(struct page *page, get_block_t *get_block,
2941 struct writeback_control *wbc)
2942 {
2943 struct inode * const inode = page->mapping->host;
2944 loff_t i_size = i_size_read(inode);
2945 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2946 unsigned offset;
2947
2948 /* Is the page fully inside i_size? */
2949 if (page->index < end_index)
2950 return __block_write_full_page(inode, page, get_block, wbc,
2951 end_buffer_async_write);
2952
2953 /* Is the page fully outside i_size? (truncate in progress) */
2954 offset = i_size & (PAGE_SIZE-1);
2955 if (page->index >= end_index+1 || !offset) {
2956 /*
2957 * The page may have dirty, unmapped buffers. For example,
2958 * they may have been added in ext3_writepage(). Make them
2959 * freeable here, so the page does not leak.
2960 */
2961 do_invalidatepage(page, 0, PAGE_SIZE);
2962 unlock_page(page);
2963 return 0; /* don't care */
2964 }
2965
2966 /*
2967 * The page straddles i_size. It must be zeroed out on each and every
2968 * writepage invocation because it may be mmapped. "A file is mapped
2969 * in multiples of the page size. For a file that is not a multiple of
2970 * the page size, the remaining memory is zeroed when mapped, and
2971 * writes to that region are not written out to the file."
2972 */
2973 zero_user_segment(page, offset, PAGE_SIZE);
2974 return __block_write_full_page(inode, page, get_block, wbc,
2975 end_buffer_async_write);
2976 }
2977 EXPORT_SYMBOL(block_write_full_page);
2978
2979 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2980 get_block_t *get_block)
2981 {
2982 struct inode *inode = mapping->host;
2983 struct buffer_head tmp = {
2984 .b_size = i_blocksize(inode),
2985 };
2986
2987 get_block(inode, block, &tmp, 0);
2988 return tmp.b_blocknr;
2989 }
2990 EXPORT_SYMBOL(generic_block_bmap);
2991
2992 static void end_bio_bh_io_sync(struct bio *bio)
2993 {
2994 struct buffer_head *bh = bio->bi_private;
2995
2996 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2997 set_bit(BH_Quiet, &bh->b_state);
2998
2999 bh->b_end_io(bh, !bio->bi_status);
3000 bio_put(bio);
3001 }
3002
3003 /*
3004 * This allows us to do IO even on the odd last sectors
3005 * of a device, even if the block size is some multiple
3006 * of the physical sector size.
3007 *
3008 * We'll just truncate the bio to the size of the device,
3009 * and clear the end of the buffer head manually.
3010 *
3011 * Truly out-of-range accesses will turn into actual IO
3012 * errors, this only handles the "we need to be able to
3013 * do IO at the final sector" case.
3014 */
3015 void guard_bio_eod(int op, struct bio *bio)
3016 {
3017 sector_t maxsector;
3018 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3019 unsigned truncated_bytes;
3020 struct hd_struct *part;
3021
3022 rcu_read_lock();
3023 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3024 if (part)
3025 maxsector = part_nr_sects_read(part);
3026 else
3027 maxsector = get_capacity(bio->bi_disk);
3028 rcu_read_unlock();
3029
3030 if (!maxsector)
3031 return;
3032
3033 /*
3034 * If the *whole* IO is past the end of the device,
3035 * let it through, and the IO layer will turn it into
3036 * an EIO.
3037 */
3038 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3039 return;
3040
3041 maxsector -= bio->bi_iter.bi_sector;
3042 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3043 return;
3044
3045 /* Uhhuh. We've got a bio that straddles the device size! */
3046 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3047
3048 /* Truncate the bio.. */
3049 bio->bi_iter.bi_size -= truncated_bytes;
3050 bvec->bv_len -= truncated_bytes;
3051
3052 /* ..and clear the end of the buffer for reads */
3053 if (op == REQ_OP_READ) {
3054 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3055 truncated_bytes);
3056 }
3057 }
3058
3059 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3060 enum rw_hint write_hint, struct writeback_control *wbc)
3061 {
3062 struct bio *bio;
3063
3064 BUG_ON(!buffer_locked(bh));
3065 BUG_ON(!buffer_mapped(bh));
3066 BUG_ON(!bh->b_end_io);
3067 BUG_ON(buffer_delay(bh));
3068 BUG_ON(buffer_unwritten(bh));
3069
3070 /*
3071 * Only clear out a write error when rewriting
3072 */
3073 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3074 clear_buffer_write_io_error(bh);
3075
3076 /*
3077 * from here on down, it's all bio -- do the initial mapping,
3078 * submit_bio -> generic_make_request may further map this bio around
3079 */
3080 bio = bio_alloc(GFP_NOIO, 1);
3081
3082 if (wbc) {
3083 wbc_init_bio(wbc, bio);
3084 wbc_account_io(wbc, bh->b_page, bh->b_size);
3085 }
3086
3087 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3088 bio_set_dev(bio, bh->b_bdev);
3089 bio->bi_write_hint = write_hint;
3090
3091 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3092 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3093
3094 bio->bi_end_io = end_bio_bh_io_sync;
3095 bio->bi_private = bh;
3096
3097 /* Take care of bh's that straddle the end of the device */
3098 guard_bio_eod(op, bio);
3099
3100 if (buffer_meta(bh))
3101 op_flags |= REQ_META;
3102 if (buffer_prio(bh))
3103 op_flags |= REQ_PRIO;
3104 bio_set_op_attrs(bio, op, op_flags);
3105
3106 submit_bio(bio);
3107 return 0;
3108 }
3109
3110 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3111 {
3112 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3113 }
3114 EXPORT_SYMBOL(submit_bh);
3115
3116 /**
3117 * ll_rw_block: low-level access to block devices (DEPRECATED)
3118 * @op: whether to %READ or %WRITE
3119 * @op_flags: req_flag_bits
3120 * @nr: number of &struct buffer_heads in the array
3121 * @bhs: array of pointers to &struct buffer_head
3122 *
3123 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3124 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3125 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3126 * %REQ_RAHEAD.
3127 *
3128 * This function drops any buffer that it cannot get a lock on (with the
3129 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3130 * request, and any buffer that appears to be up-to-date when doing read
3131 * request. Further it marks as clean buffers that are processed for
3132 * writing (the buffer cache won't assume that they are actually clean
3133 * until the buffer gets unlocked).
3134 *
3135 * ll_rw_block sets b_end_io to simple completion handler that marks
3136 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3137 * any waiters.
3138 *
3139 * All of the buffers must be for the same device, and must also be a
3140 * multiple of the current approved size for the device.
3141 */
3142 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3143 {
3144 int i;
3145
3146 for (i = 0; i < nr; i++) {
3147 struct buffer_head *bh = bhs[i];
3148
3149 if (!trylock_buffer(bh))
3150 continue;
3151 if (op == WRITE) {
3152 if (test_clear_buffer_dirty(bh)) {
3153 bh->b_end_io = end_buffer_write_sync;
3154 get_bh(bh);
3155 submit_bh(op, op_flags, bh);
3156 continue;
3157 }
3158 } else {
3159 if (!buffer_uptodate(bh)) {
3160 bh->b_end_io = end_buffer_read_sync;
3161 get_bh(bh);
3162 submit_bh(op, op_flags, bh);
3163 continue;
3164 }
3165 }
3166 unlock_buffer(bh);
3167 }
3168 }
3169 EXPORT_SYMBOL(ll_rw_block);
3170
3171 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3172 {
3173 lock_buffer(bh);
3174 if (!test_clear_buffer_dirty(bh)) {
3175 unlock_buffer(bh);
3176 return;
3177 }
3178 bh->b_end_io = end_buffer_write_sync;
3179 get_bh(bh);
3180 submit_bh(REQ_OP_WRITE, op_flags, bh);
3181 }
3182 EXPORT_SYMBOL(write_dirty_buffer);
3183
3184 /*
3185 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3186 * and then start new I/O and then wait upon it. The caller must have a ref on
3187 * the buffer_head.
3188 */
3189 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3190 {
3191 int ret = 0;
3192
3193 WARN_ON(atomic_read(&bh->b_count) < 1);
3194 lock_buffer(bh);
3195 if (test_clear_buffer_dirty(bh)) {
3196 get_bh(bh);
3197 bh->b_end_io = end_buffer_write_sync;
3198 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3199 wait_on_buffer(bh);
3200 if (!ret && !buffer_uptodate(bh))
3201 ret = -EIO;
3202 } else {
3203 unlock_buffer(bh);
3204 }
3205 return ret;
3206 }
3207 EXPORT_SYMBOL(__sync_dirty_buffer);
3208
3209 int sync_dirty_buffer(struct buffer_head *bh)
3210 {
3211 return __sync_dirty_buffer(bh, REQ_SYNC);
3212 }
3213 EXPORT_SYMBOL(sync_dirty_buffer);
3214
3215 /*
3216 * try_to_free_buffers() checks if all the buffers on this particular page
3217 * are unused, and releases them if so.
3218 *
3219 * Exclusion against try_to_free_buffers may be obtained by either
3220 * locking the page or by holding its mapping's private_lock.
3221 *
3222 * If the page is dirty but all the buffers are clean then we need to
3223 * be sure to mark the page clean as well. This is because the page
3224 * may be against a block device, and a later reattachment of buffers
3225 * to a dirty page will set *all* buffers dirty. Which would corrupt
3226 * filesystem data on the same device.
3227 *
3228 * The same applies to regular filesystem pages: if all the buffers are
3229 * clean then we set the page clean and proceed. To do that, we require
3230 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3231 * private_lock.
3232 *
3233 * try_to_free_buffers() is non-blocking.
3234 */
3235 static inline int buffer_busy(struct buffer_head *bh)
3236 {
3237 return atomic_read(&bh->b_count) |
3238 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3239 }
3240
3241 static int
3242 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3243 {
3244 struct buffer_head *head = page_buffers(page);
3245 struct buffer_head *bh;
3246
3247 bh = head;
3248 do {
3249 if (buffer_busy(bh))
3250 goto failed;
3251 bh = bh->b_this_page;
3252 } while (bh != head);
3253
3254 do {
3255 struct buffer_head *next = bh->b_this_page;
3256
3257 if (bh->b_assoc_map)
3258 __remove_assoc_queue(bh);
3259 bh = next;
3260 } while (bh != head);
3261 *buffers_to_free = head;
3262 __clear_page_buffers(page);
3263 return 1;
3264 failed:
3265 return 0;
3266 }
3267
3268 int try_to_free_buffers(struct page *page)
3269 {
3270 struct address_space * const mapping = page->mapping;
3271 struct buffer_head *buffers_to_free = NULL;
3272 int ret = 0;
3273
3274 BUG_ON(!PageLocked(page));
3275 if (PageWriteback(page))
3276 return 0;
3277
3278 if (mapping == NULL) { /* can this still happen? */
3279 ret = drop_buffers(page, &buffers_to_free);
3280 goto out;
3281 }
3282
3283 spin_lock(&mapping->private_lock);
3284 ret = drop_buffers(page, &buffers_to_free);
3285
3286 /*
3287 * If the filesystem writes its buffers by hand (eg ext3)
3288 * then we can have clean buffers against a dirty page. We
3289 * clean the page here; otherwise the VM will never notice
3290 * that the filesystem did any IO at all.
3291 *
3292 * Also, during truncate, discard_buffer will have marked all
3293 * the page's buffers clean. We discover that here and clean
3294 * the page also.
3295 *
3296 * private_lock must be held over this entire operation in order
3297 * to synchronise against __set_page_dirty_buffers and prevent the
3298 * dirty bit from being lost.
3299 */
3300 if (ret)
3301 cancel_dirty_page(page);
3302 spin_unlock(&mapping->private_lock);
3303 out:
3304 if (buffers_to_free) {
3305 struct buffer_head *bh = buffers_to_free;
3306
3307 do {
3308 struct buffer_head *next = bh->b_this_page;
3309 free_buffer_head(bh);
3310 bh = next;
3311 } while (bh != buffers_to_free);
3312 }
3313 return ret;
3314 }
3315 EXPORT_SYMBOL(try_to_free_buffers);
3316
3317 /*
3318 * There are no bdflush tunables left. But distributions are
3319 * still running obsolete flush daemons, so we terminate them here.
3320 *
3321 * Use of bdflush() is deprecated and will be removed in a future kernel.
3322 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3323 */
3324 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3325 {
3326 static int msg_count;
3327
3328 if (!capable(CAP_SYS_ADMIN))
3329 return -EPERM;
3330
3331 if (msg_count < 5) {
3332 msg_count++;
3333 printk(KERN_INFO
3334 "warning: process `%s' used the obsolete bdflush"
3335 " system call\n", current->comm);
3336 printk(KERN_INFO "Fix your initscripts?\n");
3337 }
3338
3339 if (func == 1)
3340 do_exit(0);
3341 return 0;
3342 }
3343
3344 /*
3345 * Buffer-head allocation
3346 */
3347 static struct kmem_cache *bh_cachep __read_mostly;
3348
3349 /*
3350 * Once the number of bh's in the machine exceeds this level, we start
3351 * stripping them in writeback.
3352 */
3353 static unsigned long max_buffer_heads;
3354
3355 int buffer_heads_over_limit;
3356
3357 struct bh_accounting {
3358 int nr; /* Number of live bh's */
3359 int ratelimit; /* Limit cacheline bouncing */
3360 };
3361
3362 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3363
3364 static void recalc_bh_state(void)
3365 {
3366 int i;
3367 int tot = 0;
3368
3369 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3370 return;
3371 __this_cpu_write(bh_accounting.ratelimit, 0);
3372 for_each_online_cpu(i)
3373 tot += per_cpu(bh_accounting, i).nr;
3374 buffer_heads_over_limit = (tot > max_buffer_heads);
3375 }
3376
3377 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3378 {
3379 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3380 if (ret) {
3381 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3382 preempt_disable();
3383 __this_cpu_inc(bh_accounting.nr);
3384 recalc_bh_state();
3385 preempt_enable();
3386 }
3387 return ret;
3388 }
3389 EXPORT_SYMBOL(alloc_buffer_head);
3390
3391 void free_buffer_head(struct buffer_head *bh)
3392 {
3393 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3394 kmem_cache_free(bh_cachep, bh);
3395 preempt_disable();
3396 __this_cpu_dec(bh_accounting.nr);
3397 recalc_bh_state();
3398 preempt_enable();
3399 }
3400 EXPORT_SYMBOL(free_buffer_head);
3401
3402 static int buffer_exit_cpu_dead(unsigned int cpu)
3403 {
3404 int i;
3405 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3406
3407 for (i = 0; i < BH_LRU_SIZE; i++) {
3408 brelse(b->bhs[i]);
3409 b->bhs[i] = NULL;
3410 }
3411 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3412 per_cpu(bh_accounting, cpu).nr = 0;
3413 return 0;
3414 }
3415
3416 /**
3417 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3418 * @bh: struct buffer_head
3419 *
3420 * Return true if the buffer is up-to-date and false,
3421 * with the buffer locked, if not.
3422 */
3423 int bh_uptodate_or_lock(struct buffer_head *bh)
3424 {
3425 if (!buffer_uptodate(bh)) {
3426 lock_buffer(bh);
3427 if (!buffer_uptodate(bh))
3428 return 0;
3429 unlock_buffer(bh);
3430 }
3431 return 1;
3432 }
3433 EXPORT_SYMBOL(bh_uptodate_or_lock);
3434
3435 /**
3436 * bh_submit_read - Submit a locked buffer for reading
3437 * @bh: struct buffer_head
3438 *
3439 * Returns zero on success and -EIO on error.
3440 */
3441 int bh_submit_read(struct buffer_head *bh)
3442 {
3443 BUG_ON(!buffer_locked(bh));
3444
3445 if (buffer_uptodate(bh)) {
3446 unlock_buffer(bh);
3447 return 0;
3448 }
3449
3450 get_bh(bh);
3451 bh->b_end_io = end_buffer_read_sync;
3452 submit_bh(REQ_OP_READ, 0, bh);
3453 wait_on_buffer(bh);
3454 if (buffer_uptodate(bh))
3455 return 0;
3456 return -EIO;
3457 }
3458 EXPORT_SYMBOL(bh_submit_read);
3459
3460 /*
3461 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3462 *
3463 * Returns the offset within the file on success, and -ENOENT otherwise.
3464 */
3465 static loff_t
3466 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3467 {
3468 loff_t offset = page_offset(page);
3469 struct buffer_head *bh, *head;
3470 bool seek_data = whence == SEEK_DATA;
3471
3472 if (lastoff < offset)
3473 lastoff = offset;
3474
3475 bh = head = page_buffers(page);
3476 do {
3477 offset += bh->b_size;
3478 if (lastoff >= offset)
3479 continue;
3480
3481 /*
3482 * Unwritten extents that have data in the page cache covering
3483 * them can be identified by the BH_Unwritten state flag.
3484 * Pages with multiple buffers might have a mix of holes, data
3485 * and unwritten extents - any buffer with valid data in it
3486 * should have BH_Uptodate flag set on it.
3487 */
3488
3489 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3490 return lastoff;
3491
3492 lastoff = offset;
3493 } while ((bh = bh->b_this_page) != head);
3494 return -ENOENT;
3495 }
3496
3497 /*
3498 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3499 *
3500 * Within unwritten extents, the page cache determines which parts are holes
3501 * and which are data: unwritten and uptodate buffer heads count as data;
3502 * everything else counts as a hole.
3503 *
3504 * Returns the resulting offset on successs, and -ENOENT otherwise.
3505 */
3506 loff_t
3507 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3508 int whence)
3509 {
3510 pgoff_t index = offset >> PAGE_SHIFT;
3511 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3512 loff_t lastoff = offset;
3513 struct pagevec pvec;
3514
3515 if (length <= 0)
3516 return -ENOENT;
3517
3518 pagevec_init(&pvec);
3519
3520 do {
3521 unsigned nr_pages, i;
3522
3523 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3524 end - 1);
3525 if (nr_pages == 0)
3526 break;
3527
3528 for (i = 0; i < nr_pages; i++) {
3529 struct page *page = pvec.pages[i];
3530
3531 /*
3532 * At this point, the page may be truncated or
3533 * invalidated (changing page->mapping to NULL), or
3534 * even swizzled back from swapper_space to tmpfs file
3535 * mapping. However, page->index will not change
3536 * because we have a reference on the page.
3537 *
3538 * If current page offset is beyond where we've ended,
3539 * we've found a hole.
3540 */
3541 if (whence == SEEK_HOLE &&
3542 lastoff < page_offset(page))
3543 goto check_range;
3544
3545 lock_page(page);
3546 if (likely(page->mapping == inode->i_mapping) &&
3547 page_has_buffers(page)) {
3548 lastoff = page_seek_hole_data(page, lastoff, whence);
3549 if (lastoff >= 0) {
3550 unlock_page(page);
3551 goto check_range;
3552 }
3553 }
3554 unlock_page(page);
3555 lastoff = page_offset(page) + PAGE_SIZE;
3556 }
3557 pagevec_release(&pvec);
3558 } while (index < end);
3559
3560 /* When no page at lastoff and we are not done, we found a hole. */
3561 if (whence != SEEK_HOLE)
3562 goto not_found;
3563
3564 check_range:
3565 if (lastoff < offset + length)
3566 goto out;
3567 not_found:
3568 lastoff = -ENOENT;
3569 out:
3570 pagevec_release(&pvec);
3571 return lastoff;
3572 }
3573
3574 void __init buffer_init(void)
3575 {
3576 unsigned long nrpages;
3577 int ret;
3578
3579 bh_cachep = kmem_cache_create("buffer_head",
3580 sizeof(struct buffer_head), 0,
3581 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3582 SLAB_MEM_SPREAD),
3583 NULL);
3584
3585 /*
3586 * Limit the bh occupancy to 10% of ZONE_NORMAL
3587 */
3588 nrpages = (nr_free_buffer_pages() * 10) / 100;
3589 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3590 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3591 NULL, buffer_exit_cpu_dead);
3592 WARN_ON(ret < 0);
3593 }