]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/buffer.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[mirror_ubuntu-jammy-kernel.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129 ClearPagePrivate(page);
130 set_page_private(page, 0);
131 put_page(page);
132 }
133
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136 if (!test_bit(BH_Quiet, &bh->b_state))
137 printk_ratelimited(KERN_ERR
138 "Buffer I/O error on dev %pg, logical block %llu%s\n",
139 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141
142 /*
143 * End-of-IO handler helper function which does not touch the bh after
144 * unlocking it.
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
148 * itself.
149 */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 /* This happens, due to failed read-ahead attempts. */
156 clear_buffer_uptodate(bh);
157 }
158 unlock_buffer(bh);
159 }
160
161 /*
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
164 */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167 __end_buffer_read_notouch(bh, uptodate);
168 put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174 if (uptodate) {
175 set_buffer_uptodate(bh);
176 } else {
177 buffer_io_error(bh, ", lost sync page write");
178 mark_buffer_write_io_error(bh);
179 clear_buffer_uptodate(bh);
180 }
181 unlock_buffer(bh);
182 put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185
186 /*
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
190 * private_lock.
191 *
192 * Hack idea: for the blockdev mapping, private_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock.
195 */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199 struct inode *bd_inode = bdev->bd_inode;
200 struct address_space *bd_mapping = bd_inode->i_mapping;
201 struct buffer_head *ret = NULL;
202 pgoff_t index;
203 struct buffer_head *bh;
204 struct buffer_head *head;
205 struct page *page;
206 int all_mapped = 1;
207 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208
209 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 if (!page)
212 goto out;
213
214 spin_lock(&bd_mapping->private_lock);
215 if (!page_has_buffers(page))
216 goto out_unlock;
217 head = page_buffers(page);
218 bh = head;
219 do {
220 if (!buffer_mapped(bh))
221 all_mapped = 0;
222 else if (bh->b_blocknr == block) {
223 ret = bh;
224 get_bh(bh);
225 goto out_unlock;
226 }
227 bh = bh->b_this_page;
228 } while (bh != head);
229
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
234 */
235 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236 if (all_mapped && __ratelimit(&last_warned)) {
237 printk("__find_get_block_slow() failed. block=%llu, "
238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 "device %pg blocksize: %d\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr,
242 bh->b_state, bh->b_size, bdev,
243 1 << bd_inode->i_blkbits);
244 }
245 out_unlock:
246 spin_unlock(&bd_mapping->private_lock);
247 put_page(page);
248 out:
249 return ret;
250 }
251
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 unsigned long flags;
255 struct buffer_head *first;
256 struct buffer_head *tmp;
257 struct page *page;
258 int page_uptodate = 1;
259
260 BUG_ON(!buffer_async_read(bh));
261
262 page = bh->b_page;
263 if (uptodate) {
264 set_buffer_uptodate(bh);
265 } else {
266 clear_buffer_uptodate(bh);
267 buffer_io_error(bh, ", async page read");
268 SetPageError(page);
269 }
270
271 /*
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
275 */
276 first = page_buffers(page);
277 local_irq_save(flags);
278 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279 clear_buffer_async_read(bh);
280 unlock_buffer(bh);
281 tmp = bh;
282 do {
283 if (!buffer_uptodate(tmp))
284 page_uptodate = 0;
285 if (buffer_async_read(tmp)) {
286 BUG_ON(!buffer_locked(tmp));
287 goto still_busy;
288 }
289 tmp = tmp->b_this_page;
290 } while (tmp != bh);
291 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292 local_irq_restore(flags);
293
294 /*
295 * If none of the buffers had errors and they are all
296 * uptodate then we can set the page uptodate.
297 */
298 if (page_uptodate && !PageError(page))
299 SetPageUptodate(page);
300 unlock_page(page);
301 return;
302
303 still_busy:
304 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305 local_irq_restore(flags);
306 return;
307 }
308
309 struct decrypt_bh_ctx {
310 struct work_struct work;
311 struct buffer_head *bh;
312 };
313
314 static void decrypt_bh(struct work_struct *work)
315 {
316 struct decrypt_bh_ctx *ctx =
317 container_of(work, struct decrypt_bh_ctx, work);
318 struct buffer_head *bh = ctx->bh;
319 int err;
320
321 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
322 bh_offset(bh));
323 end_buffer_async_read(bh, err == 0);
324 kfree(ctx);
325 }
326
327 /*
328 * I/O completion handler for block_read_full_page() - pages
329 * which come unlocked at the end of I/O.
330 */
331 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
332 {
333 /* Decrypt if needed */
334 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
335 IS_ENCRYPTED(bh->b_page->mapping->host) &&
336 S_ISREG(bh->b_page->mapping->host->i_mode)) {
337 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
338
339 if (ctx) {
340 INIT_WORK(&ctx->work, decrypt_bh);
341 ctx->bh = bh;
342 fscrypt_enqueue_decrypt_work(&ctx->work);
343 return;
344 }
345 uptodate = 0;
346 }
347 end_buffer_async_read(bh, uptodate);
348 }
349
350 /*
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
353 */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356 unsigned long flags;
357 struct buffer_head *first;
358 struct buffer_head *tmp;
359 struct page *page;
360
361 BUG_ON(!buffer_async_write(bh));
362
363 page = bh->b_page;
364 if (uptodate) {
365 set_buffer_uptodate(bh);
366 } else {
367 buffer_io_error(bh, ", lost async page write");
368 mark_buffer_write_io_error(bh);
369 clear_buffer_uptodate(bh);
370 SetPageError(page);
371 }
372
373 first = page_buffers(page);
374 local_irq_save(flags);
375 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
376
377 clear_buffer_async_write(bh);
378 unlock_buffer(bh);
379 tmp = bh->b_this_page;
380 while (tmp != bh) {
381 if (buffer_async_write(tmp)) {
382 BUG_ON(!buffer_locked(tmp));
383 goto still_busy;
384 }
385 tmp = tmp->b_this_page;
386 }
387 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
388 local_irq_restore(flags);
389 end_page_writeback(page);
390 return;
391
392 still_busy:
393 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
394 local_irq_restore(flags);
395 return;
396 }
397 EXPORT_SYMBOL(end_buffer_async_write);
398
399 /*
400 * If a page's buffers are under async readin (end_buffer_async_read
401 * completion) then there is a possibility that another thread of
402 * control could lock one of the buffers after it has completed
403 * but while some of the other buffers have not completed. This
404 * locked buffer would confuse end_buffer_async_read() into not unlocking
405 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
406 * that this buffer is not under async I/O.
407 *
408 * The page comes unlocked when it has no locked buffer_async buffers
409 * left.
410 *
411 * PageLocked prevents anyone starting new async I/O reads any of
412 * the buffers.
413 *
414 * PageWriteback is used to prevent simultaneous writeout of the same
415 * page.
416 *
417 * PageLocked prevents anyone from starting writeback of a page which is
418 * under read I/O (PageWriteback is only ever set against a locked page).
419 */
420 static void mark_buffer_async_read(struct buffer_head *bh)
421 {
422 bh->b_end_io = end_buffer_async_read_io;
423 set_buffer_async_read(bh);
424 }
425
426 static void mark_buffer_async_write_endio(struct buffer_head *bh,
427 bh_end_io_t *handler)
428 {
429 bh->b_end_io = handler;
430 set_buffer_async_write(bh);
431 }
432
433 void mark_buffer_async_write(struct buffer_head *bh)
434 {
435 mark_buffer_async_write_endio(bh, end_buffer_async_write);
436 }
437 EXPORT_SYMBOL(mark_buffer_async_write);
438
439
440 /*
441 * fs/buffer.c contains helper functions for buffer-backed address space's
442 * fsync functions. A common requirement for buffer-based filesystems is
443 * that certain data from the backing blockdev needs to be written out for
444 * a successful fsync(). For example, ext2 indirect blocks need to be
445 * written back and waited upon before fsync() returns.
446 *
447 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
448 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
449 * management of a list of dependent buffers at ->i_mapping->private_list.
450 *
451 * Locking is a little subtle: try_to_free_buffers() will remove buffers
452 * from their controlling inode's queue when they are being freed. But
453 * try_to_free_buffers() will be operating against the *blockdev* mapping
454 * at the time, not against the S_ISREG file which depends on those buffers.
455 * So the locking for private_list is via the private_lock in the address_space
456 * which backs the buffers. Which is different from the address_space
457 * against which the buffers are listed. So for a particular address_space,
458 * mapping->private_lock does *not* protect mapping->private_list! In fact,
459 * mapping->private_list will always be protected by the backing blockdev's
460 * ->private_lock.
461 *
462 * Which introduces a requirement: all buffers on an address_space's
463 * ->private_list must be from the same address_space: the blockdev's.
464 *
465 * address_spaces which do not place buffers at ->private_list via these
466 * utility functions are free to use private_lock and private_list for
467 * whatever they want. The only requirement is that list_empty(private_list)
468 * be true at clear_inode() time.
469 *
470 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
471 * filesystems should do that. invalidate_inode_buffers() should just go
472 * BUG_ON(!list_empty).
473 *
474 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
475 * take an address_space, not an inode. And it should be called
476 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
477 * queued up.
478 *
479 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
480 * list if it is already on a list. Because if the buffer is on a list,
481 * it *must* already be on the right one. If not, the filesystem is being
482 * silly. This will save a ton of locking. But first we have to ensure
483 * that buffers are taken *off* the old inode's list when they are freed
484 * (presumably in truncate). That requires careful auditing of all
485 * filesystems (do it inside bforget()). It could also be done by bringing
486 * b_inode back.
487 */
488
489 /*
490 * The buffer's backing address_space's private_lock must be held
491 */
492 static void __remove_assoc_queue(struct buffer_head *bh)
493 {
494 list_del_init(&bh->b_assoc_buffers);
495 WARN_ON(!bh->b_assoc_map);
496 bh->b_assoc_map = NULL;
497 }
498
499 int inode_has_buffers(struct inode *inode)
500 {
501 return !list_empty(&inode->i_data.private_list);
502 }
503
504 /*
505 * osync is designed to support O_SYNC io. It waits synchronously for
506 * all already-submitted IO to complete, but does not queue any new
507 * writes to the disk.
508 *
509 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
510 * you dirty the buffers, and then use osync_inode_buffers to wait for
511 * completion. Any other dirty buffers which are not yet queued for
512 * write will not be flushed to disk by the osync.
513 */
514 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
515 {
516 struct buffer_head *bh;
517 struct list_head *p;
518 int err = 0;
519
520 spin_lock(lock);
521 repeat:
522 list_for_each_prev(p, list) {
523 bh = BH_ENTRY(p);
524 if (buffer_locked(bh)) {
525 get_bh(bh);
526 spin_unlock(lock);
527 wait_on_buffer(bh);
528 if (!buffer_uptodate(bh))
529 err = -EIO;
530 brelse(bh);
531 spin_lock(lock);
532 goto repeat;
533 }
534 }
535 spin_unlock(lock);
536 return err;
537 }
538
539 void emergency_thaw_bdev(struct super_block *sb)
540 {
541 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
542 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
543 }
544
545 /**
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
548 *
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
550 * that I/O.
551 *
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
555 */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 struct address_space *buffer_mapping = mapping->private_data;
559
560 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 return 0;
562
563 return fsync_buffers_list(&buffer_mapping->private_lock,
564 &mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567
568 /*
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
573 */
574 void write_boundary_block(struct block_device *bdev,
575 sector_t bblock, unsigned blocksize)
576 {
577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (bh) {
579 if (buffer_dirty(bh))
580 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
581 put_bh(bh);
582 }
583 }
584
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 struct address_space *mapping = inode->i_mapping;
588 struct address_space *buffer_mapping = bh->b_page->mapping;
589
590 mark_buffer_dirty(bh);
591 if (!mapping->private_data) {
592 mapping->private_data = buffer_mapping;
593 } else {
594 BUG_ON(mapping->private_data != buffer_mapping);
595 }
596 if (!bh->b_assoc_map) {
597 spin_lock(&buffer_mapping->private_lock);
598 list_move_tail(&bh->b_assoc_buffers,
599 &mapping->private_list);
600 bh->b_assoc_map = mapping;
601 spin_unlock(&buffer_mapping->private_lock);
602 }
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605
606 /*
607 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
608 * dirty.
609 *
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
612 *
613 * The caller must hold lock_page_memcg().
614 */
615 void __set_page_dirty(struct page *page, struct address_space *mapping,
616 int warn)
617 {
618 unsigned long flags;
619
620 xa_lock_irqsave(&mapping->i_pages, flags);
621 if (page->mapping) { /* Race with truncate? */
622 WARN_ON_ONCE(warn && !PageUptodate(page));
623 account_page_dirtied(page, mapping);
624 __xa_set_mark(&mapping->i_pages, page_index(page),
625 PAGECACHE_TAG_DIRTY);
626 }
627 xa_unlock_irqrestore(&mapping->i_pages, flags);
628 }
629 EXPORT_SYMBOL_GPL(__set_page_dirty);
630
631 /*
632 * Add a page to the dirty page list.
633 *
634 * It is a sad fact of life that this function is called from several places
635 * deeply under spinlocking. It may not sleep.
636 *
637 * If the page has buffers, the uptodate buffers are set dirty, to preserve
638 * dirty-state coherency between the page and the buffers. It the page does
639 * not have buffers then when they are later attached they will all be set
640 * dirty.
641 *
642 * The buffers are dirtied before the page is dirtied. There's a small race
643 * window in which a writepage caller may see the page cleanness but not the
644 * buffer dirtiness. That's fine. If this code were to set the page dirty
645 * before the buffers, a concurrent writepage caller could clear the page dirty
646 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
647 * page on the dirty page list.
648 *
649 * We use private_lock to lock against try_to_free_buffers while using the
650 * page's buffer list. Also use this to protect against clean buffers being
651 * added to the page after it was set dirty.
652 *
653 * FIXME: may need to call ->reservepage here as well. That's rather up to the
654 * address_space though.
655 */
656 int __set_page_dirty_buffers(struct page *page)
657 {
658 int newly_dirty;
659 struct address_space *mapping = page_mapping(page);
660
661 if (unlikely(!mapping))
662 return !TestSetPageDirty(page);
663
664 spin_lock(&mapping->private_lock);
665 if (page_has_buffers(page)) {
666 struct buffer_head *head = page_buffers(page);
667 struct buffer_head *bh = head;
668
669 do {
670 set_buffer_dirty(bh);
671 bh = bh->b_this_page;
672 } while (bh != head);
673 }
674 /*
675 * Lock out page->mem_cgroup migration to keep PageDirty
676 * synchronized with per-memcg dirty page counters.
677 */
678 lock_page_memcg(page);
679 newly_dirty = !TestSetPageDirty(page);
680 spin_unlock(&mapping->private_lock);
681
682 if (newly_dirty)
683 __set_page_dirty(page, mapping, 1);
684
685 unlock_page_memcg(page);
686
687 if (newly_dirty)
688 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
689
690 return newly_dirty;
691 }
692 EXPORT_SYMBOL(__set_page_dirty_buffers);
693
694 /*
695 * Write out and wait upon a list of buffers.
696 *
697 * We have conflicting pressures: we want to make sure that all
698 * initially dirty buffers get waited on, but that any subsequently
699 * dirtied buffers don't. After all, we don't want fsync to last
700 * forever if somebody is actively writing to the file.
701 *
702 * Do this in two main stages: first we copy dirty buffers to a
703 * temporary inode list, queueing the writes as we go. Then we clean
704 * up, waiting for those writes to complete.
705 *
706 * During this second stage, any subsequent updates to the file may end
707 * up refiling the buffer on the original inode's dirty list again, so
708 * there is a chance we will end up with a buffer queued for write but
709 * not yet completed on that list. So, as a final cleanup we go through
710 * the osync code to catch these locked, dirty buffers without requeuing
711 * any newly dirty buffers for write.
712 */
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 {
715 struct buffer_head *bh;
716 struct list_head tmp;
717 struct address_space *mapping;
718 int err = 0, err2;
719 struct blk_plug plug;
720
721 INIT_LIST_HEAD(&tmp);
722 blk_start_plug(&plug);
723
724 spin_lock(lock);
725 while (!list_empty(list)) {
726 bh = BH_ENTRY(list->next);
727 mapping = bh->b_assoc_map;
728 __remove_assoc_queue(bh);
729 /* Avoid race with mark_buffer_dirty_inode() which does
730 * a lockless check and we rely on seeing the dirty bit */
731 smp_mb();
732 if (buffer_dirty(bh) || buffer_locked(bh)) {
733 list_add(&bh->b_assoc_buffers, &tmp);
734 bh->b_assoc_map = mapping;
735 if (buffer_dirty(bh)) {
736 get_bh(bh);
737 spin_unlock(lock);
738 /*
739 * Ensure any pending I/O completes so that
740 * write_dirty_buffer() actually writes the
741 * current contents - it is a noop if I/O is
742 * still in flight on potentially older
743 * contents.
744 */
745 write_dirty_buffer(bh, REQ_SYNC);
746
747 /*
748 * Kick off IO for the previous mapping. Note
749 * that we will not run the very last mapping,
750 * wait_on_buffer() will do that for us
751 * through sync_buffer().
752 */
753 brelse(bh);
754 spin_lock(lock);
755 }
756 }
757 }
758
759 spin_unlock(lock);
760 blk_finish_plug(&plug);
761 spin_lock(lock);
762
763 while (!list_empty(&tmp)) {
764 bh = BH_ENTRY(tmp.prev);
765 get_bh(bh);
766 mapping = bh->b_assoc_map;
767 __remove_assoc_queue(bh);
768 /* Avoid race with mark_buffer_dirty_inode() which does
769 * a lockless check and we rely on seeing the dirty bit */
770 smp_mb();
771 if (buffer_dirty(bh)) {
772 list_add(&bh->b_assoc_buffers,
773 &mapping->private_list);
774 bh->b_assoc_map = mapping;
775 }
776 spin_unlock(lock);
777 wait_on_buffer(bh);
778 if (!buffer_uptodate(bh))
779 err = -EIO;
780 brelse(bh);
781 spin_lock(lock);
782 }
783
784 spin_unlock(lock);
785 err2 = osync_buffers_list(lock, list);
786 if (err)
787 return err;
788 else
789 return err2;
790 }
791
792 /*
793 * Invalidate any and all dirty buffers on a given inode. We are
794 * probably unmounting the fs, but that doesn't mean we have already
795 * done a sync(). Just drop the buffers from the inode list.
796 *
797 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
798 * assumes that all the buffers are against the blockdev. Not true
799 * for reiserfs.
800 */
801 void invalidate_inode_buffers(struct inode *inode)
802 {
803 if (inode_has_buffers(inode)) {
804 struct address_space *mapping = &inode->i_data;
805 struct list_head *list = &mapping->private_list;
806 struct address_space *buffer_mapping = mapping->private_data;
807
808 spin_lock(&buffer_mapping->private_lock);
809 while (!list_empty(list))
810 __remove_assoc_queue(BH_ENTRY(list->next));
811 spin_unlock(&buffer_mapping->private_lock);
812 }
813 }
814 EXPORT_SYMBOL(invalidate_inode_buffers);
815
816 /*
817 * Remove any clean buffers from the inode's buffer list. This is called
818 * when we're trying to free the inode itself. Those buffers can pin it.
819 *
820 * Returns true if all buffers were removed.
821 */
822 int remove_inode_buffers(struct inode *inode)
823 {
824 int ret = 1;
825
826 if (inode_has_buffers(inode)) {
827 struct address_space *mapping = &inode->i_data;
828 struct list_head *list = &mapping->private_list;
829 struct address_space *buffer_mapping = mapping->private_data;
830
831 spin_lock(&buffer_mapping->private_lock);
832 while (!list_empty(list)) {
833 struct buffer_head *bh = BH_ENTRY(list->next);
834 if (buffer_dirty(bh)) {
835 ret = 0;
836 break;
837 }
838 __remove_assoc_queue(bh);
839 }
840 spin_unlock(&buffer_mapping->private_lock);
841 }
842 return ret;
843 }
844
845 /*
846 * Create the appropriate buffers when given a page for data area and
847 * the size of each buffer.. Use the bh->b_this_page linked list to
848 * follow the buffers created. Return NULL if unable to create more
849 * buffers.
850 *
851 * The retry flag is used to differentiate async IO (paging, swapping)
852 * which may not fail from ordinary buffer allocations.
853 */
854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
855 bool retry)
856 {
857 struct buffer_head *bh, *head;
858 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859 long offset;
860 struct mem_cgroup *memcg;
861
862 if (retry)
863 gfp |= __GFP_NOFAIL;
864
865 memcg = get_mem_cgroup_from_page(page);
866 memalloc_use_memcg(memcg);
867
868 head = NULL;
869 offset = PAGE_SIZE;
870 while ((offset -= size) >= 0) {
871 bh = alloc_buffer_head(gfp);
872 if (!bh)
873 goto no_grow;
874
875 bh->b_this_page = head;
876 bh->b_blocknr = -1;
877 head = bh;
878
879 bh->b_size = size;
880
881 /* Link the buffer to its page */
882 set_bh_page(bh, page, offset);
883 }
884 out:
885 memalloc_unuse_memcg();
886 mem_cgroup_put(memcg);
887 return head;
888 /*
889 * In case anything failed, we just free everything we got.
890 */
891 no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
898 }
899
900 goto out;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907 struct buffer_head *bh, *tail;
908
909 bh = head;
910 do {
911 tail = bh;
912 bh = bh->b_this_page;
913 } while (bh);
914 tail->b_this_page = head;
915 attach_page_buffers(page, head);
916 }
917
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920 sector_t retval = ~((sector_t)0);
921 loff_t sz = i_size_read(bdev->bd_inode);
922
923 if (sz) {
924 unsigned int sizebits = blksize_bits(size);
925 retval = (sz >> sizebits);
926 }
927 return retval;
928 }
929
930 /*
931 * Initialise the state of a blockdev page's buffers.
932 */
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935 sector_t block, int size)
936 {
937 struct buffer_head *head = page_buffers(page);
938 struct buffer_head *bh = head;
939 int uptodate = PageUptodate(page);
940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
941
942 do {
943 if (!buffer_mapped(bh)) {
944 bh->b_end_io = NULL;
945 bh->b_private = NULL;
946 bh->b_bdev = bdev;
947 bh->b_blocknr = block;
948 if (uptodate)
949 set_buffer_uptodate(bh);
950 if (block < end_block)
951 set_buffer_mapped(bh);
952 }
953 block++;
954 bh = bh->b_this_page;
955 } while (bh != head);
956
957 /*
958 * Caller needs to validate requested block against end of device.
959 */
960 return end_block;
961 }
962
963 /*
964 * Create the page-cache page that contains the requested block.
965 *
966 * This is used purely for blockdev mappings.
967 */
968 static int
969 grow_dev_page(struct block_device *bdev, sector_t block,
970 pgoff_t index, int size, int sizebits, gfp_t gfp)
971 {
972 struct inode *inode = bdev->bd_inode;
973 struct page *page;
974 struct buffer_head *bh;
975 sector_t end_block;
976 int ret = 0; /* Will call free_more_memory() */
977 gfp_t gfp_mask;
978
979 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
980
981 /*
982 * XXX: __getblk_slow() can not really deal with failure and
983 * will endlessly loop on improvised global reclaim. Prefer
984 * looping in the allocator rather than here, at least that
985 * code knows what it's doing.
986 */
987 gfp_mask |= __GFP_NOFAIL;
988
989 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
990
991 BUG_ON(!PageLocked(page));
992
993 if (page_has_buffers(page)) {
994 bh = page_buffers(page);
995 if (bh->b_size == size) {
996 end_block = init_page_buffers(page, bdev,
997 (sector_t)index << sizebits,
998 size);
999 goto done;
1000 }
1001 if (!try_to_free_buffers(page))
1002 goto failed;
1003 }
1004
1005 /*
1006 * Allocate some buffers for this page
1007 */
1008 bh = alloc_page_buffers(page, size, true);
1009
1010 /*
1011 * Link the page to the buffers and initialise them. Take the
1012 * lock to be atomic wrt __find_get_block(), which does not
1013 * run under the page lock.
1014 */
1015 spin_lock(&inode->i_mapping->private_lock);
1016 link_dev_buffers(page, bh);
1017 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018 size);
1019 spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021 ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023 unlock_page(page);
1024 put_page(page);
1025 return ret;
1026 }
1027
1028 /*
1029 * Create buffers for the specified block device block's page. If
1030 * that page was dirty, the buffers are set dirty also.
1031 */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034 {
1035 pgoff_t index;
1036 int sizebits;
1037
1038 sizebits = -1;
1039 do {
1040 sizebits++;
1041 } while ((size << sizebits) < PAGE_SIZE);
1042
1043 index = block >> sizebits;
1044
1045 /*
1046 * Check for a block which wants to lie outside our maximum possible
1047 * pagecache index. (this comparison is done using sector_t types).
1048 */
1049 if (unlikely(index != block >> sizebits)) {
1050 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1051 "device %pg\n",
1052 __func__, (unsigned long long)block,
1053 bdev);
1054 return -EIO;
1055 }
1056
1057 /* Create a page with the proper size buffers.. */
1058 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1059 }
1060
1061 static struct buffer_head *
1062 __getblk_slow(struct block_device *bdev, sector_t block,
1063 unsigned size, gfp_t gfp)
1064 {
1065 /* Size must be multiple of hard sectorsize */
1066 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1067 (size < 512 || size > PAGE_SIZE))) {
1068 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1069 size);
1070 printk(KERN_ERR "logical block size: %d\n",
1071 bdev_logical_block_size(bdev));
1072
1073 dump_stack();
1074 return NULL;
1075 }
1076
1077 for (;;) {
1078 struct buffer_head *bh;
1079 int ret;
1080
1081 bh = __find_get_block(bdev, block, size);
1082 if (bh)
1083 return bh;
1084
1085 ret = grow_buffers(bdev, block, size, gfp);
1086 if (ret < 0)
1087 return NULL;
1088 }
1089 }
1090
1091 /*
1092 * The relationship between dirty buffers and dirty pages:
1093 *
1094 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095 * the page is tagged dirty in the page cache.
1096 *
1097 * At all times, the dirtiness of the buffers represents the dirtiness of
1098 * subsections of the page. If the page has buffers, the page dirty bit is
1099 * merely a hint about the true dirty state.
1100 *
1101 * When a page is set dirty in its entirety, all its buffers are marked dirty
1102 * (if the page has buffers).
1103 *
1104 * When a buffer is marked dirty, its page is dirtied, but the page's other
1105 * buffers are not.
1106 *
1107 * Also. When blockdev buffers are explicitly read with bread(), they
1108 * individually become uptodate. But their backing page remains not
1109 * uptodate - even if all of its buffers are uptodate. A subsequent
1110 * block_read_full_page() against that page will discover all the uptodate
1111 * buffers, will set the page uptodate and will perform no I/O.
1112 */
1113
1114 /**
1115 * mark_buffer_dirty - mark a buffer_head as needing writeout
1116 * @bh: the buffer_head to mark dirty
1117 *
1118 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1119 * its backing page dirty, then tag the page as dirty in the page cache
1120 * and then attach the address_space's inode to its superblock's dirty
1121 * inode list.
1122 *
1123 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1124 * i_pages lock and mapping->host->i_lock.
1125 */
1126 void mark_buffer_dirty(struct buffer_head *bh)
1127 {
1128 WARN_ON_ONCE(!buffer_uptodate(bh));
1129
1130 trace_block_dirty_buffer(bh);
1131
1132 /*
1133 * Very *carefully* optimize the it-is-already-dirty case.
1134 *
1135 * Don't let the final "is it dirty" escape to before we
1136 * perhaps modified the buffer.
1137 */
1138 if (buffer_dirty(bh)) {
1139 smp_mb();
1140 if (buffer_dirty(bh))
1141 return;
1142 }
1143
1144 if (!test_set_buffer_dirty(bh)) {
1145 struct page *page = bh->b_page;
1146 struct address_space *mapping = NULL;
1147
1148 lock_page_memcg(page);
1149 if (!TestSetPageDirty(page)) {
1150 mapping = page_mapping(page);
1151 if (mapping)
1152 __set_page_dirty(page, mapping, 0);
1153 }
1154 unlock_page_memcg(page);
1155 if (mapping)
1156 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1157 }
1158 }
1159 EXPORT_SYMBOL(mark_buffer_dirty);
1160
1161 void mark_buffer_write_io_error(struct buffer_head *bh)
1162 {
1163 set_buffer_write_io_error(bh);
1164 /* FIXME: do we need to set this in both places? */
1165 if (bh->b_page && bh->b_page->mapping)
1166 mapping_set_error(bh->b_page->mapping, -EIO);
1167 if (bh->b_assoc_map)
1168 mapping_set_error(bh->b_assoc_map, -EIO);
1169 }
1170 EXPORT_SYMBOL(mark_buffer_write_io_error);
1171
1172 /*
1173 * Decrement a buffer_head's reference count. If all buffers against a page
1174 * have zero reference count, are clean and unlocked, and if the page is clean
1175 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177 * a page but it ends up not being freed, and buffers may later be reattached).
1178 */
1179 void __brelse(struct buffer_head * buf)
1180 {
1181 if (atomic_read(&buf->b_count)) {
1182 put_bh(buf);
1183 return;
1184 }
1185 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186 }
1187 EXPORT_SYMBOL(__brelse);
1188
1189 /*
1190 * bforget() is like brelse(), except it discards any
1191 * potentially dirty data.
1192 */
1193 void __bforget(struct buffer_head *bh)
1194 {
1195 clear_buffer_dirty(bh);
1196 if (bh->b_assoc_map) {
1197 struct address_space *buffer_mapping = bh->b_page->mapping;
1198
1199 spin_lock(&buffer_mapping->private_lock);
1200 list_del_init(&bh->b_assoc_buffers);
1201 bh->b_assoc_map = NULL;
1202 spin_unlock(&buffer_mapping->private_lock);
1203 }
1204 __brelse(bh);
1205 }
1206 EXPORT_SYMBOL(__bforget);
1207
1208 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1209 {
1210 lock_buffer(bh);
1211 if (buffer_uptodate(bh)) {
1212 unlock_buffer(bh);
1213 return bh;
1214 } else {
1215 get_bh(bh);
1216 bh->b_end_io = end_buffer_read_sync;
1217 submit_bh(REQ_OP_READ, 0, bh);
1218 wait_on_buffer(bh);
1219 if (buffer_uptodate(bh))
1220 return bh;
1221 }
1222 brelse(bh);
1223 return NULL;
1224 }
1225
1226 /*
1227 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1228 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1229 * refcount elevated by one when they're in an LRU. A buffer can only appear
1230 * once in a particular CPU's LRU. A single buffer can be present in multiple
1231 * CPU's LRUs at the same time.
1232 *
1233 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1234 * sb_find_get_block().
1235 *
1236 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1237 * a local interrupt disable for that.
1238 */
1239
1240 #define BH_LRU_SIZE 16
1241
1242 struct bh_lru {
1243 struct buffer_head *bhs[BH_LRU_SIZE];
1244 };
1245
1246 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1247
1248 #ifdef CONFIG_SMP
1249 #define bh_lru_lock() local_irq_disable()
1250 #define bh_lru_unlock() local_irq_enable()
1251 #else
1252 #define bh_lru_lock() preempt_disable()
1253 #define bh_lru_unlock() preempt_enable()
1254 #endif
1255
1256 static inline void check_irqs_on(void)
1257 {
1258 #ifdef irqs_disabled
1259 BUG_ON(irqs_disabled());
1260 #endif
1261 }
1262
1263 /*
1264 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1265 * inserted at the front, and the buffer_head at the back if any is evicted.
1266 * Or, if already in the LRU it is moved to the front.
1267 */
1268 static void bh_lru_install(struct buffer_head *bh)
1269 {
1270 struct buffer_head *evictee = bh;
1271 struct bh_lru *b;
1272 int i;
1273
1274 check_irqs_on();
1275 bh_lru_lock();
1276
1277 b = this_cpu_ptr(&bh_lrus);
1278 for (i = 0; i < BH_LRU_SIZE; i++) {
1279 swap(evictee, b->bhs[i]);
1280 if (evictee == bh) {
1281 bh_lru_unlock();
1282 return;
1283 }
1284 }
1285
1286 get_bh(bh);
1287 bh_lru_unlock();
1288 brelse(evictee);
1289 }
1290
1291 /*
1292 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1293 */
1294 static struct buffer_head *
1295 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1296 {
1297 struct buffer_head *ret = NULL;
1298 unsigned int i;
1299
1300 check_irqs_on();
1301 bh_lru_lock();
1302 for (i = 0; i < BH_LRU_SIZE; i++) {
1303 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1304
1305 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1306 bh->b_size == size) {
1307 if (i) {
1308 while (i) {
1309 __this_cpu_write(bh_lrus.bhs[i],
1310 __this_cpu_read(bh_lrus.bhs[i - 1]));
1311 i--;
1312 }
1313 __this_cpu_write(bh_lrus.bhs[0], bh);
1314 }
1315 get_bh(bh);
1316 ret = bh;
1317 break;
1318 }
1319 }
1320 bh_lru_unlock();
1321 return ret;
1322 }
1323
1324 /*
1325 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1326 * it in the LRU and mark it as accessed. If it is not present then return
1327 * NULL
1328 */
1329 struct buffer_head *
1330 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1333
1334 if (bh == NULL) {
1335 /* __find_get_block_slow will mark the page accessed */
1336 bh = __find_get_block_slow(bdev, block);
1337 if (bh)
1338 bh_lru_install(bh);
1339 } else
1340 touch_buffer(bh);
1341
1342 return bh;
1343 }
1344 EXPORT_SYMBOL(__find_get_block);
1345
1346 /*
1347 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1348 * which corresponds to the passed block_device, block and size. The
1349 * returned buffer has its reference count incremented.
1350 *
1351 * __getblk_gfp() will lock up the machine if grow_dev_page's
1352 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1353 */
1354 struct buffer_head *
1355 __getblk_gfp(struct block_device *bdev, sector_t block,
1356 unsigned size, gfp_t gfp)
1357 {
1358 struct buffer_head *bh = __find_get_block(bdev, block, size);
1359
1360 might_sleep();
1361 if (bh == NULL)
1362 bh = __getblk_slow(bdev, block, size, gfp);
1363 return bh;
1364 }
1365 EXPORT_SYMBOL(__getblk_gfp);
1366
1367 /*
1368 * Do async read-ahead on a buffer..
1369 */
1370 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1371 {
1372 struct buffer_head *bh = __getblk(bdev, block, size);
1373 if (likely(bh)) {
1374 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1375 brelse(bh);
1376 }
1377 }
1378 EXPORT_SYMBOL(__breadahead);
1379
1380 /**
1381 * __bread_gfp() - reads a specified block and returns the bh
1382 * @bdev: the block_device to read from
1383 * @block: number of block
1384 * @size: size (in bytes) to read
1385 * @gfp: page allocation flag
1386 *
1387 * Reads a specified block, and returns buffer head that contains it.
1388 * The page cache can be allocated from non-movable area
1389 * not to prevent page migration if you set gfp to zero.
1390 * It returns NULL if the block was unreadable.
1391 */
1392 struct buffer_head *
1393 __bread_gfp(struct block_device *bdev, sector_t block,
1394 unsigned size, gfp_t gfp)
1395 {
1396 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1397
1398 if (likely(bh) && !buffer_uptodate(bh))
1399 bh = __bread_slow(bh);
1400 return bh;
1401 }
1402 EXPORT_SYMBOL(__bread_gfp);
1403
1404 /*
1405 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1406 * This doesn't race because it runs in each cpu either in irq
1407 * or with preempt disabled.
1408 */
1409 static void invalidate_bh_lru(void *arg)
1410 {
1411 struct bh_lru *b = &get_cpu_var(bh_lrus);
1412 int i;
1413
1414 for (i = 0; i < BH_LRU_SIZE; i++) {
1415 brelse(b->bhs[i]);
1416 b->bhs[i] = NULL;
1417 }
1418 put_cpu_var(bh_lrus);
1419 }
1420
1421 static bool has_bh_in_lru(int cpu, void *dummy)
1422 {
1423 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1424 int i;
1425
1426 for (i = 0; i < BH_LRU_SIZE; i++) {
1427 if (b->bhs[i])
1428 return true;
1429 }
1430
1431 return false;
1432 }
1433
1434 void invalidate_bh_lrus(void)
1435 {
1436 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1437 }
1438 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1439
1440 void set_bh_page(struct buffer_head *bh,
1441 struct page *page, unsigned long offset)
1442 {
1443 bh->b_page = page;
1444 BUG_ON(offset >= PAGE_SIZE);
1445 if (PageHighMem(page))
1446 /*
1447 * This catches illegal uses and preserves the offset:
1448 */
1449 bh->b_data = (char *)(0 + offset);
1450 else
1451 bh->b_data = page_address(page) + offset;
1452 }
1453 EXPORT_SYMBOL(set_bh_page);
1454
1455 /*
1456 * Called when truncating a buffer on a page completely.
1457 */
1458
1459 /* Bits that are cleared during an invalidate */
1460 #define BUFFER_FLAGS_DISCARD \
1461 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1462 1 << BH_Delay | 1 << BH_Unwritten)
1463
1464 static void discard_buffer(struct buffer_head * bh)
1465 {
1466 unsigned long b_state, b_state_old;
1467
1468 lock_buffer(bh);
1469 clear_buffer_dirty(bh);
1470 bh->b_bdev = NULL;
1471 b_state = bh->b_state;
1472 for (;;) {
1473 b_state_old = cmpxchg(&bh->b_state, b_state,
1474 (b_state & ~BUFFER_FLAGS_DISCARD));
1475 if (b_state_old == b_state)
1476 break;
1477 b_state = b_state_old;
1478 }
1479 unlock_buffer(bh);
1480 }
1481
1482 /**
1483 * block_invalidatepage - invalidate part or all of a buffer-backed page
1484 *
1485 * @page: the page which is affected
1486 * @offset: start of the range to invalidate
1487 * @length: length of the range to invalidate
1488 *
1489 * block_invalidatepage() is called when all or part of the page has become
1490 * invalidated by a truncate operation.
1491 *
1492 * block_invalidatepage() does not have to release all buffers, but it must
1493 * ensure that no dirty buffer is left outside @offset and that no I/O
1494 * is underway against any of the blocks which are outside the truncation
1495 * point. Because the caller is about to free (and possibly reuse) those
1496 * blocks on-disk.
1497 */
1498 void block_invalidatepage(struct page *page, unsigned int offset,
1499 unsigned int length)
1500 {
1501 struct buffer_head *head, *bh, *next;
1502 unsigned int curr_off = 0;
1503 unsigned int stop = length + offset;
1504
1505 BUG_ON(!PageLocked(page));
1506 if (!page_has_buffers(page))
1507 goto out;
1508
1509 /*
1510 * Check for overflow
1511 */
1512 BUG_ON(stop > PAGE_SIZE || stop < length);
1513
1514 head = page_buffers(page);
1515 bh = head;
1516 do {
1517 unsigned int next_off = curr_off + bh->b_size;
1518 next = bh->b_this_page;
1519
1520 /*
1521 * Are we still fully in range ?
1522 */
1523 if (next_off > stop)
1524 goto out;
1525
1526 /*
1527 * is this block fully invalidated?
1528 */
1529 if (offset <= curr_off)
1530 discard_buffer(bh);
1531 curr_off = next_off;
1532 bh = next;
1533 } while (bh != head);
1534
1535 /*
1536 * We release buffers only if the entire page is being invalidated.
1537 * The get_block cached value has been unconditionally invalidated,
1538 * so real IO is not possible anymore.
1539 */
1540 if (length == PAGE_SIZE)
1541 try_to_release_page(page, 0);
1542 out:
1543 return;
1544 }
1545 EXPORT_SYMBOL(block_invalidatepage);
1546
1547
1548 /*
1549 * We attach and possibly dirty the buffers atomically wrt
1550 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1551 * is already excluded via the page lock.
1552 */
1553 void create_empty_buffers(struct page *page,
1554 unsigned long blocksize, unsigned long b_state)
1555 {
1556 struct buffer_head *bh, *head, *tail;
1557
1558 head = alloc_page_buffers(page, blocksize, true);
1559 bh = head;
1560 do {
1561 bh->b_state |= b_state;
1562 tail = bh;
1563 bh = bh->b_this_page;
1564 } while (bh);
1565 tail->b_this_page = head;
1566
1567 spin_lock(&page->mapping->private_lock);
1568 if (PageUptodate(page) || PageDirty(page)) {
1569 bh = head;
1570 do {
1571 if (PageDirty(page))
1572 set_buffer_dirty(bh);
1573 if (PageUptodate(page))
1574 set_buffer_uptodate(bh);
1575 bh = bh->b_this_page;
1576 } while (bh != head);
1577 }
1578 attach_page_buffers(page, head);
1579 spin_unlock(&page->mapping->private_lock);
1580 }
1581 EXPORT_SYMBOL(create_empty_buffers);
1582
1583 /**
1584 * clean_bdev_aliases: clean a range of buffers in block device
1585 * @bdev: Block device to clean buffers in
1586 * @block: Start of a range of blocks to clean
1587 * @len: Number of blocks to clean
1588 *
1589 * We are taking a range of blocks for data and we don't want writeback of any
1590 * buffer-cache aliases starting from return from this function and until the
1591 * moment when something will explicitly mark the buffer dirty (hopefully that
1592 * will not happen until we will free that block ;-) We don't even need to mark
1593 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596 * would confuse anyone who might pick it with bread() afterwards...
1597 *
1598 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1599 * writeout I/O going on against recently-freed buffers. We don't wait on that
1600 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601 * need to. That happens here.
1602 */
1603 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1604 {
1605 struct inode *bd_inode = bdev->bd_inode;
1606 struct address_space *bd_mapping = bd_inode->i_mapping;
1607 struct pagevec pvec;
1608 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609 pgoff_t end;
1610 int i, count;
1611 struct buffer_head *bh;
1612 struct buffer_head *head;
1613
1614 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1615 pagevec_init(&pvec);
1616 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1617 count = pagevec_count(&pvec);
1618 for (i = 0; i < count; i++) {
1619 struct page *page = pvec.pages[i];
1620
1621 if (!page_has_buffers(page))
1622 continue;
1623 /*
1624 * We use page lock instead of bd_mapping->private_lock
1625 * to pin buffers here since we can afford to sleep and
1626 * it scales better than a global spinlock lock.
1627 */
1628 lock_page(page);
1629 /* Recheck when the page is locked which pins bhs */
1630 if (!page_has_buffers(page))
1631 goto unlock_page;
1632 head = page_buffers(page);
1633 bh = head;
1634 do {
1635 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1636 goto next;
1637 if (bh->b_blocknr >= block + len)
1638 break;
1639 clear_buffer_dirty(bh);
1640 wait_on_buffer(bh);
1641 clear_buffer_req(bh);
1642 next:
1643 bh = bh->b_this_page;
1644 } while (bh != head);
1645 unlock_page:
1646 unlock_page(page);
1647 }
1648 pagevec_release(&pvec);
1649 cond_resched();
1650 /* End of range already reached? */
1651 if (index > end || !index)
1652 break;
1653 }
1654 }
1655 EXPORT_SYMBOL(clean_bdev_aliases);
1656
1657 /*
1658 * Size is a power-of-two in the range 512..PAGE_SIZE,
1659 * and the case we care about most is PAGE_SIZE.
1660 *
1661 * So this *could* possibly be written with those
1662 * constraints in mind (relevant mostly if some
1663 * architecture has a slow bit-scan instruction)
1664 */
1665 static inline int block_size_bits(unsigned int blocksize)
1666 {
1667 return ilog2(blocksize);
1668 }
1669
1670 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1671 {
1672 BUG_ON(!PageLocked(page));
1673
1674 if (!page_has_buffers(page))
1675 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1676 b_state);
1677 return page_buffers(page);
1678 }
1679
1680 /*
1681 * NOTE! All mapped/uptodate combinations are valid:
1682 *
1683 * Mapped Uptodate Meaning
1684 *
1685 * No No "unknown" - must do get_block()
1686 * No Yes "hole" - zero-filled
1687 * Yes No "allocated" - allocated on disk, not read in
1688 * Yes Yes "valid" - allocated and up-to-date in memory.
1689 *
1690 * "Dirty" is valid only with the last case (mapped+uptodate).
1691 */
1692
1693 /*
1694 * While block_write_full_page is writing back the dirty buffers under
1695 * the page lock, whoever dirtied the buffers may decide to clean them
1696 * again at any time. We handle that by only looking at the buffer
1697 * state inside lock_buffer().
1698 *
1699 * If block_write_full_page() is called for regular writeback
1700 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701 * locked buffer. This only can happen if someone has written the buffer
1702 * directly, with submit_bh(). At the address_space level PageWriteback
1703 * prevents this contention from occurring.
1704 *
1705 * If block_write_full_page() is called with wbc->sync_mode ==
1706 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707 * causes the writes to be flagged as synchronous writes.
1708 */
1709 int __block_write_full_page(struct inode *inode, struct page *page,
1710 get_block_t *get_block, struct writeback_control *wbc,
1711 bh_end_io_t *handler)
1712 {
1713 int err;
1714 sector_t block;
1715 sector_t last_block;
1716 struct buffer_head *bh, *head;
1717 unsigned int blocksize, bbits;
1718 int nr_underway = 0;
1719 int write_flags = wbc_to_write_flags(wbc);
1720
1721 head = create_page_buffers(page, inode,
1722 (1 << BH_Dirty)|(1 << BH_Uptodate));
1723
1724 /*
1725 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1726 * here, and the (potentially unmapped) buffers may become dirty at
1727 * any time. If a buffer becomes dirty here after we've inspected it
1728 * then we just miss that fact, and the page stays dirty.
1729 *
1730 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1731 * handle that here by just cleaning them.
1732 */
1733
1734 bh = head;
1735 blocksize = bh->b_size;
1736 bbits = block_size_bits(blocksize);
1737
1738 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1739 last_block = (i_size_read(inode) - 1) >> bbits;
1740
1741 /*
1742 * Get all the dirty buffers mapped to disk addresses and
1743 * handle any aliases from the underlying blockdev's mapping.
1744 */
1745 do {
1746 if (block > last_block) {
1747 /*
1748 * mapped buffers outside i_size will occur, because
1749 * this page can be outside i_size when there is a
1750 * truncate in progress.
1751 */
1752 /*
1753 * The buffer was zeroed by block_write_full_page()
1754 */
1755 clear_buffer_dirty(bh);
1756 set_buffer_uptodate(bh);
1757 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758 buffer_dirty(bh)) {
1759 WARN_ON(bh->b_size != blocksize);
1760 err = get_block(inode, block, bh, 1);
1761 if (err)
1762 goto recover;
1763 clear_buffer_delay(bh);
1764 if (buffer_new(bh)) {
1765 /* blockdev mappings never come here */
1766 clear_buffer_new(bh);
1767 clean_bdev_bh_alias(bh);
1768 }
1769 }
1770 bh = bh->b_this_page;
1771 block++;
1772 } while (bh != head);
1773
1774 do {
1775 if (!buffer_mapped(bh))
1776 continue;
1777 /*
1778 * If it's a fully non-blocking write attempt and we cannot
1779 * lock the buffer then redirty the page. Note that this can
1780 * potentially cause a busy-wait loop from writeback threads
1781 * and kswapd activity, but those code paths have their own
1782 * higher-level throttling.
1783 */
1784 if (wbc->sync_mode != WB_SYNC_NONE) {
1785 lock_buffer(bh);
1786 } else if (!trylock_buffer(bh)) {
1787 redirty_page_for_writepage(wbc, page);
1788 continue;
1789 }
1790 if (test_clear_buffer_dirty(bh)) {
1791 mark_buffer_async_write_endio(bh, handler);
1792 } else {
1793 unlock_buffer(bh);
1794 }
1795 } while ((bh = bh->b_this_page) != head);
1796
1797 /*
1798 * The page and its buffers are protected by PageWriteback(), so we can
1799 * drop the bh refcounts early.
1800 */
1801 BUG_ON(PageWriteback(page));
1802 set_page_writeback(page);
1803
1804 do {
1805 struct buffer_head *next = bh->b_this_page;
1806 if (buffer_async_write(bh)) {
1807 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1808 inode->i_write_hint, wbc);
1809 nr_underway++;
1810 }
1811 bh = next;
1812 } while (bh != head);
1813 unlock_page(page);
1814
1815 err = 0;
1816 done:
1817 if (nr_underway == 0) {
1818 /*
1819 * The page was marked dirty, but the buffers were
1820 * clean. Someone wrote them back by hand with
1821 * ll_rw_block/submit_bh. A rare case.
1822 */
1823 end_page_writeback(page);
1824
1825 /*
1826 * The page and buffer_heads can be released at any time from
1827 * here on.
1828 */
1829 }
1830 return err;
1831
1832 recover:
1833 /*
1834 * ENOSPC, or some other error. We may already have added some
1835 * blocks to the file, so we need to write these out to avoid
1836 * exposing stale data.
1837 * The page is currently locked and not marked for writeback
1838 */
1839 bh = head;
1840 /* Recovery: lock and submit the mapped buffers */
1841 do {
1842 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1843 !buffer_delay(bh)) {
1844 lock_buffer(bh);
1845 mark_buffer_async_write_endio(bh, handler);
1846 } else {
1847 /*
1848 * The buffer may have been set dirty during
1849 * attachment to a dirty page.
1850 */
1851 clear_buffer_dirty(bh);
1852 }
1853 } while ((bh = bh->b_this_page) != head);
1854 SetPageError(page);
1855 BUG_ON(PageWriteback(page));
1856 mapping_set_error(page->mapping, err);
1857 set_page_writeback(page);
1858 do {
1859 struct buffer_head *next = bh->b_this_page;
1860 if (buffer_async_write(bh)) {
1861 clear_buffer_dirty(bh);
1862 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1863 inode->i_write_hint, wbc);
1864 nr_underway++;
1865 }
1866 bh = next;
1867 } while (bh != head);
1868 unlock_page(page);
1869 goto done;
1870 }
1871 EXPORT_SYMBOL(__block_write_full_page);
1872
1873 /*
1874 * If a page has any new buffers, zero them out here, and mark them uptodate
1875 * and dirty so they'll be written out (in order to prevent uninitialised
1876 * block data from leaking). And clear the new bit.
1877 */
1878 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1879 {
1880 unsigned int block_start, block_end;
1881 struct buffer_head *head, *bh;
1882
1883 BUG_ON(!PageLocked(page));
1884 if (!page_has_buffers(page))
1885 return;
1886
1887 bh = head = page_buffers(page);
1888 block_start = 0;
1889 do {
1890 block_end = block_start + bh->b_size;
1891
1892 if (buffer_new(bh)) {
1893 if (block_end > from && block_start < to) {
1894 if (!PageUptodate(page)) {
1895 unsigned start, size;
1896
1897 start = max(from, block_start);
1898 size = min(to, block_end) - start;
1899
1900 zero_user(page, start, size);
1901 set_buffer_uptodate(bh);
1902 }
1903
1904 clear_buffer_new(bh);
1905 mark_buffer_dirty(bh);
1906 }
1907 }
1908
1909 block_start = block_end;
1910 bh = bh->b_this_page;
1911 } while (bh != head);
1912 }
1913 EXPORT_SYMBOL(page_zero_new_buffers);
1914
1915 static void
1916 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1917 struct iomap *iomap)
1918 {
1919 loff_t offset = block << inode->i_blkbits;
1920
1921 bh->b_bdev = iomap->bdev;
1922
1923 /*
1924 * Block points to offset in file we need to map, iomap contains
1925 * the offset at which the map starts. If the map ends before the
1926 * current block, then do not map the buffer and let the caller
1927 * handle it.
1928 */
1929 BUG_ON(offset >= iomap->offset + iomap->length);
1930
1931 switch (iomap->type) {
1932 case IOMAP_HOLE:
1933 /*
1934 * If the buffer is not up to date or beyond the current EOF,
1935 * we need to mark it as new to ensure sub-block zeroing is
1936 * executed if necessary.
1937 */
1938 if (!buffer_uptodate(bh) ||
1939 (offset >= i_size_read(inode)))
1940 set_buffer_new(bh);
1941 break;
1942 case IOMAP_DELALLOC:
1943 if (!buffer_uptodate(bh) ||
1944 (offset >= i_size_read(inode)))
1945 set_buffer_new(bh);
1946 set_buffer_uptodate(bh);
1947 set_buffer_mapped(bh);
1948 set_buffer_delay(bh);
1949 break;
1950 case IOMAP_UNWRITTEN:
1951 /*
1952 * For unwritten regions, we always need to ensure that regions
1953 * in the block we are not writing to are zeroed. Mark the
1954 * buffer as new to ensure this.
1955 */
1956 set_buffer_new(bh);
1957 set_buffer_unwritten(bh);
1958 /* FALLTHRU */
1959 case IOMAP_MAPPED:
1960 if ((iomap->flags & IOMAP_F_NEW) ||
1961 offset >= i_size_read(inode))
1962 set_buffer_new(bh);
1963 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1964 inode->i_blkbits;
1965 set_buffer_mapped(bh);
1966 break;
1967 }
1968 }
1969
1970 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1971 get_block_t *get_block, struct iomap *iomap)
1972 {
1973 unsigned from = pos & (PAGE_SIZE - 1);
1974 unsigned to = from + len;
1975 struct inode *inode = page->mapping->host;
1976 unsigned block_start, block_end;
1977 sector_t block;
1978 int err = 0;
1979 unsigned blocksize, bbits;
1980 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1981
1982 BUG_ON(!PageLocked(page));
1983 BUG_ON(from > PAGE_SIZE);
1984 BUG_ON(to > PAGE_SIZE);
1985 BUG_ON(from > to);
1986
1987 head = create_page_buffers(page, inode, 0);
1988 blocksize = head->b_size;
1989 bbits = block_size_bits(blocksize);
1990
1991 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1992
1993 for(bh = head, block_start = 0; bh != head || !block_start;
1994 block++, block_start=block_end, bh = bh->b_this_page) {
1995 block_end = block_start + blocksize;
1996 if (block_end <= from || block_start >= to) {
1997 if (PageUptodate(page)) {
1998 if (!buffer_uptodate(bh))
1999 set_buffer_uptodate(bh);
2000 }
2001 continue;
2002 }
2003 if (buffer_new(bh))
2004 clear_buffer_new(bh);
2005 if (!buffer_mapped(bh)) {
2006 WARN_ON(bh->b_size != blocksize);
2007 if (get_block) {
2008 err = get_block(inode, block, bh, 1);
2009 if (err)
2010 break;
2011 } else {
2012 iomap_to_bh(inode, block, bh, iomap);
2013 }
2014
2015 if (buffer_new(bh)) {
2016 clean_bdev_bh_alias(bh);
2017 if (PageUptodate(page)) {
2018 clear_buffer_new(bh);
2019 set_buffer_uptodate(bh);
2020 mark_buffer_dirty(bh);
2021 continue;
2022 }
2023 if (block_end > to || block_start < from)
2024 zero_user_segments(page,
2025 to, block_end,
2026 block_start, from);
2027 continue;
2028 }
2029 }
2030 if (PageUptodate(page)) {
2031 if (!buffer_uptodate(bh))
2032 set_buffer_uptodate(bh);
2033 continue;
2034 }
2035 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2036 !buffer_unwritten(bh) &&
2037 (block_start < from || block_end > to)) {
2038 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2039 *wait_bh++=bh;
2040 }
2041 }
2042 /*
2043 * If we issued read requests - let them complete.
2044 */
2045 while(wait_bh > wait) {
2046 wait_on_buffer(*--wait_bh);
2047 if (!buffer_uptodate(*wait_bh))
2048 err = -EIO;
2049 }
2050 if (unlikely(err))
2051 page_zero_new_buffers(page, from, to);
2052 return err;
2053 }
2054
2055 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2056 get_block_t *get_block)
2057 {
2058 return __block_write_begin_int(page, pos, len, get_block, NULL);
2059 }
2060 EXPORT_SYMBOL(__block_write_begin);
2061
2062 static int __block_commit_write(struct inode *inode, struct page *page,
2063 unsigned from, unsigned to)
2064 {
2065 unsigned block_start, block_end;
2066 int partial = 0;
2067 unsigned blocksize;
2068 struct buffer_head *bh, *head;
2069
2070 bh = head = page_buffers(page);
2071 blocksize = bh->b_size;
2072
2073 block_start = 0;
2074 do {
2075 block_end = block_start + blocksize;
2076 if (block_end <= from || block_start >= to) {
2077 if (!buffer_uptodate(bh))
2078 partial = 1;
2079 } else {
2080 set_buffer_uptodate(bh);
2081 mark_buffer_dirty(bh);
2082 }
2083 clear_buffer_new(bh);
2084
2085 block_start = block_end;
2086 bh = bh->b_this_page;
2087 } while (bh != head);
2088
2089 /*
2090 * If this is a partial write which happened to make all buffers
2091 * uptodate then we can optimize away a bogus readpage() for
2092 * the next read(). Here we 'discover' whether the page went
2093 * uptodate as a result of this (potentially partial) write.
2094 */
2095 if (!partial)
2096 SetPageUptodate(page);
2097 return 0;
2098 }
2099
2100 /*
2101 * block_write_begin takes care of the basic task of block allocation and
2102 * bringing partial write blocks uptodate first.
2103 *
2104 * The filesystem needs to handle block truncation upon failure.
2105 */
2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107 unsigned flags, struct page **pagep, get_block_t *get_block)
2108 {
2109 pgoff_t index = pos >> PAGE_SHIFT;
2110 struct page *page;
2111 int status;
2112
2113 page = grab_cache_page_write_begin(mapping, index, flags);
2114 if (!page)
2115 return -ENOMEM;
2116
2117 status = __block_write_begin(page, pos, len, get_block);
2118 if (unlikely(status)) {
2119 unlock_page(page);
2120 put_page(page);
2121 page = NULL;
2122 }
2123
2124 *pagep = page;
2125 return status;
2126 }
2127 EXPORT_SYMBOL(block_write_begin);
2128
2129 int block_write_end(struct file *file, struct address_space *mapping,
2130 loff_t pos, unsigned len, unsigned copied,
2131 struct page *page, void *fsdata)
2132 {
2133 struct inode *inode = mapping->host;
2134 unsigned start;
2135
2136 start = pos & (PAGE_SIZE - 1);
2137
2138 if (unlikely(copied < len)) {
2139 /*
2140 * The buffers that were written will now be uptodate, so we
2141 * don't have to worry about a readpage reading them and
2142 * overwriting a partial write. However if we have encountered
2143 * a short write and only partially written into a buffer, it
2144 * will not be marked uptodate, so a readpage might come in and
2145 * destroy our partial write.
2146 *
2147 * Do the simplest thing, and just treat any short write to a
2148 * non uptodate page as a zero-length write, and force the
2149 * caller to redo the whole thing.
2150 */
2151 if (!PageUptodate(page))
2152 copied = 0;
2153
2154 page_zero_new_buffers(page, start+copied, start+len);
2155 }
2156 flush_dcache_page(page);
2157
2158 /* This could be a short (even 0-length) commit */
2159 __block_commit_write(inode, page, start, start+copied);
2160
2161 return copied;
2162 }
2163 EXPORT_SYMBOL(block_write_end);
2164
2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166 loff_t pos, unsigned len, unsigned copied,
2167 struct page *page, void *fsdata)
2168 {
2169 struct inode *inode = mapping->host;
2170 loff_t old_size = inode->i_size;
2171 bool i_size_changed = false;
2172
2173 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174
2175 /*
2176 * No need to use i_size_read() here, the i_size cannot change under us
2177 * because we hold i_rwsem.
2178 *
2179 * But it's important to update i_size while still holding page lock:
2180 * page writeout could otherwise come in and zero beyond i_size.
2181 */
2182 if (pos + copied > inode->i_size) {
2183 i_size_write(inode, pos + copied);
2184 i_size_changed = true;
2185 }
2186
2187 unlock_page(page);
2188 put_page(page);
2189
2190 if (old_size < pos)
2191 pagecache_isize_extended(inode, old_size, pos);
2192 /*
2193 * Don't mark the inode dirty under page lock. First, it unnecessarily
2194 * makes the holding time of page lock longer. Second, it forces lock
2195 * ordering of page lock and transaction start for journaling
2196 * filesystems.
2197 */
2198 if (i_size_changed)
2199 mark_inode_dirty(inode);
2200 return copied;
2201 }
2202 EXPORT_SYMBOL(generic_write_end);
2203
2204 /*
2205 * block_is_partially_uptodate checks whether buffers within a page are
2206 * uptodate or not.
2207 *
2208 * Returns true if all buffers which correspond to a file portion
2209 * we want to read are uptodate.
2210 */
2211 int block_is_partially_uptodate(struct page *page, unsigned long from,
2212 unsigned long count)
2213 {
2214 unsigned block_start, block_end, blocksize;
2215 unsigned to;
2216 struct buffer_head *bh, *head;
2217 int ret = 1;
2218
2219 if (!page_has_buffers(page))
2220 return 0;
2221
2222 head = page_buffers(page);
2223 blocksize = head->b_size;
2224 to = min_t(unsigned, PAGE_SIZE - from, count);
2225 to = from + to;
2226 if (from < blocksize && to > PAGE_SIZE - blocksize)
2227 return 0;
2228
2229 bh = head;
2230 block_start = 0;
2231 do {
2232 block_end = block_start + blocksize;
2233 if (block_end > from && block_start < to) {
2234 if (!buffer_uptodate(bh)) {
2235 ret = 0;
2236 break;
2237 }
2238 if (block_end >= to)
2239 break;
2240 }
2241 block_start = block_end;
2242 bh = bh->b_this_page;
2243 } while (bh != head);
2244
2245 return ret;
2246 }
2247 EXPORT_SYMBOL(block_is_partially_uptodate);
2248
2249 /*
2250 * Generic "read page" function for block devices that have the normal
2251 * get_block functionality. This is most of the block device filesystems.
2252 * Reads the page asynchronously --- the unlock_buffer() and
2253 * set/clear_buffer_uptodate() functions propagate buffer state into the
2254 * page struct once IO has completed.
2255 */
2256 int block_read_full_page(struct page *page, get_block_t *get_block)
2257 {
2258 struct inode *inode = page->mapping->host;
2259 sector_t iblock, lblock;
2260 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2261 unsigned int blocksize, bbits;
2262 int nr, i;
2263 int fully_mapped = 1;
2264
2265 head = create_page_buffers(page, inode, 0);
2266 blocksize = head->b_size;
2267 bbits = block_size_bits(blocksize);
2268
2269 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2270 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2271 bh = head;
2272 nr = 0;
2273 i = 0;
2274
2275 do {
2276 if (buffer_uptodate(bh))
2277 continue;
2278
2279 if (!buffer_mapped(bh)) {
2280 int err = 0;
2281
2282 fully_mapped = 0;
2283 if (iblock < lblock) {
2284 WARN_ON(bh->b_size != blocksize);
2285 err = get_block(inode, iblock, bh, 0);
2286 if (err)
2287 SetPageError(page);
2288 }
2289 if (!buffer_mapped(bh)) {
2290 zero_user(page, i * blocksize, blocksize);
2291 if (!err)
2292 set_buffer_uptodate(bh);
2293 continue;
2294 }
2295 /*
2296 * get_block() might have updated the buffer
2297 * synchronously
2298 */
2299 if (buffer_uptodate(bh))
2300 continue;
2301 }
2302 arr[nr++] = bh;
2303 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2304
2305 if (fully_mapped)
2306 SetPageMappedToDisk(page);
2307
2308 if (!nr) {
2309 /*
2310 * All buffers are uptodate - we can set the page uptodate
2311 * as well. But not if get_block() returned an error.
2312 */
2313 if (!PageError(page))
2314 SetPageUptodate(page);
2315 unlock_page(page);
2316 return 0;
2317 }
2318
2319 /* Stage two: lock the buffers */
2320 for (i = 0; i < nr; i++) {
2321 bh = arr[i];
2322 lock_buffer(bh);
2323 mark_buffer_async_read(bh);
2324 }
2325
2326 /*
2327 * Stage 3: start the IO. Check for uptodateness
2328 * inside the buffer lock in case another process reading
2329 * the underlying blockdev brought it uptodate (the sct fix).
2330 */
2331 for (i = 0; i < nr; i++) {
2332 bh = arr[i];
2333 if (buffer_uptodate(bh))
2334 end_buffer_async_read(bh, 1);
2335 else
2336 submit_bh(REQ_OP_READ, 0, bh);
2337 }
2338 return 0;
2339 }
2340 EXPORT_SYMBOL(block_read_full_page);
2341
2342 /* utility function for filesystems that need to do work on expanding
2343 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2344 * deal with the hole.
2345 */
2346 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2347 {
2348 struct address_space *mapping = inode->i_mapping;
2349 struct page *page;
2350 void *fsdata;
2351 int err;
2352
2353 err = inode_newsize_ok(inode, size);
2354 if (err)
2355 goto out;
2356
2357 err = pagecache_write_begin(NULL, mapping, size, 0,
2358 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2359 if (err)
2360 goto out;
2361
2362 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2363 BUG_ON(err > 0);
2364
2365 out:
2366 return err;
2367 }
2368 EXPORT_SYMBOL(generic_cont_expand_simple);
2369
2370 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2371 loff_t pos, loff_t *bytes)
2372 {
2373 struct inode *inode = mapping->host;
2374 unsigned int blocksize = i_blocksize(inode);
2375 struct page *page;
2376 void *fsdata;
2377 pgoff_t index, curidx;
2378 loff_t curpos;
2379 unsigned zerofrom, offset, len;
2380 int err = 0;
2381
2382 index = pos >> PAGE_SHIFT;
2383 offset = pos & ~PAGE_MASK;
2384
2385 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2386 zerofrom = curpos & ~PAGE_MASK;
2387 if (zerofrom & (blocksize-1)) {
2388 *bytes |= (blocksize-1);
2389 (*bytes)++;
2390 }
2391 len = PAGE_SIZE - zerofrom;
2392
2393 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2394 &page, &fsdata);
2395 if (err)
2396 goto out;
2397 zero_user(page, zerofrom, len);
2398 err = pagecache_write_end(file, mapping, curpos, len, len,
2399 page, fsdata);
2400 if (err < 0)
2401 goto out;
2402 BUG_ON(err != len);
2403 err = 0;
2404
2405 balance_dirty_pages_ratelimited(mapping);
2406
2407 if (fatal_signal_pending(current)) {
2408 err = -EINTR;
2409 goto out;
2410 }
2411 }
2412
2413 /* page covers the boundary, find the boundary offset */
2414 if (index == curidx) {
2415 zerofrom = curpos & ~PAGE_MASK;
2416 /* if we will expand the thing last block will be filled */
2417 if (offset <= zerofrom) {
2418 goto out;
2419 }
2420 if (zerofrom & (blocksize-1)) {
2421 *bytes |= (blocksize-1);
2422 (*bytes)++;
2423 }
2424 len = offset - zerofrom;
2425
2426 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427 &page, &fsdata);
2428 if (err)
2429 goto out;
2430 zero_user(page, zerofrom, len);
2431 err = pagecache_write_end(file, mapping, curpos, len, len,
2432 page, fsdata);
2433 if (err < 0)
2434 goto out;
2435 BUG_ON(err != len);
2436 err = 0;
2437 }
2438 out:
2439 return err;
2440 }
2441
2442 /*
2443 * For moronic filesystems that do not allow holes in file.
2444 * We may have to extend the file.
2445 */
2446 int cont_write_begin(struct file *file, struct address_space *mapping,
2447 loff_t pos, unsigned len, unsigned flags,
2448 struct page **pagep, void **fsdata,
2449 get_block_t *get_block, loff_t *bytes)
2450 {
2451 struct inode *inode = mapping->host;
2452 unsigned int blocksize = i_blocksize(inode);
2453 unsigned int zerofrom;
2454 int err;
2455
2456 err = cont_expand_zero(file, mapping, pos, bytes);
2457 if (err)
2458 return err;
2459
2460 zerofrom = *bytes & ~PAGE_MASK;
2461 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2462 *bytes |= (blocksize-1);
2463 (*bytes)++;
2464 }
2465
2466 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2467 }
2468 EXPORT_SYMBOL(cont_write_begin);
2469
2470 int block_commit_write(struct page *page, unsigned from, unsigned to)
2471 {
2472 struct inode *inode = page->mapping->host;
2473 __block_commit_write(inode,page,from,to);
2474 return 0;
2475 }
2476 EXPORT_SYMBOL(block_commit_write);
2477
2478 /*
2479 * block_page_mkwrite() is not allowed to change the file size as it gets
2480 * called from a page fault handler when a page is first dirtied. Hence we must
2481 * be careful to check for EOF conditions here. We set the page up correctly
2482 * for a written page which means we get ENOSPC checking when writing into
2483 * holes and correct delalloc and unwritten extent mapping on filesystems that
2484 * support these features.
2485 *
2486 * We are not allowed to take the i_mutex here so we have to play games to
2487 * protect against truncate races as the page could now be beyond EOF. Because
2488 * truncate writes the inode size before removing pages, once we have the
2489 * page lock we can determine safely if the page is beyond EOF. If it is not
2490 * beyond EOF, then the page is guaranteed safe against truncation until we
2491 * unlock the page.
2492 *
2493 * Direct callers of this function should protect against filesystem freezing
2494 * using sb_start_pagefault() - sb_end_pagefault() functions.
2495 */
2496 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2497 get_block_t get_block)
2498 {
2499 struct page *page = vmf->page;
2500 struct inode *inode = file_inode(vma->vm_file);
2501 unsigned long end;
2502 loff_t size;
2503 int ret;
2504
2505 lock_page(page);
2506 size = i_size_read(inode);
2507 if ((page->mapping != inode->i_mapping) ||
2508 (page_offset(page) > size)) {
2509 /* We overload EFAULT to mean page got truncated */
2510 ret = -EFAULT;
2511 goto out_unlock;
2512 }
2513
2514 /* page is wholly or partially inside EOF */
2515 if (((page->index + 1) << PAGE_SHIFT) > size)
2516 end = size & ~PAGE_MASK;
2517 else
2518 end = PAGE_SIZE;
2519
2520 ret = __block_write_begin(page, 0, end, get_block);
2521 if (!ret)
2522 ret = block_commit_write(page, 0, end);
2523
2524 if (unlikely(ret < 0))
2525 goto out_unlock;
2526 set_page_dirty(page);
2527 wait_for_stable_page(page);
2528 return 0;
2529 out_unlock:
2530 unlock_page(page);
2531 return ret;
2532 }
2533 EXPORT_SYMBOL(block_page_mkwrite);
2534
2535 /*
2536 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2537 * immediately, while under the page lock. So it needs a special end_io
2538 * handler which does not touch the bh after unlocking it.
2539 */
2540 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2541 {
2542 __end_buffer_read_notouch(bh, uptodate);
2543 }
2544
2545 /*
2546 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2547 * the page (converting it to circular linked list and taking care of page
2548 * dirty races).
2549 */
2550 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2551 {
2552 struct buffer_head *bh;
2553
2554 BUG_ON(!PageLocked(page));
2555
2556 spin_lock(&page->mapping->private_lock);
2557 bh = head;
2558 do {
2559 if (PageDirty(page))
2560 set_buffer_dirty(bh);
2561 if (!bh->b_this_page)
2562 bh->b_this_page = head;
2563 bh = bh->b_this_page;
2564 } while (bh != head);
2565 attach_page_buffers(page, head);
2566 spin_unlock(&page->mapping->private_lock);
2567 }
2568
2569 /*
2570 * On entry, the page is fully not uptodate.
2571 * On exit the page is fully uptodate in the areas outside (from,to)
2572 * The filesystem needs to handle block truncation upon failure.
2573 */
2574 int nobh_write_begin(struct address_space *mapping,
2575 loff_t pos, unsigned len, unsigned flags,
2576 struct page **pagep, void **fsdata,
2577 get_block_t *get_block)
2578 {
2579 struct inode *inode = mapping->host;
2580 const unsigned blkbits = inode->i_blkbits;
2581 const unsigned blocksize = 1 << blkbits;
2582 struct buffer_head *head, *bh;
2583 struct page *page;
2584 pgoff_t index;
2585 unsigned from, to;
2586 unsigned block_in_page;
2587 unsigned block_start, block_end;
2588 sector_t block_in_file;
2589 int nr_reads = 0;
2590 int ret = 0;
2591 int is_mapped_to_disk = 1;
2592
2593 index = pos >> PAGE_SHIFT;
2594 from = pos & (PAGE_SIZE - 1);
2595 to = from + len;
2596
2597 page = grab_cache_page_write_begin(mapping, index, flags);
2598 if (!page)
2599 return -ENOMEM;
2600 *pagep = page;
2601 *fsdata = NULL;
2602
2603 if (page_has_buffers(page)) {
2604 ret = __block_write_begin(page, pos, len, get_block);
2605 if (unlikely(ret))
2606 goto out_release;
2607 return ret;
2608 }
2609
2610 if (PageMappedToDisk(page))
2611 return 0;
2612
2613 /*
2614 * Allocate buffers so that we can keep track of state, and potentially
2615 * attach them to the page if an error occurs. In the common case of
2616 * no error, they will just be freed again without ever being attached
2617 * to the page (which is all OK, because we're under the page lock).
2618 *
2619 * Be careful: the buffer linked list is a NULL terminated one, rather
2620 * than the circular one we're used to.
2621 */
2622 head = alloc_page_buffers(page, blocksize, false);
2623 if (!head) {
2624 ret = -ENOMEM;
2625 goto out_release;
2626 }
2627
2628 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2629
2630 /*
2631 * We loop across all blocks in the page, whether or not they are
2632 * part of the affected region. This is so we can discover if the
2633 * page is fully mapped-to-disk.
2634 */
2635 for (block_start = 0, block_in_page = 0, bh = head;
2636 block_start < PAGE_SIZE;
2637 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2638 int create;
2639
2640 block_end = block_start + blocksize;
2641 bh->b_state = 0;
2642 create = 1;
2643 if (block_start >= to)
2644 create = 0;
2645 ret = get_block(inode, block_in_file + block_in_page,
2646 bh, create);
2647 if (ret)
2648 goto failed;
2649 if (!buffer_mapped(bh))
2650 is_mapped_to_disk = 0;
2651 if (buffer_new(bh))
2652 clean_bdev_bh_alias(bh);
2653 if (PageUptodate(page)) {
2654 set_buffer_uptodate(bh);
2655 continue;
2656 }
2657 if (buffer_new(bh) || !buffer_mapped(bh)) {
2658 zero_user_segments(page, block_start, from,
2659 to, block_end);
2660 continue;
2661 }
2662 if (buffer_uptodate(bh))
2663 continue; /* reiserfs does this */
2664 if (block_start < from || block_end > to) {
2665 lock_buffer(bh);
2666 bh->b_end_io = end_buffer_read_nobh;
2667 submit_bh(REQ_OP_READ, 0, bh);
2668 nr_reads++;
2669 }
2670 }
2671
2672 if (nr_reads) {
2673 /*
2674 * The page is locked, so these buffers are protected from
2675 * any VM or truncate activity. Hence we don't need to care
2676 * for the buffer_head refcounts.
2677 */
2678 for (bh = head; bh; bh = bh->b_this_page) {
2679 wait_on_buffer(bh);
2680 if (!buffer_uptodate(bh))
2681 ret = -EIO;
2682 }
2683 if (ret)
2684 goto failed;
2685 }
2686
2687 if (is_mapped_to_disk)
2688 SetPageMappedToDisk(page);
2689
2690 *fsdata = head; /* to be released by nobh_write_end */
2691
2692 return 0;
2693
2694 failed:
2695 BUG_ON(!ret);
2696 /*
2697 * Error recovery is a bit difficult. We need to zero out blocks that
2698 * were newly allocated, and dirty them to ensure they get written out.
2699 * Buffers need to be attached to the page at this point, otherwise
2700 * the handling of potential IO errors during writeout would be hard
2701 * (could try doing synchronous writeout, but what if that fails too?)
2702 */
2703 attach_nobh_buffers(page, head);
2704 page_zero_new_buffers(page, from, to);
2705
2706 out_release:
2707 unlock_page(page);
2708 put_page(page);
2709 *pagep = NULL;
2710
2711 return ret;
2712 }
2713 EXPORT_SYMBOL(nobh_write_begin);
2714
2715 int nobh_write_end(struct file *file, struct address_space *mapping,
2716 loff_t pos, unsigned len, unsigned copied,
2717 struct page *page, void *fsdata)
2718 {
2719 struct inode *inode = page->mapping->host;
2720 struct buffer_head *head = fsdata;
2721 struct buffer_head *bh;
2722 BUG_ON(fsdata != NULL && page_has_buffers(page));
2723
2724 if (unlikely(copied < len) && head)
2725 attach_nobh_buffers(page, head);
2726 if (page_has_buffers(page))
2727 return generic_write_end(file, mapping, pos, len,
2728 copied, page, fsdata);
2729
2730 SetPageUptodate(page);
2731 set_page_dirty(page);
2732 if (pos+copied > inode->i_size) {
2733 i_size_write(inode, pos+copied);
2734 mark_inode_dirty(inode);
2735 }
2736
2737 unlock_page(page);
2738 put_page(page);
2739
2740 while (head) {
2741 bh = head;
2742 head = head->b_this_page;
2743 free_buffer_head(bh);
2744 }
2745
2746 return copied;
2747 }
2748 EXPORT_SYMBOL(nobh_write_end);
2749
2750 /*
2751 * nobh_writepage() - based on block_full_write_page() except
2752 * that it tries to operate without attaching bufferheads to
2753 * the page.
2754 */
2755 int nobh_writepage(struct page *page, get_block_t *get_block,
2756 struct writeback_control *wbc)
2757 {
2758 struct inode * const inode = page->mapping->host;
2759 loff_t i_size = i_size_read(inode);
2760 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2761 unsigned offset;
2762 int ret;
2763
2764 /* Is the page fully inside i_size? */
2765 if (page->index < end_index)
2766 goto out;
2767
2768 /* Is the page fully outside i_size? (truncate in progress) */
2769 offset = i_size & (PAGE_SIZE-1);
2770 if (page->index >= end_index+1 || !offset) {
2771 /*
2772 * The page may have dirty, unmapped buffers. For example,
2773 * they may have been added in ext3_writepage(). Make them
2774 * freeable here, so the page does not leak.
2775 */
2776 #if 0
2777 /* Not really sure about this - do we need this ? */
2778 if (page->mapping->a_ops->invalidatepage)
2779 page->mapping->a_ops->invalidatepage(page, offset);
2780 #endif
2781 unlock_page(page);
2782 return 0; /* don't care */
2783 }
2784
2785 /*
2786 * The page straddles i_size. It must be zeroed out on each and every
2787 * writepage invocation because it may be mmapped. "A file is mapped
2788 * in multiples of the page size. For a file that is not a multiple of
2789 * the page size, the remaining memory is zeroed when mapped, and
2790 * writes to that region are not written out to the file."
2791 */
2792 zero_user_segment(page, offset, PAGE_SIZE);
2793 out:
2794 ret = mpage_writepage(page, get_block, wbc);
2795 if (ret == -EAGAIN)
2796 ret = __block_write_full_page(inode, page, get_block, wbc,
2797 end_buffer_async_write);
2798 return ret;
2799 }
2800 EXPORT_SYMBOL(nobh_writepage);
2801
2802 int nobh_truncate_page(struct address_space *mapping,
2803 loff_t from, get_block_t *get_block)
2804 {
2805 pgoff_t index = from >> PAGE_SHIFT;
2806 unsigned offset = from & (PAGE_SIZE-1);
2807 unsigned blocksize;
2808 sector_t iblock;
2809 unsigned length, pos;
2810 struct inode *inode = mapping->host;
2811 struct page *page;
2812 struct buffer_head map_bh;
2813 int err;
2814
2815 blocksize = i_blocksize(inode);
2816 length = offset & (blocksize - 1);
2817
2818 /* Block boundary? Nothing to do */
2819 if (!length)
2820 return 0;
2821
2822 length = blocksize - length;
2823 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2824
2825 page = grab_cache_page(mapping, index);
2826 err = -ENOMEM;
2827 if (!page)
2828 goto out;
2829
2830 if (page_has_buffers(page)) {
2831 has_buffers:
2832 unlock_page(page);
2833 put_page(page);
2834 return block_truncate_page(mapping, from, get_block);
2835 }
2836
2837 /* Find the buffer that contains "offset" */
2838 pos = blocksize;
2839 while (offset >= pos) {
2840 iblock++;
2841 pos += blocksize;
2842 }
2843
2844 map_bh.b_size = blocksize;
2845 map_bh.b_state = 0;
2846 err = get_block(inode, iblock, &map_bh, 0);
2847 if (err)
2848 goto unlock;
2849 /* unmapped? It's a hole - nothing to do */
2850 if (!buffer_mapped(&map_bh))
2851 goto unlock;
2852
2853 /* Ok, it's mapped. Make sure it's up-to-date */
2854 if (!PageUptodate(page)) {
2855 err = mapping->a_ops->readpage(NULL, page);
2856 if (err) {
2857 put_page(page);
2858 goto out;
2859 }
2860 lock_page(page);
2861 if (!PageUptodate(page)) {
2862 err = -EIO;
2863 goto unlock;
2864 }
2865 if (page_has_buffers(page))
2866 goto has_buffers;
2867 }
2868 zero_user(page, offset, length);
2869 set_page_dirty(page);
2870 err = 0;
2871
2872 unlock:
2873 unlock_page(page);
2874 put_page(page);
2875 out:
2876 return err;
2877 }
2878 EXPORT_SYMBOL(nobh_truncate_page);
2879
2880 int block_truncate_page(struct address_space *mapping,
2881 loff_t from, get_block_t *get_block)
2882 {
2883 pgoff_t index = from >> PAGE_SHIFT;
2884 unsigned offset = from & (PAGE_SIZE-1);
2885 unsigned blocksize;
2886 sector_t iblock;
2887 unsigned length, pos;
2888 struct inode *inode = mapping->host;
2889 struct page *page;
2890 struct buffer_head *bh;
2891 int err;
2892
2893 blocksize = i_blocksize(inode);
2894 length = offset & (blocksize - 1);
2895
2896 /* Block boundary? Nothing to do */
2897 if (!length)
2898 return 0;
2899
2900 length = blocksize - length;
2901 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2902
2903 page = grab_cache_page(mapping, index);
2904 err = -ENOMEM;
2905 if (!page)
2906 goto out;
2907
2908 if (!page_has_buffers(page))
2909 create_empty_buffers(page, blocksize, 0);
2910
2911 /* Find the buffer that contains "offset" */
2912 bh = page_buffers(page);
2913 pos = blocksize;
2914 while (offset >= pos) {
2915 bh = bh->b_this_page;
2916 iblock++;
2917 pos += blocksize;
2918 }
2919
2920 err = 0;
2921 if (!buffer_mapped(bh)) {
2922 WARN_ON(bh->b_size != blocksize);
2923 err = get_block(inode, iblock, bh, 0);
2924 if (err)
2925 goto unlock;
2926 /* unmapped? It's a hole - nothing to do */
2927 if (!buffer_mapped(bh))
2928 goto unlock;
2929 }
2930
2931 /* Ok, it's mapped. Make sure it's up-to-date */
2932 if (PageUptodate(page))
2933 set_buffer_uptodate(bh);
2934
2935 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2936 err = -EIO;
2937 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2938 wait_on_buffer(bh);
2939 /* Uhhuh. Read error. Complain and punt. */
2940 if (!buffer_uptodate(bh))
2941 goto unlock;
2942 }
2943
2944 zero_user(page, offset, length);
2945 mark_buffer_dirty(bh);
2946 err = 0;
2947
2948 unlock:
2949 unlock_page(page);
2950 put_page(page);
2951 out:
2952 return err;
2953 }
2954 EXPORT_SYMBOL(block_truncate_page);
2955
2956 /*
2957 * The generic ->writepage function for buffer-backed address_spaces
2958 */
2959 int block_write_full_page(struct page *page, get_block_t *get_block,
2960 struct writeback_control *wbc)
2961 {
2962 struct inode * const inode = page->mapping->host;
2963 loff_t i_size = i_size_read(inode);
2964 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2965 unsigned offset;
2966
2967 /* Is the page fully inside i_size? */
2968 if (page->index < end_index)
2969 return __block_write_full_page(inode, page, get_block, wbc,
2970 end_buffer_async_write);
2971
2972 /* Is the page fully outside i_size? (truncate in progress) */
2973 offset = i_size & (PAGE_SIZE-1);
2974 if (page->index >= end_index+1 || !offset) {
2975 /*
2976 * The page may have dirty, unmapped buffers. For example,
2977 * they may have been added in ext3_writepage(). Make them
2978 * freeable here, so the page does not leak.
2979 */
2980 do_invalidatepage(page, 0, PAGE_SIZE);
2981 unlock_page(page);
2982 return 0; /* don't care */
2983 }
2984
2985 /*
2986 * The page straddles i_size. It must be zeroed out on each and every
2987 * writepage invocation because it may be mmapped. "A file is mapped
2988 * in multiples of the page size. For a file that is not a multiple of
2989 * the page size, the remaining memory is zeroed when mapped, and
2990 * writes to that region are not written out to the file."
2991 */
2992 zero_user_segment(page, offset, PAGE_SIZE);
2993 return __block_write_full_page(inode, page, get_block, wbc,
2994 end_buffer_async_write);
2995 }
2996 EXPORT_SYMBOL(block_write_full_page);
2997
2998 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2999 get_block_t *get_block)
3000 {
3001 struct inode *inode = mapping->host;
3002 struct buffer_head tmp = {
3003 .b_size = i_blocksize(inode),
3004 };
3005
3006 get_block(inode, block, &tmp, 0);
3007 return tmp.b_blocknr;
3008 }
3009 EXPORT_SYMBOL(generic_block_bmap);
3010
3011 static void end_bio_bh_io_sync(struct bio *bio)
3012 {
3013 struct buffer_head *bh = bio->bi_private;
3014
3015 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3016 set_bit(BH_Quiet, &bh->b_state);
3017
3018 bh->b_end_io(bh, !bio->bi_status);
3019 bio_put(bio);
3020 }
3021
3022 /*
3023 * This allows us to do IO even on the odd last sectors
3024 * of a device, even if the block size is some multiple
3025 * of the physical sector size.
3026 *
3027 * We'll just truncate the bio to the size of the device,
3028 * and clear the end of the buffer head manually.
3029 *
3030 * Truly out-of-range accesses will turn into actual IO
3031 * errors, this only handles the "we need to be able to
3032 * do IO at the final sector" case.
3033 */
3034 void guard_bio_eod(struct bio *bio)
3035 {
3036 sector_t maxsector;
3037 struct hd_struct *part;
3038
3039 rcu_read_lock();
3040 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3041 if (part)
3042 maxsector = part_nr_sects_read(part);
3043 else
3044 maxsector = get_capacity(bio->bi_disk);
3045 rcu_read_unlock();
3046
3047 if (!maxsector)
3048 return;
3049
3050 /*
3051 * If the *whole* IO is past the end of the device,
3052 * let it through, and the IO layer will turn it into
3053 * an EIO.
3054 */
3055 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3056 return;
3057
3058 maxsector -= bio->bi_iter.bi_sector;
3059 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3060 return;
3061
3062 bio_truncate(bio, maxsector << 9);
3063 }
3064
3065 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3066 enum rw_hint write_hint, struct writeback_control *wbc)
3067 {
3068 struct bio *bio;
3069
3070 BUG_ON(!buffer_locked(bh));
3071 BUG_ON(!buffer_mapped(bh));
3072 BUG_ON(!bh->b_end_io);
3073 BUG_ON(buffer_delay(bh));
3074 BUG_ON(buffer_unwritten(bh));
3075
3076 /*
3077 * Only clear out a write error when rewriting
3078 */
3079 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3080 clear_buffer_write_io_error(bh);
3081
3082 /*
3083 * from here on down, it's all bio -- do the initial mapping,
3084 * submit_bio -> generic_make_request may further map this bio around
3085 */
3086 bio = bio_alloc(GFP_NOIO, 1);
3087
3088 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3089 bio_set_dev(bio, bh->b_bdev);
3090 bio->bi_write_hint = write_hint;
3091
3092 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3093 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3094
3095 bio->bi_end_io = end_bio_bh_io_sync;
3096 bio->bi_private = bh;
3097
3098 if (buffer_meta(bh))
3099 op_flags |= REQ_META;
3100 if (buffer_prio(bh))
3101 op_flags |= REQ_PRIO;
3102 bio_set_op_attrs(bio, op, op_flags);
3103
3104 /* Take care of bh's that straddle the end of the device */
3105 guard_bio_eod(bio);
3106
3107 if (wbc) {
3108 wbc_init_bio(wbc, bio);
3109 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3110 }
3111
3112 submit_bio(bio);
3113 return 0;
3114 }
3115
3116 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3117 {
3118 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3119 }
3120 EXPORT_SYMBOL(submit_bh);
3121
3122 /**
3123 * ll_rw_block: low-level access to block devices (DEPRECATED)
3124 * @op: whether to %READ or %WRITE
3125 * @op_flags: req_flag_bits
3126 * @nr: number of &struct buffer_heads in the array
3127 * @bhs: array of pointers to &struct buffer_head
3128 *
3129 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3130 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3131 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3132 * %REQ_RAHEAD.
3133 *
3134 * This function drops any buffer that it cannot get a lock on (with the
3135 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3136 * request, and any buffer that appears to be up-to-date when doing read
3137 * request. Further it marks as clean buffers that are processed for
3138 * writing (the buffer cache won't assume that they are actually clean
3139 * until the buffer gets unlocked).
3140 *
3141 * ll_rw_block sets b_end_io to simple completion handler that marks
3142 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3143 * any waiters.
3144 *
3145 * All of the buffers must be for the same device, and must also be a
3146 * multiple of the current approved size for the device.
3147 */
3148 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3149 {
3150 int i;
3151
3152 for (i = 0; i < nr; i++) {
3153 struct buffer_head *bh = bhs[i];
3154
3155 if (!trylock_buffer(bh))
3156 continue;
3157 if (op == WRITE) {
3158 if (test_clear_buffer_dirty(bh)) {
3159 bh->b_end_io = end_buffer_write_sync;
3160 get_bh(bh);
3161 submit_bh(op, op_flags, bh);
3162 continue;
3163 }
3164 } else {
3165 if (!buffer_uptodate(bh)) {
3166 bh->b_end_io = end_buffer_read_sync;
3167 get_bh(bh);
3168 submit_bh(op, op_flags, bh);
3169 continue;
3170 }
3171 }
3172 unlock_buffer(bh);
3173 }
3174 }
3175 EXPORT_SYMBOL(ll_rw_block);
3176
3177 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3178 {
3179 lock_buffer(bh);
3180 if (!test_clear_buffer_dirty(bh)) {
3181 unlock_buffer(bh);
3182 return;
3183 }
3184 bh->b_end_io = end_buffer_write_sync;
3185 get_bh(bh);
3186 submit_bh(REQ_OP_WRITE, op_flags, bh);
3187 }
3188 EXPORT_SYMBOL(write_dirty_buffer);
3189
3190 /*
3191 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3192 * and then start new I/O and then wait upon it. The caller must have a ref on
3193 * the buffer_head.
3194 */
3195 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3196 {
3197 int ret = 0;
3198
3199 WARN_ON(atomic_read(&bh->b_count) < 1);
3200 lock_buffer(bh);
3201 if (test_clear_buffer_dirty(bh)) {
3202 get_bh(bh);
3203 bh->b_end_io = end_buffer_write_sync;
3204 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3205 wait_on_buffer(bh);
3206 if (!ret && !buffer_uptodate(bh))
3207 ret = -EIO;
3208 } else {
3209 unlock_buffer(bh);
3210 }
3211 return ret;
3212 }
3213 EXPORT_SYMBOL(__sync_dirty_buffer);
3214
3215 int sync_dirty_buffer(struct buffer_head *bh)
3216 {
3217 return __sync_dirty_buffer(bh, REQ_SYNC);
3218 }
3219 EXPORT_SYMBOL(sync_dirty_buffer);
3220
3221 /*
3222 * try_to_free_buffers() checks if all the buffers on this particular page
3223 * are unused, and releases them if so.
3224 *
3225 * Exclusion against try_to_free_buffers may be obtained by either
3226 * locking the page or by holding its mapping's private_lock.
3227 *
3228 * If the page is dirty but all the buffers are clean then we need to
3229 * be sure to mark the page clean as well. This is because the page
3230 * may be against a block device, and a later reattachment of buffers
3231 * to a dirty page will set *all* buffers dirty. Which would corrupt
3232 * filesystem data on the same device.
3233 *
3234 * The same applies to regular filesystem pages: if all the buffers are
3235 * clean then we set the page clean and proceed. To do that, we require
3236 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3237 * private_lock.
3238 *
3239 * try_to_free_buffers() is non-blocking.
3240 */
3241 static inline int buffer_busy(struct buffer_head *bh)
3242 {
3243 return atomic_read(&bh->b_count) |
3244 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3245 }
3246
3247 static int
3248 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3249 {
3250 struct buffer_head *head = page_buffers(page);
3251 struct buffer_head *bh;
3252
3253 bh = head;
3254 do {
3255 if (buffer_busy(bh))
3256 goto failed;
3257 bh = bh->b_this_page;
3258 } while (bh != head);
3259
3260 do {
3261 struct buffer_head *next = bh->b_this_page;
3262
3263 if (bh->b_assoc_map)
3264 __remove_assoc_queue(bh);
3265 bh = next;
3266 } while (bh != head);
3267 *buffers_to_free = head;
3268 __clear_page_buffers(page);
3269 return 1;
3270 failed:
3271 return 0;
3272 }
3273
3274 int try_to_free_buffers(struct page *page)
3275 {
3276 struct address_space * const mapping = page->mapping;
3277 struct buffer_head *buffers_to_free = NULL;
3278 int ret = 0;
3279
3280 BUG_ON(!PageLocked(page));
3281 if (PageWriteback(page))
3282 return 0;
3283
3284 if (mapping == NULL) { /* can this still happen? */
3285 ret = drop_buffers(page, &buffers_to_free);
3286 goto out;
3287 }
3288
3289 spin_lock(&mapping->private_lock);
3290 ret = drop_buffers(page, &buffers_to_free);
3291
3292 /*
3293 * If the filesystem writes its buffers by hand (eg ext3)
3294 * then we can have clean buffers against a dirty page. We
3295 * clean the page here; otherwise the VM will never notice
3296 * that the filesystem did any IO at all.
3297 *
3298 * Also, during truncate, discard_buffer will have marked all
3299 * the page's buffers clean. We discover that here and clean
3300 * the page also.
3301 *
3302 * private_lock must be held over this entire operation in order
3303 * to synchronise against __set_page_dirty_buffers and prevent the
3304 * dirty bit from being lost.
3305 */
3306 if (ret)
3307 cancel_dirty_page(page);
3308 spin_unlock(&mapping->private_lock);
3309 out:
3310 if (buffers_to_free) {
3311 struct buffer_head *bh = buffers_to_free;
3312
3313 do {
3314 struct buffer_head *next = bh->b_this_page;
3315 free_buffer_head(bh);
3316 bh = next;
3317 } while (bh != buffers_to_free);
3318 }
3319 return ret;
3320 }
3321 EXPORT_SYMBOL(try_to_free_buffers);
3322
3323 /*
3324 * There are no bdflush tunables left. But distributions are
3325 * still running obsolete flush daemons, so we terminate them here.
3326 *
3327 * Use of bdflush() is deprecated and will be removed in a future kernel.
3328 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3329 */
3330 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3331 {
3332 static int msg_count;
3333
3334 if (!capable(CAP_SYS_ADMIN))
3335 return -EPERM;
3336
3337 if (msg_count < 5) {
3338 msg_count++;
3339 printk(KERN_INFO
3340 "warning: process `%s' used the obsolete bdflush"
3341 " system call\n", current->comm);
3342 printk(KERN_INFO "Fix your initscripts?\n");
3343 }
3344
3345 if (func == 1)
3346 do_exit(0);
3347 return 0;
3348 }
3349
3350 /*
3351 * Buffer-head allocation
3352 */
3353 static struct kmem_cache *bh_cachep __read_mostly;
3354
3355 /*
3356 * Once the number of bh's in the machine exceeds this level, we start
3357 * stripping them in writeback.
3358 */
3359 static unsigned long max_buffer_heads;
3360
3361 int buffer_heads_over_limit;
3362
3363 struct bh_accounting {
3364 int nr; /* Number of live bh's */
3365 int ratelimit; /* Limit cacheline bouncing */
3366 };
3367
3368 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3369
3370 static void recalc_bh_state(void)
3371 {
3372 int i;
3373 int tot = 0;
3374
3375 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3376 return;
3377 __this_cpu_write(bh_accounting.ratelimit, 0);
3378 for_each_online_cpu(i)
3379 tot += per_cpu(bh_accounting, i).nr;
3380 buffer_heads_over_limit = (tot > max_buffer_heads);
3381 }
3382
3383 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3384 {
3385 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3386 if (ret) {
3387 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3388 preempt_disable();
3389 __this_cpu_inc(bh_accounting.nr);
3390 recalc_bh_state();
3391 preempt_enable();
3392 }
3393 return ret;
3394 }
3395 EXPORT_SYMBOL(alloc_buffer_head);
3396
3397 void free_buffer_head(struct buffer_head *bh)
3398 {
3399 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3400 kmem_cache_free(bh_cachep, bh);
3401 preempt_disable();
3402 __this_cpu_dec(bh_accounting.nr);
3403 recalc_bh_state();
3404 preempt_enable();
3405 }
3406 EXPORT_SYMBOL(free_buffer_head);
3407
3408 static int buffer_exit_cpu_dead(unsigned int cpu)
3409 {
3410 int i;
3411 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3412
3413 for (i = 0; i < BH_LRU_SIZE; i++) {
3414 brelse(b->bhs[i]);
3415 b->bhs[i] = NULL;
3416 }
3417 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3418 per_cpu(bh_accounting, cpu).nr = 0;
3419 return 0;
3420 }
3421
3422 /**
3423 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3424 * @bh: struct buffer_head
3425 *
3426 * Return true if the buffer is up-to-date and false,
3427 * with the buffer locked, if not.
3428 */
3429 int bh_uptodate_or_lock(struct buffer_head *bh)
3430 {
3431 if (!buffer_uptodate(bh)) {
3432 lock_buffer(bh);
3433 if (!buffer_uptodate(bh))
3434 return 0;
3435 unlock_buffer(bh);
3436 }
3437 return 1;
3438 }
3439 EXPORT_SYMBOL(bh_uptodate_or_lock);
3440
3441 /**
3442 * bh_submit_read - Submit a locked buffer for reading
3443 * @bh: struct buffer_head
3444 *
3445 * Returns zero on success and -EIO on error.
3446 */
3447 int bh_submit_read(struct buffer_head *bh)
3448 {
3449 BUG_ON(!buffer_locked(bh));
3450
3451 if (buffer_uptodate(bh)) {
3452 unlock_buffer(bh);
3453 return 0;
3454 }
3455
3456 get_bh(bh);
3457 bh->b_end_io = end_buffer_read_sync;
3458 submit_bh(REQ_OP_READ, 0, bh);
3459 wait_on_buffer(bh);
3460 if (buffer_uptodate(bh))
3461 return 0;
3462 return -EIO;
3463 }
3464 EXPORT_SYMBOL(bh_submit_read);
3465
3466 void __init buffer_init(void)
3467 {
3468 unsigned long nrpages;
3469 int ret;
3470
3471 bh_cachep = kmem_cache_create("buffer_head",
3472 sizeof(struct buffer_head), 0,
3473 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3474 SLAB_MEM_SPREAD),
3475 NULL);
3476
3477 /*
3478 * Limit the bh occupancy to 10% of ZONE_NORMAL
3479 */
3480 nrpages = (nr_free_buffer_pages() * 10) / 100;
3481 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3482 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3483 NULL, buffer_exit_cpu_dead);
3484 WARN_ON(ret < 0);
3485 }