]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/buffer.c
Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sleep_on_buffer(void *word)
58 {
59 io_schedule();
60 return 0;
61 }
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
82 */
83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88
89 static void
90 __clear_page_buffers(struct page *page)
91 {
92 ClearPagePrivate(page);
93 set_page_private(page, 0);
94 page_cache_release(page);
95 }
96
97
98 static int quiet_error(struct buffer_head *bh)
99 {
100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 return 0;
102 return 1;
103 }
104
105
106 static void buffer_io_error(struct buffer_head *bh)
107 {
108 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115 * End-of-IO handler helper function which does not touch the bh after
116 * unlocking it.
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 * itself.
121 */
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124 if (uptodate) {
125 set_buffer_uptodate(bh);
126 } else {
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh);
129 }
130 unlock_buffer(bh);
131 }
132
133 /*
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
136 */
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139 __end_buffer_read_notouch(bh, uptodate);
140 put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146 char b[BDEVNAME_SIZE];
147
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
151 if (!quiet_error(bh)) {
152 buffer_io_error(bh);
153 printk(KERN_WARNING "lost page write due to "
154 "I/O error on %s\n",
155 bdevname(bh->b_bdev, b));
156 }
157 set_buffer_write_io_error(bh);
158 clear_buffer_uptodate(bh);
159 }
160 unlock_buffer(bh);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164
165 /*
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
169 * private_lock.
170 *
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
175 */
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179 struct inode *bd_inode = bdev->bd_inode;
180 struct address_space *bd_mapping = bd_inode->i_mapping;
181 struct buffer_head *ret = NULL;
182 pgoff_t index;
183 struct buffer_head *bh;
184 struct buffer_head *head;
185 struct page *page;
186 int all_mapped = 1;
187
188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 page = find_get_page(bd_mapping, index);
190 if (!page)
191 goto out;
192
193 spin_lock(&bd_mapping->private_lock);
194 if (!page_has_buffers(page))
195 goto out_unlock;
196 head = page_buffers(page);
197 bh = head;
198 do {
199 if (!buffer_mapped(bh))
200 all_mapped = 0;
201 else if (bh->b_blocknr == block) {
202 ret = bh;
203 get_bh(bh);
204 goto out_unlock;
205 }
206 bh = bh->b_this_page;
207 } while (bh != head);
208
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
213 */
214 if (all_mapped) {
215 char b[BDEVNAME_SIZE];
216
217 printk("__find_get_block_slow() failed. "
218 "block=%llu, b_blocknr=%llu\n",
219 (unsigned long long)block,
220 (unsigned long long)bh->b_blocknr);
221 printk("b_state=0x%08lx, b_size=%zu\n",
222 bh->b_state, bh->b_size);
223 printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 1 << bd_inode->i_blkbits);
225 }
226 out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229 out:
230 return ret;
231 }
232
233 /*
234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235 */
236 static void free_more_memory(void)
237 {
238 struct zone *zone;
239 int nid;
240
241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242 yield();
243
244 for_each_online_node(nid) {
245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 gfp_zone(GFP_NOFS), NULL,
247 &zone);
248 if (zone)
249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250 GFP_NOFS, NULL);
251 }
252 }
253
254 /*
255 * I/O completion handler for block_read_full_page() - pages
256 * which come unlocked at the end of I/O.
257 */
258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259 {
260 unsigned long flags;
261 struct buffer_head *first;
262 struct buffer_head *tmp;
263 struct page *page;
264 int page_uptodate = 1;
265
266 BUG_ON(!buffer_async_read(bh));
267
268 page = bh->b_page;
269 if (uptodate) {
270 set_buffer_uptodate(bh);
271 } else {
272 clear_buffer_uptodate(bh);
273 if (!quiet_error(bh))
274 buffer_io_error(bh);
275 SetPageError(page);
276 }
277
278 /*
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
282 */
283 first = page_buffers(page);
284 local_irq_save(flags);
285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 clear_buffer_async_read(bh);
287 unlock_buffer(bh);
288 tmp = bh;
289 do {
290 if (!buffer_uptodate(tmp))
291 page_uptodate = 0;
292 if (buffer_async_read(tmp)) {
293 BUG_ON(!buffer_locked(tmp));
294 goto still_busy;
295 }
296 tmp = tmp->b_this_page;
297 } while (tmp != bh);
298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 local_irq_restore(flags);
300
301 /*
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
304 */
305 if (page_uptodate && !PageError(page))
306 SetPageUptodate(page);
307 unlock_page(page);
308 return;
309
310 still_busy:
311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 local_irq_restore(flags);
313 return;
314 }
315
316 /*
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 char b[BDEVNAME_SIZE];
323 unsigned long flags;
324 struct buffer_head *first;
325 struct buffer_head *tmp;
326 struct page *page;
327
328 BUG_ON(!buffer_async_write(bh));
329
330 page = bh->b_page;
331 if (uptodate) {
332 set_buffer_uptodate(bh);
333 } else {
334 if (!quiet_error(bh)) {
335 buffer_io_error(bh);
336 printk(KERN_WARNING "lost page write due to "
337 "I/O error on %s\n",
338 bdevname(bh->b_bdev, b));
339 }
340 set_bit(AS_EIO, &page->mapping->flags);
341 set_buffer_write_io_error(bh);
342 clear_buffer_uptodate(bh);
343 SetPageError(page);
344 }
345
346 first = page_buffers(page);
347 local_irq_save(flags);
348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349
350 clear_buffer_async_write(bh);
351 unlock_buffer(bh);
352 tmp = bh->b_this_page;
353 while (tmp != bh) {
354 if (buffer_async_write(tmp)) {
355 BUG_ON(!buffer_locked(tmp));
356 goto still_busy;
357 }
358 tmp = tmp->b_this_page;
359 }
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
362 end_page_writeback(page);
363 return;
364
365 still_busy:
366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 local_irq_restore(flags);
368 return;
369 }
370 EXPORT_SYMBOL(end_buffer_async_write);
371
372 /*
373 * If a page's buffers are under async readin (end_buffer_async_read
374 * completion) then there is a possibility that another thread of
375 * control could lock one of the buffers after it has completed
376 * but while some of the other buffers have not completed. This
377 * locked buffer would confuse end_buffer_async_read() into not unlocking
378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
379 * that this buffer is not under async I/O.
380 *
381 * The page comes unlocked when it has no locked buffer_async buffers
382 * left.
383 *
384 * PageLocked prevents anyone starting new async I/O reads any of
385 * the buffers.
386 *
387 * PageWriteback is used to prevent simultaneous writeout of the same
388 * page.
389 *
390 * PageLocked prevents anyone from starting writeback of a page which is
391 * under read I/O (PageWriteback is only ever set against a locked page).
392 */
393 static void mark_buffer_async_read(struct buffer_head *bh)
394 {
395 bh->b_end_io = end_buffer_async_read;
396 set_buffer_async_read(bh);
397 }
398
399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 bh_end_io_t *handler)
401 {
402 bh->b_end_io = handler;
403 set_buffer_async_write(bh);
404 }
405
406 void mark_buffer_async_write(struct buffer_head *bh)
407 {
408 mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 }
410 EXPORT_SYMBOL(mark_buffer_async_write);
411
412
413 /*
414 * fs/buffer.c contains helper functions for buffer-backed address space's
415 * fsync functions. A common requirement for buffer-based filesystems is
416 * that certain data from the backing blockdev needs to be written out for
417 * a successful fsync(). For example, ext2 indirect blocks need to be
418 * written back and waited upon before fsync() returns.
419 *
420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422 * management of a list of dependent buffers at ->i_mapping->private_list.
423 *
424 * Locking is a little subtle: try_to_free_buffers() will remove buffers
425 * from their controlling inode's queue when they are being freed. But
426 * try_to_free_buffers() will be operating against the *blockdev* mapping
427 * at the time, not against the S_ISREG file which depends on those buffers.
428 * So the locking for private_list is via the private_lock in the address_space
429 * which backs the buffers. Which is different from the address_space
430 * against which the buffers are listed. So for a particular address_space,
431 * mapping->private_lock does *not* protect mapping->private_list! In fact,
432 * mapping->private_list will always be protected by the backing blockdev's
433 * ->private_lock.
434 *
435 * Which introduces a requirement: all buffers on an address_space's
436 * ->private_list must be from the same address_space: the blockdev's.
437 *
438 * address_spaces which do not place buffers at ->private_list via these
439 * utility functions are free to use private_lock and private_list for
440 * whatever they want. The only requirement is that list_empty(private_list)
441 * be true at clear_inode() time.
442 *
443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
444 * filesystems should do that. invalidate_inode_buffers() should just go
445 * BUG_ON(!list_empty).
446 *
447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
448 * take an address_space, not an inode. And it should be called
449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450 * queued up.
451 *
452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453 * list if it is already on a list. Because if the buffer is on a list,
454 * it *must* already be on the right one. If not, the filesystem is being
455 * silly. This will save a ton of locking. But first we have to ensure
456 * that buffers are taken *off* the old inode's list when they are freed
457 * (presumably in truncate). That requires careful auditing of all
458 * filesystems (do it inside bforget()). It could also be done by bringing
459 * b_inode back.
460 */
461
462 /*
463 * The buffer's backing address_space's private_lock must be held
464 */
465 static void __remove_assoc_queue(struct buffer_head *bh)
466 {
467 list_del_init(&bh->b_assoc_buffers);
468 WARN_ON(!bh->b_assoc_map);
469 if (buffer_write_io_error(bh))
470 set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 bh->b_assoc_map = NULL;
472 }
473
474 int inode_has_buffers(struct inode *inode)
475 {
476 return !list_empty(&inode->i_data.private_list);
477 }
478
479 /*
480 * osync is designed to support O_SYNC io. It waits synchronously for
481 * all already-submitted IO to complete, but does not queue any new
482 * writes to the disk.
483 *
484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485 * you dirty the buffers, and then use osync_inode_buffers to wait for
486 * completion. Any other dirty buffers which are not yet queued for
487 * write will not be flushed to disk by the osync.
488 */
489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 {
491 struct buffer_head *bh;
492 struct list_head *p;
493 int err = 0;
494
495 spin_lock(lock);
496 repeat:
497 list_for_each_prev(p, list) {
498 bh = BH_ENTRY(p);
499 if (buffer_locked(bh)) {
500 get_bh(bh);
501 spin_unlock(lock);
502 wait_on_buffer(bh);
503 if (!buffer_uptodate(bh))
504 err = -EIO;
505 brelse(bh);
506 spin_lock(lock);
507 goto repeat;
508 }
509 }
510 spin_unlock(lock);
511 return err;
512 }
513
514 static void do_thaw_one(struct super_block *sb, void *unused)
515 {
516 char b[BDEVNAME_SIZE];
517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 printk(KERN_WARNING "Emergency Thaw on %s\n",
519 bdevname(sb->s_bdev, b));
520 }
521
522 static void do_thaw_all(struct work_struct *work)
523 {
524 iterate_supers(do_thaw_one, NULL);
525 kfree(work);
526 printk(KERN_WARNING "Emergency Thaw complete\n");
527 }
528
529 /**
530 * emergency_thaw_all -- forcibly thaw every frozen filesystem
531 *
532 * Used for emergency unfreeze of all filesystems via SysRq
533 */
534 void emergency_thaw_all(void)
535 {
536 struct work_struct *work;
537
538 work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 if (work) {
540 INIT_WORK(work, do_thaw_all);
541 schedule_work(work);
542 }
543 }
544
545 /**
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
548 *
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
550 * that I/O.
551 *
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
555 */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 struct address_space *buffer_mapping = mapping->assoc_mapping;
559
560 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 return 0;
562
563 return fsync_buffers_list(&buffer_mapping->private_lock,
564 &mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567
568 /*
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
573 */
574 void write_boundary_block(struct block_device *bdev,
575 sector_t bblock, unsigned blocksize)
576 {
577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (bh) {
579 if (buffer_dirty(bh))
580 ll_rw_block(WRITE, 1, &bh);
581 put_bh(bh);
582 }
583 }
584
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 struct address_space *mapping = inode->i_mapping;
588 struct address_space *buffer_mapping = bh->b_page->mapping;
589
590 mark_buffer_dirty(bh);
591 if (!mapping->assoc_mapping) {
592 mapping->assoc_mapping = buffer_mapping;
593 } else {
594 BUG_ON(mapping->assoc_mapping != buffer_mapping);
595 }
596 if (!bh->b_assoc_map) {
597 spin_lock(&buffer_mapping->private_lock);
598 list_move_tail(&bh->b_assoc_buffers,
599 &mapping->private_list);
600 bh->b_assoc_map = mapping;
601 spin_unlock(&buffer_mapping->private_lock);
602 }
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605
606 /*
607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608 * dirty.
609 *
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
612 */
613 static void __set_page_dirty(struct page *page,
614 struct address_space *mapping, int warn)
615 {
616 spin_lock_irq(&mapping->tree_lock);
617 if (page->mapping) { /* Race with truncate? */
618 WARN_ON_ONCE(warn && !PageUptodate(page));
619 account_page_dirtied(page, mapping);
620 radix_tree_tag_set(&mapping->page_tree,
621 page_index(page), PAGECACHE_TAG_DIRTY);
622 }
623 spin_unlock_irq(&mapping->tree_lock);
624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
625 }
626
627 /*
628 * Add a page to the dirty page list.
629 *
630 * It is a sad fact of life that this function is called from several places
631 * deeply under spinlocking. It may not sleep.
632 *
633 * If the page has buffers, the uptodate buffers are set dirty, to preserve
634 * dirty-state coherency between the page and the buffers. It the page does
635 * not have buffers then when they are later attached they will all be set
636 * dirty.
637 *
638 * The buffers are dirtied before the page is dirtied. There's a small race
639 * window in which a writepage caller may see the page cleanness but not the
640 * buffer dirtiness. That's fine. If this code were to set the page dirty
641 * before the buffers, a concurrent writepage caller could clear the page dirty
642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643 * page on the dirty page list.
644 *
645 * We use private_lock to lock against try_to_free_buffers while using the
646 * page's buffer list. Also use this to protect against clean buffers being
647 * added to the page after it was set dirty.
648 *
649 * FIXME: may need to call ->reservepage here as well. That's rather up to the
650 * address_space though.
651 */
652 int __set_page_dirty_buffers(struct page *page)
653 {
654 int newly_dirty;
655 struct address_space *mapping = page_mapping(page);
656
657 if (unlikely(!mapping))
658 return !TestSetPageDirty(page);
659
660 spin_lock(&mapping->private_lock);
661 if (page_has_buffers(page)) {
662 struct buffer_head *head = page_buffers(page);
663 struct buffer_head *bh = head;
664
665 do {
666 set_buffer_dirty(bh);
667 bh = bh->b_this_page;
668 } while (bh != head);
669 }
670 newly_dirty = !TestSetPageDirty(page);
671 spin_unlock(&mapping->private_lock);
672
673 if (newly_dirty)
674 __set_page_dirty(page, mapping, 1);
675 return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
705
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
729 */
730 write_dirty_buffer(bh, WRITE_SYNC);
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
760 }
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775 }
776
777 /*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->assoc_mapping;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->assoc_mapping;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828 }
829
830 /*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 int retry)
841 {
842 struct buffer_head *bh, *head;
843 long offset;
844
845 try_again:
846 head = NULL;
847 offset = PAGE_SIZE;
848 while ((offset -= size) >= 0) {
849 bh = alloc_buffer_head(GFP_NOFS);
850 if (!bh)
851 goto no_grow;
852
853 bh->b_bdev = NULL;
854 bh->b_this_page = head;
855 bh->b_blocknr = -1;
856 head = bh;
857
858 bh->b_state = 0;
859 atomic_set(&bh->b_count, 0);
860 bh->b_size = size;
861
862 /* Link the buffer to its page */
863 set_bh_page(bh, page, offset);
864
865 init_buffer(bh, NULL, NULL);
866 }
867 return head;
868 /*
869 * In case anything failed, we just free everything we got.
870 */
871 no_grow:
872 if (head) {
873 do {
874 bh = head;
875 head = head->b_this_page;
876 free_buffer_head(bh);
877 } while (head);
878 }
879
880 /*
881 * Return failure for non-async IO requests. Async IO requests
882 * are not allowed to fail, so we have to wait until buffer heads
883 * become available. But we don't want tasks sleeping with
884 * partially complete buffers, so all were released above.
885 */
886 if (!retry)
887 return NULL;
888
889 /* We're _really_ low on memory. Now we just
890 * wait for old buffer heads to become free due to
891 * finishing IO. Since this is an async request and
892 * the reserve list is empty, we're sure there are
893 * async buffer heads in use.
894 */
895 free_more_memory();
896 goto try_again;
897 }
898 EXPORT_SYMBOL_GPL(alloc_page_buffers);
899
900 static inline void
901 link_dev_buffers(struct page *page, struct buffer_head *head)
902 {
903 struct buffer_head *bh, *tail;
904
905 bh = head;
906 do {
907 tail = bh;
908 bh = bh->b_this_page;
909 } while (bh);
910 tail->b_this_page = head;
911 attach_page_buffers(page, head);
912 }
913
914 /*
915 * Initialise the state of a blockdev page's buffers.
916 */
917 static void
918 init_page_buffers(struct page *page, struct block_device *bdev,
919 sector_t block, int size)
920 {
921 struct buffer_head *head = page_buffers(page);
922 struct buffer_head *bh = head;
923 int uptodate = PageUptodate(page);
924 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
925
926 do {
927 if (!buffer_mapped(bh)) {
928 init_buffer(bh, NULL, NULL);
929 bh->b_bdev = bdev;
930 bh->b_blocknr = block;
931 if (uptodate)
932 set_buffer_uptodate(bh);
933 if (block < end_block)
934 set_buffer_mapped(bh);
935 }
936 block++;
937 bh = bh->b_this_page;
938 } while (bh != head);
939 }
940
941 /*
942 * Create the page-cache page that contains the requested block.
943 *
944 * This is user purely for blockdev mappings.
945 */
946 static struct page *
947 grow_dev_page(struct block_device *bdev, sector_t block,
948 pgoff_t index, int size)
949 {
950 struct inode *inode = bdev->bd_inode;
951 struct page *page;
952 struct buffer_head *bh;
953
954 page = find_or_create_page(inode->i_mapping, index,
955 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
956 if (!page)
957 return NULL;
958
959 BUG_ON(!PageLocked(page));
960
961 if (page_has_buffers(page)) {
962 bh = page_buffers(page);
963 if (bh->b_size == size) {
964 init_page_buffers(page, bdev, block, size);
965 return page;
966 }
967 if (!try_to_free_buffers(page))
968 goto failed;
969 }
970
971 /*
972 * Allocate some buffers for this page
973 */
974 bh = alloc_page_buffers(page, size, 0);
975 if (!bh)
976 goto failed;
977
978 /*
979 * Link the page to the buffers and initialise them. Take the
980 * lock to be atomic wrt __find_get_block(), which does not
981 * run under the page lock.
982 */
983 spin_lock(&inode->i_mapping->private_lock);
984 link_dev_buffers(page, bh);
985 init_page_buffers(page, bdev, block, size);
986 spin_unlock(&inode->i_mapping->private_lock);
987 return page;
988
989 failed:
990 unlock_page(page);
991 page_cache_release(page);
992 return NULL;
993 }
994
995 /*
996 * Create buffers for the specified block device block's page. If
997 * that page was dirty, the buffers are set dirty also.
998 */
999 static int
1000 grow_buffers(struct block_device *bdev, sector_t block, int size)
1001 {
1002 struct page *page;
1003 pgoff_t index;
1004 int sizebits;
1005
1006 sizebits = -1;
1007 do {
1008 sizebits++;
1009 } while ((size << sizebits) < PAGE_SIZE);
1010
1011 index = block >> sizebits;
1012
1013 /*
1014 * Check for a block which wants to lie outside our maximum possible
1015 * pagecache index. (this comparison is done using sector_t types).
1016 */
1017 if (unlikely(index != block >> sizebits)) {
1018 char b[BDEVNAME_SIZE];
1019
1020 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1021 "device %s\n",
1022 __func__, (unsigned long long)block,
1023 bdevname(bdev, b));
1024 return -EIO;
1025 }
1026 block = index << sizebits;
1027 /* Create a page with the proper size buffers.. */
1028 page = grow_dev_page(bdev, block, index, size);
1029 if (!page)
1030 return 0;
1031 unlock_page(page);
1032 page_cache_release(page);
1033 return 1;
1034 }
1035
1036 static struct buffer_head *
1037 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1038 {
1039 int ret;
1040 struct buffer_head *bh;
1041
1042 /* Size must be multiple of hard sectorsize */
1043 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1044 (size < 512 || size > PAGE_SIZE))) {
1045 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1046 size);
1047 printk(KERN_ERR "logical block size: %d\n",
1048 bdev_logical_block_size(bdev));
1049
1050 dump_stack();
1051 return NULL;
1052 }
1053
1054 retry:
1055 bh = __find_get_block(bdev, block, size);
1056 if (bh)
1057 return bh;
1058
1059 ret = grow_buffers(bdev, block, size);
1060 if (ret == 0) {
1061 free_more_memory();
1062 goto retry;
1063 } else if (ret > 0) {
1064 bh = __find_get_block(bdev, block, size);
1065 if (bh)
1066 return bh;
1067 }
1068 return NULL;
1069 }
1070
1071 /*
1072 * The relationship between dirty buffers and dirty pages:
1073 *
1074 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1075 * the page is tagged dirty in its radix tree.
1076 *
1077 * At all times, the dirtiness of the buffers represents the dirtiness of
1078 * subsections of the page. If the page has buffers, the page dirty bit is
1079 * merely a hint about the true dirty state.
1080 *
1081 * When a page is set dirty in its entirety, all its buffers are marked dirty
1082 * (if the page has buffers).
1083 *
1084 * When a buffer is marked dirty, its page is dirtied, but the page's other
1085 * buffers are not.
1086 *
1087 * Also. When blockdev buffers are explicitly read with bread(), they
1088 * individually become uptodate. But their backing page remains not
1089 * uptodate - even if all of its buffers are uptodate. A subsequent
1090 * block_read_full_page() against that page will discover all the uptodate
1091 * buffers, will set the page uptodate and will perform no I/O.
1092 */
1093
1094 /**
1095 * mark_buffer_dirty - mark a buffer_head as needing writeout
1096 * @bh: the buffer_head to mark dirty
1097 *
1098 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1099 * backing page dirty, then tag the page as dirty in its address_space's radix
1100 * tree and then attach the address_space's inode to its superblock's dirty
1101 * inode list.
1102 *
1103 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1104 * mapping->tree_lock and mapping->host->i_lock.
1105 */
1106 void mark_buffer_dirty(struct buffer_head *bh)
1107 {
1108 WARN_ON_ONCE(!buffer_uptodate(bh));
1109
1110 /*
1111 * Very *carefully* optimize the it-is-already-dirty case.
1112 *
1113 * Don't let the final "is it dirty" escape to before we
1114 * perhaps modified the buffer.
1115 */
1116 if (buffer_dirty(bh)) {
1117 smp_mb();
1118 if (buffer_dirty(bh))
1119 return;
1120 }
1121
1122 if (!test_set_buffer_dirty(bh)) {
1123 struct page *page = bh->b_page;
1124 if (!TestSetPageDirty(page)) {
1125 struct address_space *mapping = page_mapping(page);
1126 if (mapping)
1127 __set_page_dirty(page, mapping, 0);
1128 }
1129 }
1130 }
1131 EXPORT_SYMBOL(mark_buffer_dirty);
1132
1133 /*
1134 * Decrement a buffer_head's reference count. If all buffers against a page
1135 * have zero reference count, are clean and unlocked, and if the page is clean
1136 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1137 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1138 * a page but it ends up not being freed, and buffers may later be reattached).
1139 */
1140 void __brelse(struct buffer_head * buf)
1141 {
1142 if (atomic_read(&buf->b_count)) {
1143 put_bh(buf);
1144 return;
1145 }
1146 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1147 }
1148 EXPORT_SYMBOL(__brelse);
1149
1150 /*
1151 * bforget() is like brelse(), except it discards any
1152 * potentially dirty data.
1153 */
1154 void __bforget(struct buffer_head *bh)
1155 {
1156 clear_buffer_dirty(bh);
1157 if (bh->b_assoc_map) {
1158 struct address_space *buffer_mapping = bh->b_page->mapping;
1159
1160 spin_lock(&buffer_mapping->private_lock);
1161 list_del_init(&bh->b_assoc_buffers);
1162 bh->b_assoc_map = NULL;
1163 spin_unlock(&buffer_mapping->private_lock);
1164 }
1165 __brelse(bh);
1166 }
1167 EXPORT_SYMBOL(__bforget);
1168
1169 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1170 {
1171 lock_buffer(bh);
1172 if (buffer_uptodate(bh)) {
1173 unlock_buffer(bh);
1174 return bh;
1175 } else {
1176 get_bh(bh);
1177 bh->b_end_io = end_buffer_read_sync;
1178 submit_bh(READ, bh);
1179 wait_on_buffer(bh);
1180 if (buffer_uptodate(bh))
1181 return bh;
1182 }
1183 brelse(bh);
1184 return NULL;
1185 }
1186
1187 /*
1188 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1189 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1190 * refcount elevated by one when they're in an LRU. A buffer can only appear
1191 * once in a particular CPU's LRU. A single buffer can be present in multiple
1192 * CPU's LRUs at the same time.
1193 *
1194 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1195 * sb_find_get_block().
1196 *
1197 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1198 * a local interrupt disable for that.
1199 */
1200
1201 #define BH_LRU_SIZE 8
1202
1203 struct bh_lru {
1204 struct buffer_head *bhs[BH_LRU_SIZE];
1205 };
1206
1207 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1208
1209 #ifdef CONFIG_SMP
1210 #define bh_lru_lock() local_irq_disable()
1211 #define bh_lru_unlock() local_irq_enable()
1212 #else
1213 #define bh_lru_lock() preempt_disable()
1214 #define bh_lru_unlock() preempt_enable()
1215 #endif
1216
1217 static inline void check_irqs_on(void)
1218 {
1219 #ifdef irqs_disabled
1220 BUG_ON(irqs_disabled());
1221 #endif
1222 }
1223
1224 /*
1225 * The LRU management algorithm is dopey-but-simple. Sorry.
1226 */
1227 static void bh_lru_install(struct buffer_head *bh)
1228 {
1229 struct buffer_head *evictee = NULL;
1230
1231 check_irqs_on();
1232 bh_lru_lock();
1233 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1234 struct buffer_head *bhs[BH_LRU_SIZE];
1235 int in;
1236 int out = 0;
1237
1238 get_bh(bh);
1239 bhs[out++] = bh;
1240 for (in = 0; in < BH_LRU_SIZE; in++) {
1241 struct buffer_head *bh2 =
1242 __this_cpu_read(bh_lrus.bhs[in]);
1243
1244 if (bh2 == bh) {
1245 __brelse(bh2);
1246 } else {
1247 if (out >= BH_LRU_SIZE) {
1248 BUG_ON(evictee != NULL);
1249 evictee = bh2;
1250 } else {
1251 bhs[out++] = bh2;
1252 }
1253 }
1254 }
1255 while (out < BH_LRU_SIZE)
1256 bhs[out++] = NULL;
1257 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1258 }
1259 bh_lru_unlock();
1260
1261 if (evictee)
1262 __brelse(evictee);
1263 }
1264
1265 /*
1266 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1267 */
1268 static struct buffer_head *
1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271 struct buffer_head *ret = NULL;
1272 unsigned int i;
1273
1274 check_irqs_on();
1275 bh_lru_lock();
1276 for (i = 0; i < BH_LRU_SIZE; i++) {
1277 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278
1279 if (bh && bh->b_bdev == bdev &&
1280 bh->b_blocknr == block && bh->b_size == size) {
1281 if (i) {
1282 while (i) {
1283 __this_cpu_write(bh_lrus.bhs[i],
1284 __this_cpu_read(bh_lrus.bhs[i - 1]));
1285 i--;
1286 }
1287 __this_cpu_write(bh_lrus.bhs[0], bh);
1288 }
1289 get_bh(bh);
1290 ret = bh;
1291 break;
1292 }
1293 }
1294 bh_lru_unlock();
1295 return ret;
1296 }
1297
1298 /*
1299 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1300 * it in the LRU and mark it as accessed. If it is not present then return
1301 * NULL
1302 */
1303 struct buffer_head *
1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307
1308 if (bh == NULL) {
1309 bh = __find_get_block_slow(bdev, block);
1310 if (bh)
1311 bh_lru_install(bh);
1312 }
1313 if (bh)
1314 touch_buffer(bh);
1315 return bh;
1316 }
1317 EXPORT_SYMBOL(__find_get_block);
1318
1319 /*
1320 * __getblk will locate (and, if necessary, create) the buffer_head
1321 * which corresponds to the passed block_device, block and size. The
1322 * returned buffer has its reference count incremented.
1323 *
1324 * __getblk() cannot fail - it just keeps trying. If you pass it an
1325 * illegal block number, __getblk() will happily return a buffer_head
1326 * which represents the non-existent block. Very weird.
1327 *
1328 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1329 * attempt is failing. FIXME, perhaps?
1330 */
1331 struct buffer_head *
1332 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1333 {
1334 struct buffer_head *bh = __find_get_block(bdev, block, size);
1335
1336 might_sleep();
1337 if (bh == NULL)
1338 bh = __getblk_slow(bdev, block, size);
1339 return bh;
1340 }
1341 EXPORT_SYMBOL(__getblk);
1342
1343 /*
1344 * Do async read-ahead on a buffer..
1345 */
1346 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348 struct buffer_head *bh = __getblk(bdev, block, size);
1349 if (likely(bh)) {
1350 ll_rw_block(READA, 1, &bh);
1351 brelse(bh);
1352 }
1353 }
1354 EXPORT_SYMBOL(__breadahead);
1355
1356 /**
1357 * __bread() - reads a specified block and returns the bh
1358 * @bdev: the block_device to read from
1359 * @block: number of block
1360 * @size: size (in bytes) to read
1361 *
1362 * Reads a specified block, and returns buffer head that contains it.
1363 * It returns NULL if the block was unreadable.
1364 */
1365 struct buffer_head *
1366 __bread(struct block_device *bdev, sector_t block, unsigned size)
1367 {
1368 struct buffer_head *bh = __getblk(bdev, block, size);
1369
1370 if (likely(bh) && !buffer_uptodate(bh))
1371 bh = __bread_slow(bh);
1372 return bh;
1373 }
1374 EXPORT_SYMBOL(__bread);
1375
1376 /*
1377 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1378 * This doesn't race because it runs in each cpu either in irq
1379 * or with preempt disabled.
1380 */
1381 static void invalidate_bh_lru(void *arg)
1382 {
1383 struct bh_lru *b = &get_cpu_var(bh_lrus);
1384 int i;
1385
1386 for (i = 0; i < BH_LRU_SIZE; i++) {
1387 brelse(b->bhs[i]);
1388 b->bhs[i] = NULL;
1389 }
1390 put_cpu_var(bh_lrus);
1391 }
1392
1393 static bool has_bh_in_lru(int cpu, void *dummy)
1394 {
1395 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1396 int i;
1397
1398 for (i = 0; i < BH_LRU_SIZE; i++) {
1399 if (b->bhs[i])
1400 return 1;
1401 }
1402
1403 return 0;
1404 }
1405
1406 void invalidate_bh_lrus(void)
1407 {
1408 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1409 }
1410 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1411
1412 void set_bh_page(struct buffer_head *bh,
1413 struct page *page, unsigned long offset)
1414 {
1415 bh->b_page = page;
1416 BUG_ON(offset >= PAGE_SIZE);
1417 if (PageHighMem(page))
1418 /*
1419 * This catches illegal uses and preserves the offset:
1420 */
1421 bh->b_data = (char *)(0 + offset);
1422 else
1423 bh->b_data = page_address(page) + offset;
1424 }
1425 EXPORT_SYMBOL(set_bh_page);
1426
1427 /*
1428 * Called when truncating a buffer on a page completely.
1429 */
1430 static void discard_buffer(struct buffer_head * bh)
1431 {
1432 lock_buffer(bh);
1433 clear_buffer_dirty(bh);
1434 bh->b_bdev = NULL;
1435 clear_buffer_mapped(bh);
1436 clear_buffer_req(bh);
1437 clear_buffer_new(bh);
1438 clear_buffer_delay(bh);
1439 clear_buffer_unwritten(bh);
1440 unlock_buffer(bh);
1441 }
1442
1443 /**
1444 * block_invalidatepage - invalidate part or all of a buffer-backed page
1445 *
1446 * @page: the page which is affected
1447 * @offset: the index of the truncation point
1448 *
1449 * block_invalidatepage() is called when all or part of the page has become
1450 * invalidated by a truncate operation.
1451 *
1452 * block_invalidatepage() does not have to release all buffers, but it must
1453 * ensure that no dirty buffer is left outside @offset and that no I/O
1454 * is underway against any of the blocks which are outside the truncation
1455 * point. Because the caller is about to free (and possibly reuse) those
1456 * blocks on-disk.
1457 */
1458 void block_invalidatepage(struct page *page, unsigned long offset)
1459 {
1460 struct buffer_head *head, *bh, *next;
1461 unsigned int curr_off = 0;
1462
1463 BUG_ON(!PageLocked(page));
1464 if (!page_has_buffers(page))
1465 goto out;
1466
1467 head = page_buffers(page);
1468 bh = head;
1469 do {
1470 unsigned int next_off = curr_off + bh->b_size;
1471 next = bh->b_this_page;
1472
1473 /*
1474 * is this block fully invalidated?
1475 */
1476 if (offset <= curr_off)
1477 discard_buffer(bh);
1478 curr_off = next_off;
1479 bh = next;
1480 } while (bh != head);
1481
1482 /*
1483 * We release buffers only if the entire page is being invalidated.
1484 * The get_block cached value has been unconditionally invalidated,
1485 * so real IO is not possible anymore.
1486 */
1487 if (offset == 0)
1488 try_to_release_page(page, 0);
1489 out:
1490 return;
1491 }
1492 EXPORT_SYMBOL(block_invalidatepage);
1493
1494 /*
1495 * We attach and possibly dirty the buffers atomically wrt
1496 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1497 * is already excluded via the page lock.
1498 */
1499 void create_empty_buffers(struct page *page,
1500 unsigned long blocksize, unsigned long b_state)
1501 {
1502 struct buffer_head *bh, *head, *tail;
1503
1504 head = alloc_page_buffers(page, blocksize, 1);
1505 bh = head;
1506 do {
1507 bh->b_state |= b_state;
1508 tail = bh;
1509 bh = bh->b_this_page;
1510 } while (bh);
1511 tail->b_this_page = head;
1512
1513 spin_lock(&page->mapping->private_lock);
1514 if (PageUptodate(page) || PageDirty(page)) {
1515 bh = head;
1516 do {
1517 if (PageDirty(page))
1518 set_buffer_dirty(bh);
1519 if (PageUptodate(page))
1520 set_buffer_uptodate(bh);
1521 bh = bh->b_this_page;
1522 } while (bh != head);
1523 }
1524 attach_page_buffers(page, head);
1525 spin_unlock(&page->mapping->private_lock);
1526 }
1527 EXPORT_SYMBOL(create_empty_buffers);
1528
1529 /*
1530 * We are taking a block for data and we don't want any output from any
1531 * buffer-cache aliases starting from return from that function and
1532 * until the moment when something will explicitly mark the buffer
1533 * dirty (hopefully that will not happen until we will free that block ;-)
1534 * We don't even need to mark it not-uptodate - nobody can expect
1535 * anything from a newly allocated buffer anyway. We used to used
1536 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1537 * don't want to mark the alias unmapped, for example - it would confuse
1538 * anyone who might pick it with bread() afterwards...
1539 *
1540 * Also.. Note that bforget() doesn't lock the buffer. So there can
1541 * be writeout I/O going on against recently-freed buffers. We don't
1542 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1543 * only if we really need to. That happens here.
1544 */
1545 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1546 {
1547 struct buffer_head *old_bh;
1548
1549 might_sleep();
1550
1551 old_bh = __find_get_block_slow(bdev, block);
1552 if (old_bh) {
1553 clear_buffer_dirty(old_bh);
1554 wait_on_buffer(old_bh);
1555 clear_buffer_req(old_bh);
1556 __brelse(old_bh);
1557 }
1558 }
1559 EXPORT_SYMBOL(unmap_underlying_metadata);
1560
1561 /*
1562 * NOTE! All mapped/uptodate combinations are valid:
1563 *
1564 * Mapped Uptodate Meaning
1565 *
1566 * No No "unknown" - must do get_block()
1567 * No Yes "hole" - zero-filled
1568 * Yes No "allocated" - allocated on disk, not read in
1569 * Yes Yes "valid" - allocated and up-to-date in memory.
1570 *
1571 * "Dirty" is valid only with the last case (mapped+uptodate).
1572 */
1573
1574 /*
1575 * While block_write_full_page is writing back the dirty buffers under
1576 * the page lock, whoever dirtied the buffers may decide to clean them
1577 * again at any time. We handle that by only looking at the buffer
1578 * state inside lock_buffer().
1579 *
1580 * If block_write_full_page() is called for regular writeback
1581 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1582 * locked buffer. This only can happen if someone has written the buffer
1583 * directly, with submit_bh(). At the address_space level PageWriteback
1584 * prevents this contention from occurring.
1585 *
1586 * If block_write_full_page() is called with wbc->sync_mode ==
1587 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1588 * causes the writes to be flagged as synchronous writes.
1589 */
1590 static int __block_write_full_page(struct inode *inode, struct page *page,
1591 get_block_t *get_block, struct writeback_control *wbc,
1592 bh_end_io_t *handler)
1593 {
1594 int err;
1595 sector_t block;
1596 sector_t last_block;
1597 struct buffer_head *bh, *head;
1598 const unsigned blocksize = 1 << inode->i_blkbits;
1599 int nr_underway = 0;
1600 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1601 WRITE_SYNC : WRITE);
1602
1603 BUG_ON(!PageLocked(page));
1604
1605 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1606
1607 if (!page_has_buffers(page)) {
1608 create_empty_buffers(page, blocksize,
1609 (1 << BH_Dirty)|(1 << BH_Uptodate));
1610 }
1611
1612 /*
1613 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1614 * here, and the (potentially unmapped) buffers may become dirty at
1615 * any time. If a buffer becomes dirty here after we've inspected it
1616 * then we just miss that fact, and the page stays dirty.
1617 *
1618 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1619 * handle that here by just cleaning them.
1620 */
1621
1622 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1623 head = page_buffers(page);
1624 bh = head;
1625
1626 /*
1627 * Get all the dirty buffers mapped to disk addresses and
1628 * handle any aliases from the underlying blockdev's mapping.
1629 */
1630 do {
1631 if (block > last_block) {
1632 /*
1633 * mapped buffers outside i_size will occur, because
1634 * this page can be outside i_size when there is a
1635 * truncate in progress.
1636 */
1637 /*
1638 * The buffer was zeroed by block_write_full_page()
1639 */
1640 clear_buffer_dirty(bh);
1641 set_buffer_uptodate(bh);
1642 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1643 buffer_dirty(bh)) {
1644 WARN_ON(bh->b_size != blocksize);
1645 err = get_block(inode, block, bh, 1);
1646 if (err)
1647 goto recover;
1648 clear_buffer_delay(bh);
1649 if (buffer_new(bh)) {
1650 /* blockdev mappings never come here */
1651 clear_buffer_new(bh);
1652 unmap_underlying_metadata(bh->b_bdev,
1653 bh->b_blocknr);
1654 }
1655 }
1656 bh = bh->b_this_page;
1657 block++;
1658 } while (bh != head);
1659
1660 do {
1661 if (!buffer_mapped(bh))
1662 continue;
1663 /*
1664 * If it's a fully non-blocking write attempt and we cannot
1665 * lock the buffer then redirty the page. Note that this can
1666 * potentially cause a busy-wait loop from writeback threads
1667 * and kswapd activity, but those code paths have their own
1668 * higher-level throttling.
1669 */
1670 if (wbc->sync_mode != WB_SYNC_NONE) {
1671 lock_buffer(bh);
1672 } else if (!trylock_buffer(bh)) {
1673 redirty_page_for_writepage(wbc, page);
1674 continue;
1675 }
1676 if (test_clear_buffer_dirty(bh)) {
1677 mark_buffer_async_write_endio(bh, handler);
1678 } else {
1679 unlock_buffer(bh);
1680 }
1681 } while ((bh = bh->b_this_page) != head);
1682
1683 /*
1684 * The page and its buffers are protected by PageWriteback(), so we can
1685 * drop the bh refcounts early.
1686 */
1687 BUG_ON(PageWriteback(page));
1688 set_page_writeback(page);
1689
1690 do {
1691 struct buffer_head *next = bh->b_this_page;
1692 if (buffer_async_write(bh)) {
1693 submit_bh(write_op, bh);
1694 nr_underway++;
1695 }
1696 bh = next;
1697 } while (bh != head);
1698 unlock_page(page);
1699
1700 err = 0;
1701 done:
1702 if (nr_underway == 0) {
1703 /*
1704 * The page was marked dirty, but the buffers were
1705 * clean. Someone wrote them back by hand with
1706 * ll_rw_block/submit_bh. A rare case.
1707 */
1708 end_page_writeback(page);
1709
1710 /*
1711 * The page and buffer_heads can be released at any time from
1712 * here on.
1713 */
1714 }
1715 return err;
1716
1717 recover:
1718 /*
1719 * ENOSPC, or some other error. We may already have added some
1720 * blocks to the file, so we need to write these out to avoid
1721 * exposing stale data.
1722 * The page is currently locked and not marked for writeback
1723 */
1724 bh = head;
1725 /* Recovery: lock and submit the mapped buffers */
1726 do {
1727 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1728 !buffer_delay(bh)) {
1729 lock_buffer(bh);
1730 mark_buffer_async_write_endio(bh, handler);
1731 } else {
1732 /*
1733 * The buffer may have been set dirty during
1734 * attachment to a dirty page.
1735 */
1736 clear_buffer_dirty(bh);
1737 }
1738 } while ((bh = bh->b_this_page) != head);
1739 SetPageError(page);
1740 BUG_ON(PageWriteback(page));
1741 mapping_set_error(page->mapping, err);
1742 set_page_writeback(page);
1743 do {
1744 struct buffer_head *next = bh->b_this_page;
1745 if (buffer_async_write(bh)) {
1746 clear_buffer_dirty(bh);
1747 submit_bh(write_op, bh);
1748 nr_underway++;
1749 }
1750 bh = next;
1751 } while (bh != head);
1752 unlock_page(page);
1753 goto done;
1754 }
1755
1756 /*
1757 * If a page has any new buffers, zero them out here, and mark them uptodate
1758 * and dirty so they'll be written out (in order to prevent uninitialised
1759 * block data from leaking). And clear the new bit.
1760 */
1761 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1762 {
1763 unsigned int block_start, block_end;
1764 struct buffer_head *head, *bh;
1765
1766 BUG_ON(!PageLocked(page));
1767 if (!page_has_buffers(page))
1768 return;
1769
1770 bh = head = page_buffers(page);
1771 block_start = 0;
1772 do {
1773 block_end = block_start + bh->b_size;
1774
1775 if (buffer_new(bh)) {
1776 if (block_end > from && block_start < to) {
1777 if (!PageUptodate(page)) {
1778 unsigned start, size;
1779
1780 start = max(from, block_start);
1781 size = min(to, block_end) - start;
1782
1783 zero_user(page, start, size);
1784 set_buffer_uptodate(bh);
1785 }
1786
1787 clear_buffer_new(bh);
1788 mark_buffer_dirty(bh);
1789 }
1790 }
1791
1792 block_start = block_end;
1793 bh = bh->b_this_page;
1794 } while (bh != head);
1795 }
1796 EXPORT_SYMBOL(page_zero_new_buffers);
1797
1798 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1799 get_block_t *get_block)
1800 {
1801 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1802 unsigned to = from + len;
1803 struct inode *inode = page->mapping->host;
1804 unsigned block_start, block_end;
1805 sector_t block;
1806 int err = 0;
1807 unsigned blocksize, bbits;
1808 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1809
1810 BUG_ON(!PageLocked(page));
1811 BUG_ON(from > PAGE_CACHE_SIZE);
1812 BUG_ON(to > PAGE_CACHE_SIZE);
1813 BUG_ON(from > to);
1814
1815 blocksize = 1 << inode->i_blkbits;
1816 if (!page_has_buffers(page))
1817 create_empty_buffers(page, blocksize, 0);
1818 head = page_buffers(page);
1819
1820 bbits = inode->i_blkbits;
1821 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1822
1823 for(bh = head, block_start = 0; bh != head || !block_start;
1824 block++, block_start=block_end, bh = bh->b_this_page) {
1825 block_end = block_start + blocksize;
1826 if (block_end <= from || block_start >= to) {
1827 if (PageUptodate(page)) {
1828 if (!buffer_uptodate(bh))
1829 set_buffer_uptodate(bh);
1830 }
1831 continue;
1832 }
1833 if (buffer_new(bh))
1834 clear_buffer_new(bh);
1835 if (!buffer_mapped(bh)) {
1836 WARN_ON(bh->b_size != blocksize);
1837 err = get_block(inode, block, bh, 1);
1838 if (err)
1839 break;
1840 if (buffer_new(bh)) {
1841 unmap_underlying_metadata(bh->b_bdev,
1842 bh->b_blocknr);
1843 if (PageUptodate(page)) {
1844 clear_buffer_new(bh);
1845 set_buffer_uptodate(bh);
1846 mark_buffer_dirty(bh);
1847 continue;
1848 }
1849 if (block_end > to || block_start < from)
1850 zero_user_segments(page,
1851 to, block_end,
1852 block_start, from);
1853 continue;
1854 }
1855 }
1856 if (PageUptodate(page)) {
1857 if (!buffer_uptodate(bh))
1858 set_buffer_uptodate(bh);
1859 continue;
1860 }
1861 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1862 !buffer_unwritten(bh) &&
1863 (block_start < from || block_end > to)) {
1864 ll_rw_block(READ, 1, &bh);
1865 *wait_bh++=bh;
1866 }
1867 }
1868 /*
1869 * If we issued read requests - let them complete.
1870 */
1871 while(wait_bh > wait) {
1872 wait_on_buffer(*--wait_bh);
1873 if (!buffer_uptodate(*wait_bh))
1874 err = -EIO;
1875 }
1876 if (unlikely(err))
1877 page_zero_new_buffers(page, from, to);
1878 return err;
1879 }
1880 EXPORT_SYMBOL(__block_write_begin);
1881
1882 static int __block_commit_write(struct inode *inode, struct page *page,
1883 unsigned from, unsigned to)
1884 {
1885 unsigned block_start, block_end;
1886 int partial = 0;
1887 unsigned blocksize;
1888 struct buffer_head *bh, *head;
1889
1890 blocksize = 1 << inode->i_blkbits;
1891
1892 for(bh = head = page_buffers(page), block_start = 0;
1893 bh != head || !block_start;
1894 block_start=block_end, bh = bh->b_this_page) {
1895 block_end = block_start + blocksize;
1896 if (block_end <= from || block_start >= to) {
1897 if (!buffer_uptodate(bh))
1898 partial = 1;
1899 } else {
1900 set_buffer_uptodate(bh);
1901 mark_buffer_dirty(bh);
1902 }
1903 clear_buffer_new(bh);
1904 }
1905
1906 /*
1907 * If this is a partial write which happened to make all buffers
1908 * uptodate then we can optimize away a bogus readpage() for
1909 * the next read(). Here we 'discover' whether the page went
1910 * uptodate as a result of this (potentially partial) write.
1911 */
1912 if (!partial)
1913 SetPageUptodate(page);
1914 return 0;
1915 }
1916
1917 /*
1918 * block_write_begin takes care of the basic task of block allocation and
1919 * bringing partial write blocks uptodate first.
1920 *
1921 * The filesystem needs to handle block truncation upon failure.
1922 */
1923 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1924 unsigned flags, struct page **pagep, get_block_t *get_block)
1925 {
1926 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1927 struct page *page;
1928 int status;
1929
1930 page = grab_cache_page_write_begin(mapping, index, flags);
1931 if (!page)
1932 return -ENOMEM;
1933
1934 status = __block_write_begin(page, pos, len, get_block);
1935 if (unlikely(status)) {
1936 unlock_page(page);
1937 page_cache_release(page);
1938 page = NULL;
1939 }
1940
1941 *pagep = page;
1942 return status;
1943 }
1944 EXPORT_SYMBOL(block_write_begin);
1945
1946 int block_write_end(struct file *file, struct address_space *mapping,
1947 loff_t pos, unsigned len, unsigned copied,
1948 struct page *page, void *fsdata)
1949 {
1950 struct inode *inode = mapping->host;
1951 unsigned start;
1952
1953 start = pos & (PAGE_CACHE_SIZE - 1);
1954
1955 if (unlikely(copied < len)) {
1956 /*
1957 * The buffers that were written will now be uptodate, so we
1958 * don't have to worry about a readpage reading them and
1959 * overwriting a partial write. However if we have encountered
1960 * a short write and only partially written into a buffer, it
1961 * will not be marked uptodate, so a readpage might come in and
1962 * destroy our partial write.
1963 *
1964 * Do the simplest thing, and just treat any short write to a
1965 * non uptodate page as a zero-length write, and force the
1966 * caller to redo the whole thing.
1967 */
1968 if (!PageUptodate(page))
1969 copied = 0;
1970
1971 page_zero_new_buffers(page, start+copied, start+len);
1972 }
1973 flush_dcache_page(page);
1974
1975 /* This could be a short (even 0-length) commit */
1976 __block_commit_write(inode, page, start, start+copied);
1977
1978 return copied;
1979 }
1980 EXPORT_SYMBOL(block_write_end);
1981
1982 int generic_write_end(struct file *file, struct address_space *mapping,
1983 loff_t pos, unsigned len, unsigned copied,
1984 struct page *page, void *fsdata)
1985 {
1986 struct inode *inode = mapping->host;
1987 int i_size_changed = 0;
1988
1989 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1990
1991 /*
1992 * No need to use i_size_read() here, the i_size
1993 * cannot change under us because we hold i_mutex.
1994 *
1995 * But it's important to update i_size while still holding page lock:
1996 * page writeout could otherwise come in and zero beyond i_size.
1997 */
1998 if (pos+copied > inode->i_size) {
1999 i_size_write(inode, pos+copied);
2000 i_size_changed = 1;
2001 }
2002
2003 unlock_page(page);
2004 page_cache_release(page);
2005
2006 /*
2007 * Don't mark the inode dirty under page lock. First, it unnecessarily
2008 * makes the holding time of page lock longer. Second, it forces lock
2009 * ordering of page lock and transaction start for journaling
2010 * filesystems.
2011 */
2012 if (i_size_changed)
2013 mark_inode_dirty(inode);
2014
2015 return copied;
2016 }
2017 EXPORT_SYMBOL(generic_write_end);
2018
2019 /*
2020 * block_is_partially_uptodate checks whether buffers within a page are
2021 * uptodate or not.
2022 *
2023 * Returns true if all buffers which correspond to a file portion
2024 * we want to read are uptodate.
2025 */
2026 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2027 unsigned long from)
2028 {
2029 struct inode *inode = page->mapping->host;
2030 unsigned block_start, block_end, blocksize;
2031 unsigned to;
2032 struct buffer_head *bh, *head;
2033 int ret = 1;
2034
2035 if (!page_has_buffers(page))
2036 return 0;
2037
2038 blocksize = 1 << inode->i_blkbits;
2039 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2040 to = from + to;
2041 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2042 return 0;
2043
2044 head = page_buffers(page);
2045 bh = head;
2046 block_start = 0;
2047 do {
2048 block_end = block_start + blocksize;
2049 if (block_end > from && block_start < to) {
2050 if (!buffer_uptodate(bh)) {
2051 ret = 0;
2052 break;
2053 }
2054 if (block_end >= to)
2055 break;
2056 }
2057 block_start = block_end;
2058 bh = bh->b_this_page;
2059 } while (bh != head);
2060
2061 return ret;
2062 }
2063 EXPORT_SYMBOL(block_is_partially_uptodate);
2064
2065 /*
2066 * Generic "read page" function for block devices that have the normal
2067 * get_block functionality. This is most of the block device filesystems.
2068 * Reads the page asynchronously --- the unlock_buffer() and
2069 * set/clear_buffer_uptodate() functions propagate buffer state into the
2070 * page struct once IO has completed.
2071 */
2072 int block_read_full_page(struct page *page, get_block_t *get_block)
2073 {
2074 struct inode *inode = page->mapping->host;
2075 sector_t iblock, lblock;
2076 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2077 unsigned int blocksize;
2078 int nr, i;
2079 int fully_mapped = 1;
2080
2081 BUG_ON(!PageLocked(page));
2082 blocksize = 1 << inode->i_blkbits;
2083 if (!page_has_buffers(page))
2084 create_empty_buffers(page, blocksize, 0);
2085 head = page_buffers(page);
2086
2087 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2088 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2089 bh = head;
2090 nr = 0;
2091 i = 0;
2092
2093 do {
2094 if (buffer_uptodate(bh))
2095 continue;
2096
2097 if (!buffer_mapped(bh)) {
2098 int err = 0;
2099
2100 fully_mapped = 0;
2101 if (iblock < lblock) {
2102 WARN_ON(bh->b_size != blocksize);
2103 err = get_block(inode, iblock, bh, 0);
2104 if (err)
2105 SetPageError(page);
2106 }
2107 if (!buffer_mapped(bh)) {
2108 zero_user(page, i * blocksize, blocksize);
2109 if (!err)
2110 set_buffer_uptodate(bh);
2111 continue;
2112 }
2113 /*
2114 * get_block() might have updated the buffer
2115 * synchronously
2116 */
2117 if (buffer_uptodate(bh))
2118 continue;
2119 }
2120 arr[nr++] = bh;
2121 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2122
2123 if (fully_mapped)
2124 SetPageMappedToDisk(page);
2125
2126 if (!nr) {
2127 /*
2128 * All buffers are uptodate - we can set the page uptodate
2129 * as well. But not if get_block() returned an error.
2130 */
2131 if (!PageError(page))
2132 SetPageUptodate(page);
2133 unlock_page(page);
2134 return 0;
2135 }
2136
2137 /* Stage two: lock the buffers */
2138 for (i = 0; i < nr; i++) {
2139 bh = arr[i];
2140 lock_buffer(bh);
2141 mark_buffer_async_read(bh);
2142 }
2143
2144 /*
2145 * Stage 3: start the IO. Check for uptodateness
2146 * inside the buffer lock in case another process reading
2147 * the underlying blockdev brought it uptodate (the sct fix).
2148 */
2149 for (i = 0; i < nr; i++) {
2150 bh = arr[i];
2151 if (buffer_uptodate(bh))
2152 end_buffer_async_read(bh, 1);
2153 else
2154 submit_bh(READ, bh);
2155 }
2156 return 0;
2157 }
2158 EXPORT_SYMBOL(block_read_full_page);
2159
2160 /* utility function for filesystems that need to do work on expanding
2161 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2162 * deal with the hole.
2163 */
2164 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2165 {
2166 struct address_space *mapping = inode->i_mapping;
2167 struct page *page;
2168 void *fsdata;
2169 int err;
2170
2171 err = inode_newsize_ok(inode, size);
2172 if (err)
2173 goto out;
2174
2175 err = pagecache_write_begin(NULL, mapping, size, 0,
2176 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2177 &page, &fsdata);
2178 if (err)
2179 goto out;
2180
2181 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2182 BUG_ON(err > 0);
2183
2184 out:
2185 return err;
2186 }
2187 EXPORT_SYMBOL(generic_cont_expand_simple);
2188
2189 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2190 loff_t pos, loff_t *bytes)
2191 {
2192 struct inode *inode = mapping->host;
2193 unsigned blocksize = 1 << inode->i_blkbits;
2194 struct page *page;
2195 void *fsdata;
2196 pgoff_t index, curidx;
2197 loff_t curpos;
2198 unsigned zerofrom, offset, len;
2199 int err = 0;
2200
2201 index = pos >> PAGE_CACHE_SHIFT;
2202 offset = pos & ~PAGE_CACHE_MASK;
2203
2204 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2205 zerofrom = curpos & ~PAGE_CACHE_MASK;
2206 if (zerofrom & (blocksize-1)) {
2207 *bytes |= (blocksize-1);
2208 (*bytes)++;
2209 }
2210 len = PAGE_CACHE_SIZE - zerofrom;
2211
2212 err = pagecache_write_begin(file, mapping, curpos, len,
2213 AOP_FLAG_UNINTERRUPTIBLE,
2214 &page, &fsdata);
2215 if (err)
2216 goto out;
2217 zero_user(page, zerofrom, len);
2218 err = pagecache_write_end(file, mapping, curpos, len, len,
2219 page, fsdata);
2220 if (err < 0)
2221 goto out;
2222 BUG_ON(err != len);
2223 err = 0;
2224
2225 balance_dirty_pages_ratelimited(mapping);
2226 }
2227
2228 /* page covers the boundary, find the boundary offset */
2229 if (index == curidx) {
2230 zerofrom = curpos & ~PAGE_CACHE_MASK;
2231 /* if we will expand the thing last block will be filled */
2232 if (offset <= zerofrom) {
2233 goto out;
2234 }
2235 if (zerofrom & (blocksize-1)) {
2236 *bytes |= (blocksize-1);
2237 (*bytes)++;
2238 }
2239 len = offset - zerofrom;
2240
2241 err = pagecache_write_begin(file, mapping, curpos, len,
2242 AOP_FLAG_UNINTERRUPTIBLE,
2243 &page, &fsdata);
2244 if (err)
2245 goto out;
2246 zero_user(page, zerofrom, len);
2247 err = pagecache_write_end(file, mapping, curpos, len, len,
2248 page, fsdata);
2249 if (err < 0)
2250 goto out;
2251 BUG_ON(err != len);
2252 err = 0;
2253 }
2254 out:
2255 return err;
2256 }
2257
2258 /*
2259 * For moronic filesystems that do not allow holes in file.
2260 * We may have to extend the file.
2261 */
2262 int cont_write_begin(struct file *file, struct address_space *mapping,
2263 loff_t pos, unsigned len, unsigned flags,
2264 struct page **pagep, void **fsdata,
2265 get_block_t *get_block, loff_t *bytes)
2266 {
2267 struct inode *inode = mapping->host;
2268 unsigned blocksize = 1 << inode->i_blkbits;
2269 unsigned zerofrom;
2270 int err;
2271
2272 err = cont_expand_zero(file, mapping, pos, bytes);
2273 if (err)
2274 return err;
2275
2276 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2277 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2278 *bytes |= (blocksize-1);
2279 (*bytes)++;
2280 }
2281
2282 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2283 }
2284 EXPORT_SYMBOL(cont_write_begin);
2285
2286 int block_commit_write(struct page *page, unsigned from, unsigned to)
2287 {
2288 struct inode *inode = page->mapping->host;
2289 __block_commit_write(inode,page,from,to);
2290 return 0;
2291 }
2292 EXPORT_SYMBOL(block_commit_write);
2293
2294 /*
2295 * block_page_mkwrite() is not allowed to change the file size as it gets
2296 * called from a page fault handler when a page is first dirtied. Hence we must
2297 * be careful to check for EOF conditions here. We set the page up correctly
2298 * for a written page which means we get ENOSPC checking when writing into
2299 * holes and correct delalloc and unwritten extent mapping on filesystems that
2300 * support these features.
2301 *
2302 * We are not allowed to take the i_mutex here so we have to play games to
2303 * protect against truncate races as the page could now be beyond EOF. Because
2304 * truncate writes the inode size before removing pages, once we have the
2305 * page lock we can determine safely if the page is beyond EOF. If it is not
2306 * beyond EOF, then the page is guaranteed safe against truncation until we
2307 * unlock the page.
2308 *
2309 * Direct callers of this function should protect against filesystem freezing
2310 * using sb_start_write() - sb_end_write() functions.
2311 */
2312 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2313 get_block_t get_block)
2314 {
2315 struct page *page = vmf->page;
2316 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2317 unsigned long end;
2318 loff_t size;
2319 int ret;
2320
2321 /*
2322 * Update file times before taking page lock. We may end up failing the
2323 * fault so this update may be superfluous but who really cares...
2324 */
2325 file_update_time(vma->vm_file);
2326
2327 lock_page(page);
2328 size = i_size_read(inode);
2329 if ((page->mapping != inode->i_mapping) ||
2330 (page_offset(page) > size)) {
2331 /* We overload EFAULT to mean page got truncated */
2332 ret = -EFAULT;
2333 goto out_unlock;
2334 }
2335
2336 /* page is wholly or partially inside EOF */
2337 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2338 end = size & ~PAGE_CACHE_MASK;
2339 else
2340 end = PAGE_CACHE_SIZE;
2341
2342 ret = __block_write_begin(page, 0, end, get_block);
2343 if (!ret)
2344 ret = block_commit_write(page, 0, end);
2345
2346 if (unlikely(ret < 0))
2347 goto out_unlock;
2348 set_page_dirty(page);
2349 wait_on_page_writeback(page);
2350 return 0;
2351 out_unlock:
2352 unlock_page(page);
2353 return ret;
2354 }
2355 EXPORT_SYMBOL(__block_page_mkwrite);
2356
2357 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2358 get_block_t get_block)
2359 {
2360 int ret;
2361 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2362
2363 sb_start_pagefault(sb);
2364 ret = __block_page_mkwrite(vma, vmf, get_block);
2365 sb_end_pagefault(sb);
2366 return block_page_mkwrite_return(ret);
2367 }
2368 EXPORT_SYMBOL(block_page_mkwrite);
2369
2370 /*
2371 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2372 * immediately, while under the page lock. So it needs a special end_io
2373 * handler which does not touch the bh after unlocking it.
2374 */
2375 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2376 {
2377 __end_buffer_read_notouch(bh, uptodate);
2378 }
2379
2380 /*
2381 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2382 * the page (converting it to circular linked list and taking care of page
2383 * dirty races).
2384 */
2385 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2386 {
2387 struct buffer_head *bh;
2388
2389 BUG_ON(!PageLocked(page));
2390
2391 spin_lock(&page->mapping->private_lock);
2392 bh = head;
2393 do {
2394 if (PageDirty(page))
2395 set_buffer_dirty(bh);
2396 if (!bh->b_this_page)
2397 bh->b_this_page = head;
2398 bh = bh->b_this_page;
2399 } while (bh != head);
2400 attach_page_buffers(page, head);
2401 spin_unlock(&page->mapping->private_lock);
2402 }
2403
2404 /*
2405 * On entry, the page is fully not uptodate.
2406 * On exit the page is fully uptodate in the areas outside (from,to)
2407 * The filesystem needs to handle block truncation upon failure.
2408 */
2409 int nobh_write_begin(struct address_space *mapping,
2410 loff_t pos, unsigned len, unsigned flags,
2411 struct page **pagep, void **fsdata,
2412 get_block_t *get_block)
2413 {
2414 struct inode *inode = mapping->host;
2415 const unsigned blkbits = inode->i_blkbits;
2416 const unsigned blocksize = 1 << blkbits;
2417 struct buffer_head *head, *bh;
2418 struct page *page;
2419 pgoff_t index;
2420 unsigned from, to;
2421 unsigned block_in_page;
2422 unsigned block_start, block_end;
2423 sector_t block_in_file;
2424 int nr_reads = 0;
2425 int ret = 0;
2426 int is_mapped_to_disk = 1;
2427
2428 index = pos >> PAGE_CACHE_SHIFT;
2429 from = pos & (PAGE_CACHE_SIZE - 1);
2430 to = from + len;
2431
2432 page = grab_cache_page_write_begin(mapping, index, flags);
2433 if (!page)
2434 return -ENOMEM;
2435 *pagep = page;
2436 *fsdata = NULL;
2437
2438 if (page_has_buffers(page)) {
2439 ret = __block_write_begin(page, pos, len, get_block);
2440 if (unlikely(ret))
2441 goto out_release;
2442 return ret;
2443 }
2444
2445 if (PageMappedToDisk(page))
2446 return 0;
2447
2448 /*
2449 * Allocate buffers so that we can keep track of state, and potentially
2450 * attach them to the page if an error occurs. In the common case of
2451 * no error, they will just be freed again without ever being attached
2452 * to the page (which is all OK, because we're under the page lock).
2453 *
2454 * Be careful: the buffer linked list is a NULL terminated one, rather
2455 * than the circular one we're used to.
2456 */
2457 head = alloc_page_buffers(page, blocksize, 0);
2458 if (!head) {
2459 ret = -ENOMEM;
2460 goto out_release;
2461 }
2462
2463 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2464
2465 /*
2466 * We loop across all blocks in the page, whether or not they are
2467 * part of the affected region. This is so we can discover if the
2468 * page is fully mapped-to-disk.
2469 */
2470 for (block_start = 0, block_in_page = 0, bh = head;
2471 block_start < PAGE_CACHE_SIZE;
2472 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2473 int create;
2474
2475 block_end = block_start + blocksize;
2476 bh->b_state = 0;
2477 create = 1;
2478 if (block_start >= to)
2479 create = 0;
2480 ret = get_block(inode, block_in_file + block_in_page,
2481 bh, create);
2482 if (ret)
2483 goto failed;
2484 if (!buffer_mapped(bh))
2485 is_mapped_to_disk = 0;
2486 if (buffer_new(bh))
2487 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2488 if (PageUptodate(page)) {
2489 set_buffer_uptodate(bh);
2490 continue;
2491 }
2492 if (buffer_new(bh) || !buffer_mapped(bh)) {
2493 zero_user_segments(page, block_start, from,
2494 to, block_end);
2495 continue;
2496 }
2497 if (buffer_uptodate(bh))
2498 continue; /* reiserfs does this */
2499 if (block_start < from || block_end > to) {
2500 lock_buffer(bh);
2501 bh->b_end_io = end_buffer_read_nobh;
2502 submit_bh(READ, bh);
2503 nr_reads++;
2504 }
2505 }
2506
2507 if (nr_reads) {
2508 /*
2509 * The page is locked, so these buffers are protected from
2510 * any VM or truncate activity. Hence we don't need to care
2511 * for the buffer_head refcounts.
2512 */
2513 for (bh = head; bh; bh = bh->b_this_page) {
2514 wait_on_buffer(bh);
2515 if (!buffer_uptodate(bh))
2516 ret = -EIO;
2517 }
2518 if (ret)
2519 goto failed;
2520 }
2521
2522 if (is_mapped_to_disk)
2523 SetPageMappedToDisk(page);
2524
2525 *fsdata = head; /* to be released by nobh_write_end */
2526
2527 return 0;
2528
2529 failed:
2530 BUG_ON(!ret);
2531 /*
2532 * Error recovery is a bit difficult. We need to zero out blocks that
2533 * were newly allocated, and dirty them to ensure they get written out.
2534 * Buffers need to be attached to the page at this point, otherwise
2535 * the handling of potential IO errors during writeout would be hard
2536 * (could try doing synchronous writeout, but what if that fails too?)
2537 */
2538 attach_nobh_buffers(page, head);
2539 page_zero_new_buffers(page, from, to);
2540
2541 out_release:
2542 unlock_page(page);
2543 page_cache_release(page);
2544 *pagep = NULL;
2545
2546 return ret;
2547 }
2548 EXPORT_SYMBOL(nobh_write_begin);
2549
2550 int nobh_write_end(struct file *file, struct address_space *mapping,
2551 loff_t pos, unsigned len, unsigned copied,
2552 struct page *page, void *fsdata)
2553 {
2554 struct inode *inode = page->mapping->host;
2555 struct buffer_head *head = fsdata;
2556 struct buffer_head *bh;
2557 BUG_ON(fsdata != NULL && page_has_buffers(page));
2558
2559 if (unlikely(copied < len) && head)
2560 attach_nobh_buffers(page, head);
2561 if (page_has_buffers(page))
2562 return generic_write_end(file, mapping, pos, len,
2563 copied, page, fsdata);
2564
2565 SetPageUptodate(page);
2566 set_page_dirty(page);
2567 if (pos+copied > inode->i_size) {
2568 i_size_write(inode, pos+copied);
2569 mark_inode_dirty(inode);
2570 }
2571
2572 unlock_page(page);
2573 page_cache_release(page);
2574
2575 while (head) {
2576 bh = head;
2577 head = head->b_this_page;
2578 free_buffer_head(bh);
2579 }
2580
2581 return copied;
2582 }
2583 EXPORT_SYMBOL(nobh_write_end);
2584
2585 /*
2586 * nobh_writepage() - based on block_full_write_page() except
2587 * that it tries to operate without attaching bufferheads to
2588 * the page.
2589 */
2590 int nobh_writepage(struct page *page, get_block_t *get_block,
2591 struct writeback_control *wbc)
2592 {
2593 struct inode * const inode = page->mapping->host;
2594 loff_t i_size = i_size_read(inode);
2595 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2596 unsigned offset;
2597 int ret;
2598
2599 /* Is the page fully inside i_size? */
2600 if (page->index < end_index)
2601 goto out;
2602
2603 /* Is the page fully outside i_size? (truncate in progress) */
2604 offset = i_size & (PAGE_CACHE_SIZE-1);
2605 if (page->index >= end_index+1 || !offset) {
2606 /*
2607 * The page may have dirty, unmapped buffers. For example,
2608 * they may have been added in ext3_writepage(). Make them
2609 * freeable here, so the page does not leak.
2610 */
2611 #if 0
2612 /* Not really sure about this - do we need this ? */
2613 if (page->mapping->a_ops->invalidatepage)
2614 page->mapping->a_ops->invalidatepage(page, offset);
2615 #endif
2616 unlock_page(page);
2617 return 0; /* don't care */
2618 }
2619
2620 /*
2621 * The page straddles i_size. It must be zeroed out on each and every
2622 * writepage invocation because it may be mmapped. "A file is mapped
2623 * in multiples of the page size. For a file that is not a multiple of
2624 * the page size, the remaining memory is zeroed when mapped, and
2625 * writes to that region are not written out to the file."
2626 */
2627 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2628 out:
2629 ret = mpage_writepage(page, get_block, wbc);
2630 if (ret == -EAGAIN)
2631 ret = __block_write_full_page(inode, page, get_block, wbc,
2632 end_buffer_async_write);
2633 return ret;
2634 }
2635 EXPORT_SYMBOL(nobh_writepage);
2636
2637 int nobh_truncate_page(struct address_space *mapping,
2638 loff_t from, get_block_t *get_block)
2639 {
2640 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2641 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2642 unsigned blocksize;
2643 sector_t iblock;
2644 unsigned length, pos;
2645 struct inode *inode = mapping->host;
2646 struct page *page;
2647 struct buffer_head map_bh;
2648 int err;
2649
2650 blocksize = 1 << inode->i_blkbits;
2651 length = offset & (blocksize - 1);
2652
2653 /* Block boundary? Nothing to do */
2654 if (!length)
2655 return 0;
2656
2657 length = blocksize - length;
2658 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2659
2660 page = grab_cache_page(mapping, index);
2661 err = -ENOMEM;
2662 if (!page)
2663 goto out;
2664
2665 if (page_has_buffers(page)) {
2666 has_buffers:
2667 unlock_page(page);
2668 page_cache_release(page);
2669 return block_truncate_page(mapping, from, get_block);
2670 }
2671
2672 /* Find the buffer that contains "offset" */
2673 pos = blocksize;
2674 while (offset >= pos) {
2675 iblock++;
2676 pos += blocksize;
2677 }
2678
2679 map_bh.b_size = blocksize;
2680 map_bh.b_state = 0;
2681 err = get_block(inode, iblock, &map_bh, 0);
2682 if (err)
2683 goto unlock;
2684 /* unmapped? It's a hole - nothing to do */
2685 if (!buffer_mapped(&map_bh))
2686 goto unlock;
2687
2688 /* Ok, it's mapped. Make sure it's up-to-date */
2689 if (!PageUptodate(page)) {
2690 err = mapping->a_ops->readpage(NULL, page);
2691 if (err) {
2692 page_cache_release(page);
2693 goto out;
2694 }
2695 lock_page(page);
2696 if (!PageUptodate(page)) {
2697 err = -EIO;
2698 goto unlock;
2699 }
2700 if (page_has_buffers(page))
2701 goto has_buffers;
2702 }
2703 zero_user(page, offset, length);
2704 set_page_dirty(page);
2705 err = 0;
2706
2707 unlock:
2708 unlock_page(page);
2709 page_cache_release(page);
2710 out:
2711 return err;
2712 }
2713 EXPORT_SYMBOL(nobh_truncate_page);
2714
2715 int block_truncate_page(struct address_space *mapping,
2716 loff_t from, get_block_t *get_block)
2717 {
2718 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2719 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2720 unsigned blocksize;
2721 sector_t iblock;
2722 unsigned length, pos;
2723 struct inode *inode = mapping->host;
2724 struct page *page;
2725 struct buffer_head *bh;
2726 int err;
2727
2728 blocksize = 1 << inode->i_blkbits;
2729 length = offset & (blocksize - 1);
2730
2731 /* Block boundary? Nothing to do */
2732 if (!length)
2733 return 0;
2734
2735 length = blocksize - length;
2736 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2737
2738 page = grab_cache_page(mapping, index);
2739 err = -ENOMEM;
2740 if (!page)
2741 goto out;
2742
2743 if (!page_has_buffers(page))
2744 create_empty_buffers(page, blocksize, 0);
2745
2746 /* Find the buffer that contains "offset" */
2747 bh = page_buffers(page);
2748 pos = blocksize;
2749 while (offset >= pos) {
2750 bh = bh->b_this_page;
2751 iblock++;
2752 pos += blocksize;
2753 }
2754
2755 err = 0;
2756 if (!buffer_mapped(bh)) {
2757 WARN_ON(bh->b_size != blocksize);
2758 err = get_block(inode, iblock, bh, 0);
2759 if (err)
2760 goto unlock;
2761 /* unmapped? It's a hole - nothing to do */
2762 if (!buffer_mapped(bh))
2763 goto unlock;
2764 }
2765
2766 /* Ok, it's mapped. Make sure it's up-to-date */
2767 if (PageUptodate(page))
2768 set_buffer_uptodate(bh);
2769
2770 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2771 err = -EIO;
2772 ll_rw_block(READ, 1, &bh);
2773 wait_on_buffer(bh);
2774 /* Uhhuh. Read error. Complain and punt. */
2775 if (!buffer_uptodate(bh))
2776 goto unlock;
2777 }
2778
2779 zero_user(page, offset, length);
2780 mark_buffer_dirty(bh);
2781 err = 0;
2782
2783 unlock:
2784 unlock_page(page);
2785 page_cache_release(page);
2786 out:
2787 return err;
2788 }
2789 EXPORT_SYMBOL(block_truncate_page);
2790
2791 /*
2792 * The generic ->writepage function for buffer-backed address_spaces
2793 * this form passes in the end_io handler used to finish the IO.
2794 */
2795 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2796 struct writeback_control *wbc, bh_end_io_t *handler)
2797 {
2798 struct inode * const inode = page->mapping->host;
2799 loff_t i_size = i_size_read(inode);
2800 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2801 unsigned offset;
2802
2803 /* Is the page fully inside i_size? */
2804 if (page->index < end_index)
2805 return __block_write_full_page(inode, page, get_block, wbc,
2806 handler);
2807
2808 /* Is the page fully outside i_size? (truncate in progress) */
2809 offset = i_size & (PAGE_CACHE_SIZE-1);
2810 if (page->index >= end_index+1 || !offset) {
2811 /*
2812 * The page may have dirty, unmapped buffers. For example,
2813 * they may have been added in ext3_writepage(). Make them
2814 * freeable here, so the page does not leak.
2815 */
2816 do_invalidatepage(page, 0);
2817 unlock_page(page);
2818 return 0; /* don't care */
2819 }
2820
2821 /*
2822 * The page straddles i_size. It must be zeroed out on each and every
2823 * writepage invocation because it may be mmapped. "A file is mapped
2824 * in multiples of the page size. For a file that is not a multiple of
2825 * the page size, the remaining memory is zeroed when mapped, and
2826 * writes to that region are not written out to the file."
2827 */
2828 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2829 return __block_write_full_page(inode, page, get_block, wbc, handler);
2830 }
2831 EXPORT_SYMBOL(block_write_full_page_endio);
2832
2833 /*
2834 * The generic ->writepage function for buffer-backed address_spaces
2835 */
2836 int block_write_full_page(struct page *page, get_block_t *get_block,
2837 struct writeback_control *wbc)
2838 {
2839 return block_write_full_page_endio(page, get_block, wbc,
2840 end_buffer_async_write);
2841 }
2842 EXPORT_SYMBOL(block_write_full_page);
2843
2844 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2845 get_block_t *get_block)
2846 {
2847 struct buffer_head tmp;
2848 struct inode *inode = mapping->host;
2849 tmp.b_state = 0;
2850 tmp.b_blocknr = 0;
2851 tmp.b_size = 1 << inode->i_blkbits;
2852 get_block(inode, block, &tmp, 0);
2853 return tmp.b_blocknr;
2854 }
2855 EXPORT_SYMBOL(generic_block_bmap);
2856
2857 static void end_bio_bh_io_sync(struct bio *bio, int err)
2858 {
2859 struct buffer_head *bh = bio->bi_private;
2860
2861 if (err == -EOPNOTSUPP) {
2862 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2863 }
2864
2865 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2866 set_bit(BH_Quiet, &bh->b_state);
2867
2868 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2869 bio_put(bio);
2870 }
2871
2872 int submit_bh(int rw, struct buffer_head * bh)
2873 {
2874 struct bio *bio;
2875 int ret = 0;
2876
2877 BUG_ON(!buffer_locked(bh));
2878 BUG_ON(!buffer_mapped(bh));
2879 BUG_ON(!bh->b_end_io);
2880 BUG_ON(buffer_delay(bh));
2881 BUG_ON(buffer_unwritten(bh));
2882
2883 /*
2884 * Only clear out a write error when rewriting
2885 */
2886 if (test_set_buffer_req(bh) && (rw & WRITE))
2887 clear_buffer_write_io_error(bh);
2888
2889 /*
2890 * from here on down, it's all bio -- do the initial mapping,
2891 * submit_bio -> generic_make_request may further map this bio around
2892 */
2893 bio = bio_alloc(GFP_NOIO, 1);
2894
2895 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2896 bio->bi_bdev = bh->b_bdev;
2897 bio->bi_io_vec[0].bv_page = bh->b_page;
2898 bio->bi_io_vec[0].bv_len = bh->b_size;
2899 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2900
2901 bio->bi_vcnt = 1;
2902 bio->bi_idx = 0;
2903 bio->bi_size = bh->b_size;
2904
2905 bio->bi_end_io = end_bio_bh_io_sync;
2906 bio->bi_private = bh;
2907
2908 bio_get(bio);
2909 submit_bio(rw, bio);
2910
2911 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2912 ret = -EOPNOTSUPP;
2913
2914 bio_put(bio);
2915 return ret;
2916 }
2917 EXPORT_SYMBOL(submit_bh);
2918
2919 /**
2920 * ll_rw_block: low-level access to block devices (DEPRECATED)
2921 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2922 * @nr: number of &struct buffer_heads in the array
2923 * @bhs: array of pointers to &struct buffer_head
2924 *
2925 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2926 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2927 * %READA option is described in the documentation for generic_make_request()
2928 * which ll_rw_block() calls.
2929 *
2930 * This function drops any buffer that it cannot get a lock on (with the
2931 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2932 * request, and any buffer that appears to be up-to-date when doing read
2933 * request. Further it marks as clean buffers that are processed for
2934 * writing (the buffer cache won't assume that they are actually clean
2935 * until the buffer gets unlocked).
2936 *
2937 * ll_rw_block sets b_end_io to simple completion handler that marks
2938 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2939 * any waiters.
2940 *
2941 * All of the buffers must be for the same device, and must also be a
2942 * multiple of the current approved size for the device.
2943 */
2944 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2945 {
2946 int i;
2947
2948 for (i = 0; i < nr; i++) {
2949 struct buffer_head *bh = bhs[i];
2950
2951 if (!trylock_buffer(bh))
2952 continue;
2953 if (rw == WRITE) {
2954 if (test_clear_buffer_dirty(bh)) {
2955 bh->b_end_io = end_buffer_write_sync;
2956 get_bh(bh);
2957 submit_bh(WRITE, bh);
2958 continue;
2959 }
2960 } else {
2961 if (!buffer_uptodate(bh)) {
2962 bh->b_end_io = end_buffer_read_sync;
2963 get_bh(bh);
2964 submit_bh(rw, bh);
2965 continue;
2966 }
2967 }
2968 unlock_buffer(bh);
2969 }
2970 }
2971 EXPORT_SYMBOL(ll_rw_block);
2972
2973 void write_dirty_buffer(struct buffer_head *bh, int rw)
2974 {
2975 lock_buffer(bh);
2976 if (!test_clear_buffer_dirty(bh)) {
2977 unlock_buffer(bh);
2978 return;
2979 }
2980 bh->b_end_io = end_buffer_write_sync;
2981 get_bh(bh);
2982 submit_bh(rw, bh);
2983 }
2984 EXPORT_SYMBOL(write_dirty_buffer);
2985
2986 /*
2987 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2988 * and then start new I/O and then wait upon it. The caller must have a ref on
2989 * the buffer_head.
2990 */
2991 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
2992 {
2993 int ret = 0;
2994
2995 WARN_ON(atomic_read(&bh->b_count) < 1);
2996 lock_buffer(bh);
2997 if (test_clear_buffer_dirty(bh)) {
2998 get_bh(bh);
2999 bh->b_end_io = end_buffer_write_sync;
3000 ret = submit_bh(rw, bh);
3001 wait_on_buffer(bh);
3002 if (!ret && !buffer_uptodate(bh))
3003 ret = -EIO;
3004 } else {
3005 unlock_buffer(bh);
3006 }
3007 return ret;
3008 }
3009 EXPORT_SYMBOL(__sync_dirty_buffer);
3010
3011 int sync_dirty_buffer(struct buffer_head *bh)
3012 {
3013 return __sync_dirty_buffer(bh, WRITE_SYNC);
3014 }
3015 EXPORT_SYMBOL(sync_dirty_buffer);
3016
3017 /*
3018 * try_to_free_buffers() checks if all the buffers on this particular page
3019 * are unused, and releases them if so.
3020 *
3021 * Exclusion against try_to_free_buffers may be obtained by either
3022 * locking the page or by holding its mapping's private_lock.
3023 *
3024 * If the page is dirty but all the buffers are clean then we need to
3025 * be sure to mark the page clean as well. This is because the page
3026 * may be against a block device, and a later reattachment of buffers
3027 * to a dirty page will set *all* buffers dirty. Which would corrupt
3028 * filesystem data on the same device.
3029 *
3030 * The same applies to regular filesystem pages: if all the buffers are
3031 * clean then we set the page clean and proceed. To do that, we require
3032 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3033 * private_lock.
3034 *
3035 * try_to_free_buffers() is non-blocking.
3036 */
3037 static inline int buffer_busy(struct buffer_head *bh)
3038 {
3039 return atomic_read(&bh->b_count) |
3040 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3041 }
3042
3043 static int
3044 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3045 {
3046 struct buffer_head *head = page_buffers(page);
3047 struct buffer_head *bh;
3048
3049 bh = head;
3050 do {
3051 if (buffer_write_io_error(bh) && page->mapping)
3052 set_bit(AS_EIO, &page->mapping->flags);
3053 if (buffer_busy(bh))
3054 goto failed;
3055 bh = bh->b_this_page;
3056 } while (bh != head);
3057
3058 do {
3059 struct buffer_head *next = bh->b_this_page;
3060
3061 if (bh->b_assoc_map)
3062 __remove_assoc_queue(bh);
3063 bh = next;
3064 } while (bh != head);
3065 *buffers_to_free = head;
3066 __clear_page_buffers(page);
3067 return 1;
3068 failed:
3069 return 0;
3070 }
3071
3072 int try_to_free_buffers(struct page *page)
3073 {
3074 struct address_space * const mapping = page->mapping;
3075 struct buffer_head *buffers_to_free = NULL;
3076 int ret = 0;
3077
3078 BUG_ON(!PageLocked(page));
3079 if (PageWriteback(page))
3080 return 0;
3081
3082 if (mapping == NULL) { /* can this still happen? */
3083 ret = drop_buffers(page, &buffers_to_free);
3084 goto out;
3085 }
3086
3087 spin_lock(&mapping->private_lock);
3088 ret = drop_buffers(page, &buffers_to_free);
3089
3090 /*
3091 * If the filesystem writes its buffers by hand (eg ext3)
3092 * then we can have clean buffers against a dirty page. We
3093 * clean the page here; otherwise the VM will never notice
3094 * that the filesystem did any IO at all.
3095 *
3096 * Also, during truncate, discard_buffer will have marked all
3097 * the page's buffers clean. We discover that here and clean
3098 * the page also.
3099 *
3100 * private_lock must be held over this entire operation in order
3101 * to synchronise against __set_page_dirty_buffers and prevent the
3102 * dirty bit from being lost.
3103 */
3104 if (ret)
3105 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3106 spin_unlock(&mapping->private_lock);
3107 out:
3108 if (buffers_to_free) {
3109 struct buffer_head *bh = buffers_to_free;
3110
3111 do {
3112 struct buffer_head *next = bh->b_this_page;
3113 free_buffer_head(bh);
3114 bh = next;
3115 } while (bh != buffers_to_free);
3116 }
3117 return ret;
3118 }
3119 EXPORT_SYMBOL(try_to_free_buffers);
3120
3121 /*
3122 * There are no bdflush tunables left. But distributions are
3123 * still running obsolete flush daemons, so we terminate them here.
3124 *
3125 * Use of bdflush() is deprecated and will be removed in a future kernel.
3126 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3127 */
3128 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3129 {
3130 static int msg_count;
3131
3132 if (!capable(CAP_SYS_ADMIN))
3133 return -EPERM;
3134
3135 if (msg_count < 5) {
3136 msg_count++;
3137 printk(KERN_INFO
3138 "warning: process `%s' used the obsolete bdflush"
3139 " system call\n", current->comm);
3140 printk(KERN_INFO "Fix your initscripts?\n");
3141 }
3142
3143 if (func == 1)
3144 do_exit(0);
3145 return 0;
3146 }
3147
3148 /*
3149 * Buffer-head allocation
3150 */
3151 static struct kmem_cache *bh_cachep __read_mostly;
3152
3153 /*
3154 * Once the number of bh's in the machine exceeds this level, we start
3155 * stripping them in writeback.
3156 */
3157 static int max_buffer_heads;
3158
3159 int buffer_heads_over_limit;
3160
3161 struct bh_accounting {
3162 int nr; /* Number of live bh's */
3163 int ratelimit; /* Limit cacheline bouncing */
3164 };
3165
3166 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3167
3168 static void recalc_bh_state(void)
3169 {
3170 int i;
3171 int tot = 0;
3172
3173 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3174 return;
3175 __this_cpu_write(bh_accounting.ratelimit, 0);
3176 for_each_online_cpu(i)
3177 tot += per_cpu(bh_accounting, i).nr;
3178 buffer_heads_over_limit = (tot > max_buffer_heads);
3179 }
3180
3181 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3182 {
3183 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3184 if (ret) {
3185 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3186 preempt_disable();
3187 __this_cpu_inc(bh_accounting.nr);
3188 recalc_bh_state();
3189 preempt_enable();
3190 }
3191 return ret;
3192 }
3193 EXPORT_SYMBOL(alloc_buffer_head);
3194
3195 void free_buffer_head(struct buffer_head *bh)
3196 {
3197 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3198 kmem_cache_free(bh_cachep, bh);
3199 preempt_disable();
3200 __this_cpu_dec(bh_accounting.nr);
3201 recalc_bh_state();
3202 preempt_enable();
3203 }
3204 EXPORT_SYMBOL(free_buffer_head);
3205
3206 static void buffer_exit_cpu(int cpu)
3207 {
3208 int i;
3209 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3210
3211 for (i = 0; i < BH_LRU_SIZE; i++) {
3212 brelse(b->bhs[i]);
3213 b->bhs[i] = NULL;
3214 }
3215 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3216 per_cpu(bh_accounting, cpu).nr = 0;
3217 }
3218
3219 static int buffer_cpu_notify(struct notifier_block *self,
3220 unsigned long action, void *hcpu)
3221 {
3222 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3223 buffer_exit_cpu((unsigned long)hcpu);
3224 return NOTIFY_OK;
3225 }
3226
3227 /**
3228 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3229 * @bh: struct buffer_head
3230 *
3231 * Return true if the buffer is up-to-date and false,
3232 * with the buffer locked, if not.
3233 */
3234 int bh_uptodate_or_lock(struct buffer_head *bh)
3235 {
3236 if (!buffer_uptodate(bh)) {
3237 lock_buffer(bh);
3238 if (!buffer_uptodate(bh))
3239 return 0;
3240 unlock_buffer(bh);
3241 }
3242 return 1;
3243 }
3244 EXPORT_SYMBOL(bh_uptodate_or_lock);
3245
3246 /**
3247 * bh_submit_read - Submit a locked buffer for reading
3248 * @bh: struct buffer_head
3249 *
3250 * Returns zero on success and -EIO on error.
3251 */
3252 int bh_submit_read(struct buffer_head *bh)
3253 {
3254 BUG_ON(!buffer_locked(bh));
3255
3256 if (buffer_uptodate(bh)) {
3257 unlock_buffer(bh);
3258 return 0;
3259 }
3260
3261 get_bh(bh);
3262 bh->b_end_io = end_buffer_read_sync;
3263 submit_bh(READ, bh);
3264 wait_on_buffer(bh);
3265 if (buffer_uptodate(bh))
3266 return 0;
3267 return -EIO;
3268 }
3269 EXPORT_SYMBOL(bh_submit_read);
3270
3271 void __init buffer_init(void)
3272 {
3273 int nrpages;
3274
3275 bh_cachep = kmem_cache_create("buffer_head",
3276 sizeof(struct buffer_head), 0,
3277 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3278 SLAB_MEM_SPREAD),
3279 NULL);
3280
3281 /*
3282 * Limit the bh occupancy to 10% of ZONE_NORMAL
3283 */
3284 nrpages = (nr_free_buffer_pages() * 10) / 100;
3285 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3286 hotcpu_notifier(buffer_cpu_notify, 0);
3287 }